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ABSTRACT
Software engineering is concerned with how best to create soft-
ware in ways that promote sustainable development and maximise
quality. We have been largely successful at transferring software en-
gineering knowledge into the industry, however, many challenges
in software engineering training remain. A key amongst these is
how best to teach practical engineering approaches along with the
theoretical concepts behind them.

This paper describes our experience of adopting an agile ap-
proach for reflective learning and teaching within the context of
our Software Systems Engineering module, aimed at addressing
challenges identified with previous efforts to promote reflective
practice. Our study attempts to strengthen the use of reflective
learning approaches for our current cohort, as well as introducing
reflective teaching practices, whereby we examine our teaching
approach in order to improve its efficiency and effectiveness. Our
analysis of student response to the module shows that it was very
well-received by the students, and we were able to collect ample
evidence from feedback to support this. Most of our approaches
resulted in positive feedback and contributed to improvements in
teaching quality, however, we also identified some key aspects in
our method that could still benefit from refinement, such as the
need for explicit links between learning outcomes and workshop
activities, and intuitive design of feedback questions, along with
feedback collection frequency. We plan to incorporate these addi-
tional updates into the revision of the module for the next academic
year, and to continue collecting and analysing feedback data for
further enhancement.
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1 INTRODUCTION
Today, software engineering is concerned with how best to create
software in ways that promote sustainable development and max-
imise quality. There is a general consensus that we have been largely
successful at transferring software engineering knowledge into the
industry through various forms of education [14, 20]. However,
many challenges in software engineering training still remain. One
key challenge is how to best teach practical engineering approaches
along with the theoretical concepts behind them.

Lab- and workshop-based approaches, aiming for learning-by-
doing, have been widely adopted for the teaching of both practical
and engineering disciplines [5]. Likewise, software engineering
teaching often incorporates lab and workshop sessions. Whilst
such interactions with students can give them hands-on experience,
understanding their level of learning attainment can be challenging.
One possible approach for assessing students’ achievements of
learning outcomes is reflection [2], where students are asked to
review the work they did in order to re-digest the core ideas (e.g.,
techniques, theories, etc.).

This paper centres around a Software Systems Engineering 1

module where, in recent years, we have incorporated reflective
learning into our teaching practices, albeit in an implicit manner. For
instance, we have routinely revisited the main content of lectures
or labs at the end of the sessions, offering students a reminder
of the learning outcomes. In other instances, we have organised
additional revision sessions for the students to prepare for exams
and/or coursework submissions. These approaches are in keeping
with reflective learning practices, however, the actual reflection
component was mostly left for students to consider by themselves,
without the proper mechanisms to support the reflection happening.
Consequently, the potential benefits of reflective learning were not
fully recognised by the students.

In addition to reflective learning, we also wanted the module
to incorporate reflective teaching, by examining our teaching ap-
proaches in order to improve their efficiency and effectiveness. Prior
to the module changes described in this paper, the reflective teach-
ing process centred around the collection of student feedback at
the end of each semester. However, the time frame of this feedback
implies that practical improvement happens annually, and the long
interval between data collection (i.e., receiving student feedback)
and implementation (i.e., revision of teaching methods) hinders
the accurate adjustment of teaching approaches for improvement

1The current module name at our University is ’Systems Engineering’ to distinguish
it from the Software Engineering module, where the focus is on software system
implementation. In this paper, we refer to the Systems Engineeringmodule as ’Software
Systems Engineering’ to avoid any confusion with hardware centred modules.
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and enhancement. Moreover, due to the varying characteristics of
each cohort on the module (e.g., number of registered students,
student composition with respect to their degree courses (e.g., BSc
Computing Sciences, BSc Business Information Systems, etc.), and
the background knowledge of the students (e.g., whether or not
they have taken some optional modules, and the differences in their
compulsory modules)), makes it difficult to understand whether the
potential improvements would practically translate to the following
academic year.

This paper describes our experience of adopting an agile ap-
proach for reflective learning and teaching within the context of
our Software Systems Engineering module, aimed at addressing the
challenges identified above. Our paper presents results from a one
year study, including individual aspects of the reflective learning
and teaching experience, such as how it fosters reflective practice,
the student response to our methodology, and what the practical
difficulties are for implementing our approach. In this paper we
provide a comprehensive description of how our approach was
designed and put into practice. The key contribution of the paper,
therefore, is a concrete description of our agile reflective learning
and teaching practices, which others, thinking of taking a reflective
approach, can use in designing and developing their own modules.

The rest of this paper is organised as follows: Section 2 reviews
related work and explains the motivations for our teaching ap-
proach. Section 3 describes our approach in detail, including the
module structure and an illustrative process model. In Section 4, we
discuss the student feedback collected during the process, and in
Section 5 we summarise the key lessons learned from this process.
We conclude our paper in Section 6 with future work.

2 BACKGROUND AND MOTIVATION
2.1 Related Work
2.1.1 Reflection. The use of reflection for teaching and learning in
higher education is a well established concept, with many studies
exploring the benefits it can offer. From a student perspective, reflec-
tive learning is “a process that leads to reflection on all sources of
knowledge, including personal sources and experiences which may
contribute to understanding a situation" [6]. It can help students to
“turn experience into learning" [1], by analysing and responding to
an experience, such as a lecture, then processing this thinking to
formulate evaluations and decisions about what has been learnt.
The inclusion of reflection as part of the teaching process allows
a dialogue to form between the teacher and learner, so that the
educator becomes a ‘facilitator of learning’, focusing on how learn-
ers are interacting with the material, rather than how it is being
transmitted [3]. Boud et al. [1] state that such reflective activities
should take place very frequently, even on a daily basis.

Reflection can be an equally useful tool from a teaching perspec-
tive. Schön [18, 19] presents the idea of the ‘Reflective Practitioner’,
whereby education professionals apply ‘reflection-in-action’ tech-
niques, with foundations in design, to improve their own practice.
Many of the decisions educators make regarding their teaching
approach is based on assumptions they have formed, and criti-
cal reflection of these decisions helps educators to check if these
assumptions are valid [4].

More recent studies have applied the idea of reflective practice
within a computer science context, particularly when exploring the
human aspects of software engineering [12]. This study describes
a framework for applying design studio techniques introduced by
Schön [19], in order to encourage tutor-student interaction and
collaboration. In a wider software engineering context, reflection
can be highly useful for informing decision making and improving
current processes [9], and thus is a valuable skill for students of
this discipline to learn.

2.1.2 Agile teaching. Reflection and agile development are closely
linked concepts. A key aspect of the most widely used agile devel-
opment approach, Scrum, is the ‘Sprint Retrospective’, whereby
members of the Scrum team discuss what went well and what could
be improved about the sprint.

Krehbiel et al.[15] proposed the idea of an Agile Manifesto for
Teaching and Learning , with two of the key values being particu-
larly relevant. The first of these values is ‘Student-driven Inquiry
Over Classroom Lecturing’, which promotes student empowerment
through active learning and encourages them to use their own
voices. The second, ‘Continuous Improvement Over the Mainte-
nance of Current Practices’, encourages educators to frequently
evaluate their teaching practices and to adopt a trial and error ap-
proach to exploring new ideas. An example of applying these values
in practice includes the use of retrospectives, offering the students
the opportunity to reflect on previous courses [15].

Other contexts in which agile principles have been applied to
learning and teaching include the use of Scrum techniques when
teaching agile project management in a business school [7], and
the proposal of ‘Extreme Pedagogy’, where four core values based
on Extreme Programming are used to enhance collaboration and
facilitate learning by continuous doing [8].

2.2 Motivation
The undergraduate software engineering related modules are struc-
tured over three years2. The Software Systems Engineering module,
which is the main topic of this paper, builds on the knowledge and
experience gained in Years 1 and 2 of study that introduce students
to:

• Year 1: Programming and testing, software life cyclemodels
• Year 2: Requirements engineering, software design and

design patterns
In Year 3, the focus is on the Software Systems Engineering module.

The Software Systems Engineering module draws together a
wide range of material and considers it in the context of develop-
ing modern large-scale computer systems. Topics such as Systems
Thinking, Outsourcing, Quality, Risk Management, Measurement,
Project Management, Software Process Improvement, Configura-
tion Management, Maintainability, Testing, and Peopleware are cov-
ered in the module. This module is supported by well-documented
case studies and includes guest speakers from the industry.

The teaching method is based on lectures and workshop ses-
sions. The major interaction with students is organised through the
workshop sessions: prior to our changes to the teaching approach,

2In the UK, the undergraduate study for a Bachelor’s degree spans three years and,
therefore, Year 3 is the final year before the student graduates from university.

2
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students were expected to read specified papers each week, before
discussing the content using some key topics or discussion points
shown at the beginning of the workshop session. This approach
has been used for the last 10 years of the module and was generally
well-perceived by students. In particular, the student and teaching
staff interactions during the workshop sessions were appreciated by
the students as evidenced in the end of semester student feedback.

Despite the general positive feedback, there were some chal-
lenges we recognised in terms of using student feedback for im-
proving their learning experience. They are:

• Students’ low motivation for providing end-of-semester
feedback: It does not offer any tangible benefit to the stu-
dents who provided it, and they may have difficulty rec-
ollecting what happened during the early stages of the
semester.

• Low number of responses to school-led feedback: Low mo-
tivation, as highlighted in the previous item, and the low
engagement (attendance) toward the end of semester due to
various reasons (e.g., multiple coursework deadlines, exam
preparation, etc.).

• Standard set of questions without specifics about each mod-
ule: A question, for example, about promptness of course-
work score return for a module with only one piece of
coursework at the end of semester is not relevant.

More importantly, these questions are designed to collect feed-
back on the quality of teaching, not for students to reflect on their
learning outcomes. Such reflection to improve student attainment
should be embedded into the module and customised to fit for each
module’s learning outcomes. Based on these observations, we have
revised the module to include reflective learning practices with a
rapid feedback cycle. The details of our new module design and its
results are described in the following section.

3 TEACHING METHOD DESIGN
Wefirst describe the processmodel of our approach, and the detailed
module structure is also illustrated in this section.

3.1 Agile Process for Reflective Learning and
Teaching

The main idea that we aimed to incorporate into the module design
was reflective practice techniques [1, 2, 16], such as coaching and
critiquing. In addition, the reflection should happen within a short
time-frame so that the students could reinforce their learning when
each topic was covered, rather than revising them at the end of
the module. It is therefore important to define the agile reflective
process to enable such practice in the first place. Figure 1 depicts the
process model we followed throughout the module. The activities
involved are explained below.

The process begins with refining learning outcomes for the up-
coming week. We do have a set of pre-defined general learning
outcomes, but we should refine them for each week based on the
cohort specific information (e.g., cohort size, students’ background,
etc.) and inputs from previous week, if available. For instance, a gen-
eral description of ‘demonstrate knowledge of feature modelling’ is
refined as ‘demonstrate knowledge of feature identification within
a mobile game domain’ to reflect the scenario of that week’s session.

Figure 1: Agile process for reflective learning and teaching

Once we have the refined learning outcomes, questionnaires for
the week are designed which encourage the students to revisit and
reflect on the main topics. In the case of feature identification, for
example, the questions may include 1) ‘Which activity was most
useful for identifying features?’ and 2) ‘Which features were most
difficult to identify?’

Based on the refined learning outcomes, we revise lecture slides
and also adopt reflective practice techniques into the workshop
sessions, whenever applicable, in addition to the reflective ques-
tionnaire practice. After we teach the students through lectures
and workshops, the students are the offered the chance to answer
these questions via Padlet 3. Padlet was chosen as the feedback
mechanism due to it being free to use and relatively easy to inter-
act with. Virtual walls can be created, with a reasonable amount
of freedom in terms of design choices. It offers anonymity, or the
option to respond with a name, and students can access it by simply
scanning a QR code or following a short URL. Padlet has been used
successfully for motivating and engaging students in a number of
other studies [10, 13, 17].

Moreover, using the feedback mechanism, we also collect student
feedback on the teaching methods used that week. For example,
we may include questions about the quality of workshop-based
teaching (e.g., ‘How easy was it to understand the workshop organ-
isation?’, ‘Which workshop topics need be revisited for next week?’,
etc.). We can then analyse the collected feedback to see the level
of student attainment (i.e., quality of students’ answers related to
learning outcomes) and to understand the points for improvement
in our teaching methods.

The findings from the analysis are summarised and presented in
the next lecture or workshop session (see the ‘Presenting the analy-
sis results’ activity in Figure 1.). During this activity, students may
ask further questions and/or provide additional feedback. At the
same time, we also make improvements to our teaching approach
for the next session, and check the effectiveness of this through the
questions of the subsequent session.

Fundamentally, we put considerable thought into getting stu-
dents to reflect on their practice by embedding ‘reflective practice’
[11] into the curriculum. This was done through a variety of means
– peer assessment, constant critique from teaching staff, coaching,
and individual feedback collection. This was challenging because it
required a change of culture in the students, who were not used to
reflecting on their practice in this way.

3www.padlet.com
3
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3.2 Module Structure and Topics Covered
The module runs for one semester over twelve weeks and its exam
is scheduled separately during the university’s summer assessment
period. For each week, there is a two-hour lecture and a one-hour
workshop session. Where possible, we also invite external guest
speakers to share their industry experiences relevant to the topic of
that week with the students. The weekly topics and brief descrip-
tions of lectures, guest talks and workshops are explained in the
following:

• Week 1: Introduction to the Module and Systems Thinking
– Lecture: The module structure, assessments and our

teaching methods are explained. Also, the basic con-
cept of systems thinking is introduced.

– Workshop: Activity in a small group on analysing a
given topic using a Causal Loop Diagram.

– Reflective practice: Questionnaire.
– Outcomes: Students familiarise themselves with ini-

tial concepts for software systems engineering and
understand how to use a Causal Loop Diagram.

• Week 2: Software Process Models and Feature Modeling
– Lecture: Various software process models are intro-

duced along with their pros/cons. As a tool for ini-
tial domain understanding, the feature modelling tech-
nique is also introduced.

– Workshop: Feature modelling exercise within a mobile
game domain.

– Reflective practices: Questionnaire and coaching.
– Outcomes: Students can select a software processmodel

for a project and use a feature model to understand
the project domain.

• Week 3: Project Management and Effort Estimation
– Lecture: Concepts and practical techniques for project

management are introduced with a focus on effort
estimation.

– Workshop: Effort estimation exercise for developing
test cases with a mobile game domain.

– Reflective practices: Questionnaire and peer assess-
ment.

– Outcomes: Students understand the core activities re-
quired for project management and can perform effort
estimation systematically.

• Week 4: Software Quality: Risk Management and Measure-
ments
– Lecture: Concepts and practical techniques for risk

management are introduced with a focus on measure-
ments.

– Guest lecture: ‘Quality in Agile’
– Workshop: Risk analysis exercise for risk planning

with a coursework preparation scenario.
– Reflective practices: Questionnaire, acting on a sce-

nario and coaching.
– Outcomes: Students understand the core activities re-

quired for risk management and can perform risk plan-
ning systematically.

• Week 5: Software Quality: Software Architecture

– Lecture: Concepts and practical techniques for soft-
ware architecture design.

– Workshop: Architecture design and its quality impli-
cation exercise with a paper airplane development
scenario.

– Reflective practices: Questionnaire and gamification.
– Outcomes: Students understand the critical implica-

tion of architecture design to achieve required quality.
• Week 6: Testing

– Lecture: Concepts and practical techniques for testing
with a focus on test case development.

– Guest lecture: ‘Software testing in practice’
– Workshop: Test case development exercise by compar-

ing/contrasting black box/white box approaches.
– Reflective practices: Pair development and peer assess-

ment. General mid-module feedback collected.
– Outcomes: Students understand how to develop test

cases with different approaches.
• Week 7: Software Process Improvement

– Lecture: Concepts and practical techniques for soft-
ware process improvements with an agile process.

– Workshop: A ball-passing game is arranged to simu-
late an agile process improvement approach.

– Reflective practices: Questionnaire, peer assessment
and gamification.

– Outcomes: Students understand the core factors for
process improvement and how to put them into prac-
tice.

• Week 8: Software Maintenance and Configuration Man-
agement
– Lecture: A trend of lengthening software maintenance

phase is explained with case studies and practical tech-
niques for configuration management to cope with the
trend are discussed.

– Guest lecture: ‘Software Maintenance Challenges’.
– Workshop: A system maintenance case study discus-

sion is organised.
– Reflective practices: Questionnaire and self assessment.
– Outcomes: Students understand the significance of

software maintenance and how to plan software main-
tenance.

• Week 9: Software Reuse/Software Product Line Engineer-
ing
– Lecture: Concepts and practical techniques for soft-

ware reuse with the focus on software product line
engineering.

– Guest lecture: ‘Software product line engineering in a
large organisation’.

– Workshop: Software architecture trade-off analysis
workshop for software reuse is organised.

– Reflective practices: Questionnaire, acting on a sce-
nario and gamification.

– Outcomes: Students can understand the importance of
software reuse and the critical role of software archi-
tecture.

• Week 10: Peopleware
4
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– Lecture: Concepts and practical techniques for manag-
ing a team and team dynamics.

– Guest lecture: ‘How companies keep employees happy
and productive’.

– Workshop: Technical writing and verbal feedback on
the abstraction of student coursework are organised.

– Reflective practices: Questionnaire and individual coach-
ing.

– Outcomes: Students can understand how to manage
the team dynamics. Also, they can improve their writ-
ing skills and their coursework through the workshop
session.

• Week 11: Outsourcing and Re-engineering
– Lecture: Concepts and practical techniques for out-

sourcing and re-engineering.
– Workshop: Continued from previous week: technical

writing and verbal feedback on the abstraction of stu-
dent coursework are organised.

– Reflective practices: Questionnaire and individual coach-
ing. General end-of-module feedback collected.

– Outcomes: Students can understand how the outsourc-
ing works and when/how to re-engineering their soft-
ware assets.

• Week 12: Revision lecture for exam preparation
– Lecture: Key lecture contents are revisited in prepara-

tion for the exam.
– Workshop: Continued from previous week: technical

writing and verbal feedback on the abstraction of stu-
dent coursework are organised.

– Reflective practices: Questionnaire and individual coach-
ing. General end-of-module feedback collected.

– Outcomes: Students can understand the important part
of the module contents for the exam.

Assessment: Marks are awarded for three different pieces of
individual assessment. They are: 1) Conference paper (i.e., a short
technical paper on a given topic), worth 40% of the overall mark.
2) End of semester examination during the summer exam period,
worth 50% of the overall mark. 3) Workshop attendance and partic-
ipation, worth 10% of the overall mark.

Workshops for coursework and exam: The workshops in
weeks 10, 11 and 12 were organised to help the students prepare
their coursework and exam. As the coursework submission deadline
of Friday Week 12 approached, we observed that the students were
quite distracted and found it difficult to focus onworkshop activities.
As such, we deliberately designed the workshops to give individual
feedback on their abstracts for the conference paper coursework.
The reflection on the lecture content of these weeks were covered
by the weekly reflective questions.

Registered student composition:We had a total of 80 students
registered in the module for this year. Of these, there were 69
undergraduate students, withmost of these students taking a degree
in Computing Science (50) or Business Information Systems (16),
and a further three students on other undergraduate courses. Also
we had 11 postgraduate master’s students, all enrolled on a Master’s
in Computing Science. As a prerequisite, they all had experience of

software system implementation and were familiar with software
systems.

Number of students in each session: We could host all 80
students for lectures, but we had to divide them into three groups
for workshop sessions, meaning we were running three workshop
sessions after each lecture. We allocated 25-30 students to each
workshop and found this number of students was manageable for
all the workshop activities we had planned.

Teaching team: We had two academics in the teaching team
(i.e., the two authors of this paper) and did not have any teaching
assistants. Both academics were present for all workshop sessions.

In this section, we provided the details of the module structure
and its running context. We focus on the feedback question de-
sign and the analysis results of the collected feedback data in next
section.

4 STUDENT FEEDBACK
The following subsections discuss the types of questions presented
to students using the feedback mechanism, and present the find-
ings from both this feedback, and the school-organised feedback
collected at the middle and end of the module.

4.1 Feedback Questions
A range of questions were presented to students each week, using
the Padlet feedback platform, which allowed the teaching team
to facilitate both reflective learning and reflective teaching. The
feedback format each week generally consisted of two to three
questions requiring written responses or comments, followed by a
number of learning outcomes for the workshop session, with the
option to ‘upvote’ or ‘downvote’ on whether the students felt that
had achieved that learning outcome.

Examples of typical questions presented to the students can be
found in Table 1. As seen in the first column, questions designed to
encourage reflective teaching had a focus on the teaching method
used, such as the effectiveness of examples given to students, and
the usefulness of activities utilised during workshops. It was hoped
that responses given to this type of questionwould help the teaching
team to assess whether appropriate choices had been made when
developing methods for delivering course content.

Questions aimed at fostering a culture of reflective learning
instead focused more on the students’ response to the content and
activities. These questions typically encouraged students to reflect
on, and to critique, their own thoughts and feelings about what
they have gained from the workshops and lectures.

4.2 Weekly Reflective Feedback
Reflective student feedback was collected by the teaching team
using the Padlet platform for each week of teaching on the module.
In weeks 6, 11 and 12 of the module, more general mid- and end-
of-module feedback was collected, alongside the formal feedback
process implemented by the School, and results of these weeks are
therefore not included in the totals.

The questions presented to students prompted responses includ-
ing free-text comments, ratings, and up or down votes. A typical
example of a Padlet wall can be seen in Figure 2. The Padlet settings
were altered such that students had the ability to add comments to,
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Table 1: Examples of questions presented to students via the
feedback platform

Examples of reflective
teaching questions

Examples of reflective
learning questions

What could be improved about
the abstract feedback

sessions?

How confident would you be
applying effort estimation to your
own project? (1-5 scale, 1=not

confident at all, 5=very confident)
Which item/activity did you find
most helpful for understanding
the concept of feature modelling?
(e.g. lecture slides, car example)

Which part of the risk
management exercise was most
challenging? (e.g. identifying,

deciding on a strategy)
How interesting did you find the

guest talk this week? (1-5,
1=not interesting, 5=very

interesting)

Considering providing and
receiving feedback from others,
which of these did you find

most helpful?
What was the most useful element
for understanding ‘Architecture’?

(e.g. Vasa ship, ATAM, BMS,
airplane exercise)

“Structure decides quality". Do
you agree with this statement?

Why?

Did you find the ball game activity
helpful for understanding process
improvement? (1-5, 1=not at all

helpful, 5=very helpful)

ChatGPT: Friend or foe? What
are your thoughts on the use

of AI tools?

Have the sessions today helped
you to feel more confident about
the conference paper assessment?

Which of the 3 stakeholders
(PM, marketer, user) did you
side with after the debate

exercise? Why?

or ‘upvote’ or ‘downvote’ existing posts. Although the reflective
feedback process was presented as an optional task each week,
many students chose to respond and engage with the process, with
a minimum of 10 responses for each week of the module.

The teaching team manually categorised student responses ac-
cording to whether theywere valid and on-topic, with subcategories
of ‘positive invalid’, ‘neutral invalid’ and ‘negative invalid’ for those
that were deemed off-topic for a given question. As an example,
when asked “Which aspects of the conference paper would you like
further help with?", comments would be categorised as follows:

Valid: “Structure, structure and analysis!!"
Positive invalid: “Very fun lecture"
Neutral invalid: “var check"
Negative invalid: “We lost so I’m mad."

Table 2 shows the average number of valid and invalid responses
given by students for each feedback question, and Table 3 provides
a breakdown of the total responses for each week by response type.

It was noted that more invalid comments were received when
students took part in a practical activity, whereas sessions involving
a paper-based activity tended to receive a larger share of valid
comments. This was particularly evident in week 7 (a ball game
activity), which received the highest number of invalid positive
responses, and week 9 (battlefield debate activity), which received
the highest number of invalid neutral responses (see Figure 3). The
results indicated high levels of engagement and enjoyment, but with
potentially reduced focus on the learning outcomes. The decline in
the number of positive comments towards the end of the module
may be attributed to students experiencing a general decrease in

Figure 2: An example of a Padlet wall used to collect student
feedback during a workshop

Figure 3: Total responses categorised by type

mood as they approach course deadlines, amongst other factors. An
overall decline in total responses was observed over the duration of
the module, perhaps indicating diminishing interest in participation
over time (see Figure 4).

Questions requiring a simple answer, such as a rating or choice
between limited options, frequently received higher numbers of
responses than those requiring more thought. Similarly, questions
which were not directly linked to the workshop activity, and in-
stead required students to think more deeply about a software
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Figure 4: Average number of responses per question

Table 2: Average number of valid and invalid responses per
feedback question

Week Task type Average number of
valid responses per question

Average number of
invalid responses per question

1 Paper-based 13 0.5
2 Practical 7.5 6
3 Practical 17 4
4 Paper-based 8 3.67
5 Practical 7 3.5
7 Practical 8.5 7.5
8 Paper-based 8.5 1.5
9 Practical 10.5 4.5
10 Paper-bsed 2.67 0.67

Table 3: Response totals by type

Week Task type Total
responses

Total valid
responses

Total invalid
positive
responses

Total invalid
neutral

responses

Total invalid
negative
responses

1 Paper-based 27 26 0 0 1
2 Practical 27 15 9 3 0
3 Practical 42 34 4 3 1
4 Paper-based 35 24 9 1 1
5 Practical 21 14 3 4 0
7 Practical 32 17 10 2 3
8 Paper-based 20 17 0 3 0
9 Practical 30 21 0 8 0
10 Paper-based 10 8 0 2 0

engineering concept, gained the fewest responses. The response
rate dropped significantly if there were more than two questions
requiring a written answer on any given week.

With regard to the feedback items requiring an ‘upvote’ or ‘down-
vote’ on achievement of a learning outcome, although only one
downvote was received across all learning outcomes listed, very
little meaningful feedback was gathered. There were low levels
of interaction with these items, with no comments being left to
gain any further insight into the thought behind the response be-
ing given. This observation highlights the importance of careful
consideration when choosing the appropriate format for directly
measuring attainment of learning outcomes.

When asked to give their opinion on the use of Padlet as a
reflective feedback mechanism, all responses from the students
indicated that they found the tool to be useful and the feedback
process was beneficial to them.

Table 4: Mid-module feedback questions and ratings

Question Mean
1. I find the lectures useful for learning the material 3.9
2. I find the labs/seminars useful for learning the material 4.2
3. I think the module is well organised and runs smoothly 4.1
4. Overall, I am satisfied with the quality of this module 4.1

Table 5: End-of-module feedback questions and ratings

Question Mean
1. I found the module to be intellectually stimulating 4.4
2. I felt this module challenged me to achieve my best work 4.2
3. I think this module was well organised and ran smoothly 4.5
4. The criteria used during marking was clear in advance 3.9
5. I felt that the marking and assessment was fair 3.8
6. Feedback on my work was timely 4.0
7. I was able to contact staff when I needed to 4.5
8. Any changes in the module or teaching were
communicated effectively 4.5

9. The TAs were effective in supporting labs classes 4.5

4.3 School-Organised Module Feedback
Mid- and end-of-module feedback was collected from all students
on Computing Sciences courses using a formal feedback process,
involving standardised questions (scale 1-5, with 1 being ‘strongly
disagree’ and 5 being ‘strongly agree’), with the opportunity for
additional free-text responses. 9 responses were collected during
mid-module feedback (see Table 4), and 15 responses were collected
during end-of-module feedback (see Table 5).

The module performed well at both stages of the school-led
feedback, and received a positive mean rating across all questions
presented to students. The workshop sessions, where the majority
of the reflective process took place, received notably high scores (a
mean rating of 4.2 out of 5) on mid-module feedback, with students
commenting that they “help to reinforce the concepts taught in the
lectures by providing practical exercises", “ are engaging and help me
to understand how the theory can be applied to practical tasks", and
“were one of the best in my entire bachelors degree".

In end-of-module feedback, the module also scored highly on
aspects including ‘the module was organised and ran smoothly’,
‘I was able to contact staff when I needed to’, and ‘changes in the
module were communicated effectively’, with each of these aspects
receiving a mean rating of 4.5 out of 5.

5 LESSONS LEARNED AND POINTS FOR
IMPROVEMENTS

Through our analysis of feedback data and drawing upon our ex-
periences, we were able to identify four broad categories that our
key aspects of learning could be classified into. These key aspects
of learning could then be revisited and explored to suggest further
improvements that could be made to the approach, which would be
helpful when applying it to other modules. The four categories are
explained in the following subsections with accompanying points
for improvement.
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5.1 Valid vs. invalid answers – question design
• Lessons learned: As we identified in Section 4.2, some an-

swers from the students were invalid, meaning the answers
did not have appropriate contents to be useful for making
improvements. Occasionally, it was the case that some stu-
dents did not take the reflection task seriously. It was also
noted that some questions were difficult to understand in
a short period of time and this led the to students provid-
ing invalid answers. This is clear evidence that the quality
of the questionnaire really matters for the success of the
reflective approach, though the process is well established
and followed.

• To improve: Clarifying a motivation for each question: as
a simple analogy, the questions should be designed as if
an exam question is set. Like the way we set exam ques-
tions to test learning outcomes, each question for reflection
should also have a clear goal. As a general guideline, we
may consider the following:
– Simulate possible answers: as one member of the teach-

ing team sets questions, another member tries to an-
swer them independently. We noticed that sometimes
the member’s answers were irrelevant or the question
wording made it difficult to understand in order to be
able to answer correctly.

– Consider the usefulness of possible answers: In addi-
tion to considering the expected answers, their useful-
ness for improving the teaching approach must also be
taken into account. For example, an answer to the ques-
tion of ‘What improvements would you make to the
lecture?’ might be ‘want to have more examples’. This
is a perfectly valid and expected answer, but we may
have already included as many examples in the slides
of the lecture and workshop as we are able to cover,
given the limited time available. Therefore, we could
be more specific about the improvements we want to
focus on - for example, ‘Amongst the examples covered
today, which one was the most effective for helping
you understand the core idea of software architecture,
and why?’ would create more useful information to
reflect and improve our teaching approach. We would
be able to discover that the students were in favour of
‘video-based case studies relevant to the topic’ rather
than static slide-only examples.

5.2 Learning vs. fun – adoption of gamification
• Lessons learned: During the workshop sessions, we tried to

include more interesting and interactive tasks rather than
static paper-based discussions. For example, the ball game
activity was the most dynamic session, as the students were
competing with each other in teams and the winning team
would win a prize. We believe we were very successful in
gamifying the teaching content (e.g., for the ball game, the
main learning outcome was ‘achieving product quality im-
provement through rapid iterations of an agile approach’).
However, as discussed in section 4, the feedback data for
game-based workshops had the highest levels of invalid

answers. Conversely, the static and individual activity of
test case development in week 3 gained the most valid feed-
back. This shows the importance of balance between the
learning and the ‘fun’ elements. Through some informal
conversation with the students, many informed us that the
ball game was the most memorable, but did not recall much
about the learning outcomes from this session. Too much
focus on ‘fun’ can detract from the real message of the
activity: the learning outcomes.

• To improve: Based on our experience, we would like to
improve our approach as follows:
– Too much fun might hinder learning attainments, but

it is equally inadvisable to only use activities which
may potentially be perceived by students as being ‘bor-
ing’. As such, we would continue our current teaching
approach with games, but we would also incorporate
a ‘cool down’ period and explicit reflection time for
the students to understand the meaning of the games.

– Injecting the learning outcomes during the game ac-
tivities. Instead of reflecting at the end of the game
session, we may link the intermediate game result (e.g.,
the productivity improvements between the initial and
second games in the ball game case) to the learning
outcomes so that the students would understand the
meaning gradually.

5.3 Short term vs. long term feedback cycle –
adoption of agile approach

• Lessons learned: We initially believed that a short weekly
feedback cycle would be most beneficial, and at the begin-
ning of the module, this appeared to be true. From around
week 5, we noticed a decline in the number of responses
given by the students. We observed that the frequent feed-
back collection might have caused ‘feedback burnout’ and
the students were significantly less interested in providing
feedback than they were in the beginning of the module.

• To improve: After we noticed such fatigue in answering
questions, we revised the type of questions being presented,
and were able to improve the overall response rate (with
the exception of the last week of the module, where obvious
reasons such as low attendance due to preparing the course-
work submission had an effect). We suggest improving the
feedback rate with the following guidelines:
– Weekly reflective questions: should focus on assess-

ment of knowledge and measuring the level of under-
standing of the teaching material.

– Questions presented at 3–4-week intervals: should col-
lect information on how the interaction with the teach-
ing team was perceived and how useful the teaching
team’s reaction was based on the weekly student feed-
back.

– Questions presented at longer term intervals: should
revisit the benefits and drawbacks of teaching meth-
ods and give an opportunity to compare with other
modules.
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5.4 Reflective learning vs. reflective teaching –
distinction between types of reflection

• Lessons learned: The two concepts of learning and teach-
ing are tightly coupled, and the improvement of learning
usually implies the improvement of teaching and vice versa.
However, in some cases, we noticed that good feedback
on one does not necessary mean that the other was also
good. One clear example was the case of gamification - the
students acknowledged and appreciated the new idea of
active teaching, but the resulting level of learning appeared
to be lower when compared to other weeks.

• To improve: We suggest that the teaching team could en-
hance the teaching method and content by treating these
two concepts separately during the design process. We
would keep the following guidelines in mind for future
module design.
– For reflective learning, we should focus more on the

teaching content and how to confirm the content is
actually delivered to the students when we use a cer-
tain teaching method. When we use gamification, for
example, we should more closely match the learning
outcomes to the game activities.

– Reflective teaching should consider a holistic approach
by using available teaching techniques. For instance,
a gamified workshop activity could also include peer
assessment to improve the student learning. Note that
the reflection on teaching should happen at the teach-
ing team side based on student feedback.

These lessons learned and points for improvements will be incor-
porated into part of module revision plan for next academic year.
We conclude our paper in the next section.

6 CONCLUSION
A successful software engineer should be equipped with 1) soft-
ware implementation techniques and 2) problem analysis, optimal
solution selection with rationale, and software project management
skills. In our curriculum, the Software Systems Engineering module
described in this paper has an important role to play, covering the
latter part of the content for students. As such, we have placed
much emphasis on improving the quality of teaching and learning
on this module. This paper has described the most recent improve-
ments made, and how they were perceived by the cohort of students,
based on student feedback provided. For the improvements made,
our main objective was to embed reflective approaches to enhance
student learning as well as teaching, with an agile rapid feedback
cycle.

Our post-analysis shows that the module was well-received by
the students and we were able to collect sufficient evidence from the
student feedback to support this. Most of our approaches resulted
in positive feedback and contributed to improvements in teaching
quality, however, we also identified some key aspects in our method
where therewere still areas for improvement, as discussed in Section
5. Some examples include the making links more explicit between
learning outcomes and workshop activities, and careful design
of feedback questions, along with feedback collection frequency.
We feel that integrating the additional updates into the module for

future years will be invaluable, and we intend to continue collecting
and analysing feedback data in order to make further improvements.

6.1 Future Work
If a similar approach was to be implemented on a larger module,
manually categorising student feedback may become burdensome
for the teaching team. To alleviate this challenge, there may be
potential to implement natural language processing to automate
part of this process. Techniques such as sentiment analysis or topic
modelling could be employed in this context, in order to more easily
build a picture of general consensus amongst the cohort.

7 DATA AVAILABILITY
We are unable to make the data collected as part of this study
available as our approved research ethics application stipulates that
access to the feedback data is restricted exclusively to the principal
investigator and co-applicant.
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