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Abstract

General circulation models (GCMs) are the most sophisticated tools at our disposal

for studying future climates, but there are limitations to overcome. These include

resolutions that may be too coarse for impact assessments, limited or zero availabil-

ity of some policy-relevant scenarios, and limited time-series length for assessing

the risk of extreme events. We illustrate how these limitations can be addressed by

combining a stochastic precipitation generator (SPG) with pattern scaling (PS) of its

key parameters. Computationally inexpensive, SPG parameters can be perturbed to

generate time-series representative of weather under a future climate with high spa-

tial and temporal resolution. If the SPG parameter perturbations are derived directly

from GCM simulations projections can only be made for scenarios already simu-

lated by the GCM. Instead, we obtain the parameter perturbations using PS, facili-

tating emulation of scenarios not necessarily explicitly simulated by the GCM, and

where we scale perturbations approximately linearly with global temperature

change. PS is commonly applied to estimate perturbations in the mean of climate

variables, but rarely to higher-order parameters as we demonstrate here. We apply

PS for the first time, globally, to the parameters of a daily, first-order Markov-chain

gamma-distribution SPG using output from the IPSL-CM6A-LR GCM to perturb an

SPG fitted to observed data from two stations in diverse climates (Santarém, Brazil

and Reykjavik, Iceland) to illustrate this novel approach. We produce time series

corresponding to a range of GWLs and demonstrate the capability of the combined

SPG-PS approach to study local-scale, future daily precipitation characteristics, cli-

mate and subsequent risk of extreme weather events.
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1 | INTRODUCTION

General circulation models (GCMs) are the most sophisti-
cated and widely utilized tools used to study the climate's
response to external forcings. However, GCM outputs

may not be directly suitable for impact assessments due
to their coarse resolution (Mitchell, 2003) or, in cases
where the resolution is suitable (e.g., High Res MIP;
Haarsma et al., 2016), by a limitation in the number of
simulations inadequately separating the climate change
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signal from unforced variability. Several methods have
been discussed in the literature to address the mismatch
between GCM area-averaged outputs and the local-scale
resolutions required for hydrological, agricultural and
ecological assessments, including statistical and dynami-
cal downscaling techniques (Maraun et al., 2010). Sto-
chastic weather generators (SWGs) are tools that have
been used to statistically downscale GCM outputs and
produce long time series for a range of weather variables
at a local-scale (Jones et al., 2016; Wilks, 1999, 2010).
Weather generator parameters are typically estimated
using a local observed record, and then projected changes
in parameters can be diagnosed from GCM simulations for
a specific scenario and/or time period. While this addresses
the resolution mismatch, it can only be applied to scenar-
ios or time periods presently simulated by the GCM.
Although a defined range of climate scenarios have been
considered by the sixth Coupled Model Intercomparison
Project (CMIP6) GCMs, including mitigated, weak and
high forcing scenarios, there is no quantification of each
scenario's likelihood (Tebaldi et al., 2021; van Vuuren
et al., 2011) and therefore the study of a handful of scenar-
ios alone does not capture the range of uncertainty.

Pattern scaling (PS) addresses the issue of limited simula-
tions. Originally developed to create transient projections from
equilibrium responses of a GCM to doubled CO2 concentra-
tion (Santer et al., 1990), PS has recently been used to con-
struct projections for scenarios and time periods where fully
coupled projections are not available, and thus better under-
stand uncertainty (Lynch et al., 2017; Osborn et al., 2016;
Tebaldi & Arblaster, 2014). This approach has also been
applied within the IPCC Sixth Assessment Report
(IPCC, 2021). Computationally inexpensive, PS typically relies
upon a linear relationship to approximate the local climate
change (e.g., within a grid cell), via the global mean surface
temperature (GMST). Osborn et al. (2016, 2018) argued that
this linear approximation does not need to be perfect but that,
to be useful, errors arising from this approximation should be
small relative to the other sources of uncertainty (e.g., relative
to the spread of results in an ensemble of different GCMs). A
spatial pattern of this relationship is derived from transient
GCM data expressed in a normalized way, for instance, as
change per degree Celsius of GMST change. The resulting pat-
tern can hence be scaled by a specific GMST change or a time
series of GMSTs, to emulate the climate at a specified global
warming level (GWL).

The raw GCM data used to define the spatial patterns
are usually composed of monthly or seasonal means, and
are typically time filtered (e.g., a multiyear running aver-
age) to clarify the external forcing signal. As a result, fur-
ther treatment of the PS output is needed to investigate
extreme events at different time scales (e.g., daily events),
and while variability responses (e.g., interannual

variability) are sometimes scaled (e.g., Osborn et al., 2016)
they are not routinely accounted for despite their impor-
tance (Katz & Brown, 1992; Seneviratne et al., 2021).

SWGs are frequently used to produce time series for a
range of weather variables in the absence of high quality,
consistent records for use in hydrological and agricultural
risk assessments (Semenov et al., 1998). Long, synthetic
time series also allow for more accurate estimation of the
probabilities of extreme events, such as long wet or dry
spells, where observed records may be too short (Furrer &
Katz, 2008; Semenov & Barrow, 2002; Senemov, 2008).
SWGs are computationally inexpensive and can produce
several realizations of the climate that they have been cali-
brated to. However, unlike GCMs, SWGs do not represent
the physical processes that determine the climate change
induced by external forcing. This means that they cannot,
on their own, be used to produce realizations of the future
climate without some perturbation as input. Instead,
changes in their parameters need to be provided by an
external source (such as diagnosing changes from GCM or
regional climate model [RCM] simulations).

This study, therefore, applies PS to the first-order transi-
tion probabilities and wet-day gamma parameters of a sto-
chastic precipitation generator (SPG, defined in section 2)
generating long time series that are representative of pres-
ently unmodelled GCM–scenario combinations, while also
addressing issues regarding coarse GCM resolution and
reducing the impact of GCM-induced biases in the projec-
tion of local scale climates. To demonstrate this approach,
global gridded transition probability and gamma parameter
responses to external forcings will be diagnosed using the
IPSL-CM6A-LR GCM (Boucher et al., 2020). The implica-
tions of the response patterns to resultant precipitation will
briefly be interpreted and compared to CMIP5/6 projected
trends in precipitation with changing GMST. Finally, the
response patterns will be used to perturb transition proba-
bilities and gamma parameters calculated from weather sta-
tion observations at Santarém, Brazil and Reykjavik,
Iceland, and generate precipitation occurrence under a
range of global warming levels (GWLs).

2 | DATA AND METHODS

2.1 | Selection of climate scenarios
and GCMS

A wide range of future forcing pathways are covered by the
CMIP6 ScenarioMIP “Tier 1” experiments, from strongly
mitigated (i.e., SSP1-2.6) to high end forcing (i.e., SSP5-8.5)
scenarios (O'Neill et al., 2016; Riahi et al., 2017; Tebaldi
et al., 2021). Three of the four experiments (SSP1-2.6,
SSP2-4.5 and SSP5-8.5) are analogous to CMIP5
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experiments, studying similar radiative forcings by 2100
(corresponding to RCPs 2.6, 4.5 and 8.5). SSP3-7.0 has been
constructed to fill a gap between medium (SSP2-4.5) and
high (SSP5-8.5) pathways (Tebaldi et al., 2021). Weaker
forcing or strongly mitigated scenarios are known to pro-
duce less well-defined response patterns, which, when
extrapolated, lack characteristics present in higher forcing
responses. Strongly mitigated scenarios are also thought to
show nonlinear precipitation changes (Wu et al., 2010) with
the spatial characteristics of warming changing as deep
ocean temperatures gradually approach equilibrium
(May, 2012). While it is possible to extrapolate patterns
from low-end warming scenarios, it has been recom-
mended that patterns should instead be diagnosed from
strong forcing scenarios (Mitchell, 2003) and it has been
shown that response patterns diagnosed excluding high-end
scenarios may perform poorly beyond certain GWLs
(Osborn et al., 2018). Therefore, only the high-end forcing
scenarios, SSP3-7.0 and SSP5-8.5, will be used to produce
climate response patterns in this study. Furthermore, the
pooling of two SSPs provides a larger sample size, thus
improving the signal-to-noise ratio of the forced response
against internal climate variability (Osborn et al., 2018).

While any GCM could have been chosen (since this is a
proof-of-concept) we select IPSL-CM6A-LR on account of two
reasons. First, it has an initial condition ensemble of runs
(n = 4) for both SSPs which allows more accurate climate
change patterns to be diagnosed when the signal-to-noise
ratio is small (Mitchell, 2003). Second, it has a moderate-
to-high climate response; the GMST change by 2100 slightly
exceeds the “very likely” ranges assessed by AR6 (IPCC, 2021)
and its equilibrium climate sensitivity is 4.5�C, which lies
towards the upper end of AR6 assessed range. These charac-
teristics ensure good coverage of GMST space when deriving
the scaling coefficients required for PS. The intermodel spread
of responses is likely to be larger than errors within a GCM
(Osborn et al., 2016; Tebaldi & Arblaster, 2014) but quantify-
ing that is not the focus of this study.

Four initial condition ensemble members for both the
SSP5-8.5 and SSP3-7.0 ScenarioMIP experiments and histor-
ical CMIP6 simulations will be used to diagnose the spatial
response of first-order Markov probabilities. Historical sim-
ulations cover the 1850–2015 period, and ScenarioMIP sim-
ulations 2015–2100. Each realization has unique, internally
generated variations independent of the forced climate sig-
nal which remains constant between realizations. The com-
ponents of unforced variability in the ensemble members
are independent of each other (Jones et al., 2011); thus, it
can be expected that pooling four ensemble members will
reduce the size of the internal, unforced variability by half
relative to using a single member (Osborn et al., 2018).

Historical simulations have been concatenated with the
corresponding ScenarioMIP realizations to produce a

temporally consistent series from 1850 to 2100. For exam-
ple, the first realizations of SSP3-7.0 and SSP5-8.5 have been
concatenated with the first realization of the historical sim-
ulation. The concatenated time series will hereafter be
referred to as historical+SSP3-7.0 and historical+SSP5-8.5.
The four historical+SSP3-7.0 and four historical+SSP5-8.5
ensemble members will be pooled, resulting in eight tempo-
rally consistent time series covering 1850–2100.

2.2 | Determining the spatial response
patterns

First-order, two-state Markov chains are frequently used to sto-
chastically simulate daily precipitation occurrence
(Richardson & Wright, 1984), where two-state refers to the
precipitation status of a day, that is, either wet or dry, with
“wet” here defined as a precipitation amount of at least
0.1 mm. While a higher number of states may be beneficial
for some applications, here we use two-state. Increasing the
number of states adds complexity in defining thresholds and
requires the fitting of additional precipitation distributions for
each additional state. Following the generation of a binary
number sequence representing wet or dry days, Markov-
chain weather generators typically attribute an amount of
precipitation to a wet day by sampling independently from
a two-parameter gamma distribution, fitted monthly.
While higher-order models have merits, first-order Mar-
kov chains are the most commonly used (Jimoh &
Webster, 1996; Schoof & Pryor, 2008), and in a global
comparison of zeroth, first, second, and third model-order
performance, Wilson Kemsley et al. (2021) showed that
first-order models are the most accurate at reproducing
observed distributions of wet-spell length. For this reason,
first-order Markov chains only will be considered here.

First-order transition probabilities, required by the
first-order Markov chain, are defined as

Pij=
nij

P1

m=0
nim

, ð1Þ

where i and j represent wet (1) or dry (0) days and nij the
number of days in the observed record corresponding to
the precipitation state defined by i and j on the preceding
and current day, respectively. Transition probabilities are
calculated for each of the 12 calendar months, resulting
in four probabilities per month: P11 (a wet day preceding
a wet day), P00 (a dry day preceding a dry day), P01 (a dry
day preceding a wet day) and P10 (a wet day preceding a
dry day), though the number of independent transition
probabilities is only two per month because P11=1−P10.
Change patterns for P00 and P11 will be presented here.

KEMSLEY ET AL. 3
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The response of first-order transition probabilities and
wet-day gamma parameters to changing GMST will be
diagnosed from IPSL-CM6A-LR. For a given month, the
change in a transition probability, P, at a GCM grid-cell x,
y, will be regressed using least squares regression against
the GMST change relative to 1850–1900, such that

Pxyn−Pxy,n=0=aPxy Tn−Tn=0ð Þ+cPxy , ð2Þ

where n is any 30-year window and with n=0 referring
to the first 30-year window used to calculate parameters.
The gradients plotted globally form the spatial response
pattern for each transition probability. The full histori-
cal+SSP3-7.0 time series will be used in the regression,
but only the responses diagnosed from 2015 to 2100 of
the historical+SSP5-8.5 time series will be considered to
avoid duplication of responses diagnosed from the histor-
ical simulation. This results in four ensemble members
each of historical and SSPs 3–7.0 and 5–8.5 used in the
determining the response.

Linear regression on the full time series has been used
over a simple time-slice (or “delta-change”) method. The
time-slice approach is more sensitive to random noise
caused by internal variability while regression uses the full
simulated time series reducing the influence of internal var-
iability (Ruosteenoja et al., 2007) and avoids dependence on
the choice of the epoch of the slices (Lynch et al., 2017).

The response of wet-day gamma-distribution parame-
ters to changing GMST is determined as a fractional
change (Osborn, 1997; Osborn et al., 2016). The shape (α)
and scale (β) parameters for days where the precipitation
exceeds 0.1mm are similarly calculated from 30-year
windows every 5 years from 1850 to 2100 using the histor-
ical+SSP3-7.0 and historical+SSP5-8.5 time series for
each month. Shape and scale parameters are calculated
using the Thom estimators

α=
1+ 1+ 4D

3

� �1
2

4D
, ð3Þ

β=
x
α
, ð4Þ

with sample statistic

D= ln xð Þ− 1
n

Xn

i=1

ln xið Þ, ð5Þ

where x is the precipitation on wet day i, with a total of n
wet days. Thom estimators make better use of the infor-
mation in a dataset and are considered more efficient
than moment estimators (Wilks, 2011).

Although PS is typically applied to mean climate,
Osborn et al. (2016) applied PS to monthly precipitation
shape parameters—that, together with the mean precipita-
tion change—determines the distribution of monthly total
precipitation. Similar methodology will be applied here,
though to daily wet-day shape and scale parameters
instead. Gamma distributions have been shown to approxi-
mate daily precipitation amounts with good accuracy in
several studies, both within and outside stochastic weather
generator literature (e.g., Chen & Brissette, 2014; Groisman
et al., 1999; Martinez-Villalobos & Neelin, 2019; Semenov
& Bengtsson, 2002; Wilby & Wigley, 2002). It should be
noted that in some locations, seasons, or precipitation
regimes, a gamma distribution may not be the closest
approximation to the true distribution. In a comparison of
eight different distributions, Chen and Brissette (2014)
found that compound distributions, such as the mixed-
exponential, capture extreme daily precipitation better than
single distributions (such as gamma). However, they found
that single distributions are instead more suited for climate
change adaptations than the more complex compound dis-
tributions, owing to their structural simplicity. Therefore,
due to its flexibility using only two parameters, gamma was
one of three distributions recommended for climate change
studies (Chen & Brissette, 2014), which in turn makes it a
good candidate for PS. For these reasons, we follow the
established frameworks of Osborn et al. (2016) and others
here, demonstrating the application of PS to daily shape
and scale parameters.

Fractional changes to these parameters, referred to
collectively as W , are regressed against the change in
GMST anomaly (relative to 1850–1900) for each GCM
grid cell x,y, such that

Wxyn

Wxy,n=0
=aWxy Tn−Tn=0ð Þ+cWxy, ð6Þ

where n corresponds to the nth 30-year period and n=0
once again refers to the first 30-year period with a calcu-
lated parameter. Wxy,n=0 is averaged across all ensemble
members in the first recorded 30-year window (usually
1850–1880) where possible. However, some grid cells may
have limited or no wet days during a given month over the
first (or any) 30-year period making an estimation of the
wet-day gamma distribution challenging or impossible. If,
in a given month for any 30-year period, there are less than
30 wet days (i.e., one per month), no parameters will be
recorded. If this happens to be in the first 30-year window
(i.e., 1850–1880), Wxy,n=0 in Equation (6) is instead the
first 30-year period that contains a calculated gamma
parameter. This may be averaged across all ensemble
members (if all of them contain recordings in the same
30-year window) or just one ensemble member. The

4 KEMSLEY ET AL.
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corresponding Tn=0 in Equation (6) will be calculated
from the same 30-year period as Wn=0.

Unlike the transition probabilities, this may result in
some locations and months containing fewer data points
for regression. If there are less than 10 recordings of Wxyn

across all simulations (i.e., at least 10 points in the regres-
sion), it is determined that there is not enough data to
robustly identify a change in the parameter with chang-
ing GMST, and thus the slope aWxy , for a given month
and grid cell, is set to zero. This is a conservative choice;
in the absence of robust information about the projected
change, we assume no change.

2.3 | Application of the spatial response
patterns

The GCM-diagnosed responses of transition probabilities
can be utilized by a SPG to produce local scale, daily time
series, under a range of different climate scenarios and time
periods. The transition probabilities calculated directly from
observations can be perturbed for a range of GWLs using
the gradient from Equation (2) for the corresponding grid-
cell. Data from weather stations at Santarém, Brazil and
Reykjavik, Iceland, have been used to demonstrate the tech-
nique based on large and differing parameter responses at
their locations (presented in section 3).

First-order transition probabilities will be scaled
additively,

PT=P0+aPxyΔT, ð7Þ

where PT is the new transition probability following a
specified global temperature change ΔT relative to the
observed period (where the observed transition probabil-
ity is P0). Coordinates x and y refer to the GCM grid-cell
that encloses the coordinates of the location of the
weather station used to calculate P0. Probabilities have
upper (1) and lower (0) limits. If after scaling PT>1 or
PT<0, the transition probability is truncated below or
above the limits at 0.999 and 0.001, respectively. Such
truncation is similarly used by Osborn et al. (2016) for
precipitation and cloud coverage.

Osborn et al. (2016) suggested that a multiplicative
approach is appropriate for pattern scaling shape and
scale parameters because they are bounded at zero.
Wet-day gamma distribution parameters are therefore
scaled multiplicatively,

WT=W 0 1+aWΔTð Þ, ð8Þ

where WT is the new gamma parameter following the
global temperature change ΔT relative to the observed

period (for which the observation-based gamma parame-
ters are W 0). Once again, the scaled parameters must be
constrained to the physically allowed range (W>0). If a
parameter falls below 0 following scaling, it will instead
be set to an arbitrary small number (i.e., 0.01). We also
recommend that prior to application of our method, the suit-
ability of the gamma distribution should be assessed at the
site where the observed parameters,W 0, are calculated.

The perturbed transition probabilities, PT , and wet-
day parameters, WT , can hence be used to generate time
series of precipitation under the specified GWLs. This
method of synthetic time series generation avoids GCM-
induced bias because the starting point is the parameters
fit to observations and only changes in parameters are
taken from the GCM. For a given site, the area-averaged
data can vary significantly from the local, weather station
scale data. Therefore, using local-scale data perturbed by
GCM predicted trends will reduce errors in estimating
the local climate.

3 | RESULTS AND DISCUSSION

3.1 | Precipitation parameter response
to changing GMST

Change patterns from only one GCM, IPSL-CM6A-LR,
are used here to illustrate the implementation of the
SPG-PS process. It is nevertheless informative to consider
the dominant spatial structures in the results to assess
whether they are physical. Spatial responses for P00 and
P11 are shown in Figure 1. Deductions about the transi-
tion probabilities, P01 and P10, can be drawn from P00 and
P11, respectively. For visualization purposes, the maxi-
mum and minimum transition probability responses are
capped at +6% and −6%, respectively, where a value of
6% (−6%) indicates an increase (decrease) of 6 in the tran-
sition probability percentage per degree GMST increase
(e.g., an increase of 6%��C−1 following a GMST
increase of 2�C would correspond to +12% added to the
original value, not an addition of 12 percent of the origi-
nal value). Note that the colour bars have been reversed
for P11 and P00 to indicate increasing wet or dry condi-
tions with consistent colours. Seasons may be referred to
by their months, DJF (December, January, February),
MAM (March, April, May), JJA (June, July, August) and
SON (September, October and November).

Regions with the strongest transition probability
response to increased GMST include Central Africa, and
regions with monsoon seasons (i.e., the Amazon rainfor-
est, Southeast Asia). For brevity, a summary of the
responses and potential implications on the occurrence
of precipitation is shown in Table 1.

KEMSLEY ET AL. 5
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The linear scaling of transition probabilities with
GMST is novel, and the coefficient of determination, R2,
has been determined to evaluate the least-square fit
described in Equation (2). R2 values are typically high in
regions where the response signal is strong (see
Figures S1 and S2, Supporting Information) and con-
versely low where the response signal is weaker. P11
responses over South America and the high latitudes
exemplify this well. Much of Brazil, southern Argentina
and Chile have strong P11 responses from September to
January. Much of high-latitude Europe also has a strong

signal, with an accompanying strong R2. As the P11
response decreases towards lower latitudes, so too does
the R2 score. Exceptions to this trend are present over
North Africa (December–August) where the occurrence
of rainy days is few, and the calculated probabilities are
frequently zero. This may indicate regime specific or sea-
sonal performance of the model.

Conversely to the transition probabilities, the wet-day
gamma parameter responses are shown as fractional
changes per degree warming, where a value of +0.5 indi-
cates an increase of 50% of the original value per degree

FIGURE 1 Monthly change

in P11 (a) and P00 (b) per degree

GMST increase, diagnosed using

pooled IPSL-CM6A-LR

historical, SSP3-7.0 and

SSP5-8.5. Note that every other

month has been shown for ease

of viewing and due to temporal

coherence. All 12 months can be

seen in Supporting Information

alongside regression R2 scores

(Figures S1 and S2, respectively)

[Colour figure can be viewed at

wileyonlinelibrary.com]
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warming, that is, for a shape parameter of 3 and a
response of 0.5, the parameter following 1� of warming
becomes 4.5 (i.e., a 50% increase on the original value).
Shape and scale parameter changes (per �C) have been
capped at ±0.5, and ±0.3, respectively, for visualization
purposes only. Responses are spatially coherent and

mostly temporally coherent between adjacent months.
This indicates that the dependence of these parameters
on GMST change can be diagnosed without being domi-
nated by local scale noise.

While interpreting the transition probability
responses is intuitive, inferring changes to the wet-day

TABLE 1 Summarizing responses presented in Figure 1

Region

Parameter

ImplicationsP11 P00

South America Negative trends over north, east,
Amazon rainforest regions;
strongest magnitude in April/
May

Strong negative response May–
October in north, east, Amazon
region—typically dry season

Increased dry-day frequency and
dry-spell length; increased max
CDD, longer dry season
(Sörensson et al., 2010)

North America Positive trends over Canada and
Alaska in DJF. Weak trends over
contiguous USA; exceptions over
east coast in SON and west coast
in DJF

Frequent positive trends over
many North American regions.
Some localized trends in
Midwest USA and west coast in
July–September

Increased wet-day frequency and
spell length in DJF in Canada
and Alaska. Slightly increased
dry-day frequency across
contiguous USA with longer
spell-length over western USA

Central America Localized positive trends from May
to June over coastal cells

Large positive trend in Central
America, JJA and September

Strong responses during country's
wet seasons; increased CDD and
reduced wet-day occurrence.
Decreased overall precipitation
(Ortega et al., 2021; Hidalgo
et al., 2013)

Northern Europe
and Eurasia

Spatially widespread, positive
trends in DJF. Conversely,
negative trend shown in JJA.
Relatively small in magnitude

Widespread negative trends in
DJF. Opposite trends in other
months, with localized responses
in MAM, September and October
over Eurasian subarctic

In DJF, higher frequency and
increasing length of wet-spells.
Converse in JJA, with higher
frequency, and increasing length,
of dry-spells

East and Southeast
Asia

Little change to transition
probabilities during monsoon
seasons (e.g., JJA in India and
July/August over East Asia)

Positive, high magnitude trends in
winter months (DJF) over Korea
and north-east China

Fewer wet days, with longer dry
spells during DJF in east Asia.
Monsoon dynamics governing
precipitation patterns results in
fewer changes during monsoon
seasons in different regions

Middle East Saudi Arabia, Yemen and Oman
have strong positive trends from
May to November

Little change in most seasons,
though with negative trends
from August to September
(alongside positive P11 trends)

Increased frequency of wet days in
what is presently considered dry
season (Almazroui et al., 2012)

East and Central
Africa

Positive trends from August to
January; particularly large
spatial coverage in SON

In east Africa, P00 response is
weaker than P11; negative trends
in SON

Increasing number of wet days.
Reiterates general consensus
regarding a wetter east Africa
(Cooper et al., 2008)

West and Southern
Africa

Strong negative trends May, JJA
(West) and negative trends from
June to Oct (Southern)

In the West, P00 trends contrast
negative P11 trends, with positive
trends in JJA, September. In
southern Africa, positive trends
in several months

Increased CDD and decreased
CWD in West; reiterates findings
of Klutse et al. (2018) regarding a
wetter Guinea Coast region as
GMST increases. In the south,
Increased drought risk and CDD
frequency region (Almazroui
et al., 2021)

Note: CDD is the no. consecutive dry days per year and CWD is no. consecutive wet days per year. Where relevant, in the “implications” column, references
correspond to studies that demonstrate similar findings (see Figures S1 and S2 for changes in P11 and P00 on a monthly basis).
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parameters is less straightforward since unlike P11 and
P00, shape and scale parameters are not independent of
each other and it is their combined impact that deter-
mines, for example, how likely an extreme value
is. Nevertheless, a reduction in shape parameter leads to
a more positively skewed gamma distribution (i.e., less
consistent precipitation amounts) while a large increase
in shape from an initial value of 1 will adjust the distribu-
tion from an exponential-type character towards a more

bell-shaped function. Here, shape responses will be dis-
cussed in absence of any changes in the scale parameter,
with the breadth of all distributions (irrespective of
shape) also determined by changes to the scale parameter
which will be presented later. For the case studies, we
combine changes in the shape and scale parameters to
determine the resulting distribution for future climates.

Changes to the shape and scale parameters (shown in
Figure 2, with all months shown in Figures S3 and S4)

FIGURE 2 Fractional

change in wet-day (a) shape and

(b) scale parameters per degree

GMST increase, diagnosed from

IPSL-CM6A-LR historical,

SSP3-7.0 and SSP5-8.5. Note that

every other month has been

shown for ease of viewing and

due to temporal coherence. All

12 months can be seen in

Figures S3 and S4, respectively

[Colour figure can be viewed at

wileyonlinelibrary.com]
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are seemingly less affected by the seasons than the transi-
tion probabilities. All months show slight fractional
increases to the shape parameter over most land surface
areas. Most regions do not show strong or seasonal
changes to shape parameter response, with noteworthy
exceptions in Africa and South America. A summary of
the strongest responses are presented in Table 2.

3.2 | Application of responses to a
stochastic precipitation generator

To demonstrate the application of the response patterns
to observed data, synthetic precipitation time series at

two weather stations for a wide range of GWLs has been
produced using PS-perturbed parameters following Equa-
tions (7) and (8). Santarém, Brazil and Reykjavik, Iceland
have been chosen as case study locations for reasons pro-
vided in section 2. Global Summary of the Day data, pro-
vided by the National Centers for Environmental
Information (NCEI), have been used for Santarém (data-
set identifier: NCEI DSI 3505, accessible from https://
www.ncei.noaa.gov/access/metadata/landing-page/bin/is
o?id=gov.noaa.ncdc:C00516) and the European Climate
Assessment & Dataset (ECAD) for Reykjavik (Klein Tank
et al., 2002). Note that this section aims to demonstrate
strengths and the application of the combined SPG-PS
approach in the construction of local-scale time series at

TABLE 2 Summarizing responses presented in Figure 2 (see Figures S3 and S4 for changes in shape and scale on a monthly basis)

Region

Parameter

Potential implicationsShape (α) Scale (β)

Africa Widespread positive trend from
July to September in West and
Central Africa

Negative trend present in JJA and
September (Central and West)

Strongest increases in α and β

coincide with strong changes in
P00 and P11. Net effect is difficult
to determine; agrees with Cooper
et al. (2008) with respect to
uncertainties in modelling
precipitation in West Africa

South America Amazon regions show strong
positive trends in February,
MAM. Southeast Brazil has large
increases all year; conversely,
decreases present east coast of
Brazil from August to October

Amazon and central Brazil show
negative trends in SON;
coinciding with dry season

Already in the dry season, days
with precipitation may shift to
even smaller amounts;
exacerbating dry conditions

Southeast Asia
and India

Spatially localized, strong positive
responses in several months (e.g.,
August; see Figure S3)

Weak positive trends A shift towards smaller
precipitation amounts (less
skew). In combination with
increasing P00, the region may
become drier

China Widespread decreases in the east in
JJA and September

Eastern China demonstrates trends
of a different sign to Southeast
Asia; moderate positive trends in
JJA, September

Strongest trends in α and β occur
during wet season in China; large
implications to overall mean
daily precipitation distribution,
potentially with more variability;
though dependent on relative
strength of parameter changes

Central and North
America

Typically consistent with global
slight positive trends. Widespread
decreases in the east in JJA and
September

Seasonally varying responses.
Positive trend focussed on
eastern USA, peaking in
magnitude in September. Central
America has positive trend JJA

Greater variability in daily
precipitation amounts

Europe and
Eurasia

Responses reflect changes at similar
latitudes in North America.
Strongest response in the high
latitudes, with changes reflecting
widespread global increases

Weaker trends; widespread
negative, with some positive
responses over continental
regions in JJA

More variability, with precipitation
distributions changing most
drastically towards the high
latitudes

KEMSLEY ET AL. 9
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a range of GWLs and not a comprehensive assessment of
the future climate at the two case study locations.

Observed parameters (PO and WO in Equations (7)
and (8)) have been calculated directly from the weather
station records. One hundred years of precipitation is
simulated using the precipitation generator, configured
with the observed parameters. This is hereafter referred
to as the “reference” period (representative of the
observed climate). The IPSL-CM6A-LR GCM grid cell
that encompasses the geographical coordinates of each
weather station has been used to determine aPxy and aWxy

(in Equations (2) and (6)). Parameters have been scaled
using GMST increases relative to the 1850–1900 mean for
a range of GWLs (from 0.8 to 5.0�C) easily implemented
via term ΔT in Equations (7) and (8) highlighting a
strength of the combined SPG-PS approach.

The time periods covered by the observed data
records used to estimate the reference SPG parameters
differs between the two sites. The mean observed GMST
anomaly for each reference period is calculated using the
HadCRUT5 dataset (Morice et al., 2021) relative to

the 1850–1900 mean. At Santarém, the GMST anomaly is
0.78�C for the time period with observations (1990–2020)
and 0.56�C at Reykjavik (1970–2020). The difference
between the reference GMST and each GWL is calculated
and substituted into ΔT in Equations (7) and (8) to deter-
mine PT and WT , respectively. The GWL scaled SPG
parameters are then used to produce further 100-year
time series for both sites. Figure 3 shows scaled transition
probabilities, PT , at Santarém and Reykjavik at three
example GWLs (1.5, 2.0 and 4.0�C). At Reykjavik (bottom
panel, Figure 3), changes to the transition probabilities
are relatively constant during JJA. Changes are greatest
during DJF, with decreases to P11 and increases to P00. At
Santarém (top panel, Figure 3), perturbed transition
probabilities show large increases to P00 from January to
April, followed by relatively small changes in both P11
and P00 for the rest of the year.

With respect to mean daily precipitation amounts, fol-
lowing the scaling of PT and WT , Santarém shows large
decreases at GWL 4�C in January–April (see Figure 4),

FIGURE 3 Transition probabilities for all months at Santarém

(top) and Reykjavik (bottom) for the reference period and at GWLs

1.5, 2.0 and 4.0�C [Colour figure can be viewed at

wileyonlinelibrary.com]

FIGURE 4 Mean daily precipitation (mm�day−1) at Santarém
(top) and Reykjavik (bottom), at different GWLs. Error bars show

the standard error in the mean [Colour figure can be viewed at

wileyonlinelibrary.com]
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with minimal change in all other months. Strong transi-
tion probability responses drive this decreased precipita-
tion; the mean number of wet days per year decreases
from 109 during the reference period to 75 by GWL 4�C,
with the changes loaded to the first third of the year
(e.g., April; decreasing from 21 to 11 wet days per month,
at GWL 4�C). While decreases in mean daily precipita-
tion are present at higher GWLs (in March and April),
there are increases in mean precipitation at lower GWLs.
This is driven by reduced skew and higher mean wet-day
precipitation amounts as a result of changes in the wet-
day gamma distribution. This indicates that although
there is a large reduction in wet-day occurrence, on days
where there is precipitation, greater amounts with more
variability may be expected.

Changes to precipitation in March and April are in
stark contrast with May (and indeed the remainder of the
year, constituting the local dry season), where transition
probability and wet-day gamma parameter responses are
close to zero resulting in little change to the number of,
and precipitation on, wet days. The reduction in precipi-
tation at a GWL of 4�C for the first quarter of the year
agrees with changes discussed in literature based on a
wider range of GCMs. For example, Sörensson et al.
(2010) found increases to CDD, alongside significant
decreases in DJF and MAM total precipitation in the
Amazon basin. Averaging the simulated precipitation
over these seasons agrees with these findings.

Conversely, mean daily precipitation at Reykjavik is
projected to increase in several months (e.g., September–
December, all GWLs). Alongside increases in mean daily
precipitation, changes to the variability are present.
Increases in mean daily precipitation are accompanied by
an increase of 11.9% in the standard deviation of daily
values (averaged from September to December, between
the reference period and 4.0�C), with the largest increase
in December (15.5%). Wet days per month remain rela-
tively unchanged (i.e., from 18.1 during the reference
period to 18.4 at GWL 4�C) during these months. This
change in variability is therefore caused by changes to the
wet-day precipitation distributions, and not the change in
wet or dry day frequency. Changes in variability may there-
fore result in an increased number of very wet days, result-
ing in a potentially increased risk of extreme precipitation.

Changes to the mean precipitation and the number of
wet days per month from May to July (the driest months)
are much smaller. Transition probabilities during these
months are approximately constant (Figure 3). Changes
to the distribution of wet-day precipitation are thus not
large enough to affect the mean daily precipitation over
these months. However, from January to April the dry-
day probability does slightly increase (i.e., with increases
in P00 and decreases in P11). Despite this, the

precipitation total in January, March, and April remains
fairly unchanged between the GWLs because fewer dry
days are offset by projected increases in January to May
mean wet-day precipitation (by an average of 11.9% for
GWL 4�C in comparison to the reference period). There-
fore, despite decreases in the number of wet days per
month, the precipitation that may be expected on any
wet day during this period is larger. The percentage
change is largest in February (15.7% by 4.0�C) where the
mean daily precipitation increases at each GWL, despite
the decreases to the wet-day frequency.

3.2.1 | Using the pattern scaled observations
to assess extremes

A common use of stochastic precipitation generators is in
the robust assessment of extreme events and the ability to
efficiently construct long, temporally consistent time
series is a prime advantage of these tools (Furrer &
Katz, 2008; Senemov, 2008). The annual maximum 5-day
precipitation total is a metric that has been used in
impact and attribution assessments (recent examples
include Pi�nskwar et al. (2019) and Paik et al. (2020)) to
detect changes in extreme precipitation. Here, 5-day pre-
cipitation totals are calculated (with days overlapping,
such that precipitation is summed on Day 1–5, Day 2–6
and so on) and the annual maximum recorded for each
of the 100 years simulated series.

At Santarém, the mean annual maximum 5-day pre-
cipitation is decreasing at higher GWLs, owing to the
decreases in mean daily precipitation wet seasons (shown
in Figure 4). However, up until GWL 2.0�C the median
annual maximum 5-day precipitation increases, along
with the range and standard deviation. This is due to
competing effects between changes in the transition
probabilities and the gamma parameters, thus resulting
in a nonlinear response to increasing GMST. During the
reference period, the maximum 5-day precipitation typi-
cally occurred during March. However, as GMST
increases, this maximum instead falls in April or May
(not shown), altogether indicating a change in the sea-
sonal precipitation, with the outliers evolving such that
they mirror the median. Conversely in Reykjavik, there is
slight a positive trend in the annual maximum 5-day pre-
cipitation, with the mean increasing from 51.6 to
58.1 mm approximately linearly. In both locations, out-
liers are typically present at the upper end of the distribu-
tion (Figure 5).

Another metric that can be considered is the distribu-
tions of wet and dry spell lengths (WSL and DSL, respec-
tively), and particularly the extremes of these which are
relevant for potential flooding and droughts. At
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Reykjavik, changes to the WSL and DSL distributions are
minimal (not shown). However, at Santarém there are
large changes to the DSL distribution (shown in Figure 6).
While the 90th percentile of DSL increases only slightly
with GMST, the 99th percentile rapidly increases with
GMST. This indicates a shift to a heavier tailed

distribution with an increased change of very long dry
spells which would contribute to drought severity. From
the reference period to a GWL of 5.0�C, the 99th DSL
percentile has almost doubled (from 27 to 48 days) result-
ing in a 99th percentile that lasts over a full calendar
month.

FIGURE 6 WSL and DSL extreme percentiles at Santarém. Filled circles represent the reference period [Colour figure can be viewed at

wileyonlinelibrary.com]

FIGURE 5 Boxplots showing the annual maximum 5-day precipitation from the reference period to 5.0�C GWL at Santarém (left) and

Reykjavik (right). Candles show the medians (horizontal line) and interquartile ranges for the annual maximum 5-day precipitation (each

candle has sample size 100). Circles outside of the candles are outliers [Colour figure can be viewed at wileyonlinelibrary.com]
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Convenient production, and analysis, of the two met-
rics shown here from the source SPG-PS data demon-
strates the strength of the approach, though there are
many further strengths that have not been demonstrated
here. For example. further analyses may include extreme
value analysis (EVA), assessment of drought and flood
return periods, or calculation of further extreme indices.
While one realization of a 100-year time series at each
GWL has been produce here, it is computationally eco-
nomic to simulate several realizations of the same GWL,
ultimately driven by different GCM patterns and forcing
scenarios, thus providing a robust tool with which to cap-
ture local-scale climate uncertainty.

4 | CONCLUSION

We have described a novel approach applying PS to a SPG
in order to produce daily precipitation series accounting
for changes in both Markov-chain properties and a two-
parameter gamma-distribution of wet day amounts. The
response of the Markov chain transition probabilities, P11
and P00, and wet-day gamma distribution parameters
(shape and scale), to changing GMST have been diagnosed
using pooled ensemble members of historical, SSP3-7.0
and SSP5-8.5 simulations produced by IPSL-CM6A-LR.
These response patterns have been diagnosed globally and
have been applied to weather-station scale data to illus-
trate the approach in full and highlight strengths of the
combined SPG-PS, for a selection of GWLs.

We find that in regions of strong transition probabil-
ity response, linear regression R2 scores are generally
high, with spatially concentrated exceptions. Transition
probability responses agree qualitatively with studies
based on a wider range of GCMs, improving confidence
in the physical interpretations behind the patterns. The
response of the transition probabilities to changing
GMST is seasonally varying, with the strongest land
responses generally across Africa, South America and
Southeast Asia. In the Northern Hemisphere, similar lati-
tudes tend to show similar responses in magnitude, direc-
tion, and spatial coverage. This is most noticeable with
P11 where winter months show widespread increases
with GMST, and summer months show prevalent
decreases. The response of the wet-day gamma parame-
ters to changing GMST are less intuitive to interpret, and
in most locations, seasonally varying patterns are not pre-
sent. However, once again, Africa and South America
show some of the largest responses, indicating changes to
the precipitation nature in these regions, in combination
with strong transition probability response.

Applying PS to a SPG utilizes the advantages of both
techniques and unifies them into a single methodology.

For example, PS provides a method for the construction
of a wide range of climate scenarios to capture a range of
uncertainties with computational efficiency and, as we
show here, an efficient technique to derive SPG parame-
ters for a variety of GWLs (0.8–5.0�C in this case). Mean-
while, SPGs can efficiently produce several realizations of
long, local-scale time series, that are suitable for impact
assessments, and which can be statistically representative
of the weather at the site used for calibration. This study
has utilized responses to GMST change to perturb
observed SPG parameters at Santarém and Reykjavik,
producing time series at a scale appropriate for impact
assessors and as inputs to hydrological, agricultural and
ecological models. We have produced time series that, at
high GWLs, show large reductions in local wet-season
precipitation at Santarém, largely driven by changes in
the transition probabilities. Conversely, increases to both
the mean and standard deviation in wet-season precipita-
tion is projected at Reykjavik, driven by changes to both
the transition probabilities and the wet-day gamma
parameters. We have also shown how the SPG-PS
approach can conveniently study extreme metrics such as
(but not limited to) annual 5-day maximum precipitation
and the distribution of wet and dry spell lengths.

In whole, our study demonstrates the capabilities of
the combined SPG-PS approach to emulate future scenar-
ios which can be readily extended to emulate further
permutations of scenarios, time periods, and GMST
increases not simulated by GCMs or shown here. Finally,
and importantly, the SPG-PS framework also allows for
the incorporation of GCM-dependant differences in the
responses of the parameters to increasing GMST via diag-
nosing, and then interchanging with the afore-mentioned
factors, response patterns from alternative GCMs. As a
result, a wider range of realizations for specific global
warming levels can be constructed to better explore and
account for a range of uncertainties for consideration in
robust adaptation plans.

It is important to note that different GCMs will likely
produce differing responses of the parameters to increas-
ing GMST. Through diagnosing similar response patterns
from alternative GCMs, a wider range of realizations for
specific global warming levels can be constructed to bet-
ter explore and account for a range of uncertainties for
consideration in robust adaptation plans.
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