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Abstract

The research on measuring technological innovation quality has evolved with

our understanding of the origin of novelty. Patents have been widely used in

such studies because they are a form of copyright-protected outcome of inven-

tions deemed to be valuable. The quality of technological innovation can be

measured in multiple dimensions. In this paper, we make a methodological con-

tribution to the literature on ex-ante technological novelty and propose two new
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indices based on a network approach: the Inverse Recombination Intensity In-

dex (IRII) to capture the extent to which an invention is the outcome of a novel

combination of pre-existing technological components; and the New Technology

Ratio (NTR) to measure the share of new knowledge elements in the invention.

Through an in-depth empirical study of patents filed in the Pharmaceuticals and

Computer Technology sectors, we show that our proposed indices are correlated

with some of the conventional patent quality indicators and go beyond that to

reveal previously unnoticed features of the inventions process, of which some are

sector-specific. Moreover, through our regression analysis, we demonstrate that

IRII and NTR are important predictors of a patents’ potential impact on future

inventions, which confirms the ex-ante nature of our indices. In the regression

analysis we also include sector-country-specific R&D input variables as controls

to test the robustness of our results. Our analysis suggests that the distinct

characteristics of each sector affect how the quality of innovation is related to

the ex-ante measures of technological novelty. We argue, therefore, that future

analysis of the link between ex-ante novelty and ex-post quality of innovation

needs to take into consideration the recombinant content of the invention and

account for sectoral characteristics.

1 Introduction

Innovation is a widely acknowledged driving force for economic growth and

advances of the society. Researchers have been studying innovation in order to

gain insights into the status of technology development and its relationships with

socio-economic changes. In quantitative assessment of technological novelty
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and values, patent information has been a widely used data source because

patents are directly associated with inventions - the outcome of scientific and

technological research and development (R&D) activities. As we entered the

digital age, patent data has become particularly popular with the availability of

electronic patent database through the Internet, and was embraced by a series

of important works by the NBER (National Bureau of Economic Research)

researchers [Griliches et al., 1986, Fleming, 2001, Jaffe and Trajtenberg, 2002,

Hall et al., 2005]. Most literature uses relatively simple counts statistics, such

as the number of patent publications or citations. Some took a step further to

develop composite indices based on such basic counts, like the patent quality

index by Squicciarini et al. [2013]. However, as Schumpter noted in his original

German book in 1911, innovation goes beyond invention - it is more about the

scientific or technological novelty embedded in the inventions combined with

the application Schumpeter [2017]. Simple counts are insufficient to establish

a sound understanding of the degree or nature of novelty. For example, the

number of patent applications does not capture the quality in terms of their

economic values and impact on the following technological advances. It is also

ill-equipped to reveal whether the inventions are driven by similar adaptations of

the existing technologies or more ground-breaking methods. Other researchers

have also questioned the reliability of conventional patent measures Griliches

[1989], J. Acs and Audretsch [1989], Griliches [1998], Shepherd and Shepherd

[2003]. Researchers have therefore proceeded to a search of other measures to

assess the level of technology development or innovative activities.

One type of innovation that has particularly attracted researchers’ interest

is disruptive innovation; often associated with other descriptions like radical,
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unconventional, ground-breaking. These types of innovations have the poten-

tial to “disrupt” the existing industry and market by destructing the established

products or operations while replacing with new ones, or changing the course

of current technology development rather significantly. Such changes typically

happen quickly in a powerful way, rather than in a gradual progress, and have

a fundamental impact within and sometimes out of the original sector. Indeed,

among the earliest works, Schumpeter described “Creative Destruction” as a

process that “incessantly revolutionizes the economic structure from within,

incessantly destroying the old ones, and incessantly creating a new one” Schum-

peter [1942]. These ideas were later summarised as the “Innovation Trilogy”:

invention, innovation and diffusion Kaya and Joseph [2015]. Bower and Chris-

tensen [1995] influenced the direction of further research into disruptive tech-

nologies by establishing the idea that they are distinguished by a difference in

performance attributes that rapidly improve to penetrate established markets

rather than by technological complexity or novelty. This view of disruptive in-

novation served as a theoretical foundation for subsequent researchers to take

a posterior perspective and identify and discuss disruptive technologies exclu-

sively based on their commercial applications. While we agree with Bower and

Christensen’s view that technological novelty and complexity do not necessarily

contribute to disruptiveness, we would argue that it is essential to pursue an

ex-ante perspective and study disruptiveness at the invention stage. An ex-ante

assessment of the degree of technological disruptiveness has the potential to

provide an early indication of the potential of a patent to induce technologi-

cal change. It also allows to normalize the measure of novelty at the time of

invention irrespective of the geographical origin of the invention and does not
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suffer from biases linked to varying by geography socioeconomic factors that im-

pact on diffusion and adoption. Finally, the R&D phase of innovation is where

government expenditure on innovation is concentrated and where national-level

policies have most impact. With our work, we therefore focus attention on the

technological novelty from an ex-ante perspective.

In this respect, we contribute to the line of research that aims to develop

measures of the disruptive technological content of an invention by linking it to

the degree to which an invention is the result of recombination of technological

components using international patent data [Fleming, 2001, Arts and Veugelers,

2015, Kaplan and Vakili, 2015, Verhoeven et al., 2016, Silvestri et al., 2018]. By

its very nature a patented invention presents a novel technology, the challenge

authors in this branch of the literature aim to address is to quantify the degree

of technological novelty on which it is built. To date, there is no recognised

single best measure. Authors put forward statistical tools that vary in their

versatility, computational complexity, and the empirical counterparts for foun-

dational concepts. Verhoeven et al. [2016] offer a comprehensive overview of

these measures and illustrate this point. For example, the empirical counter-

part of a technological component in the development of an invention has being

derived from a textual analysis of the abstract on a patent application [Kaplan

and Vakili, 2015]; the technological fields of prior inventions cited on the patent’s

application, e.g. Dahlin and Behrens [2005]; or the author-reported attributes

of the patent under the established technological classification system [Fleming,

2001, Strumsky and Lobo, 2015, Arts and Veugelers, 2015]. Arguably, the first

two methods are more susceptible to biases: the use of language and choice of

algorithm may be culture and norm dependent while the choice of references
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may be strategic as this information is used by patenting agency to evaluate

the originality of the patent application. We, therefore, adopt the approach of

using the author-reported technological fields in the description of the patent

on its application. The additional advantages of using this information are that

it is based on a globally adopted classification system; it is directly linked to

the technological content of the invention; and, in accordance with gaining full

protection, applicants have the incentive to provide a comprehensive description

of their invention.

Even when authors use the same empirical counterpart for a technological

input, they may employ it differently in the development of their index of ex-

ante novelty with methods varying from simple counts of each component in

isolation [Rosenkorf and Nerkar, 2001], distance between technological fields in a

classification system of pairs of components [Trajtenberg et al., 1997], or tracking

the changes in combinations of components usage [Fleming, 2001]. In our view,

focusing on a single or a pair of components at a time, carries the potential

to underestimates the complex way in which an invention combines multiple

technological components of possible a range of technological fields. In the

example of the “Oncomouse” patent application used by Verhoeven et al. [2016],

there are eight technological components. If a researcher restricts attention to

only pairwise combinations, then they will be looking at 56 possible pairwise

combinations of technological components rather than 28 − 1 = 255 possible

subsets of any size of the same eight components. On the other hand, judging

the ex-ante novelty based on the uniqueness of the entire list, may over-state

the recombinant content of a patent if overlapping subsets of the complete list

of technological components have been frequently used in previous cohorts of
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patents.

Moreover, authors also differ in the reference group against which novel

use of technological components are identified with many of them referencing

the whole historic records [Fleming, 2001, Arts and Veugelers, 2015, Verhoeven

et al., 2016] and a handful using a shorter window, e.g. previous give years

Silvestri et al. [2018].

What sets our measures apart is that they are grounded in time-indexed

comprehensive maps of linkages between technological components that capture

the complex multilateral combinations of these components that are used in the

development of patents of a specific cohort. Rather than tracing if a combina-

tion of technological components has been utilised or not in the past, we develop

a statistical measure of the likelihood of the combination combining informa-

tion on pairwise relations between components and the formation of clusters

of components based on the frequency of their use on patent applications. We

evaluate the degree of technological recombination based on the whole network

of connections rather than the relatedness of two nodes. We would argue that

our measures offer a more comprehensive network perspective on the process of

re-combination. Furthermore, we utilise a finer level of the classification of tech-

nological components and can therefore measure the degrees of recombination

and use of novel components with greater accuracy.

In addition, Verhoeven et al. [2016] measure ex-ante novelty of a patent by

the use of new components that previously have not been used in a technological

field. In the same vein, we put forward two distinct measures of the ex-ante

novelty of a patent: the Inverse Recombination Intensity Index (IRII) and the
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New Technology Ratio (NTR).

We illustrate the value of using our two ex-ante technological novelty mea-

sures to look into the process of disruptive innovation by using them to study in-

ventions in two established technological sectors: pharmaceuticals and computer

technology over a period of about 37 years. We choose these sectors because, for

one, they represent a significant contribution to the volume of patenting activi-

ties by investors from a wide range of countries around the globe WIPO [2022].

Our choice of sectors is also because of their distinct processes of innovation.

Saha and Bhattacharya [2011], alongside others, point to the extraordinary large

share of sales of pharmaceuticals, that the R&D expenditure constitutes. These

authors add that the competitive edge in the pharmaceutical sector is predicated

on the advancement of scientific knowledge rather than technological know-how.

Our ex-ante technological novelty measures, indeed, capture systematic differ-

ences between the two sectors that are consistent with these insights from the

literature. We observe high rates of recombination of technological components

among patents attributed to the pharmaceutical sector while patents attributed

to the computer technologies contain a higher ratio of technological components

that are new among patents in this sector.

We explore these differences between the two sectors through studying the

correlations between the ex-ante and ex-post indicators of technological novelty

among the patents. A strong link between the ex-ante and ex-post measures is

important to make a successful case in favour of the use of the ex-ante measures

as an early indicator of the performance potential of a patent. We benchmark

our IRII and NTR against several measures of patent quality and technologi-
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cal value described in Squicciarini et al. [Squicciarini et al., 2013] and widely

used in studies on patenting and innovation. When correlated to their ex-ante

indicators - patent scope, family size, backward citations, and originality - our

proposed measures exhibit low to moderate degrees of linear relation. More

significant is the observation that our two measures capture differences in the

relation between the ex-ante and ex-post measures of patent novelty between

the pharmaceuticals and computer technology sector that remain undetected

when using only the established measures of ex-ante indicators.

During this benchmark endeavor, the ex-post indicators are considered mea-

sures of the outcome of invention. Meanwhile, there is an equally understand-

able interest on the input end. [Evenson, 1993, Kim and Marschke, 2004, Singh,

2008, Arts and Veugelers, 2015, Briggs, 2015, Fink et al., 2016], argued that

the intensity and performance of innovation dependent on the regional invest-

ment and resources on R&D, such as the availability of funds, specialist skill

resources and the shares of public and private input, as these are closely related

to the economic status and policies of the region where the R&D activities occur.

Therefore, we proceed to a country-sector analysis to look into the relationship

between IRII and NTR and the output of innovation, considering national and

sectoral R&D inputs.

In the following sections, we will first present an overview of the existing

research on ex-ante and ex-post measures of disruptive innovation using patent

data. We next describe the methodology we use to construct the network, iden-

tify technology cohorts clusters, and the development of our proposed indices:

IRII and NTR. We will then present the descriptive statistics of these indices
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through empirical analysis, by using patent data from the pharmaceuticals and

the computer technology sectors. Lastly, through correlation study and regres-

sion estimation models, we demonstrate results on the relationship between

our proposed metrics with the conventional patent indicators at patent level

with and without control for country-sector-specific investment and resources

in R&D.

2 Literature Review

In the recent literature, researchers use a variety of metrics to capture disruptive

innovation through proposed empirical counterparts to novelty, unconventional-

ity, and commercialization potential. There is not yet a consensus on a “best”

measure as the proposed indicators capture different stages of the innovation

cycle, depend on data availability, or a specific to sector or a selected group of

inventions.

Among the indicators that focus on the first stage of innovation, that in-

volves production of new knowledge and inventions, the most widely used is the

originality index which was developed by Trajtenberg et al. [Trajtenberg et al.,

1997] as a measure of the extent of the diversity of the knowledge sources that

form the foundation of a patent by being cited by it. The concept behind is

that absorbing knowledge from a wide range of technological fields is presum-

ably a contributing factor to original innovation. The index has been used by

researchers in studying the patenting agencies’ decisions and economic perfor-

mance of invention enterprises[Gompers et al., 2005, Harhoff and Wagner, 2009,
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Stahl, 2010]. It is worth contrasting our IRII and the originality index as both

measures use the degree of concentration of “same group” technological com-

ponents inferred from a patent application. The main difference is that while

the originality index refers to a ‘group’ as the classification codes belonging

to the same subclass among the set of patents cited by the reference one, in

the IRII, the ‘group’ is defined by all subclasses that belong to the same cluster

based on the frequency of their co-assignment to a patent in the reference cohort

of patent applications. Thus, our index is designed to measure the degree of

novelty in the combination of technological components compared to the mere

breadth of usage, which is why our approach is better tailored to capture the

destructive nature of innovation. We measure the novelty vis-à-vis the whole

cohort of patent applications, while the breadth is derived from the backward

citations on the specific patent application.

Other measures, similar to originality, used in the literature include patent

scope, backward citations, and family size. Compared to originality, these are

simple counts derived directly from information listed on patent filing docu-

ments. Patent scope is defined as the number of distinct subclasses that identify

the technologies included in a patent. The intuition behind this measure is that

a greater number of subclasses is indicative of a wider range of technological

components being used and therefore more complex invention or far-reaching

impact. The indicator has been used in the literature as a measure for potential

of a patent to generate higher technological value as in fundamental invention or

economic value through a market return, for example, [Lerner, 1994, Régibeau

and Rockett, 2010].
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Backward citations is the number of prior art (such as other patents or

scientific work) cited by a patent. Backward citations are used by the patent-

ing agency to assess the technological novelty of an invention. It should be

noted, however, that agencies differ in disclosure rules and therefore compari-

son across of this variable across patent applications filed in different countries

maybe problematic. In the literature[Criscuolo and Verspagen, 2008] backward

citations are used to study knowledge transfer and the dynamics of invention

within a firm or sector. While some authors find evidence that a large number

of backward citations is negatively related to the degree of technological novelty

of a patent [Criscuolo and Verspagen, 2008, Lanjouw and Schankerman, 2001,

2004], others find it being positively correlated to the invention’s market value

[Harhoff et al., 2003].

Lastly, family size is the number of patent authorities located in different

jurisdictions that a same invention has been filed to for intellectural property

protection. This indicator is linked to the rights of patent applicants to seek

wider geographical protection for their invention via related filings to multiple

patenting offices within 12 months of the first priority filing. In the literature, a

larger patent family size is found to be positively correlated with the invention’s

potential to generate economic value via wider geographical market capture.

[Lanjouw et al., 1998, Harhoff et al., 2003].

Two sets of authors, as we discuss above, Verhoeven et al. [2016] and Sil-

vestri et al. [2018] develop ex-ante technological novelty indicators that are

specifically designed to capture the disruptive nature of innovation. We re-call

the earlier discussion from the Introduction about the distinct features of our
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methodology that aims at higher accuracy and more comprehensive approach

to measuring re-combination and novel use of technological components. Ver-

hoeven et al. [2016] demonstrate the validity of their measures by finding a

strong positive correlation with the likelihood that a patent is in a group of

award-winning patents, on the one hand, and a strong negative correlation with

the likelihood that a patent is refused by the European Patent Office, on the

other. Silvestri et al. [2018], instead, offer a time-series analysis of the cor-

relation between business-cycle fluctuations and fluctuations in the degree of

unconventionality and do not conduct any analysis of the link to between their

ex-ante measure of technological novelty and any ex-post indicator.

There are several established ex-post indicators introduced in Squicciarini

et al. [2013]: forward citations, generality, and breakthrough. Forward citations,

similar to backward citations, is the number of citations made by subsequent

patent applications that a patent receives within five to seven years after its

publication date. Intuitively, it is thought to reflect the foundational value of

a patent in developing new technologies. Several authors have indeed found

a positive correlation between the number forward citations and the economic

value of a patent [Trajtenberg, 1990, Hall et al., 2005, Harhoff et al., 2003].

[Lanjouw and Schankerman, 2004].

Generality is the ex-post counter part of the ex-ante indicator, originality,

by using forward citations to capture the scope and degree of general-purpose

technology that a patent enables. In the literature, this index has been utilised

to understand the commercialization potential of inventions and how innova-

tion meets the market [Henderson et al., 1998, Layne-Farrar and Lerner, 2011,

13



Galasso, 2011].

Breakthrough is also derived from the number of forward citations a pub-

lished patent received: it is an indicator variable which equals 1 for patents in

the the top 1% by the number of forward citations among those filed in the same

year; and 0 otherwise. It was first put forward by Ahuja and Morris Lampert

[2001] to identify inventions that have a significant impact on future technologi-

cal development. In their seminal work Ahuja and Lampert found that familiar-

ity, maturity and propinquity are three “traps” that could hinder the creation

of a breakthrough invention in firm organizations [Ahuja and Morris Lampert,

2001]. More recently, Srivastava and Gnyawali [2011] found that the quality

and diversity of a firm’s portfolio of technological resources have a positive im-

pact on the probability of a breakthrough innovation. Kerr [2010], Popp et al.

[2013] provided evidence that the occurrence of breakthrough innovations could

stimulate subsequently regional and sectoral innovation activities.

Other authors, Arts and Veugelers [2015] and Briggs [2015] modify the

standard definition of a breakthrough innovation and introduces an endogenous

threshold of citations that depends on the observed distribution among the

patents in each cohort to allow for a time-varying sharing of patents in each

cohort to be breakthrough [Arts and Veugelers, 2015, Briggs, 2015]. Briggs

[2015] further motivate this methodology by referring to sectoral differences in

the volume of citations and show that co-ownership of a patent is an important

factor in determining the breakthrough potential of the patent as defined in

their work. Given its well-recognized indicative significance as a ex-post patent

quality indicator, breakthrough is also used in our study to validate the power of
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our ex-ante novelty measures, IRII and NTR, in predicting future technological

novelty impact.

3 Measures of Ex-ante Technological Novelty

To measure the extent of technological novelty embedded in a single patent,

we must first establish what is the existing state of technological knowledge

in the sector to which the patent belongs. In this respect, we build on our

previous work, [Gao and Lazarova, 2022], where as part of a framework for

quantifying the technological evolution at sectoral level, we offer a methodol-

ogy for mapping the frontier of current technological knowledge as captured by

a cohort of patent applications. In our work, we represent the frontier as a

network of technological components, their interconnectedness and the strength

of pairwise connections. Within this complex diagrammatic representation of

the state of technological knowledge, we proceed to identify patterns of combi-

nations of technological components usage which occur with a high frequency.

Equipped with this information, we are able to gauge the degree of novelty in the

combination of technological components listed on a new patent application as

compared to those present in a cohort of patent application from a most recent

reference period. In addition, we can identify among the patent characteristics

any technological components which have not been listed in an application in

the reference cohort.

In summary, our methodology consists of two stages: mapping of technolog-

ical knowledge use and identifying high frequency patterns of usage in a sector;
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and, measuring the ex-ante technological novelty of a patent in the sector. The

first stage uses information from the whole cohort of patent applications. The

second stage quantifies two distinct aspects of technological novelty: the inten-

sity of novel combinations in the use of established technological components in

a patent (IRII) and the proportion of technological components in the patent

application that are new to the sector (NTR). As we have discussed in detail the

network-level analysis that constitutes stage one in our previous work[Gao and

Lazarova, 2022], we only provide an overview of these parts of the methodology

below. The novel part of this methodology is in the patent level measures of

ex-ante technological novelty that follows from that.

3.1 Network Construction and Clusters Identification

We follow the network construction method developed in [Gao and Lazarova,

2022] to build a map of the frontier of technological knowledge in a sector in

a given time period. This exercise uses information from the set of all patent

applications filed in the cohort linked to a specific sector. In the description of

an invention, a patent application contains a list of technological components on

which the invention is built. These technological components are well-defined

categories in technological classification systems published by patenting author-

ities. Here we adopt the International Patent Classification (IPC) scheme, a

hierarchic system assigning technical fields as a patent attribute developed and

released by the World Intellectual Property Organization (WIPO)1. We employ

two tiers of the IPC scheme: the first tier is the 4-digit level IPC codes, known as

1The IPC scheme can be accessed at https://www.wipo.int/classifications/ipc/en/
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subclasses; and the 2nd-tier is the 8 to 11 digits IPC codes labeled as subgroups.

In the network representation of the technology encoded in the patents, we use

the subclasses listed on all patent applications in a cohort as the network nodes.

We define a link between two nodes to exist in the network if the two subclasses

corresponding to these nodes are co-listed on at least one patent application in

the cohort. The weight of the link between the two nodes is calculated by using

the 2nd-tier IPC codes at the subgroup level and aggregating this information

across the whole cohort. In particular, We take the strength of the technologi-

cal complementarity between any two subclasses in the development of a patent

to be proportional to the number of pairwise combinations of subgroups listed

under each subclass. For example, consider two patents, A and B, that both

list subclassess 1 and 2 as their technological attributes. In patent A, subclass 1

lists one subgroup and in patent B subclass 1 lists three subgroups. Let subclass

2 list two subgroups as attributed to both patents A and B. Then, the strength

of the complementarity between subclasses 1 and 2 is calculated to be two in

the development of patent A (there are only two distinct pairs of subgroups

between the two subclasses) and six in patent B (there are 6 distinct pairs). If

two subclasses are not co-listed on a given patent, then their technological com-

plementarity in the development of that patent is zero. So to derive a measure

of the strength of the technological link between any two subclasses present in a

cohort of patents, we sum up the number of pairwise combinations of subgroups

listed under these two subclassess for all patent applications in the cohort.2

2We acknowledge that the IPC scheme is imbalanced in the sense the number of subgroups
listed under each subclass varies. This implies that subclasses with a smaller number of sub-
groups, theoretically, can form fewer pairwise links. However, empirically, we do not observe
that subclasses with a larger number of subgroups list more subgroups on a patent.Can we
add some data to support this statement? Since our method tracks only the number of
subgroups and not the variety of subgroups, we think there is no empirical bias that underesti-
mates the degree of complementarity between subclasses with a smaller number of subgroups
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The resulting weighted network provides a comprehensive snapshot of the

interconnectedness between the subclasses used in the development of the cohort

of inventions. We will use that as a benchmark against which we aim to measure

the technological novelty of an invention that occurs in the future period. Our

task is to measure how close the technology use in a new patent is to those which

were used in the development of all the patents filed in the reference window.

The next step towards answering this question, given the complexity of the

information on technology use captured by the network, is to identify groupings

of technological components based on the high frequency of their co-usage in

the cohort.

As in [Gao and Lazarova, 2022], we use Carlo Piccardi’s lumped Markov

chains network community identification method [Piccardi, 2011] to identify nat-

urally formed clusters in the network. When the sample data size is sufficiently

large, the clustering method results in a distinguishable network partition with

the definition of each cluster being directly related to the strength of links be-

tween any two nodes within the cluster. As technologies evolve in every new

cohort of patent applications, the composition of clusters, their size, and con-

nectedness strength vary. From a pure probability point of view, where the

reference network is partitioned into more clusters, a new patent application is

more likely to utilize a combination of subclasses that spans different clusters

compared to a reference network partition with fewer clusters. To configure the

networks of consecutive cohorts in a temporally comparable way, we choose to

fix the number of clusters in the partition of each network.3

in the IPC scheme.
3In Gao and Lazarova [2022] we examine different values for a fixed number clusters as

part of a robustness check in the construction of the technological frontier.
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The resulting output from the stage of the methodology is a partition of

the set of subclasses listed on all patent applications in a given cohort based on

the frequency and strength of their co-listings based on the cluster identification

method employed. We capture this output in the following notation, which we

will subsequently use in the formal definition of our patent-level technological

novelty indices. We will denote a generic patent as k and the set of all patents

filed in a period t as Nt. We will denote the set of subclasses listed on a

patent application k as Sk and the collection of all subclasses listed on all patent

applications filed in a reference window of size s time periods, i.e., from year

t − s + 1 up to year t as Cs,t = ∪j∈Nt−s+1∪...∪t
Sj . We denote the resulting

partition of the set Cs,t into n clusters as Ps,t = {Cs,t(1), . . . , Cs,t(n)}.

3.2 Inverse Recombination Intensity Index

Our Inverse Recombination Intensity Index (IRII) characterises a patent appli-

cation by the degree to which the grouping of technological components on which

it is based presents a novel way of combining these IPC subclasses compared to

their mode of usage in the preceding cohort of patent applications in the same

sector. The index is designed to measure the degree of a radical ex-ante tech-

nological innovation carried by an individual invention which is benchmarked

against the sector-wide practice. We first introduce some notation that we will

use in the formal definition of the index.

For a patent k, we recall that the collection of subclasses listed on the k’s

application is debited as Sk. Then, the IRII of a patent k filed in a period t
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vis-à-vis the reference period t− s, . . . , t− 1 is formally defined as:

IRIIk =

n∑
j=1

(
| Cs,t−1(j) ∩ Sk |

| Sk |

)2

(1)

where Cs,t−1(j) is the jth cluster of the partition Ps,t−1 of subclasses listed

on patent applications that were filed in the period from year t − s to t − 1

in the same sector. First, we note that there is at least one subclass which is

listed in common on k application and the application of patents filed in the

reference window since these patents below to the same technology sector. It

follows that the lowest value that IRII can attain is bounded by 1
|Sk| . This is

obtained when all subclasses listed on k’s application but the sector-definition

one are not elements of the set Cs,t−1. The maximum value that the index can

obtain, instead, is 1. This is when all the subclasses listed on k’s applications

belong to the same cluster in the reference window, i.e. there has been no radical

recombination in the use of technological components used in the development

of k compared to those combination used in the development of the cohort of

patents in the reference window.

3.3 New Technology Ratio

Our New Technology Ratio (NTR) characterises a patent application by the

degree to which it employs technological components that have not been listed

on any patent applications in the previous cohort in the sector. Patent data

analysts have used IPC classifications at different hierarchic levels for their pur-

poses. Since our aim is to detect any new technological elements compared

to the previous cohort, we define the ratio at the subgroup level of the IPC
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hierarchy as this is a more refined measure with a higher degree of variability

compared to a similar measure based on subclasses. Like Verhoeven et al. [2016]

who used the 7-digit subgroups to identify novelty in technological knowledge

origins, we take a further step from there to measure the intensity of such nov-

elty. Given a patent k, we denote the set of subgroups listed on k’s application

as Gk. We denote the set of all subgroups listed on a patent application in a

given sector in the period s−t+1 to t as Γs,t = ∪j∈Nt−s+1∪...∪t
Gj . By exclusion,

the subset of subgroups listed on k’s application filed in period t which had not

been referenced on a patent application in the k’s sector during the reference

window is given by Gk \ Γs,t−1.

NTRk =
| {Gk \ Γs,t−1} |

| Gk |
. (2)

Notice that NTR is higher as a patent uses new subgroups within the hierarchy

of the technological classes on which the sector is defined. It may also increase if

new subgroups under the hierarchical classification of other sectors are employed

in the development of the patent. The maximum value of NTR is 1; this is when

none of the subgroups listed on a patent application are used by any patent in

this sector in the reference window. The minimum value, conversely, is 0; this is

when all the subgroups listed on a patent application are in the set of subgroups

from the reference window.
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4 Data and Empirical Statistics

4.1 Patent-level Data

To illustrate the use of our novel measures, we obtain data on patent applications

from the REGPAT database [Maraut et al., 2008] in the COMP and PHARM

sectors. Measures of patent quality are taken from the OECD’s Patent Quality

Indicators database [Squicciarini et al., 2013]. We use the February 2022 release

by OECD for both datasets. Based on the information in the REGPAT dataset,

we can identify and select all patent applications that can be attributed to each

of the two sectors. As per established practice in technological field studies,

[Fink et al., 2016], patents are classified into these sectors in accordance with the

definition of the WIPO.4 We note that the IPC scheme has undergone regular

updates to keep up with the latest scientific and technological development.

With each reform, WIPO re-classify patent files to reflect the changes made to

the IPC scheme through the revision. By downloading the data in one batch, we

ensure that the IPC classification information is consistent and coherent across

cohorts of patent applications.

While longer time-series are available in these databases, we select the sam-

ple period from 1980 to 2018 for patents in PHARM, and from 1980 to 2018 and

from 1981 to 2018 for the COMP. The samples are selected on the basis that

the volume of applications is consistently above 500 in each consecutive year.

We need such large cohorts of patents in order to construct a network with a

4Sector definition for Pharmaceuticals and Computer Technology can be found at https:
//www.wipo.int/edocs/mdocs/classifications/en/ipc_ce_41/ipc_ce_41_5-annex1.doc.
(last accessed December 2022).
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sufficiently large number of nodes and high enough density of connections to

identify persistent clusters at the first stage of our methodology in each con-

secutive year. We therefore select the samples for which we can derive reliable

values for IRII and NTR.

As an illustration of our two-stage methodology, we provide a series of

graphs that allow us to visualise the network clustering, identification and dis-

tribution of new subgroups, and the recombination process. In all network

graphs, we choose to present the network partitions of the 2005 and 2006 co-

horts because a new version of the IPC scheme (the eighth edition) was released

on January 1, 2006 which presented a major revision.[Makarov, 2006]. This

allows us to detect a possible impact of the process of revision on our results.

We start with Figure 1, where panels (a) and (b) show the 8-cluster network

partitions constructed based on PHARM patents filed in years 2005 and 2006,

respectively. Figure 2 shows the partitions of the COMP patent networks in the

same two consecutive years. Nodes highlighted in blue color are the subclasses

containing subgroups that are not present among patents of the sectoral cohort

of the previous year, i.e., the new subclasses used in the calculations of the NTR.

We note that in neither Figures 1 or 2, the network partitions show a structural

change between the two years. The distribution and portion of these nodes are

also similar in the temporally consecutive network partitions. While Figures 1

and 2 provide snapshots, in Figure 3 we present the temporal trend by sector of

the share of new subgroups in the total number of unique subgroups, and the

share of patents containing such new subgroups, whereby the new subgroups

are identified using a 1-year reference window. Both sectors show a decreasing
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trend of the two metrics. Similar to the cluster structure in Figures 1 and 2,

the major IPC scheme update in 2006 does not appear to introduce a structural

break in these series.

Next, we present Figures 4 and 5 which illustrate the process of recombina-

tion with reference windows of one year and five years. Using PHARM patent

data, Figure 4-(a) shows how the network clusters of subclasses used by patents

filed in 2006 are recombined versus the clusters identified through patent use

among those filed in 2005. Compared to Figure 4-(c) where the reference is the

network partition built on patents filed in the 5-year window from 2001 to 2005,

some differences are visually detectable. For example, the largest cluster in 2006

is broken down to more evenly distributed in size sub-clusters in (c) compared

to (a), which indicates that the degree of recombination of that cluster is higher

against the 5-year window network partition. Since our algorithm for identify-

ing network clusters implies a likely positive correlation between the persistence

probability and the cluster size, in this example, IRII51 is likely to be smaller

than IRII11 thanks to the higher extent of recombination in the largest cluster

in the network partition of 2006. Similarly, Figure 5 provides the resulting net-

works for COMP using data for the two same years. The recombinant degree

in Figure 5-(a) is not so different from the one exhibited in 5-(c). This can also

be reflected by the intermediate stage in (b). In Figure 4-(b) about half of the

nodes in the core blue sub-cluster within the largest cluster are in red color -

i.e. they below to a different cluster in the 5-year window, while in Figure 5-(b)

a much smaller number of nodes in the blue sub-cluster are red, showing that

the network partition of COMP patents in 2005 is not that different from that

in 2001-2005. With Figures 4 and 5, we start noting important differences in
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the composition of ex-ante technological novelty between PHARM and COMP.

We will explore these further throughout our empirical case study.

To ensure the robustness of our analysis, we adopt a similar approach to Gao

and Lazarova [2022] and calculate IRII and NTR with three different reference

windows: 1 year, 3 years and 5 years, labelled as IRII11, IRII31 and IRII51; and

NTR11, NTR31, and NTR51, respectively. For IRII and NTR with three-year

and five-year reference periods it is feasible to calculate IRII and NTR from 1981

and 1983, respectively, for both COMP and PHARM. In addition, to render our

results less sensitive to the choice of the number of clusters at the first stage of

our methodology, we construct four different network partitions using 8, 12, 16

and 20 clusters, respectively. We then obtain the average IRII value of a patent

over the 4 different partition configurations.5 We perform the same average

calculation for the IRII in each of the there reference window: IRII11, IRII31,

and IRII51.

In Table 1 we provide a descriptive summary of IRII and NTR calculated,

as described above, using different reference windows. During the sample period

PHARM and COMP are comparable in the number of patent filings. There are,

however, important sectoral differences. PHARM, on the one hand, has lower

average NTR, which is indicative of a lower proportion of new technological

components being introduced in this sector compared to COMP. COMP, on the

other hand, has higher average IRII, suggesting that the pattern of usage of

established technological components is more persistent and inventions in the

field are likely to rely, to a less extent than in PHARM, on a novel combination

5The number of clusters in a partition does not impact on the definition of NTR.
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of the established technologies. We have already seen an indication of this

observation in the two-year snapshots presented in Figures 4 and 5, which is now

demonstrated again in the summary statistics of the entire sample. Meanwhile,

the minimum values of IRII in PHARM are larger than those in COMP for all

indices irrespective of the reference window. This indicates that the patents with

the lowest IRII in COMP have a higher level of technological recombination than

those in PHARM. There are six COMP patents with IRII11 equal to zero, the

minimum value. They all have NTR11 equal to one, the maximum value. Each

of these patents has only one or two subclasses which are all new technological

components compared to the previous year.

Figure 6 shows how the annual average IRIIs and NTRs, when calculated

using different reference windows, change over time. For both sectors, IRIIs

fluctuate around a constant level and NTRs exhibit a decreasing trend. We

deduce, therefore, that while the recombination of technologies is a permanent

feature of inventions, the introduction of new technologies diminishes as a sector

matures; an observation which is consistent with Figure 3. Using different

reference windows for calculating the IRII and NTR result in similar values

and trends. This supports the robustness of our method. Comparing the two

sectors, we note that the IRIIs of COMP not only have the highest all-time

average values, but also exhibit the lowest level of fluctuations, which indicate

a more stable rate of technology recombination in this sector.

We further assess IRII and NTR in comparison with several measures of

patent quality and technological value described in Squicciarini et al. [Squiccia-

rini et al., 2013]. For the sample of patents for which we have calculated IRII
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and NTR, we retrieve individual patent data from the OECD Quality Indicators

dataset using the unique patent identifiers.6 We discussed these indicators in

our literature review. In Table 2 we provide their definitions. Some of these

patent quality indicators are designed to measure ex-ante technological nov-

elty (patent scope, family size, backward citations, originality) similar to IRII

and NTR. Others - generality, breakthrough rate, and forward citations7 - are

measures of ex-post quality.

We will further investigate the statistical power of correlation between the

ex-ante and ex-post measures in the next sections. Here we tale the opportunity

to illustrate that this link is not trivial using the first stage of our methodology

and the data on breakthrough rate. In Figures 7 and 8, for PHARM and COMP,

respectively, once again we present the network clusters in years 2005 and 2006,

however, in the clusters we highlight the nodes with subclasses that belong to

patents designated as breakthrough patents. As shown in these figures, while

the larger clusters contain more subclasses that belong to breakthrough patents,

such subclasses can be found in any size of cluster and their distribution in

different clusters varies from year to year.

Originalityk = 1−
∑

j∈∪i∈B(k)Si

( | {j ∈ ∪i∈B(k)Si} |
| ∪i∈B(k)Si |

)2

6The OECD patent quality indicator dataset provides two data tables: one at patent level;
and the other at cohort level by year of filing and technology field. We use the patent-level
data set.

7We note that the OECD dataset provides two metrics on forward citations: one counts
citations within five years after patent’s publication, and the other, within seven years. The
publication date of a patent is usually within 18 months of the patent application filing date.
Thus, patents with a more recent application date are expected to have fewer forward citations.
In our study, we use the five-year post-publication forward citation numbers to utilise a longer
time-series sample with a more accurate count of forward citations.
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Table 3 provides the summary statistics of the variables listed above for

PHARM and COMP. It allows a sectoral comparison of the variable values,

showing that PHARM has a larger patent scope and family size on average

than COMP. A smaller patent scope (smaller Sk) could be a potential contribu-

tor to a larger IRII, but we cannot conclude that this is the cause of the higher

average IRII values in COMP as shown in Table 1.8 PHARM patents also tend

to cite more prior arts and receive more citations in five years after patent pub-

lication9 The variables show some significant variances. Despite a lower average

value, COMP patents have a wider range of patent scope than PHARM. In-

deed, the kurtosis of COMP patent scope is 24.0196, much higher than that of

PHARM: 6.4531. Meanwhile, PHARM is wider in range than COMP in family

size, backward citations, and forward citations. However, only with forward ci-

tations PHARM has higher skewness (PHARM: 37.1322, COMP: 22.8177) and

kurtosis (PHARM: 2935.5600, COMP: 1067.0120).10 In summary, the COMP

sector, with lower mean values on these variables, has a more positively skewed

and more leptokurtic distribution than PHARM in family size and backward ci-

tations, and the opposite is true for patent scope and forward citations. PHARM

8The minimum value of patent scope is reported as zero in both sectors. This may be
taken as typo. Instead, in the original OECD data source there is one PHARM patent and
four COMP patents codes with patent scope equal to zero. We have manually looked up these
patents using the European Patent Office’s patent search service, Espacenet, and found that
each of them actually has one IPC subgroup/subclass. Therefore, the correct value of patent
scope by definition should be one. After removing these patents from each sector’s sample, the
difference in the mean value of all the variables is at the 5th or 6th place after decimal point
(See Supplement A in the Supplementary Datasheet attachment for the summary statistics
excluding the zero-patent-scope observations.). We further manually computed the number of
unique subclasses of each patent in the sample data and compared with the OECD dataset.
Out of the 278,990 observations in PHARM, 4,454 show different values from patent scope,
and the average difference is -0.0172. For COMP, 5,794 patents out of 282,506 have different
patent scope values, with an average difference of -0.0232. So, we consider the impact due to
this potential data inaccuracy to be minimal and continue to use the OECD dataset in the
subsequent analysis.

9Both forward and backward citations include citations to and from patents within and
outside of the sector.

10See Supplement B in the Supplementary Datasheet attachment for the statistics for all
the variables.
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patents also demonstrate higher mean values in the originality and generality

indicators. Both sectors have negative skewness and positive kurtosis values in

these two variables, with the absolute values larger in PHARM.

The summary statistics show that overall inventions in the two sectors

carry different ex-ante and ex-post characteristics. PHARM patents tend to

have a wider technological breadth and a larger set of patents filed in interna-

tional patent jurisdictions that are related to the same priority filings. Both

indicators have been used as the potential of the invention to generate higher

commercial value for the patent owner [Lerner, 1994, Lanjouw et al., 1998,

Harhoff et al., 2003]. In addition, having more backward and forward cita-

tions indicates that knowledge spillover among patents plays a bigger role in

PHARM inventions than in COMP; while higher average values of originality

and generality of PHARM patents point to the likelihood of inventions being

more original[Trajtenberg et al., 1997] and more general-purpose[Hall and Tra-

jtenberg, 2004], but less fundamentally novel[Lanjouw and Schankerman, 2001].

Among all the variables based on simple counts, except for forward citations,

COMP summary statistics have distributions with higher peak and thinner tails.

Finally, we note that a reduced number of patents have data on originality

and generality. In particular, data availability of generality varies significantly

over time and across sector. We present the number of observations over the

sample period split by sector in Figure 9. The figure clearly illustrates that the

generality time series drop to rather low levels by 2018 for both PHARM and

COMP. The lower number of observations is most likely linked to the increas-

ingly shorter window over which forward citations can be observed. To check
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that the limited availability of these two variables does not introduce a selection

bias in our analysis, we will present computations both including and excluding

these variables in the next subsection.

4.2 Patent-level Correlations

We begin our analysis with a discussion of the correlation matrices of the contin-

uous variables that we introduced in the previous section for each sector under

investigation: COMP and PHARM. In Tables 4 and 5 we present the pairwise

correlation coefficients in two parts: sub-tables (a) in each table presents results

based on the sample where data for all the variables except originality and gen-

erality are available, and sub-tables (b) include the pairwise correlations for the

full list of variables. The sample size for the computations of sub-tables (a) is

much larger than the ones that is used for sub-tables (b) due to the limited data

availability for generality as shown in Figure 9 and lesser extent originality as

revealed in Table 3.

Tables 4 and 5 both include the pairwise correlation coefficients for IRII and

NTR computed using three different reference windows. Overall, the pairwise

correlations between our technological novelty indices and the patent quality

indicators mostly decrease or stay at the same level as the reference time window

increases. There are two exceptions to this observation: the pairwise correlations

between family size and IRII11 and IRII13 in PHARM, where we observe a

slight increase as the length of the reference window increases. Based on this

observation, we will not make a distinction between the same index computed

with different reference windows in the discussion below.

30



Focusing on the pairwise correlations with IRII and NTR - our proposed

new measures of ex-ante novelty - we can identify some clear patterns. The IRII,

computed for different reference windows, is consistently negatively correlated

with the other variables except for a weak positive correlation with backward ci-

tations in the PHARM sector. Among these negative correlations, the strongest

in absolute value is with Patent scope and the second-highest is with NTR. The

weakest correlation for PHARM is with family size, and for COMP with back-

ward citations and forward citations. A comparison across sectors reveals a

general tendency for the strength of pairwise correlation between IRII and the

other patent quality indicators to be weaker in PHARM and stronger in COMP.

In the case of NTR, the two sectors are more distinct in the correlation

with patent quality indicators. PHARM NTR is only positively correlated with

patent scope and generality, and has weak negative correlations with the other

variables. For COMP, NTR is positively correlated with all the conventional

patent quality measures. The COMP NTR correlations are also stronger in

absolute values compared to those in PHARM.

In contrast, by comparing parts (a) and (b) of each table, we do not detect

substantial differences. We can point out that originality is only weakly cor-

related with IRII in PHARM, but the correlation is much stronger in COMP,

while the correlation between originality and NTR doesn’t differ as much. With

respect to generality, IRII exhibits the stronger correlation in both sectors com-

pared to NTR, and for both IRII and NTR the correlation coefficients are

stronger in COMP.

Overall, the discussion on the pairwise correlations presented in Tables 4
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and 5 suggest that IRII, our proposed new ex-ante technological recombination

novelty index - has the expected signs of correlation coefficients with the estab-

lished indicators of patent quality. As IRII is an inverse index, the negative

correlation coefficients are in line with the expectation that a higher intensity

of re-combination of technological components, i.e. lower IRII, is associated

with higher patent quality as captured by one of the established indicators. For

NTR, the picture is more obscure and it is hard to draw a summary of the

different coefficient signs and weak correlations, especially in relation to family

size, backward and forward citations, and originality. We could say that the

novelty brought by new technologies in COMP tend to be more aligned with

the establish indicators of ex-ante patent quality. Overall, for both sectors,

the correlation coefficients between IRII and NTR, respectively, and the other

patent quality indicators are low with the notable exception of the pairwise cor-

relation between IRII and patent quality where at its highest - in Table 5-b - it

can categorised moderately high, suggesting that IRII and NTR capture differ-

ent information sets. We also note that the degree of correlation varies across

sectors which, along with the discussion of earlier figures and tables, points to

a need for a sector-specific empirical analysis. To render this analysis more ac-

curate, we endeavour to include variations across socio-economic environments

by including sector-country-level controls.

4.3 Sector-Country-level Data and Summary Statistics

We source country-sector-level data from the OECD MSTI database which cov-

ers a wide range of sector-country-level variables for the OECD member states
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and seven non-member ones starting from 1981 onward. The MSTI database

contains a wide range of variables from which we have chosen a selection of con-

trols that fall into one of the three categories that are relevant to this study: (1)

three sector-level variables: Business and Enterprise R&D expenditure (BERD),

trade balance, and export market shares (defined in Table 6 as B COMP,

B PHARM, TD COMP, TD PHARM, TD XCOMP and TD XPHARM); (2)

country-level capital R&D expenditure variables such as the R&D expenditure

in three major segments: Business and Enterprise, Government Intramural, and

Higher Education; all measured both in current Purchasing Power Parity (PPP)

$ (defined in Table 6 as B PPP, GV PPP, and H PPP); and (3) a country-

level human resources in research variable measured in full-time equivalent unit

(FTE) (defined in Table 6 as TP RS).

We use the patent filing date and applicants’ residence information, both

included in the OECD REGPAT data, to control for cohort effects and country-

fixed effects. The information allows us to control for factors that are common

for all patents but vary from cohort-to-cohort such as the state of the world econ-

omy and world-wide technological frontier; as well as account for differences in

regulatory environment and policy at the national level, which are invariant over

time in the period under investigation. Since our key independent variables are

characteristics of individual patents, the sector-country-year variables obtained

from the OECD MSTI database need to be transformed to patent level. We

do so by defining patent-level MSTI variables as the weighted average of the

sector-country level variable where the weights are the share of applicants re-

siding in each unique country listed on the patent application. For example,

consider a PHARM patent that was filed in 2000 and listed two authors located
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in Germany and one author in Japan. For this patent, each of the MSTI vari-

ables mentioned in the first paragraph of this subsection will be computed using

the MSTI variable of PHARM-Germany-2000, weighted by the authors’ country

share of 2/3, added to the MSTI variable of PHARM-Japan-2000, weighted by

Japan’s share among authors’ residency of 1/3.

The datasets for both sectors cover the period from 1981 to 2018 for 25

countries 11. Table 7 provides the descriptive statistics of the patent-level MSTI

variables for both sectors during the period from 1981 to 2018. We note that

PHARM and COMP have very similar values for both the mean and standard

deviation statistics of all MSTI variables, thus, any sectoral differences in patent

quality is unlikely to be driven by any of these factors.

In Table 8 we present country-level data on the total number of patent ap-

plications, number of breakthrough patents, and the percentage of breakthrough

patents per sector for the OECD countries in the sample period.12. The data

in Table 6 suggests an imperfect, at best, correlation, between patent volume

and breakthrough rate. In both sectors the countries with the top breakthrough

rates, those above 1%, are all placed in the bottom half of the table in terms of

applications volume; in PHARM the countries with the most and least patent

applications, USA (ISO code US) and Portugal (ISO code PT), have comparable

breakthrough rates: 0.427% and 0.420%, respectively; and in COMP, Germany

(ISO code DE), the country with the third highest volume, has the forth low-

11The dataset includes information from the following countries: Australia, Austria, Bel-
gium, Canada, Switzerland, China, Germany, Denmark, Spain, Finland, France, the United
Kingdom, Ireland, Israel, Italy, Japan, South Korea, Luxembourg, the Netherlands, Norway,
Russia, Singapore, Sweden, Taiwan and the United States. Data is not available for certain
countries in some years, as noted in Tables 10 to 15.

12Country codes are taken from the ISO 3166 alpha-2 standard definition issued by the
International Organization for Standardization, which can be accessed at: https://www.iso.
org/iso-3166-country-codes.html
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est breakthrough rate of 0.09%. Based on the data in Table 6 in the following

sections we will further explore country-specific influences on the ex-ante and

ex-post novelty of patenting activities.

5 Relationship between IRII and NTR and In-

vention Quality

Guided by previous research studying the determinants of invention quality

using large data, we use forward citations and breakthrough as ex-post mea-

sures for the ex-post technological quality of an invention due to these variables

widely recognized significance in predicting a patent’s influence in the future

technological development. Our main objective is to study how our two ex-ante

novelty measures, IRII and NTR, correlate with the ex-post patent quality be-

yond what established factors contribute. Among these factors we include other

patent-level measures of quality and sector-country level variables that we have

already discussed extensively in Section 4. To this end, we perform regression

analysis for each sector with and without the country-specific controls to have

a more thorough investigation of the role played by IRII and NTR. In addi-

tion to IRII and NTR, other patent quality indicators including patent scope,

family size and backward citations are included as potentially relevant factors.

The two variables originality and generality are not included in the regression

models due to their limited data availability.

Formally, the patent-level regression models for patent k of cohort t are

presented below. We start with the Poisson regression model with forward
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citationsk as the dependent variable:

log(forward citations)k = α0+α1IRIIXk+α2NTRXk+ζ1
′QIk+ζ2

′MSTIk+µk+λt

(3)

Next, we present the Probit regression model with breakthroughk as the

dependent variable:

Pr[breakthroughk = 1] = Φ (β0 + β1IRIIXk + β2NTRXk+

+ϕ1
′QIk + ϕ2

′MSTIk + νk + θt
)

(4)

We recall that forward citationsk is the number of forward citations received

by patent k in 5 years following its publication and that breakthroughk is an

indicator variable that equals 1 if patent k is among the top 1% of patents

filed in the same year t by number of forward citations in the following 5 years.

The explanatory variable IRIIXk is the Inverse Recombination Intensity Index

of patent k computed for one of three reference windows X ∈ {11, 31, 51};

Similarly, NTRXk is the New Technology Ratio of patent k computed for one of

three reference windows X ∈ {11, 31, 51}. The additional controls listed in the

regression models (3) and (4) are the following: QIk which is a vector of patent

quality indicators defined in Section 4.1, namely, patent scopek, family sizek,

and backward citationsk; MSTIk which is a vector of sector-country specific

variables from the OECD MSTI database discussed in Section 4.1 and listed in

Table 7; µk and νk are vectors of five country dummy variables that indicate if

at least one of the applicants listed on patent k’s application resides in one of
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the top five countries by volume of patents filed in the sector as presented in

Table 6; and λt and θt are patent k’s year of application, t, cohort fixed effect.

We first introduce the estimation results without the sector-country MSTI

controls, i.e. these are the estimations where the vector of parameters ζ2 = 0 in

(3). Tables 9 and 13 present the parameter estimates using forward citations as

the dependent variable for the two sectors: PHARM and COMP, respectively.

We present two variants of the basic model: excluding country-specific dummies

(the first three columns of each table); and, including the country of residence

fixed effects µk for patents where an author resides in a top five country by

ptent application volume (the last three columns of each table). All estimates

include the cohort year fixed effects and the other control variables listed in

Equation 3. We also estimate the model using IRII and NTR computed with

the three different reference windows: 11, 31, and 51. The results show that

with the reference window is one year, technological recombination has a positive

and statistically significant impact on the number of 5-year forward citations

received by a patent for both sectors. At its largest, the marginal effects of

IRII suggest that a marginal decrease in IRII would increase the probability of

a patent with average sample characteristics by 0.32 and 0.2 percentage points

for PHARM and COMP, respectively. Yet, there are some notable differences:

The estimated marginal effect of of IRII is the largest in absolute value and

significance for IRII11 and then decreases in magnitude and significance for

IRII31 and IRII51 in PHARM, with the lowest absolute value and significance

using IRII31; whereas the opposite is true in COMP where the largest marginal

effect in magnitude and significance is estimated for the model using IRII51.
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From the summary statistics in Table 1, we know that the average values

and standard deviations of the indices using the three window estimations are

remarkably similar for both COMP and PHARM, however, COMP exhibits

on average a lower level of re-combination across all three windows, and, as

displayed in the time series plot in Figure 6, a lower degree of fluctuation.

The tables with the pairwise correlation coefficients (Tables 3 and 4) confirm

the same observation that the information content of IRII11, IRII31, IRII51 is

much more overlapping in COMP and more distinct across the three indices in

PHARM. This would imply that the network of IPC subclasses and its partition,

constructed at the first stage of the IRII methodology, using the three different

sets of patent filings (1-year window, 3-year window, and 5-year window) identify

very similar groupings of IPC subclasses by utilization in COMP and that the

groupings are more dependent on the cohort of patent filings in PHARM, a

scenario similar to the examples in Figure 4 and 5. This could explain why

in COMP we observe similar statistical significance across the three versions of

IRII; while in PHARM the statistical significance varies.

Differences in the process of innovation are also suggested by the results

on the NTR. The addition of relatively more new subgroups previously non-

utilized by patents in the sector as measured by NTR shows a significant nega-

tive marginal effect on the number of forward citations for COMP, regardless of

the reference window lengths, but decreases in significance for PHARM as the

reference window increases from one year to five years. The absolute value of

NTR’s marginal effect is smaller with COMP than PHARM, indicating a larger

value of NTR with COMP patents on average, as shown in Table 1. Notably,

the estimated marginal effects are all negative. This suggests that the poten-
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tial for a patent to be cited by future inventions in either of the two sector is

not enhanced by incorporating new knowledge origins from other technological

sectors but rather the novel use of core sector technological components that is

captured by IRII.

Turning our attention to the established measures of patent quality, we

observe that patent scope, family size, and backward citations contribute signif-

icantly to the number of future patents influenced which confirms finding found

previously in the literature. All marginal effects are of similar magnitude across

all variables, model estimations, and both technology sectors.

In the last three columns of each table, we present the estimation of the

modules including country-specific fixed effect. The inclusion of the country

dummies do not effect the estimated coefficients of the other variables, however,

they point to statistically significant differences in a patent’s potential for having

more forward citations depending on the residence of its authors. In particular,

a patent application with at least one applicant residing in the U.S. or Japan

leads to a higher likelihood of an increase in its number of forward citations

compared to an average application where no applicant is from one of the top 5

countries in both sectors though the magnitude of the effects is larger in COMP.

In PHARM, having an applicant residing in France or the UK could lower the

number of received forward citations compared to an application where none

of the applicants reside in a top 5 country by the volume of applications. In

COMP, the South Korea indicator variable has the largest statistically signifi-

cant and positive coefficient, however, both having an applicant from France or

Germany is estimated to lower the probability in a statistically significant sense
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in this sector. These results suggest that even among the most prolific countries

there are important national-level factors that influence the potential of their

resident innovators to produce a breakthrough patent. Before we turn to the

investigation of this aspect further in the following discussion, let’s look at the

results of Equation 4.

The estimates using breakthrough as independent variable are presented in

Table 9 for PHARM and Table 13 for COMP. Compared to Table 8 and 12,

we could summarize that the results of IRII and NTR show similar sectoral

differences, as well as the pattern with different reference windows, but the

magnitude and statistical significance of these two key indices across all the

estimation models are lower. The likely explanation is that breakthrough is de-

fined to label the patents with the top 1% by the number of forward citations

their receive. Therefore, compared to forward citations which is a continuous

variable, breakthrough is a less differentiating outcome. Aside from this, the

country-specific fixed effects also show some differences compared to the esti-

mates against forward citations: In the PHARM sector, having an applicant

from Japan now has the largest and most statistically significant and positive

coefficient, overtaking the U.S. The negative significance of the France indica-

tor is at 5% level. In the COMP sector, the country indicator U.S. supersedes

South Korea to be the dummy variable with the largest magnitude of effect,

while having an applicant from Germany becomes a statistically significant and

negative factor for the likelihood of a patent being a breakthrough.

Now let’s bring the individualized country R&D input variables into the

equations. Table 10 and 11 provide the results of PHARM, with forward cita-
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tions and breakthrough as the independent variable, respectively, and including

the individualized MSTI variables. And Table 14 and 15 are the COMP versions.

In each table, we first present the estimation results using IRII11 and NTR11 in

column 1-4, where each model involves different MSTI variables. Then, based

on the model in column 4, we extend the analysis to different reference window

lengths (column 4-6) and to include the country-specific dummy variables in-

dicating the five most productive countries by number of patent filings in each

sector (column 7-9). The results show that the inclusion of individualized MSTI

variables does not affect the estimates of IRII and NTR for PHARM. However,

in the COMP sectors, adding the sectoral MSTI control variables results in a

decrease in the statistical significance in NTR, as show in column 3 and 4 in

Table 14 and 15. We still see that with PHARM, IRII11 and NTR11 have

the most statistically significant effect on the independent variables, and with

COMP, IRII51 has the largest magnitude of the coefficient’s absolute value and

the highest significance level. With both sectors, IRII and NTR still have neg-

ative effects on either the probability of being a breakthrough patent or being

cited by future patents, across all the models.

Finally, we come to the individualized MSTI variables. In the PHARM

sector, with the independent variable being forward citations, the sectoral ex-

port market share is the only MSTI regressor that’s weakly significant at 5%

level when the country-specific dummies are excluded (column 3-6 in Table 10).

Then Table 11 shows that the Government Intramural Expenditure on R&D has

a statistically significant and negative effect on the probability that a patent is

breakthrough as long as the country-specific fixed effects are excluded, and hav-

ing higher R&D expenditure in higher education has a statistically significant
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and positive effect on a PHARM patent to be the outstanding top 1% forward

citation elites across all the models. For a COMP patent, as shown in Table

14, the inclusion of sectoral variables appears to cause changes to the model

estimates: starting from column 3, GV PPP turns to positive and statistically

significant from negative, B PPP becomes statistically significant and negative,

and H PPP loses its statistical significance. The BERD performed in COMP

(B COMP) also has a significant and positive relationship with the number of

forward citations. But all these variables’ statistical significance drop when the

country-specific dummies are included in the last three columns. In Table 15,

the inclusion of sectoral MSTI variables from column 3 also brings changes to

the estimates. But with breakthrough as the dependent variable, GV PPP and

B PPP remain statistically significant in the last 3 columns with the five country

dummy variables.

Compared to IRII and NTR, the individualized MSTI variables show less

of a persistent pattern and the regression estimates are less robust. The COMP

results seem to show that the sectoral variables (sectoral business enterprise

expenditure on R&D, trade balance, and export market share) could interact

with the non-sectoral expenditure variables. This could be caused by the in-

herent relationship between some of the variables by definition. For example, a

higher B PPP is likely to be associated with higher sectoral BERD. However, as

we are modeling the regression using weighted country-level data on individual

patents, and the MSTI variables are included as controls, we will not do into

depth in this field. It is still worth-mentioning that these estimates again show

that the two sectors under analysis have their unique characteristics.
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6 Discussion and Conclusion

Throughout all the analysis in this paper, from the descriptive statistics of IRII

and NTR to the regression results, from the network visualization to the corre-

lation coefficients between IRII and NTR and the conventional patent quality

indicators, patterns of sectoral differences can be observed. This calls for further

reflection and investigation. In PHARM a patent’s potential to be breakthrough

carries the largest correlation to the level of re-combination of knowledge origins

relative to the patterns observed in the previous cohort of applications and in

the COMP this is relative to the patterns derived from pooling the application

data across the previous five cohorts. One may see this as evidence of the greater

potential of an invention to influence new technological trends if it is destruc-

tive to the long-term pattern of utilization of subclasses in the COMP sector

while in the PHARM sector a similar breakthrough potential is generated by a

similar degree of destruction to the short-term pattern. Given that in PHARM

compared to COMP we observe on average a higher degree of re-combination

of IPC subclasses in each patent application, lower ratio of new subgroups (see

Table 1), higher patent scope and lower rate of backward citations (see Table 2)

and that the grouping of IPC subclasses by usage differs more depending on the

length of the observation window, we may be detecting the effects of a different

technological process of invention between the two sectors. We conjecture that

in PHARM the quality of an invention is linked to destructive innovation at

the frontier and patterns of combining knowledge become obsolete quicker; in

COMP the sector-specific technological frontier is better captured by the pat-

terns of utilization of IPC subclasses over a longer time period as inventions
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tend to be more geared towards entering new technological fields rather than

making existing sector technology obsolete; This would explain why the largest

marginal effect is estimated for IRII51.

7 Conclusion

This research fills the gap in current literature by proposing an ex-ante per-

spective into the emergence and composition of disruptive innovation. With

PHARM and COMP used for empirical analysis, the method we propose is

generic and can be applied regardless of sector or scale. The relationships we

have found between the new metrics and the conventional patent indicators

confirm our proposed significance of technological recombination and the new

knowledge in producing high-quality, influential inventions. The analysis involv-

ing country-level R&D resources further validates the value of IRII and NTR

as they bring added information where the MSTI variables do not show signifi-

cant predicting power. National and institutional decision makers may benefit

from this study to monitor the status of disruptive innovation and obtain in-

formation to take actions at an earlier stage. Our research also reveals sectoral

differences between Pharmaceuticals and Computer Technology, and divergence

in technological strengths and specialisations among countries. The differences

can be clearly seen from summary statistics of basic variables through to the

regression analysis. This prompts us to remind the readers that comparison

between the two sectors and interpretation of results must be done in the con-

text sector-specific knowledge of the process new technology accumulation and

creation. These issues are not fully explored in this paper but present promising
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dimensions for future research.
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Figures

Figure 1: 8-cluster PHARM network partition highlighting subclasses contain-
ing new subgroups with 1-year reference window
Nodes in red color represent the subclasses containing new subgroups that are not found in patents
of the PHARM sector in the previous year, and the the blue nodes do not contain new subgroups.
Node size is proportional to the node degree in the network, i.e. the number of connections to other
nodes. Labels are shown for nodes with degree above the median value. The edge lengths are not
indicative of the connection strength. 46



Figure 2: 8-cluster COMP network partition highlighting subclasses containing
new subgroups with 1-year reference window
Nodes in red color represent the subclasses containing new subgroups that are not found in patents
of the COMP sector in the previous year, and the the blue nodes do not contain new subgroups.
Node size is proportional to the node degree in the network, i.e. the number of connections to other
nodes. Labels are shown for nodes with degree above the median value. The edge lengths are not
indicative of the connection strength.
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Figure 3: Subgroups portion in annual total quantities with one-year reference
window
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Figure 4: 8-cluster PHARM network partition of 2006 showing recombination
in reference to the previous 1-year and 5-year windows
Each panel of the figures shows the partition with eight clusters generated from the network con-
structed using he cohort of PHARM patents filed in 2006, plus a square cluster of nodes at the
upper-right corner that represents unconnected nodes and nodes (subclasses) not used in the patent
cohort. In Panel (a), each cluster is further divided into eight sub-clusters, each with a distinct
color representing the network partition generated using the cohot of PHARM patents filed in 2005.
Panel (b) is in the same layout as Panel (a), but the color palette represents the network partition
of the patent cohort in the 5-year reference window, 2001-2005. Nodes in Panel (c) have the same
color representation as Panel (b), but with the sub-clusters visually grouped.
The color palette follows the cluster sizes in each partitioning: light grey for unconnected or unused
nodes, blue for nodes in the largest cluster, red for nodes in the second largest cluster, black the
third, and yellow, purple, green, light blue, and brown. Node size is proportional to the node degree
in the network, i.e. the number of connections to other nodes. Node labels are omitted for visual
clearance. The edge lengths are not indicative of the connection strength.
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Figure 5: 8-cluster COMP network partition of 2006 showing recombination in
reference to the previous 1-year and 5-year windows
Each panel of the figures shows the partition with eight clusters generated from the network con-
structed using he cohort of COMP patents filed in 2006, plus a square cluster of nodes at the
upper-right corner that represents unconnected nodes and nodes (subclasses) not used in the patent
cohort. In Panel (a), each cluster is further divided into eight sub-clusters, each with a distinct
color representing the network partition generated using the cohort of COMP patents filed in 2005.
Panel (b) is in the same layout as Panel (a), but the color palette represents the network partition
of the patent cohort in the 5-year reference window, 2001-2005. Nodes in Panel (c) have the same
color representation as Panel (b), but with the sub-clusters visually grouped.
The color palette follows the cluster sizes in each partitioning: light grey for unconnected or unused
nodes, blue for nodes in the largest cluster, red for nodes in the second largest cluster, black the
third, and yellow, purple, green, light blue, and brown. Node size is proportional to the node degree
in the network, i.e. the number of connections to other nodes. Node labels are omitted for visual
clearance. The edge lengths are not indicative of the connection strength.

Figure 6: Annual sectoral average IRII and NTR with different reference win-
dows
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Figure 7: 8-cluster PHARM network partition highlighting subclasses of Break-
through patents
Nodes in red color represent the subclasses assigned to Breakthrough PHARM patents of the years,
and the blue nodes are not assigned to Breakthrough patents. Node size is proportional to the node
degree in the network, i.e. the number of connections to other nodes. Labels are shown for nodes
with degree above the median value. The edge lengths are not indicative of the connection strength.

51



Figure 8: 8-cluster COMP network partition highlighting subclasses of Break-
through patents
Nodes in red color represent the subclasses assigned to Breakthrough COMP patents of the years,
and the blue nodes are not assigned to Breakthrough patents. Node size is proportional to the node
degree in the network, i.e. the number of connections to other nodes. Labels are shown for nodes
with degree above the median value. The edge lengths are not indicative of the connection strength.
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Figure 9: Originality and Generality data completeness of each sector

Tables

Table 1: Sectoral IRII and NTR summary statistics

PHARM (1980-2018)

Variable Sample size Mean Std. dev. Min Max

IRII11 278,990 0.7171 0.2314 0.0278 1

IRII31 277,922 0.7295 0.2298 0.0556 1

IRII51 275,003 0.7272 0.2341 0.0625 1

NTR11 278,990 0.0347 0.1000 0 1

NTR31 277,922 0.0156 0.0653 0 1

NTR51 275,003 0.0105 0.0532 0 1

COMP (1981-2018)

Variable Sample size Mean Std. dev. Min Max

IRII11 282,506 0.7726 0.2540 0 1

IRII31 282,506 0.7769 0.2490 0.0278 1

IRII51 280,401 0.7763 0.2475 0.0400 1

NTR11 282,506 0.0502 0.1393 0 1

NTR31 282,506 0.0263 0.0983 0 1

NTR51 280,401 0.0195 0.0834 0 1
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Table 2: Conventional patent quality indicators list

Indicator Definition

Patent scope The number of distinct 4-digit IPC subclasses

assigned to the patent

Family size The number of patent offices operating in dif-
ferent jurisdictions at which a given invention

has been protected

Backward citation The number of citations of prior art listed on
a patent applications as a source of knowledge

in the development of the invention

Forward citation The number of citations a patent receives

within five years after the publication date

Breakthrough A binary variable which equals 1 for patents
in the the top 1% by the number of forward
citations among those filed in the same year

within the next 5 years; and 0 otherwise.

Originality A measure of knowledge diversification in the
development of a patent based on the range of
subclasses included in the backward citations
of the patent application

Generality The ex-post counterpart of Originality, by us-
ing forward citations to capture the scope and
degree of general-purpose technology that a

patent enables
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Table 3: Sectoral patent quality indicators summary statistics

PHARM (1980-2018)

Variable Sample size Mean Std. dev. Min Max

patent scope 278,990 3.0289 1.4706 0 21

family size 278,990 9.8403 7.6757 1 57

backward citations 278,990 7.8111 20.9826 0 1013

forward citations 278,990 1.3189 4.9999 0 672

originality 266,616 0.7955 0.1626 0 0.9863

generality 122,563 0.5056 0.2247 0 0.9388

COMP (1981-2018)

Variable Sample size Mean Std. dev. Min Max

patent scope 282,506 2.0965 1.2761 0 30

family size 282,506 4.7957 2.8728 1 45

backward citations 282,506 4.5430 6.5689 0 498

forward citations 282,506 0.9442 3.1078 0 270

originality 264,878 0.6798 0.2272 0 0.9823

generality 103,344 0.3529 0.2803 0 0.9378
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Table 6: OECD MSTI Variable List

MSTI variable definition unit

B COMP BERD performed in the computer, electronic and optical
industry (current PPP $)

USD $MM

B PHARM BERD performed in the pharmaceutical industry (current
PPP $)

USD $MM

TD BCOMP Trade Balance: Computer, electronic and optical industry
(current prices)

USD $MM

TD BPHARM Trade Balance: Pharmaceutical industry (current prices) USD $MM

TD XCOMP Export market share: Computer, electronic and optical
industry

%

TD XPHARM Export market share: Pharmaceutical industry %

B PPP Business Enterprise Expenditure on R&D (BERD) at cur-
rent PPP $

USD $MM

GV PPP Government Intramural Expenditure on R&D
(GOVERD) at current PPP $

USD $MM

H PPP Higher Education Expenditure on R&D (HERD) at cur-
rent PPP $

USD $MM

TP RS Total researchers (FTE) FTE

Table 7: Summary statistics of weighted MSTI variables at patent level for each
sector

PHARM (1981-2018)

Variable Sample size Mean Std. dev. Min Max

GV PPP 259,786 19362.5200 18181.0000 16.5214 84124.8000

B PPP 256,906 114276.6000 110427.3000 10.6821 429134.4000

H PPP 259,428 21850.8700 20196.3200 0.9419 74722.0000

TP RS 246,689 616141.3000 452805.4000 708.2000 1866109.0000

B PHARM 211,376 16235.6500 19105.7300 0.2389 66202.0000

TD BPHARM 270,283 -3210.1860 14102.5800 -67899.7300 47548.0700

TD XPHARM 270,239 8.2620 4.5362 0.0010 19.6955

COMP (1981-2018)

Variable Sample size Mean Std. dev. Min Max

GV PPP 275,046 21432.7100 19334.5700 16.5214 84124.8000

B PPP 274,203 129885.9000 115365.9000 24.0575 429134.4000

H PPP 274,913 24064.1600 20798.5800 0.9419 74722.0000

TP RS 266,437 681733.3000 449777.6000 815.1000 1866109.0000

B COMP 207,172 33336.0400 24746.7300 0.5354 78575.0000

TD BCOMP 278,922 -24781.9600 77526.7600 -212256.7000 186830.1000

TD XCOMP 278,847 9.4136 7.3226 0.0001 31.2690
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Table 8: Total number of patent filings and Breakthrough patents of OECD
countries, ranked by number of patent filings

PHARM COMP
Patent No. Breakthrough No. Breakthrough% Patent No. Breakthrough No. Breakthrough%

US 111,930 478 0.427% US 109,172 702 0.643%
DE 32,552 91 0.280% JP 56,127 181 0.322%
JP 26,420 108 0.409% DE 24,368 22 0.090%
FR 20,067 38 0.189% FR 16,414 32 0.195%
GB 17,373 44 0.253% KR 13,773 53 0.385%
CH 14,518 46 0.317% NL 11,630 24 0.206%
NL 7,189 34 0.473% GB 8,657 20 0.231%
IT 6,774 24 0.354% CN 7,771 4 0.051%
CA 5,531 27 0.488% CA 5,563 14 0.252%
SE 5,143 8 0.156% SE 4,764 10 0.210%
BE 4,040 16 0.396% FI 4,544 48 1.056%
DK 3,673 28 0.762% CH 4,338 11 0.254%
IL 3,669 3 0.082% TW 2,842 3 0.106%
KR 3,465 2 0.058% IT 2,681 1 0.037%
ES 3,182 5 0.157% IL 2,466 20 0.811%
AU 3,112 11 0.353% AU 1,510 3 0.199%
CN 3,038 1 0.033% BE 1,363 6 0.440%
IN 2,717 3 0.110% IE 1,043 0 0.000%
AT 2,671 11 0.412% AT 915 1 0.109%
IE 1,550 2 0.129% SG 812 0 0.000%
NO 1,048 3 0.286% IN 751 0 0.000%
TW 922 0 0.000% DK 750 3 0.400%
FI 896 0 0.000% ES 693 7 1.010%
LU 770 11 1.429% NO 520 1 0.192%
HU 744 0 0.000% RU 311 0 0.000%
RU 582 6 1.031% LU 294 0 0.000%
SG 547 0 0.000% TR 259 0 0.000%
TR 538 0 0.000% HU 93 0 0.000%
SI 451 0 0.000% PT 78 0 0.000%
CZ 311 0 0.000% CZ 53 0 0.000%
PT 238 1 0.420% SI 40 0 0.000%

Notes: ISO 3166 alpha-2 country codes are used in the table. The full definition can be accessed
at: https://www.iso.org/iso-3166-country-codes.html.
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Table 9: PHARM Poisson regression with forward citation number as dependent
variable

Dependent Variable: Number of forward citations in 5 years

(1) (2) (3) (4) (5) (6)

N 278,990 277,922 275,003 278,990 277,922 275,003

chi2 187475.3677 186656.9167 184983.6661 194220.4737 193484.2034 191697.0658

IRII11 -0.2266*** -0.2158***
(0.0100) (0.0100)

NTR11 -0.7798*** -0.7437***
(0.0196) (0.0196)

IRII31 -0.0215* -0.0109
(0.0101) (0.0102)

NTR31 -0.9671*** -0.9284***
(0.0301) (0.0300)

IRII51 0.0159 0.0175
(0.0093) (0.0093)

NTR51 -0.8608*** -0.8315***
(0.0359) (0.0358)

patent scope 0.1547*** 0.1631*** 0.1633*** 0.1468*** 0.1552*** 0.1552***
(0.0011) (0.0011) (0.0011) (0.0011) (0.0011) (0.0011)

family size 0.0485*** 0.0484*** 0.0486*** 0.0491*** 0.0491*** 0.0492***
(0.0002) (0.0002) (0.0002) (0.0002) (0.0002) (0.0002)

backward citations 0.0044*** 0.0044*** 0.0044*** 0.0043*** 0.0044*** 0.0044***
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

APPC US 0.2489*** 0.2500*** 0.2476***
(0.0041) (0.0042) (0.0042)

APPC DE 0.1089*** 0.1061*** 0.1038***
(0.0060) (0.0060) (0.0060)

APPC JP 0.2711*** 0.2704*** 0.2690***
(0.0063) (0.0064) (0.0064)

APPC FR -0.0943*** -0.0967*** -0.0949***
(0.0077) (0.0078) (0.0078)

APPC GB -0.1254*** -0.1297*** -0.1391***
(0.0078) (0.0078) (0.0079)

cons -0.6145*** -0.6033*** -0.4334*** -0.7251*** -0.7148*** -0.5418***
(0.0279) (0.0224) (0.0189) (0.0281) (0.0226) (0.0191)

Notes:
Sample of patents filed from 1980 to 2018. Year fixed effects are included in all the estimations.
Standard errors in parentheses. * p<0.05, ** p<0.01, *** p<0.001
APPC US is a dummy variable defined to be 1 when at least one of the applicants of the patent
is registered with address in the United States. DE: Germany, JP: Japan, FR: France, GB: United
Kingdom.
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Table 10: PHARM Probit regression with Breakthrough probability as depen-
dent variable

Dependent Variable: Breakthrough

(1) (2) (3) (4) (5) (6)

N 278,671 277,603 274,684 278,671 277,603 274,684

chi2 1007.1574 998.8442 994.3050 1053.9714 1044.6836 1038.4280

IRII11 -0.2202** -0.2163**
(0.0692) (0.0695)

NTR11 -0.1625 -0.1509
(0.1232) (0.1233)

IRII31 -0.0415 -0.0341
(0.0693) (0.0697)

NTR31 -0.0111 0.0036
(0.1751) (0.1751)

IRII51 -0.0050 -0.0015
(0.0635) (0.0639)

NTR51 0.1829 0.1932
(0.1963) (0.1962)

patent scope 0.0837*** 0.0903*** 0.0910*** 0.0807*** 0.0875*** 0.0881***
(0.0074) (0.0072) (0.0072) (0.0075) (0.0073) (0.0072)

family size 0.0261*** 0.0261*** 0.0261*** 0.0267*** 0.0266*** 0.0267***
(0.0011) (0.0011) (0.0011) (0.0011) (0.0011) (0.0011)

backward citations 0.0028*** 0.0028*** 0.0028*** 0.0027*** 0.0027*** 0.0027***
(0.0002) (0.0002) (0.0002) (0.0002) (0.0002) (0.0002)

APPC US 0.0801** 0.0784** 0.0746**
(0.0280) (0.0281) (0.0281)

APPC DE -0.0056 -0.0059 -0.0142
(0.0423) (0.0423) (0.0427)

APPC JP 0.1790*** 0.1762*** 0.1745***
(0.0409) (0.0410) (0.0412)

APPC FR -0.1434* -0.1448* -0.1428*
(0.0582) (0.0583) (0.0583)

APPC GB -0.1050 -0.1051 -0.1024
(0.0556) (0.0556) (0.0557)

cons -3.2768*** -3.3682*** -3.1660*** -3.3149*** -3.3999*** -3.2036***
(0.1993) (0.1670) (0.1250) (0.2024) (0.1685) (0.1273)

Notes:
Sample of patents filed from 1980 to 2018. Year fixed effects are included in all the estimations.
Standard errors in parentheses. * p<0.05, ** p<0.01, *** p<0.001
APPC US is a dummy variable defined to be 1 when at least one of the applicants of the patent is
registered with an address in the United States. DE: Germany, JP: Japan, FR: France, GB: United
Kingdom.
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Table 11: PHARM Poisson regression with forward citation number as depen-
dent variable, MSTI variables included in estimation

Dependent Variable: Number of forward citations in 5 years

(1) (2) (3) (4) (5) (6) (7) (8) (9)

N 255,645 246,077 201,350 198,111 198,111 198,111 198,111 198,111 198,111

chi2 180567.4021 176845.7183 156651.2926 156023.7005 155508.8998 155193.0922 157881.0363 157389.2689 157089.0649

IRII11 -0.1654*** -0.1820*** -0.2098*** -0.2253*** -0.2258***
(0.0104) (0.0106) (0.0118) (0.0119) (0.0119)

NTR11 -0.7851*** -0.7909*** -0.8439*** -0.8664*** -0.8553***
(0.0207) (0.0213) (0.0249) (0.0252) (0.0251)

IRII31 -0.0524*** -0.0555***
(0.0121) (0.0121)

NTR31 -1.1548*** -1.1497***
(0.0395) (0.0395)

IRII51 0.0807*** 0.0897***
(0.0111) (0.0111)

NTR51 -1.0197*** -1.0111***
(0.0458) (0.0458)

patent scope 0.1569*** 0.1552*** 0.1563*** 0.1562*** 0.1626*** 0.1658*** 0.1551*** 0.1614*** 0.1651***
(0.0011) (0.0012) (0.0013) (0.0013) (0.0013) (0.0012) (0.0013) (0.0013) (0.0012)

family size 0.0485*** 0.0488*** 0.0506*** 0.0511*** 0.0509*** 0.0509*** 0.0510*** 0.0508*** 0.0508***
(0.0002) (0.0002) (0.0002) (0.0002) (0.0002) (0.0002) (0.0002) (0.0002) (0.0002)

backward citations 0.0043*** 0.0043*** 0.0042*** 0.0042*** 0.0042*** 0.0042*** 0.0042*** 0.0042*** 0.0042***
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

GV PPP -0.0051 -0.0557*** 0.0460*** 0.0138 0.0119 0.0122 0.3111*** 0.3101*** 0.3105***
(0.0069) (0.0073) (0.0093) (0.0094) (0.0094) (0.0094) (0.0157) (0.0156) (0.0156)

B PPP 0.0038** -0.0103*** -0.0135*** -0.0612*** -0.0602*** -0.0599*** -0.0801*** -0.0794*** -0.0793***
(0.0015) (0.0018) (0.0017) (0.0022) (0.0022) (0.0022) (0.0025) (0.0025) (0.0025)

H PPP 0.0468*** 0.1000*** -0.0206* -0.0992*** -0.0954*** -0.0961*** -0.1881*** -0.1856*** -0.1865***
(0.0064) (0.0070) (0.0099) (0.0101) (0.0101) (0.0101) (0.0116) (0.0115) (0.0115)

TP RS 0.0030*** 0.0106*** 0.0105*** 0.0104*** 0.0019*** 0.0017** 0.0017**
(0.0002) (0.0003) (0.0003) (0.0003) (0.0005) (0.0005) (0.0005)

B PHARM 0.1717*** 0.2884*** 0.2862*** 0.2869*** 0.2717*** 0.2705*** 0.2715***
(0.0059) (0.0069) (0.0069) (0.0069) (0.0078) (0.0078) (0.0078)

TD BPHARM 0.0616*** 0.0236*** 0.0249*** 0.0249*** -0.0028 -0.0021 -0.0023
(0.0049) (0.0052) (0.0052) (0.0052) (0.0052) (0.0052) (0.0052)

TD XPHARM -0.0111*** 0.0032*** 0.0029** 0.0027** 0.0046*** 0.0047*** 0.0046***
(0.0008) (0.0009) (0.0009) (0.0009) (0.0014) (0.0014) (0.0014)

APPC US 0.5510*** 0.5551*** 0.5577***
(0.0173) (0.0173) (0.0173)

APPC DE 0.1344*** 0.1305*** 0.1291***
(0.0132) (0.0132) (0.0132)

APPC JP 0.5666*** 0.5703*** 0.5718***
(0.0184) (0.0184) (0.0184)

APPC FR -0.2007*** -0.2026*** -0.2053***
(0.0176) (0.0176) (0.0176)

APPC GB -0.2127*** -0.2132*** -0.2147***
(0.0269) (0.0269) (0.0269)

cons -0.4845*** -0.4723*** -0.1390*** -0.4757*** -0.6100*** -0.7187*** -0.7478*** -0.8847*** -1.0047***
(0.0231) (0.0240) (0.0213) (0.0240) (0.0247) (0.0238) (0.0264) (0.0271) (0.0262)

Notes:
Sample of patents filed from 1981 to 2018 are available for estimation 1 and 2. Patents filed
from 1987 to 2018 are available for estimation 3 and 4. Year fixed effects are included in all the
estimations. All the MSTI variables except TD XPHARM have been divided by 10,000 from their
original values.
Standard errors in parentheses. * p<0.05, ** p<0.01, *** p<0.001
APPC US is a dummy variable defined to be 1 when at least one of the applicants of the patent
is registered with address in the United States. DE: Germany, JP: Japan, FR: France, GB: United
Kingdom.
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Table 12: PHARM Probit regression with Breakthrough probability as depen-
dent variable, MSTI variables included in estimation

Dependent Variable: Breakthrough

(1) (2) (3) (4) (5) (6) (7) (8) (9)

N 255,372 245,857 201,301 198,062 198,062 198,062 198,062 198,062 198,062

chi2 1006.0039 983.2936 873.9383 863.3163 859.6833 861.6608 892.2427 888.5972 890.7000

IRII11 -0.1358 -0.1350 -0.1493 -0.1575 -0.1583
(0.0730) (0.0738) (0.0826) (0.0832) (0.0834)

NTR11 -0.1330 -0.1653 -0.0481 -0.0980 -0.1017
(0.1298) (0.1344) (0.1481) (0.1529) (0.1533)

IRII31 -0.0177 -0.0224
(0.0833) (0.0835)

NTR31 0.0083 -0.0014
(0.2202) (0.2210)

IRII51 0.1018 0.1076
(0.0771) (0.0772)

NTR51 0.1719 0.1625
(0.2474) (0.2482)

patent scope 0.0909*** 0.0869*** 0.0873*** 0.0830*** 0.0884*** 0.0923*** 0.0829*** 0.0882*** 0.0925***
(0.0077) (0.0079) (0.0088) (0.0090) (0.0088) (0.0086) (0.0090) (0.0088) (0.0086)

family size 0.0261*** 0.0263*** 0.0268*** 0.0270*** 0.0268*** 0.0268*** 0.0272*** 0.0270*** 0.0270***
(0.0012) (0.0012) (0.0013) (0.0013) (0.0013) (0.0013) (0.0014) (0.0014) (0.0013)

backward citations 0.0027*** 0.0027*** 0.0026*** 0.0026*** 0.0026*** 0.0026*** 0.0027*** 0.0027*** 0.0027***
(0.0002) (0.0002) (0.0002) (0.0002) (0.0002) (0.0002) (0.0002) (0.0002) (0.0002)

GV PPP -0.1485** -0.1902*** -0.1200 -0.1573* -0.1566* -0.1539* 0.0743 0.0733 0.0754
(0.0497) (0.0524) (0.0746) (0.0769) (0.0767) (0.0766) (0.1256) (0.1254) (0.1253)

B PPP 0.0081 0.0012 -0.0051 -0.0397* -0.0393* -0.0397* -0.0439* -0.0435* -0.0440*
(0.0102) (0.0121) (0.0118) (0.0158) (0.0158) (0.0158) (0.0177) (0.0177) (0.0177)

H PPP 0.1337** 0.1739** 0.0728 0.0234 0.0251 0.0231 0.0164 0.0187 0.0173
(0.0513) (0.0561) (0.0814) (0.0845) (0.0844) (0.0843) (0.0935) (0.0934) (0.0933)

TP RS 0.0015 0.0078** 0.0077** 0.0077** 0.0002 0.0001 0.0001
(0.0014) (0.0024) (0.0024) (0.0024) (0.0042) (0.0042) (0.0042)

B PHARM 0.1335** 0.2252*** 0.2238*** 0.2260*** 0.1602** 0.1590** 0.1613**
(0.0415) (0.0508) (0.0508) (0.0509) (0.0579) (0.0579) (0.0580)

TD BPHARM 0.0000 -0.0262 -0.0258 -0.0263 -0.0369 -0.0366 -0.0371
(0.0342) (0.0359) (0.0359) (0.0359) (0.0352) (0.0352) (0.0352)

TD XPHARM -0.0077 0.0041 0.0039 0.0038 0.0025 0.0025 0.0023
(0.0054) (0.0065) (0.0065) (0.0065) (0.0098) (0.0098) (0.0098)

APPC US 0.2114 0.2129 0.2140
(0.1261) (0.1259) (0.1259)

APPC DE 0.1253 0.1237 0.1236
(0.0944) (0.0943) (0.0943)

APPC JP 0.3626** 0.3633** 0.3635**
(0.1357) (0.1356) (0.1357)

APPC FR -0.5317* -0.5318* -0.5328*
(0.2238) (0.2237) (0.2235)

APPC GB -0.3991 -0.4022 -0.4056
(0.2859) (0.2862) (0.2866)

cons -3.2728*** -3.2317*** -2.9729*** -3.2034*** -3.3062*** -3.3993*** -3.2960*** -3.3966*** -3.4985***
(0.1709) (0.1739) (0.1537) (0.1729) (0.1777) (0.1718) (0.1851) (0.1895) (0.1839)

Notes:
Sample of patents filed from 1981 to 2018 are available for estimation 1 and 2. Patents filed
from 1987 to 2018 are available for estimation 3 and 4. Year fixed effects are included in all the
estimations. All the MSTI variables except TD XPHARM have been divided by 10,000 from their
original values.
Standard errors in parentheses. * p<0.05, ** p<0.01, *** p<0.001
APPC US is a dummy variable defined to be 1 when at least one of the applicants of the patent
is registered with address in the United States. DE: Germany, JP: Japan, FR: France, GB: United
Kingdom.
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Table 13: COMP Poisson regression with forward citation number as dependent
variable

Dependent Variable: Number of forward citations in 5 years

(1) (2) (3) (4) (5) (6)

N 282,506 282,506 280,401 282,506 282,506 280,401

chi2 132464.9563 132671.9469 132530.1564 139922.1502 140139.5781 139914.0625

IRII11 -0.2576*** -0.2426***
(0.0090) (0.0091)

NTR11 -0.2156*** -0.1720***
(0.0133) (0.0133)

IRII31 -0.2887*** -0.2750***
(0.0089) (0.0090)

NTR31 -0.2445*** -0.1999***
(0.0177) (0.0177)

IRII51 -0.3140*** -0.2956***
(0.0090) (0.0091)

NTR51 -0.1734*** -0.1299***
(0.0199) (0.0199)

patent scope 0.1400*** 0.1390*** 0.1363*** 0.1419*** 0.1410*** 0.1386***
(0.0010) (0.0010) (0.0010) (0.0010) (0.0010) (0.0010)

family size 0.0848*** 0.0849*** 0.0849*** 0.0846*** 0.0847*** 0.0847***
(0.0004) (0.0004) (0.0004) (0.0004) (0.0004) (0.0004)

backward citations 0.0085*** 0.0085*** 0.0085*** 0.0081*** 0.0081*** 0.0081***
(0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001)

APPC US 0.3254*** 0.3265*** 0.3273***
(0.0054) (0.0054) (0.0054)

APPC JP 0.2375*** 0.2368*** 0.2371***
(0.0063) (0.0063) (0.0063)

APPC DE -0.0877*** -0.0854*** -0.0830***
(0.0092) (0.0092) (0.0092)

APPC FR -0.1406*** -0.1381*** -0.1345***
(0.0106) (0.0106) (0.0106)

APPC KR 0.4469*** 0.4508*** 0.4525***
(0.0100) (0.0100) (0.0100)

cons -0.4062*** -0.3890*** -0.2348*** -0.6244*** -0.6043*** -0.4716***
(0.0308) (0.0307) (0.0249) (0.0312) (0.0311) (0.0255)

Notes:
Sample of patents filed from 1981 to 2018. Year fixed effects are included in all the estimations.
Standard errors in parentheses. * p<0.05, ** p<0.01, *** p<0.001
APPC US is a dummy variable defined to be 1 when at least one of the applicants of the patent
is registered with address in the United States. JP: Japan, DE: Germany, FR: France, KR: South
Korea.
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Table 14: COMP Probit regression with Breakthrough probability as dependent
variable

Dependent Variable: Breakthrough

(1) (2) (3) (4) (5) (6)

N 282,506 282,506 280,401 282,506 282,506 280,401

chi2 1618.3394 1625.9499 1606.7991 1811.4562 1819.0067 1803.0888

IRII11 -0.1885*** -0.1969***
(0.0508) (0.0515)

NTR11 -0.0418 -0.0226
(0.0690) (0.0702)

IRII31 -0.2300*** -0.2372***
(0.0502) (0.0509)

NTR31 -0.0116 0.0052
(0.0889) (0.0905)

IRII51 -0.2872*** -0.2932***
(0.0515) (0.0522)

NTR51 -0.0250 -0.0092
(0.1031) (0.1049)

patent scope 0.1050*** 0.1032*** 0.1002*** 0.1054*** 0.1039*** 0.1008***
(0.0061) (0.0059) (0.0060) (0.0061) (0.0060) (0.0061)

family size 0.0574*** 0.0575*** 0.0578*** 0.0558*** 0.0559*** 0.0562***
(0.0022) (0.0022) (0.0023) (0.0023) (0.0023) (0.0023)

backward citations 0.0036*** 0.0036*** 0.0036*** 0.0031*** 0.0032*** 0.0031***
(0.0007) (0.0007) (0.0007) (0.0007) (0.0007) (0.0007)

APPC US 0.2525*** 0.2529*** 0.2385***
(0.0298) (0.0299) (0.0314)

APPC JP 0.0669 0.0658 0.0443
(0.0369) (0.0369) (0.0384)

APPC DE -0.3299*** -0.3278*** -0.3557***
(0.0714) (0.0714) (0.0747)

APPC FR -0.1521* -0.1502* -0.1673*
(0.0672) (0.0672) (0.0688)

APPC KR 0.2117*** 0.2156*** 0.2014***
(0.0547) (0.0547) (0.0554)

cons -2.6174*** -2.5919*** -2.8923*** -2.7131*** -2.6870*** -2.9883***
(0.1180) (0.1172) (0.1381) (0.1223) (0.1213) (0.1418)

Notes:
Sample of patents filed from 1981 to 2018. Year fixed effects are included in all the estimations.
Standard errors in parentheses. * p<0.05, ** p<0.01, *** p<0.001
APPC US is a dummy variable defined to be 1 when at least one of the applicants of the patent
is registered with address in the United States. JP: Japan, DE: Germany, FR: France, KR: South
Korea.
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Table 15: COMP Poisson regression with forward citation number as dependent
variable, MSTI variables included in estimation

Dependent Variable: Number of forward citations in 5 years

(1) (2) (3) (4) (5) (6) (7) (8) (9)

N 273,644 266,242 203,710 199,354 199,354 199,354 199,354 199,354 199,354

chi2 132265.4454 129887.0765 108154.1924 106825.7658 106837.6564 106914.1630 107489.6526 107497.1431 107574.9565

IRII11 -0.2426*** -0.2367*** -0.2181*** -0.2188*** -0.2139***
(0.0092) (0.0093) (0.0110) (0.0112) (0.0112)

NTR11 -0.1921*** -0.1764*** -0.0726*** -0.0694*** -0.0525**
(0.0135) (0.0138) (0.0163) (0.0166) (0.0166)

IRII31 -0.2181*** -0.2112***
(0.0111) (0.0111)

NTR31 -0.0222 -0.0018
(0.0219) (0.0219)

IRII51 -0.2337*** -0.2261***
(0.0112) (0.0112)

NTR51 0.0709** 0.0924***
(0.0242) (0.0242)

patent scope 0.1441*** 0.1427*** 0.1543*** 0.1548*** 0.1551*** 0.1529*** 0.1543*** 0.1548*** 0.1526***
(0.0010) (0.0010) (0.0012) (0.0012) (0.0012) (0.0012) (0.0012) (0.0012) (0.0012)

family size 0.0847*** 0.0865*** 0.0858*** 0.0863*** 0.0863*** 0.0861*** 0.0856*** 0.0856*** 0.0854***
(0.0004) (0.0004) (0.0005) (0.0005) (0.0005) (0.0005) (0.0005) (0.0005) (0.0005)

backward citations 0.0079*** 0.0080*** 0.0080*** 0.0080*** 0.0080*** 0.0080*** 0.0079*** 0.0080*** 0.0079***
(0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001)

GV PPP -0.0566*** -0.0881*** 0.3357*** 0.2195*** 0.2195*** 0.2187*** 0.1480*** 0.1471*** 0.1477***
(0.0061) (0.0061) (0.0118) (0.0133) (0.0133) (0.0133) (0.0195) (0.0195) (0.0195)

B PPP 0.0019 -0.0312*** -0.1109*** -0.0999*** -0.1002*** -0.0999*** -0.0692*** -0.0697*** -0.0695***
(0.0014) (0.0018) (0.0028) (0.0033) (0.0033) (0.0033) (0.0040) (0.0040) (0.0040)

H PPP 0.1043*** 0.1787*** -0.1780*** 0.0333 0.0341 0.0327 0.0886*** 0.0876*** 0.0846***
(0.0053) (0.0057) (0.0156) (0.0196) (0.0196) (0.0196) (0.0251) (0.0251) (0.0251)

TP RS 0.0063*** -0.0065*** -0.0064*** -0.0065*** -0.0052*** -0.0050*** -0.0050***
(0.0002) (0.0006) (0.0006) (0.0006) (0.0008) (0.0008) (0.0008)

B PHARM 0.3574*** 0.3503*** 0.3518*** 0.3520*** 0.1602*** 0.1627*** 0.1628***
(0.0068) (0.0071) (0.0071) (0.0071) (0.0106) (0.0106) (0.0106)

TD BPHARM -0.0396*** -0.0236*** -0.0232*** -0.0234*** -0.0206*** -0.0205*** -0.0209***
(0.0017) (0.0021) (0.0021) (0.0021) (0.0031) (0.0031) (0.0031)

TD XPHARM 0.0033* 0.0275*** 0.0272*** 0.0274*** 0.0272*** 0.0267*** 0.0269***
(0.0013) (0.0019) (0.0019) (0.0019) (0.0028) (0.0028) (0.0028)

APPC US 0.2107*** 0.2091*** 0.2098***
(0.0343) (0.0343) (0.0343)

APPC JP 0.0515* 0.0486* 0.0503*
(0.0243) (0.0243) (0.0243)

APPC DE -0.1095*** -0.1070*** -0.1056***
(0.0155) (0.0155) (0.0155)

APPC FR -0.1443*** -0.1439*** -0.1442***
(0.0189) (0.0189) (0.0189)

APPC KR 0.3368*** 0.3365*** 0.3382***
(0.0170) (0.0170) (0.0170)

cons -0.4442*** -0.5767*** -1.0423*** -1.1752*** -1.1742*** -1.1663*** -1.1382*** -1.1392*** -1.1329***
(0.0310) (0.0315) (0.0364) (0.0384) (0.0383) (0.0383) (0.0421) (0.0421) (0.0420)

Notes:
Sample of patents filed from 1981 to 2018 are available for estimation 1 and 2. Patents filed
from 1987 to 2018 are available for estimation 3 and 4. Year fixed effects are included in all the
estimations. All the MSTI variables except TD XCOMP have been divided by 10,000 from their
original values.
Standard errors in parentheses. * p<0.05, ** p<0.01, *** p<0.001
APPC US is a dummy variable defined to be 1 when at least one of the applicants of the patent
is registered with address in the United States. JP: Japan, DE: Germany, FR: France, KR: South
Korea.
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Table 16: COMP Probit regression with Breakthrough probability as dependent
variable, MSTI variables included in estimation

Dependent Variable: Breakthrough

(1) (2) (3) (4) (5) (6) (7) (8) (9)

N 273,644 266,242 203,710 199,354 199,354 199,354 199,354 199,354 199,354

chi2 1664.1605 1673.3111 1551.1983 1545.3356 1548.4264 1546.7180 1586.6443 1589.2683 1587.6486

IRII11 -0.1987*** -0.2217*** -0.2544*** -0.2630*** -0.2624***
(0.0521) (0.0535) (0.0617) (0.0634) (0.0637)

NTR11 -0.0285 -0.0313 0.0127 0.0345 0.0536
(0.0705) (0.0729) (0.0840) (0.0859) (0.0863)

IRII31 -0.2778*** -0.2744***
(0.0624) (0.0627)

NTR31 0.0873 0.1099
(0.1108) (0.1114)

IRII51 -0.2714*** -0.2689***
(0.0634) (0.0637)

NTR51 0.1148 0.1373
(0.1233) (0.1240)

patent scope 0.1038*** 0.1032*** 0.1140*** 0.1148*** 0.1152*** 0.1153*** 0.1134*** 0.1141*** 0.1143***
(0.0063) (0.0064) (0.0074) (0.0076) (0.0074) (0.0075) (0.0077) (0.0075) (0.0075)

family size 0.0559*** 0.0573*** 0.0582*** 0.0591*** 0.0593*** 0.0592*** 0.0583*** 0.0586*** 0.0584***
(0.0023) (0.0024) (0.0027) (0.0028) (0.0028) (0.0028) (0.0028) (0.0028) (0.0028)

backward citations 0.0030*** 0.0030*** 0.0028*** 0.0027*** 0.0028*** 0.0027*** 0.0027** 0.0028*** 0.0027***
(0.0007) (0.0007) (0.0008) (0.0008) (0.0008) (0.0008) (0.0008) (0.0008) (0.0008)

GV PPP 0.0549 0.0203 0.4137*** 0.3825*** 0.3833*** 0.3809*** 0.2416* 0.2404* 0.2399*
(0.0332) (0.0344) (0.0668) (0.0745) (0.0745) (0.0745) (0.1063) (0.1063) (0.1063)

B PPP -0.0157* -0.0278** -0.0896*** -0.1206*** -0.1215*** -0.1208*** -0.0771*** -0.0781*** -0.0777***
(0.0079) (0.0100) (0.0148) (0.0182) (0.0182) (0.0182) (0.0212) (0.0212) (0.0212)

H PPP 0.0984*** 0.1326*** -0.2291** -0.2465* -0.2444* -0.2449* -0.0416 -0.0423 -0.0433
(0.0281) (0.0315) (0.0883) (0.1170) (0.1168) (0.1168) (0.1468) (0.1465) (0.1466)

TP RS 0.0035** 0.0069* 0.0070* 0.0069* 0.0062 0.0064 0.0064
(0.0012) (0.0031) (0.0031) (0.0031) (0.0042) (0.0041) (0.0041)

B DRUG 0.3096*** 0.3566*** 0.3577*** 0.3575*** 0.0926 0.0949 0.0948
(0.0408) (0.0461) (0.0462) (0.0462) (0.0637) (0.0637) (0.0637)

TD BDRUG -0.0301** -0.0389** -0.0386** -0.0385** -0.0124 -0.0123 -0.0123
(0.0099) (0.0126) (0.0126) (0.0126) (0.0181) (0.0181) (0.0181)

TD XDRUG -0.0266*** -0.0258* -0.0260* -0.0257* -0.0279 -0.0283 -0.0282
(0.0070) (0.0112) (0.0112) (0.0112) (0.0164) (0.0164) (0.0164)

APPC US 0.3581 0.3575 0.3603
(0.1909) (0.1912) (0.1910)

APPC JP 0.0062 0.0013 0.0041
(0.1329) (0.1328) (0.1326)

APPC DE -0.4076*** -0.4022*** -0.4016***
(0.1212) (0.1212) (0.1214)

APPC FR -0.2136 -0.2137 -0.2161
(0.1217) (0.1215) (0.1219)

APPC KR 0.3106** 0.3101** 0.3107**
(0.0989) (0.0989) (0.0987)

cons -2.6391*** -2.6945*** -3.1309*** -3.4032*** -3.3869*** -3.3959*** -3.2521*** -3.2398*** -3.2482***
(0.1189) (0.1232) (0.1997) (0.2149) (0.2145) (0.2144) (0.2373) (0.2368) (0.2366)

Notes:
Sample of patents filed from 1981 to 2018 are available for estimation 1 and 2. Patents filed
from 1987 to 2018 are available for estimation 3 and 4. Year fixed effects are included in all the
estimations. All the MSTI variables except TD XCOMP have been divided by 10,000 from their
original values.
Standard errors in parentheses. * p<0.05, ** p<0.01, *** p<0.001
APPC US is a dummy variable defined to be 1 when at least one of the applicants of the patent
is registered with address in the United States. JP: Japan, DE: Germany, FR: France, KR: South
Korea.
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PHARM
Variable Obs Mean Std. dev. Min Max
patent scope 278,989 3.0289 1.4706 1 21
family size 278,989 9.8403 7.6757 1 57
backward citations278,989 7.8111 20.9827 0 1013
forward citations278,989 1.3189 4.9999 0 672
originality 266,615 0.7955 0.1626 0 0.9863
generality 122,562 0.5056 0.2247 0 0.9388

COMP
Variable Obs Mean Std. dev. Min Max
patent scope 282,502 2.096527 1.276035 1 30
family size 282,502 4.795729 2.87282 1 45
backward citations282,502 4.542987 6.568957 0 498
forward citations282,502 0.944185 3.107796 0 270
originality 264,874 0.679839 0.227161 0 0.9823
generality 103,342 0.352898 0.280268 0 0.9378

Supplement A: 
OECD patent quality indicator variables summary statistics excluding observations with 
zero value Patent Scope



Supplement B:
Variance, Skewness and Kurtosis of OECD patent quality indicator variables

PHARM
Variable Obs Variance Skewness Kurtosis
patent scope 278,990 2.1625 1.4206 6.4531
family size 278,990 58.9164 1.6361 5.8959
backward citations278,990 440.2706 19.0553 637.4957
forward citations278,990 24.9991 37.1322 2935.5600
originality 266,616 0.0264 -2.4886 11.1026
generality 122,563 0.0505 -0.9662 3.1497

COMP
Variable Obs Variance Skewness Kurtosis
patent scope 282,506 1.6283 2.5068 24.0196
family size 282,506 8.2530 2.6833 15.8604
backward citations282,506 43.1506 46.9561 3175.0810
forward citations282,506 9.6583 22.8177 1067.0120
originality 264,878 0.0516 -1.5783 5.1308
generality 103,344 0.0786 -0.1152 1.5451
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