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Abstract–We investigate information processing in the stochastic 

process driving stock’s volatility (volatility discovery). We apply 

fractionally cointegration techniques to decompose the estimates of 

the market-specific integrated variances into an estimate of the 

common integrated variance of the efficient price and a transitory 

component. The market weights on the common integrated variance 

of the efficient price are the volatility discovery measures. We relate 

the volatility discovery measure to the price discovery framework and 

formally show their roles on the identification of the integrated 

variance of the efficient price. We establish the limiting distribution 

of the volatility discovery measures by resorting to both long span 

and in-fill asymptotics. The empirical application is in line with our 

theoretical results, as it reveals that trading venues incorporate new 

information into the stochastic volatility process in an individual 

manner and that the volatility discovery analysis identifies a distinct 

information process than that based on the price discovery analysis. 

Keywords: long memory, fractionally cointegrated vector autoregressive model, realized 

measures, market microstructure, price discovery, high-frequency data, double asymptotics 
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1 Introduction 

The proliferation of trading venues within many developed security markets has been a new 

trend in the financial equity market. The U.S., for instance, features eleven exchanges, 

eighty-five alternative trading systems (ATS) and more than two-hundred dealers.
1
 The 

market fragmentation phenomenon experienced in the U.S. highlights the importance of the 
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microstructure of trading venues, as traditional listing exchanges have created markets within 

markets, changed markets’ pricing structures, and set up specialized microstructures to attract 

specific trading clienteles (Menkveld, 2014, O’Hara, 2015, and Menkveld, 2016). Retail 

brokers have responded to this new market setting by routing their orders to multiple trading 

platforms (Battalio et al., 2016). Consequently, the way traders and markets learn and 

disseminate information is also dispersed across markets (O’Hara, 2015). 

In this context of a decentralized system in which there are multiple prices for one 

homogeneous security, the study of information processing among trading venues becomes 

highly complex and, at the same time, of great significance for both market participants and 

regulators. In this paper, we take a different angle to the price discovery literature and 

investigate information processing in the stochastic process driving stock’s volatility.
2
 The 

economic reasoning of the volatility discovery framework hinges on the fact that economic 

agents do not process volatility related news instantaneously and on the relevance of the 

informational content driving the volatility process. As for the former, recent evidence in 

Lochstoer and Muir (2022) shows that financial agents have sticky expectations about 

volatility that generates initial underreaction and delayed overreaction to volatility news. As 

for the volatility informational content, French and Roll, 1986 document that volatility is 

mainly caused by private information which affects prices when informed investors trade. 

Differently from lagged returns, the volatility process contains important information that 

produces some degree of predictability in future returns (see, for instance, Ng and Ludvigson, 

2007 and Bollerslev et al., 2009). More specifically, Bollerslev et al. (2013) find that the 

implied and realized variation fractionally cointegrate and this long-run equilibrium 

relationship predicts returns over interdaily horizons. Finally, the information contained in 

the volatility process has compelled traders to use derivative markets to trade volatility (Ni et 

al., 2008). All in all, the volatility process reveals information that is not present in lagged 

returns and hence it is not captured by the price discovery framework. This means that the 

volatility discovery analysis can be a valuable tool to identify the source (what market) of this 

information. 

The price discovery literature has identified the unobserved efficient price by extracting 

commonalities within the transaction prices of a homogeneous security. In this context, prices 

are cointegrated, and the vector error correction (VEC) model has become the workhorse of 

price discovery analyses. We rely on a similar intuition and exploit the evidence that 

estimates of the integrated variance (realized measures) are long memory processes and 

cointegrated in order to identify the latent integrated variance of the efficient price using the 

fractionally cointegrated vector autoregressive (FCVAR) model of Johansen and Nielsen 

(2012).
3
 We then investigate how different markets impound information into the integrated 

variance of the efficient price. 

We make the following methodological and theoretical contributions: First, we build upon 

the continuous-time theory and characterize the volatility discovery phenomenon, leading to 

the derivation of the volatility discovery measures. Second, we show that recovering the 

efficient price by means of a permanent and transitory decomposition (building block of any 

price discovery measure) generally does not suffice to identify the integrated variance of the 

efficient price. Third, we resolve the issue of the generated regressor problem in the FCVAR 

framework when using realized measures. We employ double asymptotics to establish the 

limiting distribution of the volatility discovery measures, enabling correct inferences on the 

volatility discovery process. 
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Our empirical application investigates the volatility discovery mechanism for 30 of the most 

actively traded stocks in the U.S over a large sample period of 7 years. The tick-by-tick 

quotes consists of firms from different industries that are traded in 3 trading venues. We 

document that markets indeed trade towards the efficient integrated variance, i.e., market 

specific integrated variances are fractionally cointegrated. Our results reveal that trading 

venues incorporate new information into the stochastic volatility process in an individual 

manner. In line with our theoretical results, the price discovery analysis identifies distinct 

market leaders than those based on the volatility discovery measures. 

Concurrently with this work, Dimpfl and Elshiaty (2021) reformulate our model to discrete 

time and study volatility discovery in cryptocurrencies markets. More specifically, they 

employ a stochastic volatility model fitted to daily returns to obtain daily volatility estimates 

and compute the volatility discovery measures using the FCVAR model. Forte and Lovreta 

(2019) also apply FCVAR model. They find that the CDS implied equity volatility and a 

equity options based index (VSTOXX) are fractionally cointegrated. Finally, Baule et al. 

(2017) deviate from our approach and adapt Hasbrouck's (1995) information share measure 

to stationary processes to study volatility discovery for options and bank-issued options 

(warrants). 

The remainder of the paper proceeds as follows. Section 2 introduces the volatility discovery 

framework. Next, Section 3 shows how to identify the integrated variance of the efficient 

price as a function of both price and volatility discovery measures. Section 4 derives the 

asymptotic properties of the volatility discovery measures and Section 5 presents an empirical 

application. Section 6 offers concluding remarks. The Supplementary material presents the 

proofs, a simulation exercise, and additional empirical results. 

2 The Volatility Discovery Framework 

Asset price theory postulates that the efficient log-price of a financial security at time t must 

follow a semimartingale process defined in some filtered probability space  , ,
 (see, 

among others, Andersen et al., 2003; Barndorff-Nielsen et al., 2011). Additionally, 

econometrics and finance literature have widely considered the volatility process of the 

efficient price a stochastic process, such that the efficient price can be written as 

0
, 0

0
d d ,

t t

t u m u u
t

m a u W m     (1) 

where a is a predictable locally bounded drift, σm is a càdlàg volatility process denoted as the 

efficient stochastic volatility process, and, without loss of generality, W is a Brownian 

motion. It is important to note that mt is driven by two separate stochastic processes: W and 

σm, which reflect new information arrival to the price and volatility processes, respectively.
4
 

Furthermore, the efficient price is considered a latent process not only due to trading frictions 

but also as a result of market fragmentation. 

Our framework consists of investigating a homogeneous asset traded in S different markets. 

In general terms, the S  dimensional log-price process is modelled as a Brownian 

semimartingale defined in some filtered probability space  , ,
. The S  dimensional 

daily log-price process then reads 
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0
1 1

d ,
t t

t u u u
t t

P a u dW P
 

      (2) 

where a  is a predictable locally bounded drift,   is a càdlàg volatility matrix with 
    

denoting the càdlàg spot covariance matrix, and W is a S-dimensional vector of Brownian 

motions. The quadratic variation of P is defined as 

1: 1 1
, d d

t t

t t u u ut t t t
P P u u

  
        (3) 

where 
   

1 11:
1

, plim
i i i i

n

t t n t t t tt t
i

P P P P P P
 



    
 with n denoting the number of intraday 

observations such that 0 11 nt t t t t    
 and T being the total number of trading days, 

such that 1, ,t T  . Because the price process in (2) does not consider jumps, the diagonal 

elements of 1:
,t t t t

P P



 are the market-specific integrated variances (IV). The IV is central to 

the pricing of financial instruments, portfolio allocation, and risk management. In a 

fragmented market context, not only market prices but also their stochastic volatilities are 

expected to gather information at different speeds, following market characteristics such as 

market design, trading costs, trading clientele, liquidity, and the presence of informed traders. 

The price discovery literature typically adopts the VEC model to approximate the dynamics 

of (2), identify the single common stochastic trend seen as the efficient price, and obtain 

consistent estimates of the price discovery measures. Among the most popular price 

discovery measures are the Booth et al.’s 1999 component share measure and variants of 

Hasbrouck's (1995) information share (IS) measure.
5
 

To investigate the dynamics of the market-specific IVs, we first acknowledge the fact that 

these IVs are tied to a long-run equilibrium and track a common latent stochastic process 

seen as the integrated variance of the efficient price. Second, we need to define feasible 

estimates of market-specific IVs originated from (3). We generically denote these estimates 

as realized measures (RM), which are consistent estimators computed with ultra-high-

frequency data. There are several consistent estimators for the IV (see Mcaleer and Medeiros, 

2008 for a comprehensive survey of realized measures estimators), thus, at this point, we do 

not distinguish among these different estimators, apart from requiring them to be consistent 

estimates of the market-specific IVs. Third, as opposed to security prices, which are known to 

be integrated of order one,  1I
, processes, there is well-documented evidence that RMs are 

persistent and characterized by a long memory. The long memory feature of RMs follows 

from early work on the conditional volatility of daily financial returns (Baillie et al., 1996) 

and on modelling RMs (Andersen and Bollerslev, 1997, Andersen et al., 2003, Corsi, 2009). 

In particular, Andersen et al. (2003) note that “The slow hyperbolic autocorrelation decay 

symptomatic of long memory is evident ...”. This stylized fact of RMs implies that these series 

are fractionally integrated of some order d. A process zt is said to be fractionally integrated of 

order d if  1
d

t tL z  
, where ηt is an integrated of order zero (stationary) process. It 
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follows that  : 1
dd L  

 is the fractional difference operator defined in terms of the 

binomial expansion 
    ,

0 0

id dd

i di
i i

L L
 

 

    
. 

One way to accommodate these characteristics is to approximate the daily dynamics of RMs 

using the fractionally cointegrated vector autoregressive (FCVAR) model of Johansen (2008) 

and Johansen and Nielsen (2012), 

1

, 1,..., ,d d b d j

t b t j b t t

j

R L R L R t T


  



         (4) 

where 1( , , ) log(diag( ))t S tR R R    R
 is a 1S   vector that concatenates the element-wise 

logarithmic of the daily market-specific RMs, tR
 is a S × S consistent estimator of 

 
1

d , 1 1
t b

u b
t

u L L

     is the usual lag operator for fractional processes, d and b are the 

fractional order of the RMs and the degree of fractional cointegration, respectively, and t  is 

independently and identically distributed (i.i.d.) with a mean zero and positive-definite 

covariance matrix  . The parameters in the FCVAR framework have the same common 

interpretation as the parameters in the standard VEC model. In that, α corresponds to the 

speed of adjustment and β is the cointegrating vector so that tR 

 is integrated of order d – b 

and represents the long-run equilibrium relation. It is relevant to note two important aspects 

of the approximation in (4). First, because the RMs are not expected to diverge over time, the 

rank of 


 should equal S – 1 in that the RM’s share a single common fractional stochastic 

trend. We see this stochastic trend as an estimate of the logarithm of the IV of the efficient 

price. Second, we expect deviations between the RMs in the different markets to be transient, 

i.e., a short memory (covariance stationary) process driven by the trading-venue-specific 

characteristics, such as cost structure, different degrees of transparency, the speed of order 

execution and different trader groups, among other features. This stylized fact is 

accommodated by assuming d = b in (4), which implies that tR 

 is an  0I
 process. Finally, 

we allow the RMs to present a fractional order in the range of 0.5 1d  , implying that these 

measures may be nonstationary but mean reverting.
6
 It is possible to extend the FCVAR 

approximation in (4) to the estimates of the market-specific spot volatilities at a cost of a 

larger measurement error on their estimates. Nevertheless, our simulation study shows that 

fitting a FCVAR model to the daily RMs still allows us to capture the partial adjustment 

dynamics that occurs on the spot volatilities.
7
 

Multivariate random walk decompositions are central to constructing any price discovery 

measure, as they decompose observed prices into two components: the  1I
 efficient price – 

the stochastic trend – and an  0I
 process that is associated with the portion of information 

that has no permanent impact on prices. In the same way that the random walk decomposition 

constitutes the basic building block of price discovery analysis, the fractional counterpart of 

the Granger representation theorem serves as a building block for volatility discovery 

analysis. By decomposing the RMs into a long memory term common to all markets and 
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market-specific  0I
 terms, we can identify the efficient price’s IV and investigate how 

different venues incorporate information and adjust to the long-run equilibrium. Johansen 

(2008) and Johansen and Nielsen (2012) provide the fractional counterpart of the Granger 

representation theorem and decompose the process Rt into  I d
 and  0I

 components: 

, 1,..., ,d

t t tR X t T

     (5) 

where 

1

1

, d

S j

j

I


   



  

    



  
      

   


 is a truncated version of the fractional 

difference operator of order d; Xt is an  0I
 stochastic term; and 

  and 
  are the 

orthogonal complements of α and β, respectively, with 
0, 1, 0S      

     
, and S  

denoting a 1S   vector of ones. Similarly to the price discovery case, if 
 1 1,S SI 



  
 and 

 rk 1S   
, the matrix   has common rows. Section 5.1 provides strong empirical 

support for the cointegrating vector akin to 
 1 1,S SI 



  
 in the FCVAR setup.

8
 Hence, a 

similar interpretation as that for the price discovery analysis holds in the volatility discovery 

setup, implying that Rt shares a single fractional stochastic trend that is integrated of order d, 

given by 

1

,

1

, 1,..., ,d d

m t t S j t

j

R I t T


     



   

    



  
        

   
  (6) 

where ψ accounts for the common row of  . Notably, ,m tR
 possesses the long-term 

persistence and slow hyperbolic decay discussed in Andersen et al. (2003), and it can be seen 

as the natural estimate of the logarithm of the efficient price’s IV. Given that ,m tR
 can be 

recovered by 
d

t 

 , we can investigate how it is tied to innovations to the RMs of the 

different markets. 

In view of the Granger representation in (6), 

1

1

S j

j

I


 





 



  
   

   


 is essentially a 

normalization factor, meaning that 
  plays the key role on identifying the fractional 

stochastic trend. In turn, we define 
  as a measure of volatility discovery. The elements of 

  show how innovations from the logarithm of the market-specific RMs contribute to ,m tR
. 

As the element of 
  for a given market increases, the importance of this market for the 

volatility discovery process increases. 

The economic interpretation of 
  is therefore given by its ability to identify where (in what 

markets) the informational content driving the efficient volatility is revealed. In the context of 
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highly fragmented markets, 
  has the potential to guide what markets should be used when 

computing the realized measures, meaning that the markets with the highest volatility 

discovery measures should be preferred to markets with low importance to the volatility 

discovery mechanism. Moreover, similar to the price discovery analysis, the volatility 

discovery framework can be a valuable component of a comprehensive toolbox for assessing 

market quality. By combining the insights from volatility discovery measures with other 

relevant indicators, we can gain a deeper understanding of market dynamics, information 

efficiency, and overall market quality. Because the information content of the volatility 

process has predictive power for future returns and volatility (see, for instance, Patton and 

Sheppard, 2015 and Baltussen et al., 2018), knowing the source of this information has the 

potential to improve derivatives pricing and out-of-the sample forecasts. 

3 Identification of the efficient price’s IV 

The discussion posed in the previous section relies on discrete-time approximations to 

introduce the volatility discovery framework. This section assumes a parametric structure to 

(2) and to the daily dynamics of its quadratic variation, such that we can work out the 

identification of the IV of the efficient price. Next, we provide a theoretical bridge between 

the price and volatility discovery measures and disentangle the role played by them on 

impounding information to the IV of the efficient price. The proofs for the theoretical results 

are available on the Supplementary material. 

Our first goal is to write the IV of the efficient price as a function of both price and volatility 

discovery measures. To this extent, we need to specify a data-generating process for the 

general market-specific price process in (2) and the daily dynamics for the market-specific 

IVs. The price process is such that the drift parameter has reduced rank, i.e., prices 

cointegrate, and the diffusion matrix is stochastic. Assumption 1 provides the technical 

conditions. 

Assumption 1. The log-prices on any given day of an asset that trades on S multiple venues 

follow the S-dimensional Brownian semimartingale 

d d d ,t t t tP P t W     (7) 

where γ and δ have dimensions 
   1 11, rk 1, , ,S SS S S I    

        
 is a 

1 1S S    matrix of rank S – 1 with all eigenvalues having negative real parts, meaning that 

the eigenvalues of    lie in the left open half-plane of the complex plane and at zero, and 

t t t

   
 is a càdlàg process with ,[ ] 0t s s  

 for all , 1,s s S   , where ,[.]s s   denotes the 
th( , )s s  element of a matrix. 

The process in (7) is Markovian and the discrete-time parameters obtained from its 

discretization coincide with those from the reduced-rank Gaussian Ornstein-Uhlenbeck (OU) 

process in Kessler and Rahbek (2004). In that, Kessler and Rahbek's (2004) Theorem 1 holds 

automatically, meaning that the subspace in 
1S
 spanned by the columns of the discrete-

time speed-of-adjustment parameters is the same of those spanned by γ. 
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Next, we establish a multivariate random walk decomposition of the process in (7). To 

decompose (7) into long- and short-run components, we employ the identity 

   
1 1

SI        
 

   

    
 where S    and 

1S   
, where 

   and 
  are the 

orthogonal complements of γ and δ, respectively. The first and second terms in this identity 

are orthogonal and hence satisfy the Gonzalo and Granger's (1995) definition of permanent 

and transitory components. More specifically, 
 

1

tP  


 

    returns the stochastic trend 

common to all markets, i.e, a common Brownian semi-martingale with initial value given by 

 
1

0P  


 
, whereas tP 

 is an I(0) component that admits a continuous-time Wold 

representation. Proposition 1 formalizes the results. 

Proposition 1. Let Assumption 1 holds. The permanent and transitory (P-T) decomposition 

then reads 

 
1

,t t tP f Z   




   (8) 

where 
 

0
0d

t

t u u
t

f W P 

  
 is the stochastic trend and t tP Z  

. 

The P-T decomposition generalizes the results in Kessler and Rahbek (2001) to the case of a 

stochastic covariance matrix. The common stochastic trend, ft, driving the price process is a 

Brownian semi-martingale and 
   is used as a price discovery measure (the component share 

measure). Furthermore, according to Proposition 1, the IV of ft is given by 

 ,
1

d
t

f t u
t

IV u 

 


 
. 

Next, we investigate the relationship between the quadratic variation of Pt and ,f tIV
. To this 

extent, we start by writing the daily quadratic variation of Pt in (7) as 
9
 

1: 1 1
, d d .

t t

t t u u ut t t t
P P u u

  
        (9) 

In the fragmented markets setting and in the absence of jumps in (7), the diagonal elements of 

(9) are the market-specific IVs, which we denote as 1, , 1:
( , , ) diag( , )t t S t t t t t

IV IV IV P P


    
. 

The empirical estimators of the quadratic variation usually adopted in the realized measures 

literature, e.g., the realized variance estimator, are consistent estimators of 1:
,t t t t

P P



. 

Therefore, in the context of an homogeneous asset traded on multiple markets, the RMs 

estimate the market-specific IVs (and covariances) rather than the IV of the efficient price. 

The price discovery literature advocates using ft from the P-T decomposition to identify the 

IV of the efficient price. However, this identification strategy has an important caveat: ,f tIV
 

only takes into consideration the weights given by 
   and hence provides no information 

about any potential learning and temporal feedback mechanisms embedded into Σt in 

Assumption 1. More concretely, in order to identify the partial adjustments dynamics in the 
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market-specific IVs, it is necessary to specify a parametric data-generating process for these 

quantities. 

As briefly discussed in Section 2, much evidence from both the empirical and theoretical 

realized measures literature point towards the importance of taking into account the high 

degree of persistence and the long memory property in the integrated variance and realized 

measures (see, among others, Andersen et al., 2003, Corsi, 2009, Bollerslev et al., 2016, and 

Shi and Yu, 2022). When fitting ARFIMA models to the RMs, statistically significant long 

memory parameter estimates typically fall within the range of 0 1d  . Consequently, RMs 

can exhibit either stationary or mean-reverting non-stationary processes (Rossi and de 

Magistris, 2014 and Shi and Yu, 2022). Alternatively, the long memory feature of RMs can 

be addressed using Corsi’s (2009) heterogeneous autoregressive (HAR) model. The HAR 

family of models are based on a restricted autoregressive (AR) model that captures the 

persistence of the RMs by considering the RM in the previous day, its average over the 

previous week, and its average over 22 days. Baillie et al. (2019) reconcile both approaches 

and estimate an ARFIMA model with the restrictions implied by the HAR model. Their 

findings demonstrate the benefits of incorporating the long memory parameter into the HAR 

model to explain higher-order dynamics. To capture the long memory feature of the IV of the 

efficient price as well as the fact that market-specific IVs do not diverge and are tied to a 

long-run equilibrium, we assume the dynamics of the daily market-specific logarithmic IVs 

follow a FCVAR process. Assumption 2 formalizes their data-generating process. 

Assumption 2. 

1. The daily logarithmic IVs of a given asset that trades on multiple venues follow a 

FCVAR model as 

   log log , 1,..., ,d

t d t tIV L IV t T      (10) 

where 0 1d  , α and β have dimensions 

      1, ,1:
1, rk 1, , det 0, diag , ( , , )S t t t t S tt t

S S S I IV P P IV IV     
             

, and log(.)  denotes the element-wise logarithmic function.
10

 

2. The errors t  are i.i.d. process with 
   0,t tVar   

 and 

8

t  
. 

3. The matrix of cointegrating vectors is 
 1 1,S SI 

  
, such that S   . 

Assumption 2 ensures that the market-specific IVs cointegrate and share a single common 

fractional stochastic trend with long memory order d. This common factor corresponds to the 

logarithm of the IV of the efficient price and reads 

 ,log .d

m t tIV   

    (11) 

Alternatively, we could reformulate Assumption (2) in terms of primitive assumptions 

regarding both the efficient spot volatility and market-specific and efficient price IVs. 

Specifically, the fractional Ornstein-Uhlenbeck process of Comte and Renault (1998) models 
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the logarithmic of the spot volatility as a long memory process of order d. Consequently, the 

logarithmic of the spot volatility associated with the efficient price reads 

   , , ,dlog log d d ,d

m t m t m tt W       (12) 

where ϖ is the drift parameter,   is the volatility (volatility of volatility) parameter, and 
d

mW
 

is a fractional Brownian motion (fBm).
11,12

 It is important to note that the fBm process in (12) 

does not imply an arbitrage opportunity because the price process in Assumption 1 is a semi-

martingale. The logarithmic of the market-specific spot volatility in (12) inherits the long 

memory property from the fBm process, as its (pseudo) spectral density has a pole in zero 

that is a function of d: 
2( ) ~

m

df x cx



 as 0x , where 
c 

 and 0 1d  . Importantly, 

Proposition 2.2 in Comte and Renault (1998) show that 
log( ), d

m mW
, and σm share the same 

long memory order d. Additionally, Proposition 1 in Rossi and de Magistris (2014) 

establishes that the integrated variance also possesses the same long memory degree d as 
d

mW
, 

i.e., 

2

, ,
1

d
t

m t m u
t

IV u


   is a long memory process of order d. This long memory feature of 

2

,
1

d
t

m u
t

u
  is equivalent to the fractionally integrated property of the IV of the efficient price 

implied by Assumption 2. Moreover, because the market-specific integrated variances are 

tied to a long run equilibrium they can then be expressed as a function of ,m tIV
 and an I(0) 

zero-mean covariance stationary process tX
, such that , , ,s t m t s tIV IV X 

 with 1,s S  . 

This specification establishes a connection with two important conditions implied by 

Assumption 2. Firstly, it satisfies the definition of fractional cointegration with 

 1 1,S SI 

  
, i.e., ,s tIV

 and , , , 1, ,s tIV s s S   
 and s s  , are I(d) processes and 

, ,s t s tIV IV 
 is an I(0) process. Secondly, it is consistent with Johansen and Nielsen's (2012) 

Granger representation theorem as implied by Assumption 2, as ,s tIV
 and ,s tIV   share ,m tIV

 as 

the common fractional stochastic trend. Finally, the main advantage of employing 

Assumption 2 over the set of primitive assumptions discussed earlier is that it allows for the 

identification of ,m tIV
 using d and α (and consequently 

 ). Additionally, it does not require 

any constraints on the parameters to ensure that estimates of ,m tIV
 are positive, as the 

FCVAR is defined in terms of the logarithm of the market-specific IVs. Next, we characterize 

the IV of the efficient price as a function of the price and volatility discovery measures, that 

is 
   and 

 , respectively. 

Theorem 1. Let Assumptions 1 and 2 hold. Let 
 

1

   


  
, k(s) be a 1S   vector that has 

its 
ths  row equal to one and all the remaining entries equal to zero, 

    1vech , , vech S  
 be a 

1
( 1)

2
S S S 

 matrix with s  denoting a S × S matrix 

that has the 
th( , )s s  entry equal to one and all the remaining entries equal to zero,  be a 
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21
( 1)

2
S S S 

 elimination matrix such that, for any symmetric matrix A, 

   vech vecA A
, and log(.)  be the element-wise logarithm. Then, 

(i) if 
  

, 

        
    

   

,
1

1

1

log (1) vec log d

2 vec log d

vec log d initial values;

t

m t u
t

t

u
t

t

u
t

IV k u

u

u

   

  



 

   


 

  







 
   

 

 
  

 

 
   

 







 (13) 

(ii) if 
( )k s   

 with [1, , ]s S  , 

        ,
1

log (1) vec log d initial values;
t

m t u
t

IV k u    

   


 
    

 
 (14) 

(iii) if 
  

 and 
, ( )k s     with [1, , ]s S  , 

        
   

,
1

1

log (1) vec log d

vec log d initial values.

t

m t u
t

t

u
t

IV k u

u

   



 

   







 
   

 

 
   

 





 (15) 

Theorem 1.(i) carries two important implications. Firstly, it shows how the price and 

volatility discovery mechanisms emerge as different sources on impounding information to 

the IV of the efficient price. Unlike , ,,f t m tIV IV
 fully encompasses the informational content 

and error correction mechanisms presented in Σt through 
 . Consistent with empirical 

evidence that demonstrate investor trade based on volatility information (e.g., Ni et al., 2008), 

incorporating ,m tIV
 instead of ,f tIV

 is expected to enhance trading decisions, while 

leveraging 
  identifies what are the sources of information impacting ,m tIV

. Secondly, the 

identification of the IV of the efficient price using ft critically hinges on the condition 

( )k s   
 with [1, , ]s S   (Theorem 1.(ii)). Failure to satisfy this condition renders 

any price discovery measure relying on estimates of ,f tIV
 inconsistent. This has significant 

implications for any variation of Hasbrouck’s (1995) IS measure, as such measures give the 

relative contribution of each market to the IV of the efficient price. 

To further appreciate the limitation of using ,f tIV
 instead of ,m tIV

, we shall discuss the case 

in which the restriction 
( )k s   

 or 
  

 with [1, , ]s S   with [1, , ]s S   holds, 
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i.e., Theorem 1.(ii). In the very special case of 
( )k s   

 with [1, , ]s S  , a single 

market is fully responsible for impounding information to both Pt and ,m tIV
, meaning that the 

remaining exchanges are irrelevant with respect to information processing. Such scenario 

appears to be rather unlikely to hold in practise, as trading platforms fiercely compete for 

order flow and high-frequency traders operate across markets (see, for instance, O’Hara, 

2015). Second, the two last terms on the right-hand side of (13) would collapse to zero if the 

diffusion matrix in (7) is constant, which rules out the presence of stochastic volatility 

altogether. In such case, there is neither intra- nor inter-daily learning with respect to the 

volatility processes across the different trading platforms. 

Another possible scenario consists of examining the case where price and volatility discovery 

processes do not happen exclusively in one market, but 
0   

 holds. In such case, 

Theorem 1.(iii) shows that 
 ,log m tIV

 remains a function of both price and volatility 

discovery measures. More specifically, the cross-quadratic variation is zero and 
  in (15) 

shows how 
 ,log m tIV

 is related to elements of the the daily quadratic variation of the 

transitory component in Proposition 1. 

4 Estimation and Inference 

We now turn our attention to the estimation and inference tools for the volatility discovery 

measures. We extend the Johansen and Nielsen’s (2012) results on consistency and the 

asymptotic normality of the maximum likelihood (MLE) estimator to the context of double 

asymptotics (mixed case), i.e., where both long span and infill asymptotics hold. This 

approach is necessary because we need to replace the latent market-specific IVs by their 

consistent intraday-based estimates in the FCVAR models. Because consistency of these 

realized measures are established for n , consistency and asymptotic normality of the 

FCVAR-based volatility discovery measures require both ,n T  . This approach is 

consistent with previous work on estimating diffusion processes based on discretely observed 

data in which the asymptotic properties of the estimators depend on both ,n T   (see, for 

instance, Prakasa Rao, 1983 and Tang and Chen, 2009). Specifically, in the context of 

extremum estimators similar to ours, Phillips and Yu (2009) use the feasible central limit 

theorem for realized variances in Barndorff-Nielsen and Shephard (2002) as the first step in 

their two-stage estimation procedure to estimate the parameters in the drift function of a 

diffusion process. 

To obtain the log-likelihood function of the FCVAR model in (10), first note that Assumption 

2.2 does not imply that the the errors are Gaussian. This means that the estimation strategy 

based on the Gaussian likelihood in Johansen and Nielsen (2012) can be interpreted in the 

context of quasi MLE estimation. In addition to Assumption 2, we need Assumption 3 to 

ensure the limiting behaviour of the likelihood function for the FCVAR model.
13

 

Assumption 3. The initial values tIV , are uniformly bounded with 
0tIV 

 for 00 t T 
 

and 
0tIV 

 for 0t T
. 
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Assumption 3 concerns the initial values in which the likelihood function is conditioned on 

and essentially determines that 
d

tIV
 is well-defined for any 0 1d  . Given Assumptions 

2.1, 2.2, and 3, we follow Johansen and Nielsen (2012) and define the Gaussian likelihood 

function conditional on 0, 0tIV t T  
 and 0T T

: 

1 1 1

1

( ) 2 ( ) log det( ) tr( ),
T

T T t t

t

T L T      



        (16) 

where ( , vec( ) , vec( ) , vech( ) )d         is a 1 2 ( 1) ( 1) / 2 1S S S S      vector of free 

parameters and 
   log logd

t t td
IV L IV    

 are the corresponding residuals.
14

 

The latent nature of the IVs means that we cannot compute the MLE estimator directly from 

(16). Therefore, we replace 
log( )tIV

 in (16) by their consistent high-frequency based 

estimates Rt. Assume prices are observed at regular spaced intervals, such that there is n 

intraday prices in a given day. Define 
   

1 1

1

1
i i i i

n

t t t t t

i

P P P P
 





   R

 as the realized covariance 

estimator of 1
d

t

u
t

u

 , such that 1( , , ) log(diag( ))t S tR R R    R

 and log(.)  denotes the 

element-wise logarithm. The feasible conditional log-likelihood function then reads 

1 1 1

, , , ,

1

( ) 2 ( ) log det( ) tr( ),
T

n T n T n t n t

t

T L T      



        (17) 

where ,

d

n t t td
R L R    

. Note that the notation in (17) includes the number of intraday 

observations n, which serves to highlight the fact that Rt are consistent estimates of the 

logarithm of the IVs as n . As a result, , ( )n T 
 also depends on n. More precisely, we 

impose the following assumptions on the RMs and feasible conditional log-likelihood 

function. 

Assumption 4. 

1. As 
   

1
, vech( ) vech( d ) 0,

t
d

t u t
t

n n u


    R
, where Πt is a positive-

definite matrix (Barndorff-Nielsen and Shephard, 2004). 

2. 

 
 

,
sup 1

n T

pO




 






, with    and || . ||  denoting the Euclidean norm, and Λ is a 

compact set. 

3. The initial values tR  are uniformly bounded with 
0tR 

 for 00 t T 
 and 

0tR 
 

for 0t T
. 
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Assumption 4.1 provides information on the rate of convergence of the RMs estimates, which 

is relevant for establishing the limiting distribution of 
̂  in the mixed asymptotics case. The 

limiting result in Barndorff-Nielsen and Shephard (2004) is obtained under the assumption of 

“no-leverage”, which corresponds to the case where t  is random but independent of the 

Brownian motion in (7) and achieves the optimal convergence rate. Assumption 4.2 imposes 

a Lipschitz type smoothness condition to the feasible conditional log-likelihood function. 

Assumption 4.3 relates to the initial values and it is analogous to Assumption 3. 

The estimator we consider is in the class of extremum estimators and hence it is necessary to 

show that feasible and infeasible conditional log-likelihood functions and their gradients 

converge uniformly in probability as ,n T  . It then follows that, for a fixed d , the 

conditional MLE estimator based on (17) reduces to a reduced rank regression similar to the 

standard VEC case. The likelihood function can be simplified by concentrating out the set of 

parameters  vec( ) ,vec( ) ,vech( ) )     
. This allows us to estimate d through the numerical 

optimization of the profile likelihood function. As a result, ̂  is the MLE estimator of λ. The 

limiting distribution of the MLE estimator for λ determines the asymptotic distribution 

underlining the LR-based cointegration rank test, which is used to determine the number of 

cointegrating vectors in the FCVAR model (see Johansen and Nielsen, 2012 for more 

details). Finally, we could use the MLE estimates of α to compute the estimates of the 

volatility discovery measures: 
̂ . Theorem 2 formalizes the limiting distribution of the 

volatility discovery measures. To show that, define 
  as 

 
11

S S      





    
 

, 

where 
1( )S S S S             

 such that 
1S  

 and 
0  

 hold. Next, note that 

  is a vector-valued continuously differentiable function and define 

( )
vec( )


 








  . 

Also, let 

,

, 1 2

( )
( , ) |n T

n T  


 

 




   and 
1 2

( )
( , ) |T

T  


 

 




   be the first-order 

derivative of , 1 2( , )n T  
 and 1 2( , )T  

, respectively, with respect to   and evaluated at a 

vector   that is between 1  and 2 ( 1) 1 ( 1) ( 1) ( 1) ( 1) ( 1)/2, (0 , ,0 ,0 )S S S S S S S S S S S SI         
 be a 

( 1) 1 2 ( 1) ( 1) / 2S S S S S S       deterministic matrix such that vec( )  , and 
2 ˆ( )

ˆ ˆ
pT V



 




   . 

Theorem 2. Let Assumptions 1, 2.1, 2.2, 3, and 4 hold and suppose 0T T 
 with 1/ 2  . If 

d > 1∕2, assume also that 

q

t  
 with  

1
1/ 2q d


 

. If 

n

T


 as ,n T  , then 

(i.) 
,sup ( ) ( )  n T T p

T
T O

n

 


 
   

 
; 
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(ii.) 
   1ˆ 0, ( ) ( ) .

d
T V       

    
 

The limiting distribution in Theorem 2 allows us to construct single hypothesis tests on the 

elements of 
  and to formulate a Wald test for joint zero constraints on the 

 . 

Specifically, the Wald statistic has the usual limiting chi-squared distribution under the null 

hypothesis. 

In the two-market setting, testing single zero restrictions on the elements of 
  is equivalent 

to testing for weak exogeneity of one of the IVs with respect to the cointegrating vector β. 

This follows because the null hypothesis ,1 0 
 implies 2 0 

 and the volatility discovery 

only occurs in market 2. Similarly, the null hypothesis ,2 0 
 is equivalent to test the null 

hypothesis 1 0 
 and implies that volatility discovery happens exclusively in market 1. The 

rejection of both individual null hypotheses ( ,1 0 
 and ,2 0 

) suggests that volatility 

discovery occurs in the two markets. Finally, because Assumption 2 implies a FCVAR with 

zero autoregressive components, testing for weak exogeneity implies testing for Granger 

causality (strong exogeneity). 

In the general S-dimensional market setting, testing multiple joint S – 1 zero constraints on 

the elements of 
  allows us to examine whether a single market is solely responsible for 

impounding information into the efficient IV. For instance, if S = 3, rejecting both null 

hypotheses ,1 ,2 0   
 and ,1 ,3 0   

, while failing to reject the null hypothesis 

,2 ,3 0   
 imply finding statistical evidence that market 1 is the single driver for the 

volatility discovery process. However, this procedure neglects the multiple testing issue to 

correct for Type I error. We address this issue in our empirical application by applying the 

Holm-Bonferroni procedure. This procedure involves sorting the the multiple tests p-values 

in ascending order and sequentially comparing them against the significant level scaled by a 

function of the number of tests. 

5 Empirical Application 

Our data consist of 30 of the most actively traded assets in the U.S. extracted from the TAQ 

database. We consider the two major listing exchanges in the U.S. – Nyse (N) and Nasdaq 

(T) – and one of the most liquid trading venues, Arca (P). This sample selection reflects a 

balance between capturing relevant market information and avoiding estimation difficulties 

associated with a large number of markets. All stocks are simultaneously traded in at least 

two of the three markets covered in this analysis and represent a broad set of industries. We 

use tick-by-tick quotes from a sample period of 7 years, from January 2007 to December 

2013, which captures the implementation of the National Market System regulation (Reg 

NMS) and the market fragmentation phenomenon.
15

 Table S.3 in the Supplementary material 

displays the details. We compute the daily RMs using Barndorff-Nielsen’s (2011) realized 

kernel estimator because it provides consistent estimates of the market IV measures under 

time-dependent and endogenous market microstructure noise, irregularly spaced data, and 

jumps. These features ultimately allow us to take advantage of mid-quotes observed at a tick-

by-tick frequency. 
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5.1 Model Specification 

We use the log RMs to estimate bivariate and trivariate FCVAR models.
16

 We consider four 

market combinations: Nasdaq-Arca, Nasdaq-Nyse, Arca-Nyse, and Nasdaq-Arca-Nyse. This 

choice accommodates assets that are not simultaneously traded on the three exchanges and 

ultimately yields a richer and broader sample, which is particularly important for handling 

firms that are listed on Nasdaq but are not traded on Nyse. We choose the lag length, κ, as the 

minimum value that makes the LM test for serial correlation on the residuals at the first 10 

lags non significant at the 5% significance level.
17

 

To evaluate whether the RMs at different trading venues are fractionally cointegrated, we 

implement the sequential likelihood ratio (LR) test for the cofractional rank of Johansen and 

Nielsen (2012). For each two-market combination, the RMs are fractionally cointegrated and 

share a single common fractional stochastic trend if 
 rk 1  

. As for the three-market 

case, if 
 rk 2  

, then the RMs share a single fractional stochastic trend. Table 1 presents 

the p-values associated with the LR cofractional rank test.
18

 The null is not rejected at the 5% 

significance level in all but five stocks, suggesting that the RMs are fractionally cointegrated 

and share the IV of the efficient price as a common fractional stochastic trend. As for the long 

memory feature of the RMs, we find that d̂  is statistically significant at 1% significance level 

and usually greater than 0.5, confirming the RMs’ long memory characteristic (nonstationary 

and mean reverting). In line with Assumption 2.3, Table 1 provides evidence that  ˆ 1, 1


 
 

and 
 2 2

ˆ ,I 


 
 hold for the two- and three-market combinations respectively, indicating 

that the market stochastic volatilities are expected to be equal in equilibrium. To appreciate 

that, recall that β is not uniquely defined, in that we normalize the left-hand 1 1S S    

block of 


 to be the identity matrix and find that the 1 1S    right-hand block of   equals 

1S 
. In summary, Table 1 provides the necessary preliminary results to ensure that 

Assumption 2 holds and both identification of the IVm and inference on the volatility 

discovery measures are valid. 

5.2 Volatility Adjustment 

We now turn our attention to the parameter estimates that determine the volatility discovery 

mechanism. We focus on the estimates of volatility discovery measures 
 , which is 

normalized such that 
1S  

.
19

 Recall that the market associated with the highest element of 

̂  leads the volatility discovery process. In view of the Granger representation in (6) and 

Assumption 2, the logarithm of the integrated variance of the efficient price is given by a 

weighted sum of the innovations in the different market-specific integrated variances, with 

weights given by the elements of 
̂ . In that, it is natural to interpret these weights as non-

negative, such that ,
ˆ0 1s 

 with 1, ,s S   and 
ˆ 1S  

. In finite sample analysis, it is 

still possible for some elements of the estimates of 
  to turn out to be negative. In these 

cases, we should not reject the null hypothesis that these volatility discovery measures are 

equal to zero. 
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Table 2 presents the estimates of 
  for each market combination, along with the 

significance levels (one-sided test) of the null hypothesis that a single market does not 

contribute to the volatility discovery process, i.e., , 0s 
 with (T,P, N)s .

20
 For the three-

market setting, we provide the corresponding p-value for the null hypotheses that two 

volatility discovery measures are equal to zero. These p-values are denoted as ,s s , where 
, (T,P, N)s s   and s s  . For example, ,T P  represents the p-value associated with the 

null hypothesis , , 0T P   
. 

Considering the first market combination, pointwise analyses show that , ,
ˆ ˆ

P T  
 holds for 

19 of the 28 assets. This suggests that Arca is more important than Nasdaq. A more precise 

analysis is obtained by examining the hypothesis tests derived from Theorem 2. At the 5% 

significance level, we find that the volatility discovery mechanism occurs exclusively at Arca 

for 12 of the 28 stocks. This means that we fail to reject the null hypothesis , 0T 
, while 

simultaneously rejecting the null hypothesis , 0P 
. Similar analysis offers statistical 

evidence that the Nasdaq is the single driver for 5 assets only. In order to address the issue of 

multiple testing, we apply the Holm-Bonferroni correction procedure at the 5% significance 

level. We find that that Arca and Nasdaq are the single drivers of the volatility discovery 

process for 9 and 4 stocks, respectively.
21

 

Results from the second market combination also suggest that Nasdaq is less important. We 

find that , ,
ˆ ˆ

N T  
 holds for 13 of the 19 stocks, indicating that Nyse leads the volatility 

discovery process. At the 5% significance level, we find statistical evidence that Nyse is the 

unique contributor for 9 of the 19 assets, which also implies that Nasdaq does not Granger-

cause the Nyse for these stocks. Considering the same significance levels, we find that 

Nasdaq is the sole contributor for 6 stocks only. These findings remain consistent when 

applying the Holm-Bonferroni correction procedure. 

Regarding the Arca-Nyse market combination Arca and Nyse lead in 11 and 10 of the 21 

markets, respectively. When applying the hypothesis tests, we find that Arca and Nyse 

individually drive volatility discovery for 8 and 9 stocks, respectively, at the 5% significance 

level. Controlling for multiple tests does not alter the qualitative findings. 

The two-market setting shows Nasdaq as the least important exchange to the volatility 

discovery process, whereas Nyse appears as the most efficient one. To obtain a more precise 

answer to which market drives the volatility discovery process, the natural step forward in 

our analysis is to extend it to a three-market setting. The final set of results in Table 2 

displays the results. Pointwise analyses reveal a stronger role of Nyse when compared to the 

two-market setting. Nyse dominates in 12 out of the 19 stocks, while Arca and Nasdaq leads 

in only 5 and 2 stocks, respectively. With joint hypothesis tests at the 5% significance level, 

we reject the null hypotheses , , 0T N   
 and , , 0P N   

 and fail to reject the null 

hypothesis , , 0T P   
 for 8 of the 19 stocks, indicating that Nyse is the sole contributor 

to the volatility discovery process. Similarly, our analysis shows that Arca and Nasdaq are the 

sole contributor for 1 and 0 stocks, respectively. The Holm-Bonferroni correction procedure 

confirms Nyse as the single driver in 7 stocks. 
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Overall, our findings in Table 2 indicate that Nasdaq plays a less significant role compared to 

Nyse, which emerges as the leading exchange in impounding information for the efficient 

integrated variance. Using the limiting distribution established in Theorem 2, we find 

statistical evidence suggesting that a single market typically acts as the sole driver of the 

volatility discovery process. 

We further expand our empirical application to investigate the implications of our theoretical 

framework, which highlights the presence of two distinct sources of information within the 

price and volatility discovery mechanisms. Having documented the secondary role of Nasdaq 

for the volatility discovery mechanism, we next examine whether the same feature holds in 

the price discovery analysis. We follow the price discovery literature and adopt the VEC 

model as a discrete approximation of the observed prices in the three market combinations 

discussed previously.
22

 Our choice of price discovery measure is the component share (CS), 

which is invariant to the sampling frequency, meaning that we can consistently estimate it 

from prices sampled at any sampling intervals (Dias et al., 2020). As there is a trade-off 

between the choice of sampling interval and the size of the standard errors of the CS 

measures, we use mid-quotes aggregated at 10 seconds to balance out the negative effect of 

market microstructure noise and the positive effect of having information at the highest 

possible frequency. 

In general, the price discovery results in Table 3 suggest that Nasdaq leads the price 

discovery mechanism when compared to both Arca and Nyse. We find that Nasdaq leads in 

22 of the 28 stocks for the Nasdaq-Arca market combination and 14 of the 19 stocks for the 

Nasdaq-Nyse market combination. The Arca-Nyse combination shows generally more 

balanced results, with Arca leading in 13 of the 21 stocks. The results from the Nasdaq-Arca-

Nyse market combination are robust to the two-market setting, with Nasdaq leading in 12 of 

the 19 stocks. In contrast with the volatility discovery analysis, we find that all markets 

contribute to the price discovery process irrespectively of the market combination, i.e., we 

reject the null hypotheses , 0s  
 for all 1, ,s S   at the 5% significance level for all but 

two stocks. This result holds when controlling for the multiple testing issue. 

Overall, our results suggest that the volatility and price discovery mechanisms do not 

necessarily occur in the same trading venue. This finding is in line with Theorem 1, which 

shows that the price and volatility discovery measures capture how markets incorporate news 

into two distinct efficient stochastic processes: the efficient price and the efficient stochastic 

volatility. 

6 Conclusions 

In the current context of market fragmentation, we develop a theoretical framework to 

investigate how distinct markets contribute to the efficient price’s IV. The economic rationale 

supporting the volatility discovery analysis rests on the premise that the efficient volatility 

process is a separate stochastic process. Just as the price discovery measure, the volatility 

discovery analysis contributes to assess market efficiency and investor protection - reliable 

and transparent information when making investment decisions using volatility. 

The volatility discovery framework builds on evidence that the RMs of a homogeneous asset 

are tied to a long run equilibrium and share a common factor: the efficient stochastic 

volatility. We exploit RMs’ long memory feature and adopt the FCVAR model to identify 
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and estimate how innovations to market volatilities contribute to the efficient volatility 

process. We show the role played by both price and volatility discovery measures on the 

identification of the integrated variance of the efficient price. Next, we establish the limiting 

distribution of the volatility discovery measures and discuss how to make inference on 

market leadership. Finally, our empirical application corroborate our theoretical findings: 

RMs are tied to a long run equilibrium; markets incorporate information distinctively; and 

volatility and price discovery do not necessarily occur in the same trading venue. 

SUPPLEMENTARY MATERIAL 

Supplementary Material It contains the proofs for Proposition 1 and Theorems 1 and 2. 

It also presents a review of the price discovery measures, a simulation exercise, data details, 

and additional empirical results (SuppVD.pdf file). The authors report there are no competing 

interests to declare. 
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Table 1 Cofractional Rank Test and Estimates of the Cointegrating vector 

We report results for 30 assets considering the Nasdaq and Arca, Nasdaq and Nyse, Arca and 

Nyse, and Nasdaq, Arca and Nyse market combinations. For each two-markets set of results, 

the first column (
 rk  

) displays the number of cointegrating relations used in the 

estimation of the FCVAR model. Considering the two-market setting, the first column has the 

p-value of the likelihood-ratio (LR) cofractional rank test when the null hypothesis is 

 rk 1  
. The second column displays the estimates of d and the last column presents the 

second element of the cointegrating vector, such that 2(1, )  
. As for the three-markets set 

of results, the first column presents the p-value of the likelihood-ratio (LR) cofractional rank 

test when the null hypothesis is 
 rk 2  

. The second column displays the estimates of d. 

The third and fourth columns are the free-varying estimates of the normalized cointegrating 

vector, such that 2 3( , )I   
 with 3 3,1 3,2( , )   

. *,  , and   denote significance at 

1%, 5%, and 10% significance levels.“-” implies that the stock is not traded in at least one of 

the two trading venues during the entire sample.  

 

Nasdaq-

Arca 

   

Nasdaq-

Nyse 

   

Arca-

Nyse 

   

Nasdaq-

Arca-

Nyse 

   

 

LR  d  β2 

 

LR  d  β2 

 

LR  d  β2 

 

LR  d  3,1
 3,2

 

AA  0.38  0.52
***

 

-

1.00  

 

0.36  0.52
***

 

-

1.00  

 

0.42  0.53
***

 

-

1.00  

 

0.35  0.52
***

 

-

1.00  

-

1.00  

AAPL  0.99  0.52
*** 

 

-

1.00  

 

-  -  -  

 

-  -  -  

 

-  -  -  -  

BAC  0.70  0.60
*** 

 

-

1.00  

 

0.59  0.60
***

 

-

1.00  

 

0.71  0.59
***

 

-

1.00  

 

0.57  0.59
***

 

-

1.00  

-

1.00  

BRKB  0.04  0.52
*** 

 

-

1.01  

 

-  -  -  

 

-  -  -  

 

-  -  -  -  

C  -  -  -  

 

-  -  -  

 

0.94  0.59
** 

 

-

1.00  

 

-  -  -  -  

CSCO  0.72  0.54
*** 

 

-

1.00  

 

-  -  -  

 

-  -  -  

 

-  -  -  -  

F  0.83  0.56
*** 

 

-

1.00  

 

0.80  0.56
***

 

-

1.01  

 

0.80  0.56
***

 

-

1.01  

 

0.78  0.56
***

 

-

1.01  

-

1.01  

GE  0.51  0.55
*** 

 

-

1.00  

 

0.26  0.54
***

 

-

1.00  

 

0.22  0.53
***

 

-

1.00  

 

0.15  0.54
***

 

-

1.00  

-

1.00  

GM  0.71  0.54
*** 

 

-

1.00  

 

0.73  0.54
***

 

-

1.01  

 

0.60  0.54
***

 

-

1.01  

 

0.61  0.54
***

 

-

1.01  

-

1.01  
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Nasdaq-

Arca 

   

Nasdaq-

Nyse 

   

Arca-

Nyse 

   

Nasdaq-

Arca-

Nyse 

   

GOOG 0.71  0.51
*** 

 

-

1.00  

 

-  -  -  

 

-  -  -  

 

-  -  -  -  

HPQ  0.88  0.51
*** 

 

-

1.00  

 

0.89  0.51
***

 

-

1.00  

 

0.96  0.51
***

 

-

1.00  

 

0.92  0.50
***

 

-

1.00  

-

1.00  

IBM  0.99  0.62
***

 

-

1.00  

 

0.95  0.60
***

 

-

1.00  

 

0.95  0.64
***

 

-

1.01  

 

0.46  0.53
***

 

-

1.00  

-

1.00  

JCP  0.02  0.49
*** 

 

-

1.01  

 

0.01  0.49
***

 

-

1.00  

 

0.01  0.47
***

 

-

0.99  

 

0.00  0.48
***

 

-

1.00  

-

0.99  

JNJ  0.70  0.53
*** 

 

-

1.00  

 

0.57  0.52
***

 

-

1.01  

 

0.46  0.52
***

 

-

1.01  

 

0.48  0.52
***

 

-

1.01  

-

1.01  

JPM  0.76  0.61
***

 

-

1.00  

 

0.74  0.60
***

 

-

1.00  

 

0.81  0.59
***

 

-

1.00  

 

0.67  0.60
***

 

-

1.00  

-

1.00  

KO  0.85  0.67
***

 

-

0.99  

 

0.87  0.51
***

 

-

1.01  

 

0.85  0.51
***

 

-

1.01  

 

0.86  0.50
***

 

-

1.01  

-

1.02  

MO  0.16  0.49
***

 

-

1.00  

 

0.14  0.49
***

 

-

1.02  

 

0.04  0.48
***

 

-

1.02  

 

0.07  0.49
***

 

-

1.02  

-

1.02  

MRK  0.72  0.51
***

 

-

1.00  

 

0.57  0.51
***

 

-

1.02  

 

0.56  0.51
***

 

-

1.01  

 

0.66  0.50
***

 

-

1.02  

-

1.01  

MRVL  0.00  0.44
***

 

-

1.00  

 

-  -  -  

 

-  -  -  

 

-  -  -  -  

MS  0.86  0.61
***

 

-

1.00  

 

-  -  -  

 

-  -  -  

 

-  -  -  -  

MSFT  0.92  0.51
***

 

-

1.00  

 

-  -  -  

 

-  -  -  

 

-  -  -  -  

NOK  0.64  0.62
***

 

-

1.00  

 

0.34  0.51
***

 

-

1.00  

 

0.69  0.51
***

 

-

1.00  

 

0.99  0.71
***

 

-

1.00  

-

1.00  

ORCL  0.58  0.51
***

 

-

1.00  

 

-  -  -  

 

-  -  -  

 

-  -  -  -  

PFE  0.53  0.52
***

 

-

1.00  

 

0.48  0.51
***

 

-

1.00  

 

0.49  0.51
***

 

-

1.00  

 

0.29  0.51
***

 

-

1.00  

-

1.00  

PG  0.57  0.51
***

 

-

1.00  

 

0.62  0.52
***

 

-

1.00  

 

0.47  0.51
***

 

-

1.00  

 

0.46  0.51
***

 

-

1.00  

-

1.01  

VZ  0.44  0.51
***

 

-

1.00  

 

0.39  0.52
***

 

-

1.01  

 

0.24  0.51
***

 

-

1.00  

 

0.31  0.51
***

 

-

1.01  

-

1.00  

WFC  -  -  -  

 

-  -  -  

 

0.58  0.59
***

 

-

1.00  

 

-  -  -  -  

WMT  0.04  0.48
***

 

-

1.00  

 

0.06  0.49
***

 

-

1.00  

 

0.01  0.48
**

 

-

1.00  

 

0.05  0.49
**

 

-

1.00  

-

1.00  

XOM  0.45  0.73
***

 

-

1.00  

 

0.44  0.74
***

 

-

1.00  

 

0.89  0.71
***

 

-

1.00  

 

0.97  0.57
***

 

-

1.00  

-

1.00  

YHOO 0.15  0.47
***

 -

 

-  -  -  

 

-  -  -  

 

-  -  -  -  
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Nasdaq-

Arca 

   

Nasdaq-

Nyse 

   

Arca-

Nyse 

   

Nasdaq-

Arca-

Nyse 

   1.00  

Table 2 Volatility Discovery Measures 

We report the volatility discovery measures for 30 assets considering the Nasdaq and Arca, 

Nasdaq and Nyse, Arca and Nyse, and Nasdaq, Arca and Nyse market combinations. T, P, 

and N denote Nasdaq, Arca and Nyse, respectively. The FCVAR parameters are computed 

using the MLE estimator of Johansen and Nielsen (2012) where 
 rk 1  

 and 

 rk 2  
 for the two- and three-market settings, respectively, κ is chosen according to 

Table S.4, and d = b. For each set of results, we report the elements of the orthogonal 

complement of α, where the subscript identifies the market, e.g, ,T  denotes the orthogonal 

complement associated with the Nasdaq market. As for the Nasdaq-Arca-Nyse set of results, 

the three last columns report the p-values associated with the null hypothesis that volatility 

discovery measures of two markets are equal to zero, e.g., ,T PH
 reports the p-value of the 

null given by , , 0T P   
. *,  , and   denote significance at 1%, 5%, and 10% 

significance levels. “-” implies that the stock is not traded in at least one of the two trading 

venues during the entire sample.  

 

Nasdaq-

Arca  

  

Nasdaq-

Nyse  

  

Arca-

Nyse  

  

Nasdaq-

Arca-

Nyse  

     

 

,T   ,P   
 

,T   ,N   
 

,P   ,N   
 

,T   ,P   ,N   ,T P  ,T N  ,P N  

AA  0.57
*
 0.43  

 

0.45
*
 0.55

**
 

 

0.52
**

 0.48
**

 

 

0.25  0.29  0.47
*
 [0.26]  [0.12]  [0.18]  

AAPL  0.85
*
 0.15  

 

-  -  

 

-  -  

 

-  -  -  -  -  -  

BAC  0.74
*
 0.26  

 

0.88
***

 0.12  

 

0.73
**

 0.27  

 

0.72
*
 0.24  0.04  [0.05]  [0.29]  [0.85]  

BRKB  0.34  0.66
***

 

       

-  -  -  -  -  -  

C  -  -  

 

-  -  

 

1.20
*** 

 -0.20  

 

-  -  -  -  -  -  

CSCO  0.68
*** 

 0.32  

 

-  -  

 

-  -  

 

-  -  -  -  -  -  

F  -0.10  1.10
**

 

 

1.08
***

 -0.08  

 

1.43
***

 -0.43  

 

0.09  1.34
**

 -0.43  [0.01]  [0.64]  [0.14]  

GE  0.00  1.00
**

 

 

0.87
**

 0.13  

 

1.27
***

 -0.27  

 

0.07  1.29
**

 -0.36  [0.03]  [0.78]  [0.15]  

GM  -0.11  1.11
***

 

 

0.64
***

 0.36
*
 

 

0.91
***

 0.09  

 

-0.12  1.08
**

 0.05  [0.02]  [0.96]  [0.04]  

GOOG 0.26  0.74
**

 

 

-  -  

 

-  -  

 

-  -  -  -  -  -  

HPQ  -0.09  1.09
***

 

 

0.06  0.94
***

 

 

0.36  0.64
**

 

 

-0.31  0.51  0.80
**

 [0.56]  [0.09]  [0.00]  

IBM  0.43  0.57
*
 

 

0.45  0.55  

 

0.76
*
 0.24  

 

0.20  0.28  0.52
*
 [0.33]  [0.05]  [0.04]  

JCP  0.41
*
 0.59

**
 

 

0.14  0.86
***

 

 

0.24  0.76
**

 

 

0.05  0.21  0.74
**

 [0.78]  [0.06]  [0.01]  

JNJ  0.45
**

 0.55
**

 

 

0.29  0.71
***

 

 

0.24  0.76
***

 

 

0.20  0.15  0.65
***

 [0.43]  [0.01]  [0.00]  

JPM  0.66
**

 0.34  

 

0.83
***

 0.17  

 

0.65
**

 0.35  

 

0.66
**

 0.32  0.03  [0.02]  [0.21]  [0.66]  
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Nasdaq-

Arca  

  

Nasdaq-

Nyse  

  

Arca-

Nyse  

  

Nasdaq-

Arca-

Nyse  

     KO  0.18  0.82
*
 

 

0.26  0.74
***

 

 

0.20  0.80
***

 

 

0.10  0.20  0.70
***

 [0.46]  [0.00]  [0.00]  

MO  0.44
**

 0.56
**

 

 

0.27  0.73
***

 

 

0.24  0.76
***

 

 

0.13  0.20  0.67
**

 [0.52]  [0.01]  [0.01]  

MRK  0.44
**

 0.56
**

 

 

0.02  0.98
***

 

 

0.04  0.96
***

 

 

-0.04  0.08  0.96
***

 [0.96]  [0.00]  [0.00]  

MRVL  0.22  0.78
**

 

 

-  -  

 

-  -  

 

-  -  -  -  -  -  

MS  0.63
*
 0.37  

 

-  -  

 

-  -  

 

-  -  -  -  -  -  

MSFT  1.15
***

 -0.15  

 

-  -  

 

-  -  

 

-  -  -  -  -  -  

NOK  -0.31  1.31
*
 

 

0.57
**

 0.43
*
 

 

0.55  0.45  

 

-0.39  1.08  0.31  [0.71]  [0.87]  [0.32]  

ORCL  0.93
***

 0.07  

 

-  -  

 

-  -  

 

-  -  -  -  -  -  

PFE  0.13  0.87
**

 

 

0.31  0.69
***

 

 

0.35  0.65
**

 

 

-0.06  0.51  0.56
**

 [0.35]  [0.22]  [0.02]  

PG  0.69
***

 0.31  

 

0.37
**

 0.63
***

 

 

0.25  0.75
***

 

 

0.37  0.00  0.63
***

 [0.20]  [0.00]  [0.01]  

VZ  0.40
**

 0.60
***

 

 

0.30
*
 0.70

***
 

 

0.24  0.76
***

 

 

0.17  0.24  0.59
**

 [0.34]  [0.02]  [0.00]  

WFC  -  -  

 

-  -  

 

0.47
**

 0.53
**

 

 

-  -  -  -  -  -  

WMT  0.29  0.71
**

 

 

0.49
**

 0.51
**

 

 

0.63
**

 0.37
*
 

 

0.14  0.57
*
 0.28  [0.08]  [0.50]  [0.06]  

XOM  -1.64  2.64
***

 

 

0.03  0.97
*
 

 

1.77
**

 -0.77  

 

0.00  -0.25  1.25
***

 [0.80]  [0.00]  [0.00]  

YHOO -0.01  1.01
***

 

 

-  -  

 

-  -  

 

-  -  -  -  -  -  

Table 3 Price Discovery Measures 

We report price discovery results for 30 assets considering Nasdaq and Arca, Nasdaq and 

Nyse, Arca and Nyse, and Nasdaq, Arca, and Nyse market combinations. The VEC 

parameters are computed using the OLS estimator where 
   1 1rk 1, ,S SS I  



    
 

with S denoting the number of markets, and the lag length is chosen as the minimum value 

which makes the LM test for serial correlation on the residuals at lag 15 to be insignificant at 

the 5% significance level. For the first three sets of results, the first and second column show 

the estimate of the CS measure associated with the first and second market, respectively. As 

for the Nasdaq-Arca-Nyse set of results, the first three columns display the price discovery 

measures for Nasdaq, Arca, and Nyse, respectively. The last three columns report the p-

values associated with the null hypothesis that volatility discovery measures of two markets 

are equal to zero, e.g., ,T PH
 reports the p-value of the null given by , , 0T P   

. *,  , 

and   denote significance at 1%, 5%, and 10% significance levels. “-” implies that the 

stock is not traded in at least one of the two trading venues during the entire sample.  

 

Nasdaq-

Arca  

  

Nasdaq-

Nyse  

  

Arca-

Nyse  

  

Nasdaq-

Arca-

Nyse  

     

 

,T    ,P    
 

,T    ,N    
 

,P    ,N    
 

,T    ,P    ,N    ,T P  ,T N  ,P N  

AA  0.57
***

 0.43
***

 

 

0.60
***

 0.40
***

 

 

0.54
***

 0.46
***

 

 

0.42
***

 0.27
***

 0.32
***

 [0.00]  [0.00]  [0.00]  

AAPL  0.51
***

 0.49
***

 

 

-  -  

 

-  -  

 

-  -  -  -  -  -  
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Nasdaq-

Arca  

  

Nasdaq-

Nyse  

  

Arca-

Nyse  

  

Nasdaq-

Arca-

Nyse  

     BAC  0.63
***

 0.37
***

 

 

0.67
***

 0.33
***

 

 

0.62
***

 0.38
***

 

 

0.53
***

 0.21
***

 0.26
***

 [0.00]  [0.00]  [0.00]  

BRKB  0.71
***

 0.29
***

 

 

-  -  

 

-  -  

 

-  -  -  -  -  -  

C  -  -  

 

-  -  

 

0.53
*** 

 0.47
***

 

 

-  -  -  -  -  -  

CSCO  0.67
*** 

 0.33
***

 

 

-  -  

 

-  -  

 

-  -  -  -  -  -  

F  0.55
***

 0.45
***

 

 

0.69
***

 0.31
***

 

 

0.65
***

 0.35
***

 

 

0.41
***

 0.33
***

 0.26
***

 [0.00]  [0.00]  [0.00]  

GE  0.70
***

 0.30
***

 

 

0.71
***

 0.29
***

 

 

0.60
***

 0.40
***

 

 

0.58
***

 0.17
***

 0.24
***

 [0.00]  [0.00]  [0.00]  

GM  0.50
***

 0.50
***

 

 

0.53
***

 0.47
***

 

 

0.53
***

 0.47
***

 

 

0.32
***

 0.27
***

 0.40
***

 [0.00]  [0.00]  [0.00]  

GOOG 0.68
***

 0.32
***

 

 

-  -  

 

-  -  

 

-  -  -  -  -  -  

HPQ  0.53
***

 0.47
***

 

 

0.60
***

 0.40
***

 

 

0.59
***

 0.41
***

 

 

0.39
***

 0.33
***

 0.28
***

 [0.00]  [0.00]  [0.00]  

IBM  0.37
**

 0.63
***

 

 

0.37
**

 0.63
**

 

 

0.49
***

 0.51
***

 

 

0.22
***

 0.37
***

 0.41
***

 [0.00]  [0.00]  [0.00]  

JCP  0.45
***

 0.55
***

 

 

0.44
***

 0.56
***

 

 

0.48
***

 0.52
***

 

 

0.27
***

 0.34
***

 0.39
***

 [0.00]  [0.00]  [0.00]  

JNJ  0.69
***

 0.31
***

 

 

0.58
***

 0.42
***

 

 

0.40
***

 0.60
***

 

 

0.52
***

 0.13
***

 0.35
***

 [0.00]  [0.00]  [0.00]  

JPM  0.59
***

 0.41
***

 

 

0.75
***

 0.25
***

 

 

0.73
***

 0.27
***

 

 

0.52
***

 0.31
***

 0.17
***

 [0.00]  [0.00]  [0.00]  

KO  0.52
***

 0.48
***

 

 

0.59
***

 0.41
***

 

 

0.57
***

 0.43
***

 

 

0.37
***

 0.34
***

 0.29
***

 [0.00]  [0.00]  [0.00]  

MO  0.50
***

 0.50
***

 

 

0.53
***

 0.47
***

 

 

0.53
***

 0.47
***

 

 

0.34
***

 0.28
***

 0.38
***

 [0.00]  [0.00]  [0.00]  

MRK  0.56
***

 0.44
***

 

 

0.63
***

 0.37
***

 

 

0.59
***

 0.41
***

 

 

0.48
***

 0.32
***

 0.20
***

 [0.00]  [0.00]  [0.00]  

MRVL  0.60
***

 0.40
***

 

 

-  -  

 

-  -  

 

-  -  -  -  -  -  

MS  0.51
***

 0.49
***

 

 

-  -  

 

-  -  

 

-  -  -  -  -  -  

MSFT  0.56
***

 0.44
***

 

 

-  -  

 

-  -  

 

-  -  -  -  -  -  

NOK  0.42
***

 0.58
***

 

 

0.41
***

 0.59
***

 

 

0.39
***

 0.61
***

 

 

0.27
***

 0.23
***

 0.51
***

 [0.00]  [0.00]  [0.00]  

ORCL  0.57
***

 0.43
***

 

 

-  -  

 

-  -  

 

-  -  -  -  -  -  

PFE  0.51
***

 0.49
***

 

 

0.42
***

 0.58
***

 

 

0.38
***

 0.62
***

 

 

0.27
***

 0.20
***

 0.53
***

 [0.00]  [0.00]  [0.00]  

PG  0.22  0.78
**

 

 

0.47
***

 0.53
**

 

 

0.46
***

 0.54
***

 

 

0.15
***

 0.38
***

 0.47
***

 [0.00]  [0.00]  [0.00]  

VZ  0.70
***

 0.30
***

 

 

0.63
***

 0.37
***

 

 

0.40
***

 0.60
***

 

 

0.54
***

 0.11
***

 0.35
***

 [0.00]  [0.00]  [0.00]  

WFC  -  -  

 

-  -  

 

0.44
***

 0.56
***

 

 

-  -  -  -  -  -  

WMT  0.64
***

 0.36
***

 

 

0.64
***

 0.36
***

 

 

0.52
***

 0.48
***

 

 

0.48
***

 0.24
***

 0.28
***

 [0.00]  [0.00]  [0.00]  

XOM  0.45
*
 0.55

**
 

 

0.67
**

 0.33
**

 

 

0.73
***

 0.27
***

 

 

0.42
***

 0.40
***

 0.18
***

 [0.00]  [0.00]  [0.00]  

YHOO 0.60
***

 0.40
***

 

 

-  -  

 

-  -  

 

-  -  -  -  -  -  

Notes 

1 
https://www.sec.gov/news/statement/us-equity-market-structure.html 

2 
The finance and econometrics literature has long viewed volatility as a separate stochastic 

process (see the excellent survey on stochastic volatility models in Shephard and Andersen, 

2009). 
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3 
Well-documented evidence is found in the literature to show that estimates of integrated 

variance (e.g., realized variance) depict long memory features, i.e., these estimates are 

characterized as highly persistent and presenting an autocorrelation function that decays at a 

hyperbolic rate (Andersen and Bollerslev, 1997, Andersen et al., 2003, Corsi, 2009, among 

others). 

4 
The exact parametric functional form of the stochastic volatility process σm is not relevant to 

our analysis, and hence we only stress that σm is driven by a different (possibly correlated) 

Brownian motion from W. 

5 
See Supplementary material for an overview on the price discovery framework. 

6 
This is consistent with previous empirical findings, such as those of Rossi and de Magistris 

(2014), among others, who find estimates of d greater than 0.5. 

7 
See Supplementary material for the details. 

8 
Similarly to the orthogonal complements of the parameters in the VEC model, α and β are 

not unique and hence 
  and 

  are also not fully identified. Without loss of generality, we 

impose the normalizations S 
 and 

1S  
. 

9 
The drift component is slower moving that the diffusion component, resulting in zero 

quadratic variation. As a result, the parametrization of the drift in Assumption 1 does not 

impact the quadratic variation of observed prices, which remains the same as in equation (3). 

10 
In line with the empirical evidence in Section 5, we simplify the exposition and set κ = 0 

and d = b. 

11 
The fBm is defined as 

0

0

( )
(( ) ( ) )d d

(1 )

d
t

d d

u u

t u
t u u W W

d


   

  
, where Γ is the Gamma 

function. The fBm process can also be written in terms of the Hurst index H rather than d, 

such that 1/ 2d H  . 

12 
Comte et al. (2012) proposes an affine class of long memory volatility processes that 

involve fractional integration of the square root of the spot volatility process, rather than its 

logarithm as in (12). Additionally, the fractional OU in (12) can be written in terms of 
2

,log( )m t
 (Rossi and de Magistris, 2014). 

13 
Assumptions 2 and 3 are equivalent to Assumptions 1-4 in Johansen and Nielsen (2012). 

14
 Johansen and Nielsen's (2012) Theorem 4 yields that the likelihood function has a strict 

minimum at the true vector of the parameters and converges uniformly to its deterministic 

limit. 

15 
The Reg NMS in 2007 allows the entry of new trading venues that are linked together and 

compete for order flow, liquidity, and trades. 
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16 
Estimation results for the FCVAR models are obtained using the computer program by 

Nielsen and Popiel (2014). 

17 
In addition to the requirement that residuals should be a white noise process, we choose κ 

so that the roots of the characteristic polynomials lie outside the transformed unit circle, (see 

Johansen, 2008 for a theoretical discussion on identification). 

18 
We do not report the p-values when the null hypothesis is 

 rk 0  
 because we strongly 

reject the null for the 30 assets in all market combinations. 

19 
Tables S.5 and S.6 in the Supplementary material report the estimates of α and the LM-test 

for serial correlation in the residuals, respectively. 

20 
Because we find κ = 0 for nearly all stocks (see Table S.4 in the Supplementary material), 

the hypothesis tests below can be most often interpreted as Granger causality tests. 

21 
See Table S.7 in the Supplementary material for the p-values of the volatility discovery 

measures. 

22 
See Supplementary material for an overview of the price discovery analysis and the 

estimation details. 
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