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Abstract

Agents connected in a network face a binary choice whether to contribute or to

free-ride. The former action is costly but benefits the agent and her neighbors, while

the latter is free, but does not provide any benefits. Who will contribute if agents

are farsighted and not constrained by a fixed non-cooperative protocol? I adapt the

concepts of consistent sets and farsightedly stable sets to answer this question. When

benefits to an agent are linear in the number of her contributing neighbors, the decision

to contribute depends on the cohesion of her neighborhood as captured by the graph-

theoretical concept of k-cores. JEL codes: C78

Keywords: Public Goods, Networks, Consistent Sets, Farsightedly Stable Sets

1 Introduction

Private provision of public goods (or prevention of public bads) is a fundamental problem

in many disciplines that has spawned a rich theoretical and empirical literature. Classic

examples include investments in environmental protection, maintenance of social norms or

charitable giving. In many cases, benefits from the provision are accessible only to the direct

neighbors of the provider. For instance, friends and family of a vaccinated individual have

a lower risk of contracting a contagious disease, consumers benefit from research into a new

product by their contacts and one farmer’s experience with a new crop conveys valuable

information to her neighbors. In all these situations, agents decide whether to provide

a local public good (that also benefits the provider) at some private cost. A modelling

assumption is then often that they choose their contributions simultaneously or that they

repeatedly play a prisoner’s dilemma type of game.1 The former (static) framework is

a relevant benchmark when myopic players do not internalize the externalities of their

efforts. The latter (dynamic) formulation takes players’ farsightedness into account as they

consider also future payoffs from their interactions. However, this formulation relies on a

fixed noncooperative protocol and it raises the question of credible community enforcement.

1This includes favor exchanges as in Jackson et al. (2012) or Karlan et al. (2009).
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This work offers an alternative approach to the problem of endogenous enforcement of

cooperative behavior that is in marked contrast to the existing literature. In a nutshell,

it provides a novel explanation of cooperation by farsighted players when their network-

mediated interactions are not subject to a fixed protocol of a noncooperative game.2 The

proposed cooperative framework allows for a more flexible application and it sidesteps the

problem of coordination on a continuation equilibrium after a defection.

Formally, I consider a public good game played on an undirected network (graph),

where player nodes face the binary choice whether to contribute (cooperate) or to free-ride

(defect). The choices of all players form an (action) profile or outcome. I will call agents

contributing (free-riding) in a profile active (inactive). Agents’ preferences over profiles

depend on whether they are active and also on contributions of their direct neighbors

(agents connected to them in the network). I adapt Chwe’s (1994) framework on farsighted

coalitional stability to this setup. However, I restrict his “effectiveness relation” to singleton

coalitions, which means that only individual deviations are considered at each step (i.e.,

players cannot coordinate on joint actions). Chwe (1994) applies his framework with the

same restriction to strategic form games with unlimited public pre-play communication. In

the context of extensive form games, his stability notions under this restriction are akin to

subgame perfection as they allow individual players to look arbitrarily far ahead.

Chwe formalizes coalitional stability in the definitions of consistent sets and farsightedly

stable sets. These sets contain outcomes that are stable as every deviation is deterred. How-

ever, they differ with respect to players’ expectations. Consistent sets rely on pessimistic

players who assume that a deviation from a stable outcome will trigger a chain of further

deviations that lead to their least favorable stable outcome. Farsightedly stable sets are

sustained by optimistic agents who expect that a deviation will eventually lead to their

most favorable stable outcome.3 Throughout this paper, I will refer to the outcomes in a

consistent (farsightedly stable) set as C-stable (F-stable) or simply stable if there is no need

to distinguish between these sets. Also coalitions of players active in a stable outcome and

the subnetworks that these players induce will be called stable.

My main goal is to clarify how the cost-benefit ratio of provision and the topology of

the underlying network affect stable profiles. I focus on situations where the benefits to an

agent are linear in the number of her active neighbors. In this case, cooperation can be a

stable outcome only in cohesive subnetworks of the original network. Each node in such a

subnetwork has a minimum number k of neighbors (technically speaking, the subnetwork

is a k-core). Intuitively, players contribute if at least k of their neighbors reciprocate. This

2Farsightedness in the non-cooperative framework is usually modeled with repeated games. These games

explicitly model a strategic interaction, while implicitly imposing a centralized mechanism that (randomly)

decides who moves when. No such centralized mechanism exists in the proposed framework. Players can

change outcomes unilaterally at any time and make their decisions in a fully decentralized manner.
3Optimism and pessimism here align with the definitions in Eichberger and Kelsey (2014), who use them

in a different context of games under ambiguity. They express optimism as the expectation that their

opponents will maximize one’s payoff, while pessimism is the expectation that they will minimize it.
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minimum number is proportional to the cost-benefit ratio of the provision. However, a player

with many active neighbors will still defect if she can rationally assume that sufficiently

many of her neighbors will contribute nevertheless. I decompose an underlying network

into the smallest subgraphs that can sustain cooperation. These stable subgraphs offer

credible threats of the breakdown of cooperation in the face of individual defection but

also compartmentalize the damage by preventing defections from spreading. They can

be merged into larger clusters of active agents. I show that players contribute in a C-

stable structure called packing that consists of disjoint C-stable subgraphs of the underlying

network. In F-stable structures, these subgraphs must form a special arrangement called

closed packing to prevent optimistic players from defecting.4 In both cases, the merged

structures provide lower bounds on the number of active players in a stable outcome. I

also derive the upper bound, which shows that only nodes in sufficiently dense subgraphs

can be active. The findings of this study are illustrated for the extreme cases of stars and

lines (graphs connected by a minimum number of links) and complete networks (graphs

connected by the maximum number of links).

The following example illustrates the impact of the connection structure, players’ ex-

pectations, and the cost-benefit ratio on the pattern of cooperation. There are six players

placed in the undirected network G depicted in Figure 1. Assume that a contributing player

provides a benefit (normalized to one) to herself and to her neighbors while incurring the

cost c ∈ (2, 3).

Figure 1: Undirected network with six nodes where each node is connected to at least two

neighbors.

Then, each node v prefers to contribute when this secures contributions from at least

two of v’s neighbors. In this case, the combined benefit to v is at least 3 − c > 0. By

the same token, v will defect if this leads to the defection of less than two of her active

neighbors. This implies that the smallest subnetworks of G that can sustain cooperation

are the cycles 123, 456 and 2345, where each node has exactly two neighbors.5

Consider now the situation in which all players initially cooperate, but agent v = 1

contemplates defection. In the worst case for this player, agents 2 and 3 will free-ride

4(Closed) packings are defined in Section 4.2.
5Cycle is a sequence of links that starts and ends at the same node and traverses other nodes only once.

3



subsequently. Although these players will lose contributions from each other, they can be

confident that there will be no further defections by their neighbors. The reason for the

sustained contributions in the remaining cycle 456 is the fact that the involved players

realize that the defection by any one of them will lead to the total collapse of cooperation in

this cycle and therefore to the loss of two active neighbors by each of them. Pessimistically

anticipating the loss of contributions from agents 2 and 3 due to her own defection, player

1 chooses to cooperate. As a similar argument applies to the other (pessimistic) players, all

agents will contribute. In accordance with my results, the active players in this C-stable

profile are covered by a (cycle) packing of the network G that consists of the cycles 123 and

456.

However, this profile is not F-stable. When player 1 optimistically considers her best

case scenario, then free-riding is a rational choice if it is followed by the defection of player

6 only. The latter action is advantageous for the player 6 as it leads to an F-stable outcome,

where the free-riding players 1 and 6 keep all their active neighbors in the cycle 2345. As

in the previous case, cooperation in this cycle is stable as the involved players realize that

a single defection will trigger further defections leading eventually to the loss of two active

neighbors by each of them. Incidentally, the F-stable cycle 2345 forms a closed (cycle)

packing of the network G that covers the largest number of nodes.

For any cost-benefit ratio of provision and an arbitrary graph G, I identify its smallest

stable subgraphs and show that they can be merged into C-stable structures. Moreover, I

obtain a condition that a merged structure must satisfy in order to be F-stable.

2 Related Literature

There is a large theoretical and empirical literature that explores the ability of a society to

foster trust and cooperation among its members. Many studies rationalize the provision of

public goods by repeated interactions. Nava (2016) provides an excellent overview of this

literature. In their pioneering studies on repeated pairwise matching, Kandori (1992) and

Ellison (1994) establish that collective punishments can sustain efficient equilibria (for suf-

ficiently high discount factors) when bilateral punishments fail. Several papers analyze the

effect of the size and structure of a group on the maximum equilibrium level of cooperation.

Classical references (e.g., Pecorino, 1999; Haag and Lagunoff, 2006) characterize maximum

cooperation only for complete networks and, generally, find that larger groups are more

cooperative. Wolitzky (2013) shows that adding links to a fixed monitoring network weakly

increases each player’s robust maximum cooperation. Hence, complete networks maximize

cooperation, which also increases in the group size when the marginal benefit of cooperation

does not depend on it. Other authors (e.g., Laclau, 2012, 2014; Renault and Tomala, 1998,

2010; Ben-Porath and Kahneman, 1996) provide conditions on the interaction network for

a Folk Theorem to apply. They establish that network structure is usually irrelevant (when

it satisfies some weak requirements) for enforcing cooperation when the frequency of inter-
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action is high. The present work confirms the finding in this literature that cooperation

generally increases in the size of the complete network but it also shows that the network

structure is relevant for enforcing cooperation. A separate strand of the literature analyzes

how equilibrium outcomes are affected by the availability of different communication tech-

nologies and by the incentives to report defections (e.g., Lippert and Spagolo, 2011; Ali and

Miller, 2014; Wolitzky, 2015). These issues do not arise in the present context as all moves

are public.

While my cooperative framework focuses on individual moves by farsighted players, there

is noncooperative literature that considers joint deviations by such players. For example,

Genicot and Ray (2003) study self-enforcing risk-sharing agreements that are robust to

deviations by individuals and by subgroups. However, such deviations must be credible

in the sense that a deviating group must itself employ some self-enforcing risk-sharing

agreement. A surprising consequence of their analysis is that stable groups have (uniformly)

bounded size, a result in sharp contrast to the individual-deviation problem. In the dynamic

non-cooperative game of Acemoglu et al. (2012), coalitions of forward-looking individuals

will not support a deviation toward a state that might ultimately lead to another, less

preferred state. A state is then made (dynamically) stable by the absence of an alternative

stable state.

Some authors assume that agents play a Nash equilibrium of a one-shot public goods

game, where the network determines local payoff interactions (e.g., Ballester et al., 2006;

Bramoullé and Kranton, 2007, and Bramoullé et al., 2014). These papers find that more

central players (by their Bonacich centrality or a variation thereof) cooperate less and

receive higher payoffs, and that adding links to a network decreases average maximum

cooperation. Although efforts in these models can take on any value from an interval, there

is also a large and diverse body of literature that restricts agents’ choices to binary actions.

Lopez-Pintado and Watts (2008) provide a succinct summary of this literature.

In this context, Golub and Elliott (2020) note that the static Nash equilibrium is a

relevant benchmark in cases with limited scope for repetition or commitment that in public

good games leads to the classic “tragedy of the commons”. They argue that in cases where

large gains can be realized by improving on the Nash benchmark, complementary approaches

should be explored, and they consider Pareto efficient public goods provision. In a certain

sense, this work complements their study by focusing on strategic stability of contributions

and finds, as a special case, that the ’cycles of cooperation’ identified in Golub and Elliott

(2020) can be instrumental in maintaining a high level of public goods provision. Other

studies stress the importance of cohesion of social networks (e.g., Coleman, 1990; Dixit,

2006; Gagnon and Goyal, 2017). In particular, Coleman (1990) introduces the notion of

social capital and relates it to the cohesion of the underlying social architecture. Gagnon

and Goyal (2017) show that the k-cores of a social network determine whether individuals

choose to participate in it.

The provision of public good in networks has been also tested in experiments. In general,
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experimental evidence suggests that subjects act on a reciprocal basis, which is consistent

with my theoretical results (e.g., Croson, 2007; Fischbacher et al., 2001; Fischbacher and

Gächter, 2010). Jackson et al. (2012) study theoretically and empirically favor exchange

networks in rural India. Remarkably, the “social quilts” identified by them as the basic

connection structures that support the exchange of favors are reminiscent of some minimal

stable structures that sustain cooperation in this work.

Few papers address public good provision in endogenous networks. In Galeotti and

Goyal (2010), players provide a local public good and establish links. According to their

main result, the law of the few, in large societies, only few players produce most of the

public good. Notably, their equilibrium core-periphery architecture, where players in the

core contribute and nodes in the periphery free-ride, can sustain cooperation also in my

framework under appropriate calibration of the cost-benefit ratio. Kinateder and Merlino

(2018) generalize their model to heterogeneous players who differ in the provision cost and

in the valuation of the public good.

This paper belongs to the strand of literature that builds on the seminal work by Chwe

(1994) on farsighted coalitional stability. Suzuki and Muto (2005) apply Chwe’s stability

concepts to public good (prisoner dilemma) games with binary actions. They show that

any individually rational and Pareto efficient outcome is a farsighted stable set and that

the largest consistent set consists of all individually rational outcomes. Kawasaki and Muto

(2009) extend their results to “lumpy” global public goods that cannot be produced unless

the resources for production exceed a certain threshold. This work uses a similar framework

and the same solution concepts, but considers local public goods.

Chwe’s concepts of consistent sets and farsightedly stable sets led to various refinements

and modifications (e.g., Konishi and Ray, 2003; Mauleon and Vannetelbosch, 2004) and were

applied in a variety of settings. For example, they were employed in studies on coalition

formation (e.g., Nagarajan and Sošić, 2007), stability of two-sided matchings (Mauleon et

al., 2011) and of networks (e.g., Page et al., 2005; and Herings et al. 2009).

Coexistence of farsighted and myopic players has been recently studied in Herings et

al. (2020) in the context of a matching model and in Bayer et al. (2021) in local public

good games. The former paper considers the pairwise myopic-farsighted stable set, while

the latter examines the scope for exploitation by a single farsighted agent embedded in a

network of myopic players. The presence of myopic players is inconsequential in the present

setup as my assumptions ensure that defection is always their dominant action.

Last but not least, this work draws heavily on graph-theoretical literature and, in par-

ticular, on seminal works on degenerated graphs (Lick and White, 1970), k-cores (Seidman,

1983) and on collapsible graphs (Bickle, 2018 and 2020).
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3 Definitions and solution concepts

3.1 Basic model

There is a set N = {1, ..., n} of n agents. Each agent k chooses a binary action ωk ∈ {0, 1}.
I will refer to action 1 as cooperation (contribution to a public good, following a convention)

and to action 0 as defection (free-riding on others’ provisions, disregarding a convention).

The vector ω = (ω1, ..., ωn) ∈ {0, 1}n will be called an (action) profile or simply an outcome.

As usual, ω−k is the action profile of all agents other than k. I will say that the set of players

S ⊆ N and the action profile ω(S) ∈ {0, 1}n are associated when i ∈ S ⇔ ωi(S) = 1. Hence,

all and only players from S contribute in the associated profile ω(S). Note that T ⊂ S ⊆ N

is equivalent to ω(T ) < ω(S).

Players’ actions determine their own payoffs and also payoffs of their neighbors. Specif-

ically, agents are interconnected by a collection of undirected links that form a connected

graph or network G.6 I denote by V (G) = N the set of nodes (vertices) and by E(G) the

set of links (edges) in G. Each subset of nodes S ⊆ V (G) induces the subgraph G(S) ⊆ G

that contains all nodes from S and each link from E(G) that connects a pair of nodes in

S. An agent i who is linked in G to k is called k’s neighbor. The set of all k’s neighbors

(excluding k) in G is denoted Nk(G).

As, for example, in Bramoullé and Kranton (2007) and Bramoullé et al. (2014), each

agent k receives utility from her own and from neighbors’ contributions according to a

(weakly) increasing benefit function βk(.),

uk(ω,G) = βk(ωk + δk
∑

i∈Nk(G)
ωi)− ck · ωk, (1)

where the parameter δk measures the impact of neighbors’ actions on k’s utility and ck is

the provision cost. I make two important assumptions: (A) all contributions exert positive

externalities, and (B) contribution cost exceeds the marginal benefit to the contributing

agent.

Assumption 1. For each player k ∈ N ,

(A) δk > 0,

(B) ck > βk(1 + δk · r)− βk(δk · r), ∀r ≥ 0.

The first assumption ensures the public good character of the game and it implies that

contributions are strategic substitutes. The second assumption sets a stark benchmark:

In the unique Nash equilibrium (in strictly dominant strategies) of the simultaneous move

game, all players defect. This contrasts with most of the theoretical literature on one-shot

public good games where some amount of (local) public good is provided in equilibrium.

Unlike this literature, agents contribute in stable outcomes only if sufficiently many of

6The assumption of a connected graph G is without the loss of generality as, otherwise, all results apply

to each component of G separately.
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their neighbors contribute as well (and the same applies to these neighbors). Therefore,

sustainable cooperation relies on reciprocity.

3.2 Chwe’s (1994) framework

This paper belongs to the strand of literature that builds on the seminal work by Chwe

(1994) on farsighted coalitional stability. The primitives in Chwe’s model are the set of

outcomes (states) Z, a strong preference relation ≻k over states for each player k ∈ N

and the “effectiveness relations” →S on Z for each coalition S ⊆ N . The relation →S

represents what coalition S can do: a →S b means that S can move the state from a to b.

Preferences of coalitions derive from individual preferences: If a ≻k b for all k ∈ S, then

a ≻S b. Furthermore, Chwe defines outcome a as indirectly dominated by b, b ≫ a, if there

exist outcomes a0, a1, ..., am, where a0 = a and am = b, and coalitions S0, S1, ..., Sm−1 such

that ai →Si ai+1 and b ≻Si ai for i = 0, 1, ...,m− 1. The interpretation of b ≫ a is that it is

possible but not certain that a chain of coalitions will materialize and move the status quo

from a to b. If such a chain does not exist, I write b ̸≫ a. I will also use the notation a≫b

when either a = b or a ≫ b.

Chwe calls a set C ⊆ Z consistent if for any states a ∈ C, d ∈ Z and coalition S ⊆ N

such that a →S d, there is a state e ∈ C such that a ⊀S e and e≫d. In other words,

any deviation by a coalition S from an outcome a in the consistent set C to some outcome

d is deterred either because d ∈ C and d is not preferred by S to a or there are further

possible deviations that lead eventually to an outcome e ∈ C that is not preferred by S to

a. He defines the largest consistent set (LCS) as a consistent set that contains all other

and shows that, under some mild conditions, the LCS is nonempty and externally but not

internally stable. This means that each outcome d /∈ LCS is indirectly dominated by an

outcome a ∈ LCS, but some outcomes in LCS can also indirectly dominate each other. A

farsightedly stable set7 F ⊆ Z satisfies both, external (E) and internal (I) stability:

(E) ∀b ∈ Z\F, ∃a ∈ F : a ≫ b, (2)

(I) ∄a, b ∈ F : a ≫ b.

Chwe proves that an LCS contains any farsightedly stable set although the latter may fail

to exist. In analogy to the LCS, a farsightedly stable set that contains all other (if it exists)

will be called the largest farsightedly stable set (LFS).

There is no rigid protocol on players’ interaction in Chwe’s framework: When starting

from a status quo outcome a, members of a coalition S can decide to change it to outcome

b, where a →S b, which then becomes the new status quo. From this new status quo, other

coalitions might move, and so forth, without limit. All moves are public. If a status quo c is

reached and no coalition decides to move from it, then c is stable and the game is over. Then

(and only then) players receive their payoffs from c. There are no time preferences in this

7Chwe calls it the stable set of (Z,≫).
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game: players care only about the end outcome and not about how it is reached. A possible

interpretation in the context of the public good game is that players receive a stream of

instantaneous payoffs from a status quo outcome ω, where the payoff rate is given by the

function (1). If a player decides to change this outcome, then any adjustment to a stable

outcome ω̃ is very quick (so one can ignore the payoffs in this phase), and players receive a

post-adjustment stream of instantaneous payoffs from the stable outcome ω̃ thereafter. An

alternative interpretation is Greenberg’s (1990) “individual contingent threats situation”, in

which a strategic form game is not played in the sense of simultaneous moves. Rather, each

individual declares her intended strategy in response to the proposed strategies of other

players, while she realizes that other players can make contingent threats in turn.

3.3 Chwe’s framework and the public goods provision

In the application of Chwe’s framework (Section 3.2) to the public good model (Section

3.1), the set of states is given by the set of action profiles Z = {0, 1}n, while the preference

relation ≻k is implemented by the function (1),

∀k ∈ N,ω, ω̃ ∈ Z, ω ≻k ω̃ ⇔ uk(ω,G) > uk(ω̃, G). (3)

“Effectiveness relations” follow generally from a concrete application of Chwe’s game. In

the network context, for example, it is unlikely that nodes separated by many links will be

able to coordinate on joint moves to enforce a new state. Here, I assume that only singleton

coalitions can change an outcome directly.

Assumption 2.

∀ω, ω̃ ∈ Z, ω ̸= ω̃, ω →S ω̃ ⇒ S = {k} and ω̃ = (ω−k, 1− ωk) for some k ∈ N.

A transition from one state to another is, therefore, a result of uncoordinated moves by

(farsighted) individuals. This assumption focuses the analysis on the impact of farsighted-

ness on individual decisions in the protocol-free context. It allows also for direct comparison

with the rich literature on public goods provision that relies on the subgame perfect Nash

equilibrium. Although arbitrary effectiveness relations are beyond the scope of this work,

I briefly discuss the relaxation of Assumption 2 at the end of Section 5 after introducing

the relevant concepts and results. An important consequence of Assumptions 1-2 is the

next lemma (proved in the Appendix) that shows that indirect dominance boils down to (a

partial) unraveling of cooperation.

Lemma 1.

∀ω, ω̃ ∈ Z, ω ≫ ω̃ ⇒ ω < ω̃.

If one action profile indirectly dominates another, then the active players in the former

are a strict subset of active players in the latter. The implication holds because in a chain

of individual deviations from ω̃ to ω, the last deviator compares two states that differ only
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in whether she is active or not. Due to Assumption 1(B), this player prefers the latter

outcome to the former and so her deviation must be from 1 to 0. This argument propagates

to all deviators in the chain.

Chwe’s solution concepts adapt directly to the present context.

Definition 1 (Consistent Set). Given network G, the set CG ⊆ Z of outcomes is consistent

provided that

∀ω ∈ CG, k ∈ N, ∃ω̃k ∈ CG : ω̃k ⊁k ω and ω̃k≫(ω−k, 1− ωk). (4)

An outcome is called C-stable if it belongs to some consistent set.

A consistent set that contains all other is called the largest consistent set LCSG.

Condition (4) implies that no player k will risk changing the stable status quo ω to

(ω−k, 1 − ωk) if this change is or can lead to a stable outcome ω̃k that is not preferred

by k to ω. In this sense, any deviation from an outcome in the consistent set is deterred.

However, outcomes in CG can be internally unstable as they can be indirectly dominated

by other stable outcomes. This cannot occur for outcomes in a farsightedly stable set.

Definition 2 (Farsightedly Stable Set). Given network G, the set FG ⊆ Z of outcomes is

farsightedly stable provided that it satisfies external (E) and internal (I) stability:

(E) ∀ω ∈ Z\FG, ∃ω̃ ∈ FG : ω̃ ≫ ω, (5)

(I) ∀ω ∈ FG, k ∈ N, ∄ω̃k ∈ FG : ω̃k ≻k ω and ω̃k≫(ω−k, 1− ωk).

An outcome is called F-stable if it belongs to some farsightedly stable set.

A farsightedly stable set that contains all other is called the largest farsightedly stable set

LFSG.

I will call an outcome stable, when there is no need to distinguish between C- and F-

stability. I will also say that a coalition C ⊆ V (G) and the induced subgraph G(C) are

stable when the associated profile ω(C) is stable.

The sets in Definitions 1 and 2 depend on the network G and on the parameters of the

utility function (1). However, for the sake of notational simplicity, only the dependence on

G is explicitly indicated. It follows directly from these definitions that the largest sets are

unique when they exist.

The formulation 5(I) of the internal stability condition 2(I) emphasizes that the player

k is deterred from changing an F-stable profile ω ∈ FG to (ω−k, 1− ωk) only if there is no

plausible path to a stable profile ω̃k ∈ FG that k prefers to ω. This formulation and the

condition (4) in Definition 1 then embody, respectively, optimistic and pessimistic attitudes.

Farsightedly stable sets rely on optimistic agents, who expect that their most favorable F-

stable outcome will eventually materialize after a deviation, whereas consistent sets are

sustained by pessimistic players who assume their least favorable C-stable outcome after a

deviation.
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4 Cores, collapsible graphs and their packings

4.1 Cores and collapsible graphs

For my main results, I need some graph-theoretical definitions and notation. The degree

degi(G) of node i in graph G is the number of i’s links (neighbors) in this graph and

the minimum degree of G is denoted by δ(G) ≡ mini∈V (G) degi(G). Seidman (1983) uses

minimum degrees to define k-cores as means of identifying highly cohesive regions of a graph

when the regions embedding them may not themselves be highly cohesive. Formally, the

k-core Gk of graph G is its largest subgraph with a minimum degree of k. Equivalently,

Gk is the subgraph of G formed by repeatedly deleting (in any order) all vertices of degree

less than k. For a sufficiently high value of k, the k-core Gk will be empty. In this case, G

is k-core free. The maximum core number ĉ(G) is the largest integer k such that G is not

k-core free. It is easy to verify that the k-core is unique, and hence well-defined, and that

k-cores are nested, Gk+1 ⊆ Gk.

Figure 2: k-cores of graph G:

G1 = G (top), G2 (middle) and

G3 (bottom). G2 obtains af-

ter removing successively the

nodes 12, 13 and 7 from G1.

G3 results after removing the

nodes 5 and 6 from G2.

Collapsible subgraphs of G: 1-

collapsible subgraphs: all links

in G; 2-collapsible subgraphs:

the cycle 1568, triangles 123,

124, 134, 234 and the four tri-

angles formed by the subsets

of nodes 8,9,10,11; 3-collapsible

subgraphs: two complete sub-

graphs in G3.

A subclass of k-cores that is of particular relevance for this work are the k-collapsible
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graphs introduced in Bickle (2018). Graph G is k-collapsible if ĉ(G) = δ(G) = k and

G\v is k-core free for every vertex v in G. The first condition ensures that all nodes

in G have at least k links and that G does not have denser cores than the k-core. The

second condition stresses that the k-core G will collapse if any of its nodes is removed.

Bickle (2018) shows that 1-collapsible graphs correspond to edges and 2-collapsible graphs

to cycles. The structure of k-collapsible graphs can be considerably more complicated for

k > 2. A prominent class of k-collapsible graphs are k-regular networks, where each node has

exactly k links. I will denote by KG
k the collection of all induced k -collapsible subnetworks

of G, that is, all the k -collapsible subnetworks of G that are induced by a subset of V (G).

Figure 2 illustrates the nested k-cores and the collapsible subgraphs of graph G with the

maximum core number ĉ(G) = 3.8

4.2 Graph packings

It will prove useful to merge collapsible subgraphs into larger structures. Formally, a k-

collapsible packing PG
k of graph G is a (possibly empty) set of disjoint k-collapsible sub-

graphs of G (i.e., each such subgraph is an element of KG
k ). Packings are well-established

concepts in graph theory that generalize matchings as a 1-collapsible (edge) packing PG
1 is

simply a collection of disjoint edges from G. In analogy to a maximal matching, a packing

is called maximal if it is not a subset of any other packing, it is maximum if there is no other

packing that covers a larger number of nodes, and it is perfect when it covers all nodes. A

maximum (perfect) edge packing and a maximal edge packing of a cycle with six nodes are

illustrated in Figure 3. Cycle packings of the graph in Figure 1 and their relation to the

stability of outcomes are discussed in Subsection 5.3.

Collapsible packings will prove useful in the construction of C-stable structures by merg-

ing collapsible subgraphs. The following novel concept of closed packings will play a crucial

role in verifying the F-stability of these merged structures.

Definition 3 (Closed Collapsible Packing). A k-collapsible packing RG
k of graph G is closed

if every maximal k-collapsible packing of the induced subgraph G(V (RG
k )) of G is perfect.

The Definition 3 implies for a closed packing RG
k that the successive removal (in any

order) of subsets of nodes from V (RG
k ) that form k-collapsible subgraphs of G terminates

with the empty set. It also implies that a sufficient (but not necessary) condition for the

packing RG
k to be closed is that the subgraph of G induced by the nodes in RG

k is identical

to this packing. Then, RG
k = G(V (RG

k )) consists of disconnected k-collapsible subgraphs

of G and RG
k is the only maximal k-collapsible packing of itself. An example where this

condition does not hold but the packing is still closed is a perfect edge packing RG
1 of a

8The main results in this work are presented in terms of k-cores and k-collapsible graphs. Alternatively,

they could be expressed in terms of graph degeneracy. A graph is k-degenerate (Lick and White, 1970) if

its vertices can be successively deleted so that, when deleted, each has a degree at most k. The degeneracy

of a graph G is the smallest k such that G is k-degenerate and is equal to its maximum core number ĉ(G).
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Figure 3: Graph G (left), a maximum (perfect) edge packing PG
1 = {12, 34, 56} of G

(middle) and a maximal edge packing RG
1 = {12, 45} of G (right).

complete graph G. Then RG
1 ⊂ G(V (RG

1 )) = G but any maximal edge packing of G is

perfect.

In Figure 3, the nodes covered by the packing PG
1 induce the original graph G =

G(V (PG
1 )). Any edge packing of G consisting of two edges separated by a node (e.g.,

RG
1 ) is maximal but not perfect. Therefore, PG

1 is not closed. On the other hand, the nodes

covered by the packing RG
1 induce a subgraph of G that consists of two disconnected edges

12 and 45. The unique maximal edge packing of this subgraph covers these edges and is

perfect. Hence, RG
1 is closed.9

5 Results

Before stating my main result (Proposition 4) on merged cooperation structures, I first prove

in Proposition 1 that the LFSG exists and is nonempty for any graph G. This implies the

non-emptiness of the LCSG. In order to determine which profiles belong to these sets,

I need Proposition 2 that shows how players’ preferences over outcomes depend on their

active neighborhoods in G and on the cost-benefit ratio of provision. This proposition is

then instrumental in finding the smallest coalitions of players (subgraphs of G) that support

cooperation by their members (Proposition 3). Finally, I show how these subgraphs can

be merged into larger structures that support cooperation and prove the bounds on the

number of active players in these structures (Proposition 4).

9Although the closed edge packing RG
1 in Figure 3 is also a maximal packing of G, this is not always the

case. For example, in a cycle with five nodes, any closed edge packing covers just one edge but any maximal

edge packing contains two links.
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5.1 Non-emptiness of stable sets and the role of the cost-benefit ratio

Chwe (1994) shows that an LCS exists and it is nonempty when the set of outcomes is finite

and preferences are irreflexive. As this is the case in the present framework, his result applies

directly to the LCSG. Moreover, he proves that an LCS contains all farsightedly stable sets

although the latter may not exist. The following result shows that, in my context, an LFSG

exists for any graph G, and it contains the Nash outcome where no player contributes. In

the appendix, I present Algorithm 1 (Algorithm 2) that constructs the LCSG (LFSG)

iteratively starting with this outcome. Recall that the definitions of the LFSG and the

LCSG imply that these sets are unique when they exist.

Proposition 1. Given network G, payoff function (1) and Assumptions 1-2, an LFSG

exists and it contains the Nash outcome 0 ≡ (0, ..., 0).

All proofs are relegated to the Appendix.

This result and Proposition 3 in Chwe (1994) imply then 0 ∈ LFSG ⊆ LCSG. I will

now relate these sets to the parameters of the model and, in particular, to the underlying

network. In general, this relationship is confounded by the shape of the benefit function and

will depend on the idiosyncratic values of the parameters ck and δk for each player k. In

what follows, I assume that the players are symmetric with respect to these parameters. I

also assume that the benefit function takes a simple linear form. Under these assumptions,

the underlying network and the parameters impose a distinct structure on cooperating

coalitions.

Assumption 3. For each player k ∈ N ,

(A) δk = δ > 0, ck = c ≥ 0, (6)

(B) βk(x) = α · x, α > 0,

where c > α then follows by Assumption 1. The crucial feature of the specification 6(B)

is that the marginal benefit from an active neighbor to player k does not depend on the

total number of k’s contributing neighbors. This is not the case for, e.g., concave (convex)

functions, where the marginal benefit decreases (increases) with each additional neighbor.10

It turns out that the contribution cost c and the marginal benefits α and δ affect the agents’

decisions only through the cost-benefit ratio of the provision.

Definition 4 (Cost-Benefit Ratio). κ ≡ ⌈ c−α
α·δ ⌉ where c > α > 0, δ > 0, and ⌈x⌉ is the

smallest integer greater than or equal to x.

Thus, κ is the (integer ceiling of) ratio of the net contribution cost, i.e., the provision

cost c minus the benefit α from own contribution, over the marginal benefit α · δ of each

10For non-linear benefit functions, the largest sets can be still constructed with Algorithm 1 (Algorithm

2). However, the following propositions hold only for the linear case.
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active neighbor. As c > α and α · δ > 0 by Assumptions 1 and 3, it follows that κ ≥ 1. It

is also immediate that κ (weakly) decreases in δ and α, while it (weakly) increases in c.

All following results hold under the Assumptions 1-3 and depend on the cost-benefit

ratio κ and the underlying network G only. I highlight this dependence by including both

the network G and the parameter κ when referring to the largest sets as LCSG
κ and LFSG

κ .

The next result shows how players’ preferences over outcomes depend on their active

neighborhoods in G and on the cost-benefit ratio κ.

Proposition 2. Fix the network G, subsets S, T ⊆ V (G), and the cost-benefit ratio κ. The

preference relation of player k such that k ∈ S and k /∈ T over the associated profiles ω(S)

and ω(T ) satisfies

ω(T ) ≻k ω(S) ⇔ degk(G(S))− degk(G(T ∪ k)) < κ. (7)

Hence, each player prefers a profile where she is inactive to a profile where she is active

if and only if the number of her active neighbors in the latter profile exceeds the number

of her active neighbors in the former profile by less than κ. For example, when a player

accounts for the defections of her neighbors triggered by her own, their number should be

less than κ to make the defection worthwhile. As a special case, (7) implies that player

k ∈ S prefers the Nash profile to ω(S) when degk(G(S)) < κ. In this case, k will defect

independently of the reactions of the other contributors in S. Note that for a sufficiently

large κ, the sets LCSG
κ and LFSG

κ will contain only the Nash outcome for any network G.

5.2 Minimal Stable Sets

The last proposition proves useful for finding the smallest coalitions of players that can

sustain contributions of their members. A single defection in such a coalition leads to the

unravelling of cooperation because the Nash profile indirectly dominates then the resulting

outcome. Formally, I define the Minimal Stable Set (MSS) as a collection of outcomes that

are not indirectly dominated by the Nash profile unless at least one of the active players

defects.

Definition 5 (Minimal Stable Set). Given the network G and the cost-benefit ratio κ,

MG
κ ≡ {ω ∈ {0, 1}n\0 : 0 ̸≫ ω,0≫ω̃,∀ω̃ < ω}. (8)

The last definition implies that no player active in ω ∈ MG
κ prefers the Nash profile

to this outcome. Otherwise, there is an active player k such that 0 ≻k ω and 0≫(ω−k, 0)

which implies 0 ≫ ω contradicting the definition of MG
κ . The fact that a single defection

from an outcome in the MSS triggers the complete breakdown of cooperation disciplines

all contributors who (weakly) prefer this outcome to the Nash profile. In the next result

I show that the MSS is a strict subset of LFSG, it contains all minimally stable profiles,

and that coalitions associated with profiles in the MSS induce collapsible subgraphs of the

underlying network.
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Proposition 3. Given any network G and cost-benefit ratio κ, it holds that:

1. MG
κ ⊂ LFSG

κ ⊆ LCSG
κ .

2. There are no outcomes ω̃ ∈ LCSG
κ \0 and ω ∈ MG

κ such that ω̃ < ω.

3. Any C ⊆ V (G) associated with ω(C) ∈ MG
κ induces a κ-collapsible subgraph of G:

ω(C) ∈ MG
κ ⇔ G(C) ∈ KG

κ . (9)

This proposition shows that the outcomes in MG
κ are F- and C-stable and that they

are also minimally stable, ie, no subcoalition of contributors associated with an outcome

in MG
κ can sustain cooperation on its own. The double implication (9) stresses the role of

collapsible subgraphs as minimal structures that support cooperation for both optimistic

and pessimistic players. The definition of collapsible networks in the previous section then

offers important insights into these smallest cooperation structures. As κ-collapsible sub-

graphs are, by definition, κ-cores, each node in such a subgraph has at least κ neighbors. A

minimal cooperating coalition C must then have at least κ+1 members. It follows that for

a high cost-benefit ratio κ, only large and cohesive neighborhoods will be able to sustain

cooperation among their members. However, this cooperation will be fragile. If any agent

v ∈ C is removed from this coalition (becomes inactive), the induced subgraph G(C\v) of
the κ-collapsible graph G(C) is no longer a κ-core. This implies that at least one of the

remaining agents in C\v has fewer than κ active neighbors and is better off defecting. Then,

another agent becomes connected to less than κ active players and so on until the coop-

eration in C unravels completely. The fragility of κ-collapsible graphs requires, therefore,

cooperation by all involved agents.

5.3 The motivating example revisited

Before presenting my final result, I pause briefly to discuss stable cooperation in the network

G in Figure 1 stressing the role of the previous results and previewing the proposition in

the next subsection. The cost and the marginal benefit parameters in this example imply

the cost-benefit ratio κ = 2. As Bickle (2018) showed that 2-collapsible graphs correspond

to cycles, it follows by Proposition 3 that the cycles 123, 2345 and 456 are the smallest

structures that can sustain stable cooperation in G. Consider, for example, the situation

where only players in the cycle 123 are active. If one of its nodes, say 1, defects, then

the nodes 2 and 3 will have only one active neighbor each. By Proposition 2, each of

these nodes will prefer to free-ride independently of the action chosen by the other node.

Anticipating the certain breakdown of cooperation in the cycle 123 and the loss of two

active neighbors, the (optimistic or pessimistic) player 1 prefers to remain active. Note that

the total breakdown of cooperation is credible as the Nash outcome is stable (Proposition

1) and there is no escape from it through a chain of individual deviations (Lemma 1).

Obviously, the same argument supports cooperation in the cycle 456. As players in either
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cycle do not need outside support to maintain their contributions, it seems natural that the

cycle packing that contains both cycles and covers all nodes in G is stable as well. While

this institution holds for C-stability, it fails in the case of F-stability. Regarding C-stability,

when starting from the all-contribute profile, the aforementioned chain of defections in the

cycle 123 triggered by a single deviation will still materialize when the involved players

rationally assume that their actions will not affect contributions in the cycle 456 (which

can sustain cooperation on its own). Pessimistic players in the cycle 456 will be deterred

from defection by the same argument, and therefore the perfect cycle packing is C-stable.

However, the chain of defections above is not inevitable. Free-riding by player 1 can trigger

also a single defection by player 6 without affecting actions of the active players covered by

the cycle 2345, which is F-stable by Proposition 3. In this possible scenario, players 1 and

6 are better off defecting while keeping all her active neighbors, and hence the perfect cycle

packing is not F-stable.

Incidentally, the perfect cycle packing of the graph G that consists of the cycles 123 and

456 is not closed because the maximal cycle packing 2345 of the graph induced by nodes

in V (G) is not perfect (it does not cover the nodes 1 and 6). On the other hand, it can

be verified that any closed cycle packing of G consists of a single cycle (123, 456, or 2345),

which is F-stable by Proposition 3. Hence, in an F-stable profile only nodes in one of these

cycles will contribute. In the next subsection, I generalize this example to any underlying

network and cost-benefit ratio.

5.4 Packings and bounds on cooperation

In this subsection, I present the main result concerning the merged subnetworks of coop-

erating agents. The following definition will prove useful for stating and discussing this

result.

Definition 6 (Optimal profiles). Given the network G and the cost-benefit ratio κ:

A profile is C-optimal when it is C-stable with γGκ ≡ maxω∈LCSG
κ

∑
i∈N ωi active players.

A profile is F-optimal when it is F-stable with γ̃Gκ ≡ maxω∈LFSG
κ

∑
i∈N ωi active players.

Therefore, a C-optimal (F-optimal) profile has the highest number γGκ (γ̃Gκ ) of active

players among all C-stable (F-stable) profiles. I will refer to an action profile simply as

optimal when there is no need to distinguish between C- and F-optimality. Note that from

the inclusion LFSG
κ ⊆ LCSG

κ , it follows immediately γ̃Gκ ≤ γGκ .

The next proposition derives the bounds on γGκ and γ̃Gκ and shows that the κ-collapsible

packings (closed κ-collapsible packings) form C-stable (F-stable) subgraphs of G. Recall

that a coalition C ⊆ V (G) and the induced subgraph G(C) of G are stable when the

associated profile ω(C) is stable.

Proposition 4. Given network G and cost-benefit ratio κ,

1. Any κ-collapsible packing of G is C-stable.
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2. Any closed κ-collapsible packing of G is F-stable.

3. Only nodes covered by the κ-core Gκ can be active in a stable outcome.

From 1-3 it follows that the number of active players in an optimal profile is bounded by,

|V (Gκ)| ≥ γGκ ≥ max
PG
κ

|V (PG
κ )|,

|V (Gκ)| ≥ γ̃Gκ ≥ max
RG

κ

|V (RG
κ )|,

where the first (last) maximum is taken over all κ-collapsible packings (all closed κ-collapsible

packings) of G, and |X| stands for the cardinality of the set X.

The intuition of Part 1 relies on players’ pessimism in C-stable profiles. As defection by

any node in a collapsible graph unravels cooperation in this graph, a pessimistic player con-

tributes because she fears that her defection will usher the breakdown of cooperation in the

collapsible subnetwork she is part of. On the other hand, Part 2 relies on players’ optimism

in F-stable profiles. First, note that optimistic players are not necessarily deterred from

free-riding by the previous argument. As shown in the graph in Figure 1, defectors can have

expectations that rationalize contributions by their neighbors. However, such expectations

require that defectors are not covered by a κ-collapsible network (otherwise, a defector loses

at least κ active neighbors). This is impossible when active players are arranged in a closed

packing as then the removal of all non-defectors in collapsible subnetworks would leave such

a subnetwork of defectors. Finally, Part 3 simply states that a player can be active in a

stable profile only if she has at least κ active neighbors.

Proposition 4 helps answer another important question. Can a social planner design a

network in which (almost) all players contribute? In fact, this is the case when the number

of players n exceeds the cost-benefit ratio κ. Then, a κ-regular network, i.e., a network

where each vertex has exactly κ neighbors, exists when n ·κ is even. As a κ-regular network

is κ-collapsible, the last proposition implies that it can sustain C- and F-stable cooperation.

It follows that a social planner can design a network that sustains contributions either by

all n players (when n · κ is even) or by n− 1 agents (when (n− 1) · κ is even). In any case,

cooperation in a regular network is extremely fragile, as an (accidental) defection by any

node will lead to its complete breakdown.

Finally, I briefly comment on the relaxation of the Assumption 2 that restricts the

effectiveness relation to singleton coalitions. It turns out that the proof for the upper

bound |V (Gκ)| on the number of contributors in Proposition 4 works for any effectiveness

relation that allows individual deviations. In particular, when coalitions of any size can

deviate, the profile ωκ, in which a node contributes whenever it belongs to the κ-core Gκ,

attains this upper bound. It can be shown11 that the singleton set {ωκ} forms a farsightedly

11As the set {ωκ} is a singleton and therefore internally stable, one has to check only external stability.

Take any profile ω ̸= ωκ. All nodes active in ω that do not belong to Gκ strictly prefer ωκ to ω as free-riding
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stable set, and the results in Chwe (1994) imply then ωκ ∈ LFSG
κ ⊆ LCSG

κ . In this case,

|V (Gκ)| players will contribute in an optimal profile in any graph G.

6 Stable cooperation in stars, lines and complete networks

In this section, I assess the tightness of the bounds given in Proposition 4 in the extreme

cases of minimally connected structures (stars and lines) and maximally connected complete

networks.

Example 1. A star consists of a central node (center) connected to peripheral vertices

(spokes) that have no other links. When κ = 1, any (closed) edge packing RG
1 of star G

with n − 1 ≥ 1 vertices contains just one link that connects the center with a spoke. From

Proposition 4, it follows that at least the center and one spoke will be active in any optimal

profile. Then, however, all other spokes can defect without losing the single active neighbor

at the center. Therefore, the number of active players in an optimal outcome cannot exceed

|V (RG
1 )| = 2.

For κ > 1, the κ-core Gκ is empty and the upper bound in Proposition 4.3 becomes

|V (Gκ)| = 0. Hence, no agent in a star contributes when the cost-benefit ratio exceeds one.

Example 2. A line is a sequence of n−1 distinct edges which join a sequence of n distinct

vertices. For κ = 1, the level of sustainable cooperation in lines is dramatically higher than

in stars, although both structures have the same number of edges. Firstly, a maximum edge

packing PG
1 of the line G with n ≥ 2 vertices covers all nodes when n is even and n − 1

nodes when n is odd. Hence, a C-optimal profile has at least |V (PG
1 )| ≥ n−1 active agents.

Regarding the lower bound for F-optimal profiles, note that a maximum closed edge packing

RG
1 of the line G consists of a collection of edges separated by a vertex not covered by RG

1 .

Then, RG
1 covers

|V (RG
1 )| =

2

3
(n+ k), where k ∈ {−1, 0, 1} :

n+ k

3
∈ N,

nodes, and γ̃Gκ ≥ 2(n− 1)/3 by Proposition 4.2.

For κ > 1, as in stars, the κ-core Gκ is empty and the upper bound in Proposition 4.3

becomes |V (Gκ)| = 0. No agent in a line contributes when the cost-benefit ratio exceeds one.

Example 3. In a complete graph, each pair of nodes is directly connected. It is easy to

verify that a complete graph G with n > κ vertices contains at most ⌊n/(κ + 1)⌋ disjoint

complete subgraphs with κ + 1 nodes each, where ⌊x⌋ is the greatest integer less than or

equal to x. As these subgraphs are κ-collapsible, the corresponding maximum κ-collapsible

packing PG
κ of G covers,

|V (PG
κ )| = ⌊n/(κ+ 1)⌋ · (κ+ 1) (10)

is their dominant action. Regarding the active nodes in Gκ that are connected to inactive neighbors in

Gκ, they also clearly prefer ωκ to ω. Therefore, there is a path of individual defections followed by a joint

deviation to ωκ such that all deviating players prefer the final outcome to the outcome before their deviation.
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nodes. The packing PG
κ is closed because the successive removal from V (PG

κ ) of subsets of

κ+ 1 nodes that form complete subgraphs of G terminates with the empty set. Hence, (10)

states the lower bound on C- and F-optimal profiles while their upper bound is given by

|V (Gκ)| = n.

In case V (PG
κ ) ⊂ V (G), some nodes in G will be inactive in any stable outcome. Specif-

ically, the nodes in V (G)\V (PG
κ ) will be better off free-riding when all the nodes in V (PG

κ )

are active. It follows that the number of active nodes in an optimal outcome is equal to the

order of the maximum packing given in (10), which implies the lower bound on the fraction

of contributors in an optimal profile,

γ ≡ γGκ = γ̃Gκ = ⌊n/(κ+ 1)⌋ · (κ+ 1) ≥ n− κ ⇒ γ

n
≥ 1− κ

n
. (11)

When the network size n grows large (formally, when κ/n → 0), the fraction of contributors

γ/n converges to one. Effectively full cooperation can be sustained in completely connected

network with sufficiently many nodes when κ is fixed.

Figure 4: Fraction of contributing agents γ/n in an optimal profile as a function of the

relative cost-benefit ratio κ/n in the complete network with n = 1, 000 nodes. The dashed

lines indicate the diagonal 1− κ/n and the horizontal line γ/n = 0.5.

Figure 4 shows the fraction of contributors γ/n in an optimal profile as a function of the

relative cost-benefit ratio κ/n. This fraction is nonmonotonic in κ/n and can fall as low as

50% of the population (for κ/n ≃ 0.5). The sudden drops in stable cooperation occur when

the number ⌊n/(κ+1)⌋ of κ-collapsible networks packed into G decreases as κ/n marginally

increases. Note that the fraction of active players never falls below 1 − κ/n as shown in

(11). Note also that an optimal profile involves almost all players when the ratio κ/n is

very low and when it is very high.

Compared with the κ-regular graph, which can sustain contributions by all or all but one

agent, the complete network typically has a lower level of stable cooperation. Unlike the

κ-regular graph, however, the complete network confines the damage of a single defection to

a κ-collapsible subgraph preventing it from spreading to all nodes.
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7 Discussion

This study finds that the cohesion of social networks is paramount for the stability of

cooperation by farsighted players. Specifically, when players are symmetric except for their

position in a social network and when the marginal benefit of neighbors’ contributions does

not depend on the number of active neighbors, then:

1) Cooperation is only possible if there exist sufficiently cohesive groups, where cohesion

is captured by graph cores (and its special case, collapsible subgraphs). Higher contribution

cost c or lower marginal benefit α · δ (ie, higher cost-benefit ratio κ) lead to larger and

more cohesive groups of contributors but only if they form κ-collapsible subgraphs in the

underlying network. When κ exceeds a certain threshold, such subgraphs do not exist (the

network is κ-core free), and it cannot sustain cooperation.

2) At the lowest level, cooperation is feasible only in particular topological structures

- κ-collapsible networks. Their salient property is that the removal of any node leads to a

breakdown of cooperation among the remaining nodes. These structures take the form of

edges or cycles for low values of the cost-benefit ratio (κ = 1 and κ = 2, respectively) and

have a more complicated topology for higher values of κ.

3) There is, generally, a non-monotonic relationship between the cost-benefit ratio and

players’ contributions in an optimal outcome. For example, the highest level of cooperation

in complete networks occurs when the relative cost-benefit ratio is very low and when it is

very high, while the lowest level occurs for values in the middle of the relative cost range.

4) The addition (deletion) of links may lead to more or less contributions. For example,

when κ = 2, connecting the ends of a 4-nodes line with an additional edge to create a

4-nodes cycle can dramatically increase the number of active players from zero to four.

Linking a pair of unconnected nodes in this cycle will, however, lower the level of stable

cooperation from four to three players.

5) Generally, F-stability is more difficult to achieve than C-stability, at least for low

values of κ. For high values, sufficiently cohesive groups tend to become fewer and further

apart. In this case, a κ-collapsible packing is more likely to be closed and, hence, a C-stable

subnetwork to be F-stable.

6) A complete network can sustain (almost) full cooperation for any cost-benefit ratio κ

when it has sufficiently many nodes. At the other extreme, at most two players contribute

in a star for any κ.

7) Either all or all but one player can be covered by a κ-regular network that is κ-

collapsible and, hence, C- and F-stable. A social planner can, therefore, ensure stable

cooperation by all (but one) players if she designs the network.

Unlike this paper, previous studies on provision of public goods in networks stress the

importance of other graph-theoretical concepts. For example, specialized contribution equi-

libria in Bramoullé and Kranton (2007) correspond to maximal independent sets of the

underlying network, while the lowest eigenvalue of the adjacency matrix plays a key role in
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Allouch (2015).

Finally, I briefly comment on the relationship between stability and efficiency using the

example of the complete network analyzed in Section 6. The total benefit that an active

player induces in the complete network G with n nodes is α(1+δ(n−1)) while incurring the

cost c. It follows that all players contribute in an efficient (welfare maximizing) outcome

when n − 1 > κ ≥ c−α
α·δ . However, Figure 4 shows that these efficient contributions are

unstable as, generally, the fraction of contributors in an optimal (stable) profile is less than

one when (n− 1)/n > κ/n. As in many other network models, also in the present context,

there is a tension between efficiency and stability.
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U. Fischbacher, S. Gächter, Social preferences, beliefs, and the dynamics off free riding

in public good experiments, American Economic Review 100(1) (2010), 541–556

J. Gagnon, S. Goyal, Networks, markets, and inequality, American Economic Review

107(1) (2017), 1–30

A. Galeotti, S. Goyal, The Law of the Few, American Economic Review 100(4) (2010)

1468–92

A. Galeotti, S. Goyal, M. Jackson, F. Vega-Redondo, L. Yariv, Network games, Review

of Economic Studies 77 (2010), 218–244

G. Genicot, D. Ray, Group Formation in Risk-Sharing Arrangements, Review of Eco-

nomic Studies 70 (2003), 87–113

J. Greenberg, The Theory of Solid Situations: An Alternative Game-Theoretic Ap-

proach, Cambridge University Press, Cambridge, UK, 1990

M. Haag, R. Lagunoff, On the Size and Structure of Group Cooperation, Journal of

Economic Theory, 135 (2007), 68–89

P. J-J. Herings, A. Mauleon, V. Vannetelbosch, Farsightedly stable networks, Games

and Economic Behavior, 67(2) (2009), 526–541

P. J-J. Herings, A. Mauleon, V. Vannetelbosch, Matching with myopic and farsighted

players, Journal of Economic Theory, 190 (2020), 105125

M.O. Jackson, T. Rodriguez-Barraquer, and X. Tan, Social Capital and Social Quilts:

Network Patterns of Favor Exchange, American Economic Review, 102(5) (2012), 1857–97

M.O. Jackson, A. Wolinsky, A strategic model of social and economic networks. Journal

of Economic Theory 71(1) (1996), 44–74

M. Kandori, Social Norms and Community Enforcement, Review of Economic Studies,

59(1) (1992), 63–80

D. Karlan, M. Mobius, T. Rosenblat, and A. Szeidl, Trust and social collateral, Quarterly

Journal of Economics 124 (2009), 1307–1361

R. Kawasaki, S. Muto, Farsighted stability in provision of perfectly “Lumpy” public

goods, Mathematical Social Sciences 58 (2009), 98–109

M. Kinateder, L. Merlino, Public goods in endogenous networks, American Economic

Journal: Microeconomics, 9(3) (2017), 187–212

H. Konishi, D. Ray, Coalition formation as a dynamic process. Journal of Economic

Theory 110 (2003), 1–41

M. Laclau, A folk theorem for repeated games played on a network, Games and Economic

Behavior, 76 (2012), 711–737

23



D. Lick, A. White, K-Degenerate Graphs, Canadian Journal of Mathematics, 22(5)

(1970), 1082–1096

S. Lippert, G. Spagnolo, Networks of relations and Word-of Mouth Communication,

Games and Economic Behavior, 72(1) (2011), 202–217

D. Lopez-Pintado, D.J. Watts, Social influence, binary decisions and collective dynamics,

Rationality and Society 20(4) (2008), 399-443

A. Mauleon, V. Vannetelbosch, Farsightedness and Cautiousness in Coalition Formation

Games with Positive Spillovers. Theory and Decision, 56 (2004), 291–324

A. Mauleon, V. Vannetelbosch, W. Vergote, von Neumann–Morgenstern farsightedly

stable sets in two-sided matching, Theoretical Economics 6 (2011), 499–521
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Appendix

Proofs

Recall that the profile ω(S) is associated with the set S ⊆ N whenever ωi(S) = 1 ⇔ i ∈ S.

Note that set inclusion T ⊆ S ⊆ N is then equivalent to ω(T ) ≤ ω(S). Moreover, a coalition

C ⊆ V (G) or the induced subgraph G(C) of G is stable when the associated profile ω(C)

is stable. Whenever the weak preference ⪰k is used, the strict inequality in (3) is replaced

by the weak one.

Proof. Lemma 1: The indirect dominance ω ≫ ω̃ implies under Assumption 2 that there

is a sequence of players i1, ..., im that can transform ω̃ into ω by switching their actions

and that each of them prefers ω to the profile prevailing after her predecessor’s action. In

particular, the last player im will switch from 1 to 0 because, by Assumption 1(B), she

prefers the outcome ω0
m = (ω−im , 0) to the outcome ω1

m = (ω−im , 1),

uim(ω
0
m, G) = βim(δim · rim) > βim(1 + δim · rim)− cim = uim(ω

1
m, G),
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where rim is the number of im’s active neighbors in both profiles. The same argument can

be iterated for players im−1, ..., i1 given that all subsequent players play 0. As all players in

the sequence that transforms ω̃ to ω deviate from 1 to 0, it holds ω̃ < ω.

Lemma 2. Any non-empty subset of disjoint k-collapsible subgraphs of G(V (RG
k )), where

RG
k is a closed k-collapsible packing of G, forms a closed k-collapsible packing of G.

Proof. By contradiction: Assume a subset K of disjoint k-collapsible subgraphs of G(V (RG
k ))

is not a closed packing of G. Then, there is a maximal packing M of G(V (K)) that is not

perfect. However, there is a (possibly empty) perfect packing P of the subgraph G(V (RG
k ))\K

because RG
k is closed. But then, the packing M ∪P of G(V (RG

k )) is maximal but not perfect

and, hence, RG
k cannot be closed.

Proof. Proposition 1:

First, I show that 0 ∈ LFSG when LFSG exists. Suppose, for the sake of contradiction,

that 0 /∈ LFSG. Then, by external stability of LFSG, there is an outcome ω̃ ∈ LFSG such

that ω̃ ≫ 0. This, however, contradicts Lemma 1.

I show that LFSG exists by constructing this set with Algorithm 2. Note that by this

result and Proposition 3 in Chwe (1994), 0 ∈ LFSG ⊆ LCSG.

Proof. Proposition 2:

The claim follows from the comparison of payoffs (1), given the benefit function 6(B),

for the profiles ω(T ) and ω(S), where k ∈ S and k /∈ T :

ω(T ) ≻k ω(S) ⇔

uk(ω(T ), G) > uk(ω(S), G) ⇔

α(δ · degk(G(T ∪ k))) > α(1 + δ · degk(G(S)))− c

⇔ κ = ⌈c− α

α · δ
⌉ ≥ c− α

α · δ
> degk(G(S))− degk(G(T ∪ k)).

Proof. Proposition 3:

1. MG
κ ⊂ LFSG

κ ⊆ LCSG
κ .

Algorithm 2 constructs the LFSG
κ iteratively starting with the singleton set {0} and then,

proceeding from smaller to larger subsets of N , by adding for each S ⊆ N the associated

profile ω(S) to LFSG
κ whenever the following condition holds:

∄T ⊂ S, ω(T ) ∈ LFSG
κ : ω(T ) ≫ ω(S).

I use this algorithm to construct the set F̃G
κ ≡ LFSG

κ \0 but rewrite the latter condition (by

replacing ̸ ∃ and ≫ with ∀ and ̸≫) for including ω(S) in F̃G
κ as follows:

0 ̸≫ ω(S) & ∀T ⊂ S, T ̸= ∅, ω(T ) ∈ F̃G
κ ⇒ ω(T ) ̸≫ ω(S). (12)
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On the other hand, the set MG
κ can be constructed iteratively by proceeding from smaller to

larger subsets S ⊆ N and adding the profile ω(S) ̸= 0 to it whenever:

0 ̸≫ ω(S) & ∀T ⊂ S, T ̸= ∅,0 ≫ ω(T ). (13)

In order to construct the set intersection MG
κ ∩ F̃G

κ , each included profile ω(S) must satisfy

both conditions (12) and (13). However, ω(T ) ∈ F̃G
κ implies 0 ̸≫ ω(T ) and 0 ≫ ω(T )

implies ω(T ) ̸∈ F̃G
κ for any non-empty T ⊂ S by internal stability of LFSG

κ . Hence, (12) can

be ignored when constructing MG
κ ∩ F̃G

κ because the implication ω(T ) ∈ F̃G
κ ⇒ ω(T ) ̸≫ ω(S)

there is irrelevant. It follows that MG
κ ∩ F̃G

κ = MG
κ , which implies MG

κ ⊆ F̃G
κ ⊂ LFSG

κ ⊆
LCSG

κ .

2. There are no profiles ω̃ ∈ LCSG
κ \0 and ω ∈ MG

κ such that ω̃ < ω.

By the MSS Definition 5, ω̃ < ω ∈ MG
κ implies 0 ≫ ω̃ ≡ ω̃(S) for any nonempty set

S of active agents. Then, there is an agent k ∈ S such that 0 ≻k ω̃(S). By Proposition

2, degk(S) < κ and, then, the dominant action for k is free-riding independently of actions

taken by the other players in S. After k’s defection, there is a player l ∈ S\k such that

0 ≻l ω̃(S\k) with defection as her dominant action. This argument applies successively to

all remaining players in ω̃(S). Hence, ω̃ cannot be stable.

3. ω(C) ∈ MG
κ ⇔ G(C) ∈ KG

κ .

⇒: First, note that the conditions {ω : 0 ̸≫ ω,0≫ω̃,∀ω̃ < ω} in the MSS Definition

5 imply for any k ∈ S that ω ≡ ω(S) ⪰k 0. Otherwise, there is an active player k ∈ S

such that 0 ≻k ω and 0 ≫ (ω−k, 0) < ω which contradicts 0 ̸≫ ω. Then, by Proposition 2,

degk(G(S)) ≥ κ for all k ∈ S and G(S) is a κ-core. Moreover, these conditions imply for

G(S\k), when S\k ̸= ∅, that there is a chain of defections from ω(S\k) < ω to 0. Hence,

there is a player l ∈ S\k such that 0 ≻l ω(S\k) and then, by Proposition 2, degl(G(S\k)) <
κ. In light of the formerly established degk(G(S)) ≥ κ for all k ∈ S, we conclude that

degl(G(S)) = κ and, hence, δ(G(S)) = κ.

For the players l1, l2, ... that follow k and l in the chain of defections, it will hold similarly

0 ≻l1 ω(S\{k, l}) ⇒ degl1(G(S\{k, l})) < κ, 0 ≻l2 ω(S\{k, l, l1}) ⇒ degl2(G(S\{k, l, l1})) <
κ, etc. Hence, we conclude that G(S\k) is κ-core free for any k ∈ S.

Now, in order to show that the κ-core G(S) has no denser cores, it suffices to prove that

G(S) is (κ+ 1)-core free. This follows from the fact that there is l ∈ S with κ neighbors in

G(S) and a sequence of players l1, l2, ... such that degl1(G(S\l)) < κ, degl2(G(S\{l, l1})) <
κ,... We conclude, therefore, that G(S) is κ-collapsible as ĉ(G(S)) = δ(G(S)) = κ and

G(S\l) is κ-core free for any l ∈ S.

⇐: Assume G(S) is κ-collapsible for some subset S ⊆ N of active players. Then,

degk(G(S)) ≥ κ and, by Proposition 2, ω(S) ⪰k 0 for any k ∈ S. Hence, there is no chain

of defections from ω(S) to 0, i.e., 0 ̸≫ ω(S).

On the other hand, as G(S\k) is κ-core free for any k ∈ S, its vertices can be successively

deleted so that when deleted, each has degree less than κ (Lick and White, 1970). By
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Proposition 2, each vertex when deleted (becoming inactive) strictly prefers the Nash outcome

to the outcome before its deletion. It follows that 0 ≫ ω(S\k) for any k ∈ S and, generally,

0 ≫ ω(T ) for any T ⊂ S, i.e., for any ω(T ) < ω(S). We conclude, therefore, that

ω(S) ∈ MG
κ .

Proof. Proposition 4

1: Any κ-collapsible packing of G is C-stable.

Let PG
κ (d) be a generic κ-collapsible packing of G consisting of d mutually disjoint κ-

collapsible subnetworks of G, where each subnetwork belongs to KG
κ . I show by induction

that PG
κ (d) is C-stable. PG

κ (1) is C-stable by Proposition 3. Assume that PG
κ (d − 1) is C-

stable for some d ≥ 2. In the packing PG
κ (d), which is an union of mutually disjoint graphs

G1, ..., Gd from KG
κ , each pessimistic player k ∈ Gi, i = 1, ..., d, assumes that her defection

will trigger successive defections by all other players in Gi. These defections result from

the vulnerability of an (isolated) κ-collapsible graph Gi to an individual defection by any

node k ∈ Gi as Gi\k is no longer a κ-core. Players in Gi can assume that there will be no

defections beyond Gi because the packing PG
κ (d)\Gi is C-stable by the inductive hypothesis.

Hence, anticipating the loss of all of her neighbors in Gi after defection, player k prefers to

contribute. I conclude, therefore, that PG
κ (d) is C-stable.

2: Any closed κ-collapsible packing of G is F-stable.

Let RG
κ (d) be a generic closed κ-collapsible packing of G consisting of d mutually disjoint

κ-collapsible subnetworks of G, where each subnetwork belongs to KG
κ . I show by induction

that RG
κ (d) is F-stable. R

G
κ (1) is F-stable by Proposition 3. Assume that RG

κ (2), ..., R
G
κ (d−1)

are F-stable for some d ≥ 2. For the sake of contradiction assume that a packing RG
κ (d) is

not F-stable. Then, the set of nodes V (RG
κ (d)) can be partitioned into a non-empty set D

of (optimistic) defectors and the F-stable set C of contributors such that ω(C) ≫ ω(D∪C).

If C = ∅, then after removing from D = V (RG
κ (d)) a set of nodes that form a κ-

collapsible subnetwork of G, the remaining nodes in the non-empty set D′ ⊂ D must form

a closed packing of G because RG
κ (d) is one. This packing is F-stable by the inductive

hypothesis. Then, optimistic players in D′ will not defect, which contradicts that D is the

set of defectors.

Otherwise, let C ′ ⊆ C ̸= ∅ be the subset of contributors that remains after removing

from G(C) the maximum number of contributors covered by disjoint κ-collapsible subgraphs

of G.

If C ′ = ∅, then the Definition 3 of closed packings implies that there is a perfect κ-

collapsible packing of G(D). This packing is closed by Lemma 2 and, hence, F-stable by the

inductive hypothesis. Then, optimistic players in D will not defect, which contradicts that

D is the set of defectors.

If C ′ ̸= ∅ then G(C ′) neither forms nor contains a κ-collapsible subgraph of G. Moreover,

the (optimistic) players in C ′ can assume that the nodes in C\C ′ will contribute after their

defection. This is because C\C ′ is F-stable due to the inductive hypothesis and Lemma
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2 that implies that the k-collapsible subgraphs covering the nodes in C\C ′ form a closed

packing of G. Hence, the players in the set C ′ will free-ride as, by Proposition 3, a smallest

structure that sustains cooperation is a κ-collapsible network. This contradicts that C is a

F-stable set of contributors.

3: Only nodes in the κ-core Gκ can be active in a stable outcome.

First, I show that any active node must have at least κ neighbors in G. For the sake of

contradiction, assume that there is a stable outcome ω(C) and an active node i ∈ C ⊆ V (G)

has less than κ neighbors in G, i.e., degi(G) < κ. As i can ensure a non-negative payoff by

being inactive, she will stay active in ω(C) only if,

ui(ω(C), G) ≥ 0 ⇔ α(1 + δ · degi(G(C)))− c ≥ 0

⇔ degi(G(C)) ≥ c− α

α · δ
⇔ degi(G(C)) ≥ ⌈c− α

α · δ
⌉ = κ.

This contradicts degi(G) < κ as degi(G) ≥ degi(G(C)) ≥ κ. Hence, nodes with less than κ

neighbors are always inactive and can be removed from G as they cannot support cooperation.

By the same argument, one deletes from the resulting graph G′ ⊆ G all nodes with less than

κ neighbors. Iterative application of this procedure shows that only nodes in the κ-core Gκ

can be active in a stable outcome.

Algorithms

Algorithm 1 (Algorithm 2) constructs the LCSG (LFSG) under Assumptions 1-2.

Algorithm 1. Construction of the LCSG:

1. Initiate LCSG = {0}.
2. Proceeding from smaller to larger non-empty subsets of N (the order does not matter

for subsets of equal cardinalities) add the profile ω(C) associated with the set C ⊆ N to

LCSG whenever

∀k ∈ C,∃ω̃(Dk) ∈ LCSG, Dk ⊆ C\k : (14)

ω(C) ⪰k ω̃(Dk) & ω̃(Dk)≫ω(C\k).

Algorithm 1 proceeds recursively starting with the set LCSG = {0}. It considers then

all non-empty subsets of active players in the increasing order of their cardinalities. It

adds the profile ω(C) associated with the non-empty set C ⊆ N of contributors to LCSG

whenever each contributor k ∈ C weakly prefers ω(C) to some C-stable profile ω̃(Dk) < ω(C)

(added previously to LCSG) that indirectly dominates ω(C\k). The profile ω(C) is stable

because the pessimistic player k expects that profile ω̃(Dk) will eventually materialize after

her deviation from the status quo ω(C) to ω(C\k).
In order to see that Algorithm 1 constructs the unique LCSG, note that the condition

(4) in the Definition 1 of consistent sets can be expressed for any ω(C) ∈ LCSG as,

∀k ∈ C, ∃ω̃(Dk) ∈ LCSG : ω̃(Dk) ̸≻k ω(C) & ω̃(Dk)≫ω(C\k), (15)

∀k ∈ N\C, ∃ω̃(Dk) ∈ LCSG : ω̃(Dk) ̸≻k ω(C) & ω̃(Dk)≫ω(C ∪ k).
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The first (second) line in (15) applies when player k is active (inactive) in profile ω(C) and

inactive (active) in profile ω(C\k) (ω(C ∪k)). In other words, the first (second) line stands

for player k changing her action from 1 to 0 (from 0 to 1).

Assumption 1(B) implies that ω(C) ≻k ω(C ∪ k) for any k ∈ N\C and, hence, the

condition in the last line of (15) always holds for ω̃(Dk) = ω(C) ≫ ω(C∪k). This condition
is, therefore, omitted in (14), where we can then also replace ∀k ∈ N by ∀k ∈ C.

On the other hand, ω̃(Dk)≫ω(C\k) in the first line in (15) implies, by Lemma 1,

Dk ⊆ C\k. Hence, we can replace the condition ∃ω̃(Dk) ∈ LCSG in the first line in (15)

by ∃ω̃(Dk) ∈ LCSG, Dk ⊆ C\k in (14). We also replace ω̃(Dk) ̸≻k ω(C) in (15) by its

equivalent ω(C) ⪰k ω̃(Dk) in (14). Moreover, as all action profiles that verify (14) are

included in LCSG, this set forms the unique LCSG.

Algorithm 2. Construction of the LFSG:

1. Initiate LFSG = {0}.
2. Proceeding from smaller to larger non-empty subsets of N (the order does not matter

for subsets of equal cardinalities) add the profile ω(S) associated with the set S ⊆ N to

LFSG whenever

∄ω(T ) ∈ LFSG, T ⊂ S : ω(T ) ≫ ω(S). (16)

Algorithm 2 constructs LFSG recursively starting with the singleton set {0}. Then it con-

siders all nonempty subsets of active players in the increasing order of their cardinalities.

It adds the profile ω(S) associated with the set S ⊆ N of contributors to LFSG whenever

there is no strict subset T ⊂ S with the associated profile ω(T ) (added previously to LFSG)

that indirectly dominates ω(S). If such a subset exists, optimistic players assume that the

transition from ω(S) to ω(T ) will materialize and ω(S) cannot be F-stable.

In order to see that Algorithm 2 constructs the unique LFSG, note that the condition

(2) that defines an F-stable set F can be expressed as,

(E) ∀ω(S) /∈ F,∃ω(T ) ∈ F : ω(T ) ≫ ω(S).

(I) ∀ω(S) ∈ F,∄ω(T ) ∈ F : ω(T ) ≫ ω(S).

We can replace ∄ω(T ) ∈ F : ω(T ) ≫ ω(S) in the condition (I) by ∄ω(T ) ∈ F, T ⊂ S :

ω(T ) ≫ ω(S) in (16) because ω(T ) ≫ ω(S) implies T ⊂ S by Lemma 1. Then, by veri-

fying (16), we ensure that F is internally stable (I). The condition (16) also ensures the

compliance with external stability (E) because ω(S) is not included in F only if there is

ω(T ) ∈ F such that ω(T ) ≫ ω(S). As all action profiles that verify (16) are included in

F , this set forms the unique LFSG. Note that if no other outcomes are added to the initial

set LFSG = {0}, this set is clearly externally stable and satisfies also, vacuously, internal

stability.
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Dear Professor Börgers,

I would like to thank you yet again for your thoughtful comments on the previous

versions of this paper and for giving me the opportunity to further improve my work.

After reading carefully your and both Reviewers’ comments, I have made substantial

changes in the revised manuscript to address all of them. First, I address your main concerns

(which I reproduce in italics for reference).

Largest consistent sets, and largest farsightedly stable sets, are the central concepts of your

paper. It is really strange that you don’t give a formal definition. I have noticed that a little

before your Definitions 1 and 2 you mention how Chwe (1994) defines the largest consistent

set (although you don’t mention how he defines the largest farsightedly stable set). But if

you already adapt the definitions of consistent and farsightedly stable sets to your framework

in Definitions 1 and 2, then why don’t you do the same for the corresponding ”largest set”

notions?

For more clarity, I first describe Chwe’s framework and his definitions in Section 3.2

of the revised manuscript. Then, I adapt Chwe’s model to my context in Section 3.3. In

this section, I write the definitions of the consistent set, C-table outcomes and the largest

consistent set in the definition environment (Definition 1 on p. 10 in Section 3.3):

Definition 1 (Consistent Set). Given network G, the set CG ⊆ Z of outcomes is

consistent provided that

∀ω ∈ CG, k ∈ N, ∃ω̃k ∈ CG : ω̃k ⊁k ω and ω̃k≫(ω−k, 1− ωk). (17)

An outcome is called C-stable if it belongs to some consistent set.

A consistent set that contains all other is called the largest consistent set LCSG.

Similarly, Definition 2 on the same page contains the definitions of the farsightedly stable

set, F-stable outcomes and the largest farsightedly stable set:

Definition 2 (Farsightedly Stable Set). Given network G, the set FG ⊆ Z of out-

comes is farsightedly stable provided that it satisfies external (E) and internal (I)

stability:

(E) ∀ω ∈ Z\FG, ∃ω̃ ∈ FG : ω̃ ≫ ω, (18)

(I) ∀ω ∈ FG, k ∈ N, ∄ω̃k ∈ FG : ω̃k ≻k ω and ω̃k≫(ω−k, 1− ωk).

An outcome is called F-stable if it belongs to some farsightedly stable set.

A farsightedly stable set that contains all other is called the largest farsightedly stable

set LFSG.
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You go on on page 10 to write that ”In what follows, I assume that CG (FG) is the LCS

(LFS)... In Section 4 I show that the unique CG (FG) contains at least the Nash profile

where no player contributes.” This is very unclear. For example, it is not clear whether the

result you mention in the second sentence is based on the assumption in the first sentence,

or how it relates to that assumption. Moreover, obviously, any reader will at this stage be

quite shocked that JET accepted a paper that is based on such a questionable assumption. I

also don’t quite understand where exactly you use this assumption in the following.

I have removed this misleading sentence from the revised manuscript. Now, I do not

make any assumptions about the (largest) consistent sets or about the (largest) farsightedly

stable sets when presenting the model in Section 3. Their existence and non-emptiness in

my context are shown in Section 5.1, where I report my results.

Somewhat paradoxically, after the very alarming statement in the Section 3 about your the

assumption of the existence of largest consistent and farsightedly stable sets, you then tell

the reader in Section 5 that you provide in the appendix algorithms that construct the sets

LCS and LFC. Then, why do you have to make the assumption in Section 3? Where, in

which part that follows Section 3, is the assumption used?

The “very alarming statement” about the assumption of the existence of the largest sets

has been removed in the revised manuscript. The existence and non-emptiness of these sets

is now shown in Section 5.1, where I also refer to the algorithms for their construction.

What you really want to assert in Proposition 1 remains unclear. For example, you might

wish to assert: a LCS exists. It is unique (presumably uniqueness follows from existence).

And, moreover, it contains the Nash profile. You might also wish to assert: a LFS exists It

is unique (which presumably follows directly from the definition and the existence). And it

contains the Nash profile. If that is what you want to say, then please write it in this way.

In the current phrasing it is not at all clear whether or not Proposition 1 is an existence

result.

I followed this helpful suggestion and show now in the amended Proposition 1 (Section

5.1, p. 14) the existence and non-emptiness of the largest farsightedly set LFSG for any

network G:

Proposition 1. Given network G, payoff function (1) and Assumptions 1-2, an

LFSG exists and it contains the Nash outcome 0 ≡ (0, ..., 0).

In the paragraph before this proposition, I comment that the uniqueness of the LFSG

results directly from its definition and existence. In the same paragraph, I also explain that
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the existence and non-emptiness (in my context) of the largest consistent set have been

shown by Chwe (1994).

Other central concepts of your paper are ”C-stable” and ”F-stable” and ”stable” outcomes.

You mention these concepts in the Introduction, but you do not provide formal ”Definitions”

(in the definition environment in Latex) of these concepts. This is not acceptable. All the

important definitions of your paper should be explicitly stated once the formal framework

has been introduced.

After informally introducing the concepts of C-stable and F-stable outcomes in the In-

troduction, I define them formally (in the definition environment) in Section 3.3 (Definitions

1 and 2, respectively). Then, I explain that “stable” is used more informally depending on

the context with the meaning of either C-stable or F-stable or both.

In Section 3 the phrase ”C-stable” appears for the first time in the first sentence of the second

paragraph of Section 3.2: ”A consistent set C ... contains C-stable outcomes that satisfy the

following property: ” This sentence sounds as if the reader already had an understanding

of what C-stable outcomes are, and as if you now you required those outcomes to have an

additional property. But, in fact, I believe that the property that follows is what defines

C-stable sets, and that the elements of C-stable sets are called C-stable outcomes. The more

conventional, and far clearer, way of writing this is: ”A set C is called C-stable if it has the

following property. ... An outcome is called C-stable if it is an element of a C-stable set.”

In the revised manuscript, I followed this suggestion: I first define consistent (farsight-

edly stable) set and then the C-stable (F-stable) outcomes as their elements (see Definitions

1 and 2, respectively, in Section 3.3).

I would be really grateful if you could go through the whole paper and make sure that you

are really careful in stating definitions and results clearly and unambiguously. Note again

that all important definitions should be written in the Latex ”definition” environment, and

all important results should be written in the Latex ”theorem, proposition, lemma, etc.”

environments.

The manuscript has been thoroughly checked for typos, sentence structure, consistency

and has been amended where necessary. In particular, all important definitions are now

placed in the definition environment, all assumptions in the assumption environment, and

all results are written in the proposition or in the lemma environment.

There are other weaknesses in the writing. For example, In the first sentence of Section 5

you promise us a result on ”optimal cooperation structure.” I am confused by that. Isn’t

your main result about stable cooperation structures? Are they also optimal in some sense?

Please check the whole paper for such inconsistencies.
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I now define (in the definition environment) optimal profiles as stable profiles with the

largest number of active players (Definition 6 in Section 5.4, p. 17) before referring to them

in Proposition 4 and in the following discussion (pp. 17-18).

My answers to Reviewer 1’s and Reviewer 2’s comments (reproduced in italics):

Reviewer #1:

* When reading the literature review, I still think it can be reduced quite a bit. For example,

a paragraph on experimental literature and on applications of Chwe’s concepts in different

contexts (very different from the one in this paper) can certainly be shortened.

These paragraphs have been revised and substantially shortened.

* The text should be amended in some places. In particular, certain sentence constructions

(e.g, p. 13: ”Proposition allows then for finding”) and typos (e.g., p. 14: ”the LCS uniquely

exist”) should be fixed.

The manuscript has been thoroughly revised for grammar, sentence structure and typos,

and amended where necessary (including the indicated places).

Reviewer #2:

I note, however, that section 4.2 still feels like it can be made better. It’s improved a lot,

but, as it stands, it’s a lot of information poured on the reader in a very short time and

Figure 3 isn’t all that helpful. Having seen (and struggled with) earlier versions, however,

I don’t have a fully qualified opinion on how a ”fresh pair of eyes” would be able to receive

the current version as it stands on its own.

I have further improved the exposition of the novel concept of closed packings in Section

4.2. Figure 3 and its caption have been also amended to enhance readers’ understanding of

this and of the related concepts.

A few minor points:

1. Page 2 para 2, I restrict, however, his ”effectiveness relation” to singleton coalitions,

which means that only individual players can change an outcome directly.” This is not very

well explained at this stage of the paper. Instead try ”. . . only individual deviations are

considered at each step; players cannot coordinate.

I followed Reviewer’s suggestion and the sentence reads now:

“I restrict, however, his “effectiveness relation” to singleton coalitions, which means

that only individual deviations are considered at each step (i.e., players cannot coor-

dinate on joint actions).”
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2. Quotation marks are the wrong way throughout the paper. Should be ”quoted text” instead

of ”quoted text”.

Quotation marks have been corrected throughout, e.g., “effectiveness relations” instead

of ”effectiveness relations”.

3. Page 8 first para ”The first assumption ensures public goods character of the game”

should be ”The first assumption ensures the public goods character of the game”.

Corrected as suggested by the Referee.

4. Page 12 introduces ’maximum (perfect) packings’, yet ’perfect packings’ will be used in

subsequent text.

On p. 12, I define the concepts of maximal, maximum and perfect packing:

“In analogy to a maximal matching, a packing is called maximal if it is not a subset

of any other packing, it is maximum if there is no other packing that covers a larger

number of nodes and it is perfect when it covers all nodes.”

Then, each concept is used appropriately depending on the context. In particular, when

I write “maximum (perfect) packing”, I mean that the packing is both, maximum and

perfect.

5. 4.2 second para: ”verifying F-stability. . . ” should be ”verifying the F-stability. . . ”

Corrected as suggested by the Referee.

6. Figure 3 caption on page 13: This is a problem that I remember from earlier versions.

It’s way better now, but maximal, closed, and perfect packings still need to be explained

better visually. These are simple enough concepts, yet I expect readers will struggle here.

Figure 3 and its caption have been amended to enhance readers’ understanding of the

different types of packings.

7. 5.1 first para ”satisfies external stability” or ”satisfies the external stability property”.

Amended as suggested by the Referee:

“... satisfies external (E) and internal (I) stability:”

8. Still some notational clash. The letter a stands for an outcome as well as the public

good’s multiplier, the letter b also an outcome as well as the benefit function.
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In order to avoid the notational clash, the benefit function is now denoted by β and the

public good’s multiplier by α.

9. 5.4 title ”Packings and optimal profiles - bounds on cooperation” should be an em dash

(-) rather than a hyphen (-). In Discussion, point 1 has a similarly misplaced hyphen, there

I believe a comma would be appropriate.

Amended as suggested by the Referee.

10. I don’t think the text of the examples in section 6 need to have italic font.

I don’t use the italic font in the examples in Section 6. However, the example environ-

ment that I use renders the text in italics.

11. Example 1: ”From Proposition 4, it follows that at least the center and one spoke will

be active in an optimal profile”. How about ”in any optimal profile”?

Amended as suggested by the Referee.

12. I’m not a fan of the final thoughts on efficiency. Feels a bit tacked-on, with not enough

detail, and I believe the last unnumbered equation is incorrect. But I think there is an easier

and more general way to explain the conflict between efficiency and stability. It is quite easy

to derive conditions for which a player’s activity is welfare improving: the total benefit that

activity induces is a ∗ (1 + δ ∗ degree) and the cost is c. Hence, players with degree higher

than (c−a)/(a∗δ) contributing and all others defecting should be the social optimum. From

here it’s clear that the social optimum doesn’t at all care about reciprocity, etc.

The final thoughts on efficiency have been replaced with a short paragraph that follows

Referee’s suggestion:

“Finally, I briefly comment on the relationship between stability and efficiency using

the example of the complete network analyzed in Section 6. The total benefit that

an active player induces in the complete network G with n nodes is α(1 + δ(n − 1))

while incurring the cost c. It follows that all players contribute in an efficient (welfare

maximizing) outcome when n − 1 > κ ≥ c−α
α·δ . However, Figure 4 shows that these

efficient contributions are unstable as, generally, the fraction of contributors in an

optimal (stable) profile is less than one when (n − 1)/n > κ/n. As in many other

network models, also in the present context, there is a tension between efficiency and

stability.”

I hope that the revised version addresses all your and reviewers’ concerns, improves the

clarity of exposition and allows for a smoother reading. Please feel free to contact me if you

have any further questions.

Kind Regards,

Arnold Polanski
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