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Abstract: We sought to systematically review and meta-analy the role of cerebral blood flow (CBF)
in the medial temporal lobe (MTL) using arterial spin labeling magnetic resonance imaging (ASL-
MRI) and compare this in patients with Alzheimer’s disease (AD), individuals with mild cognitive
impairment (MCI), and cognitively normal adults (CN). The prevalence of AD is increasing and
leading to high healthcare costs. A potential biomarker that can identify people at risk of developing
AD, whilst cognition is normal or only mildly affected, will enable risk-stratification and potential
therapeutic interventions in the future. All studies investigated the role of CBF in the MTL and
compared this among AD, MCI, and CN participants. A total of 26 studies were included in the
systematic review and 11 in the meta-analysis. Three separate meta-analyses were conducted.
Four studies compared CBF in the hippocampus of AD compared with the CN group and showed that
AD participants had 2.8 mL/min/100 g lower perfusion compared with the CN group. Eight studies
compared perfusion in the hippocampus of MCI vs. CN group, which showed no difference. Three
studies compared perfusion in the MTL of MCI vs. CN participants and showed no statistically
significant differences. CBF measured via ASL-MRI showed impairment in AD compared with the
CN group in subregions of the MTL. CBF difference was significant in hippocampus between the
AD and CN groups. However, MCI and CN group showed no significant difference in subregions
of MTL.

Keywords: arterial spin labeling; cerebral blood flow; medial temporal lobe; dementia; mild cognitive
decline; ASL; MRI

1. Introduction

Dementia is a neurodegenerative syndrome that predominantly affects older adults.
It affects cognition irreversibly while consciousness remains intact. Cognitive domains,
namely episodic memory, language, executive functions, and visual–spatial skills dete-
riorate progressively [1]. Patients become gradually more dependent on relatives and
carers for essential daily-living tasks. As life expectancy is extended, the prevalence rate
of dementia increases. According to the World Health Organisation, 50 million people
worldwide are living with dementia, and this number is anticipated to reach 152 million by
2050 [2]. In 2019, approximately 885,000 dementia patients were living in the UK and their
overall care cost for that year was estimated at GBP 34.7 billion [3]. By 2040, UK patients
will have risen to 1.6 million and the cost of their care will have reached GBP 94.1 billion [3].
As no preventive treatment is available, a better understanding of the disease process
is needed if we are to decelerate the degenerative process by applying pharmaceutical
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interventions. To this end, research on potential biomarkers and preclinical diagnosis will
underpin the research in treatment.

The neurodegenerative process of AD begins years or even decades before symp-
tomatic disease. According to NIA-AA, it can manifest with various symptoms. These
include reduced ability to acquire and maintain new information, impaired management of
complex tasks, reduced visuospatial skills, impaired language function, as well as personal-
ity changes [4]. AD is considered a continuum in which earlier asymptomatic stages can be
detected on a biological level [5]. Towards this direction, the National Institute on Aging
and Alzheimer’s Association (NIA-AA) proposed a research framework of diagnostic
biomarkers: the AT(N) classification. AT(N) incorporates several imaging and biological
tests that act as biomarkers. Individual biomarkers are detected in various stages of the AD
continuum and are complementary to the clinical criteria in the diagnosis of AD dementia
and its earlier stages [6,7].

Recent research has revealed emerging biomarkers related to the vascular component
of AD. According to the vascular hypothesis, neurodegeneration in AD is the outcome
of vascular disturbances in the brain [8]. Cerebrovascular impairment plays a key role
in AD pathogenesis. Chronic brain hypoperfusion causes oxidative stress and inflamma-
tion [9]. Oxidative stress can cause blood–brain barrier impairment which reduces the
clearance of beta amyloid. In addition, there is a higher expression of proinflammatory
cytokines—IL1β and TNFa—in brain cells of MCI and AD patients, compared with con-
trols. In turn, accumulation of beta amyloid triggers—through the production of IL-6—the
differentiation of microglial cells, resulting in further neuroinflammation and blood–brain
barrier dysfunction [10]. Badji et al. (2020) suggested the incorporation of biomarkers
which reflect vascular deficiencies, such as lacunes, WMH, microbleeds, and cerebral blood
flow changes [11]. Identifying groups of people with the aforementioned changes offers a
wider window for interventions to delay cognitive impairment.

CBF is considered a potential vascular biomarker (V). CBF can be measured through
different imaging modalities [12]. Invasive available techniques are single-photon emission
tomography (SPECT), H2(15)O positron emission tomography (PET), Xenon-enhanced
CT, and dynamic susceptibility contrast magnetic resonance imaging (DSC-MRI). These
modalities use exogenous contrast agents [12]. SPECT and FDG PET have been widely used
in the diagnosis of MCI and AD for over 3 decades [13]. SPECT showed a specificity of 80%
and a sensitivity of 90% in distinguishing AD patients from cognitively normal controls. For
the same purpose, FDG-PET’s sensitivity was 85% and specificity 89% [14]. O’ Brien et al.
directly compared the efficacy of the aforementioned modalities, showing statistically
significant superiority of FDG PET compared with SPECT [15]. Cost-effectiveness of both
SPECT and PET is still an area of debate. There are groups who maintain that early diagnosis
with these two modalities is not cost-effective due to the lack of definitive treatment and
the low estimation of quality-adjusted years. On the other hand, studies utilizing PET in
the US and SPECT in the EU showed that early diagnosis of AD can reduce the annual
patient healthcare cost by 15%. This reduction is believed to be greater than the cost of
annual testing with these modalities. Reference [13] presents DSC-MRI, a relatively novel
technique in current clinical practice. This technique utilizes gadolinium-based agents to
measure CBF, cerebrovascular volume (CBV), and mean transit time [16]. DSC-MRI is a
functional method, which detected reduced regional CBV in AD patients compared with
healthy controls, with a reported sensitivity and specificity of approximately 90% [17].

There is also a non-invasive MRI technique, arterial spin labeling MRI (ASL-MRI). ASL-
MRI captures changes in tissue perfusion of the whole brain or specific regions of interest
using arterial water molecules as an endogenous tracer [18]. ASL can be easily added to
conventional brain MRI, requiring 5 min of additional scan time [19]. Preliminary data
indicate that ASL-MRI can be used as a predictor of cognitive impairment, as it can detect
vascular changes that structural MRI overlooks. During the last decade, significant efforts
to standardise ASL-MRI have been made, although the recommended implementation
is not universally applied [20,21]. Studies have shown an overlap of hypometabolism
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patterns acquired via FDG-PET and hypoperfusion through ASL-MRI between AD patients
and differentiation of AD from cognitively normal individuals. Although ASL-MRI has
been shown to have a lower sensitivity compared with SPECT and FDG-PET, ASL-MRI is
still considered a promising alternative due to its advantages [22–24]. Another aspect that
should be taken into consideration is that MRI is a more accessible modality in comparison
with both PET and SPECT. According to the official stats of Eurostat, availability of MRI
ranged among EU countries from 0.5 to 3.4 scanners per 100,000 of population. The same
measure for G-cameras—including SPECT—was 0.3–1.8. PET scanners ranged from 0 in
Lichtenstein to a maximum of 0.8 per 100,000 of population in Denmark [25].

Perfusion patterns in the precuneus and posterior cingulate gyrus have shown a
straightforward correlation to cognitive decline [26,27]. Medial temporal lobe (MTL) is
another region of research interest that has already been studied via structural MRI mea-
suring its volume. Atrophy of the MTL is an established biomarker that should not be
used in isolation for early diagnosis of AD [28]. CBF in the MTL was also studied and
has shown possible correlation between it and the evolution of AD [29,30]. Due to the
limited number of publications and their complexity, the potential of perfusion in MTL
for assessing AD progression could not be adequately assessed by reviews published in
the previous decade [27]. However, recently there has been an increase in the number of
studies aiming to evaluate MTL perfusion as a potential biomarker in AD. Many of these
studies used ASL-MRI due to its aforementioned advantages. We believe that a systematic
analysis of these newly emerging data would provide a comprehensive evaluation of the
relationship between MTL perfusion and AD.

This systematic review focuses on the use of ASL-MRI as a potential vascular biomarker
(V). Our aim is to evaluate the available data of CBF changes in the medial temporal lobe
measured via resting state ASL-MRI in adults with cognitive decline. To accomplish this,
we compared perfusion patterns in participants with AD with cognitively normal elderly
adults (CN) and MCI to CN.

2. Materials and Methods

We followed the PRISMA 2020 statement to conduct this systematic review [31].
The research sources were PubMed, Embase/Ovid, and Cochrane library. The databases
were searched from inception to 14 February 2021. The search strategy consisted of the
following terms:

(Cognit* OR Alzheimer* OR Memor*) AND (cerebral blood flow OR CBF OR arterial
spin labeling OR ASL OR perfusion) AND (magnetic resonance imaging OR MRI)

No limitations were added. The full search strategy is presented in Appendix A.
We included all studies that fulfilled the following criteria:

1. Observational studies (cohort, case-control, or cross-sectional) or baseline results of
interventional studies

2. Human studies written in English
3. Studies that recruited cognitively normal adults as control group
4. Patients diagnosed at any stage of sporadic Alzheimer’s disease and/or participants

with mild cognitive impairment, validated with at least one cognitive test
5. Participants who underwent arterial spin labeling magnetic resonance imaging in the

resting state (rsASL-MRI).

We excluded conference abstracts, case reports, reviews, and letters to the editor.
Studies were excluded if participants with cognitive decline were recruited due to organic
pathology (artery occlusion, carotid artery stenosis/stiffness, stroke, intracranial artery
stenosis, or CADASIL patients). Postoperative and Parkinson’s disease dementia or cog-
nitive decline in diabetes patients were also beyond our research scope. Early-onset and
autosomal dominant AD studies and patients diagnosed with other types of dementia were
also excluded.

When more than one study included participants from the same cohort/database,
we used the article with the largest sample size or the article that provided the most
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detailed information on CBF values and cognitive assessment, after discussion between
two reviewers (EMK, DCI).

We imported the full reference and the abstracts of the search results in Endnote
(Version X9). After de-duplication, two reviewers (EMK, DCI) independently screened the
titles and abstracts on the basis of the selection criteria. A third reviewer (VSV) provided
adjudication, where necessary. The eligible and inconclusive articles were then assessed
on a full-text level using a predesigned algorithm (Appendix B). The selection process
is depicted in the Prisma flow diagram recording the reasons of exclusion (Figure 1 in
Results section).
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Figure 1. PRISMA flow diagram.

The following data were extracted from each eligible study: study details (name of the
first author, year of publication, study design), participant characteristics (mean age, sample
size, number of female participants, cerebrovascular risk factors, statistical adjustments
on age, sex, cerebrovascular risk factors or other parameters, cognitive assessment tests,
and the definition of AD or MCI used), MRI data (ASL acquisition type and protocol, MRI
specifications, CBF estimation and analysis method, statistical approach, and confounding
variables), outcome measurements (mean CBF values (relative or absolute) expressed in
millilitres per 100 g per min in a specific region of interest (MTL) and qualitative results of
CBF (hypoperfusion/hyperperfusion) in MTL). The data were recorded on predesigned Mi-
crosoft Excel (Microsoft 365 version 2202) spreadsheets by two researchers independently.

The Joanna Briggs Institute critical appraisal checklist (JBI) was used to assess the risk
of bias of the eligible studies [32]. This tool was the most appropriate for this systematic
review, as we included not only cohort and case-control studies but also cross-sectional
studies. This checklist detects bias in the design, conduct, and analysis of the studies.
Most of the included studies were cross-sectional and the eight domains assessed were
as follows:

Questions for the cross-sectional studies are the following:
Q1: Were the criteria for inclusion in the sample clearly defined?
Q2: Were the study subjects and the setting described in detail?
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Q3: Was the exposure measured in a valid and reliable way?
Q4: Were objective, standard criteria used for measurement of the condition?
Q5: Were confounding factors identified?
Q6: Were strategies to deal with confounding factors stated?
Q7: Were the outcomes measured in a valid and reliable way?
Q8: Was appropriate statistical analysis used?
The possible answers were: “Yes”, “No”, “Unclear”, or “Not applicable”. Study

quality was assessed by two reviewers independently and any disagreement was resolved
through discussion.

A meta-analysis comparing AD vs. CN and MCI vs. CN in relation to CBF flow was
also undertaken. Heterogeneity across studies was assessed using the I2 statistic from the
standard X2 test. A random-effects model was used in cases of high heterogeneity (I2 > 50%).
A sensitivity analysis was also undertaken by excluding each study sequentially. The statis-
tical threshold was set at p < 0.05.

3. Results
3.1. Search Results

The search selection process is depicted in the PRISMA flow diagram in Figure 1 [31].
We initially identified 9024 references. After de-duplication, 7564 articles were screened at
the title/abstract level. We excluded 5950 references because of non-human studies, irrele-
vant target disease, no MRI exposure, or unclear study design. We screened 1614 references
for full-text eligibility. We excluded 1588 studies, as they did not meet the eligibility criteria:
no ASL-MRI (n = 603), no AD spectrum (n = 928), no control group (n = 13), presenile AD
patients (n = 4), or no MTL regions (n = 31). We also excluded papers due to sample overlap
(n = 9). Lastly, we excluded the studies that did not provide CBF results for MTL or its
subregions (n = 31).

We assessed the eligibility of several ADNI publications. However, due to high risk
of overlap, we decided to include only one study that was more suitable based on the
eligibility criteria and studied a large sample of participants.

3.2. Included Studies

At the end of the selection process, 26 studies were eligible. We present demographic
and participant characteristics in Table 1 [33–58]. Thirteen studies recruited only AD pa-
tients, ten studies recruited only MCI participants, and three studies recruited participants
from both diagnostic groups. All studies had an observational design and were published
after 2000. Sixteen studies were conducted from North America (the US and Canada),
seven from Asia, and the remaining three from Europe. APOE4 carriers and cardiovascular
risk factors were under-reported, with only three studies including both variables. The
sample size of patients diagnosed with AD varied from 12 to 71 participants. The range
of MCI participants was also wide, from 9 to 105 volunteers. The mean age of cognitively
declined participants ranged from 65 to 84 years.

For AD diagnosis, the NINCDS-ADRDA, NIA-AA, and revised NINCDS-ADRDA
were applied in 11, 2, and 1 studies, respectively [4,59,60]. Most of the studies used the
Petersen or Jak criteria for MCI diagnosis [61–63].

Imaging characteristics and CBF analysis are depicted in Table 2. A total of 21 out of
26 studies used 3 Tesla MRI scanners, four studies used 1.5 Tesla scanners, while one study
was conducted with 4 Tesla scanners. The ASL sequences applied were pulsed ASL (PASL),
continuous ASL (CASL), and pseudo-continuous ASL (PCASL) in 9, 5, and 11 studies,
respectively. Quantification of CBF was conducted with a wide range of methods, with
some studies using more than one approach. A voxel-wise method was applied in 10 out
of 26 studies. Regions of interest (ROIs) or other regional approaches were conducted in
20 studies. More than one method was used in five studies. The most frequently used
variables as confounders were age and gender (11 out of 26 studies). Partial volume
correction was applied in the majority of the studies (20 out of 26).
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Table 1. Participant demographics and clinical information.

Study ID Participants (n) Female (n) Mean Age (SD) MMSE Mean (SD) Education (Years) APOE4 Carriers CVR Diagnostic
Criteria

AD MCI CN AD MCI CN AD MCI CN AD MCI CN AD MCI CN AD MCI CN

Alexopoulos P
(2012) [33]
Germany

- 24 24 - 34% 67% - 69.6
(8.2)

69.6
(8.2) - NG NG - NG NG - NG NG NG

International
working group

2014 [64]

Alsop DC (2000)
USA [34] 18 - 11 34% - 46% 72.2

(6.8) - 68.9
(7.2)

20.8
(7) - NG - NG NG - NG NG NINCDS-ADRDA

Alsop DC (2008)
USA [35] 22 - 16 55% - 57% 75.6

(9.2) - 72.6
(8.9)

22.2
(5.9) - 27.9

(2.6)
15.5
(3.2) - 14.4

(3.8) NG - NG NG NINCDS-ADRDA

Asslani (2008)
USA [36] 12 - 20 42% - 60% 70.7

(8.7) - 72.1
(6.5) NG - NG 14.5

(3.8) - 15.8
(2.3) NG - NG NG NINCDS-ADRDA

Bangen KJ (2012)
USA [37] - 16 26 - 38% 73% - 76.88

(7.31)
74.79
(7.98) - NG NG -

15.56
(2.53) 15.86

(2.33) - 50% 54%
FSRP,

10-year
stroke risk

Jak AJ et al.
2009 [63]

Binnewijzend
MAA (2013)

Netherlands [38]
71 - 70 55% - 39% 65 (7) - 60

(9)
20

(4.6) - 28
(1.7) NG - NG NG - NG NG NINCDS-ADRDA

Chau ACM
(2020)

Hong Kong [39]
17 - 15 71% - 80% 75.1

(8.2) - 71.8
(6.1) NG - NG NG - NG NG - NG

DM, HTN,
hyperlipi-
daemia

NIA-AA

Chaudhary S
(2013)

Canada [40]
25 - 20 80% - 55% 72.5

(0.9) - 71.8
(1.8)

25.7
(1.6) - 28.4

(0.8)
15.1
(3.4) - 15.7

(1.2) NG NINCDS-ADRDA

Dai W (2009)
USA [41] - 26 41 - 58% 66% - 83.6

(3.6)
82.1
(3.6) - NG NG -

NG
in

years

NG
in

years
- 23% 12%

HTN, DM,
Heart

Disease

Cardiovascular
Health study

criteria

Ding B (2014)
China [42] 24 - 21 80% - 62% 74.58

(6.68) - 69.64
(5.88)

16
(3.9) - 29.4

(1)
11.6
(4.2) - 12.1

(3.4) NG - NG NG NINCDS-ADRDA

Dolui S (2020)
USA [43] - 50 35 - 32% 58% - 70.2

(6.9)
73
(7) - 27

(6)
30
(5) - 17.5

(13)
18

(11) NG - NG NG Petersen 2004 [61]
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Table 1. Cont.

Study ID Participants (n) Female (n) Mean Age (SD) MMSE Mean (SD) Education (Years) APOE4 Carriers CVR Diagnostic
Criteria

AD MCI CN AD MCI CN AD MCI CN AD MCI CN AD MCI CN AD MCI CN

Duan (2020)
USA [44] 40 - 58 70% - 55% 84.1

(3.5) - 83.4
(3.7) NG - NG 13.3

(2.9) - 14.6
(2.8) NG - NG

HTN, DM,
Heart

Disease

Cardiovascular
Health study

criteria

Glodzik L (2011)
USA [45] 15 - 18 60% - 56% 74.9

(8.1) - 69.9
(6.7)

27.5
(2.4) - 29.2

(1) NG - NG NG - NG FSRP Petersen 2004 [61]

Huang CW
(2018)

Taiwan [46]
50 - 30 66% - 60% 73.32

(8.4) - 71.03
(8.05)

16.78
(5.1) - 27.07

(1.9)
5.3

(4.51) - 8.5
(5.22) 54% - 20% DM, HTN Dubois 2010 [65]

Huang Q (2019)
China [47] 40 40 40 43% 40% 45% 70.1

(5.7)
68.5
(6.1)

69.1
(5.8) NG NG NG

NG
in

years

NG
in

years

NG
in

years
NG NG NG NG NIA-AA

Kim SM (2013)
South Korea [48] 25 - 25 84% - 64% 70.9

(9.8) - 68.4
(5.6)

15.76
(4.39) - 27.32

(2.8) NG - NG 56% - 20% NG NINCDS-ADRDA

Lassila T (2018)
UK [49] - 9 15 - 67% 54% - 74.8

(7.8)
73.7
(5.1) - NG NG - 9.2

(3.4)
11.9
(2.9) - NG NG NG NG

Li D (2020)
China [50] 22 22 25 59% 55% 60% 71.5

(8.4)
71.8
(8.2)

69.3
(5.2)

18.9
(3.4)

23
(2.7)

29.7
(1.2) NG NG NG NG NG NG NG NIA-AA

Petersen 2018 [66]

Okonkwo OC
(2014)

USA [51]
28 23 24 43% 30% 50% 75.09

(9.81)
73.35
(6.95)

75.07
(6.30)

22.04
(3.65)

26.96
(2.01)

29.04
(1.02)

14.57
(3.05)

16.83
(2.95)

16.5
(3.32) 68% 56% 38% NG NINCDS-ADRDA,

Petersen 2001 [67]

Riederer I (2018)
Germany [52] 45 - 11 56% - 55% 69 (9) - 65

(8)
22
(4) - 28.5

(1.1)
12.6
(3.8) - 12.4

(3) NG - NG NG ICD-10,
NINCDS-ADRDA

Sanchez DL
(2020)

USA [53]
- 105 61 - 53% 73% - 71.01

(7.1)
71.62
(6.44) - ) - 16.69

(2.7)
16.38
(2.45) - 55% 45% NG ADNI criteria [68]

Tosun D (2010)
USA [54] 24 - 38 38% - 56% 66.29

(9.99) - 65.7
(8.25)

21.76
(5.8) - 29.44

(0.86) NG - NG NG - NG NG NINCDS-ADRDA
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Table 1. Cont.

Study ID Participants (n) Female (n) Mean Age (SD) MMSE Mean (SD) Education (Years) APOE4 Carriers CVR Diagnostic
Criteria

AD MCI CN AD MCI CN AD MCI CN AD MCI CN AD MCI CN AD MCI CN

Westerberg C
(2013)

USA [55]
- 20 20 - 70% 75% - 73.6

(NG)
74.6
(NG) - 27.6

(NG)
29.1
(NG) - NG NG - NG NG NG Petersen 2004 [61]

Wierenga CE
(2012)

USA [56]
- 20 40 - 50% 68% - 74.8

(11.4)
73.5
(6.8) - NG NG - 14.5

(2.7)
16.3
(1.8) - 45% 33%13 NG Jak AJ et al.

2009 [63]

Xie L (2016)
USA [57] 65 62 - 37% 63% - 74

(6.2)
70.5
(8.8) - 27.4

(1.7)
29.2
(1) - 15.8

(3)
16.6
(2.7) - NG NG NG Petersen 2004 [61]

Zou JX (2014)
China [58] 20 - 20 60% - 55% 64.84

(8.82) - 64.94
(7.93)

16.21
(4.01) - 27.35

(1.01)
10.14
(3.24) - 11.05

(4.47) NG - NG NG NINCDS-ADRDA

AD: Alzheimer’s Disease, MCI: Mild Cognitive Impairment, CN: Cognitive Normal, MMSE: Mini-Mental State Examination, NG: not given, FSRP: Framingham Stroke Risk Profile,
NINCDS-ADRDA: National Institute of Neurological and Communicative Disorders and Stroke and the Alzheimer’s Disease and Related Disorders Association, NIA-AA: National
Institute on Aging and Alzheimer’s Association, DM: Diabetes mellitus, HTN: hypertension, and ADNI: Alzheimer’s Disease Neuroimaging Initiative.

Table 2. Imaging characteristics and CBF analysis.

Study ID MRI Scan
Strength (Tesla) ASL Sequence CBF Estimation

Method
Partial Volume

Correction Perfusion Change Regions Studied

AD MCI

Alexopoulos P (2012)
Germany [33] 3.0 T PULSAR voxel-wise, ROIs yes ↑ - MTL and hippocampus,

parahippocampal region

Alsop DC (2000)
USA [34] 1.5 T 3D ASL imaged-based,

region-based no ↓ * MTL -

Alsop DC (2008)
USA [35] 3.0 T 3D CASL voxel-wise,

region-based yes ↑ Hippocampus,
parahippocampal region -

Asslani (2008)
USA [36] 1.5 T CASL voxel-wise, ROIs yes ↓ Right parahippocampal

region -

Bangen KJ (2012)
USA [37] 3.0 T 2D PASL ROIs yes ↓ * - Bilateral and right MTL
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Table 2. Cont.

Study ID MRI Scan
Strength (Tesla) ASL Sequence CBF Estimation

Method
Partial Volume

Correction Perfusion Change Regions Studied

AD MCI

Binnewijzend MAA
(2013)

Netherlands [38]
3.0 T 3D PCASL ROIs yes ↓ *

Hippocampus. Results
adjusted for age, sex, and

WMH severity.
-

Chau ACM (2020)
Hong Kong [39] 3.0 T 2D PCASL ROIs yes ↓

MTL
Adjusted for age, gender,

and GM volume.
-

Chaudhary S (2013)
Canada [40] 3.0 T 3D PCASL ROIs yes ↓ MTL -

Dai W (2009)
USA [41] 3.0 T CASL ROIs yes ↑ * -

Right amygdala and left
hippocampus. Results

adjusted for age, sex and
hypertension history.

Ding B (2014)
China [42] 3.0 T PCASL voxel-wise no ↓ * Left limbic lobe and

parahippocampal region -

Dolui S (2020)
USA [43] 3.0 T 2D PCASL voxel-wise, ROIs yes ↓ Hippocampus

Duan (2020)
USA [44] 1.5 T CASL voxel-wise yes ↓ * Left hippocampus -

Glodzik L (2011)
USA [45] 3.0 T PASL ROIs yes ↔ Right hippocampus -

Huang CW (2018)
Taiwan [46] 1.5 T PCASL voxel-wise yes ↑ MTL -

Huang Q (2019)
China [47] 3.0 T 3D PCASL ROIs no ↓ * Hippocampus Hippocampus

Kim SM (2013)
South Korea [48] 3.0 T PASL voxel-wise yes ↓

Left and right
parahippocampal regions

as well as left and right
amygdala. Results

adjusted for APOE status.

-
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Table 2. Cont.

Study ID MRI Scan
Strength (Tesla) ASL Sequence CBF Estimation

Method
Partial Volume

Correction Perfusion Change Regions Studied

AD MCI

Lassila T (2018)
UK [49] 3.0 T PCASL z-scores no ↓ * - Left hippocampus

Li D (2020)
China [50] 3.0 T 3D PCASL ROIs no ↓ * Hippocampus Hippocampus

Okonkwo OC (2014)
USA [51] 3.0 T PCASL voxel-wise yes ↓ Left parahippocampal

region
Left parahippocampal

region

Riederer I (2018)
Germany [52] 3.0 T PASL voxel-wise yes ↓

Hippocampus,
parahippocampal region,

amygdala
-

Sanchez DL (2020)
USA [53] 3.0 T PASL ROIs yes ↓ - MTL decreased over 3

years

Tosun D (2010)
USA [54] 4.0 T CASL ROIs yes ↓ Left and right

hippoocampus -

Westerberg C (2013)
USA [55] 3.0 T 2D PASL ROIs yes ↑ * - Parahippocampal and

entorhinal regions

Wierenga CE (2012)
USA [56] 3.0 T PASL voxel-wise, ROIs yes ↑ * - Right hippocampus

Xie L (2016)
USA [57] 3.0 T 2D PCASL ROIs yes ↓ * -

Left hippocampus
No significance

remained after correction
for multiple comparisons

Zou JX (2014)
China [58] 3.0 T 3D PASL ROIs no ↓ * Hippocampus, bilaterally -

↑: increase ↓: decrease,↔: no change, * statistically significant, -: not applicable/not studied. Comparisons made between AD and CN groups as well as MCI and CN groups.
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The main findings of studies that recruited AD patients are summarised in Table 2.
Four studies showed decreased perfusion in the MTL for the AD group [34,35,39,40], with
two of them reaching statistical significance [34,35]. In contrast, Huang et al. 2018 found
higher CBF in the MTL of AD patients without reaching statistical significance [46]. Hypop-
erfusion was observed in the hippocampus (7 out of 16 studies) [38,44,47,49–51]. Four stud-
ies showed lower perfusion in the parahippocampal region [35,47,50,51]. Alsop et al. 2008
noted hyperperfusion in hippocampal and parahippocampal regions, which was statis-
tically significant [35]. Lastly, perfusion was decreased in the amygdala in two studies,
without reaching statistical significance when comparing AD with CN [48,52].

Moreover, we present the main findings of MCI participants compared with cognitively
normal volunteers in Table 2. Two studies showed decreased perfusion in MTL [37,53],
but only in one was the difference statistically significant [37]. In addition, higher CBF in
the MTL subregions was observed in the Westerberg et al. and Alexopoulos et al. studies,
with a significant and a non-significant difference, respectively [33,55]. Furthermore,
decreased CBF in the hippocampus was noted in five studies [38,40,44,46,54]. After CBF
correction, the difference was non-significant in two of the studies [43,57]. Increased CBF
in the hippocampus was described in three studies [33,41,56]. Finally, one study showed a
reduction [44], and two an increase of CBF in the parahippocampal region [43,55].

3.3. Critical Appraisal

As shown in Figure 2, answers noted in green are “Yes”. Red circles indicate “No”,
and yellow was used when the provided information was “unclear”. Eleven studies had
a total score of 100% positive answers. Eight studies scored 87.5% and the remaining
six studies scored 62.5%. Overall, the risk of bias for the majority of included studies was
low. Six studies had a moderate risk of bias as they did not fulfil or provided limited
information regarding confounding factors and the study’s setting.

One study (3%) had unclear risk of bias regarding the inclusion criteria of the par-
ticipants (41). In Question 2 (Q2), we considered a high risk of bias in 11 studies (42%)
because the information regarding the setting was limited [34–36,39,41–43,45,47,49,50,54].
Confounding factors were adjusted for most of the studies (60%). Four studies (15%) did
not adjust for confounding factors and were assessed as having a high risk of bias [33–35,39].
Another four studies (15%) provided little information regarding the same domain and had
an unclear risk of bias [45,46,50,54].

JBI risk of bias quality assessment, green circle indicating that the study addressed
well the specific question, red circle that it did not address well the question, and yellow
that it provided no information with regard to that question.

3.4. Summary of Main Findings and Meta-Analysis

The volume and the quality of the results on ASL-MRI for detection of MCI par-
ticipants as well as for AD patients were satisfactory. The results are presented in the
summary of findings table (Appendix C). Thirteen studies recruited MCI participants, and
16 studies recruited AD patients. Meta-analysis was difficult to conduct with the inclusion
of all studies, as they focused on different subregions of the MTL. Thus, we performed
subgroup meta-analyses in the hippocampus for AD-CN groups (Figure 3) as well as in the
hippocampus and MTL for MCI-CN groups (Figures 4 and 5). We included these regions in
our meta-analysis, as three or more studies provided quantified CBF results, expressed in
ml/min/100 g tissue. The CBF values were extracted from text, tables, graphs, or box plots.
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Figure 5. MTL: mild cognitive impairment vs. cognitively normal (Alexopoulos P. (2012) [33], Bangen
K.J. (2012) [37], Westerberg C. (2013) [55]).

This meta-analysis shows that there is significant difference of 2.82 mL/min/100 g
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This remained statistically different even following the sensitivity analysis.

There is no statistical difference in cerebral perfusion between MCI and CN.
There is no statistical difference between MCI and CN in MTL perfusion.

4. Discussion
4.1. Alzheimer’s Disease and ASL

A total of 14 out of 16 studies noted a significantly lower perfusion in the medial
temporal lobe of AD patients. These results are in agreement with the hypoperfusion pat-
terns in medial temporal regions depicted in other perfusion imaging modalities, such as
PET, SPECT, and DSC [24] and would suggest that hypoperfusion could partly explain the
development of AD. Supporting this is a study by Musiek et al. who correlated perfusion
patterns using ASL to glucose uptake using fluorodeoxyglucose positron emission tomog-
raphy (FDG-PET) in AD patients [69]. In their small study, qualitative and quantitative
similarities were found, indicating a close relationship between perfusion and metabolic
state in different brain regions of AD patients. Adding further evidence for this, a study
by Binnewijzend et al. (2016) correlated the lower CBF to later AD stages and a weaker
cognitive performance [70]. The number of studies showing statistically significant lower
CBF in the MTL of AD patients compared with controls, would demonstrate the important
causative relation. CBF can, thus, in the future, become a helpful test in clinical practice
in identifying patients at risk. This will be particularly vital if an early disease-modifying
therapy becomes available for AD. Of course, CBF assessment is not limited to MRI, and
other modalities, such as SPECT and PET, could aid in the earlier diagnosis of AD and,
thus, potentially earlier treatment [39].

Of the 16 studies, two showed lack of hypoperfusion in the MTL of AD participants.
They specifically showed increase of perfusion in the MTL [46] and the hippocampus [35]
but without reaching statistical significance. This transient CBF raise could be explained
as the participants recruited had a new onset of AD. Vascular compensatory mechanisms,
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induced by abnormal neuronal activity, may have still been in place [71]. Inflammatory
molecules expression, the disruptions of the blood–brain barrier, the vascular dilation
and the high metabolic demands of the atrophic regions could also explain the above [72].
These processes will be eventually exhausted, and low perfusion would be evident in every
region of the demented brain.

In conclusion, ASL MRI can detect reduced MTL perfusion in patients at a later stage
of AD. However, the results should be interpreted with caution in patients with a new onset
of AD, where compensatory mechanisms are still actively influencing CBF measurement.
Thus, ASL MRI should complement clinical judgement when managing patients with
cognitive decline.

4.2. Mild Cognitive Impairment and ASL

The perfusion status of MTL in MCI participants is not as straightforward as in the
sample of people with dementia. In three studies, MCI participants had a higher CBF value
than the control group. These results were statistically significant in two out of the three
studies (66%). In contrast, nine of the included studies presented a statistically significant
higher CBF in the control group. It is interesting that in one study, hypoperfusion in the
hippocampus was preserved at a significant level after corrections for vascular risk factors
and adjusting for partial volume effect between cognitively declined and cognitively normal
adults [44]. The wide variability of results on CBF difference between MCI and cognitively
normal subjects cannot be overlooked. Although there is no clear explanation for the
above, there are certain factors that may influence ASL MRI readings. Cardiovascular risk
factors and APOE4 mutation seem to impact CBF readings. Specifically, by recruiting only
cognitively normal participants and dividing them into high risk and low risk groups for
AD, Fleisher et al. found that the cerebral blood flow in MTL was increased in the high-risk
group [73]. In addition, people without dementia who are carriers of the APOE4 allele
demonstrated higher CBF in subregions of MTL compared with non-carriers, increasing
the possibility of AD conversion in the future [74].

The above hypothesis seems to attract significant interest from the scientific community.
Aging, cardiovascular risk factors, APOE mutation, and capillary dysfunction seem to be
in the spotlight of recent research. The results of this research show that microcirculation
changes due to ageing, hypertension, and genetic risk factors for AD (e.g., the APOE4
allele) are responsible for remodelling of small vessels and, thus, the lowering of oxygen
efficacy in the brain [75]. Initially, the brain compensates for the metabolic needs of
the neural networks by increasing the CBF of the affected regions. The rise of CBF is
sufficient for mild capillary dysfunction. When capillary changes become more evident,
the oxygenation demand cannot be compensated for with higher perfusion rates [76]. At
this stage, cognitive decline symptoms are pronounced, and CBF is decreased. Recent work
confirms this hypothesis by comparing the CBF in MTL of cognitive normal adults, people
with objective subtle cognitive decline, and MCI participants [77]. Objective cognitive is
defined by Thomas et al. as “performance lesser than 1 standard deviation (SD) below
the age, education, and sex-adjusted mean on: (1) two neuropsychological total scores in
two different cognitive domains, (2) one neuropsychological total score and one process
score, or (3) two process scores”. The group with the objective cognitive decline showed
higher CBF in hippocampus than MCI as well as higher CBF than the cognitively normal
group, which is suggestive of mild capillary dysfunction.

The above theory could provide a valid explanation of the CBF variation between
MCI and cognitively normal participants in different studies. In addition, high het-

erogeneity of the included studies could be another reason for the results, and we should
always consider the characteristics of the MCI participants (demographics and stage of
the disease at the recruitment) and the variety of disease presentation within and between
subjects [71]. However, no matter how reasonable the explanations might be, variability
in results is a factor that remains present and should be taken into consideration when
interpreting ASL MRI readings in MCI patient.
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4.3. Limitations

We should acknowledge the limitations of our systematic review. We focused our
review on English-written studies, implementing a restriction to available included studies.
Another weakness is that all but one eligible study were cross-sectional. In this type of
study, the cause–outcome/causal relationship cannot be identified, as the disease and the
exposure variables are studied simultaneously. The variability of the acquisition protocols
and the imaging analysis performed were considerable. These differences in imaging
protocols should be considered when we interpret the results of our review. Included
studies assessed various comorbidities, namely HTN, stroke, heart disease, and diabetes;
however, prediabetes and variable glycemic control were not assessed. A meta-analysis was
also conducted. This had significant heterogeneity, but a random-effects model was utilised
to account for this. Lastly, the sample size of two studies was less than 30 participants. A
very small sample size could bias the outcome, as there is a possibility of our assumptions
being confirmed by chance [78].

4.4. Recommendations for Future Studies

Despite the limitations, this work confidently addresses whether “CBF in the medial
temporal lobe is different between cognitively normal and cognitively declined partic-
ipants”. This is based on the results of the included studies and without applicability
concerns regarding the studied population, imaging test, or cognitive status. This is be-
cause cross-sectional studies can demonstrate differences between the studied groups, but
the causal relationship remains unclear. For this reason, longitudinal studies are essential
to evaluate the effectiveness of the imaging test and to assess the potential role of the
CBF changes as an additional biomarker of differentiation between AD and cognitively
normal adults.

The potential benefit of incorporating ASL-MRI in general practice should also be
assessed. When an MRI is indicated in clinical practice, adding an ASL sequence can
be beneficial and of a low additional cost. On the other hand, the plethora of choices in
ASL parameters can be a drawback. Multisite comparisons are difficult and expensive
to perform. It would be beneficial if the medical community could come together and,
through guidelines, mutually agree on a specific protocol so that comparisons of acquired
results can be performed directly. Towards this vision, the European working group “ASL
in Dementia” and the equivalent USA Perfusion Study group—International Society for
Magnetic Resonance in Medicine—have provided indicative acquisition parameters for ASL
to standardise the method [21]. The implementation of this consensus could simplify the
use of ASL in clinical practice and encourage the adoption of the method in more settings.

ASL-MRI is a perfusion technique that enables the non-invasive quantification of
cerebral blood flow. Quantified results could be more objective than descriptive results
when researchers define thresholds or a range of values to discriminate cognitive decline
from cognitively normal adults [21]. To accomplish this, the brain atrophy and partial
volume effect (PVE) should be taken into consideration. PVE correction is essential when
CBF values are extracted. From the included studies, only four studies adjusted their results
according to PVE [43,53,54,57]. Researchers should account for PVE as a confounder in the
design of future studies [20]. PVE-corrected and PVE-uncorrected results can be extremely
different, and comparisons among participants of different studies could be a challenge.

4.5. Role in Clinical Practice

Arterial spin labeling is a perfusion MRI modality that is relatively inexpensive and
easy to perform. Cohort studies and diagnostic test accuracy studies are mandatory to set
a common language among clinicians when they interpret ASL results. If these steps are
accomplished, ASL-MRI could be considered as an additional test—part of the existing MRI
acquisition protocol—to detect people at risk for AD with greater precision and hopefully at
an earlier stage. This can be particularly helpful if a therapeutic intervention would become
available, whereby early initiation is likely to offer improved outcomes. Authors should
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discuss the results and how they can be interpreted from the perspective of previous studies
and of the working hypotheses. The findings and their implications should be discussed in
the broadest context possible. Future research directions may also be highlighted.

5. Conclusions

In this comprehensive systematic review and meta-analysis, we show that there is
significant difference in the cerebral blood flow of the hippocampus between AD and CN
groups. There was no difference in either the cerebral perfusion in the hippocampus or
MTL between MCI and CN participants. This work suggests that incorporating cerebral
perfusion in routine MRI brain imaging could be beneficial for identifying patients at earlier
stages of AD.
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Appendix C

Table A1. Summary of findings.

Differences in CBF of MTL in people with cognitive decline compared with cognitively
normal adults

Patient population People with cognitive decline

Alzheimer’s disease patients included studies (n = 16)

AD criteria

• NINCDS-ADRDA (n = 10)
• revised NINCDS-ADRDA (n = 2)
• ICD-10 and/or NINCDS-ADRDA (n = 1)
• NIA-AA (n = 3)

Mild cognitive impairment included studies (n = 12)
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Table A1. Cont.

MCI criteria

• Petersen criteria (n = 4)
• Petersen and modified Petersen criteria (n = 2)
• modified Petersen criteria (n = 3)
• Reisberg 1993 (n = 1)
• ADNI criteria (n = 1)
• unknown (n = 1)

Imaging test Arterial spin labelling (perfusion MRI)

MRI strength

• 3 T (n = 21)
• 1.5 T (n = 4)
• 4 T (n = 1)

ASL sequence

• PCASL (n = 11)
• CASL (n = 5)
• PASL (n = 8)
• unclear/other (n = 2)

Readout

• 2D-EPI (n = 5)
• 3D (n = 7)
• unclear (n = 15)

Comparator Cognitively normal adults

Outcome Cerebral blood flow in MTL

Alzheimer’s disease patients
(CBF analysis)

• voxel-wise (n = 6)
• ROIs (n = 8)
• other methods (n = 2)

Mild cognitive impairment
(CBF analysis)

• voxel-wise (n = 3)
• ROIs (n = 10)
• other methods (n = 2)

Included studies Observational studies (cross-sectional n = 25, cohort n = 1)

Quality concerns

Patients’ characteristics were not always adequately described
and confounding factors were moderately reported. Concerns
regarding reproducibility of the investigated method were
generally low.

Limitations Lack of standard methodology in ASL-MRI process. Variety of
regions of interest (ROIs) among studies

Conclusions
There is need for conducting longitudinal studies with a
standardised methodological protocol of ASL-MRI with larger
population samples.
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