
Resource

A transcriptional and regulatory map of mouse

somite maturation
Graphical abstract
Highlights
d Somite maturation follows a conserved molecular program

across development

d Somite differentiation accelerates with development

d Somites at later development commit to derivative lineages

soon after segmentation
Ibarra-Soria et al., 2023, Developmental Cell 58, 1983–1995
October 9, 2023 ª 2023 The Authors. Published by Elsevier Inc.
https://doi.org/10.1016/j.devcel.2023.07.003
Authors

Ximena Ibarra-Soria, Elodie Thierion,

Gi Fay Mok, Andrea E. M€unsterberg,

Duncan T. Odom, John C. Marioni

Correspondence
ximena.x.ibarra-soria@gsk.com (X.I.-S.),
d.odom@dkfz-heidelberg.de (D.T.O.),
marioni@ebi.ac.uk (J.C.M.)

In brief

Ibarra-Soria and Thierion et al.

characterize the molecular landscape of

the three most recently segmented

somites across six stages of

development in mouse embryos. They

find that while all somites follow a

common maturation program,

diversification into derivative lineages

accelerates across development,

occurring soon after segmentation in

mature embryos.
ll

mailto:ximena.x.ibarra-soria@gsk.�com
mailto:d.odom@dkfz-heidelberg.�de
mailto:marioni@ebi.ac.�uk
https://doi.org/10.1016/j.devcel.2023.07.003
http://crossmark.crossref.org/dialog/?doi=10.1016/j.devcel.2023.07.003&domain=pdf


OPEN ACCESS

ll
Resource

A transcriptional and regulatory
map of mouse somite maturation
Ximena Ibarra-Soria,1,6,7,9,* Elodie Thierion,1,7 Gi Fay Mok,2 Andrea E. M€unsterberg,2 Duncan T. Odom,1,3,8,*
and John C. Marioni1,4,5,8,*
1Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
2School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
3DKFZ, Division of Regulatory Genomics and Cancer Evolution B270, Im Neunheimer Feld 280, Heidelberg, 69120, Germany
4European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Cambridge CB10 1SD, UK
5Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
6Present address: Genomic Sciences, GSK R&D, Stevenage SG1 2NY, UK
7These authors contributed equally
8Senior author
9Lead contact

*Correspondence: ximena.x.ibarra-soria@gsk.com (X.I.-S.), d.odom@dkfz-heidelberg.de (D.T.O.), marioni@ebi.ac.uk (J.C.M.)
https://doi.org/10.1016/j.devcel.2023.07.003
SUMMARY
The mammalian body plan is shaped by rhythmic segmentation of mesoderm into somites, which are tran-
sient embryonic structures that form down each side of the neural tube. We have analyzed the genome-
wide transcriptional and chromatin dynamics occurring within nascent somites, from early inception of
somitogenesis to the latest stages of body plan establishment. We created matched gene expression
and open chromatin maps for the three leading pairs of somites at six time points during mouse embryonic
development. We show that the rate of somite differentiation accelerates as development progresses. We
identified a conserved maturation program followed by all somites, but somites from more developed em-
bryos concomitantly switch on differentiation programs from derivative cell lineages soon after segmenta-
tion. Integrated analysis of the somitic transcriptional and chromatin activities identified opposing regulatory
modules controlling the onset of differentiation. Our results provide a powerful, high-resolution view of the
molecular genetics underlying somitic development in mammals.
INTRODUCTION

The segmentation of the body plan during early embryogenesis

is a fundamental and conserved feature of all vertebrate species.

It results in the metameric organization of the vertebrae and the

associated skeletal muscles, nerves, and blood vessels. This

segmentation is established via formation of somites, which

are transient embryonic structures consisting of hundreds of

cells that bud off from the anterior tip of the presomitic meso-

derm (PSM) on each side of the neural tube. Each pair of somites

is symmetrically and rhythmically formed along the anterior-pos-

terior axis.

The clock and wavefront model1 provides a working hypothe-

sis of how the segmentation process is controlled, by integrating

spatiotemporal information fromwaves of transcriptionally oscil-

lating genes in the PSM (the molecular clock) and antagonistic

signaling gradients along the embryo axis (the wavefront). The

molecular oscillator is known as the segmentation clock, which

drives cyclic and synchronized gene expression along the

PSM.2 The so-called clock genes belong to the Notch, Wnt

and fibroblast growth factor (FGF) signaling pathways.3 The

wavefront involves posterior gradients of Wnt and FGF signaling
Developmental Cell 58, 1983–1995, Oc
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that are counteracted by an opposing gradient of retinoic acid

(RA) secreted from the somites.4 When the segmentation clock

reaches cells that have passed the wavefront, segmentation

genes, including Mesp2, are activated, leading to the specifica-

tion of the somite boundary.5 As well as specifying the somite

boundaries, RA signaling suppresses signals that break left-right

symmetry, ensuring that somite production is bilaterally symmet-

ric.6,7 This periodic addition of somites underlies body plan gen-

eration in all vertebrates, and the oscillating signals from Notch,

Wnt, and FGF pathways are conserved in the PSM of model or-

ganisms as diverse as mouse, chicken, and zebrafish.8

The specification of somites along the anterior-posterior axis

is determined before somitogenesis by Hox gene expression,9

and the specific combination of Hox genes expressed along

the axis establishes the identity of the resulting vertebrae.10 So-

mites are further patterned along the dorsoventral and medio-

lateral axes, giving rise to two somitic derivatives found in all ver-

tebrates: the sclerotome (precursor of vertebral and rib cartilage,

tendons, and blood vessels) and the dermomyotome (precursor

of skeletal muscles and back dermis). Fate specification to either

derivative is controlled by signals from adjacent tissues. Ventral

cells of the somite differentiate into sclerotome under the
tober 9, 2023 ª 2023 The Authors. Published by Elsevier Inc. 1983
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influence of Shh signals from the notochord and the floor-plate of

the neural tube. Dorsal cells instead receive Wnt signals from the

neural tube and the ectoderm and BMP4 from the lateral meso-

derm, to give rise to the dermomyotome.11

Master transcriptional regulators driving somite differentiation

have been identified through classical genetic approaches.12,13

However, how these master regulators orchestrate somitogene-

sis through embryonic space and time, and indeed what genes

they directly regulate, remains less clear. While several studies

have used gene expression microarrays to characterize gene

expression patterns during somitogenesis, these studies have

all been performed in the PSM.8,14,15

Here, we map the transcriptional and chromatin changes that

occur across somite maturation by performing high-resolution

RNA and ATAC sequencing of individual, manually microdis-

sected somites at six developmental stages. By comparing the

three most recently segmented somites, we characterized the

molecular basis of the earliest stages of somitematuration. Addi-

tionally, we identified patterns of dynamic regulatory activity

across development, with pronounced differences between so-

mites that give rise to differing types of vertebrae. By character-

izing the biological processes dominating each stage, we found

that somite differentiation accelerates with developmental pro-

gression. Finally, we used the combined information from the

transcriptional and chromatinmaps to define regulatorymodules

with differing activity during early and late development. These

molecular programs control the onset of differentiation, thus

regulating the timing of skeletal system development. All data

can be explored interactively at https://crukci.shinyapps.io/

somitogenesis/.

RESULTS

A high-resolution transcriptional and regulatory map of
somite maturation
To characterize the transcriptional changes that orchestrate

mouse somite maturation, we generated coupled transcriptional

and chromatin accessibility profiles of individual somite pairs,

across embryonic development. Each somite typically contains

500–1,000 cells, which is sufficient to generate high-resolution

small bulk data. We first compared the transcriptomes of

matched left and right somites dissected from 20 to 25 somite

embryos and observed no significant differences in expression

(Figure S1A), indicating that from a molecular genetics perspec-

tive, the two somites were indistinguishable. Therefore, for each

somite pair, we used one somite to map the transcriptome (RNA

sequencing [RNA-seq]) and one to map matched open chro-

matin (ATAC-seq) (Figure 1A).

After segmentation, somites maintain a round shape for

several hours before undergoing an epithelial-to-mesenchymal

transition (EMT) when cells commit to somite-derived lineages

and initiate migration.12 To study the molecular changes associ-

ated with fate commitment, we collected the three most poste-

rior pairs of somites, which correspond to those most recently

segmented, and that have not yet begun EMT13,16 (Figure 1B).

To understand how somite maturation progresses across em-

bryonic development, we sampled these somite trios from

embryos at six different developmental stages. We defined the

embryonic stage by counting the total number of somite pairs
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and profiled at least four different embryos containing 8, 18,

21, 25, 27, and 35 pairs of somites (Figure 1B; Table S1). These

stages span four of the five different types of vertebrae (cervical,

thoracic, lumbar, and sacral; Figure 1A), providing profiles of so-

mites that will contribute to all four structures.

We generated matched transcriptome (RNA-seq) and open

chromatin (ATAC-seq) maps from the vast majority (71/81) of

the samples (Table S1). From the 77 RNA-seq libraries, all but

one produced good-quality transcriptomes (Tables S2). We

normalized for sequencing depth and corrected for batch effects

associated with the date of somite collection (STAR Methods;

Figures S1B and S1C).

Somites from specific axial levels express particular combina-

tions of Hox genes,10 which are directly associated with segment

identity.17,18 Somites from different embryonic stages consis-

tently showed clear differences in the class and expression level

of Hox genes (Figure 1C), and the expression of Hox genes alone

accurately ordered samples according to our observed somite

stage (Figure 1D).

ATAC-seq libraries were successfully produced from 75 sam-

ples, but 25 of these were removed after applying stringent qual-

ity control criteria (Figure S2; Table S3). The remaining 50 open

chromatin maps showed efficiency biases, which were corre-

lated with mean fragment abundance (Figures S3A and S3B).

To compensate for this trend, we used a loess-based normaliza-

tion strategy (Figure S3C). Additionally, we applied the same

batch correction approach that was used on the RNA-seq data

to remove technical variation (Figures S3D and S3E).

We classified the possible functional role of open chromatin

regions based on their genomic location. Peaks that were within

200 bp of an annotated transcription start site were deemed pro-

moter-like elements and represent 19% of total peaks; an addi-

tional 12% of peaks overlapped gene exons. The remainder of

the peaks were annotated as enhancer-like elements and subdi-

vided into proximal (24%) or distal (7%) if they were within 25 and

100 kb of an annotated gene, respectively, or intergenic (1%)

(Figure 1E).

Epithelial somites deploy a shared maturation program
across embryonic development
We systematically profiled the three most recently segmented

somites, which are at the beginning of the differentiation process

that will give rise to all somitic derivatives, including muscle,

bone, cartilage, and dermis.19–22 Following the nomenclature

proposed by Christ and Ordahl,23 we refer to each somite in

these trios as somites I–III, from the most posterior to the most

anterior, respectively (Figure 2A).

To characterize the molecular changes underlying somite

maturation, we compared all pairwise combinations of somites

I, II, and III at each developmental stage. We identified a median

of 453 genes that significantly differ per stage (false discovery

rate [FDR] < 5% and |fold-change| > 1.5). Most differentially ex-

pressed genes had subtle changes in expression, with half

showing less than a 2-fold difference between any two somites.

To increase statistical power, we repeated the analysis using

samples from different stages as replicates and detected genes

that showed consistent changes regardless of developmental

stage. Altogether, we identified 2,977 significantly differentially

expressed genes. Similar numbers of genes were up- and

https://crukci.shinyapps.io/somitogenesis/
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Figure 1. Expression and chromatin profiling of mouse somite maturation

(A) Schematic of somite pairs on each side of the neural tube, and the corresponding vertebrae structures they will form. One somite from each pair was used for

RNA-seq, and the other for ATAC-seq. Somites and vertebrae are colored based on their vertebral identity (cervical, thoracic, lumbar, sacral, or caudal). Somites

at boundaries between two different types of vertebrae are numbered. The first four somite pairs (occipital) are not shown.

(B) Somites collected in this study. From each embryo, the three most posterior somites (SI–SIII) were collected. Embryos profiled were from six different

developmental stages, determined by the number of somites. ss, somite stage; n, number of embryos collected.

(C) Heatmap of the expression of all Hox genes. Samples are ordered in columns according to their observed somite stage. Each row is a different Hox gene,

ordered by paralogous groups from 1 to 13. Expression is represented as Z scores.

(D) Principal component analysis of the expression of Hox genes orders somites consistently with their observed somite stage.

(E) Proportion of open chromatin regions classified based on their genomic context.
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downregulated, with the strongest differences manifested be-

tween somites I and III (Figure 2B). The vast majority of differen-

tially expressed genes (75.8%) showed consistent expression

dynamics across different stages. However, most genes

(86.9%) also showed differences in expression levels across

developmental time, illustrating the complex regulatory dy-

namics prevalent during embryonic development (Figure 2C).
The genes downregulated along somite maturation were en-

riched for biological processes related to regionalization and

pattern specification, which are active in the PSM and lead to

somite segmentation. Consistently, both the Wnt and Notch

signaling pathways were preferentially downregulated3 (Fig-

ure 2D). In contrast, a steady progression toward EMT during

somite maturation was reflected by the upregulation of cell
Developmental Cell 58, 1983–1995, October 9, 2023 1985
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Figure 2. Somites follow a conserved maturation program across development

(A) Schematic indicating the somite trios profiled from each embryo. A, anterior; P, posterior. Color and shading scheme is preserved throughout all figures to

indicate the different somites.

(B) Volcano plot of expression changes between somites I and III. Genes significantly differentially expressed are colored.

(C) Differences in gene expression for two representative genes (Tbx22 andCol2a1) among somites I, II, and III are consistently maintained across developmental

stages.

(D) Significantly enriched Gene Ontology functional categories in the set of differentially expressed genes. Enrichment significance is shown on the y axis. The x

axis indicates whether a term contains a majority of genes that are downregulated (positive) or upregulated (negative) as somites mature. Points are colored

based on an ‘‘aggregation score,’’ which corresponds to the average fold-change of all differentially expressed genes in the GO term. The size of the points

indicates the number of differentially expressed genes in each term. Outlined points correspond to terms that are also significantly enriched in the set of

differentially accessible chromatin regions.

(E) Barplot of the proportion of peaks falling in different genomic contexts. Differentially accessible (DA) regions between somites I, II, and III are enriched for

enhancers. Colors indicate the same classes as in Figure 1E.

(F) Similar to (D) but showing the enrichment of transcription factor binding sites (TFBSs) in differentially accessible peaks.

(G) Representative examples of motif activity dynamics for TFs that are enriched in differentially accessible peaks. Positive (negative) activity scores indicate the

regions are more (less) accessible compared with background chromatin. Hox and other hoemeodomain TF-binding sites close in mature somites, while C4 zinc-

finger class of receptors (Rxra, Nr2c1, Nr2f2, and Zbtb12) sites become more accessible in SIII.
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adhesion andmigration programs, together with a switch to pos-

itive regulation of Rho and ERK signaling (Figure 2D).

The open chromatin landscape was similarly dynamic across

the somite trios, with 2,701 genomic regions showing significantly

different accessibility levels (FDR < 5% and |fold-change| > 1.5).
1986 Developmental Cell 58, 1983–1995, October 9, 2023
Open chromatin regions that actively changed between somites

were enriched for enhancer-like regions, with fewer promoter

elements (Figure 2E). Indeed, only 506 (18.7%) differentially

accessible regions were located within 5 kb of a differentially ex-

pressed gene, indicating that the regulatory mechanisms driving
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Figure 3. Epithelial somites at late development activate differentiation programs of derivative lineages absent in early stages

(A) Schematic indicating the somites profiled across development, and their vertebral fate. Color scheme is preserved throughout all figures to indicate the

different stages.

(legend continued on next page)
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expression changes operate through distal regulatory elements,

rather than by directly modulating chromatin accessibility at pro-

moters. The coordination of dynamic chromatin accessibility and

gene expression changes was also reflected in their shared over-

representation of the same biological functions (Figure 2D).

Next, we annotated transcription factor (TF)-binding motifs

within ATAC-seq peaks and identified 201 regulators whose

binding motifs were significantly enriched in the dynamic re-

gions, when compared with static open chromatin (Figure 2F).

These included Hox factors, as well as multiple members of

the homeodomain, Tal, Sox, and NK families. For example, bind-

ingmotifs forMSGN1were present in 22%of all dynamic regions

(compared with 12% in non-differentially accessible chromatin),

and most of these peaks showed reduced accessibility in more

mature somites, consistent with the role of this protein as a mas-

ter regulator of PSM differentiation24 (Figure 2F). In contrast, the

dynamic peaks with binding motifs for TWIST1, a critical factor

mediating EMT, were more accessible in the most mature so-

mites25 (Figure 2F).

Finally, to understand how the overrepresented TFs regulate

somite maturation, we analyzed the accessibility dynamics of

the genomic loci with binding sites for each of these TFs. Binding

sites for all Hox proteins, regardless of their paralogous group or

stage activity pattern, showed decreased accessibility upon so-

mite maturation (Figure 2G). This behavior also extended tomost

of the other TFs enriched in differentially accessible peaks (Fig-

ure 2G). One notable exception gained accessibility as somites

matured: the C4 zinc-finger class of receptors, which includes

the retinoid-X-receptor-related factors, critical in mediating the

biological effects of retinoid signaling and its differentiation-

inducing activity26 (Figure 2G).

Molecular remodeling across development regulates
somite responses to the signaling environment
Our data identified profound changes in transcriptional and

regulatory activity in somites I–III across development. We

compared the RNA-seq profiles of somites among all different

developmental stages (Figure 3A) and identified 10,691 genes

with significant changes in expression (FDR < 5% and |fold-

change| > 1.5; see STAR Methods for details; Figure 3B),

including most known TFs (838 from a total of 1,310 expressed).

The chromatin landscape was also remodeled extensively, with

33,013 open chromatin regions showing significant differences

in accessibility (Figure S4A). In contrast to the changes observed
(B) Heatmap of expression of genes differentially expressed across development.

and somite level are indicated at the top. Differentially expressed genes are grou

(C) Gene ontology term enrichment analysis results for sets of genes with highest

of differentially expressed genes in each term-fate combination, and the intensit

(D) Expression of the retinoic acid receptor gene Rara across development. Rela

(E) Chromatin activity scores from chromVAR for the genome-wide binding sites

accessibility than background chromatin.

(F) Zoomed-in region of the heatmap in (B), showing the expression of genes in t

(G) Boxplots of the fraction of reads that are within peaks in each sample.

(H and I) Chromatin activity scores for FOXC1 (H) and MYOD1 (I), as in (E).

(J and K) Smad5 gene expression (J) and chromatin activity at its TFBSs (K) acro

(L) Gene expression levels for Mef2c across development.

(M) Significance scores for enrichment of chromatin regions associated with gen

each term is shown separately for the sets of regions with highest activity at each v

significance level. See also Figure S3.
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across somite maturation, a much higher proportion of differen-

tially accessible loci were in promoters or close to differentially

expressed genes (Figure S4B), indicating that across develop-

ment, widespread chromatin remodeling plays a crucial role in

controlling the genes available for expression.

When ordered by developmental stage, somites from different

vertebral fates showed waves of temporally restricted transcrip-

tional and chromatin remodeling (Figures 3B and S4A). We

analyzed these patterns of coordinated gene expression by

performing enrichment analysis of gene ontology (GO) functional

terms. Differentially expressed genes with highest expression in

cervical somites (clusters 1–4) were related to epithelial cell

development and response to RA signaling, including several

RA receptors (Figures 3B and 3C). Additional genes involved in

somitogenesis and embryonic patterning were prevalent in

both cervical and thoracic somites (clusters 1–6, Figure 3C)

and were generally expressed at the highest level in the most

recently segmented somite. This suggests that somites at these

early developmental stages closely resemble their PSM lineage

and are only beginning to activate a somite-specific transcrip-

tional profile.

We used our data to dissect the complex interplay between

metabolite production, TF activity and chromatin dynamics

involved in RA signaling, which requires precise spatiotemporal

regulation for adequate differentiation of progenitor cells.26 RA

signaling effects are mediated by the RA receptor (RAR) and reti-

noid X receptor (RXR) families. These ligand-dependent TFs can

recruit either corepressors or coactivators to induce changes in

chromatin condensation and regulate transcription.26 Expres-

sion of the enzymes involved in RA production (Aldh1a2 and

Rdh10) as well as of several RAR/RXR TFs peaked early in devel-

opment (Figures 3B and 3D). However, the accessibility of loci

with binding sites for RAR/RXR factors was lowest at this stage

(Figure 3E), suggesting their association with corepressors to

induce chromatin condensation. As development proceeded

these chromatin loci progressively increased in accessibility,

maintaining an open chromatin configuration from stage 25 on-

ward (Figure 3E). These data indicate that the epigenetic profile

of somites is reshaped across development from a repressive to

a permissive state for RA signaling activity.

Thoracic somites showed strong enrichment for genes

involved in the development of the skeletal system, including

both the muscle and cartilage lineages (clusters 5 and 6;

Figure 3C). We observed prominent expression of many
Samples (columns) are ordered based on their somite number, and their stage

ped into clusters by hierarchical clustering.

activity at particular vertebral fates. The size of the circles indicates the number

y of the color corresponds to the significance of the enrichment.

ted factors such as Rxra show a similar pattern.

(TFBSs) of RARA and RXRA. Positive (negative) scores indicate higher (lower)

he cholesterol biosynthesis pathway.

ss stages.

es that show skeletal abnormalities in knockout (KO) mice. The significance of

ertebral fate, indicated by the color of the circle. Circle size is proportional to the
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components of the TGF-b, BMP, and Smad signaling pathways,

which are fundamental in orchestrating skeletal system develop-

ment27 (Figure 3B). We also observed coordinated expression of

cholesterol biosynthesis, with maximal expression of 17 meta-

bolically central genes at stage 25 before being downregulated

at later stages (Figure 3F). Among several functions, cholesterol

plays an important role in the transduction of hedgehog

signaling28,29 and is required for the correct development of

muscle and bone.30,31 Sonic hedgehog (SHH) is secreted by

the notochord and controls the specification of the sclerotome

during patterning of epithelial somites.32 Defective cholesterol

biosynthesis leads to impaired response to Shh signaling and

skeletal defects.28,29 As expected, we did not detect significant

Shh expression in the somites. However, we suggest that the

tightly controlled expression of the cholesterol pathway compo-

nents could be a mechanism to control when somites are most

responsive to extrinsic hedgehog signaling.

Somite differentiation accelerates across development
Our data identified that chromatin remodeling is concentrated in

thoracic somites. In addition to activating the gene programs

controlling skeletal system development, somites at stages

18–25 generally showed higher levels of open chromatin,

compared with other stages. We observed a sharp increase in

the fraction of reads in peaks in somites from stage 18 embryos,

with further increases at stages 21 and 25, before dropping in the

stage 27 somites (Figure 3G). Consistently, over half of all differ-

entially accessible chromatin loci showed highest accessibility in

thoracic somites (Figure S4A). These chromatin loci were en-

riched for many TF motifs, including several with well described

roles in skeletal system development such as forkhead TFs,

implicated in both skeletal muscle and cartilage develop-

ment33,34 (Figure 3H). We also observed increased accessibility

at loci harboring binding sites for MYOD1 (Figure 3I) and MYF5

(Figure S4C), which are essential for cell commitment to the

myogenic lineage.35

Previous work36–39 have characterized the expression dy-

namics of sclerotome and myotome markers, including Myod1,

at several embryonic stages. These studies showed that somites

from younger embryos take longer to activate marker gene

expression compared with somites from more advanced em-

bryos. We hypothesized that the shorter times required for

marker expression onset in late development stem from a

change in the permissiveness of the chromatin landscape, which

allows lineage-defining TFs to activate their downstream path-

ways sooner. Analysis of the active biological processes preva-

lent at later developmental stages indeed showed a switch from

cell development and morphogenesis programs to lineage

commitment and differentiation (Figure 3C). These transitions

were often accompanied by shifts in the active components of

canonical signaling pathways, both by altering the expression

of key TFs and by changing the permissiveness of the chromatin

at their effector sites throughout the genome. For example, while

expression of Smad3 and Bmp3 was at its highest levels in

thoracic somites, increasing expression of Smad5 alongside

Bmp1, Bmp4, and Bmp7 was observed later in development

(Figure 3B). Smad5 was expressed at all stages, albeit at lower

levels early on (Figure 3J); however, its binding sites only became

accessible from stage 25 onward, when expression was highest
(Figure 3K). Signaling through SMAD2/3 and SMAD1/5 have

opposing effects on differentiation. For example, while BMP3-

SMAD3 block osteogenesis, BMP1 and BMP7, downstream of

TGF-b, promote osteoblast production.27 Thus, the switch in us-

age of the opposing arms of the SMAD-BMP or SMAD-TGF-b

signaling pathways suggests that cells at later developmental

stages have progressed further in their differentiation trajectory.

Consistent with this, genes crucial for fate determination and

commitment also increased in expression across time: Mef2c

(Figure 3L), which is fundamental in myogenic differentiation,

and Sox9 (Figure S4D), which specifies chondrocytes, peaked

in sacral somites.40,41

Additionally, we observed significant upregulation of Bmp4

specifically in lumbar somites (cluster 7, Figure 3B). Besides regu-

lating the development of the skeletal system, BMP4 has been

shown to induce the expression of Flk1 (Kdr) in epithelial so-

mites,42 a factor essential for vasculogenesis and angiogenesis.

The dermomyotome derivative lineages include vascular endo-

thelial cells. Concomitant with Bmp4 upregulation, we also

observed increased expression of many other genes involved

in angiogenesis, such as Gata2, Tal1, Ets1, and Tbx20 (cluster 7,

Figure 3B). Later in development, sacral somites continued to

express high levels of angiogenic factors and further activated

more mature programs involved in blood vessel remodeling

(Figure 3C).

Finally, to assess whether our molecular atlas captures regula-

tors important in determining vertebral fate identity, we tested for

enrichment of genes with specific mouse knockout phenotypes.

Genomic loci with highest activity in cervical or thoracic somites

were strongly enriched for phenotypes affecting cervical verte-

brae and thoracic and ribmorphology. In contrast, regions active

in sacral somites were associated with abnormal lumbar and

sacral vertebrae (Figure 3M). Thus, our catalog of differential ac-

tivity along the axial skeleton can be utilized to identify genes

and regulatory elements important for the specification of the

different vertebral structures.

Skeletogenesis is shaped by opposing regulatory
modules
Next, we leveraged the paired design of our dataset tomap chro-

matin-transcription regulatory interactions driving somite matu-

ration and differentiation, by applying the functional inference

of gene regulation (FigR) method43 (with minor modifications,

see STAR Methods for details). First, we computed the correla-

tion between the activity levels of all differentially expressed

genes and the open chromatin peaks within 100 kb to identify

regulatory elements likely to direct nearby gene expression

changes. Peak-gene pairs were considered significantly associ-

ated if they had stronger correlation values compared with

randomized interactions. After restricting results to pairs with

moderate to high correlation scores (>0.3), we identified

12,803 putative regulatory interactions, involving 47% of all

differentially expressed genes. Although a small fraction of

the interactions included promoter-like peaks in the immediate

vicinity of the genes, most resembled enhancers and were

dozens of kilobases away, with amedian distance of 38 kb (inter-

quartile range: 13.1–67.5 kb). Linked peaks overlapped more

often with FANTOM5 and ENCODE enhancers (H3K27ac-high,

H3K4me3-low signature) compared with all peaks, lending
Developmental Cell 58, 1983–1995, October 9, 2023 1989
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Figure 4. Regulatory modules with opposing activity along embryonic development control timely activation of skeletogenesis pathways

(A) Fraction of peaks that overlap enhancer elements from the ENCODE (red) and FANTOM5 (orange) catalogs. Peaks identified as putative regulators of

differentially expressed genes (linked peaks) are more likely to be annotated enhancers. This fraction increases as the set of peaks is restricted to stronger

interactions, as shown by limiting to linked peaks with correlation scores higher than 0.3–0.7.

(B) For each differentially expressed (DE) gene, the number of significantly associated peaks within 100 kb. Several hundred genes are linked to a large number of

peaks, and these include many late Hox genes.

(C) Regulation scores predicted by FigR between transcription factors (TFs) and genes with many linked peaks (blue set from B). The x axis indicates the strength

of the correlation between TF expression and peak accessibility; the y axis corresponds to the significance of the enrichment of the TF-binding sites in the linked

peaks. Interactions involving NR6A1 are highlighted with triangles.

(D) Heatmap depicting patterns of regulatory activity between TFs (columns) and genes (rows). Genes are split into four modules by hierarchical clustering. Genes

from the TGF-b and BMP signaling pathways are highlighted with asterisks. Color scale is the same as in (C).

(E) Heatmap showing the expression levels of the same genes as in (D) across all somites profiled in this study. Samples (columns) are ordered based on their

observed somite stage (indicated at the top).

(F) Expression levels of Sall4, one of the TFs with large regulation scores on module 1 genes.

(G) Expression levels of Nr6a1 and Gdf11 in all somites show a strong antagonistic relationship.
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support for their regulatory activity (Figure 4A). This proportion

sharply increased when links were restricted to those with the

strongest correlations (Figure 4A). Thus, this strategy serves to

enrich the set of chromatin loci for enhancer elements, and to

associate their activity to dynamically regulated genes.
1990 Developmental Cell 58, 1983–1995, October 9, 2023
Most (93.7%) differentially expressed genes significantly

linked with chromatin changes were associated with one to

five putative enhancer regions, but a few hundred genes were

linked to many more enhancers (Figure 4B). The set of 349

strongly connected genes contained factors key in controlling
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somite development and differentiation, suggesting that these

processes are under complex regulatory control. Some of the

most highly connected genes were Hox factors from late paral-

ogous groups (Figure 4B), consistent with chromatin remodeling

playing a crucial role in controlling their timely expression.44

Next, we scanned the peaks associated with these highly regu-

lated genes and identified enriched TF motifs. TF-gene pairs

were assigned a regulation score that favors TFs showing corre-

lated expression to the accessibility dynamics of linked peaks

(Figure 4C).

We identified opposing transcriptional programs active in early

and late development by clustering TFs with large regulation

scores (Figures 4D and 4E). Four different modules of regulatory

activity were evident. Module 1 acted on genes that show differ-

ences in expression between the somite trios, including genes

involved in the establishment of anterior-posterior patterning

and somitogenesis, such as Cdx1/2,Gbx2, Lef1, and Hox genes

from early paralogous groups (Figures 4D and 4E). CDX1 and

GBX2 themselves, together with SALL4, showed some of the

strongest regulation scores on these genes. Consistent with their

role in the specification and patterning of somitic mesoderm,

their expression was highest in the most immature somite I

(Figure 4F).

The other threemodules were instead related to genes that are

downregulated (module 2) or upregulated (modules 3 and 4) with

developmental progression (Figure 4E). Module 2 activity was

influenced by Shh signaling (GLI1; Figure 4D), while genes ex-

pressed late in development were under the control of several

TFs. Among these, NR6A1 showed a prominent role, particularly

in module 4, with its binding sites highly enriched in the peaks

linked to these genes (Figure 4C). Expression of Nr6a1 was

negatively correlated with peak accessibility, indicating a repres-

sive regulatory effect. A number of other TFs, including late Hox

TFs, showed large positive regulation scores on the same genes

(Figure 4D), suggesting antagonistic regulatory activities to

NR6A1. Among this set of activating TFs were factors key in

the specification of the muscle and cartilage lineages (MEF2C

and SOX9), as well as proteins involved in balancing proliferation

and differentiation of the progenitor cells, with many required to

avoid premature differentiation (SNAI2, ZFP637, HOXA9, and

FOXP1; Figure 4D).

Recently, NR6A1was shown to be a key regulator of the trunk-

to-tail transition in the tailbud, where its expression early in

development prevents premature activation of late-expressing

genes, including late Hox genes. Nr6a1 expression is then termi-

nated by Gdf11 to allow the trunk-to-tail transition.45 Although

these regulatory interactions were dissected in undifferentiated

tailbud mesoderm cells, we observed the antagonistic expres-

sion betweenNr6a1 andGdf11 is retained in segmented somites

(Figure 4G), suggesting this regulatory program remains at play

as cells commit to the somitic lineage. Consistently, FigR pre-

dicted the strongest effects exerted by NR6A1 to affect all Hox

genes in paralogous groups 10 to 13 (Figure 4D). Additional pre-

dicted regulatory interactions included several components of

the TGF-b and BMP signaling pathways from modules 3 and 4

(highlighted with asterisks in Figure 4D), with the peaks associ-

ated with these genes also showing significant enrichment for

NR6A1 binding motifs. Among these genes was Smad5, with a

regulation score only slightly lower than those observed for late
Hox genes. Further, SMAD5 itself was identified as a positive

regulator of module 4 genes (Figure 4D). Based on these results,

we speculate that the regulatory network controlled by NR6A1

not only regulates the trunk-to-tail transition in paraxial meso-

derm, but it may participate in the timely activation of differenti-

ation pathways required for skeletogenesis. As Nr6a1 expres-

sion diminishes in later development, it is possible that its

repression of TGF-b and BMP signaling lessens. In turn, other

TFs would be able to increase in activity to enhance these path-

ways and drive the commitment and differentiation of cells down

the various somitic derivative lineages.
DISCUSSION

The establishment of the vertebrate body plan through somito-

genesis is deeply conserved. Although the molecular mecha-

nisms driving the segmentation process are shared, alterations

to the number and class of segments between different spe-

cies allows facile generation of vastly different body structures

among vertebrates.46 Previous studies have characterized

the transcriptional changes accompanying the transition

from unsegmented mesoderm to nascent and differentiated

somites in the chick,47 mouse,48 and human embryos,49 at a

single developmental stage. These studies have provided in-

sights into the molecular pathways controlling segmentation

and the subsequent differentiation of somitic mesoderm

derivatives.

Here, we have experimentally analyzed how the three most

recently segmented somites of mouse embryos remodel their

transcriptional and chromatin landscapes at six different devel-

opmental stages, capturing the earliest molecular mechanisms

that give rise to cervical, thoracic, lumbar, and sacral structures.

We identified three thousand genes transcriptionally remodeled

during somite maturation. The expression of these genes after

segmentation follows the same pattern at independent stages,

indicating that somites from different axial levels adhere to a

conserved differentiation trajectory. However, we also identified

genes expressed in specific developmental stages of the em-

bryo, reflecting changes in the microenvironment in which

somites develop.

To increase the accessibility of our data and support the gen-

eration of novel hypotheses, we have created an interactive

website (https://crukci.shinyapps.io/somitogenesis/) where the

expression of any gene can be evaluated during the somite

time course. For example, Pax1 and Pax9 are important regula-

tors of sclerotome proliferation and differentiation.50 Consis-

tently, our data show a clear upregulation of both genes as so-

mites mature, and this is accompanied by an overall increase

in expression levels during later developmental stages. Further-

more, several downstream targets of Pax1 and Pax9 have been

identified, including Col2a1, Sox5, and Wwp2.50 When interro-

gating their expression patterns in our somite profiles, we

observe that the expression of Col2a1 is strongly correlated

with Pax1 (Pearson r = 0.85), while it shows a more modest rela-

tionship with Pax9 (Pearson r = 0.69). In contrast, the opposite

pattern is observed for Sox5 (Pax9 Pearson r = 0.67; Pax1 Pear-

son r = 0.55). Thus, our data can be exploited to help decipher

the regulatory programs underpinning somite maturation.
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Our data show that somite differentiation accelerates as em-

bryos grow. We observed that somites from stage 8 embryos

maintain a naive transcriptional profile for the entirety of the three

segmentation clock cycles captured in our data, but progression

along development results in a shortening of the time spent in

such an undifferentiated state. At later stages, somitic gene

regulation is dominated by TFs controlling cell fate commitment.

By the time embryos have formed 35 pairs of somites, differen-

tiation programs of derivative lineages are upregulated within a

few hours post-segmentation and can already be observed in

somite III. This is consistent with previous work in chick em-

bryos36–39 that showed pronounced differences in the onset of

expression of key factors for the commitment of cells to the

myogenic lineage, depending on embryonic age. Our results

provide evidence that this is also a feature of mouse embryos.

By integrating our transcriptional and epigenetic datasets, it is

possible to start dissecting the regulatory mechanisms control-

ling the differentiation processes described above. However,

several limitations warrant consideration when interpreting these

results. First, early and late somites differ in the size and number

of cells present at the time of segmentation,51 meaning that

changes in expression or accessibility can be the result of

compositional differences and/or changes in the activity within

individual cells. Second, the segmentation clock slows down

as development proceeds,51 and thus, somite trios from later

stages span a longer time window than those from earlier em-

bryos, increasing the time for these somites to activate lineage

determining pathways. Finally, while we have characterized the

molecular changes occurring within the somites, somites

develop concomitantly with other organ systems. The

complexity of the signaling microenvironment and functional

processes active across organogenesis differ substantially be-

tween embryos from cervical versus sacral stages. Integrating

our data with recently generated datasets that profilemouse em-

bryos from different somite stages at single-cell resolution52 will

potentially allow to address some of these questions.

Furthermore, we characterize the regulatory mechanisms

controlling cell fate specification and commitment well before

the onset of definitive lineage markers, showing that the acceler-

ation of somite differentiation in later development initiates soon

after somite segmentation. This phenomenon is not restricted to

the myogenic lineage but extends to other cell type populations,

including chondrogenic and endothelial cells. In sum, our high-

resolution view of the molecular mechanisms underlying the

specification and development of somitic lineages has uncov-

ered additional features of somite maturation and is a powerful

resource for the developmental biology community to study its

progression in mammals.

Limitations of the study
The embryos used in our experiments were carefully staged by

the number of segmented somites. However, embryos will be

at different stages within the next clock cycle leading to some

asynchrony among replicates. Additionally, by using bulk

profiling techniques, we have generated the average profile of

somites across time, and we do not have any information on

cell composition changes. Thus, differences in activity levels be-

tween somites could be due to changes in expression regulation

and/or abundance of specific cell states.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, peptides, and recombinant proteins

NEB Next High Fidelity 2X PCR Master Mix NEB Catalog # M0541L

EvaGreen Dye 20X in water Biotum Catalog #31000

Agencourt AMPure XP Beads Beckman Coulter, Inc. Cat. no. A63880

SUPERase-In RNase Inhibitor Invitrogen Cat no. AM2696

Dispase II (neutral protease, grade II) Roche Cat no. 04942078001

DMEM, high glucose, NEAA, no glutamine Gibco Cat. no. 10938025

Critical commercial assays

Nextera XT DNA Library Preparation Kit Illumina Cat. no. FC-131-1096

Nextera DNA Sample Preparation kit Illumina Cat. no. FC-121-1030

MinElute PCR Purification Kit Qiagen Cat. no. / ID: 28004

Zymo Clean & Concentrator kit Zymo Research Cat. no. D4014

SMART-seq v4 Ultra Low Input RNA Kit for Sequencing TaKaRa Cat. no. 634891

Deposited data

Raw and processed RNA-seq data This paper ArrayExpress: E-MTAB-12511

Raw and processed ATAC-seq data This paper ArrayExpress: E-MTAB-12539

Experimental models: Organisms/strains

Mouse: C57BL/6J Charles River The Jackson Laboratory

Oligonucleotides

Tn5ME-A TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG Illumina Cat. no. FC-121-1030

Tn5ME-B GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG Illumina Cat. no. FC-121-1031

Ad1_uni AATGATACGGCGACCACCGAGATCTACACTCGT

CGGCAGCGTCAGATGTG

Eurofins Buenrostro et al.53

Ad2.1 CAAGCAGAAGACGGCATACGAGATTCGCCTTAGTCTCG

TGGGCTCGGAGATGT

Eurofins Buenrostro et al.53

Ad2.2 CAAGCAGAAGACGGCATACGAGATCTAGTACGGTCTC

GTGGGCTCGGAGATGT

Eurofins Buenrostro et al.53

Ad2.3 CAAGCAGAAGACGGCATACGAGATTTCTGCCTGTCTCG

TGGGCTCGGAGATGT

Eurofins Buenrostro et al.53

Ad2.4 CAAGCAGAAGACGGCATACGAGATGCTCAGGAGTCTC

GTGGGCTCGGAGATGT

Eurofins Buenrostro et al.53

Ad2.5 CAAGCAGAAGACGGCATACGAGATAGGAGTCCGTCTC

GTGGGCTCGGAGATGT

Eurofins Buenrostro et al.53

Ad2.7 CAAGCAGAAGACGGCATACGAGATGTAGAGAGGTCTC

GTGGGCTCGGAGATGT

Eurofins Buenrostro et al.53

Ad2.9 CAAGCAGAAGACGGCATACGAGATAGCGTAGCGTCTC

GTGGGCTCGGAGATGT

Eurofins Buenrostro et al.53

Ad2.10 CAAGCAGAAGACGGCATACGAGATCAGCCTCGGTCT

CGTGGGCTCGGAGATGT

Eurofins Buenrostro et al.53

Ad2.11 CAAGCAGAAGACGGCATACGAGATTGCCTCTTGTCTC

GTGGGCTCGGAGATGT

Eurofins Buenrostro et al.53

Ad2.12 CAAGCAGAAGACGGCATACGAGATTCCTCTACGTCTC

GTGGGCTCGGAGATGT

Eurofins Buenrostro et al.53

Software and algorithms

STAR 2.6.0c Dobin et al.54 https://github.com/alexdobin/STAR

edgeR Robinson et al.,55

McCarthy et al.56
https://bioconductor.org/packages/release/

bioc/html/edgeR.html
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REAGENT or RESOURCE SOURCE IDENTIFIER

DESeq2 Love et al.57 https://bioconductor.org/packages/release/

bioc/html/DESeq2.html

Limma Ritchie et al.58 https://www.bioconductor.org/packages/

release/bioc/html/limma.html

Scran Lun et al.59 https://www.bioconductor.org/packages/

release/bioc/html/scran.html

bwa mem Li and Durbin60 https://github.com/lh3/bwa

Samtools Li et al.61 http://www.htslib.org/

Picard tools Broad Institute http://broadinstitute.github.io/picard/

Csaw Lun and Smyth62 https://bioconductor.org/packages/release/

bioc/html/csaw.html

biomaRt Durinck et al.63 https://bioconductor.org/packages/release/

bioc/html/biomaRt.html

Bedtools Quinlan and Hall64 https://github.com/arq5x/bedtools2

MACS2 Zhang et al.65 https://pypi.org/project/MACS2/

topGO Alexa and Rahnenfuhrer66 https://bioconductor.org/packages/release/

bioc/html/topGO.html

pcaExplorer Marini and Binder67 https://bioconductor.org/packages/release/

bioc/html/pcaExplorer.html

GeneTonic Marini et al.68 https://bioconductor.org/packages/release/

bioc/html/GeneTonic.html

rGREAT Gu and H€ubschmann69 https://bioconductor.org/packages/release/

bioc/html/rGREAT.html

AME McLeay and Bailey70 https://meme-suite.org/meme/doc/ame.html

chromVAR Schep et al.71 http://www.bioconductor.org/packages/

release/bioc/html/chromVAR.html

FigR Kartha et al.43 https://buenrostrolab.github.io/FigR/
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Ximena

Ibarra-Soria (ximena.x.ibarra-soria@gsk.com)

Materials availability
This study did not generate new unique reagents.

Data and code availability
d Rawand processedRNA-seq andATAC-seq data have been deposited in the ArrayExpress repository. Accession numbers are

listed in the key resources table.

d All original code is available at GitHub (https://github.com/xibarrasoria/somitogenesis2022).

d Any additional information required to reanalyse the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

All experiments followed the Animals (Scientific Procedures) Act 1986 (United Kingdom) and with the approval of the Cancer

Research UK Cambridge Institute Animal Welfare and Ethical Review Body (form number: NRWF-DO-01- v3). Animal experiments

conformed to the Animal Research: Reporting of In Vivo Experiments (ARRIVE) guidelines developed by the National Centre for

the Replacement, Refinement and Reduction of Animals in Research (NC3Rs). C57BL/6J strain mice were obtained from Charles

River Laboratories and maintained under standard husbandry practices: mice were group housed in Techniplast GM500 Mouse

IVC Green Line cages in a room with 12 h light/12 h dark cycle and ad libitum access to water and food (LabDiet 5058). Cages con-

tained aspen bedding and cage enrichments (nesting material, aspen chew stick, and cardboard tunnel).
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METHOD DETAILS

Mouse embryo collection and dissection
Mouse embryos from the appropriate somite stages (8 to 35 somites) were dissected in RNAse-free conditions in cold PBS, on sil-

icone plates. Utmost care was taken to accurately count the number of somite pairs of each embryo; however, for the 35-somite

stage embryos this task becomes very difficult and it is possible that there is a one or two somite error range in the number estimated.

Photos of all the embryos profiled are provided in File S1. To dissect out the somites, embryoswere treatedwith dispase II (1mg/mL in

DMEM) for 30-45 seconds at 37�C. The three most posterior pairs of somites were then collected using tungsten needles, dissecting

out every somite separately. We labelled each somite pair as somite I, II or III from the most posterior to the most anterior, respec-

tively. Thus, somite I corresponds to the most recently segmented somite, while somites II and III were segmented �2 and �4 h

before3; we refer to this as the somite’s age. Each individual somite was placed in 10mL of lysis buffer (Takara) containing RNase

inhibitor. One somite from each pair was flash frozen in liquid nitrogen and stored at -80�C for later processing for RNA-seq. The

matching somites were directly processed to generate ATAC-seq libraries.

Experimental design
We collected at least four different embryos from each developmental stage (Table S1). Dissections were performed on ten different

days with every stage represented on at least two separate collection dates. However, samples from the three earliest stages were

collected on five days, without overlap with the samples from the remaining three stages, resulting in a partially confounded design.

RNA-seq experiments and library preparation
Reverse transcription was performed directly on frozen lysed somites and cDNA was amplified with 8 cycles of PCR, using the

SMART-seq v4Ultra Low Input RNAKit for Sequencing (TaKaRa, 634891). RNA-seq libraries were generated from 100pg of amplified

cDNA using the NEXTERA XT DNA Library Preparation kit (Illumina, FC-131-1096), according to the manufacturer’s instructions,

except only a quarter of the recommended reagents’ amount was used. The resulting libraries were quantified using a Qubit instru-

ment and their size distributions were assessed with a TapeStation machine. Pooled libraries were sequenced on an Illumina HiSeq

4000 according to manufacturer’s instructions to produce paired-end 150bp reads.

ATAC-seq experiments and library preparation
ATAC-seq experiments were performed following the protocol from Corces and colleagues,72 originally modified from Buenrostro

et al.53 Briefly, individual somites were lysed and transposed with 1mL of transposome (Nextera DNA Sample Preparation kit FC-

121-1030) at 37�C for 30 minutes. Samples were then purified with the Zymo Clean & Concentrator kit and eluted in 21mL of elution

buffer. Transposed DNA was quantified by qPCR using 5 ml of PCR products. The number of additional cycles was determined by

plotting linear Rn versus cycle and corresponded to one third of the maximum fluorescence intensity. Transposed DNA was then

amplified with 13 cycles of PCR. The final products were double size-selected with AMPure beads (0.55X - 1.5X) to obtain fragments

between 100bp and 700bp. Libraries were quantified and the sizes were assessedwith a TapeStation machine. Pooled libraries were

sequenced on an Illumina HiSeq 4000 according to manufacturer’s instructions to produce paired-end 150bp reads. Samples were

sequenced to a median depth of 70.5 million fragments.

QUANTIFICATION AND STATISTICAL ANALYSIS

RNA-seq data processing and quality control
RNA-seq paired-end fragmentswere aligned to themouse reference genome (GRCm38)with STAR2.6.0c54with options–outFilterMis-

matchNmax 6 –outFilterMatchNminOverLread 0.5 –outFilterScoreMinOverLread 0.5 –outSAMtype BAM SortedByCoordinate –outFil-

terType BySJout –outFilterMultimapNmax 20 –alignSJoverhangMin 8 –alignSJDBoverhangMin 1 –alignIntronMin 20 –alignIntronMax

1000000 –alignMatesGapMax 1000000 –outSAMstrandField intronMotif. On average, 84% of the sequencing fragments mapped

uniquely. We also set the option –quantMode GeneCounts to quantify the number of fragments overlapping annotated transcripts, us-

ing Ensembl‘s genome annotation version 96 (http://apr2019.archive.ensembl.org/index.html).

Samples were sequenced to a median depth of 17.4 million paired-end fragments. One sample had a library size of only 88 thou-

sand fragments and was discarded. All other samples showed a uniform number of fragments mapped uniquely (median 85.6%,

standard deviation (SD) 5.6%) and most of these were within annotated exons (median 84.9%, SD 2.8%). On average, we detected

around 22 thousand expressed genes per sample (Table S2).

To validate the staging of samples we exploited the Hox code that serves as a molecular indicative of developmental stage.

As shown in Figures 1C and 1D, our embryo stages defined by the observed number of somites agreed with the expected

expression levels of Hox genes. However, samples from one stage 27 embryo were more similar to the stage 35 somites, showing

expression of several late Hox genes from paralogous groups 12 and 13 that are only observed in the stage 35 samples. These data

suggest this particular embryo was likely of a more advanced stage than 27 somites and was removed from downstream analyses

(Table S1).
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Finally, to assess the purity of our somite samples, we assessed the expression levels of marker genes for notochord (Shh and

Noto), neural crest (Foxd3 and Sox10) and neural tube (Olig2 and Pax6). We observed very low counts for all these genes, except

Pax6, suggesting minimal carryover of these tissues into our samples. Pax6 has been shown to be expressed in neuroepithelial cells

neighbouring newly formed somites,73 indicating a small amount of contamination from these cells is present in the data. Pax6 levels

were similar to those of markers of presomitic mesoderm Tbx6 and Msgn1. However, all these genes were detected several fold

lower compared to somitic mesodermmarkers such asPax3, Foxc2,Meox1 or Tcf15, suggesting the amount of contaminating tissue

is minimal.

RNA-seq data normalization
Downstream analyses were restricted to genes with at least 10 counts in three or more samples, as implemented in the filterByExpr

function from the edgeR package55,56; this represents 20,062 genes. To normalise for differences in sequencing depth we used the

calcNormFactors function that implements the weighted trimmed mean of M-values method,74 and generated counts-per-million

normalised expression estimates.

A PCA of the thousand most variable genes (determined from variance-stabilised data, computed with the vst function form the

DESeq257 package) showed good separation of samples from different developmental stages (Figure S1B). However, we also

observed subgrouping by the date of collection, indicating substantial batch effects (Figure S1B). Since the experimental design

is partially confounded with the date of collection of the samples, we were unable to include this as a covariate in downstream an-

alyses. Instead, to control for technical variation unrelated to the biological variables of interest, we used the function lmFit from the

limma package58 to fit a linear model of the combination of developmental stage and somite age for each sample.We then performed

PCA on the residuals from the fit (function residuals) to capture systematic variation unrelated to the biological design of interest. To

determine how many principal components (PCs) captured significant variation we used the parallelPCA function from the scran

package59 on the normalised counts; this function estimates, via permutation analysis, the number of PCs that explain more variation

than expected by chance, which in our casewas 14. Thus, the 14 first PCswere used as covariates in downstream analyses to control

for unwanted variation (Figure S1C). We note that this procedure captures both technical and biological variation not modelled in our

design of interest (i.e. the sex of the embryos).

RNA-seq differential expression analysis
To identify genes significantly differentially expressed across conditions we used edgeR,55,56 with a designmatrix of the interaction of

each sample’s age and developmental stage, plus the 14 PCs representing technical variation as covariates. Dispersion was esti-

matedwith the estimateDisp function (setting robust = TRUE) and fitting themodel with glmQLFit. Specific contrasts were then tested

with the glmQLFTest function.

To identify the regions that change as somites differentiate we compared samples from somites I, II and III. To identify conserved

differences across development we defined contrasts for all three pairwise comparisons, using the average of same-age samples

from all six stages:

somitei:vs:j =
X

k˛ f8;18;21;25;27;35g
stagek :somitei

�
6 �

X

k˛ f8;18;21;25;27;35g
stagek :somitej

�
6

where i.vs.j corresponds to I.vs.II, I.vs.III and II.vs.III. To recover possible stage-specific changes, we also defined contrasts on a per-

stage basis:

somitei:vs:j:stagek = somitei:stagek � somitej:stagek

where k is one of the six stages and i.vs.j the same as above. All three pairwise comparisons from each stage were tested at once.

Thus, in these cases the p-value indicates whether the gene is differentially expressed between at least a pair of somite ages.

We used a similar approach to test for differences in expression across development. Conserved differences between all somites

irrespective of their maturity level were assessed by averaging somites I, II and III and testing each pairwise comparison between the

six stages:

stagek:vs:l =
X

i˛ fI;II;IIIg
somitei:stagek

�
3 �

X

i˛ fI;II;IIIg
somitei:stagel

�
3

where k.vs.l corresponds to all pairwise comparisons between the six stages. All contrasts were tested at once to avoid performing

too many tests and, again, p-values indicate whether the gene is significantly different between at least a pair of stages. To check for

any changes specific to a given somite age we repeated the analysis separately for somites I, II and III:

stagek:vs:l:somitei = stagek :somitei � stagel:somitei

where i is any of the three somite ages and k.vs.l the same as above. Genes were considered significantly differentially expressed if

their adjusted p-value was lower than 0.05 (FDR < 5%) and their absolute fold-change was greater than 1.5. Results from all differ-

ential expression analyses are available at https://github.com/xibarrasoria/somitogenesis2022.
Developmental Cell 58, 1983–1995.e1–e7, October 9, 2023 e4

https://github.com/xibarrasoria/somitogenesis2022


ll
OPEN ACCESS Resource
ATAC-seq data alignment
Raw sequencing reads were aligned to the mouse reference genome (GRCm38) using bwa mem 0.7.12-r103960 with default param-

eters. On average, 93%of the total fragments were successfully aligned. The resulting SAM fileswere processedwith samtools 1.5.61

One sample was sequenced to a disproportionately high depth compared to the rest (1.5 billion fragments compared to a median of

70.5 million). Themapped data for this sample was downsampled to 15%of the total reads (samtools -s 0.15), and the resulting BAM

file was used in the downstream processing steps.

Duplicated fragments were marked and removed using MarkDuplicates 1.103 from Picard tools (http://broadinstitute.github.io/

picard) with option REMOVE_DUPLICATES=TRUE. We further used samtools to remove any pairs that were not properly aligned

(-f 0x02); supplementary alignments (-F 0x800); alignments with mapping quality lower than 30 (-q 30); and alignments outside

the autosomes or chromosome X. The resulting BAM files represent the clean, good quality alignments used in all downstream

analyses.

ATAC-seq quality control
To assess the quality of the libraries we used three different criteria: 1) the insert size distribution of the sequenced fragments; 2) the

level of signal enrichment at the transcription start site (TSS) of expressed genes; and 3) the signal-to-noise ratio, assessed by the

ability to call peaks (Figure S2; Table S3).

To compute the insert size distribution of each library we used the getPESizes function from the csaw package.62 Each library’s

distribution was visually inspected and scored based on the number of nucleosomal peaks. Thus, a score of 0 implies that only short

fragments were recovered, a score of 1 indicates presence of mononucleosomes, 2 corresponds to samples with both monomers

and dimers, and so on. The maximum score assigned was 4, including samples with fragment sizes corresponding to nucleosome

tetramers or larger (Figure S2A).

To estimate the enrichment of fragments at transcription start sites we applied the method recommended by the ENCODE stan-

dards for ATAC-seq data (https://www.encodeproject.org/data-standards/terms/#enrichment). Specifically, we restricted the anal-

ysis to genes withmoderate to high expression as assessed from the RNA-seq data (mean normalised counts per million greater than

10, corresponding to 8,025 genes). We then used the biomaRt package63 to extract themost 50 TSS for each gene and created a BED

file of 2kb intervals centred at each TSS.We computed the coverage of such intervals using bedtools coverage 2.26.064 a BEDPE file

containing the Tn5 insertion sites inferred from the aligned fragments (by shifting the start/end coordinates by +5/-4 bpwith an ad hoc

perl script). To calculate the enrichment at the TSS we first computed the mean insertion counts at each base pair from all genes. We

then used the mean of the first and last 100bp as an estimate of the background insertion rate. For each base pair, we computed the

enrichment score as the fold-change against the background rate; this results in an enrichment score of �1 at the flanks of the 2kb

interval which increases as it approaches the TSS (Figure S2B).

Finally, to assess the signal-to-noise ratio of each sample we used MACS2 2.165 to call peaks, with options callpeak -f BAMPE -g

mm –keep-dup all –broad. Peaks overlapping blacklisted regions75 (obtained from https://github.com/Boyle-Lab/Blacklist/blob/

master/lists/mm10-blacklist.v2.bed.gz) were discarded. We calculated the fraction of reads in peaks (FRiP) as the total fragments

overlapping called peaks over the total library size and used this, along with the total number of peaks, as proxies for the signal-

to-noise ratio (Figure S2C).

Libraries with an insert size distribution showing a good nucleosomal pattern generally had good TSS enrichment scores and

signal-to-noise ratios. For each sample we defined a quality control pass if they had an insert size distribution score of 2 or higher;

a fraction of reads in peaks of 3% or larger; at least 15,000 peaks; and a TSS enrichment score of 5 or higher (Figure S2D). Samples

satisfying at least three of these criteria were annotated as good quality and used in downstream analyses (50 of the 75 libraries).

Importantly, insert size distribution scores were positively correlated with the experimentally measured DNA fragment sizes but

showed no relation to sequencing depth, indicating that samples with poor quality control characteristics are not due to insufficient

sequencing (Figure S2E).

ATAC-seq peak calling
To define a unified set of peaks for the whole dataset we combined the clean BAM files from the 50 samples that passed quality con-

trol and used them as input for MACS2 (same parameters as stated above). By calling peaks on the combined data from all samples,

the peak calling process becomes agnostic to the different conditions in our experimental design, which is important for downstream

differential accessibility analyses. After removing peaks overlapping blacklisted regions, a total of 131,743 peaks were called, with a

median width of 777 bp (interquartile range 418-1394 bp). We re-computed the FRiP for each sample using this common peak set.

It is possible that bymerging all samples together, some low-enrichment stage-specific peaks are lost. Thus, we repeated the peak

calling procedure but on a stage-specific basis.When comparing the per-stage peak calls to the set obtained by using all 50 samples,

around 96.6% of the peaks called in each stage were also called in the all-sample set (range 93.43-98.09%). The small proportion of

peaks missed generally had small fold-changes and high q-values, and thus correspond to low significance calls. This provides con-

fidence that we have not missed stage-specific peaks by merging data from all samples.

ATAC-seq data normalization
To normalise the ATAC-seq data we used the methods implemented in the csaw package.62 We generated MA plots comparing all

pairs of samples by counting the number of fragments in 10 kb windows tiling the genome. For high-abundance windows, which
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correspond to open chromatin, we observed a deviation of the log2 fold-change from the expected value of 0 that was correlated with

the abundance level of the genomic region (Figure S3A). Conventional normalization techniques used in the majority of ATAC-seq

analyses compute a single size factor that captures systematic differences between samples; these approaches fail to account

for the trend observed in our data (Figure S3B). Thus, we instead used a loess-based approach to compute size factors specific

to each abundance level. For this, we counted the number of fragments mapped to 150 bp windows, sliding along the genome

by 50 bp, using the function windowCounts (with filter set to 75 and excluding any reads overlapping blacklisted regions). We

then filtered out any windows that did not overlap the common peak set or that had less than an average count of 4 fragments across

samples. We finally used this set of windows to compute the size factors with the normOffsets function (with type=loess). This

approach successfully removed the observed trend (Figure S3C). However, the first principal component estimated from the normal-

ised counts of the 5000 most variable windows was strongly correlated with samples’ FRiP (Pearson’s r = -0.59), suggesting other

technical effects were still dominant in the data (Figure S3D).

To remove unwanted variation from the dataset we used the same strategy that we applied to the RNA-seq samples. That is, we

obtained the residuals from a linear model fit of the interaction of the stage and somite age of each sample and applied PCA to cap-

ture the major sources of variation. We retained the first 18 PCs, since these were deemed to explain significantly more variation than

chance (as determined by the parallelPCA function), which significantly removed efficiency and batch effects (Figure S3E).

ATAC-seq differential accessibility analysis
To test for differences in accessibility across conditions we used the approach implemented in csaw.62 We based the analysis on

the window counts described above. Window counts along with the corresponding size factors were converted into a DGEList

object compatible with edgeR55 to perform differential analysis. The same approach as described for the RNA-seq data

was used.

After each window was tested, we used the mergeWindows function to merge windows that were no more than 150 bp apart, re-

stricting the maximum width to 1.5 kb. Regions larger than 1.5 kb were broken into smaller overlapping regions of roughly equal size

(+/- 100bp). We then computed a combined p-value for each of these regions with the combineTests function, using Simes’ method.

Correction for multiple testing was performed at the region level and regions were considered significantly different if their adjusted

p-value was lower than 0.05 and their absolute fold-change was greater than 1.5. Results from all differential expression analyses are

available at https://github.com/xibarrasoria/somitogenesis2022.

Functional terms enrichment analysis
Gene ontology enrichment analysis was performed using the elim method from the TopGo package,66 as implemented in the

topGOtable function from the PCAexplorer 2.18.0 package.67 Enrichment of GO terms among differentially expressed genes

was computed using all genes expressed in somites as the background. Results were visualised with the GeneTonic R

package.68

Enrichment analysis of GO terms and mouse KO phenotypes in differentially accessible chromatin regions was computed with

GREAT,76 using the implementation from the rGREAT 1.24.0 package.69 All somite peaks were used as the background set.

Motif enrichment analysis
To determine transcription factor (TF) motifs enriched in the regions of open chromatin, we used Analysis of Motif Enrichment70 from

the MEME suite,77 with the human and mouse HOCOMOCOv11_full motif databases. Enrichment in differentially accessible regions

(either between somite ages, or between stages, split by the vertebral fate showing highest accessibility) was computed by

comparing to a set of non-differentially accessible regions with a similar length distribution.

chromVAR
To estimate the accessibility dynamics of sites harbouring specific TF binding sites we used chromVAR 1.12.0,71 on the normalised

and corrected window counts described above. Following the authors’ recommendations, we removed overlapping windows with

the filterPeaks function, and then scanned them for matches to the motif collection provided with the package (mouse_pwms_v2).

Accessibility deviation scores were then computed with the computeDeviations function. For all plots, we use the z-scores returned

by this function.

FigR
To infer peak-gene putative regulatory links we used FigR 0.1.0,43 restricted to the normalised and corrected counts of the 43 sam-

ples with both RNA and ATAC-seq profiles available. The function runGenePeakcorr was used to compute the correlation between

each differentially expressed gene and all peaks within 100kb. This function uses chromVAR to determine a set of 100 background

peaks matched for accessibility and GC content levels, to determine if the observed correlation of the gene-peak of interest is signif-

icantly higher than the correlation of the gene to these unrelated background peaks. chromVAR samples with replacement to define

the background set. When there are not enough matching peaks, the number of different peaks in the background set can drop sub-

stantially; in extreme cases this can result in a single peak repeated 100 times. Using this distribution as a null is non-informative and

thus the p-values computed for such gene-peak pairs are misleading. To avoid these cases, we modified the code to check for the

number of different peaks included in the background and set the p-values to NA for any gene-peak pairs with background sets
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containing fewer than 50 different peaks. Downstream analyses were performed using gene-peak pairs with a p-value < 0.05 and a

correlation score greater than 0.3. To infer regulatory interactions, we used the getDORCScores and runFigRGRN functions, on all

genes with more than 5 linked peaks. TF-gene pairs with an absolute regulation score greater than 1.25 are considered putative in-

teractions (Figures 4C and 4D).

ADDITIONAL RESOURCES

Website to query the data and results from this publication: https://crukci.shinyapps.io/somitogenesis/
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