NLR immune receptor–nanobody fusions confer plant disease resistance

Kourelis, Jiorgos ORCID:, Marchal, Clemence, Posbeyikian, Andres, Harant, Adeline and Kamoun, Sophien ORCID: (2023) NLR immune receptor–nanobody fusions confer plant disease resistance. Science, 379 (6635). pp. 934-939. ISSN 0036-8075

[thumbnail of 20230121_abn4116_ArticleContent_v4]
PDF (20230121_abn4116_ArticleContent_v4) - Accepted Version
Download (677kB) | Preview


Plant pathogens cause recurrent epidemics, threatening crop yield and global food security. Efforts to retool the plant immune system have been limited to modifying natural components and can be nullified by the emergence of new pathogen strains. Made-to-order synthetic plant immune receptors provide an opportunity to tailor resistance to pathogen genotypes present in the field. In this work, we show that plant nucleotide-binding, leucine-rich repeat immune receptors (NLRs) can be used as scaffolds for nanobody (single-domain antibody fragment) fusions that bind fluorescent proteins (FPs). These fusions trigger immune responses in the presence of the corresponding FP and confer resistance against plant viruses expressing FPs. Because nanobodies can be raised against most molecules, immune receptor–nanobody fusions have the potential to generate resistance against plant pathogens and pests delivering effectors inside host cells.

Item Type: Article
Additional Information: Publisher Copyright: © 2023 American Association for the Advancement of Science. All rights reserved.
Uncontrolled Keywords: general,sdg 2 - zero hunger ,/dk/atira/pure/subjectarea/asjc/1000
Faculty \ School: Faculty of Science > The Sainsbury Laboratory
Related URLs:
Depositing User: LivePure Connector
Date Deposited: 20 Dec 2023 02:56
Last Modified: 31 Jan 2024 03:23
DOI: 10.1126/science.abn4116

Actions (login required)

View Item View Item