
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Adopting an Agile Approach for Reflective Learning and Teaching
Eleanor Leist
E.Leist@uea.ac.uk

University of East Anglia
Norwich, Norfolk, UK

Jaejoon Lee
jaejoon.lee@uea.ac.uk

University of East Anglia
Norwich, Norfolk, UK

ABSTRACT
Software engineering is concerned with how best to create soft-
ware in ways that promote sustainable development and maximise
quality. We have been largely successful at transferring software en-
gineering knowledge into the industry, however, many challenges
in software engineering training remain. A key amongst these is
how best to teach practical engineering approaches along with the
theoretical concepts behind them.

This paper describes our experience of adopting an agile ap-
proach for reflective learning and teaching within the context of
our Software Systems Engineering module, aimed at addressing
challenges identified with previous efforts to promote reflective
practice. Our study attempts to strengthen the use of reflective
learning approaches for our current cohort, as well as introducing
reflective teaching practices, whereby we examine our teaching
approach in order to improve its efficiency and effectiveness. Our
analysis of student response to the module shows that it was very
well-received by the students, and we were able to collect ample
evidence from feedback to support this. Most of our approaches
resulted in positive feedback and contributed to improvements in
teaching quality, however, we also identified some key aspects in
our method that could still benefit from refinement, such as the
need for explicit links between learning outcomes and workshop
activities, and intuitive design of feedback questions, along with
feedback collection frequency. We plan to incorporate these addi-
tional updates into the revision of the module for the next academic
year, and to continue collecting and analysing feedback data for
further enhancement.

CCS CONCEPTS
• Software and its engineering → Software development pro-
cess management; • Social and professional topics → Software
engineering education;Model curricula.

KEYWORDS
Reflection, Learning, Teaching, Agile, Feedback, Gamification

ACM Reference Format:
Eleanor Leist and Jaejoon Lee. 2024. Adopting an Agile Approach for Reflec-
tive Learning and Teaching. In ICSE’24: International Conference on Software

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICSE’24, April 14–20, 2024, Lisbon, Portugal
© 2024 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/XXXXXXX.XXXXXXX

Engineering, April 14–20, 2024, Lisbon, Portugal. ACM, New York, NY, USA,
10 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
Today, software engineering is concerned with how best to create
software in ways that promote sustainable development and max-
imise quality. There is a general consensus that we have been largely
successful at transferring software engineering knowledge into the
industry through various forms of education [14, 20]. However,
many challenges in software engineering training still remain. One
key challenge is how to best teach practical engineering approaches
along with the theoretical concepts behind them.

Lab- and workshop-based approaches, aiming for learning-by-
doing, have been widely adopted for the teaching of both practical
and engineering disciplines [5]. Likewise, software engineering
teaching often incorporates lab and workshop sessions. Whilst
such interactions with students can give them hands-on experience,
understanding their level of learning attainment can be challenging.
One possible approach for assessing students’ achievements of
learning outcomes is reflection [2], where students are asked to
review the work they did in order to re-digest the core ideas (e.g.,
techniques, theories, etc.).

This paper centres around a Software Systems Engineering 1

module where, in recent years, we have incorporated reflective
learning into our teaching practices, albeit in an implicit manner. For
instance, we have routinely revisited the main content of lectures
or labs at the end of the sessions, offering students a reminder
of the learning outcomes. In other instances, we have organised
additional revision sessions for the students to prepare for exams
and/or coursework submissions. These approaches are in keeping
with reflective learning practices, however, the actual reflection
component was mostly left for students to consider by themselves,
without the proper mechanisms to support the reflection happening.
Consequently, the potential benefits of reflective learning were not
fully recognised by the students.

In addition to reflective learning, we also wanted the module
to incorporate reflective teaching, by examining our teaching ap-
proaches in order to improve their efficiency and effectiveness. Prior
to the module changes described in this paper, the reflective teach-
ing process centred around the collection of student feedback at
the end of each semester. However, the time frame of this feedback
implies that practical improvement happens annually, and the long
interval between data collection (i.e., receiving student feedback)
and implementation (i.e., revision of teaching methods) hinders
the accurate adjustment of teaching approaches for improvement

1The current module name at our University is ’Systems Engineering’ to distinguish
it from the Software Engineering module, where the focus is on software system
implementation. In this paper, we refer to the Systems Engineeringmodule as ’Software
Systems Engineering’ to avoid any confusion with hardware centred modules.

1

https://orcid.org/0009-0001-5587-3015
https://orcid.org/0000-0001-6016-8540
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ICSE’24, April 14–20, 2024, Lisbon, Portugal Eleanor Leist and Jaejoon Lee

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

and enhancement. Moreover, due to the varying characteristics of
each cohort on the module (e.g., number of registered students,
student composition with respect to their degree courses (e.g., BSc
Computing Sciences, BSc Business Information Systems, etc.), and
the background knowledge of the students (e.g., whether or not
they have taken some optional modules, and the differences in their
compulsory modules)), makes it difficult to understand whether the
potential improvements would practically translate to the following
academic year.

This paper describes our experience of adopting an agile ap-
proach for reflective learning and teaching within the context of
our Software Systems Engineering module, aimed at addressing the
challenges identified above. Our paper presents results from a one
year study, including individual aspects of the reflective learning
and teaching experience, such as how it fosters reflective practice,
the student response to our methodology, and what the practical
difficulties are for implementing our approach. In this paper we
provide a comprehensive description of how our approach was
designed and put into practice. The key contribution of the paper,
therefore, is a concrete description of our agile reflective learning
and teaching practices, which others, thinking of taking a reflective
approach, can use in designing and developing their own modules.

The rest of this paper is organised as follows: Section 2 reviews
related work and explains the motivations for our teaching ap-
proach. Section 3 describes our approach in detail, including the
module structure and an illustrative process model. In Section 4, we
discuss the student feedback collected during the process, and in
Section 5 we summarise the key lessons learned from this process.
We conclude our paper in Section 6 with future work.

2 BACKGROUND AND MOTIVATION
2.1 Related Work
2.1.1 Reflection. The use of reflection for teaching and learning in
higher education is a well established concept, with many studies
exploring the benefits it can offer. From a student perspective, reflec-
tive learning is “a process that leads to reflection on all sources of
knowledge, including personal sources and experiences which may
contribute to understanding a situation" [6]. It can help students to
“turn experience into learning" [1], by analysing and responding to
an experience, such as a lecture, then processing this thinking to
formulate evaluations and decisions about what has been learnt.
The inclusion of reflection as part of the teaching process allows
a dialogue to form between the teacher and learner, so that the
educator becomes a ‘facilitator of learning’, focusing on how learn-
ers are interacting with the material, rather than how it is being
transmitted [3]. Boud et al. [1] state that such reflective activities
should take place very frequently, even on a daily basis.

Reflection can be an equally useful tool from a teaching perspec-
tive. Schön [18, 19] presents the idea of the ‘Reflective Practitioner’,
whereby education professionals apply ‘reflection-in-action’ tech-
niques, with foundations in design, to improve their own practice.
Many of the decisions educators make regarding their teaching
approach is based on assumptions they have formed, and criti-
cal reflection of these decisions helps educators to check if these
assumptions are valid [4].

More recent studies have applied the idea of reflective practice
within a computer science context, particularly when exploring the
human aspects of software engineering [12]. This study describes
a framework for applying design studio techniques introduced by
Schön [19], in order to encourage tutor-student interaction and
collaboration. In a wider software engineering context, reflection
can be highly useful for informing decision making and improving
current processes [9], and thus is a valuable skill for students of
this discipline to learn.

2.1.2 Agile teaching. Reflection and agile development are closely
linked concepts. A key aspect of the most widely used agile devel-
opment approach, Scrum, is the ‘Sprint Retrospective’, whereby
members of the Scrum team discuss what went well and what could
be improved about the sprint.

Krehbiel et al.[15] proposed the idea of an Agile Manifesto for
Teaching and Learning , with two of the key values being particu-
larly relevant. The first of these values is ‘Student-driven Inquiry
Over Classroom Lecturing’, which promotes student empowerment
through active learning and encourages them to use their own
voices. The second, ‘Continuous Improvement Over the Mainte-
nance of Current Practices’, encourages educators to frequently
evaluate their teaching practices and to adopt a trial and error ap-
proach to exploring new ideas. An example of applying these values
in practice includes the use of retrospectives, offering the students
the opportunity to reflect on previous courses [15].

Other contexts in which agile principles have been applied to
learning and teaching include the use of Scrum techniques when
teaching agile project management in a business school [7], and
the proposal of ‘Extreme Pedagogy’, where four core values based
on Extreme Programming are used to enhance collaboration and
facilitate learning by continuous doing [8].

2.2 Motivation
The undergraduate software engineering related modules are struc-
tured over three years2. The Software Systems Engineering module,
which is the main topic of this paper, builds on the knowledge and
experience gained in Years 1 and 2 of study that introduce students
to:

• Year 1: Programming and testing, software life cyclemodels
• Year 2: Requirements engineering, software design and

design patterns
In Year 3, the focus is on the Software Systems Engineering module.

The Software Systems Engineering module draws together a
wide range of material and considers it in the context of develop-
ing modern large-scale computer systems. Topics such as Systems
Thinking, Outsourcing, Quality, Risk Management, Measurement,
Project Management, Software Process Improvement, Configura-
tion Management, Maintainability, Testing, and Peopleware are cov-
ered in the module. This module is supported by well-documented
case studies and includes guest speakers from the industry.

The teaching method is based on lectures and workshop ses-
sions. The major interaction with students is organised through the
workshop sessions: prior to our changes to the teaching approach,

2In the UK, the undergraduate study for a Bachelor’s degree spans three years and,
therefore, Year 3 is the final year before the student graduates from university.

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Adopting an Agile Approach for Reflective Learning and Teaching ICSE’24, April 14–20, 2024, Lisbon, Portugal

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

students were expected to read specified papers each week, before
discussing the content using some key topics or discussion points
shown at the beginning of the workshop session. This approach
has been used for the last 10 years of the module and was generally
well-perceived by students. In particular, the student and teaching
staff interactions during the workshop sessions were appreciated by
the students as evidenced in the end of semester student feedback.

Despite the general positive feedback, there were some chal-
lenges we recognised in terms of using student feedback for im-
proving their learning experience. They are:

• Students’ low motivation for providing end-of-semester
feedback: It does not offer any tangible benefit to the stu-
dents who provided it, and they may have difficulty rec-
ollecting what happened during the early stages of the
semester.

• Low number of responses to school-led feedback: Low mo-
tivation, as highlighted in the previous item, and the low
engagement (attendance) toward the end of semester due to
various reasons (e.g., multiple coursework deadlines, exam
preparation, etc.).

• Standard set of questions without specifics about each mod-
ule: A question, for example, about promptness of course-
work score return for a module with only one piece of
coursework at the end of semester is not relevant.

More importantly, these questions are designed to collect feed-
back on the quality of teaching, not for students to reflect on their
learning outcomes. Such reflection to improve student attainment
should be embedded into the module and customised to fit for each
module’s learning outcomes. Based on these observations, we have
revised the module to include reflective learning practices with a
rapid feedback cycle. The details of our new module design and its
results are described in the following section.

3 TEACHING METHOD DESIGN
Wefirst describe the processmodel of our approach, and the detailed
module structure is also illustrated in this section.

3.1 Agile Process for Reflective Learning and
Teaching

The main idea that we aimed to incorporate into the module design
was reflective practice techniques [1, 2, 16], such as coaching and
critiquing. In addition, the reflection should happen within a short
time-frame so that the students could reinforce their learning when
each topic was covered, rather than revising them at the end of
the module. It is therefore important to define the agile reflective
process to enable such practice in the first place. Figure 1 depicts the
process model we followed throughout the module. The activities
involved are explained below.

The process begins with refining learning outcomes for the up-
coming week. We do have a set of pre-defined general learning
outcomes, but we should refine them for each week based on the
cohort specific information (e.g., cohort size, students’ background,
etc.) and inputs from previous week, if available. For instance, a gen-
eral description of ‘demonstrate knowledge of feature modelling’ is
refined as ‘demonstrate knowledge of feature identification within
a mobile game domain’ to reflect the scenario of that week’s session.

Figure 1: Agile process for reflective learning and teaching

Once we have the refined learning outcomes, questionnaires for
the week are designed which encourage the students to revisit and
reflect on the main topics. In the case of feature identification, for
example, the questions may include 1) ‘Which activity was most
useful for identifying features?’ and 2) ‘Which features were most
difficult to identify?’

Based on the refined learning outcomes, we revise lecture slides
and also adopt reflective practice techniques into the workshop
sessions, whenever applicable, in addition to the reflective ques-
tionnaire practice. After we teach the students through lectures
and workshops, the students are the offered the chance to answer
these questions via Padlet 3. Padlet was chosen as the feedback
mechanism due to it being free to use and relatively easy to inter-
act with. Virtual walls can be created, with a reasonable amount
of freedom in terms of design choices. It offers anonymity, or the
option to respond with a name, and students can access it by simply
scanning a QR code or following a short URL. Padlet has been used
successfully for motivating and engaging students in a number of
other studies [10, 13, 17].

Moreover, using the feedback mechanism, we also collect student
feedback on the teaching methods used that week. For example,
we may include questions about the quality of workshop-based
teaching (e.g., ‘How easy was it to understand the workshop organ-
isation?’, ‘Which workshop topics need be revisited for next week?’,
etc.). We can then analyse the collected feedback to see the level
of student attainment (i.e., quality of students’ answers related to
learning outcomes) and to understand the points for improvement
in our teaching methods.

The findings from the analysis are summarised and presented in
the next lecture or workshop session (see the ‘Presenting the analy-
sis results’ activity in Figure 1.). During this activity, students may
ask further questions and/or provide additional feedback. At the
same time, we also make improvements to our teaching approach
for the next session, and check the effectiveness of this through the
questions of the subsequent session.

Fundamentally, we put considerable thought into getting stu-
dents to reflect on their practice by embedding ‘reflective practice’
[11] into the curriculum. This was done through a variety of means
– peer assessment, constant critique from teaching staff, coaching,
and individual feedback collection. This was challenging because it
required a change of culture in the students, who were not used to
reflecting on their practice in this way.

3www.padlet.com
3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

ICSE’24, April 14–20, 2024, Lisbon, Portugal Eleanor Leist and Jaejoon Lee

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

3.2 Module Structure and Topics Covered
The module runs for one semester over twelve weeks and its exam
is scheduled separately during the university’s summer assessment
period. For each week, there is a two-hour lecture and a one-hour
workshop session. Where possible, we also invite external guest
speakers to share their industry experiences relevant to the topic of
that week with the students. The weekly topics and brief descrip-
tions of lectures, guest talks and workshops are explained in the
following:

• Week 1: Introduction to the Module and Systems Thinking
– Lecture: The module structure, assessments and our

teaching methods are explained. Also, the basic con-
cept of systems thinking is introduced.

– Workshop: Activity in a small group on analysing a
given topic using a Causal Loop Diagram.

– Reflective practice: Questionnaire.
– Outcomes: Students familiarise themselves with ini-

tial concepts for software systems engineering and
understand how to use a Causal Loop Diagram.

• Week 2: Software Process Models and Feature Modeling
– Lecture: Various software process models are intro-

duced along with their pros/cons. As a tool for ini-
tial domain understanding, the feature modelling tech-
nique is also introduced.

– Workshop: Feature modelling exercise within a mobile
game domain.

– Reflective practices: Questionnaire and coaching.
– Outcomes: Students can select a software processmodel

for a project and use a feature model to understand
the project domain.

• Week 3: Project Management and Effort Estimation
– Lecture: Concepts and practical techniques for project

management are introduced with a focus on effort
estimation.

– Workshop: Effort estimation exercise for developing
test cases with a mobile game domain.

– Reflective practices: Questionnaire and peer assess-
ment.

– Outcomes: Students understand the core activities re-
quired for project management and can perform effort
estimation systematically.

• Week 4: Software Quality: Risk Management and Measure-
ments
– Lecture: Concepts and practical techniques for risk

management are introduced with a focus on measure-
ments.

– Guest lecture: ‘Quality in Agile’
– Workshop: Risk analysis exercise for risk planning

with a coursework preparation scenario.
– Reflective practices: Questionnaire, acting on a sce-

nario and coaching.
– Outcomes: Students understand the core activities re-

quired for risk management and can perform risk plan-
ning systematically.

• Week 5: Software Quality: Software Architecture

– Lecture: Concepts and practical techniques for soft-
ware architecture design.

– Workshop: Architecture design and its quality impli-
cation exercise with a paper airplane development
scenario.

– Reflective practices: Questionnaire and gamification.
– Outcomes: Students understand the critical implica-

tion of architecture design to achieve required quality.
• Week 6: Testing

– Lecture: Concepts and practical techniques for testing
with a focus on test case development.

– Guest lecture: ‘Software testing in practice’
– Workshop: Test case development exercise by compar-

ing/contrasting black box/white box approaches.
– Reflective practices: Pair development and peer assess-

ment. General mid-module feedback collected.
– Outcomes: Students understand how to develop test

cases with different approaches.
• Week 7: Software Process Improvement

– Lecture: Concepts and practical techniques for soft-
ware process improvements with an agile process.

– Workshop: A ball-passing game is arranged to simu-
late an agile process improvement approach.

– Reflective practices: Questionnaire, peer assessment
and gamification.

– Outcomes: Students understand the core factors for
process improvement and how to put them into prac-
tice.

• Week 8: Software Maintenance and Configuration Man-
agement
– Lecture: A trend of lengthening software maintenance

phase is explained with case studies and practical tech-
niques for configuration management to cope with the
trend are discussed.

– Guest lecture: ‘Software Maintenance Challenges’.
– Workshop: A system maintenance case study discus-

sion is organised.
– Reflective practices: Questionnaire and self assessment.
– Outcomes: Students understand the significance of

software maintenance and how to plan software main-
tenance.

• Week 9: Software Reuse/Software Product Line Engineer-
ing
– Lecture: Concepts and practical techniques for soft-

ware reuse with the focus on software product line
engineering.

– Guest lecture: ‘Software product line engineering in a
large organisation’.

– Workshop: Software architecture trade-off analysis
workshop for software reuse is organised.

– Reflective practices: Questionnaire, acting on a sce-
nario and gamification.

– Outcomes: Students can understand the importance of
software reuse and the critical role of software archi-
tecture.

• Week 10: Peopleware
4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Adopting an Agile Approach for Reflective Learning and Teaching ICSE’24, April 14–20, 2024, Lisbon, Portugal

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

– Lecture: Concepts and practical techniques for manag-
ing a team and team dynamics.

– Guest lecture: ‘How companies keep employees happy
and productive’.

– Workshop: Technical writing and verbal feedback on
the abstraction of student coursework are organised.

– Reflective practices: Questionnaire and individual coach-
ing.

– Outcomes: Students can understand how to manage
the team dynamics. Also, they can improve their writ-
ing skills and their coursework through the workshop
session.

• Week 11: Outsourcing and Re-engineering
– Lecture: Concepts and practical techniques for out-

sourcing and re-engineering.
– Workshop: Continued from previous week: technical

writing and verbal feedback on the abstraction of stu-
dent coursework are organised.

– Reflective practices: Questionnaire and individual coach-
ing. General end-of-module feedback collected.

– Outcomes: Students can understand how the outsourc-
ing works and when/how to re-engineering their soft-
ware assets.

• Week 12: Revision lecture for exam preparation
– Lecture: Key lecture contents are revisited in prepara-

tion for the exam.
– Workshop: Continued from previous week: technical

writing and verbal feedback on the abstraction of stu-
dent coursework are organised.

– Reflective practices: Questionnaire and individual coach-
ing. General end-of-module feedback collected.

– Outcomes: Students can understand the important part
of the module contents for the exam.

Assessment: Marks are awarded for three different pieces of
individual assessment. They are: 1) Conference paper (i.e., a short
technical paper on a given topic), worth 40% of the overall mark.
2) End of semester examination during the summer exam period,
worth 50% of the overall mark. 3) Workshop attendance and partic-
ipation, worth 10% of the overall mark.

Workshops for coursework and exam: The workshops in
weeks 10, 11 and 12 were organised to help the students prepare
their coursework and exam. As the coursework submission deadline
of Friday Week 12 approached, we observed that the students were
quite distracted and found it difficult to focus onworkshop activities.
As such, we deliberately designed the workshops to give individual
feedback on their abstracts for the conference paper coursework.
The reflection on the lecture content of these weeks were covered
by the weekly reflective questions.

Registered student composition:We had a total of 80 students
registered in the module for this year. Of these, there were 69
undergraduate students, withmost of these students taking a degree
in Computing Science (50) or Business Information Systems (16),
and a further three students on other undergraduate courses. Also
we had 11 postgraduate master’s students, all enrolled on a Master’s
in Computing Science. As a prerequisite, they all had experience of

software system implementation and were familiar with software
systems.

Number of students in each session: We could host all 80
students for lectures, but we had to divide them into three groups
for workshop sessions, meaning we were running three workshop
sessions after each lecture. We allocated 25-30 students to each
workshop and found this number of students was manageable for
all the workshop activities we had planned.

Teaching team: We had two academics in the teaching team
(i.e., the two authors of this paper) and did not have any teaching
assistants. Both academics were present for all workshop sessions.

In this section, we provided the details of the module structure
and its running context. We focus on the feedback question de-
sign and the analysis results of the collected feedback data in next
section.

4 STUDENT FEEDBACK
The following subsections discuss the types of questions presented
to students using the feedback mechanism, and present the find-
ings from both this feedback, and the school-organised feedback
collected at the middle and end of the module.

4.1 Feedback Questions
A range of questions were presented to students each week, using
the Padlet feedback platform, which allowed the teaching team
to facilitate both reflective learning and reflective teaching. The
feedback format each week generally consisted of two to three
questions requiring written responses or comments, followed by a
number of learning outcomes for the workshop session, with the
option to ‘upvote’ or ‘downvote’ on whether the students felt that
had achieved that learning outcome.

Examples of typical questions presented to the students can be
found in Table 1. As seen in the first column, questions designed to
encourage reflective teaching had a focus on the teaching method
used, such as the effectiveness of examples given to students, and
the usefulness of activities utilised during workshops. It was hoped
that responses given to this type of questionwould help the teaching
team to assess whether appropriate choices had been made when
developing methods for delivering course content.

Questions aimed at fostering a culture of reflective learning
instead focused more on the students’ response to the content and
activities. These questions typically encouraged students to reflect
on, and to critique, their own thoughts and feelings about what
they have gained from the workshops and lectures.

4.2 Weekly Reflective Feedback
Reflective student feedback was collected by the teaching team
using the Padlet platform for each week of teaching on the module.
In weeks 6, 11 and 12 of the module, more general mid- and end-
of-module feedback was collected, alongside the formal feedback
process implemented by the School, and results of these weeks are
therefore not included in the totals.

The questions presented to students prompted responses includ-
ing free-text comments, ratings, and up or down votes. A typical
example of a Padlet wall can be seen in Figure 2. The Padlet settings
were altered such that students had the ability to add comments to,

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

ICSE’24, April 14–20, 2024, Lisbon, Portugal Eleanor Leist and Jaejoon Lee

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Table 1: Examples of questions presented to students via the
feedback platform

Examples of reflective
teaching questions

Examples of reflective
learning questions

What could be improved about
the abstract feedback

sessions?

How confident would you be
applying effort estimation to your
own project? (1-5 scale, 1=not

confident at all, 5=very confident)
Which item/activity did you find
most helpful for understanding
the concept of feature modelling?
(e.g. lecture slides, car example)

Which part of the risk
management exercise was most
challenging? (e.g. identifying,

deciding on a strategy)
How interesting did you find the

guest talk this week? (1-5,
1=not interesting, 5=very

interesting)

Considering providing and
receiving feedback from others,
which of these did you find

most helpful?
What was the most useful element
for understanding ‘Architecture’?

(e.g. Vasa ship, ATAM, BMS,
airplane exercise)

“Structure decides quality". Do
you agree with this statement?

Why?

Did you find the ball game activity
helpful for understanding process
improvement? (1-5, 1=not at all

helpful, 5=very helpful)

ChatGPT: Friend or foe? What
are your thoughts on the use

of AI tools?

Have the sessions today helped
you to feel more confident about
the conference paper assessment?

Which of the 3 stakeholders
(PM, marketer, user) did you
side with after the debate

exercise? Why?

or ‘upvote’ or ‘downvote’ existing posts. Although the reflective
feedback process was presented as an optional task each week,
many students chose to respond and engage with the process, with
a minimum of 10 responses for each week of the module.

The teaching team manually categorised student responses ac-
cording to whether theywere valid and on-topic, with subcategories
of ‘positive invalid’, ‘neutral invalid’ and ‘negative invalid’ for those
that were deemed off-topic for a given question. As an example,
when asked “Which aspects of the conference paper would you like
further help with?", comments would be categorised as follows:

Valid: “Structure, structure and analysis!!"
Positive invalid: “Very fun lecture"
Neutral invalid: “var check"
Negative invalid: “We lost so I’m mad."

Table 2 shows the average number of valid and invalid responses
given by students for each feedback question, and Table 3 provides
a breakdown of the total responses for each week by response type.

It was noted that more invalid comments were received when
students took part in a practical activity, whereas sessions involving
a paper-based activity tended to receive a larger share of valid
comments. This was particularly evident in week 7 (a ball game
activity), which received the highest number of invalid positive
responses, and week 9 (battlefield debate activity), which received
the highest number of invalid neutral responses (see Figure 3). The
results indicated high levels of engagement and enjoyment, but with
potentially reduced focus on the learning outcomes. The decline in
the number of positive comments towards the end of the module
may be attributed to students experiencing a general decrease in

Figure 2: An example of a Padlet wall used to collect student
feedback during a workshop

Figure 3: Total responses categorised by type

mood as they approach course deadlines, amongst other factors. An
overall decline in total responses was observed over the duration of
the module, perhaps indicating diminishing interest in participation
over time (see Figure 4).

Questions requiring a simple answer, such as a rating or choice
between limited options, frequently received higher numbers of
responses than those requiring more thought. Similarly, questions
which were not directly linked to the workshop activity, and in-
stead required students to think more deeply about a software

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Adopting an Agile Approach for Reflective Learning and Teaching ICSE’24, April 14–20, 2024, Lisbon, Portugal

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Figure 4: Average number of responses per question

Table 2: Average number of valid and invalid responses per
feedback question

Week Task type Average number of
valid responses per question

Average number of
invalid responses per question

1 Paper-based 13 0.5
2 Practical 7.5 6
3 Practical 17 4
4 Paper-based 8 3.67
5 Practical 7 3.5
7 Practical 8.5 7.5
8 Paper-based 8.5 1.5
9 Practical 10.5 4.5
10 Paper-bsed 2.67 0.67

Table 3: Response totals by type

Week Task type Total
responses

Total valid
responses

Total invalid
positive
responses

Total invalid
neutral

responses

Total invalid
negative
responses

1 Paper-based 27 26 0 0 1
2 Practical 27 15 9 3 0
3 Practical 42 34 4 3 1
4 Paper-based 35 24 9 1 1
5 Practical 21 14 3 4 0
7 Practical 32 17 10 2 3
8 Paper-based 20 17 0 3 0
9 Practical 30 21 0 8 0
10 Paper-based 10 8 0 2 0

engineering concept, gained the fewest responses. The response
rate dropped significantly if there were more than two questions
requiring a written answer on any given week.

With regard to the feedback items requiring an ‘upvote’ or ‘down-
vote’ on achievement of a learning outcome, although only one
downvote was received across all learning outcomes listed, very
little meaningful feedback was gathered. There were low levels
of interaction with these items, with no comments being left to
gain any further insight into the thought behind the response be-
ing given. This observation highlights the importance of careful
consideration when choosing the appropriate format for directly
measuring attainment of learning outcomes.

When asked to give their opinion on the use of Padlet as a
reflective feedback mechanism, all responses from the students
indicated that they found the tool to be useful and the feedback
process was beneficial to them.

Table 4: Mid-module feedback questions and ratings

Question Mean
1. I find the lectures useful for learning the material 3.9
2. I find the labs/seminars useful for learning the material 4.2
3. I think the module is well organised and runs smoothly 4.1
4. Overall, I am satisfied with the quality of this module 4.1

Table 5: End-of-module feedback questions and ratings

Question Mean
1. I found the module to be intellectually stimulating 4.4
2. I felt this module challenged me to achieve my best work 4.2
3. I think this module was well organised and ran smoothly 4.5
4. The criteria used during marking was clear in advance 3.9
5. I felt that the marking and assessment was fair 3.8
6. Feedback on my work was timely 4.0
7. I was able to contact staff when I needed to 4.5
8. Any changes in the module or teaching were
communicated effectively 4.5

9. The TAs were effective in supporting labs classes 4.5

4.3 School-Organised Module Feedback
Mid- and end-of-module feedback was collected from all students
on Computing Sciences courses using a formal feedback process,
involving standardised questions (scale 1-5, with 1 being ‘strongly
disagree’ and 5 being ‘strongly agree’), with the opportunity for
additional free-text responses. 9 responses were collected during
mid-module feedback (see Table 4), and 15 responses were collected
during end-of-module feedback (see Table 5).

The module performed well at both stages of the school-led
feedback, and received a positive mean rating across all questions
presented to students. The workshop sessions, where the majority
of the reflective process took place, received notably high scores (a
mean rating of 4.2 out of 5) on mid-module feedback, with students
commenting that they “help to reinforce the concepts taught in the
lectures by providing practical exercises", “ are engaging and help me
to understand how the theory can be applied to practical tasks", and
“were one of the best in my entire bachelors degree".

In end-of-module feedback, the module also scored highly on
aspects including ‘the module was organised and ran smoothly’,
‘I was able to contact staff when I needed to’, and ‘changes in the
module were communicated effectively’, with each of these aspects
receiving a mean rating of 4.5 out of 5.

5 LESSONS LEARNED AND POINTS FOR
IMPROVEMENTS

Through our analysis of feedback data and drawing upon our ex-
periences, we were able to identify four broad categories that our
key aspects of learning could be classified into. These key aspects
of learning could then be revisited and explored to suggest further
improvements that could be made to the approach, which would be
helpful when applying it to other modules. The four categories are
explained in the following subsections with accompanying points
for improvement.

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

ICSE’24, April 14–20, 2024, Lisbon, Portugal Eleanor Leist and Jaejoon Lee

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

5.1 Valid vs. invalid answers – question design
• Lessons learned: As we identified in Section 4.2, some an-

swers from the students were invalid, meaning the answers
did not have appropriate contents to be useful for making
improvements. Occasionally, it was the case that some stu-
dents did not take the reflection task seriously. It was also
noted that some questions were difficult to understand in
a short period of time and this led the to students provid-
ing invalid answers. This is clear evidence that the quality
of the questionnaire really matters for the success of the
reflective approach, though the process is well established
and followed.

• To improve: Clarifying a motivation for each question: as
a simple analogy, the questions should be designed as if
an exam question is set. Like the way we set exam ques-
tions to test learning outcomes, each question for reflection
should also have a clear goal. As a general guideline, we
may consider the following:
– Simulate possible answers: as one member of the teach-

ing team sets questions, another member tries to an-
swer them independently. We noticed that sometimes
the member’s answers were irrelevant or the question
wording made it difficult to understand in order to be
able to answer correctly.

– Consider the usefulness of possible answers: In addi-
tion to considering the expected answers, their useful-
ness for improving the teaching approach must also be
taken into account. For example, an answer to the ques-
tion of ‘What improvements would you make to the
lecture?’ might be ‘want to have more examples’. This
is a perfectly valid and expected answer, but we may
have already included as many examples in the slides
of the lecture and workshop as we are able to cover,
given the limited time available. Therefore, we could
be more specific about the improvements we want to
focus on - for example, ‘Amongst the examples covered
today, which one was the most effective for helping
you understand the core idea of software architecture,
and why?’ would create more useful information to
reflect and improve our teaching approach. We would
be able to discover that the students were in favour of
‘video-based case studies relevant to the topic’ rather
than static slide-only examples.

5.2 Learning vs. fun – adoption of gamification
• Lessons learned: During the workshop sessions, we tried to

include more interesting and interactive tasks rather than
static paper-based discussions. For example, the ball game
activity was the most dynamic session, as the students were
competing with each other in teams and the winning team
would win a prize. We believe we were very successful in
gamifying the teaching content (e.g., for the ball game, the
main learning outcome was ‘achieving product quality im-
provement through rapid iterations of an agile approach’).
However, as discussed in section 4, the feedback data for
game-based workshops had the highest levels of invalid

answers. Conversely, the static and individual activity of
test case development in week 3 gained the most valid feed-
back. This shows the importance of balance between the
learning and the ‘fun’ elements. Through some informal
conversation with the students, many informed us that the
ball game was the most memorable, but did not recall much
about the learning outcomes from this session. Too much
focus on ‘fun’ can detract from the real message of the
activity: the learning outcomes.

• To improve: Based on our experience, we would like to
improve our approach as follows:
– Too much fun might hinder learning attainments, but

it is equally inadvisable to only use activities which
may potentially be perceived by students as being ‘bor-
ing’. As such, we would continue our current teaching
approach with games, but we would also incorporate
a ‘cool down’ period and explicit reflection time for
the students to understand the meaning of the games.

– Injecting the learning outcomes during the game ac-
tivities. Instead of reflecting at the end of the game
session, we may link the intermediate game result (e.g.,
the productivity improvements between the initial and
second games in the ball game case) to the learning
outcomes so that the students would understand the
meaning gradually.

5.3 Short term vs. long term feedback cycle –
adoption of agile approach

• Lessons learned: We initially believed that a short weekly
feedback cycle would be most beneficial, and at the begin-
ning of the module, this appeared to be true. From around
week 5, we noticed a decline in the number of responses
given by the students. We observed that the frequent feed-
back collection might have caused ‘feedback burnout’ and
the students were significantly less interested in providing
feedback than they were in the beginning of the module.

• To improve: After we noticed such fatigue in answering
questions, we revised the type of questions being presented,
and were able to improve the overall response rate (with
the exception of the last week of the module, where obvious
reasons such as low attendance due to preparing the course-
work submission had an effect). We suggest improving the
feedback rate with the following guidelines:
– Weekly reflective questions: should focus on assess-

ment of knowledge and measuring the level of under-
standing of the teaching material.

– Questions presented at 3–4-week intervals: should col-
lect information on how the interaction with the teach-
ing team was perceived and how useful the teaching
team’s reaction was based on the weekly student feed-
back.

– Questions presented at longer term intervals: should
revisit the benefits and drawbacks of teaching meth-
ods and give an opportunity to compare with other
modules.

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Adopting an Agile Approach for Reflective Learning and Teaching ICSE’24, April 14–20, 2024, Lisbon, Portugal

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

5.4 Reflective learning vs. reflective teaching –
distinction between types of reflection

• Lessons learned: The two concepts of learning and teach-
ing are tightly coupled, and the improvement of learning
usually implies the improvement of teaching and vice versa.
However, in some cases, we noticed that good feedback
on one does not necessary mean that the other was also
good. One clear example was the case of gamification - the
students acknowledged and appreciated the new idea of
active teaching, but the resulting level of learning appeared
to be lower when compared to other weeks.

• To improve: We suggest that the teaching team could en-
hance the teaching method and content by treating these
two concepts separately during the design process. We
would keep the following guidelines in mind for future
module design.
– For reflective learning, we should focus more on the

teaching content and how to confirm the content is
actually delivered to the students when we use a cer-
tain teaching method. When we use gamification, for
example, we should more closely match the learning
outcomes to the game activities.

– Reflective teaching should consider a holistic approach
by using available teaching techniques. For instance,
a gamified workshop activity could also include peer
assessment to improve the student learning. Note that
the reflection on teaching should happen at the teach-
ing team side based on student feedback.

These lessons learned and points for improvements will be incor-
porated into part of module revision plan for next academic year.
We conclude our paper in the next section.

6 CONCLUSION
A successful software engineer should be equipped with 1) soft-
ware implementation techniques and 2) problem analysis, optimal
solution selection with rationale, and software project management
skills. In our curriculum, the Software Systems Engineering module
described in this paper has an important role to play, covering the
latter part of the content for students. As such, we have placed
much emphasis on improving the quality of teaching and learning
on this module. This paper has described the most recent improve-
ments made, and how they were perceived by the cohort of students,
based on student feedback provided. For the improvements made,
our main objective was to embed reflective approaches to enhance
student learning as well as teaching, with an agile rapid feedback
cycle.

Our post-analysis shows that the module was well-received by
the students and we were able to collect sufficient evidence from the
student feedback to support this. Most of our approaches resulted
in positive feedback and contributed to improvements in teaching
quality, however, we also identified some key aspects in our method
where therewere still areas for improvement, as discussed in Section
5. Some examples include the making links more explicit between
learning outcomes and workshop activities, and careful design
of feedback questions, along with feedback collection frequency.
We feel that integrating the additional updates into the module for

future years will be invaluable, and we intend to continue collecting
and analysing feedback data in order to make further improvements.

6.1 Future Work
If a similar approach was to be implemented on a larger module,
manually categorising student feedback may become burdensome
for the teaching team. To alleviate this challenge, there may be
potential to implement natural language processing to automate
part of this process. Techniques such as sentiment analysis or topic
modelling could be employed in this context, in order to more easily
build a picture of general consensus amongst the cohort.

7 DATA AVAILABILITY
We are unable to make the data collected as part of this study
available as our approved research ethics application stipulates that
access to the feedback data is restricted exclusively to the principal
investigator and co-applicant.

ACKNOWLEDGMENTS
We extend our gratitude to our students for their active participa-
tion in the lectures and workshops, as well as providing us with
invaluable feedback.

REFERENCES
[1] David Boud, Rosemary Keogh, and David Walker. 2013. Reflection: Turning

experience into learning. Routledge.
[2] Evelyn M Boyd and Ann W Fales. 1983. Reflective learning: Key to learning from

experience. Journal of humanistic psychology 23, 2 (1983), 99–117.
[3] Anne Brockbank and Ian McGill. 2007. Facilitating reflective learning in higher

education. McGraw-Hill Education (UK).
[4] Stephen D Brookfield. 2017. Becoming a critically reflective teacher. John Wiley

& Sons.
[5] Lawrence E Carlson and Jacquelyn F Sullivan. 1999. Hands-on engineering:

learning by doing in the integrated teaching and learning program. International
Journal of Engineering Education 15, 1 (1999), 20–31.

[6] Jordi Colomer, Laura Serra, Dolors Cañabate, and Teresa Serra. 2018. Evaluat-
ing knowledge and assessment-centered reflective-based learning approaches.
Sustainability 10, 9 (2018), 3122.

[7] Marija Cubric. 2013. An agile method for teaching agile in business schools. The
International Journal of Management Education 11, 3 (2013), 119–131.

[8] Manoj Joseph D’Souza and Paul Rodrigues. 2015. Extreme pedagogy: An agile
teaching-learning methodology for engineering education. Indian Journal of
Science and Technology 8, 9 (2015), 828.

[9] Tore Dybå, Neil Maiden, and Robert Glass. 2014. The reflective software engineer:
reflective practice. IEEE software 31, 4 (2014), 32–36.

[10] David Ellis. 2015. Using Padlet to increase student engagement in lectures. In
14th european conference on e-learning: ECEl2015. 195–198.

[11] Marina Harvey, Debra Coulson, and Anne McMaugh. 2016. Towards a theory of
the ecology of reflection: Reflective practice for experiential learning in higher
education. Journal of University Teaching & Learning Practice 13, 2 (2016), 2.

[12] Orit Hazzan. 2002. The reflective practitioner perspective in software engineering
education. Journal of Systems and Software 63, 3 (2002), 161–171.

[13] Masami Kimura. 2018. ICT, a motivating tool: A case study with Padlet. Motiva-
tion, Identity and Autonomy in Foreign Language Education (2018), 122–128.

[14] Gerald Kotonya and Jaejoon Lee. 2014. Teaching reuse-driven software engi-
neering through innovative role playing. In Companion Proceedings of the 36th
International Conference on Software Engineering. 276–282.

[15] Timothy C Krehbiel, Peter A Salzarulo, Michelle L Cosmah, John Forren, Gerald
Gannod, Douglas Havelka, Andrea R Hulshult, and Jeffrey Merhout. 2017. Agile
Manifesto for Teaching and Learning. Journal of Effective Teaching 17, 2 (2017),
90–111.

[16] Jaejoon Lee, Gerald Kotonya, Jon Whittle, and Christopher Bull. 2015. Software
design studio: a practical example. In 2015 IEEE/ACM 37th IEEE International
Conference on Software Engineering, Vol. 2. IEEE, 389–397.

[17] Nahla Helmy Nadeem. 2021. Students’ perceptions about the impact of using
Padlet on class engagement: An exploratory case study. In Research anthology
on developing effective online learning courses. IGI Global, 1919–1939.

9

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

ICSE’24, April 14–20, 2024, Lisbon, Portugal Eleanor Leist and Jaejoon Lee

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

[18] Donald A Schön. 1983. The reflective practicioner: How professionals think in
action. Basic Books New York.

[19] Donald A Schön. 1987. Educating the reflective practitioner: Toward a new design
for teaching and learning in the professions. Jossey-Bass.

[20] Ian Sommerville. 2016. Software Engineering. Pearson Education Limited (2016).

10

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Related Work
	2.2 Motivation

	3 Teaching Method Design
	3.1 Agile Process for Reflective Learning and Teaching
	3.2 Module Structure and Topics Covered

	4 Student Feedback
	4.1 Feedback Questions
	4.2 Weekly Reflective Feedback
	4.3 School-Organised Module Feedback

	5 Lessons Learned and Points for Improvements
	5.1 Valid vs. invalid answers – question design
	5.2 Learning vs. fun – adoption of gamification
	5.3 Short term vs. long term feedback cycle – adoption of agile approach
	5.4 Reflective learning vs. reflective teaching – distinction between types of reflection

	6 Conclusion
	6.1 Future Work

	7 Data Availability
	Acknowledgments
	References

