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Abstract

Optical imagery is a necessary methodological tool for ecological research within marine

environments, particularly in deeper waters. For benthic (seafloor) surveys, interpretation

of image data is crucial to creating high-resolution maps of seabed habitats. This is fun-

damental to marine spatial planning and mitigating long-term damage of anthropogenic

stressors such as growing resource demand, climate change and pollution. However there

are numerous, and significant, issues in extracting a reliable ground-truth from imagery to

support this process.

Analysis of benthic images is difficult, due in part to the extreme variation and inconsistency

in image quality - caused by complex interactions between light and water. It is also time-

consuming. This thesis is dedicated to providing solutions to manage these challenges,

from a strong perspective of the end-user. Specifically, we aim to improve the annotation of

benthic habitats from imagery in terms of quality, consistency and efficiency. Throughout,

we consider the purpose the imagery serves and work closely with end-users to best optimize

our solutions.

First, and for the majority of this thesis, we investigate image processing techniques to

improve the appearance of image features important for habitat classification. We find that

tone mapping is an effective and simple (and thus accessible) method through which to

improve image quality for interpretation. We describe beneficial (expert-informed) proper-

ties for brightness distributions in underwater images and introduce a novel tone-mapping

algorithm, Weibull Tone Mapping (WTM), to enhance benthic images. WTM theory op-

erates within general constraints that model image requirements (properties) specified by

image analysts, yet possesses a suitable degree of flexibility and customisation. As a tool,

WTM provides analysts with a fast and ‘user-friendly’ method to improve benthic habitat

classification.
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Second, we consider computer vision methods that could automatically identify benthic

habitats in imagery, relieving the analysis bottleneck. We find that baseline transfer learn-

ing of machine learning models, with limited optimization, will better facilitate adoption

by novice users, yet still provides a powerful means to swiftly extract and assess benthic

data.
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“On ne découvre pas de terre nouvelle sans consentir à perdre de vue, d’abord et

longtemps, tout rivage.”

—————

“One doesn’t discover new lands without first, and for a long time, accepting to completely

lose sight of the shore”

–André Gide, Les faux-monnayeurs (1925)
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1 Introduction

1.1 Problem

Around 70% of the world’s surface is covered by ocean. The majority of which is considered

‘Deep Sea’; the largest ecosystem on earth, a region extending from 2km to around 11km

below sea level (54; 184). Oceans both provided the necessary foundation for the evolution

of life and ensures its continuity. As a natural resource, its value with respect to ecological,

economic and social importance is immense (29; 10; 180); occupying a crucial role in cli-

mate regulation, supporting primary and secondary food production and biochemical and

pharmaceutical developments, to name a few. The extensive natural capital associated with

these assets strongly motivates its study and protection.

Anthropogenic impacts on the marine environment are both ubiquitous, cumulative and

increasing (70). They stem from growing resource demand within the fisheries, transport,

energy, mineral and recreation sectors and have thus driven the development of marine

spatial planning and conservation goals to mitigate long-term damage (47; 186; 152; 185; 82).

A fundamental contribution to the success of such endeavours, is the creation of extensive

and accurate maps of benthic (seafloor) habitats (27; 73; 13). These establish baselines and

support monitoring of impacts and recovery.

Benthic habitats may consist of multiple components: substrate, species and/or communi-

ties, their environmental tolerances and preferences (34; 39). They often act as simplified

but powerful proxies of biodiversity, by allowing inference of occurring organisms through

known ecological associations. Their physical aspects can be well described using acoustic

data, collected by instruments such as a Multibeam Echosounder (MBES) and Side-Scan
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Sonar (SSS) (22). This can be efficiently employed over large geographic and bathymetric

ranges and at high resolutions (tens of m). However, minus the reef-forming species or

large shellfish aggregations, this methodology is unable to measure biological components

of benthic habitats (22). The density and size of many benthic taxa (taxonomic groups

of organisms), in comparison to their surrounding environment, often results in a neutral

acoustic signature. Thus, dependent on the survey aims, these features must be processed

via alternative means such as grab sampling, trawling or photography. In this thesis, we

focus on the latter methodology, a preferred tool for environmental surveys within marine

environments, particularly in deeper waters.

Environmental monitoring of benthic habitats from imagery requires annotation by biolo-

gists to identify and quantify seafloor objects. Broadly, there are two main problems that

hinder this process: (1) that underwater image quality is often poor, primarily due to the

physical behaviour of light in water and (2) that annotation is incredibly labour-intensive.

In this thesis, we work closely with a multidisciplinary marine survey company, Gardline

Ltd., to manage these challenges and improve their analysis pipeline of benthic images.

We provide solutions with respect to image processing (enhancement) and computer vision

(automatic classification). Each of these are highly-domain inspired, aiming to have practi-

cal, real-world outputs with a high capacity for implementation. Importantly, the solutions

proposed are focused on improving the user-experience for benthic analysts and enhancing

data quality. We note that these contributions are applicable beyond our industry partner,

optimizing benthic image analysis more widely.

1.2 Approach

Considering the challenges to benthic analysis previously introduced, we engaged in discus-

sions with Gardline to identify specific hindrances in the image analysis pipeline that could

be improved.
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The illumination challenges of photographing in an aquatic medium present difficulty for

image analysts in visualising and identifying features of interest from imagery. Common

visual effects in underwater imagery include reduced colour, a bright illumination cone or

halo surrounded by dark pixels (vignetting) and low contrast. It is therefore necessary to

process images to improve visibility of image features and textures, and standardize their

appearance. At the onset of this thesis, Gardline had some image enhancement functionality

within their ‘in-house’ annotation software. These included a gamma correction and colour

filtering tool for (scaling) lasers (38). However, most popular of these was a tone mapping

tool, in which a function is used to transform image pixel values to a more desirable output.

Specifically, they use the ‘venerable’ Histogram Equalization (HE) (88; 64). This is used

to tonally adjust the contrast of images, an important enhancement to improve conspicuity

of image features through improved edge details and textural information. Explanation

on tone mapping and the HE algorithm is provided in Chapter 2. The HE tool is a fast

and simple enhancement option, requiring just the click of a button. However, the general

adjustments it enforces are not tailored or suited to the task at hand. Images often appear

over-enhanced, with dark and bright intensities strengthened. This can obscure image

features and is thus counter-intuitive; causing the very opposite of the desired outcome.

Therefore, a first aim of this thesis was to ascertain if we could provide improvements in

this area without much compromising on efficiency or ease of use for image analysts.

Our approach was to further investigate tone-mapping functions and determine what prop-

erties they should have to support analysts image interpretation. We achieve this through

bespoke tonal adjustment experiments and psychophysical assessments with end-users. This

found automatic tone mapping operations to be insufficient for underwater image analysis

and conventional methods inconsistent in their benefit. Instead, analysts indicated the im-

portance of custom tonal enhancements. However, these are time-consuming to generate on

a per-image-basis and thus unsuitable in analytical scenarios, which are already laborious.

This led us to develop a tool that optimizes the generation of custom tonal manipulations

for an end-user in underwater imagery.
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We call this Weibull Tone Mapping (WTM). This name follows from an analysis of how

benthic image analysts make tonal adjustments in relation to the brightness distributions

in input (unenhanced) and output (enhanced) images. In WTM, both the input and output

distributions are represented by a Weibull distribution. Where the WTM tone curve is the

brightness mapping taking the former to the latter.

On completion of this thesis, WTM is not fully automated, however the tool allows analysts

to tonally adjust imagery by modifying two parameters in a Graphical User Interface (GUI).

Importantly, analysts can view ‘live’ adjustments as they modify the parameter ‘sliders’ and

simultaneously annotate the image. This provides a significant improvement to their image

analysis pipeline, offering a range of enhancements that can aid various aspects of the

annotation task. We offer them the ability to construct a bespoke and extremely tailored

tonal enhancement but much faster and simpler. WTM allows analysts to improve the

quality and efficiency of benthic image annotations. This improved data extraction phase

supports the next priority in improving their analysis workflow: automating annotation

tasks.

There are increasingly more applications of machine learning (ML) to benthic image an-

notation, many of which are focused on single taxa (1; 40; 95; 136). An important, yet

under-represented, application in the literature is on classifying benthic habitats, particu-

larly in the Deep Sea. Additionally, Gardline have a high requirement for annotation of the

image habitat, for habitat mapping, and thus felt their image analysis could highly bene-

fit from the automation of habitat classification. Although highly motivated to integrate

automatic capabilities into their analysis pipeline, these approaches are inaccessible due

to a technical skills-gap and limited time to focus on this task. This is mirrored amongst

the majority of benthic ecologists/biologists external to Gardline. With this in mind, we

investigate machine learning approaches with an appropriate trade-off in complexity, im-

plementation ease and performance. This will better facilitate uptake of these methods

within Gardline and more widely. We take a hierarchical approach, aiming to first classify
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broad-level habitats in images. These images can then be passed to an existing classifier for

detecting individual taxa or further features of interest in appropriate habitats. Equally,

it could be used to efficiently prepare suitable training data for the same task. Classifiers

that detect individual taxa, such as sea pens, could also provide a higher-resolution habitat

classification through detection of sub-habitats, see Table 3.2.

We find deep features from a pre-trained (‘off-the-shelf’) Convolutional Neural Network

(CNN) are suitable to train a Support Vector Machine (SVM) to classify broad benthic

habitats. This requires little theoretical understanding and is more straightforward pro-

grammatically. It also provides a ‘primer’ for biologists who wish to use deep learning

methods, which are popular and sought after within the community due to their reputation

for good performance.

1.3 Thesis Outline

Chapter 2 reviews the background to the topics covered in this thesis. We discuss in more

detail the significant challenges associated with using underwater imagery to support deep-

sea benthic ecology. We then focus on how we can improve the interpretation of imagery and

therefore the extraction of ecological data. Potential solutions are discussed encompassing

(1) enhancing (visual) quality of imagery and (2) automatic analysis i.e. classification.

Chapter 3 introduces the benthic image datasets used in this work. We provide details on

image acquisition, such as the camera platforms used and geographic location. We also

discuss the procedure for data extraction, including the classification schemes utilised by

Gardline to identify benthic habitats, and some associated challenges.

In Chapter 4 our main focus is on tone mapping as a tool to improve image quality. We

propose desirable properties a tone mapping operation (TMO) should have, moving beyond

merely the aesthetic drivers to consider the purpose the imagery serves and its audience).

Expert-designed TMOs, to better identify benthic habitats, are discussed. We show that

they have specific properties that can be captured by the 2-parameter Weibull probability
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distribution (WD) i.e. analysts enhance imagery according to this distribution. This pro-

vides a foundation upon which to optimize current tone mapping approaches, from generic

tools into enhancements specialized for underwater image analysis.

Chapters 5 and 6 introduce our novel tone-mapping algorithm, Weibull Tone Mapping

(WTM). In Chapter 5, we explore the intuitive parameters of the WD, showing them to

correspond to common and effective tonal manipulations, namely brightness and contrast.

We present the WTM theory in which we derive simple and smooth approximations of be-

spoke tonal adjustments created by analysts using the WD. Importantly, analysts find this

suitable to enhance visual interpretation of marine habitats. In Chapter 6 we develop the

WTM theory into an interactive enhancement tool that provides analysts with a quicker

and simpler means of deriving bespoke TMOs. Notably, analysts prefer enhancing image

quality with our WTM tool over automatic tonal manipulations. We also show, in these

chapters, that WTM is competitive in terms of preference (and its consistency) with another

traditional TMO that requires parameter selection, Contrast Limited Histogram Equaliza-

tion (CLHE). Yet WTM provides end-users with more customisation without compromising

ease-of-use and is modelled on the brightness statistics of underwater imagery sought by

analysts.

In Chapter 7 we consider the challenges in quality, consistency and efficiency of annotating

benthic habitats in imagery. We present methods that offer a suitable trade-off between

simplicity of operation and comprehension for non-specialist users and good, consistent per-

formance. We found that classifying ’off-the-shelf’ Convolutional Neural Network features

with a shallow learning algorithm, a Support Vector Machine is a powerful method by which

benthic data can be quickly extracted and evaluated.

Finally, in Chapter 8 we present our conclusions, thesis contributions and discuss areas for

future of work.
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2 Background

In this chapter, we provide background for the thesis. In Section 2.1 we provide an in-

troduction to underwater imagery, more specifically its acquisition and role in supporting

deep-sea benthic ecology; introducing some of the challenges in this endeavour. We focus

on two main challenges: (1) extracting a reliable ground-truth from imagery and (2) coping

with the analysis bottleneck, framing each in the perspective of the end-user. In Section 2.2

we discuss the technical components of imagery and how we might process (enhance) them

to address the first challenge whereas in Section 2.3 we focus on the latter, considering how

computer vision, specifically automatic classification, can optimize analysis. We finish the

chapter with a brief summary that will lead into the remainder of the thesis.

2.1 Underwater Imagery

2.1.1 Supporting deep-sea benthic ecology

Optical imaging has a long history within marine ecology and has been utilized via a number

of platforms (123; 174), such as SCUBA divers, baited remote underwater video (BRUVS),

remotely operated vehicles (ROVs), autonomous underwater vehicles (AUVs), ocean floor

observation and towed video systems, see Figure 2.1. The advantage of imaging as a tool

to survey the marine environment is largely attributed to its non-destructive, rapid and

repeatable nature over broad temporal and spatial scales. In addition, marine use of optical

imaging has been supported by the increasing availability of high quality cameras that are

affordable, compact and efficient (99).
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Figure 2.1: Selection of image platforms: (A) AUV (133), (B) ROV, (C) Towed array

(166), (D) BRUVS (168), (E) Drop-frame mounted camera (94) and (F) Diver-operated

stereo-video camera (62)
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Imagery can provide both qualitative and quantitative data, to support a range of eco-

logical research, describing biodiversity and community composition (155; 20; 44). This

research can comprise evaluation of anthropogenic and/or naturally-driven environmental

disturbance (167) and temporal and spatial variation (163; 21; 178), as well as supporting

habitat mapping and the designation of Marine Protected Areas (80; 149). Unlike other

traditional sampling techniques, such as benthic grabs, trawling and diver surveys, the ac-

quisition of imagery is not spatially restrictive and well suited to a multitude of habitats and

locations (20). Given the variety and success of its application, imagery is a fundamental

and methodological standard to countless research efforts in this field.

A particularly significant application of underwater imagery has been employed in surveying

the deep sea, the largest ecosystem on the planet. Of the permanently available living space

for animals globally, >98% of the volume is provided by deep sea waters and 63% of the

area by the deep seafloor (180). The sheer size, isolation and challenging environmental

conditions of this ecosystem, such as extreme pressures, low temperature, low light and

high salinity, has historically created numerous difficulties in data acquisition. However,

since the pioneer of remotely operated deep-sea cameras in the 1940s (51; 50) the volume

of photographic data has been growing, enhanced by the development and use of robotic

platforms such as ROVs, but most notably by AUVs (116; 196; 199; 89).

Such data is imperative not only to support research, but conservative efforts of the deep-sea

environment. Pressures to deep-sea ecosystems are increasing (61) with over-exploitation

currently the greatest threat to this ecosystem (141). Increasing demand for offshore re-

sources, such as fish and minerals, is challenging the persistence of deep sea fauna, due to

altered biomass and community structure, decreased diversity and a reduction in habitat

building species such as cold-water corals (26; 141). This is especially concerning given the

importance of this system to the planet, in terms of matter exchange, energy, biodiversity

and climate regulation (10). Maximising the amount of data available for ecological re-

search will better support our understanding of these ecosystems and their response and/or
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potential resilience to anthropogenic pressures. It will also help to inform marine policy and

resource management in the drive for blue growth and sustainability and support efforts in

restoration (82; 81).

2.1.2 Ecological data extraction and processing

Extracting ecological data from underwater image datasets, to support research and con-

servation, requires time-consuming annotation by image analysts. Image annotation in this

context refers to interpretation, or translation, of image information to a semantic level

(63). Analysts must localise and quantify marine objects, in terms of abundance or size i.e.

number of instances or percentage cover within an image. For example, annotations may

be polygons, to estimate coverage of encrusting species and habitat such as rocky reef, or

point locations of species of interest. Marked extent can also be highlighted by a box drawn

around individual fauna. In Figure 2.2 we show an example of benthic image annotation

software used by our collaborator Gardline. This demonstrates a range of annotation for-

mats by image analysts. Notice also the presence of green lasers, which are often mounted

on camera platforms and directed downwards to the seabed. These are a popular method by

which analysts can determine object size (laser scaling) due to the known distance between

the two lasers (38).
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Figure 2.2: CountEM software annotations: polygon, point and marked extent. Green

lasers for scaling are also present (38)
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2.1.3 Challenges for data extraction and processing

Generating annotations in underwater optical images, as shown in Figure 2.2, is challenging

for image analysts. One aspect of this is linked to the quality of images and their suitability

for image annotation. Imaging in a aquatic medium, and near the seafloor, has a number of

difficulties; many of which even the most prepared and sophisticated acquisition method-

ologies cannot avoid. For example seabed sediments may be disturbed by interaction of the

imaging platform and the seabed, as well as animal behaviour, perhaps in response to the

image platform. This can obscure the field-of-view and make image annotation extremely

difficult, if not impossible. Image quality can not only control whether annotations are

possible, but to what extent, for example the resolution of marine taxa identifications. Ad-

ditionally, species can be cryptic to avoid predation. Small changes in visual acuity can

therefore have pronounced implications on what is achievable in analysis.

A more prevalent and significant issue is linked to illumination. Complex interactions

between light and water result in extremely varied and inconsistent image quality and can

cause image features to look quite different both within an image and across image datasets.

Underwater light penetration is one factor attributed to these issues and may be influenced

by several variables including water clarity, turbidity, depth and distance (55). Due to the

limited penetration of light within water, particularly within the deep sea, strong artificial

lighting is employed on camera platforms. This can create non-uniform illumination within

images as well as shadows, which when imaging from moving platforms such as underwater

vehicles can shift position, resulting in reduced correspondence between images (77). This is

further exaggerated by varying power requirements for different vehicles (i.e. ROVs verses

AUVs), expending varied amounts of energy in lighting the scenery and altered lighting

patterns (48). Light from vehicles such as ROVs has also been seen to attract large shoals

of demersal fish, which can hinder the investigation of benthic communities, as a result the

illumination level may be intentionally limited. Furthermore, light attenuates with depth,

due to increasing wavelength absorption and scattering, caused both by the water medium
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itself and suspended particles (15). Both these behaviours can hinder image quality due

to colour reduction, low contrast and blurring effects. Further difficulties are encountered

when imaging deep sea environments, due to extreme bathymetric pressures, requiring

high-pressure camera housings and depth-rated lenses. Imperfections in this, can result

in non-linear distortion of images and a risk of light refraction between water/glass and

glass/air interfaces, which could result in image deformation (77). Datasets can also suffer

from sporadic technical issues such as the failing and over-exposure of camera flashes.

Aside from the quality of underwater imagery, there are challenges associated with the

annotation process itself that can hinder the extraction and processing of image data to

support benthic ecology. Regardless of the image platform, annotation of resulting imagery

is often inconsistent and error prone due to observer bias, fatigue, distraction and short-

term memory limitations (31). It is also costly (in the absence of volunteers) and incredibly

labour-intensive. This reality is particularly realised with AUV usage, in which one survey

(∼50 hours) can produce over 170,000 images (200). The time required to process such data

(generating annotations) causes a significant bottleneck in deriving ecological information

from imagery (17; 158).

The importance of, and high-demand for, benthic image annotations require these challenges

to be addressed. Considering our industrial collaborator (Gardline), improving the efficiency

and quality of data processing, using readily available methods, will result in improved

regulatory decisions on impact assessments and monitoring. In the context of an analysis

pipeline, pre-processing, or enhancing, underwater images could improve image quality and

support better extraction of a reliable ground-truth by analysts. Coping with the analysis

bottleneck requires computer vision solutions to automate elements of the analysis pipeline.

However, since many of the optical issues that impede manual analysis may also present

difficulties for computer vision research (128), it is first important to consult this part of the

analysis pipeline. Thus, in the following section we discuss image processing for enhancing
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quality of underwater imagery before moving on the role of computer vision in support

imaging analysis.

2.2 Image processing for enhancing image quality

Image pre-processing can be an effective method to suppress unwanted lighting effects and

enhance image features, supporting further processing such as feature extraction and image

analysis(100; 175). Operations may be point, line, area, algorithmic or data conversion

based and include a variety of techniques such as illumination, blur and focus corrections,

filtering and noise removal, edge enhancements, colour space conversions, region processing

and filters, and segmentation to name a few (100).

Pre-processing methods can be separated into broad categories; namely image restoration,

correction and enhancement. Restoration methods aim to recover degraded or lost informa-

tion from an image due to effects mentioned prior whereas enhancement aims to improve

image appearance, typically aesthetically. Restoration algorithms include polarization and

dark-channel prior methods which provide information on light scattering which can then be

used to recover a more realistic scene. There are also deep learning approaches which focus

on denoising, deblurring and resolution manipulation. Whereas enhancement algorithms

include retinex, fusion and/or histogram-based methods. These can aid colour constancy,

reduce blurring and noise as well as manipulate contrast and brightness to improve image

clarity. As with restoration, there are (increasingly more) applications of deep learning in

image enhancement. Comprehensive reviews of implemented algorithms for image restora-

tion, correction and enhancement can be found in (154; 112; 85). Evident from these reviews

is that existing restoration methods are rigorous and beneficial to handle uneven illumina-

tion, colour infidelity and distortion as well as haze or blurring. However, they are complex,

often computationally demanding and time-consuming. Typically they require a large num-

ber of parameters, including knowledge of the environment such as depth, object/camera

distance or water quality (15). Their performance may also be limited due to high de-
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pendence on degradation model assumptions which may not be accurate, as well as highly

variable parameters such as attenuation and diffusion coefficients which represent water

turbidity. Although enhancement methods operate within a subjective framework and thus

can produce inconsistent results, which may lack fidelity with the original imagery, they pro-

vide a flexible, faster and often simpler tool, requiring no a priori knowledge (154; 112; 85).

This combined with their presence in photo-editing software, at least for histogram-based

methods, increases their accessibility for users lacking technical expertise.

Given that the focus of this thesis is to aid biologists interpretation of underwater imagery

whilst improving accessibility and the user experience, we thus focus on histogram-based en-

hancement methods, which manipulate image brightness/illumination characteristics. We

explore methods that vary in complexity, both in user interaction and methodologically. Be-

fore introducing how histogram enhancements are achieved, it is first necessary to introduce

and describe the digital image and its histogram.

2.2.1 Digital images and their histograms

A digital image is a matrix, denoted as I(x, y), where x & y represent the spatial dimen-

sions of the image scene and I the spectral dimensions. The spectral dimensions can be

represented in a number of colour spaces. For benthic images, they are typically encoded

as RGB (device-dependant), or Red-Green-Blue, (64) and thus have 3 spectral channels i.e.

I(x, y)=[R,G,B]. These colour channels mimic the trichromatic visual system of the human

eye which possesses three cones. These are sensitive to long, middle and short wavelengths

of light, representing the blue, green and red portions of the electromagnetic spectrum,

respectively (145). RGB pixel values in each of these channels range from [0, 255] for 8-bit

images. The combination of these values across the channels is what encodes the colour

at each pixel in an image. For example, a black pixel is created by values of 0 across all

colour channels whereas a value of 255 across all channels will create a white pixel. Note

that digital images are not limited to three colour channels, they can possess more, some-

times hundreds, in the case of images captured by hyperspectral cameras (113). Image size
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x× y× z) varies with camera models and they are typically stored in JPEG, PNG or TIFF

file formats (64).

During image processing, images are often converted from RGB to an alternative colour

space. This may include colour information or represent brightness only (where z = 1).

A popular colour space, defined by the Commission Internationale d’Eclairage (CIE), is

CIELAB (CIE 1976 L∗a∗b∗) (201). CIELAB is a uniform colour space with axes that ap-

proximately correlate to perceptual attributes. This can be useful when enhancing imagery.

It encodes an image in terms of its brightness or luminance (L∗) and chromatic information

(a∗ & b∗), where at each pixel they have a L∗, a∗ and b∗ triplet (145). The a∗ channel

summarizes the red/green component of images whereas the b∗ channel summarises the

blue/yellow component. Pixel values fall between [−128, 127] in the colour channels while

brightness values lie between [0, 100]. However, pixel values in CIELAB are often normal-

ized, to [0, 1], particularly before attempting alterations.

It is far simpler and, typically, preferential to alter the brightness channel of an image

rather than the colour channels. Performing colour adjustments can change the colour

balance and result in unnatural colour casts in the image. Additionally, brightness based

on luminosity, is a closer representation of how the human eye perceives brightness, more

closely mimicking the discrimination of colours by a human observer. The CIELAB colour

space is therefore helpful in this regard, allowing modification of the brightness component

L∗ independently of the colour channels a∗ & b∗. HSV (172), or Hue-Saturation-Value, is

another colour space that separates brightness and chromatic information. Hue refers to the

perception of colour (i.e. blue, green, red, yellow), saturation the colourfulness relative to

its own brightness and value (or brightness) the brightest colour component, calculated as

max(R,G,B) (64; 145). HSV images do not require normalization since values are already

scaled between [0, 1].
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Figure 2.3: Image histogram of RGB colour channels & brightness channel

Before attempting to enhance an input RGB image, it is helpful to translate or define

undesirable perceptual qualities in a technical sense. One such way is to represent pixel

information in a histogram. Here, pixel values within an image, can be organised into a

vector demonstrating the frequency of pixels assigned to any given pixel value. This is

called a histogram, h, and can be displayed graphically. Histograms can be used to display

the distribution of colour values in an image i.e. h(c) = hist(C(x, y)) where, C represents

a colour channel ∈ [R,G,B] for example with pixel values c. For a typical 8-bit encoded

image, there are 256 possible values; integers in the interval [0, 255]. However for simpler

explanation, we map the image values to the interval [0,1] i.e. we divide each pixel value by

255. It follows that if h is a vector of 256 values, then hj , where j is in [1, 256], encodes the

frequency that the jth value - which is calculated as ((j − 1)/255) - appears in the image.

Given a brightness image L(x, y), h can therefore also be used to describe the distribution

of pixel (brightness) intensities i.e. h(b) = hist(L(x, y)), where b is the brightness values.

In Figure 2.3 we present image histograms. On the left we show histograms for each of

the colour channels in an RGB image and on the right a brightness histogram. It is often

useful to normalise h, by dividing the raw frequencies of the histogram by its sum. A
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histogram whose total bin count sums to one is often referred to a probability density

function (PDF).

Histograms can summarize a great deal of information about an image. They can describe

the statistical distribution of colours as well as the tonality of an image; detailing to some

extent contrast and brightness. Interrogation of an image histogram can thus provide a

technical foundation upon which to design a suitable image enhancement. The skewness of a

histogram, a measure of its asymmetry, can identify whether an image is particularly bright

or dark. The brightness histogram in Figure 2.3, for example, is highly skewed towards

the darkest pixel intensities and may therefore benefit from a brightness enhancement. A

histogram that is Gaussian, or Normal, indicates perfect symmetry and that most brightness

values are within the mid-dynamic range. The kurtosis, the spread of the central peak, can

indicate the contrast of an image, with a narrow peak (small spread) indicating the need for

contrast enhancement. The modality of the histogram, the number of peaks, can describe

the prevalance of pixel value ranges and complexity of an image. Image histograms can be

unimodal (single peak), bimodal (two peak) and even multimodal (>2 peaks).

2.2.2 Tone Mapping for image enhancement

Often in image processing pipelines (and workflows), an input image is modified to make

an improved output image. Tone mapping, which manipulates image histograms, can be

an effective method to enhance the appearance and/or visibility of image features and sup-

press non-desirable lighting effects. Tone mapping can be framed as a problem of mapping

Figure 2.4: An example of tone mapping: (A) an input image, (B) an input &

enhanced output brightness distribution, (C) the tone map and (D) an output image
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Figure 2.5: A diagram of tone mapping

an input distribution h(b) to a desirable target (output) distribution htarg(b), such as in

Figure 2.4. Here we have an input image (A) and its enhanced counterpart (B), with their

corresponding brightness histograms in (C). Note that for this example, and the remainder

of the thesis, a brightness image is defined as the maximum of R,G and B (as in HSV),

unless specified otherwise. It is calculated as follows: L(x, y) = max(I(x, y)). To modify

the input brightness image Lin(x, y) to become the output Lout(x, y), we use a tone curve

t() shown in (D).

A tone curve is simply an increasing function, or transform curve, that defines how to

change image pixel values. In Figure 2.5 we show a diagram of tone mapping and how it

functions as a look-up table. Here we see an identity mapping (a line at 45 degrees), which

maps an input pixel value x1 to the same output value y2. The tone curve however maps

x1 to a lower output pixel value y1. Tone curves can be applied individually, to each colour

channel. However, more commonly, they are applied to a brightness image.

To modify image pixel values in a brightness image (Lin(x, y)), with a tone curve we use

the following:

Lout(x, y) = t(Lin(x, y)) (2.1)
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Typically, the next step is to convert the output brightness image back to the original colour

space, in this case RGB. Using the maximum as a definition of brightness, rather than the

mean (for example), allows for simpler calculation of output colour images. Given an input

color image Iin(x, y) the corresponding max brightness input image is denoted Lin(x, y).

Given an output brightness image Lout(x, y) (created by tone mapping, for example) the

output colour image, Iout(x, y) is computed as:

Iout(x, y) = Iin(x, y)
Lout(x, y)

Lin(x, y)
(2.2)

Since our brightness is the per-pixel maximum of R, G and B, Iout(x, y) ∈ (0, 1]. That is, the

max definition ensures that Iout(x, y) is in the display range, see (146). In contradistinction,

if we had defined brightness to be the mean of R, G and B, L(x, y) = mean(I(x, y)), then the

output colour image (Equation 4.3) can have values larger than 1 and thus not be displayed

directly. By using the maximum of R, G and B as our brightness, we avoid the question of

what to do if the manipulated brightness values fall outside of the display range.

Tone mapping is a common tool in photo-editing software; employed either practically,

through interactive manipulation of a tone map, or algorithmically, which can require the

user to supply parameters or function automatically. Tone mapping can be used to enforce a

variety of desirable tonal output qualities. In Figure 2.4, the output histogram is left-skewed,

describing a darker image than the input. The histogram also appears flatter, an adjustment

enforced by the tone mapping algorithm Histogram Equalization (HE) (88; 64). In HE,

the target distribution, htarg(b), is a uniform or equalised histogram. The predominant

motivation for the usage of HE is to improve image contrast. In poor contrast images, pixel

values may be confined to a specific range of the histogram. A dark image for example,

may have pixel intensity values aggregated towards zero, the darker portion of the dynamic

range (the range of possible pixel values). In order to increase contrast, the histogram can

be stretched and flattened across the full dynamic range such that its mean brightness is

shifted to the middle of the dynamic range. According to information theory, this increased
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Figure 2.6: Brightness histograms of images in Figure 2.7(A), including an unen-

hanced input and a HE & CLHE enhanced output

uniformity in the histogram will yield an increase in entropy, and therefore an increase in

information or details within the image (164; 210).

In HE, the tone mapping function t() is the cumulative distribution function (CDF), or

integral, of the input brightness distribution; a histogram that is normalised to sum to

one.

t(b) =

∫ b

0
h(b) db (2.3)

We show a worked example of HE in Figures 2.6, 2.7 and 2.8. In Figure 2.6 we show an

input brightness distribution and its flattened HE output. Observing the corresponding

images in Figures 2.7 (A) & (B), we see that this contrast enhancement has improved the

conspicuity of edge details. The HE method can not only improve the visibility and therefore

segmentation and identification of features in an image, such as species or habitat, it can be

used to standardize the appearance of features under different illumination (162). This is

particularly important for automated image analysis, since recognition systems are known

to be sensitive to varying brightness conditions (4). In addition, HE is not computationally
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Figure 2.7: Enhancement example: (A) Unenhanced image, (B) HE image and (C)

CLHE image with a minimum slope of 0.5/N & a maximum slope of 2/N , where

N = 256 bins

intensive, is easy to use (given it is automatic) and an operation that can be easily reverted

if the transformation function is known. These factors make HE a popular choice in image

processing.

However, rather than improving an image, HE can often give a worse result. In Figure 2.8(A)

we show the corresponding brightness distribution of the input image from Figure 2.7(A),

labelled as ‘HE’. In Figure 2.8(B) we show the HE tone curve - the cumulative distribution

of the input (or HE) histogram (A) - that delivers the output image in Figure 2.7(B).

Note that tone curve has low slopes for small and large brightness values. In the equalised

image (Figure 2.7 (B)), this translates to a loss of details in darker regions (i.e. bottom

right) and bright regions (i.e. sponges on the cobble). In the mid-brightness range of the

tone curve, the steepness of the slope, driven by sharp differences in bin frequencies, cause

adjacent pixel values to map to very different values. This causes the equalised output to

appear overly enhanced, with too much contrast. Histogram equalized images often appear

over-enhanced, with significant and abnormal brightness changes.

To address the issue of over-enhancement, the HE method can be constrained. In Figure 2.7

we show a second enhanced image (C), possessing more detail than the input image (A), yet

without the artefacts present in (B). This has been enhanced using the Contrast Limited

Histogram Equalisation (CLHE) algorithm (138; 214). In Figure 2.6 it is evident that the

brightness histogram following CLHE is more flat, indicating greater contrast, yet not fully
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Figure 2.8: HE & CLHE tone mapping: (A) An Input PDF (HE proxy histogram)

and its slope-limited (CLHE) proxy, (B) their respective CDF’s or tone maps. Grey

lines in (A) depict upper and lower slope bounds of 2/N and 0.5/N respectively, where

N = 256 bins. Grey shading in (B) highlights area of each tone map that fall within

the slope thresholds.

equalized. The CLHE tone curve to enforce such a distribution is shown in Figure 2.8(B).

We can see from this that the tone curve never has a slope less than 0.5/N or greater

than 2/N , shown by the shaded areas. This slope-constrained tone curve is the cumulative

distribution of the CLHE-derived histogram shown in Figure 2.8(A).

CLHE strives to find a histogram h′(b) ≈ h(b), such that the minimum slope (m) and

maximum slope (M) of its cumulative histogram is bounded. Where h(b) represents our

input (HE) histogram and, in this case, m = 0.5 & M = 2, as depicted by the grey

horizontal lines in Figure 2.8(A). To understand how this is achieved, let us move to the

discrete domain. We map the continuous histogram h(b) to a discrete N-vector h, which has

N bins and sums to 1. Here, the input domain (0, 1] is uniformly sampled into N regions.

As such the jth bin is in the interval ( j−1
N , j

N ] and hj is the proportion of brightness values

in the image that fall in this interval; under the assumption that histograms are normalised

to sum to one.
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In the continuous domain, the tone curve for HE is the integral of h(), see Equation 2.3.

In the discrete domain, we have an N -element tone curve, s, which is analogously defined.

Here the integral is replaced by a summation:

sj =

j∑
i=1

hj (2.4)

As the size of each histogram bin is 1/N , the slope of the tone curve at the jth brightness

level sj is defined as:

sj =
sj−sj−1

1/N , if j > 1

s1 =
s1
1/N

(2.5)

Clearly, we can also write the slope as:

sj =
hj
1/N

= Nhj (2.6)

If hj = 1/N , then the slope of the corresponding tone curve (cumulative histogram) is always

equal to one. That is the tone-curve is a line at 45 degrees. And, as we would expect, if we

try and equalise an image that already has a flat histogram then the tone curve is a null

operation i.e. each input brightness maps to the same output brightness.

In the case of CLHE, we would like to flatten an input histogram, yet limit the extent of

this imposed uniformity, using a tone curve with a bounded slope that is neither too large

nor too small. The CLHE algorithm achieves this by finding a proxy histogram h′ that is

similar to the original but in which the slope conditions are adhered to. Mathematically,

we would like the distance, ||h′ − h||, to be small and the slope constraint m ≤ Nh′ ≤ M

to be met.
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However, what, exactly, is meant by ‘small’ is not well defined. As discussed in (129),

CLHE appears to empirically minimize a least-squares error; indeed it generally returns

the same proxy as an algorithm that minimizes the least-squares error. So, to a first

approximation we can consider ’small’ to mean a minimum least-squares error. The integral

of this proxy brightness histogram (Figure 2.8(A) creates the CLHE tone map shown in

Figure 2.8(B).

Both CLHE & HE are global tone mapping operations (TMOs) and thus may smooth over

small local variability in pixel values (214). This could be problematic for species or seabed

features that are either small and/or not very distinctive. CLHE is therefore often deployed

in its adaptive form which is called Contrast Limited Adaptive Histogram Equalization

(CLAHE). In CLAHE, an image is tiled into several non-overlapping regions, say a 4 × 4

grid. We calculate the histogram of each tile and use CLHE to derive a slope-limited

tone curve. This tone curve is associated with the central pixel in each tile. Individual

pixels are then mapped to output values by bilinearly interpolating the output values found

for the 4 tone curves (from the 4 neighbouring centres). This better accommodates local

variability and enhances contrast within an image, whilst constraining the introduction

of noise, particularly within homogenous regions i.e. shadowed or dark regions. HE also

has a locally-adaptive form, Adaptive Histogram Equalization (AHE) (138), but is less

used. Although these tone mapping algorithms enforce a uniform target distribution on the

histogram of the output image, this need not be the case. Following initial recommendation

by (48), many CLAHE applications to underwater images seek a target histogram modelled

by a Rayleigh distribution (RD) (143). Further details on the RD are provided in Chapter

4.

For analysts, employing CLHE in its global or adaptive form is more complex than its

HE equivalent, given that it requires more parameters to be supplied. However, these are

relatively intuitive, given that they correspond to the level of contrast and number of regions

in the image. If integrated into image manipulation software, they thus have the potential
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to be easily toggled by analysts. Importantly, the additional parameters in CLHE and

CLAHE allow analysts to generate more personalized enhancements; supporting individual

preferences and those related to image content. However, studies rarely consider potential

benefits in such a task-focused context, typically concentrating solely on improved aesthetics

??. This is an important issue given the usage of imagery extends beyond aesthetics - such

as the application in this thesis.

2.3 Computer vision for automatic classification

Incorporating computer vision into benthic image analysis workflows, specifically automatic

classification or detection, is widely believed to be essential. Not only to cope with accumu-

lating data from autonomous imaging platforms but to optimize current analysis methods,

improving the efficiency, consistency and quality of ecological data extraction from im-

ages.

2.3.1 Image features

Image classification is simply the assignment of a label to an image based on visual pat-

terns. Labels are simply categories that describe the image contents or objects that can be

represented textually or numerically (one-hot encoded). Whether undertaken by a human

or a computer, image classification is broadly the same. For example, analysts identify a

species or habitat from an image by scrutinizing the physical and/or biological characteris-

tics based on domain knowledge and experience (or training). Additionally, this decision is

often supported by contextual information about the environment in which the image was

captured, such as geographic region and bathymetric depth (distance below sea level).

A computer vision or machine learning algorithm can be trained to achieve the same task.

Simply put, given an input image, some information or features must be extracted which

can then be passed to a learning algorithm; this learns to assign these features to an appro-

priate classification. Features could merely be pixel values in an image, however this would
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perform poorly in most classification tasks. Alternatively, feature extraction algorithms, or

feature descriptors, exist to derive more complex patterns from an image based on colour,

tonal or textural attributes. Some low-level features descriptors include Scale Invariant Fea-

ture Transform (SIFT) (115), Histogram of Orientated Gradients (HOG) (33), Speeded Up

Robust Features (SURF) (14), Linear Binary Patterns (LBP) (6), Grey Level Co-occurance

Matrices (GLCM) (71), Gradient Location and Orientation Histogram (GLOH) (131), Max-

imally Stable Extremal Regions (MSER) (125). However, in complex classification tasks,

these are not always suitable.

Instead, deep features extracted by Convolutional Neural Networks (108; 66) have proven

to be extremely useful in image classification (102; 170; 176; 74; 86). These are artificial

neural networks that learn bespoke feature descriptors, using convolutional operations to

aggregate simpler features into more complex features. We provide further details on CNNs

(as both a feature extractor and classification algorithm) in the following section, broadly

discussing their architecture and function.

2.3.2 Classification approaches: simplicity vs. complexity

A number of machine learning algorithms have been used to classification image features,

such as Decision Trees (140; 76), K-Nearest Neighbour (KNN) (67), Linear & Logistic

Regression, Bayesian Nework Classifiers (53), Adaptive Boosting (AdaBoost) (187), Convo-

lutional Neural Networks and Support Vector Machines (28), to name a few. In this work

we focus on the latter two, which differ in their theoretical and practical complexity for a

non-specialist such as a marine ecologist.

Convolutional Neural Networks

CNNs are biologically-inspired deep learning (DL) models (a subset of ML models) that

use convolution to transform image data and extract features (108; 66; 9). Convolution,

or a convolutional operation, refers to a kernel or filter (a matrix of discrete values), that

moves across an image (a sliding window) altering pixel values through multiplication and
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summation. This happens many times with different kernels, building a representation of

the image in which patterns, or features, are evident. They may highlight edges, textures or

even objects within the image. Features (the transformed pixel values) are then flattened

into a 1-Dimensional vector and act as input variables to a neural network (NN) within

the CNN for classification. Note that though they can be used independently, when housed

within a CNN, NNs are referred to as a fully connected (FC) layer(s).

FC layers are a convenient way of mapping all feature information into a specified number

of outputs. CNNs typically house multiple (>2) FC layers in succession. Although each of

them perform the same function in a technical sense, it is helpful to think of the first FC

layers as reducing the large number of features extracted following convolutions or further

clarifying patterns within these features. Whereas the last FC layer can be thought of as the

true classification or output layer. Here the number of outputs is equivalent to the number of

classes in the dataset. FC layers map feature data to the specified outputs by fitting complex

curves or hyper-surfaces to the data. They do this by (1) linear transformations, multiplying

features by weights and adding biases and (2) non-linear transformations, adjusting features

with an activation function. Similar to regression, the FC layers are therefore merely ap-

proximating relationships (or functions) between the extracted image features and each of

the outputs. The output values are interpreted like a probability (logits), showing which

class the image features best correspond to. This is decided by taking the maximum output

value, known as the argmax. Note that these are not true probabilities; their sum may be

greater than 1. To ascertain the normalized probability that each image represents one of

the possible classes, the output values can be converted using a softmax function.

We simplify and recap this process in Figure 2.9. For each image that passes through

a CNN, it will first be modified by numerous convolutional operations, creating multiple

image versions. These are referred to as feature maps and are then flattened and combined

together in a 1D feature vector. The features are then classified by passing through the FC
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Figure 2.9: Diagram of a simple CNN for image classification, with 3 output classes.

layer and compressed into the specified number of outputs, in this example 3. The image

is classified as the class with the maximum output value.

Without training, passing an image through a CNN will likely result in a inaccurate class

prediction. However, both the convolutional operations and FC layers can be optimized

such that the predicted outputs better match the real classes. Suffice to say that for

each image, or group of images (batch), that is passed through the CNN, the parameters

(convolutional filters, weights and biases) that transform pixel values and the subsequent

extracted features, are updated through a process known as backpropogation (150). In

short, this monitors the error between predictions output from the final FC layer and

the observed classes. For multi-class classification, cross-entropy loss is typically used as

the error metric, or loss function. The CNN then uses gradient descent (an optimization

algorithm) to update the CNN parameters according to the size of this error multiplied

by the learning rate (step-size). In effect, large errors will result in a large change to

parameters, scaled according to the learning rate. Backpropogation will gradually optimize

CNN parameters and improve performance as more images, and thus examples of each

class, are passed through. When all training image data has been passed through the CNN,

this is termed an epoch. Backpropogation is repeated such that the CNN is trained for a
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specified number of epochs, or until prediction accuracy either stabilises or reaches a set

threshold.

CNNs are highly effective at extracting and classifying visual features (102; 170; 176; 74; 86).

They start by recognising low-level features such as edges and textures, gradually building

to more complex, high-level feature representations such as parts of objects or entire objects.

For example this could be the fins, markings and body contour of a fish which contribute to

its full appearance and thus enable the CNN to predict its class (153; 52). To do this, they

requiring enormous volumes of imagery (1000s) for training and computer resources such

as high-priced Graphical Processing Units (GPUs) which may not be available. As a result,

many CNN applications rely on a process known as Transfer Learning in which a CNN,

trained for a different classification task (or dataset), is adapted by training further on their

own classification problem. Using pre-trained networks as a head-start enables extraction

of generic high-level features that can support classification. These can then be refined, or

optimised, with further training on the new dataset. Common CNNs used for this purpose

include VGG-16 (170), ResNet-50 & ResNet-101 (74).

Many studies have demonstrated the possibility of using CNNs to classify benthic taxa in

optical imagery (124; 104; 137; 106; 43; 1; 40; 95; 136) and this continues to grow each

year. Shallow-water corals are a particularly common benthic target for CNN classification

(18; 120; 68; 69; 121), largely thanks to the availability of open-source datasets such as MLC

(16), EILAT and RSMAS. In some cases, reef-forming corals can be considered to occur as

both a species and a habitat (83). However, the examples in these datasets are typically

highly-zoomed images of coral texture and thus do not represent well the broader structure

and contextual appearance of the habitat at the captured image resolution.

Currently, there is less literature employing CNNs at the habitat level in benthic applications

(142; 122; 119; 132; 204; 202). The majority of these utilise shallow-water datasets, including

open-source datasets such as Benthoz15 (19) and Tasmania (197), as well as those on corals

mentioned previously (MLC, EILAT, RSMAS). Such datasets are important for bench-
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marking of methods however they do not represent the application in this thesis which

varies with respect to the region covered and their associated habitats, as well as camera

and image properties (platform, lighting), see Chapter 3.

Common amongst these studies is the use of pre-trained CNN’s (transfer learning) as a

feature extractor to support classification with Support Vector Machines (SVM), an alter-

native machine learning algorithm, see Section 2.3.2 for more details. Mahmood et al., (122)

showed that ’off-the-shelf’ ResNet50 features outperform traditional hand-crafted features

in the classification of kelp habitats using Linear SVM’s. Similarly, Mahmood et al., (119)

used the same to classify benthic images from multiple datasets, including MLC, EILAT

and RSMAS. However, they found that combination of features from different ResNet layers

resulted in even more powerful feature descriptors for classification. Mohamed et al., (132)

instead utilised non-linear (polynomical) SVM classification of shallow benthic habitats in-

cluding corals, algaes, seagrass and sediments. They found that features extracted from a

pre-trained VGG16 could be improved with additional features provided by a pre-trained

‘bagging of features’ (BOF) algorithm. Overall performance could also be improved, to a

lesser extent, if the VGG16 features were combined with ResNet50 features.

One key benefit of these approaches, aside from good performance, is the reduced require-

ment for training imagery by employing transfer learning and the use of ML classifiers which

are more appropriate with smaller datasets (SVMs - see Section 2.3.2). Other habitat appli-

cations use a different approach to reduce labelling effort; unsupervised learning. Yamada

et al., (204; 202) use image location information to guide autoencoder training to identify

subsets of unlabelled benthic images that include kelp, reef, bacterial mats and varied sub-

strates. These can then guide manual annotation efforts and/or pseudo-labelling based on

relative locations, in latent representations, to annotated imagery. Subsequent performances

yielded competitive performance conventional CNN transfer learning (AlexNet, ResNet18

and ResNet152) as well as more traditional classifiers like SVMs. In a similar sense, Rao et

al., (142) explored autoencoders guided by acoustic bathymetry (ocean depth) to improve
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Table 2.1: Hyperparameter glossary for CNN & SVM training

CNN:

Batch size The number of images you send to the model in each iteration.
Model parameters are updated after each batch during training.

Epochs How many times you pass the full image dataset through the model.

Loss function The error metric that you wish to minimize.
e.g. Cross entropy loss for multi-class classification.

Learning rate A small number (0, 1] that determines the amount to alter parameters during
training with respect to the loss.
Also known as the step size.

Optimizer An algorithm that modifies CNN parameters according to a particular strategy
to minimize the loss.
e.g. the Adam optimizer sets the learning rate adaptively for faster and more
efficient training.

SVM:

C A regularization parameter that offers a trade-off between the maximum-
margin and misclassification rate.
e.g. A large C enforces a small margin hyper-plane maximizing classification
accuracy.

γ A value to determine the distance over which support vectors influence the
hyperplane.
e.g. A high γ considers only points that are close to each other and causes the
decision-boundary to be highly curved.

N.B. This list of hyperparameters is not exhaustive.

CNN performance in benthic habitats. They found that visual imagery of benthic habitats

is suitable for automatic classification and does not benefit from the addition of bathymetric

data i.e. encoding the relationship of visual features with bathymetric data. However, the

inverse was significantly improved.

The methodologies of the approaches presented are not always straightforward from a user

perspective, for example the training of a CNN is highly intimidating, and often inaccessible,

to a non-specialist such as marine ecologists, without collaboration with experts (183).

Understanding their mechanics and theory is complex and requires large investments in time

for comprehension and implementation. They require several hyper-parameters, which must
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be set manually by the user, see Table 2.1. These also require a good deal of theoretical study

to understand, train and use them effectively. Additionally, for individuals without more in-

depth programming knowledge, particularly in Python or Matlab, they might be challenging

to train. A better option for novice users, as already employed by some benthic applications,

could be to use a pre-trained CNN (feature extractor) and pair with a traditional machine

learning algorithm, such as a SVM, that is simpler to train. However the simplicity of this

method does vary with respect to the CNN employed (122). ResNet features, for example,

require processing of the convolution block(s), into a 1-dimensional feature vector, to be

extracted. This is due to the single FC layer being unsuitable since it maps feature outputs

to the ImageNet classes. By comparison, VGG16 (which contains 3 FC layers) is simpler

as you can simply extract features from the penultimate FC layer.

Support Vector Machines

SVMs are a shallow learning technique that classify images well using deep features ex-

tracted by a CNN (144; 11; 153; 121; 122; 119; 132). Created for binary classification

problems, they function by identifying the best boundary, or hyperplane, between data

points that enables the distinction of two classes. A hyperplane is a flat affine subspace

of dimensions n-1 in an n-dimensional space. In its simplest case, consider a 2D (n = 2)

scatter plot of data represented by two features (or variables); one on the x-axis and the

other on the y-axis. Data points, in this 2D space, are classified as class 1 or 2. An SVM

will find a hyperplane, in this case a 1D (n−1) linear boundary (or line) that maximises the

distance between the data points of each class to this boundary. SVMs classify data points

simply by observing where they lie with respect to this hyperplane separated 2D space, see

Figure 2.10. Unlike a CNN, the output is a predicted class rather than a probability that it

is either of the classes. It is important to note that the data points in an SVM classification

are not restricted to n=2 dimensions (2 features). In Figure 2.10 we also show an SVM

example when n=3. However, in reality, data points can be the intersection of a significant
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Figure 2.10: A diagram of Support Vector Machines

number of features. The VGG-16 CNN feature extractor (170) for example, extracts 4096

features from each image, creating a feature space of 4096 dimensions.

The SVM uses the points closest to the hyperplane, known as support vectors, to guide

hyperplane placement. The support vectors are the hardest points to classify, given the

potentially close proximity of support vectors of each class. Optimal placement is therefore

found by maximising the distance between the support vectors of each class and the hy-

perplane (known as the margin) such that the misclassification rate is minimized. This is

why SVMs are referred to as maximum-margin classifier; they find the hyperplane that is

equidistant between the two classes. Using only the support vectors, and thus a subset of

the data, to place the hyperplane in this way is very memory efficient compared to a CNN

which uses all data in training.

In the event that data points are not linearly separable in the original n-dimensional space,

an SVM will transform the data points to a higher number of dimensions; such that a linear

hyperplane that separates the two classes can be found. Reducing the dimension of this

optimal hyperplane back to n-1 dimensions will then result in a non-linear separation of the

data points. For simpler conceptualization, say that the SVM moves a 2D feature space

into 3D, such that a 2D hyperplane is found. This hyperplane is then converted to 1D,

creating a non-linear line.
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Figure 2.11: Multi-class Support Vector Machines: a diagram of the One vs. One

strategy

The movement of data points into a higher-dimensional space is achieved by kernels. Note

that kernels in this case are mathematical functions. In truth, kernels do not physically

transform the data as this is computationally expensive. Instead, they compute and opti-

mize distances between support vectors and the hyperplane, assuming they were projected

in a higher number of dimension. This is referred to as the kernel-trick. (84) recommend

the use of a Radial Basis Function (RBF) kernel as a good default choice, as it can find

both a linear and non-linear hyperplane at high dimensions, see Figure 2.10.

The RBF kernel requires only 2 parameters: C & γ (gamma), see Table 2.1. C is a

regularization parameter that controls the compromise between the margin maximization

and the number of misclassifications. Whilst γ enforces the region (distance from the

margin) in which support vectors have influence, controlling the curvature and complexity

of the decision boundary.

In the event of a multi-class classification (>2 classes), as is the case in this thesis, there

are a few strategies that enable use of an SVM. We use use a typical approach called One-

Vs-One (OVO). This splits the dataset into multiple binary classification problems that are

assessed per each pair of classes. Compiling the classifications of all binary SVMs allows a

final classification to be made for each data point, based on the class that received the most

votes, see Figure 2.11.
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SVMs guarantee an optimal solution to be found when classifying data. They always find

the best placement for the hyperplane. Neural networks, or FC layers, however may never

converge to an optimum during gradient descent. The number of SVM hyper-parameters

required is also far less; only 1 or 2 depending on the kernel used (Table 2.1). SVM

models are computationally efficient and can therefore easily be re-trained with different

parameter combinations to find an optimal set. Training a CNN however requires a great

deal more time and effort. Since the FC layers use all of the data and require a large

number of intricately connected parameters, this leaves them prone to over-fitting and poor

generalization (102; 9). For this reason, it is necessary to use large and diverse datasets

when training CNNs. For small datasets, an SVM classifier may be more appropriate. SVM

classifiers are less restrictive with regards to resources (time, computing & imagery) and

experience.

2.4 Summary

This chapter has provided a background on some of the challenges associated with using

imagery data for marine ecological research. We focused on histogram manipulation with

tone mapping as a simple, yet powerful image enhancement tool to improve interpretation

of underwater imagery. We also discussed how the efficiency and quality of benthic image

analysis can be bettered through automatic classification using computer vision. In the

following chapters of this thesis, we aim to improve the image analysis pipeline for ecologists,

exploring solutions in these areas of image processing and computer vision. We design a

tone mapping tool that is tailored to underwater image analysis, being both simple and

quick to operate by end-users and possessing a more appropriate degree of customization.

We also present machine learning approaches to classify benthic habitats from imagery, that

offer a good trade-off between performance and accessibility for non-specialists.
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3 Image Datasets

Three underwater image datasets were provided by Gardline Ltd. for this thesis, see Table

3.1. They cover multiple geographic regions; 3 unique locations within the Norwegian Sea.

Further geographic information is unavailable due to commercial sensitivity. The datasets

span two types of imaging platform commonly used in seabed surveys; ROVs and Drop

Cameras, the specifications of which are provided (Table 3.1). Examples of these platforms,

as well as others, can be found in Figure 2.1. Note that all images presented in this thesis

belong to either Gardline Ltd or the thesis author, unless otherwise stated.

Table 3.1: Benthic Image Datasets used in this study

ID Platform Components Image Specifications Location

1 ROV Imenco Tiger Shark 14mpx
with external flash (Lantern
Shark), 10 × ROS (MV-4000)
and 4 × Innova Gas lights.

8353 RGB images
(4320×3240, .jpeg)

Norwegian Sea

2 ROV Konsberg/Simrad (OE14-208)
5.0mpx, 1 × forward-facing
strobe, 2 × fixed & 2 × mo-
bile LED lamps.

1240 RGB images
(2592×1944, .jpeg)

Norwegian Sea

3 Drop camera Konsberg/Simrad (OE14-208)
5.0mpx, 1 × forward-facing
strobe, 2 × fixed & 2 × mo-
bile LED lamps.

574 RGB images
(2592×1944, .jpeg)

Norwegian Sea

The surveys to collect each of these datasets involved lowering the imaging platform to

the seafloor, with height controlled using a USBL beacon and the real-time video feed -

transmitted via an umbilical/sonar cable. The ROV is manually controlled by pilots on

the accompanying vessel whereas the drop-camera system consists of a stainless steel frame

that moves progressively along the seabed via thrusters or drift. For each platform, seabed
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Chapter 3. Image Datasets

Table 3.2: Habitat classes encountered within the image dataset

ID Habitat Included sub-habitats

SS1 Soft Substrate (SS) Heavily bioturbated SS,
Single sea pen & Sea pen community

SS2 SS Sponge Community -

HS1 Hard Substrate (HS) Gravel area, Scattered Cobbles,
Cobble and boulder area, Boulder area

HS2 HS Sponge Community -

Cor1 Reef Framework Coral rubble zone,
Dead & Live Desmophyllum pertusum reef framework

Cor2 Soft Corals Lone soft coral, Multiple soft coral colonies,
HS soft coral community

images were taken using a mounted digital stills camera system with dedicated strobe and

video lamp(s). Note that each platform has a unique camera and lighting configuration

(Table 3.1). Images are captured consistently throughout a transect, every 30m. Manual

shot-selection is also possible.

Each of these datasets are visually inspected by analysts to localise, identify and enumer-

ate features of interest. For habitat classification, the primary habitat of each image was

categorized according to an in-house seabed classification guide, which can be found in

Appendix A. However, a simplified version is presented in Table 3.2. Analysts assign the

appropriate class to each image by looking for both the presence and absence of specific

features. For example Soft Substrate habitats should contain no hard substrates and the

presence of Sponges or Sea Pens can alter the classification. To perform this task, analysts

regard the full (contextual) view of the image, as well as focusing and zooming in on finer

details.

As mentioned in Section 2.1.3, this manual procedure suffers multiple limitations; it is

impeded by a number of optical challenges related to the physical behaviour of light in water

as well as environmental and human factors. Operation of the imaging platforms in these
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Table 3.3: Broad habitat classes and their association with EUNIS habitats

Broad habitat Abbreviation IDs EUNIS (Level 2)

Soft Substrate Soft Sub. SS1, SS2
ME5: Upper bathyal sand &
ME6: Upper bathyal mud

Hard Substrate Hard Sub. HS1, HS2 ME1: Upper bathyal rock

Reef Reef Cor1, Cor2 ME2: Upper bathyal biogenic habitat

datasets also introduces further challenges, for example those related to the fluctuation

in the height of the camera above the seabed and its angle. This alters the size and

perspective of habitat components. It also contributes to the inconsistent lighting patterns

that occur in underwater image surveys - in particular those that use artificial lighting.

Variable height and angle of the platform can adjust the illumination direction and angle,

size of the illumination halo, vignetting patterns, as well as the brightness and contrast

levels. Each of these factors can cause seabed features to appear more dissimilar between

images and become more obscure. This enhances the difficulty of the image analysis task.

Where possible, analysts employ simple image enhancements to aid annotation. However

although quick, these enhancements are mostly insufficient, fixed (lacking customisation)

and only used in worst-case scenarios in which their benefit is minimal. Analysts require

tools that are better optimised, providing benefits to multiple images without compromising

on efficiency - i.e. they should be simple and quick to use for an end-user - avoiding further

delays in an already time-consuming procedure.

Benthic images in Datasets 1 & 2 were manually annotated by Gardline analysts using

CountEM, a bespoke image analysis program developed at Gardline, see Section 2.1.2 and

Figure 2.2. All habitat labels were quality controlled for accuracy. In the event of mis-

classification, labels were corrected with their broad-scale habitat classification for time

efficiency. Broad-scale habitat classes are presented in Table 3.3 alongside their European

Nature Information System (EUNIS) 2022 classification (49; 46) equivalent for wider con-

text. For brevity, we often refer to habitats by their abbreviation or ID in this thesis, see
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Table 3.3. Gardline annotations were unavailable for Dataset 3. Thus to ensure its inclusion

in this body of work and in order to provide an accurate and rapid classification, each image

was categorised at the broadest level described in Table 3.3. Image examples of habitats

encountered across datasets are presented in Figure 3.1.

Figure 3.1: Example of habitat classes encountered across image dataset

Although the exact proportions of each habitat varies across datasets, all are dominated by

soft and hard substrate habitats, followed by reef as the least dominant habitat type, see
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Figure 3.2: Proportion of each habitat class across datasets

Figure 3.2. This reflects well the typical constituents of the deep sea benthos. As is normal

with deep Soft Sub. habitats (the most common benthic habitat), images categorized as

such will often contain signs of burrows, trails and epifauna. This habitat supports a huge

diversity of organisms, many not perceptible from benthic imagery, that influence a number

of ecological processes (173; 160). Hard or mixed subtrates, such as Hard Sub. or Reef

however, are often dominated by sessile epifauna, encrusting organisms, and shelter motile

epifauna. The increased complexity offered by hard substrates has been linked with greater

diversity (103), as they provide stability for sessile organisms, micro-habitats and access

to food (via elevation up into current flows) (23). Reef habitat in particular plays an

important role in the functioning of deep sea communities and drives biodiversity (147; 23).

This is also true for deep-sea sponge grounds (23). We note the presence of both soft and

hard substrate sponge communities in these datasets. However, the sponge species within

each are different. The variety of habitats, multitude of imaging platforms and geographic

separation of these datasets ensure that associated analyses and findings will have a great

analytical relevance for both the wider ecology and computer science community.
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4 Bespoke tone-mapping of under-

water imagery

Heavy reliance on underwater imaging to support environmental monitoring and conserva-

tion in combination with the optical challenges presented whilst capturing said imagery (44),

strongly motivate the need to develop image processing pipelines that will better support

the interpretation of image data.

In this chapter, we focus on image enhancement, specifically tone-mapping operations

(TMOs); a common tool to improve image quality within the industry (as well as our col-

laborator Gardline Ltd.). Understanding of how a TMO should behave, in order to support

image analysis, is still in its infancy within underwater image applications. We therefore

provide expert-informed guidance on suitable characteristics for TMOs to support the ex-

traction of ecological information from underwater imagery and explore pathways for their

future automation.

4.1 Introduction

Underwater images typically lack colour (or are strongly colour-casted), have low contrast,

are poorly saturated, blurry and intrinsically dark. They are also subject to non-uniform

illumination and shadows within images (77). As discussed in Chapter 2, this is a major hin-

drance to manual annotation and can also reduce the success of automatic image annotation

(156; 44). Since many of these undesirable qualities are explicable with reference to image

histograms (or brightness distributions), a simple approach to visually improve images is
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Figure 4.1: Example of brightness tone mapping. In (A) we show an input brightness

histogram and three modified outputs. The corresponding tone maps are shown in

(B). Adjustment 1 demonstrates a brightness increase, 2 a contrast increase and 3 a

combined brightness and contrast increase

to alter their pixel values, and by extension their corresponding brightness distribution, see

Chapter 2.2.2.

In Figure 4.1 (A), we show an input brightness distribution and three modified output

histograms, labelled 1 to 3. Each of these were created by applying the corresponding tone

maps in Figure 4.1 (B) to the input brightness image. We see that applying tone map 1, in

(B), makes the input image brighter as the peak of the output brightness histogram in (A)

is shifted towards brighter values (or higher pixel intensities). Comparatively, tone map 2

increases the contrast (and darkens) the output image, demonstrated by a flattening of its

Figure 4.2: Visual representation of tonal manipulations in Figure 4.1 From left to

right we show: the unenhanced input image, a brighter output, a more contrasted

output and a brighter output with more contrast.
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Figure 4.3: An selection of unenhanced benthic images

brightness histogram. Thus the combination of these effects, driven by tone map 3, is a

brighter output image with greater contrast. This is indicated by a histogram that is both

flatter than the input and skewed towards a higher pixel intensity. We show the results of

applying these three tone curves in terms of a real input image in Figure 4.2. From left

to right we show the input image and the modified output following application of tone

curves 1-3. The intuitive results seen in the output histograms (1 is brighter, 2 is darker

with more contrast and 3 is brighter with more contrast) are evident in these tone-mapped

images.

Although the three TMOs are fairly standard and simple enhancements that can improve

the visual quality of imagery, their usefulness is dependant on the underlying data. Clearly,

if an image is already bright, we probably wouldn’t want to make the image even brighter,

for example through the application of tone curve 1. In Figure 4.3 we show six unenhanced

underwater images. Viewing their six brightness histograms in Figure 4.4 we see that there is

significant variation between their distributions. There is variation in the degree of skewness

and flatness, as well as variation in modality - though most appear to be unimodal, gaussian-
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Figure 4.4: Corresponding brightness distributions of unenhanced images shown in

Figure 4.3

like distributions. The different histograms, indirectly, point both to how the content and

illumination of underwater scenes vary across images.

It is difficult to therefore suggest a fixed tone-mapping operator that will provide an optimal,

or at least highly beneficial, enhancement in all cases. Additionally, the data collected from

underwater imagery, and its usage, is highly diverse and thus this may influence the kind

of tonal enhancement that is required.

Of course, the obvious ‘solution’ to this problem is to use a tone-map that is tied to the

brightness distribution itself. For example., Histogram Equalization (HE), its various adap-

tive and contrast-limited versions (138; 214; 75) and others (91; 59) have been widely used

to automatically map an input image to an output that has more visible detail (or, equiv-

alently, a flatter histogram). Often these approaches work well but not always. Part of

the reason for failure, is that the tone-map objective function is expressed in the language

of signal processing (here ‘maximizing information’), which may or may not fit with the

adjustments sought for a particular task. General algorithms do not consider the purpose

the imagery serves (and its audience).
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If a fixed or auto-generated tone curve is not fit for task, a third alternative is ask a user

to make the tone-curve. Making a bespoke tonal enhancement may be more useful to end-

users, though at the expense of time. It gives more flexibility which is highly suitable for the

diverse appearance of underwater images and better supports the subjective preferences of

end-users to aid their analyses. Advantageously, investigating these tonal enhancement may

also serve to guide future development and automation of underwater tone-mapping and/or

image enhancement algorithms. That is, given a corpus of bespoke adjustments made by

users in enhancing underwater images it is, perhaps, possible to learn what adjustments are

made for a given image. This learned behaviour effectively implements a domain-specific

(here, underwater images) tone-adjustment algorithm.

In, this chapter, we focus on the tone mapping problem in the context of underwater im-

agery, with the long-term aim of developing automated image enhancement tools. We began

by investigating images processed by end-users in the field i.e. biologists, who manually ma-

nipulated input images so that details sought for analytical purposes were more conspicuous

and did not contain artefacts. We describe characteristics of unenhanced input histograms

and their user-adjusted outputs to guide development of more tailored image tonal manipu-

lations. Finally, we explore their characteristics and possibility of automation by comparing

them to known probability distributions.

4.2 Background

4.2.1 Desirable brightness distributions

As described in Chapter 2, tone mapping can be framed as as simply mapping an input

image with a brightness histogram h(b) to an output image with a desired target brightness

distribution htarg(b). For underwater images, particularly those in deeper waters, it is

important to preserve the fact that it is dark, as well as image shadows (which can aid object

identification). When designing a bespoke tone map t, if the target distribution htarg(b) - to

which this tone map adjusts an input image- does not tail toward zero, then the processed
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image will be over-enhanced and dark noisy pixels may become apparent. Additionally, as

images are often dominated by a strong ‘spot-light’ in the center and floating particulates,

there are often many extremely bright pixels which should be reduced in intensity.

For these reasons, it has been suggested that a Rayleigh distribution (143; 93) is a favourable

target distribution for images (48). This is a continuous probability distribution for positive-

valued random variables (127), often resembling a bell-shape, and has been frequently en-

forced within underwater image enhancement, particularly as an adaptation of the CLAHE

algorithm (48; 75; 59; 60). The RD hR is defined as:

hR(b; a) =
b

a2
e−b2/(2a2), b ≥ 0, a > 0, (4.1)

where b is the brightness value and a the scale parameter; broadly corresponding to the

peak of the histogram.

In Figure 4.5 (A) we show variations of the Rayleigh distribution. Here we see that the

Rayleigh distribution, in this case when a = 4, can preserve the darkness of pixels that

should not be enhanced as well as bringing back details that are compressed within the

spot illumination. That is to say that this ’target’ Rayleigh distribution has brightness

values mildly concentrated in the middle of the brightness range, but there is still coverage

in the bright and dark areas. In the adaptation of CLAHE (48), the input image brightness

values are modified so that the processed image histogram is moved toward the Rayleigh

distribution.

The Weibull probability distribution (WD) (194; 93) exhibits similarities to the RD and as

one of the contributions of this chapter, we propose it has desirable properties that make it

a good target distribution for underwater images. Although not yet used for this purpose,

to our knowledge, it has been demonstrated that the WD can explain the contrast statistics
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Figure 4.5: Variations of the Rayleigh & Weibull distribution

of natural images (57; 208) and is correlated with our own perception of natural images

(159). In its two-parameter form, the Weibull Distribution hW is denoted as:

hW (b;λ, k) =
k

λ

(
b

λ

)k−1

e−(b/λ)k , b ≥ 0, λ > 0, k > 0, (4.2)

where b is the brightness value, λ is the scale parameter and k is the shape parameter. The

Weibull parameters λ and k, broadly account for the peak position and the slope or spread

of the distribution, respectively. The WD has the benefit of yielding a RD, when k = 2,

yet is far more flexible as shown by Figure 4.5 (B). From this we see that the 2-parameter

function can resolve an extensive range of distributions, including those equivalent to the

exponential distribution when k = 1, approaching the normal distribution when k ∼ 3.5

and informally appearing like the uniform distribution when λ = 3 & k = 1.2.

Our experiments in this chapter will describe the characteristics of domain-experts’ desirable

target distributions and the extent to which these align with previous assumptions of ideal,

or desirable, target distributions in underwater images i.e. the Rayleigh distribution. Given

the relatively limited variation in properties the Rayleigh Distribution can manifest, and the
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Figure 4.6: A diagram of tone map creation and interactive manipulation

high degree of freedom domain-experts had in their tonal manipulations, we also explore the

potential of the more general Weibull Distribution as a suitable target distribution.

4.2.2 Control-point tonal manipulations

Creating a bespoke tone mapping operation can be achieved using photo-editing tools such

as Photoshop or GIMP. In this example, a user can, effectively, make their own input to

output (brightness) tone curve, see Figure 4.6. At the start, a user is presented with an input

to output ’identity’ mapping; simply a graph with a line at 45 degrees, depicted in (A). This

linear tone curve means that an input brightness, of say b1, maps to an equivalent output

brightness, b2 i.e. b1 = b2. This is true for all brightness values in this case. A user can then

select a control-point, as shown in (B), and move it up or down. Movement upwards causes

brightness values to increase, or become brighter, whereas movement downwards will cause

values to reduce, becoming darker. Multiple control-points might be chosen by a user to

alter the curve shape (C). Finally, a smooth interpolation may be made between the adjusted

control points to define the overall tone adjustment, shown here in (D). Importantly, as the

user moves the control-point(s) they can simultaneously view its effect on the output image.

The user stops making adjustments when they are happy with the output result.

In this chapter, GIMP was the chosen platform for creating bespoke tone-maps. It exhibits

similar features to photoshop, but with the benefit of being an open-source image manipu-

lation programme. GIMP contains a tone-mapping tool, Curves, in which the image tone
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Figure 4.7: GIMP tone-mapping tool: original ‘identity mapping’ (left) and adjusted

tone map (right)

curve can be manipulated to map input values to adjusted output values, see Figure 4.7.

This process is identical to that described in Figure 4.6 and is both simple and intuitive for

the end-user. Analysts simply modify the input to output ‘identity’ mapping from a line at

45 degrees to a tone map of their choosing, whilst simultaneously viewing its effect on the

now tonally-adjusted output image.

The GIMP curve tool allows users to create a brightness tone-mapping t(), where brightness

is defined as value in the HSV colour space (64) or the max(R,G,B) of an RGB input image

Iin(x, y), see Chapter 2. GIMP then calculates the enhanced colour output image Iout(x, y)

as

Iout(x, y) = t(Iin(x, y)) (4.3)

Applying the same tone map to each colour channel greatly simplifies the task of tonal

adjustment. The analyst constructs only one curve, avoiding the need to carefully manipu-
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late each colour channel. This approach has the benefit of preserving the hue, or dominant

colours in an image, whilst allowing the analysts to enhance the saturation or chroma,

improving the vibrancy of colours. This can be particularly helpful as underwater images

often suffer from colour loss due to wavelength attenuation.

4.3 Experiments

4.3.1 Domain-expert tone mapping

The following experiment involved the development of custom-per-image tone maps by ana-

lysts, to determine the type of enhancements that will aid their annotation efforts. Analysts

were asked to, manually, tonally adjust images, for the specific purpose of maximising the

conspicuousness of details required to annotate the content of the image (i.e. the habi-

tat).

It is important to acknowledge that our assumptions of desirable output images in this

chapter are based on 3 analysts who were available to undertake the experiment. Given the

subjective nature of image enhancement, desirable tonal characteristics described may thus

not be optimised to other analysts. However, each of the 3 analysts are highly experienced in

benthic image interpretation and have therefore been exposed to a range of image datasets

that vary in content and quality. Their responses will thus provide a useful foundation for

explorations of image enhancement in a broad sense, since they have a good grasp of the

image characteristics that will support accurate identification more widely. In addition, in

the remaining thesis experiments we explore desirable tonal enhancements more extensively,

with additional analysts, to better capture the subjective variation amongst analysts and

distinguish patterns.

Setup

For the experiment, all analysts enhanced the same dataset - a random selection of 60 images

from Dataset 1, see Chapter 3. This image sample covered each of the 6 broad habitat classes
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(10 of each habitat), representing the breadth of biological and physical features expected

in the dataset, see Table 3.2 & Figure 3.1. This data subset was intentionally small as

we use it for pairwise preference evaluations in Chapter 5, a time-consuming process for

experiment participants.

To accurately track alterations to pixel values and extract analyst tone curves, a strip

of pixels in the bottom left corner of each image was replaced with known values. This

strip contained 10×10 pixel blocks according to a RGB colour space gradient [0, 255]. This

created a pixel strip of 10×2560, as demonstrated by Equation 4.4:

S =

[
P0 P1 · · · P255

]
(4.4)

where P is a 10 × 10 matrix of the same value (depicted by the subscript) and S, the

augmented matrix, represents the pixel strip. This known 10×2560 pixel gradient was

applied to each colour channel in the RGB images. Due to potential compression-induced

pixel alterations that may arise after exporting adjusted images from GIMP, a 4×4 sub-

block was extracted from the centre of each 10×10 pixel block. These blocks were then

collapsed into a 16×256 array and the mean extracted to produce the recreated 1×256 tone

curve.

Prior to the experiment, annotators were provided with training. This explained the aims

of the project, tone curves and their manipulation, image histograms and how to use the

tone-mapping tool. Training involved a small presentation demonstrating the features of

the curves tool and then a demonstration of its usage and effects of various kinds of tonal

adjustments. This information was also shared with annotators via a background document

for reference purposes. Analysts had complete freedom in the design of their tone maps,

the only stipulation was that the tone maps must be monotonically-increasing functions to

prevent introduction of image artefacts and undesirable effects. To gain confidence with

the usage of the software and tone curve manipulation before the experiment took place,
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annotators were provided with practice images. These images were not present with the

experimental dataset.

All annotators performed adjustments under ISO standard 3664:2009 viewing conditions

(92); sitting approximately 70 cm from the display in a neutrally painted and darkened

room. A duration of 1-2 minutes, per image adjustment was suggested (though not en-

forced) to participants. This was considered sufficient to find a suitable enhancement and

would prevent annotators from over-analyzing their tonal enhancements. Additionally, the

short time-frame of the experiment would help to reduce inconsistent performance linked

to fatigue. The image order was randomised for each analyst to randomize any effects of

fatigue and variable concentration and prevent bias in adjustments linked to the order of

the images.

Results

Underwater images used in the experiment suffered from the typical optical challenges

present in many underwater datasets. As shown in Figure 4.8, they were typically dark

with a strong spot-light in the center of each image - particularly when the camera platform

was at an increased height above the seafloor, to avoid contact with reef for example.

Halo and vignetting effects were associated with the strong artificial lighting employed and

many images were poorly contrasted and lacking distinct colouration. Identification of the

habitat from these images was further complicated by high turbidity, due to the presence

of particulate matter in the water column, and high abundance of small pelagic organisms

such as Krill.
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Figure 4.8: Image selection to represent optical challenges present in the experiment

dataset

These illumination effects were evident within the underlying brightness distributions, as

shown in Figure’s 4.9 & 4.10. These were typically gaussian-like (bell-shaped), broadly

unimodal, skewed and poorly contrasted. Thus enhancements to benefit such distributions

could simply include increasing contrast and adjusting brightness.

The experiment resulted in the production of 180 tonal enhancements (60 images × 3 an-

alysts). A selection of these are shown in Figure 4.10. Here we include the input and

tonally-adjusted output images as well as the corresponding tone maps. Outputs are num-

bered according to the analyst who produced the tonal manipulation. We found that gen-

erally, the shape of tone curves was variable, however a large proportion were mildy wavy

and linear in design. Others appeared as stretched S-shaped curves, indicating more gentle

contrast enhancement and some more exponential-like in shape, causing some compression

of the mid-tones.

Contrast and brightness of a brightness image (L(x, y)) can be measured simply by cal-

culating the standard deviation and mean, respectively (193). Comparison of the input
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Figure 4.9: Brightness histograms of images shown in Figure 4.8

and output brightness images revealed that analysts increased contrast in 51% of the out-

put images. This proportion was also relatively consistent with individual analysts, who

enhanced contrast in between 53-63% of images. Increasing contrast would have allowed

analysts to improve seafloor texture visualization, highlighting appearance of burrows, bio-

turbation, small seabed depressions and sand ripples as well as acknowledging presence of

hard substrata such as gravels and pebbles. Interestingly, for 79% of the dataset, analysts

chose to decrease brightness. This may have helped to lessen the intensity of the light cone

and halo-effect, as well as reduce the saturation of bright seafloor organisms such as corals.

However, increasing brightness would have helped analysts fully visualize the content of the

image by eliminating the dominance of the darkest pixel intensities, particularly present

around the image exterior. Instead analysts often opted to shrink the dynamic range in

some cases, indicated by a clipped tone map that no longer stretches between 0 & 1, for

example Output 2 for habitat class Cor1 in Figure 4.10. Shrinking the dynamic range will

reduce contrast, however it can also be used to reduce the intensity of stark bright and dark

regions. This is particular useful when images are dominated by bright features such as
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Figure 4.10: Selection of input images (1 per habitat class), bespoke tonal manipu-

lations and their visual effect on output images

corals in the image foreground and surrounded by a very dark background. Reducing these

intensities would better reveal obscure features.

It is interesting to note that tonal manipulations did not always adhere to what would

be considered a ’natural’ appearance. For such an application, enhancements need not

be aesthetically pleasing - nor conform to general standards of tonal enhancement such

as improved contrast - only that they allow the user to better identify cryptic features

that enable identification of the habitat. This may explain the fact that a large number

of tonal manipulations reduced contrast and brightness. Enhanced images also appeared
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unusual due to the boosting of colours through GIMP’s application of the brightness tone

map to each colour channel. In the event that colour is a distinguishing feature, this

chromatic method could support discrimination of marine features. However given that

colour constancy and fidelity in underwater imagery is unreliable (7), it is important to

apply caution when using colour as a discriminating feature, both before and after colour

enhancement.

4.3.2 Modelling image histograms

The domain-expert tone mapping experiment revealed a variety of characteristics suitable

to improve the identification of marine habitats from imagery. As expected, it also demon-

strated the subjective nature of user tonal enhancements. In this experiment, we further

explore the behaviour of the tonal manipulations and their influence on the underlying

brightness distributions. We show that these properties can be described mathematically,

and as such provide a foundation for development of a tailored image enhancement tool for

end-users.

Setup

Given the previous recommendations of the Rayleigh distribution for underwater imagery

and the importance of the Weibull distribution for summarizing natural images, we compare

them both to the input and output (analyst-enhanced) brightness distributions. In this ex-

periment we determine the degree of conformity between the compared distributions to help

to determine the extent to which enhanced brightness distributions can be parameterised.

This will also help to build on previous work, summarising natural image statistics, with a

specific focus on underwater images.

The brightness distribution h(b) of each image I(x, y) was extracted from their correspond-

ing max(R,G,B) colour space using hist(L(x, y)), where L(x, y) = max(I(x, y)). To

determine their similarity to the Rayleigh & Weibull distributions, we simply needed to

find a proxy histogram h′(b) of each brightness histogram such that h′(b) ≈ h(b). Here
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the proxy histogram refers to the closest Rayleigh h′ = hR(b; a) or Weibull distribution

h′ = hW (b;λ, k). This was found by finding the parameters of each distribution, a and

λ and k respectively, that minimizes the Kullback-Leibler (KL) divergence - as a measure

of closeness. The KL-divergence is a probabilistic measure of the difference between two

distributions, in this case h(b) and its proxy h′(b). It is calculated as follows:

min

∫ 1

0
h(b)log(

h(b)

h′(b)
) db (4.5)

Also known as information divergence or relative entropy, if the two distributions are highly

similar then the KL-divergence will be low, with 0 reached only when h(b)=h′(b). Remem-

bering that the proxy histogram h′(b) refers to either a Rayleigh or Weibull distribution

in this case, we thus seek the parameters for each probability distribution that return

the lowest KL-divergence. We approach this problem discretely, searching the parame-

ter a ∈ {0, 0.1, 0.2, · · · , 8} for the RD and parameter pairs of λ ∈ {0, 0.1, 0.2, · · · , 3} and

k ∈ {0, 0.1, 0.2, · · · , 15} for the WD. The KL-divergence was therefore also used for com-

parative purposes to quantify which of the probability distributions, Rayleigh or Weibull,

best described the observed data.

Results

Despite the prior recommendations for underwater brightness distributions to follow a

Rayleigh distribution, we found that the RD poorly captures the brightness characteris-

tics of underwater images, with an average KL-divergence of 0.36 (± 0.02) between the

dataset brightness distributions and their closest Rayleigh distribution, see Table 4.1. In-

stead we find that brightness properties are significantly better described by the Weibull

Distribution, with an average KL-divergence of 0.11 (± 0.01). In Figure 4.11 we show that

this also holds true for images regardless of (1) whether they are an input or enhanced

output and (2) the habitat.
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Table 4.1: Summary statistics for KL-Divergence between the dataset brightness

distributions (input and outputs) and their best Rayleigh & Weibull approximation

Type Mean SD Min. Median 99thp. Mean difference

Rayleigh 0.36 (± 0.02) 0.16 0.04 0.35 0.72
0.25 (± 0.02)

Weibull 0.11 (± 0.01) 0.09 0.01 0.09 0.49
195% confidence intervals are shown in parentheses 2SD = Standard Deviation 3p. = Percentile

In Figure 4.11 (A), KL-divergence is grouped according to enhancement type i.e. input

images in which no-enhancement is applied, output images for each of the 3 analysts and

the combined analyst outputs (1, 2 3). The lowest mean KL-divergence was only 0.08 (±

0.01) for the Weibull fit of input distributions, and increased slightly when approximated

their adjusted outputs, scoring 0.12 (± 0.01). Considering the individual analysts, we see

that this reduced fit was largely driven by analyst 2, scoring 0.16 (± 0.03) on average.

However, this was still an improvement on the Rayleigh fit, achieving a divergence ∼50%

better. In Table 4.2 we further summarize the KL-divergence scores across the dataset.

Calculating the mean difference in KL-divergence of the two probability distributions, we

see that the RD was consistently worse than the WD, across input and output distributions,

scoring between 0.17-0.3 (µ =∼0.23, µ=mean) higher. This inability to adequately describe

brightness distributions is further demonstrated by the absence of Rayleigh properties within

the best Weibull approximations i.e. when k = 2. Only 1/240 Weibull models simulated a

Rayleigh distribution with k = 2.

Not only does the WD adequately mimic the intrinsic and adjusted properties of the un-

derwater images, we see that it is also generally not influenced by the content (habitat)

of the image, see Figure 4.11 (B). KL-divergence in this case was grouped based on the

expert-assigned habitat. Note that we show this for output images only. No relationship

was observed between KL-divergence in input images and their associated habitat class,

for both the Rayleigh and Weibull fits. In Figure 4.11 (B), mean KL-divergence is shown

to be relatively consistent across habitat classes, always scoring <0.12 for Weibull, exclud-

ing Cor2. Cor2 habitat’s occurrence across either boulder areas with predominance of soft
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Figure 4.11: Mean KL-Divergence between the dataset brightness distributions and

their best Rayleigh & Weibull approximation. In (A), results are displayed according to

enhancement type. Note that Output = Outputs 1, 2 & 3. In (B) mean KL-divergence

(across output images) is viewed according to habitat class. Error bars represent 95%

confidence intervals.

substrate, as well as predominant hard substrate or reef substrate regions, means there is

likely greater variation within the brightness distributions themselves. The subsequent fit

of brightness statistics was significantly poorer (though still generally good) at 0.18. This

directly contradicts the behaviour of the RD in which clear differences were noted between

broad habitat levels. Rayleigh approximations performed worst for Soft Substrate (SS)

habitats followed by Hard Substrate (HS) and Reef (Cor). Thus the suitability of the RD

to summarize enhanced output distributions appeared to be highly influenced by image

content and the subsequent properties analysts enforce to better expose image details. In

Table 4.3 we summarize performance of the approximations according to the image con-

tent. As with comparisons based on enhancement type (Table 4.2), large differences in

KL-divergence, between Rayleigh and Weibull fits, were consistently present across groups.

The largest mean difference, between the quality of two distribution fits was observed within

SS habitats (µ =0.39) and the smallest within reef habitats (µ =0.12).
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Table 4.2: Summary statistics for KL-Divergence, according to enhancement type,

between the dataset brightness distributions and their best Rayleigh & Weibull ap-

proximation

Type Mean SD Min. Median 99thp. Mean difference

InputR 0.38 (± 0.04) 0.17 0.05 0.38 0.65
0.3 (± 0.05)

InputW 0.08 (± 0.01) 0.05 0.01 0.07 0.29

OutputR 0.36 (± 0.02) 0.15 0.04 0.33 0.73
0.24 (± 0.02)

OutputW 0.12 (± 0.01) 0.09 0.01 0.1 0.51

Output1R 0.35 (± 0.04) 0.15 0.08 0.35 0.72
0.25 (± 0.04)

Output1W 0.1 (± 0.02) 0.06 0.03 0.09 0.37

Output2R 0.33 (± 0.04) 0.15 0.04 0.28 0.8
0.17 (± 0.03)

Output2W 0.16 (± 0.03) 0.12 0.01 0.12 0.56

Output3R 0.39 (± 0.04) 0.15 0.11 0.38 0.71
0.17 (± 0.03)

Output3W 0.1 (± 0.02) 0.07 0.01 0.08 0.43
1Numeric subscript in Type refers to the probability distribution 295% confidence intervals are shown in

parentheses 3SD = Standard Deviation 4Output = Outputs 1,2 & 3 5p. = Percentile

Table 4.3: Summary statistics for KL-Divergence, according to habitat class, between

the dataset brightness distributions and their best Rayleigh & Weibull approximation.

Type Mean SD Min. Median 99thp. Mean difference

SS1R 0.49 (± 0.04) 0.13 0.22 0.52 0.72
0.4 (± 0.04)

SS1W 0.08 (± 0.02) 0.08 0.01 0.07 0.49

SS2R 0.46 (± 0.04) 0.12 0.26 0.46 0.67
0.37 (± 0.05)

SS2W 0.09 (± 0.02) 0.07 0.03 0.06 0.36

HS1R 0.35 (± 0.04) 0.13 0.16 0.32 0.73
0.27 (± 0.05)

HS1W 0.09 (± 0.02) 0.06 0.01 0.08 0.32

HS2R 0.35 (± 0.04) 0.12 0.14 0.35 0.71
0.24 (± 0.05)

HS2W 0.12 (± 0.02) 0.07 0.03 0.11 0.31

Cor1R 0.27 (± 0.04) 0.14 0.1 0.26 0.8
0.17 (± 0.04)

Cor1W 0.1 (± 0.02) 0.06 0.01 0.09 0.24

Cor2R 0.25 (± 0.04) 0.14 0.04 0.22 0.61
0.07 (± 0.02)

Cor2W 0.18 (± 0.04) 0.13 0.04 0.14 0.56
1Numeric subscript in Type refers to the probability distribution 295% confidence intervals are shown in

parentheses 3SD = Standard Deviation 4p. = Percentile

Despite analysts having complete freedom in their tonal manipulations, the alterations are

captured sufficiently well by the 2-parameter WD. In Figure 4.12 we show example distri-
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Figure 4.12: Some example brightness distributions and their most similar Rayleigh

and Weibull Distribution for (A) input images and (B) analyst-adjusted output images.

KL-Divergence scores, denoted here as KLd, are presented in each case.

butions and their associated WD. This demonstrates the close approximations of Weibull

across some input and output distributions and their associated KL-divergence. Both the

skewness (or peak location) and thus the brightness of the images is accurately described

as well as the spread of the distribution which encapsulates the contrast statistics. For

comparison, we also include the corresponding Rayleigh fits. This demonstrates that the

1-parameter RD, does not possess the flexibility to adequately capture the skewness and

kurtosis of the brightness distributions. In these cases the peak location of the RD is often

offset to the left of the true peak location, translating to a darker image. The RD also simu-

lates images with amplified contrast, shown by the spread and flatness of the distributions;

a contrast far greater than that enforced by the analysts for example.
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The WD is effective at representing the brightness and contrast statistics of underwater

images with an even smoother and simpler function. Given these elements are the exact

properties that are modified in tone mapping, there is thus scope to utilise the WD as

enhancement tool.

4.4 Conclusion

In this chapter, we have described the custom tonal manipulations by domain experts,

demonstrating that although varied, these are simple in design and enforce brightness prop-

erties that follow a Weibull Distribution. Contrary to previous knowledge, we show that

the Rayleigh distribution is not suitable to model the underlying brightness characteristics

of underwater images, nor does it possess properties that align with the needs of image

analysts for interpreting imagery. The suitability of the WD is generally dependable de-

spite variation in image content. It thus offers a mechanism through which to explore

targeted image enhancement, with the aim of providing a tool to support underwater image

annotation.

In the next chapter we will develop this work further, with this aim in mind. We will

show how the Weibull distribution can be used enhance underwater imagery and improve

upon bespoke tonal manipulations, exploring how its usage can best support the analyses

of end-users.
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5 Weibull Tone Mapping (WTM):

for enhancing underwater imagery

In Chapter 4 we described the bespoke tonal manipulations by analysts to support the inter-

pretation of underwater imagery, finding their brightness statistics to exhibit behaviour that

can be summarized by the Weibull Distribution. In this chapter we build on this knowledge

to introduce a tone mapping algorithm, Weibull Tone Mapping (WTM). This algorithm

is designed, by construction, to approximate user adjustments but result in smoother and

simpler tonal manipulations that are preferred by image analysts. We also show how the

method by which we map the colour aspect of images (given a brightness only tonal adjust-

ment) has a significant impact on users’ subjective preferences.

5.1 Introduction

Adjusting images with control-point tonal manipulations allows domain-experts to more

precisely highlight features of interest to aid interpretation of marine imagery. As demon-

strated in Chapter 4, these enhancements often conform to previous broad assumptions of

what are considered beneficial tonal enhancements such as increasing contrast in many cases.

However they also demonstrated that analysts are willing to enforce tonal manipulations at

the expense of aesthetics, should this aid them in their visual assessments. This for example

could include reducing contrast, dynamic range and most notably, brightness.

Significantly, Chapter 4 found that the majority of these modified brightness qualities, as

well as their original intrinsic properties, can be well captured by the Weibull distribution.
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The 2-parameter WD is a highly general function and can recreate the shape of many

histograms but with a far smoother representation.

Since the input and output brightness distributions of underwater images are generally like

the WD, it is logical to presume that the mapping that converts the input WD to an output

WD will be similar to the tone map defined by analysts. Application of this tone map to

an unenhanced image should therefore mimic the adjustments made by analysts. In this

chapter, we confirm this very hypothesis, validated by objective image quality assessments

and subjective evaluations (with domain experts). This demonstrates that the process to

generate tone maps can be optimized as WTM offers a faster and easy method to achieve

the same enhancement. In addition, since the WD is a continuous smooth function (though

handled discretely in this work) this mapping should have the additional benefit of being

smoother than the tone map that the analysts themselves applied. This would mimic the

adjustments made by analysts whilst limiting the introduction of image artefacts. For

example, abrupt shifts between brightness tones could lead to posterization and banding

effects as well as a loss of fine details and texture, causing the image to appear unnatural

and flat. These benefits of WTM are crucial in image analysis pipelines to improve efficiency

and offset labour demands whilst enhancing the quality of data acquired.

5.2 Background

In this chapter we present a method, Weibull Tone Mapping, which can approximate the

bespoke tonal manipulations of end users. To demonstrate the success of these approxima-

tions we use both objective and subjective evaluation methods. Objective methods involve

using metrics with explicit numerical comparisons that aim to mimic the quality assess-

ments of a human observer (148; 114; 193; 189; 111) whereas subjective methods are based

on human quality assessment (90). For reviews of underwater image quality assessments,

see (112; 110). In this work, we use a mixture of objective and subjective evaluations; these

are introduced in the following sections.

65



Chapter 5. Weibull Tone Mapping (WTM): for enhancing underwater imagery

5.2.1 Evaluating image similarity

When approximating, or evaluating the distortion between, images a variety of objec-

tive metrics have been employed to assess the success or performance of these operations.

CIELAB Delta E (or ∆E∗
ab) (148), is a commonly employed metric and is used as a mea-

sure of colour difference. Given two RGB images, A & B, with which we wish to measure

similarity, ∆E∗
ab involves first converting each to their corresponding CIELAB (CIE 1976

L∗a∗b∗) image, where at each pixel they have a L∗, a∗ and b∗ triplet. As discussed in 2.2.1,

in the CIELAB colourspace, L∗ represents brightness whilst a∗ and b∗ encode the chromatic

aspects of an image (145). Denoting dependence on images A & B, using the subscripts A

and B, respectively, the ∆E∗
ab difference for one pair of corresponding pixels is calculated

as:

∆E∗
ab =

√
(L∗

A − L∗
B)

2 + (a∗A − a∗B)
2 + (b∗A − b∗B)

2 (5.1)

Significantly, CIELAB was designed to be a perceptually uniform space that correlates with

perceived color difference (145). In that regard a ∆E∗
ab of approximately 1 coincides with a

just noticeable difference. In terms of images, if the average ∆E∗
ab calculated between images

(across all pixel pairs) is up to 5, then images will appear the same, or similar (114).

Aside from colour difference, it is important to consider the deviation in luminance, contrast

and correlation between images as these contribute to perceived difference by an observer.

The structural similarity index metric (SSIM) (193) considers each of these components

making it a commonly used evaluation tool in image quality assessments, with a maximum

SSIM of 1 achieved when A = B. SSIM is calculated as follows:

SSIM = l(A,B)α · c(A,B)β · s(A,B)γ (5.2)
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where l is the luminance, or brightness comparison, c the contrast comparison, s the struc-

tural comparison which considers the local luminance patterns and α, β & γ are the positive

constants. For further detail, please refer to (193).

Another distortion metric is the mean squared error (MSE), a measure of absolute error.

It is calculated as:

MSE =
∑
x,y

(A−B)2

x× y
(5.3)

However taking square root of MSE, or root mean squared error (RMSE), is preferable to

MSE as the units become the same as the dependant variable, in this case the difference in

pixel value. RMSE is calculated as
√
MSE.

Another metric derived from MSE is the peak signal-to-noise ratio (PSNR), in which MSE

is scaled by the maximum pixel value (255 in the case of an 8-bit image) and reported in

decibels.

PSNR = 10 log10

(
2552

MSE

)
(5.4)

Although considered objective, MSE, RMSE and PSNR must be used with caution. Neither

possess defined criteria with which to establish an appropriate value (or threshold) at which

two images are perceptually considered the same. MSE & RMSE are always positive valued,

decreasing towards zero as error reduces, therefore it is important to minimize these metrics

as much as possible. Whereas for PSNR, typically a value between 30-35 is reported as

good. These metrics also correlate poorly with perceived difference (165). We include

them in our work for descriptive purposes, and to abide with classical objective comparison

protocols.
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5.2.2 Psychophysical Evaluation

For subjective assessment of image quality and/or similarity, psychophysical evaluations are

undertaken that aim to derive a preference signal from human participants. A number of

protocols exist (90; 112), yet one of the simplest and most precise is the method of paired

comparison. This is an experiment in which participants are shown two stimuli at a time,

say two images A & B, and choose one based on some pre-defined criteria, for example the

image that they prefer for the purposes of their analyses. For each pair in this forced-choice

experiment, the observer can choose either image A or image B, with the selected image

automatically assigned a score of 1 and the other 0. This can be also be extended such that

the observer can judge the images to be equal - providing a third choice of no preference.

In this case, both images are awarded a score of 0.5.

In its simplest case, observers are presented with a selection of images categorized into 2

variants, as an example: those that either unenhanced and enhanced. Although in practice,

such experiments can include many more variants though the methodology remains the same

(72). Importantly, the observer is unaware of the image variants presented when indicating

their preference, to remove bias. Pair comparison experiments are very straightforward,

not requiring any discrete, continuous or categorical scoring by the observer, and are thus

highly suitable for inexperienced participants (135).

They are derived from Thurstone’s law of comparative judgements (181), a law based on

the idea that given two stimuli, for example images A & B, the degree to which A and B

differ determines the proportion of times A will be rated greater than B by observers (56).

Thurstone proposed that this selective process between two stimuli, results in normally

distributed observer responses. In Thurstone’s Case V, the simplest and most widely used

of the cases, it is assumed that each variant will have equal variance and equal (or zero)

correlations. Thus observer responses are simply normalized by linear transformation into

standard z-scores to ensure their scales are comparable. This scaling maps the preference
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data to numerical quality scores (on a continuous interval scale), conveying both the ranking

of each variant and the magnitude of the difference.

5.3 Weibull Tone Mapping (WTM)

In this section we describe our Weibull Tone Mapping algorithm; in which we approximate

and smooth a pre-existing tonal adjustment, in this case created by an analyst. Note

that in Chapter 6 we demonstrate that the WTM method can an extend beyond this as a

stand-alone enhancement algorithm, with little alteration to the method.

WTM, broadly involves 5 steps. Steps 1 & 2 involve finding the weibull approximation of

an input and tonally-adjusted output brightness distribution, as introduced in the previous

chapter. In step 3, we derive the tone curve that maps the input WD to the output WD.

Finally, in steps 4 & 5 we perform the Weibull tonal mapping operation, applying the weibull

tone map to an input image. For clarity, these steps are represented graphically in Figure

5.1. The method by which we map the chromatic aspects of the output image, during tone

mapping, (i.e. steps 4 & 5) will be compared in this chapter. For simpler representation,

and due to our future development of WTM in Chapter 6, steps 4 & 5 in Figure 5.1 refer

to WTM in its chromaticity-preserving capacity only.

In the following sections, we describe each of these steps in further detail.

5.3.1 Creating a proxy brightness distribution using the Weibull distri-

bution

Here we wish to use Weibull distributions to drive tone-mapping, by finding the closest ap-

proximation of an input and output brightness distribution. Although previously introduced

in Chapter 4, we recap and further clarify the method here.

Analogously to CLHE (138; 214), we wish to approximate the histogram h(b) of a brightness

image L, by a proxy histogram h′(b). In CLHE, the proxy brightness distribution is related
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Figure 5.1: Weibull Tone Mapping flow chart. *Step 3 can either approximate an

existing tonal enhancement (using Equation 5.5) or specify an original WTM enhance-

ment, see Chapter 6
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Figure 5.2: Parameter control over WD properties: (A) λ modification and (B) k

modification

to the actual brightness distribution; where the proxy cumulative histogram (the CLHE

tone curve), has a bounded slope. This implies that the proxy histogram itself adheres to

the slope constraints. Here we wish to further constrain the shape of the proxy histogram,

beyond just slope-limitations. Specifically, we will represent brightness histograms by prox-

ies defined by the Weibull Distribution, see Equation 4.2. To ease the exposition, we will

present the approach in the continuous domain. However, in practice, all computations are

carried out in the discrete domain.

The Weibull proxy, h′ = hW (b;λ, k), is found by finding the Weibull parameters, λ and k,

that minimizes the Kullback-Leibler (KL) divergence:

min
λ,k

∫ 1

0
h(b)log(

h(b)

hW (b; l, k)
) db (5.5)

where h(b)=hW (b; l, k) will obtain a KL-divergence of 0. As the difference of two probability

distributions increases, so does the KL-divergence. We discretely search parameter pairs of

λ ∈ {0, 0.1, 0.2, · · · , 3} and k ∈ {0, 0.1, 0.2, · · · , 15} creating a large diversity of histogram

shapes. In Figure 5.2 we demonstrate how these two parameters control the shape of the
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Figure 5.3: WTM method showing (A) WTM proxies of an Input and Output

(analyst-adjusted) brightness PDF and (B) the corresponding tone maps that trans-

form PDFs from Input to Output. Dashed and smooth lines depict User and WTM

respectively

WD. In (A) we see how increasing λ results in a WD in which the peak location is right-

skewed, simulating a histogram of a ’brighter image. Whereas in (B), we see how decreasing

k creates a flatter and wider histogram. If attributed to an image, this would infer higher

contrast.

Following the tone mapping experiment in Chapter 4, we have access to an input brightness

image Lin(x, y) and an analyst-adjusted output Lout(x, y), enhanced using a bespoke tone

curve, created using a control-point tool (see Figures 4.6 & 4.7). Thus for their respective

brightness distributions, hin(b) and hout(b), we find the Weibull proxies, h′in(b) and h′out(b),

by minimizing KL-divergence. This results in proxy WDs that closely match the input and

output brightness distributions, as demonstrated in Figure 5.3 (A), as solid and dashed

lines, respectively.
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5.3.2 Calculating the Weibull Tone Map

Having determined the closest Weibull approximations of an input and output brightness

image, it is necessary to derive the tone curve t() that will match the input Weibull proxy

to the target output Weibull proxy. It is well known that this histogram matching can be

implemented as a forward and inverse histogram equalisation step. As described in Chapter

2, the HE (88; 64) tone map is simply the cumulative histogram, or cumulative distribution

function (CDF), of an input brightness image Lin(x, y), see Equation 2.3. In a forward

HE step, the HE tone map, is applied to Lin(x, y), transforming pixel values such that its

histogram h(b) becomes uniform heq(b). It therefore follows that an inverse HE step, will

alter pixel values in an equalized brightness image Leq(x, y) such that its histogram heq(b)

is returned to a distribution h′(b) = h(b). The tone map to perform such a step, is simply

the inverse HE tone map, or inverse CDF t−1().

Using this logic, the tone curve that maps a WD hW (b) to a uniform brightness histogram

is simply the corresponding CDF of hW (b), denoted as tW (b). It is defined as:

tW (b;λ, k) = 1− e−(b/λ)k , b ∈ (0,∞), (5.6)

In Weibull Tone Mapping, the tone curves that map the input and output Weibull proxy

distributions to a uniform brightness histogram are tin(b) and tout(b), respectively. The

inverse of these tone curves, denoted as t−1
in (b) and t−1

out(b), map the uniform distribution

to the input and output proxies. In WTM, we map the original input brightness image

Lin(x, y) using the tone curve t(), so that the input proxy brightness histogram matches

the output proxy. We apply:

t(b) = t−1
out(tin(b)) (5.7)
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Figure 5.4: Comparison of an unenhanced input image (A), an analyst enhanced

image (B), Chromatic WTM (C) and Chromaticity-preserving WTM (D)

In Figure 5.3 (B) we see how that this results in a tone map that closely approximates that

created by an analyst.

5.3.3 Applying the Weibull Tone Map

The tone mapping experiment presented in Chapter 4, allowed domain experts to create a

tone map based on the brightness component (defined as max(R,G,B)). The photo-editing

software GIMP, then applies this to each of the colour channels in an RGB input image to

produce an enhanced output image Iout(x, y), see Equation 4.3.

Therefore, to approximate this process with WTM, we merely apply the tone map to R,G

and B:

Îout(x, y) = t(Iin(x, y)) (5.8)

In Figure 5.4 (A) we show an input image and its analyst enhanced counterpart in (B).

Using chromatic WTM (Equation 5.8) we see that this results in an output image Îout(x, y)

in (C) that is indistinguishable from (B) (Iout(x, y)).

Tone mapping an image in this way can produce an colour-boosted output image, which

may be beneficial for underwater imagery given that colour loss is common due to light

attenuation. Colourfulness is thus a sign of better image quality in some metrics (207; 134;

192)
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Figure 5.5: An example of two Weibull tone maps which differ from the identity map

to varying degrees

However this comes at the expense of distorting the natural, or intrinsic, colour properties

of the image. A simpler and often preferred alternative to this is to modify the brightness

component only (138; 214), retaining the respective ratios of each of the colour channels

and thus avoiding unnatural colour casts. To ensure that WTM is chromaticity-preserving,

we first adjust the max(R,G,B) brightness image:

L̂out(x, y) = t(Lin(x, y)) (5.9)

and then scale each of the colour channels by this adjustment:

Îout(x, y) = R
L̂out

Lin
, B

L̂out

Lin
, G

L̂out

Lin
(5.10)

This will result in an output image Îout(x, y), see Figure 5.4 (D).

The degree of similarity between an analyst’s output and a chromaticity-preserving WTM

approximation will vary according to the divergence of the analyst’s tone map from the

45 degree identity mapping (in which no tonal adjustment is applied). For example, in
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Figure 5.6: Image comparison of colour mapping methods Chromatic and

Chromaticity-preserving with two WTM tone maps (A & B) presented in Figure 5.5

Figure 5.5 we present two Weibull tone maps: (A) which is most dissimilar to the identity

map, providing a significant tonal adjustment and (B) which is, comparatively, gentle and

highly similar to the identity map. In Figure 5.6 we show the corresponding output images

following application of these tone maps using the colour mapping methods previously

described. Application of tone map A using the chromatic method (Equation 5.8) greatly

alters each of the colour channels and thus it appears quite different to the chromaticity-

preserving output (Equation’s 5.9 & 5.10). Alternatively, the tonal adjustments enforced by

tone map B are smaller and thus produce similar outputs whether the colour information

is preserved or not.

5.4 Experiments

5.4.1 Approximating bespoke tone maps

This experiment investigates the ability of Weibull Tone Mapping to approximate the an-

alyst’s tonal adjustments from Chapter 4. The best approximation of these adjustments
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will be achieved by employing WTM in its chromatic form, see Equation 5.8 as it mimics

the GIMP tone mapping application. However, for comparison, we also include WTM in

its chromaticity-preserving capacity (Equation’s 5.9 & 5.10), as it encapsulates the analyst

brightness enhancements without distorting the colours. Preserving the natural qualities

in this way, could better suit analysts’ interpretation of underwater imagery by retaining

appearance of features in a familiar, but improved sense. We explore this idea further in a

psychophysical evaluation in Experiment 5.4.2.

Setup

The tone mapping experiment in Chapter 4 provided 180 bespoke tonal adjustments, 3

unique tone maps for each of the 60 images presented to analysts. Tone maps were then

approximated using WTM, using the algorithm outlined in Section 5.3. We evaluated the

similarity of the analyst tone maps and their Weibull approximation using RMSE & PSNR,

as described in Section 5.2.1, and a Pearson Correlation Coefficient to assess the strength

of a linear relationship between the tone maps. Ranging from -1 to 1, a correlation of 1 or

-1 indicates a perfect linear relationship, that is positive or negative respectively.

Each of the Weibull tone maps was applied to their corresponding input image. Given the

two colour mapping methods, this resulted in a total of 180×2=360 WTM images. For

brevity, Chromatic WTM and Chromaticity-preserving WTM are referred to as WTMC &

WTMCP respectively. We assessed the similarity of WTM images and the output images

they approximated using a variety of metrics. We used ∆E∗
ab, SSIM, RMSE and PSNR, to

consider changes in chromaticity, lightness and structural information as well the general

quality and/or difference. Details of these metrics can be found in Section 5.2.1.

Results

Our Weibull Tone Mapping algorithm was found in general to closely mimic the bespoke

tone maps designed by domain experts. In Table 5.1 we present a summary of metrics

indicating the similarity of analyst tone maps and their Weibull approximation. Note that
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tone maps have been normalized to 8 bits, where values are ∈ [0, 28 − 1] or [0, 255], for

ease of interpretation. This is specifically useful for RMSE, as error represents the discrete

(integer) pixel values, rather than a small normalized value. From this we see that the

Weibull tone maps diverge from the analyst maps by an intensity of only ∼9 on average.

PSNR was also reasonable on average, falling within the expected range of 30-50db for 8-bit

images.

The Weibull tone maps were found to be, consistently, highly positively correlated to analyst

tone maps with an average Pearson correlation coefficient of 0.995, see Table 5.1. This is

further demonstrated in Figure 5.7. Each tone curve has a natural order from 1 to 255 and

records the value which each input brightness is mapped to e.g. t(10) = 20 ‘means’ that an

input brightness of value 10 is mapped to 20. Assuming the WTM tone map is similar to

that made by the analyst then we would expect tWTM (b) approx equal tanalyst(b). Thus, if

we plot the tone curves against each other, we expect a line at 45 degrees. To a large extent

this is found to be true, see Figure 5.7. Broadly, plotting one tone curve against another is

a line at 45 degrees with narrow confidence limits around this line.

Exploring the similarity metrics in more detail, we see that the high degree of correlation

between analyst and Weibull tone maps was fairly consistent across analysts; exhibiting

only slightly better correlation to Analyst 3’s tone maps, see Output 3 in Figure 5.8. In

contrast, Weibull tone maps were considered to best approximate Analyst 1’s tone maps

in terms of PSNR and RMSE, with the fits of Analyst 2 & 3’s tone maps equivalent. In

Table 5.1: Summary statistics for three metrics measuring similarity between each of

the analyst tone maps and their closest Weibull tone map.

Metric Mean SD Min. Median 99thp.

Corr. 0.995 (± 0.001) 0.01 0.894 0.998 1
RMSE 8.998 (± 1.045) 7.155 0.612 7.791 33.889
PSNR 31.285 (± 0.971) 6.643 11.829 30.396 52.17

195% confidence intervals are shown in parentheses 2SD = Standard Deviation 3Corr. = Pearson

correlation coefficient 4p. = Percentile
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Figure 5.7: Average intersection, or match, of analyst tone maps and their Weibull

approximation. A 45 degree line (slope=1/N) indicates a perfect match. Standard

deviation (SD) and 95% confidence intervals (CI) are also presented.

general these results indicate that analysts adjust underwater imagery such that the target

brightness distributions possess Weibull-like characteristics.

We also see that this is true regardless of the image content to varying degrees, see Figure

5.9. In general the fit of the Weibull tone maps was found to decrease with increasing seabed

complexity, with tone maps applied to soft substrate images (SS1 & SS2) approximated best,

followed by hard substrate (HS1 & HS2) and reef (Cor1 & Cor2). In Chapter 4, it was found

that the WD approximated the output brightness distributions in reef images, specifically

soft corals (Cor2), less well. In Figure 5.9 we see the result of this, in that the associated

Weibull tone maps exhibited a significantly lower correlation and PSNR than most other

habitats.
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Figure 5.8: Similarity metrics between the analyst tone maps and their best Weibull

approximation. Results are displayed according to enhancement type. Error bars

represent 95% confidence intervals.

Table 5.2: Summary statistics for similarity metrics between analyst images and their

respective Weibull approximations. Chromatic and chromaticity-preserving Weibull

tone map application are denoted by subscripts C & CP , respectively.

Metric Mean SD Min. Median 99thp.

Mean ∆E∗
abC 3.568 (± 0.235) 1.613 0.949 3.402 8.404

Mean ∆E∗
abCP 4.99 (± 0.357) 2.453 0.956 4.504 12.117

SSIMC 0.936 (± 0.002) 0.015 0.847 0.94 0.954
SSIMCP 0.933 (± 0.002) 0.016 0.837 0.938 0.953

RMSEC 6.315 (± 0.461) 3.159 1.888 5.994 20.497
RMSECP 7.882 (± 0.553) 3.785 1.9 7.341 21.071

PSNRC 33.673 (± 0.476) 3.269 27.73 33.017 41.754
PSNRCP 32.301 (± 0.457) 3.135 27.619 31.419 41.749

195% confidence intervals are shown in parentheses 2SD = Standard Deviation 3p. = Percentile

It is important to contextualize the adequacy of Weibull approximations in a visual sense.

In Table 5.2 we therefore present summary statistics for the similarity between the ana-

lyst tone-mapped images and their associated WTM image, either Chromatic (WTMC) or

Chromaticity-preserving (WTMCP ). WTMC was significantly better at approximating the

analyst tonal adjustments than WTMCP , according to all image metrics. This is expected

given that the tone map is applied to images in the same method as the user tone maps
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Figure 5.9: Similarity metrics between the analyst tone maps and their best Weibull

approximation. Results are displayed according to habitat class. Error bars represent

95% confidence intervals.

(Equation 5.8). When applied chromatically, the majority (87%) of Weibull tone maps

produced images that were highly visually similar to the analysts images, indicated by a

mean ∆E∗
ab < 5. Thus the average colour difference between these images pairs was also

small, with a mean ∆E∗
ab of 3.57 (±0.24), see Table 5.2. This is further demonstrated by

only an average RMSE of 6.32 (±0.46) pixels to the analyst images and a mean PSNR of

33.67 (±0.48). Interestingly, the WTMCP method could still adequately capture a large

number of the analyst’s adjustments, with 56% scoring a mean ∆E∗
ab < 5, resulting in an

average colour difference of 4.99 (± 0.36). SSIM was comparable to the chromatic method,

lower by only 0.03 on average. Mean RMSE was higher & PSNR lower, indicating a poorer

approximation, but still reasonable, with 7.88 (± 0.55) and 32.3 (± 0.46), respectively.

In Figure 5.10 we present a selection of analyst tone maps and their best Weibull approx-

imations. In (A) we show Weibull tone maps that resulted in a mean ∆E∗
ab < 5 between

the analyst reference image and the Chromatic WTM image. From this we see that WTM

provides general approximations that are smoother. Although the Weibull tone maps are

not a perfect match in each case, when we view the corresponding images in Figure’s 5.11

we see that, perceptually, the Chromatic WTM images appear almost the same. Com-

paratively, in Figure 5.10 (B) presented tone maps resulted in a mean ∆E∗
ab > 5. The
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Figure 5.10: Example of analyst tone maps and their best Weibull approximation.

In (A) Weibull tone maps resulted in good approximation of analyst images, with

Chromatic WTM, scoring a mean ∆E∗
ab <5 compared to (B) which scored a mean ∆E∗

ab

>5, approximating adjustments less well. Tone maps in each subplot are numbered and

their mean ∆E∗
ab listed.

analyst tone maps in this cases were quite complex. Tone maps fluctuated between very

low slopes and high slopes and also often compressed the dynamic range. These properties

are not common to the smoother Weibull tone maps, which more typically stretch between

0 & 1. This results in clear differences between analyst and Weibull image pairs as shown

in Figure 5.12. The analyst images in Figure 5.12 look significantly modified from their

input appearance. The enhancements generally enhance contrast, however at the expense

of exacerbating the light cone and vignetting effects. Evidence of dynamic compression

can be seen, in that the darkest intensities have been brightened. The colour cast of the

images has also been strongly enhanced; images appear extremely and unnaturally green.

The fact that the analyst enhancements do not appear aesthetically-pleasing, by typical

standards, is irrelevant. They are focused on enhancing visibility of cryptic features, such

as fine textural details on sponge species. The analyst will make these adjustments, at the

expense of enhancing other undesirable characteristics, such as enhanced vignetting around

the edges of the image, that can obscure features in these areas. The Chromatic WTM
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enhancements appear less intense by comparison. They are better contrasted than the in-

put and colour-boosted, however, the vignetting and colour casts affects are less severe.

When Weibull tone maps are applied such that they preserve chromaticity these effects are

diminished even further.

Figure 5.11: Example images corresponding to tone maps presented in Figure 5.10

(A).
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Figure 5.12: Example images corresponding to tone maps presented in Figure 5.10

(B).
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Figure 5.13: Mean ∆E∗
ab between WTM & analyst-enhanced images across (A) ana-

lysts and (B) habitat classes.

Considering the mean ∆E∗
ab scored according to analysts, WTM approximations were found

to be significantly more similar for output images made by Analyst 1, see Figure 5.13. When

applying WTMC , output images for the remaining analysts were significantly similar. unlike

WTMCP for which mean ∆E∗
ab was worst for Analyst 2’s output images. As with the

tone map similarities presented in Figure 5.9, resulting WTM images did not, in general,

significantly differ across habitat classes. Although tone map approximation metrics in

Figure 5.9 demonstrated a mild trend of decreasing fit with increasing seabed complexity,

these differences did not appear to strongly influence the resulting images. Significant

differences were only noted between the fit of HS1 images and, HS2 and Cor2 when using

WTMC .

5.4.2 Preference experiments

Given the good performance of WTM in the previous experiment, we undertook pair-wise

comparison experiments to determine to what extent analysts prefer - for the purpose of

image interpretation - our WTM adjustments compared with 1) their own bespoke enhance-

ments (from Chapter 4) and 2) the original images that are unenhanced. We explored their

preference signal for both chromatic and chromaticity-preserving WTM. In the latter case,
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we also compared this preference against images enhanced with the CLHE algorithm; a

widely-used tone mapping tool, see Section 2.2.2.

Setup

We ran two psychophysical evaluations to assess the preference of analysts with respect to

(1) Chromatic WTM or (2) Chromaticity-preserving WTM. In each evaluation, analysts

at Gardline, were presented with uniquely randomized pairs of images. For every image

pair they were asked to ‘Choose the image that best allows identification of the habitat

(class) therein, or no preference if the images are equivalent’. Analysts could thus choose

one of three options for each image pair; Image 1, Image 2 or No Preference. This was

conducted under ISO standard 3664:2009 viewing conditions (92); with analysts sitting

approximately 70 cm from the display in a neutrally painted and darkened room. Subject to

Gardline’s availability, a total of 6 analysts completed the evaluation featuring Chromatic

WTM images, 3 of which created the bespoke tone maps presented in Chapter 4. The

same 6 analysts, and a further 4 (total=10), completed the evaluation with Chromaticity-

preserving WTM images. Note that in each evaluation, all analysts completed the preference

experiment twice.

For each evaluation analysts were presented with identical image datasets except for WTM

images, in which the method was varied (either WTMC or WTMCP ). Note that we down-

sampled the analyst adjusted images, randomly selecting one of the three possible outputs

for each of the 60 original images. For each of the original images we therefore have n = 3

variants in each evaluation, namely the unenhanced input, the analyst adjusted output and

the WTM approximation. This results in n(n−1)
2 = 3 pair-wise comparisons per image,

which is then viewed twice (left-right order switched). Thus, the total number of pairwise

comparisons is 60 × 2 × 3 = 360 pairs; too many to compare in a reasonable time frame.

To minimize the duration of the experiment, we thus chose 2 random subsets (one for each

experiment repeat) of 18 images, 3 per habitat class (total=6). The number of pairwise

comparisons, per experimental repeat, was therefore 18× 2× 3 = 108.
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Preference votes for each image pair were processed by awarding a score of 1 to the chosen

image and 0 to the other. If no preference was selected, each image was given a score of

0.5. Votes for each analyst, in each experimental sitting, were converted to 3×3 frequency

matrices, of which the score at [i, j] represents the frequency of votes in which image variant

i was preferred over variant j, across the 18 images. Thurstone’s Law of Comparative

Judgments, or Thurstone’s Case V (181), was then used to convert frequency matrices to

z-score (standard score) matrices. This involved first converting each frequency matrix to

proportions before deriving the z-scores. Self comparisons on the diagonal of the proportion

matrix, when variant i = variant j, are assigned a proportion of 0.5 assuming that when

judged against itself any variant would get a random amount of votes (41). It is anticipated

that each analyst conducting the preference experiment would choose either variant 50% of

the time. In reality, these pair comparisons are never presented to the analyst. However,

conversion to z-scores scales these proportions to zero and thus they are effectively cancelled

out.

In the psychophysical evaluation with WTMCP analysts were also shown images enhanced

with CLHE. CLHE parameters, that is the minimum and maximum slope of the tone

map, were set to be the average upper and lower slope bounds of all WTM tone maps,

for fair comparison. This resulted in a minimum and maximum slope of 0.003 and 0.011

respectively, corroborating well with traditional usage of CLHE in which studies often use

a default value of 0.01 for the maximum slope (75; 59; 60; 190; 37; 188; 126). Using these

parameters, the CLHE tone map was derived for each of the input images in the 2 random

subsets. Images were subsequently tone mapped used the same methodology as WTMCP ,

see Equations 5.9 & 5.10. This resulted in an additional 18× 2 = 36 pairwise comparisons,

per experimental repeat. For clarity, and since we do not consider CLHE in the WTMC

psychophysical evaluation, we analyse this data separately. Preference votes are treated as

previously described, but instead converted into 4×4 frequency matrices given the additional

algorithm.
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Figure 5.14: Preference Experiment Scores for Chromatic and Chromaticity-

preserving WTM, denoted by subscripts C & CP , respectively. Error bars represent

95% confidence intervals.

Results

The preference experiment results were interesting. In Figure 5.14 we present the average

z-scores across analysts in each evaluation. Note that scores for input and analyst-enhanced

images are coloured according to experiment (chromatic or chromaticity-preserving), how-

ever the images are the same. Significantly, Figure 5.14 shows that given an unenhanced

input image, analysts find a WTM enhancement useful for the extraction of biological data

from imagery, regardless of the colour rendering method. Analysts across the experiments

also preferred the bespoke (analyst) tonal enhancements over input images, though to vari-

able degrees. These tonal enhancements were created by a subset of the analysts with

subjective preferences. The enhancements created may thus not be optimised for all ana-

lysts. However, the results in this chapter show that they have general properties which are

encapsulated and improved by Weibull Tone Mapping.

Comparing the two methods of colour rendering for WTM, we find for Chromatic WTM - in

which we more accurately match the analyst tonal adjustments - domain experts prefer their
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own manipulations to the WTM simplification. However when preserving the chromaticity

of images, analysts instead find a WTM enhancement (slightly) more preferable to their

own bespoke enhancements. Significantly, the 95% confidence intervals for Chromatic WTM

overlap with those of the analysts in the chromaticity-preserving experiment. Thus, at this

confidence level the 2 methods are, statistically, similarly preferred, although not directly

compared. In general, these results demonstrate that how the image colour component

is mapped, when based on a brightness tonal adjustment, can significantly influence the

preference assessments of end-users. In the original experiment, the analysts were forced to

apply their tone maps chromatically. This work suggests that if given the choice, perhaps

analysts would prefer the alternative.

Although these preference experiments did not directly compare the twoWTMmethods, the

preference signal demonstrates that Chromaticity-preserving WTM may be better suited

for enhancing visualization of marine habitats in imagery. This is despite images being

less similar to the analyst tonal adjustments than the Chromatic WTM. Chromaticity-

preserving WTM captures the brightness distribution qualities that are desired by analysts

but with the benefit of maintaining the existing hue and saturation. The result is an image

that is more reminiscent of the original image but with enhanced tonal properties.

Additionally, we found that these WTM qualities are significantly preferred to the tradi-

tional and automated tone mapping approach CLHE, see Figure 5.15. Given that custom-

per-image enhancements are time-consuming and thus less practical, a good automated

tone-mapper should offer a suitable trade-off - at the very least performing equivalently.

Clear from these results is that, although popular, CLHE is not up to the task. Of the

image variants presented, end-users preferred CLHE least for image analysis, followed by

the unenhanced inputs and the custom enhancements. Although differences are noted be-

tween these variants, statistically speaking, they are not significantly preferred to the CLHE

enhancements. With these additional comparisons, WTMCP is still preferred by analysts,

however the strength of the preference signal is lessened.
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Figure 5.15: Preference Experiment Scores for Chromaticity-preserving WTM with

the addition of CLHE pairwise comparisons. Error bars represent 95% confidence

intervals.

Table 5.3: Mean image quality metrics for input images and enhanced outputs

Image UIQM UCIQE CCF

Input 0.6 (±0.07) 0.7 (±0.14) 7.39 (±1.05)

Analyst 0.48 (±0.11) 0.64 (±0.07) 7.04 (±0.97)
Weibull 0.56 (±0.1) 0.7 (±0.15) 7.64 (±1.19)
CLHE 1.1 (±0.04) 1.45 (±0.09) 12.52 (±1.37)

1 95% confidence intervals are shown in parentheses. 2 Best results are highlighted in bold.

Interestingly, these results are in contradiction to objective metrics of image quality which

rank CLHE best of the pairwise comparisons shown and analyst enhancements worst, see

Table 5.3. Here we present 3 popular no-reference quality metrics for underwater image

enhancement: (1) Underwater Image Quality Metric (UIQM) (134), (2) Underwater Color

Image Quality Evaluation (UCIQE) index (207) and (3) a colourfulness, contrast and fog

density (CCF) metric (192). UIQM evaluates image colourfulness, sharpness and contrast

whereas UCIQE measures the degradation of colour in the CIELAB colour space. CCF is

inspired by underwater imaging absorption and scattering characteristics to predict colour

loss, blurring and fog/haze. For each, better image quality is associated with a higher value.
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Since each of these metrics consider higher contrast to be advantageous in their assessment,

our results in Table 5.3 are unsurprising given that CLHE is a contrast-enhancement algo-

rithm and, as discussed in Chapter 4, a large proportion (49%) of the analyst enhancements

reduced contrast. This demonstrates that objective assessments of image quality do not al-

ways correspond well with subjective perception, as discussed in previous work (112; 78).

These metrics should therefore be employed cautiously.

5.5 Conclusion

In this chapter, we developed a method for tonally adjusting underwater images called

Weibull Tone Mapping (WTM). Given an input and an analyst tone-mapped image, WTM

provides an output image derived from the input-output pair. The method works by ap-

proximating the input and output distribution, with a Weibull probability density function,

and calculating the tone curve that maps between these distributions. This map, the WTM

map, is then applied to the input image to generate a new output. The WTM method is

designed, by construction, to approximate analyst adjustments but result in smoother and

simpler tonal adjustments. Psychophysical evaluations showed that such adjustments im-

prove appearance of underwater imagery for better classification of marine habitats.

We find that application of the WTM tone map to all colour channels (R, G and B),

provides a more colour-rich image and a better approximation of the analyst tonal ad-

justments in general. However, interestingly, this method was not preferred by analysts.

Instead analysts favour application of the WTM tone map to a brightness image, preserv-

ing chromaticity. Given this altered preference, it therefore seems prudent to consider how

colours are rendered when developing and assessing tone-mapping algorithms, as they can

have a significant influence on quality perception by end-users.

At this stage, Weibull Tone Mapping is ‘existential’ in nature. Given an analyst adjustment

it provides an even better tonal enhancement when preserving chromaticity. In addition,

analysts prefer these enhancements to those provided by CLHE, a conventional automated
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tone mapper. In the following chapter we will explore how this case of WTM can be

employed as an interactive enhancement tool, in which analysts can directly adjust images

according to WTM theory.
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6 Weibull Tone Mapping (WTM):

as an interactive enhancement tool

In Chapter 2 we introduced our Weibull Tone Mapping (WTM) algorithm that creates

smoother and simple approximations of bespoke tonal adjustments by image analysts. Im-

portantly, we showed that application of these WTM tone maps, in a way that preserves

chromaticity, is preferred by end users, over their own adjustments, to interpret underwater

imagery. In this chapter, we extend WTM beyond an approximation tool to a interactive

enhancement tool; allowing users to directly enhance imagery according to WTM theory.

We show that, in general, analysts prefer this tool to more advanced control-point tonal

manipulations, significantly shortening the time required to create a bespoke and targeted

tonal enhancement to support their analyses.

6.1 Introduction

Creation of bespoke tonal enhancements are a relatively simple way to enhance imagery.

Moreover, a tonal adjustment tool is easy to create and typically involves adjusting the

positions of control points on a curve (through which a final tone curve is interpolated).

Their inherent power and flexibility results in improved appearance in output images, that

are easier to interpret by analysts. As we have demonstrated previously, since the data

collected from underwater imagery, and its usage, is highly diverse, it is crucial to consider

the purpose the imagery serves (and its audience) when designing or evaluating an enhance-

ment. The high variability in image appearance within datasets also motivates the need for

highly flexible tone mapping approaches.
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However, since bespoke tonal adjustments are time consuming and benthic datasets are

large, the cost of finding a per-image bespoke tone curve is high. One solution to increasing

the speed of tonally adjusting images is to use an automatic adjustment tool/algorithm.

Perhaps the best known automatic tone adjustment is the histogram equalization (HE)

method. As mentioned in Chapter 2, HE enhances the conspicuousness of image details by

enforcing a flat, or uniform, brightness histogram, where all brightness values are in use,

and in an equal amount; they are equalized (88; 64).

However, HE is too simplistic in formulation and often produces images with contrasts

that are both unnaturally low and high (in different image regions). An alternative is to

more subtly enforce uniformity, as is the case in Contrast Limited Histogram Equalization

(CLHE) (138). The tone curve that maps an input brightness distribution to a uniform

(flat) output is constrained so that the the slope is neither too steep or shallow, lessening

the degree of flattening in the mapped output brightness distribution. CLHE has the

advantage that it is a simple method and often produces improved results. However, neither

HE nor CLHE are suited to underwater imagery, which rarely exhibit, nor benefit from,

uniform brightness histograms. Tone mapping is, of course, a large field. In the context

of underwater imaging, a range of algorithms have been applied including (138; 214; 91;

75; 59; 60; 58; 12; 212; 213). See (154; 85) for a review of underwater image processing.

However, to our knowledge, existing automated algorithms are rarely designed from the

perspective of an end-user nor reliably produce outputs which are always preferred by the

users. As has been a common theme throughout this thesis, when creating or assessing an

image enhancement, it is vital to consider the function of the image and its end-user.

We might say that automated algorithms are constructive in the sense that they provide

an algorithm that makes an output image without user involvement. In this chapter we

will consider a descriptive approach: we will propose properties that an automated algo-

rithm should have. We then adopt these properties - in a simplified user tone-manipulation

scenario - without specifying how an automated algorithm should work. Rather, we are
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manipulating the brightness values, in the same way that the data suggests an automated

algorithm should alter them. In this context there is still the need for user involvement.

However, their selection of a suitable tone curve is guided (and simplified) by incorporating

knowledge of how analysts typically tonally adjust underwater images.

A key contribution of this chapter is to allow analysts to directly enhance images according

to WTM theory. We provide analysts with a tool that simplifies the image enhancement

task, making users more productive in image annotation and further demonstrate the ap-

plicability of the WD to underwater imagery - focusing on a larger image dataset.

6.2 Background

Before introducing our interactive WTM tool, we briefly recap here on the prior art of

Weibull Tone Mapping (WTM), as presented in Chapter 5. A Weibull distribution (WD) is

a smooth & unimodal function that is parameterised by two numbers that control the peak

location and spread of the distribution (194). In WTM the brightness distributions of an

input and a user-adjusted output image are first represented by WDs, or Weibull proxies,

h′in(b) and h′out(b). These are Weibull approximations of the input and output histograms,

hin(b) and hout(b))

Then, the tone map, t(), that alters the input image to the output, is defined as the function

that maps the underlying input WD to the target output WD, see Equation 5.7. Application

of t() to an input brightness image Lin(x, y) results in L̂out(x, y), a WTM approximation of

a analyst modified output Lout(x, y), see Equation 5.9.

In Figure 6.1 (A) we present an input image that lacks contrast. In (B), an analyst has

enhanced the contrast and, more mildly, the brightness of the image. In (C) we see that the

WTM approximation closely mimics these adjustments by an analyst. Here the tone curve

is applied to preserve chromaticity, see Section 5.3.3. All results presented in this chapter

preserve the input chromaticity in the tone-adjusted output.
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Figure 6.1: WTM example: (A) Input image, (B) Analyst-adjusted Output, (C)

WTM approximation of Output image (B) and (D-F) parameterized WTM adjustments

of (A)

6.3 WTM as a parameterized enhancement tool

In our WTM method we approximate input and output brightness histograms (hin(b) and

hout(b)) by proxies that follow the Weibull distribution (h′in(b) and h′out(b)), see Section

5.3.1. Then the tone mapping, t(), that is applied to the input brightness image, is the

curve that maps the input to output proxy (Section 5.3.2). The output brightness image is

mapped from the input according to L̂out(x, y) = t(Lin(x, y)).

In the context of the parameterized tool we develop here, we continue to use the Weibull

proxy for the input brightness distribution. However, the behaviour of the output distri-

bution is determined by the user, by adjusting the two parameters that drive the Weibull

distribution. In effect, they define the output proxy distribution. An analyst can simultane-

ously look at the tone-mapped output image, continuing to adjust the Weibull parameters

until they find a preferred result.
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Under the hood, the users are adjusting the Weibull parameters λ and k, see Equation 4.2.

A high λ is associated with a histogram peak towards the brightest region in the dynamic

range of the image. Whereas a high k decreases the slope, narrowing the peak and its spread

across the same dynamic range. Thus, increasing λ in ĥout(b) will result in a WTM output

image, L̂out(x, y), that is brighter than its input, Lin(x, y). Here we use the .̂ notation to

indicate a user-defined proxy). If we select a lower k than the input WD for the target WD,

this will cause L̂out(x, y) to appear to have more contrast than Lin(x, y), with increased

visibility of edge pixels and textures.

6.4 Experiments

6.4.1 WTM suitability for underwater imagery

In Chapter 5 we established that WTM - matching input distributions to user-defined

control-point adjusted images - actually delivered slightly preferred tonal enhancements for

analysts, in the sense that the enhanced images help them to identify marine benthic habi-

tats from imagery. Here we explore the usability and performance of WTM implemented

as a parameterized tone-mapping tool. We investigate whether users find this approach

sufficient compared to classic and manual control-point tone-mapping approaches, that are

more complex.

Setup

We asked 10 image analysts at our collaborator Gardline to tonally adjust underwater

images, using a bespoke GUI (Figure 6.2), so that details required to annotate the content

of the image (i.e. the habitat) were made as conspicuous as possible. The same question put

to analysts in Chapter 4. Participants were instructed to find a suitable WTM enhancement

by manipulating two sliders, that modified the parameters λ & k, of the target output WD.

For user clarity, λ & k were respectively named as Brightness and Contrast in the GUI.

These terms have two advantages. First, they are intuitively understood by the users;
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Figure 6.2: Experiment GUI

appearing in almost all image adjustment tools. Second, the effect of WTM on an image

often resembles a sort of brightness and contrast change. This is entirely to be expected as

the WD parameters, λ and k, broadly map to the terms brightness (peak of a distribution)

and contrast (distribution width or spread). Additionally, as explained in WTM (Section

5.3), the WD of an input image is mapped to the WD of a target and these distributions

are described in terms of their peak/brightness and width/contrast. In effect the tone map

that modifies one WD to another is effectively making a brightness and contrast adjustment

(by definition).

When a suitable WTM (contrast and brightness) adjustment could not be found, an analyst

could construct a control-point tone mapping by pressing Advanced. This action would plot

the current WTM tone map, that they could then modify using 6 control points fixed along

the x-axis at c ∈ [0, 0.2, ..., 1] . Only movements that maintained a monotonically increasing

tone map were possible. Movements to each control point created a new tone map using a

Piecewise Cubic Hermite Interpolating Polynomial, or PCHIP interpolation, through each

point. All tone maps in this study were vectors of 256 values in the [0,1] interval.
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Each analyst received GUI training on how to make WTM and control-point tone mapping

adjustments, with separate test data, before conducting the experiment. Following this

training, they were each asked to adjust (enhance) a unique dataset of 42 images, randomly

selected from Dataset 1 (Table 3.1). The random selection contained images of 6 broad

habitat classes (7 images per habitat), representing the breadth of biological and physical

features expected in the Gardline dataset. These classes are summarised in Table 3.2. As

we have 10 analysts, their adjustments resulted in 42×10=420 unique image enhancements.

Augmenting this set, a further common sample set of 18 images (3 per habitat class) was

shared with each analyst. Each analyst viewed the common sample set twice, creating a

further (18×2)×10=360 enhancements.

This allowed us to investigate the intra- and inter-person variability of the tonal adjust-

ments. We consider the average relative extent to which observer’s tool parameters varied

between image pairs, when they selected the same tool. Parameters here refer to λ & k

for WTM-enhanced images or each of the control-points in the interactively tone-mapped

images. We compare variance between observers and parameters using coefficient of varia-

tion (CV ), or normalized standard deviation. CV is a standardized measure of dispersion

around the mean, calculated as CV = σ
µ , where σ is the standard deviation and µ the mean.

A CV of zero indicates zero dispersion from the mean and thus equal values.

In each image pair, we determine the CV for each parameter. We then summarise by the

mean across image pairs (MCV ), either for each observer (intra) or for all image pairs

(inter). For simplicity and brevity, we do not report the MCV for each control-point (or

tone-map parameter). Instead, we first derive the average control-point CV in each image

pair (creating one summary measure) and then as before derive the mean of this across

image pairs.

This study was conducted under ISO standard 3664:2009 conditions (92); with participants

sitting approximately 70 cm from the display in a darkened room. On average, analysts

took ∼ 30 minutes to complete the experiment.
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Table 6.1: Mean image quality metrics for input images and enhanced outputs. Mean

output metrics are also displayed according to enhancement type: WTM and custom

control-point adjustment.

Image UIQM UCIQE CCF

Input 0.68 (±0.02) 0.66 (±0.02) 7.84 (±0.2)
Output 0.74 (±0.02) 0.68 (±0.02) 8.47 (±0.18)

OutputWTM 0.72 (±0.02) 0.68 (±0.02) 8.29 (±0.19)
Outputcustom 0.85 (±0.04) 0.72 (±0.06) 9.18 (±0.47)

1 95% confidence intervals are shown in parentheses. 2 Best results are highlighted in bold.

Results

Domain experts in this study overwhelmingly used the 2-slider WTM to adjust the under-

water imagery, with 81% of the total image dataset satisfactorily enhanced without recourse

to the control-point tone curve adjustment. Moreover, on average individual observers se-

lected WTM for 81% (± 19%) of their images. In fact, 60% chose WTM almost (≥ 90%)

exclusively in their images. This would suggest that tonal adjustments offered by WTM

are highly suitable for enhancing underwater imagery, in accordance with Chapters 4 &

5.

Observers in this study designed their bespoke enhancements to improve image quality

to aid image annotation. These enhancements are subjective and tailored and may thus

not adhere to aesthetic improvements in the conventional sense, such as those that score

highly with objective reference metrics. Indeed objective evaluations of image quality do

not always agree well with subjective assessments (112; 78), see Chapter 5. That being

said, we find the enhancements in this study are also beneficial objectively. In Table 6.1

we present 3 popular no-reference quality metrics for underwater image enhancement: (1)

Underwater Image Quality Metric (UIQM) (134), (2) Underwater Color Image Quality

Evaluation (UCIQE) index (207) and (3) a colourfulness, contrast and fog density (CCF)

metric (192). For each, a greater value corresponds to a better image quality. Image quality

was thus improved in enhanced output images, though not significantly in terms of UCIQE

(colourfulness). However this is unsurprising given that the higher values of this metric are
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Table 6.2: Intra-observer variability across image pairs.

Observer 1 2 3 4 5 6 7 8 9 10 Mean

Agreement 1 1 1 1 0.61 0.94 0.94 1 0.94 0.83 0.93 (±0.08)
MCVλ 0.11 - 0.06 0.07 0.05 0.08 0.08 0.08 0.09 0.03 0.07 (±0.01)
MCVk 0.11 - 0.13 0.12 0.08 0.13 0.1 0.12 0.12 0.07 0.11 (±0.01)
MCVc - 0.19 - - 0.28 - - - 0.14 0.06 0.17 (±0.09)
1Agreement = proportion of matching decisions across image pairs 2MCVλ,MCVk = mean CV for λ

& k in WTM enhanced pairs 3MCVc = mean CV for control-points in control-point enhanced pairs (CV

here refers to mean CV across 6 control-points) 4Hyphen denotes when enhancement tool was not selected
595% confidence intervals are shown in parentheses

associated with a more colourful image yet the tonal adjustments in this study preserve

chromaticity. Assessing the output metrics in more detail, we see that the limited cases of

custom control-point adjustments improved image quality more on average than the WTM-

enhancements. However, in the following experiment we show that this is independent of

the tone mapping method and linked to the enhancements themselves.

Intra-observer variability in this study was low, for image pairs in the common set, see

Table 6.2. In row Agreement, we detail the proportion of times analysts used the same tool

(WTM or control-point) for each of the 18 images in the control set, which they view twice.

This showed that they typically selected the same enhancement tool, with 80% of analysts

choosing the same tool in >90% of their common images. Mean intra-observer agreement

was therefore also high, at 93% (± 8).

In the remaining rows, we consider the variation in tool parameters between each common-

set image pair (for cases where the same tool was selected). Mean coefficient of variation

(MCV ) is used to represent variance; we denote this as MCVλ and MCVk in WTM-

enhanced pairs and MCVc in control-point pairs. Lastly, if an enhancement tool was not

used by an observer, we denote the absent MCV values by ‘-’ in Table 6.2.

When using WTM, analysts typically introduced more variation between image pairs, in

terms of k, a proxy for contrast, than λ, a proxy for brightness. Comparatively, there

was more variation in control-point adjustments between images - with the exception of

observer 10 whose control-points varied by MCV = 0.06 on average. Increased MCV is
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Table 6.3: Inter-observer variability across image pairs.

Agreement MCVλ MCVk MCVc

0.81 (±0.04) 0.13 0.21 0.26
1Agreement = proportion of matching decisions across image pairs 2MCVλ,MCVk = mean CV for λ

& k in WTM enhanced pairs 3MCVc = mean CV for control-points in control-point enhanced pairs (CV

here refers to mean CV across 6 control-points) 495% confidence intervals are shown in parentheses

unsurprising with the control-point tool, as the potential for difference increases with more

parameters (or control-points), here requiring 6 compared to 2 in WTM. These results

demonstrate that WTM parameters were more similar and thus analysts adjustments are

more consistent.

Variability between observers (inter-personal) is particularly likely in studies such as this, as

observers manipulate images according to their own aesthetic preferences. In terms of tool

preference, we found, on average, that 81% (± 4) selected the same enhancement type across

images, specifically the favoured tool in the dataset, WTM, see Table 6.3. A comparable

proportion to the full dataset.

Using MCV , we assessed similarity of selected parameters across images for each tool. As

with intra-personal variance, we found that observer adjustments using WTM were more

similar across images than those enhanced with the control-point tool, see Table 6.3. For

images enhanced with WTM, observers were again more varied in their selection of k, than

λ. For the remaining images, control-point adjustments were, comparatively, more variable

on average. Assessing the MCV in all of these cases provides only relative comparison, it

is not possible to say what is a good value. However, a value closer to zero suggests higher

similarity of observer adjustments when using WTM. This general behaviour of end-user

WTM preferences is promising for future development of an automatic WTM.

6.4.2 Simplification of control-point tonal manipulations

In Chapters 4 & 5, it was found that, often, an analyst-defined control-point tone curve could

be well approximated by WTM. That is, the control-point tone curve could be interpreted as
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the tone adjustment that maps a Weibull approximation of the input brightness distribution

to the Weibull approximation of the adjusted brightness distribution. Thus, we wondered

if the same result would be found here in the case of control-point adjusted images. In this

work, when an analyst cannot obtain a suitable output using the WTM slider adjustment

they resort to a custom control-point manipulation. Here we ask whether - like the prior

experiments - these control-point adjustments might also be interpreted as a WTM. If this

is found to be the case this would imply that the WTM sufficed in general but that finding

the best WTM could not always be easily found using the two slider adjustment.

Setup

To assess whether control-point tonal manipulations could be interpreted as a WTM, we

selected all output images from the previous experiment that were enhanced using this more

advanced tone-mapping tool. Using WTM, we derived the closest Weibull approximation

of all images i.e. we computed the WD that best modelled the brightness histogram of the

user-optimised output image. Using this Weibull proxy histogram we could derive a new

tone curve (the Weibull tone map), which we applied to the input image. Intuitively, if

this new image looked similar to the analyst’s image, that was control-point adjusted, then

we might conclude that the WTM method is working. Instead, it could suggest that the

analyst could not find the desired approximation using our tool.

To determine the similarity between an analyst-enhanced control-point image and its WTM

approximation, we calculated the colour difference between the image pair using the CIELAB

Delta E (or ∆E∗
ab) (148) colour difference (Equation 5.1. For complex images, an average

∆E∗
ab less than 5 indicates that the images are perceptually very similar (114).

Results

In Table 6.4, we report the colour difference between WTM approximations and their

custom-enhanced counterparts. Here, we find that the average colour difference between our

WTM- and custom-adjusted image pairs was small, with an average ∆E∗
ab of 2.98 (±0.52).
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Table 6.4: Summary statistics for mean ∆E∗
ab (across pixel pairs) between control-

point tone-mapped images and their WTM approximation

Mean % Images <5 % Images <1

2.98 (±0.52) 91 11
1 95% confidence intervals are shown in parentheses

Furthermore, a significant proportion (91%) had a mean ∆E∗
ab <5, demonstrating that for

the most part control-point tone maps could be convincingly approximated using WTM. In

Figure 6.3 we show example images that have been tone-mapped by an expert, and their

WTM approximation. The color difference between each pair is <5 and in each case the

differences are near indistinguishable to the observer. These results indicate that when a

control-point adjustment is made (∼20% of adjustments) that these adjusted images can

be well approximated by the WTM model (i.e. the closest WTM adjustment results in a

similar image visually). Additionally, these successful WTM approximations (mean ∆E∗
ab

<5) do not jeopardize image quality in an objective sense, with metrics equivalent to their

custom counterpart, see Table 6.5.

Figure 6.3: Example of WTM approximation of control-point control-point adjust-

ments. Colour difference between the custom and WTM image is summarized by mean

∆E∗
ab across pixel pairs.
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Table 6.5: Mean image quality metrics for custom tone-mapped images and their

successful WTM approximations (mean ∆E∗
ab <5)

Image UIQM UCIQE CCF

WTM approx. 0.85 (±0.04) 0.72 (±0.06) 8.94 (±0.43)
Custom 0.85 (±0.04) 0.71 (±0.06) 9.14 (±0.48)

1 95% confidence intervals are shown in parentheses. 2 Best results are highlighted in bold.

Figure 6.4: Example of observer tone-maps using WTM and the custom (control-

point) enhancement. Custom tone-maps here can not be approximated by WTM i.e.

they did not meet mean ∆E∗
ab (< 5) threshold for approximation.

Control-point tone maps that could not be well matched by WTM were varied in behaviour,

see Figure 6.4. In general they appeared to be complex operations, with, sometimes multi-

ple, transitions between very low and steeper gradients; a morphology not consistent with

WTM tone maps, which are smoother and simpler. Aesthetically speaking these tone curves

can, counter-intuitively, lead to too little and too much contrast in parts of an image and

cause it to appear unnatural. However these outlier tone adjustments are preferred by the

analysts as they help them to see details important to identify the image content, in this

case the habitat. Thus they need not be aesthetically pleasing. That said there are few

outliers and there are only 9% of control-point tone maps not well approximated by the

Weibull approximation method. Combining the successful WTM approximations (mean
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∆E∗
ab <5) with the observer-selected WTM enhancements, we find that for >98% of image

adjustments there is a suitable WTM to enhance the image, in a way that is useful for the

analyst. This offers the promise of supporting analysts to make quicker adjustments of their

images, with control-point tone adjustments rarely required.

6.4.3 Behaviour of WTM enhancements

The previous experiments demonstrated that the majority of analysts prefer Weibull Tone

Mapping to support their benthic image analyses. In this section we discuss these enhance-

ments in more detail, contextualising them by considering the influence of image content.

Note that when describing these tonal adjustments, we also include the WTM approxima-

tions that had a mean ∆E∗
ab <5.

Results

In general, analysts decreased λ between input and output Weibull Distributions in the

experiment (61% of images). Decreasing λ (a proxy for brightness) shifts the peak of

a brightness histogram towards a lower pixel intensity. This adjustment thus causes a

brightness reduction in images following WTM. The prevalence of brightness reductions

within the dataset corresponds well with the tonal adjustments made by analysts in Chapter

4. It may have helped to lessen the intensity of the light cone and halo-effect; a common

problem in artificially lit underwater imagery. Of these darkened images, 45% were classified

as soft substrate (SS) habitats (SS1 & SS2), as described in Table 3.2. In Figure 6.5 (A)

we show the mean standardized (Z-Score) difference in WTM parameters, between input

and output WDs, for each habitat class in the image dataset. Note that the differences

presented for average λ, refer to cases where λ was decreased only. Full results are presented

in Figure 6.6. From this we note that not only are SS habitats 1 & 2 representing a large

proportion of darkened images, but that the extent to which they are darkened is larger

than average.
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Figure 6.5: WTM parameter variation with image class (habitat): (A) mean differ-

ence in WTM parameters between input and output WD and (B) mean WD parameters

across input images. All values are presented as standardized Z-Scores for fair compar-

ison. λ and k differences in (A) refer only to cases in which they were decreased and

increased, respectively. Error bars represent 95% confidence intervals.

In Figure 6.5 (B) we detail the average standardized (z-score) λ value across all input WDs

for each habitat class. From this we see that SS images in this dataset are significantly

brighter on average, demonstrated by a high λ value, likely due to the light and homoge-

neous appearance of sands and muds. Decreasing λ, in output images, may have helped

reduce the bright illumination (reflective) effects on the seafloor whilst highlighting the ap-

pearance of burrows (a distinguishing habitat feature). Of the remaining images (55%),

in which λ was decreased, the other habitats (HS1, HS2, Cor1 & Cor2) were represented

roughly equivalently; on average ∼14% each. Yet the extent to which λ was reduced in each

was variable, see Figure 6.5 (A). Most notably, the brightness of images classified as hard

substrate (HS) (HS1 & HS2, Table 3.2) were, on average, reduced significantly less.

Images of these, more structurally complex, habitats were significantly darker than SS im-

ages (Figure 6.5(B)), containing increased shadow presence around topographic features

such as boulders and cobbles. Small reductions in λ would help to diminish the unwanted
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Figure 6.6: Mean standardized (Z-Score) difference in WTM parameters between all

input and output WDs. Error bars represent 95% confidence intervals.

brightness effects mentioned prior, yet minimize visibility reduction of distinguishing fea-

tures within shadowed/darker image regions. Reef framework (Cor1) and soft coral (Cor2)

habitats (Table 3.2) can also feature such shadowing due to their pronounced height above

the seafloor, in association with topographic highs. Yet these images were, on average,

darkened to a greater extent than HS habitats. Corals such as stony coral Desmophyllum

pertusum in habitat Cor1 and soft coral Paragorgia arborea in habitat Cor2, typically ap-

peared very bright (Figure 6.5(B)) and sometimes dominated the field-of-view. A logical

enhancement may therefore be to reduce brightness. This is particularly true when in-

creasing contrast, as the intensity of pixels in these regions of interest will be elevated and

potentially saturated.

Intensifying contrast is an important tonal adjustment in underwater images (91; 75; 182),

to lessen undesirable image effects induced by light absorption in the water medium and

scattering due to present particulates (i.e. marine snow) (154). It is no surprise therefore

that contrast was enhanced in 74% of images, relatively more than analysts in the tone

mapping experiment presented in Chapter 4. Analysts achieved this with WTM by de-
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creasing k (a proxy for contrast), which flattens the peak of the brightness histogram. 43%

of images in which k was decreased contained SS habitats (SS1 & SS2). This reduction

in k was also significantly greater for these habitats on average, as shown in Figure 6.5

(A). Images of SS habitats were the most poorly contrasted in this work, indicated by the

high k values in Figure 6.5 (B). Images typically lack edge details and contain more cryptic

fauna, such as those that burrow into the sediment. Increasing contrast would therefore

allow analysts to improving seafloor texture visualization, in this case concluding absence

of gravels and pebbles in order to classify a SS habitat. It would also allow easier searching

for sponge presence, to distinguish between habitats SS1 & SS2; a factor equally applicable

to discriminate between HS habitats (HS1 & HS2) which represented 37% of k decreased

images. However, as evident from Figure 6.5 (A), contrast was increased significantly less

than average in HS images. HS images, as well as the soft coral and reef images (Cor1

Cor2), typically appeared better contrasted (Figure 6.5 (B)) and highly textured. The de-

gree to which k was reduced in each of these is therefore likely to be less. Few soft coral and

reef images received a contrast enhancement by analysts and those that did were adjusted

significantly less than average. Enhancing contrast in these images thus appears less impor-

tant to analysts. In fact, of the 26% of images in which a contrast reduction was enforced,

by increasing k, 66% were classified as soft coral or reef.

A final remark on the behaviour of the WTM adjustments was that 17% compressed the

dynamic range. Shrinking the dynamic range will reduce contrast, however it can also be

used to lessen the intensity of stark bright and dark regions. It is no surprise therefore that

this dynamic compression mostly occurred in images containing soft corals (51%) and Reef

(38%). These images are typically dominated by bright corals in the image foreground,

surrounded by a very dark background. Reducing these intensities would allow for better

visualisation of cryptic features.

As expected, these results demonstrate that the types of tonal adjustments by end-users are

logical. They are clearly driven by the underlying brightness distributions of underwater
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images, which, in turn, are a product of artificial lighting interactions with the seafloor. For

example, a positive trend exists between the brightness of images and the extent to which

they are darkened as well as a negative trend between general seabed complexity and the

degree of contrast enhancement.

6.4.4 Psychophysical Evaluation

Weibull Tone mapping is designed to aid end-users to make guided adjustments to improve

their image annotation of underwater imagery. In this thesis thus far, we have shown that

analysts find it extremely suitable and that it can broadly encompass many global tone

mapping operations. Here we aim to more deeply evaluate the performance of WTM, and

the benefits of bespoke enhancements, by exploring preference over alternative algorithms.

In Chapter 5 we considered preference based on enhancements selected from multiple users,

finding WTM to be superior over other TMOs. Given the diversity of enhancements deemed

desirable by analysts throughout these works, we now consider preference on a more in-

dividual basis to investigate whether these preferences are tied to the algorithm or the

enhancements themselves. We compare both automatically-generated enhancements and

those that are tailored to individuals.

Setup

We ran a psychophysical evaluation to assess if analysts prefer their WTM adjustments

against other enhancement algorithms. As in previous preference assessments (Section

5.4.2), analysts at Gardline were presented with image pairs and asked to ‘Choose the

image that best allows identification of the habitat (class) therein, or no preference if the

images are equivalent’. This was conducted under the same viewing conditions, namely, ISO

standard 3664:2009 viewing conditions (92); with analysts sitting approximately 70 cm from

the display in a neutrally painted and darkened room. Of the 10 analysts that completed

the WTM adjustment experiment in Section 6.4.1, only 7 were available to conduct the

preference experiment.
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12 images were randomly selected from the common image set in Section 6.4.1, with at least

2 images representing each of the 6 habitat classes. In this experiment we compared n = 4

variants of these images; the unenhanced ’Input’ and three enhanced outputs, enhanced

either automatically (magic button) or with WTM or CLHE. With n(n−1)
2 = 6 pair-wise

comparisons per image, which is then viewed twice (left-right order switched), the total

number of pairwise comparisons for each analyst was therefore 12×2×6 = 144 pairs. Note

that subject to the availability of image variants in the common set, 1 analyst only viewed

10 × 2 × 6 = 120 pairs. The order of pairwise comparisons were uniquely randomized for

each analyst.

All analysts were presented with identical input and auto-enhanced images, with the latter

created using the automatic brightness adjustment in Adobe Photoshop 2023 (5). This

produced a tone map which was applied the same as WTM (preserving chromaticity) see

Equations 5.9 & 5.10. Although the specific mechanisms of deriving these tone maps are

unknown, they always increased the brightness and, to a lesser extent, the contrast.

Alternatively, the WTM and CLHE image variants presented to each analyst were unique.

WTM images were those produced by the analyst in the WTM adjustment experiment

(Section 6.4.1). CLHE images for each analyst were then created based on the 5th and

95th slope percentiles of their WTM tone maps (that created the selected WTM images).

This resulted in an average upper slope bound of 0.006 (±0.001) and lower slope bound of

0.001 (±0.001) across analysts. The slope bounds for each analyst were used to derive the

CLHE tone map for each input image, which were then applied identically to WTM, using

Equations 5.9 & 5.10. Preference vote data was processed using the same methodology as

prior experiments, see Section 5.4.2 for details.

Results

The preference experiment showed that analysts significantly prefer their tailored WTM

adjustments to both the unenhanced input images and those enhanced automatically with
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Figure 6.7: Preference Experiment Scores. Error bars represent 95% confidence in-

tervals.

a magic button tonal enhancement, see Figure 6.7. In line with prior experiments in this

thesis, this again demonstrates the significance of the Weibull Distribution and WTM in

enhancing underwater imagery for annotation.

An interesting distinction in this evaluation however, is the stronger preference signal for

CLHE, a contrast-enhancement algorithm. Here CLHE is preferred most of the algorithms,

though not significantly more than WTM, whereas in prior work (Section 5.4.2) it was

ranked worst. An important difference in this experiment is that CLHE was tailored to the

slope statistics of each individuals tonal enhancements, in theory creating an enhancement

that they would find more appropriate. Previously we used a more generalised CLHE, with

slopes that reflected the tonal enhancements of multiple users. We also previously included

assessment by analysts who had not created these enhancements. The fluctuating preference

of analysts for CLHE could also reflect the variable contrast manipulations undertaken by

analysts throughout this work. In Chapter 4 we saw that analysts’ contrast adjustments

were split approximately equally between enhancement and reduction. Yet, in this chapter,

we saw that analysts often (74%) enhanced contrast to aid image analysis. These results
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demonstrate that the suitability of CLHE for improving image annotation is not consistent

and heavily dependant upon the input imagery and chosen parameters.

When directly comparing WTM and its slope-matched CLHE adjustment, the contrast en-

hancement offered by WTM will always be more moderate than CLHE, given that the

unimodal Weibull Distribution often tails to zero. This likely rendered WTM less suitable

to analysts in this particular image sample when higher contrast was prioritized. However,

a further reduction in the WTM contrast parameter (k) would help to increase contrast

further. Although qualities like higher contrast may be broadly desirable in underwater

images, which are typically poorly contrasted, there are clearly nuances in analysts pref-

erences and between images. This highlights the difficulty in designing an automatic and

general tool, especially in analytical scenarios. It also indicates that enhancement tools

should be flexible. This is exactly the use-case for WTM, which extends beyond just a

simple contrast enhancement like CLHE. WTM quickly offers diverse tonal adjustments,

which adhere to natural underwater image statistics, to better optimise the enhancement

process. Unlike CLHE, it can support both contrast reductions and/or modifications to

brightness should they be required, as has been the case throughout the experiments in

this thesis. Although not optimal in the case of contrast-enhancement when compared to

CLHE, WTM is more consistently useful for image analysis and performs well regardless of

whether the enhancements belong to the analysts passing judgement. It is also less likely

to introduce low-frequency contouring artefacts that can occur with CLHE. These effects

are caused by a tone map which contains multiple zero-crossings in its second derivative i.e.

the tone map appears stepped or wiggly. CLHE tone maps possess this quality, whereas the

WTM tone map is extremely smooth.

In general, the psychophysical evaluation in this chapter corroborates well with the general

narrative of this thesis which emphasizes the importance of tailored enhancements in un-

derwater image analysis, both with respect to WTM and CLHE. Clear from this work, is

that automatic aesthetically-designed enhancements are insufficient (Figure 6.7). As in Sec-
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Table 6.6: Mean image quality metrics for input images and enhanced outputs

Enhancement UIQM UCIQE CCF

Input 0.69 (±0.11) 0.69 (±0.23) 8.11 (±1.57)

WTM 0.7 (±0.05) 0.69 (±0.06) 8.53 (±0.56)
Auto 0.86 (±0.09) 0.62 (±0.18) 9.0 (±1.93)
CLHE 0.92 (±0.04) 0.77 (±0.08) 10.14 (±0.71)

1 95% confidence intervals are shown in parentheses. 2 Best results are highlighted in bold.

tion 5.4.2, this is again in contradiction to objective perceptions of image quality, see Table

6.6. Here WTM is considered a poorer enhancement and the automatic tonal adjustment

performs well despite analysts low preference for it. However, CLHE is again rated highest

across all image metrics, corresponding well with analyst preferences in this case. These

comparisons between objective and subjective ratings further illustrate that caution must

be applied as to how we quantify value or quality in an image. These metrics infer quality

based on a selection of characteristics such as contrast sharpness as well as loss and degra-

dation of colour. However, in this domain, image adjustments can result in modifications

that such metrics would deem to be undesirable and of low quality, although perceptually

more useful to analysts. It is therefore prudent to consider both the application and aims

and design of the image manipulation when employing such metrics.

6.5 Conclusion

Building on our prior work, we have shown here that the Weibull Distribution is highly

suitable for both modelling and adjusting the brightness histograms of underwater images.

Its properties are driven by two reasonably intuitive parameters which roughly conform to

the brightness (peak) and contrast (spread) of a distribution. These preserve well the natural

behaviour of pixel intensities in underwater imagery, but can also provide enhancements to

support annotation, through their modification using our Weibull Tone Mapping (WTM)

algorithm.
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As with previous chapters, we demonstrate here that the characteristics of analyst tonal

enhancements are tightly linked to the content of underwater imagery and their associated

brightness distributions, and the purpose the imagery serves (in this case habitat anno-

tation). Although time-consuming, control-point tonal manipulations offer end-users with

more complex and targeted tonal enhancements. That being said, this work showed that

given the choice, annotators rarely opt for control-point tonal manipulations. Instead they

prefer to utilise WTM, specifying desirable Weibull brightness distributions by simply ma-

nipulating its 2 parameter-sliders. Furthermore, in the few cases where a control-point tone

map was sought, the majority behaved like WTM.

Since most analysts enhance imagery according to the Weibull distribution, WTM is a useful

mechanism to grant analysts the ability to modify an image such that it maintains Weibull

properties. It also strikes a good trade-off between the flexibility of a bespoke control-

point manipulation and the simplicity and speed of an automated tone-mapper. Thus

it can easily be used as a live modification tool alongside annotation. WTM also lends

itself well to future automation, by highlighting properties that an automated enhancement

should have to support underwater image analysis. Analysts found these properties to be

significantly better than those produced automatically. In addition, these properties are

more consistently desirable across imagery than those offered by CLHE, a popular tone

mapping tool.

We note that although the design and current function of WTM is domain-specific (under-

water imaging), it’s usage could extend outside of this scope. For example, future work

could investigate its performance on medical imaging or images collected for terrestrial- or

aerial-based ecological surveys.
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7 Simplifying automatic classification

of benthic habitats

In the previous chapters we focused on supporting analysts to extract a reliable ground-

truth from underwater imagery. We centered on a major obstacle in this task, image

quality, investigating the type of tonal enhancements required by analysts and developing

a tool on this premise. In this chapter, we move to another challenging component in

their analysis pipelines - coping with the processing bottle-neck. We explore automatic

methods to interpret underwater imagery, in order to manage the time-consuming process

of classification and enumeration in large datasets. We present methods that offer a suitable

trade-off between simplicity of operation and comprehension for non-specialist users and

good, consistent performance.

7.1 Introduction

Optical imaging provides a non-destructive and high resolution tool to monitor the biological

and conspicuous physical attributes of the seabed. Regardless of the platform, there are

some common truths suffered; (1) annotation of resulting imagery is often inconsistent and

error prone due to observer bias, fatigue, distraction and short-term memory limitations

(31) (2) it is costly (in the absence of volunteers) and (3) labour-intensive. This reality is

particularly realised with AUV usage, in which one survey (∼50 hours) can produce over

170,000 images (200).

Machine learning (ML) solutions, to automate the processing of image feature identifica-

tion and enumeration, are therefore generally believed to be essential to alleviating this
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problem. Their use has become increasing popular in ecology over the last few decades

(195). In particular, Convolutional Neural Networks (CNNs), a ML algorithm, have shown

promise (109; 108). Although their implementation has traditionally been more limited to

the Computer Science community, there are now a number of other scientific disciplines,

including Marine Ecology, that are beginning to explore their application. For examples of

CNN applications in Marine Ecology, please refer to Section 2.3.2

However, CNNs are highly complex. Without close collaboration with experts, they are

often inaccessible for a non-specialist (183). This is mostly as they require large investments

in time (for theoretical comprehension and implementation). They are intimidating for those

without more extensive programming experience, particularly in languages such as Python

and Matlab. Additionally, their demand for high specification machines and ’Big Data’ may

present barriers to their use. Effort has been made to incorporate automatic classification

tools into annotation softwares such as BIIGLE (107), VIAME (35) and CoralNet (25).

However these may be unsuitable for those requiring more flexibility in ML approaches

or those wishing to integrate ML functionality into their custom annotation programs, as

is the case with our collaborator Gardline. They are also tailored for certain automation

tasks.

For the reasons stated, we demonstrate here a simpler approach that is more accessible

to end-users and focuses on an under-represented application in the literature, deep-sea

benthic habitats. Specifically, we use an ‘off-the-shelf’ CNN (pre-trained and open-source),

VGG16 (170), to extract features from contextually-representative benthic images. Image

features in this case are pixel patterns that correspond to low-level objects such as edges,

circles and lines up to high-level features such as sponge branches for example. These are

then used to train a simpler classification algorithm, a Support Vector Machine (SVM)

(28; 30). SVMs have been shown to pair well with ‘off-the-shelf’ CNN features generally

(144; 11; 153), as well as in benthic image applications (120; 121; 122; 119; 132). They

are a classical method, well documented and offer a good trade-off in terms of complexity,
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performance, computational demand and time. We compare this approach to training a

complex CNN classifier for the same task and demonstrate that, for this application, they

have the advantage.

The purpose of this chapter is to act as both a quick primer for novice users, facilitating

comprehension and implementation of these approaches, whilst also serving as proof of

concept. We demonstrate this extends to multiple datasets that vary in geographic region

and imaging platform.

7.2 Background

In this chapter, we present two approaches to automate classification of benthic habitats

from optical imagery. Each approach consists of two main phases: feature extraction and

classification. Simply put, feature extraction learns to find and highlight patterns associ-

ated with pixel information (features). The classification phase then learns to link these

features to one of the three habitat classes. The first of our methods uses the feature ex-

traction components of a Convolutional Neural Network (109; 108) paired with a Support

Vector Machine classifier. The other, a more complex approach, uses a full CNN archi-

tecture for both feature extraction and classification. Thus, both approaches in this work

differ only with respect to classification. For brevity, these methods are henceforth referred

to as CNN+SVM and CNN, respectively. Please refer to Figure 7.1 for a graphical

representation of each.

In the following sections, we provide further details on each ML approach and evaluation

metrics. For more detailed background on the the mechanics of each algorithm, please refer

to Section 2.3.
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Figure 7.1: Graphical representation of ML approaches (CNN &CNN+SVM) used

in this chapter
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7.2.1 Machine Learning Approaches

Common to both of our ML approaches is the use of a CNN. Simply put, CNNs transform

image data through a process known as convolution to extract features (108; 66; 9). These

features are then ’connected’ to a final layer of outputs that determine the classes that need

to be classified. This last layer is referred to as fully-connected (FC) i.e. all outputs from

the penultimate (feature) layer are connected to all classification nodes.

CNNs can be trained to extract and classify image features extremely well (102; 170; 176;

74; 86). However, this training requires vast amounts of imagery (1000s) and computational

resources that are not attainable for many scientists such as expensive Graphical Process-

ing Units (GPUs). It also requires experience to monitor training and select appropriate

hyperparameters, see Table 2.1.

In our work we will therefore use transfer learning; taking a pre-trained CNN and simply

training it a little more. For this we use VGG16 (170), which was trained on the ImageNet

dataset (36), see Figure 7.2.

Transfer learning with networks pre-trained on ImageNet has increased performances across

a multitude of image classification problems, including benthic imagery (120; 132), and is

thus a common component of computer vision pipelines. This is widely speculated to be due

to the vast size of ImageNet (≈1.2 million images) and the large number (1000) of classes

which include both similar and distinct objects (87). However these simple assumptions

may not be entirely accurate as empirical investigations are limited (87).

Logically, the performance of transfer learning is in part influenced by the similarity of the

training and test data. However, this pre-trained VGG16 is not optimised to recognise

features in our own datasets, with the majority of ImageNet classes irrelevant to our un-

derwater imaging application, covering groups such as plants, vehicles, food and animals.

However we can still use it as a ’head-start’, leveraging the power and success of prior

training to extract more general features such as edges, lines, corners and simple textures
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Figure 7.2: VGG16 architecture

(144; 209; 120; 121). Additionally, there are a number of underwater classes including

‘corals’ and ‘sandbar’ which are broadly more similar to our benthic habitat classes. This

suggests that the learnt feature representations from ImageNet may be applicable to our al-

ternative domain beyond a general sense, recognising more complex geometric and textural

qualities of seabed features such as corals and sand.

There are several reasons for choosing VGG16 as a basis for transfer learning. VGG is one

of the most implemented algorithms for image classification and although several years old

remains highly popular with high performance across diverse image applications applica-

tions (96; 101; 206; 205; 8; 3). More importantly, it also has a record of good performance

across marine classification tasks (117; 211; 65; 98; 121; 122). Preliminary comparisons of
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VGG16 to other models (AlexNet (102), ResNet18 & ResNet50 (74) and VGG19 (170))

found VGG16 to produce deep features that were more accurately classified by an SVM.

Additionally, for inexperienced users, our target audience in this application, a model ar-

chitecture such as VGG16 may be preferential over newer state-of-the-art model architec-

tures. This is due to its inclusion in more accessible platforms/frameworks such as PyTorch

(139) and TensorFlow (2), its extensive guidance materials for implementation and well-

documented high performance.

The VGG16 architecture includes 16 layers with learnable weights, of which 13 are convolu-

tional and 3 are FC. Convolutional layers use a 3×3 kernel and are generally followed by a

Rectified Linear Unit (ReLU) non-linear activation layer. Down-sampling is also performed

after some of the convolutional layers using max-pooling (kernel = 2×2, stride=2). Within

the classification component of the network, the first two FC layers have 4096 nodes each

whereas the third contains 1000 nodes, corresponding to the number of classes within the

training dataset (ImageNet).

Although a powerful ML technique, using a CNN is still intimidating to the novice, both

practically and intellectually speaking. Several hyperparameters are still required in trans-

fer learning 2.1, which must be set manually by the user. It also requires a good deal

of theoretical study to understand, train and use them effectively. For this specific ap-

plication, we demonstrate that this trade-off between complexity and its performance is

unwarranted.

Shallow-learning SVMs are by comparison far simpler to train. Designed for binary clas-

sification problems, they work by finding the best boundary, or hyperplane, between data

points that enables distinction of two classes. However, strategies exist to handle multi-

class classification (>2 classes). In this chapter, we use One-Vs-One (OVO). This splits

the dataset into multiple binary classification problems that are assessed per each pair of

classes. Compiling the classifications of all binary SVMs allows a final classification to be

made for each data point, based on the class that received the most votes.
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There are a number of reasons that encourage the use of SVMs, both widely and in our

application. Importantly, SVMs guarantee an optimal solution to be found when classifying

data, unlike CNNs. SVMs also require less hyperparameters. In our work we explore both

a linear and non-linear (Radial Basis Function) SVM, which require 1 and 2 parameters,

respectively, see Table 2.1. Given, the few hyperparameters SVMs can easily be re-trained

with different hyperparameter combinations to find an optimal set. They also use only a

subset of the data (support vectors) to place the hyperplane and are thus computationally

efficient. By comparison, FC layers in the CNN use all of the data and require a large

number of intricately connected parameters, thus they are prone to over-fitting and poor

generalization (102; 9). Using a SVM classifier, in combination with a CNN feature extractor

is thus less restrictive with regards to resources (time, computational, & imagery) and

experience.

7.2.2 Performance Evaluation

A number of metrics can be used to evaluate the performance of the trained models at

classifying classes in test-datasets. Perhaps the simplest of these measures is accuracy,

which indicates the number of images that the model classifies correctly, with 1 marking

perfect (100%) accuracy. However, this does not reveal information as to its performance

within classes. To account for this, classification studies also calculate the recall, precision

and F1 score for each class. Recall, or sensitivity, refers to the proportion of images of

each class that were correctly classified. Precision however determines the accuracy of the

predictions themselves; it measures the proportion of images that were assigned a correct

class when classified. For each habitat class c, Recall and Precision are calculated as:

Recallc =
TPc

TPc + FNc
(7.1)

Precisionc =
TPc

TPc + FPc
(7.2)
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where TP refers to the number of true positives (those correctly classified as class c), FP

the false positives (those that are incorrectly classified as class c) and FN the false negatives

(those of class c that are incorrectly classified). Dependant on the classification problem,

it may be desirable to have a higher performance for recall or precision. For example you

may wish to ensure the model can identify all images of a class or instead maximise its

correctness in identifying a class, for recall and precision respectively. For a more balanced

view of model performance we calculate the F1 score, a harmonic mean of the precision

and recall. This gives an idea of how well the model recognises images of each class and

distinguishes between images of other classes. For each class, F1 is calculated as:

F1c =
2 ∗ (Recallc ∗ Precisionc)

(Recallc + Precisionc)
(7.3)

For each of the class metrics used (Recall, Precision and F1), we present an average across

classes, also known as the macro-average, alongside their 95% confidence intervals (CI). The

macro-average for each metric m is calculated simply by:

Macro− averagem =

∑C
c=1mc

C
(7.4)

where C is the total number of classes. The macro-average weights class importance equally,

irrespective of the number of images associated (instances of each class), and therefore

represents model performance more reliably. This is particularly useful given that the deep

seafloor is largely a soft-sediment habitat with intermittent hard-substrate and reef and

thus a class imbalance is typically present in image surveys. Our datasets are no stranger

to this phenomenon.

All performance metrics were calculated using the python library scikit-learn and are scored

between 0 & 1, with optimal performance reached at 1.
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7.3 Experiments

The following experiments use the pre-trained VGG16 network, to extract deep features

from benthic images. We show that feeding the default outputs of VGG16 into a Support

Vector Machine (SVM) is a high-performing and consistent ML approach, that focuses

on conceptual and practical simplicity to maximise accessibility. For comparison, we also

use the VGG16 network directly, in which we re-train the final 2 layers of the net (i.e. we

compare against a classical deepnet methodology), though its performance does not warrant

the additional complexity.

7.3.1 Extracting and interpreting a deep feature space

In this experiment we explain how to employ VGG16 as feature extractor and explore the

resulting features. These features are numerous and near-impossible to interpret. This

is especially difficult for novice users from a ecological background, who routinely apply

field-specific knowledge or experience to aid interpretation of a model’s features or input

variables. It is also challenging if you wish to assess the underlying suitability of the features

for automatic classification. We therefore explore dimensionality reduction of the deep

features, as a tool to visualize the feature space and any patterns or clusters within.

Setup

The pre-trained VGG16 model was sourced from the torch library, the basis of the Pytorch

ML framework. The network’s parameters were initially frozen to prevent further training.

To create a feature extractor tool, the majority of VGG16’s classification component is

removed i.e all layers following the first FC layer are removed, see Figure’s 7.2 & 7.1. Every

image that passes through this feature extractor will thus result in a matrix of 1×4096

features that will later be passed to a classifier i.e. an SVM.

VGG16 was used to extract deep features from three datasets to explore the generality (and

performance) of the pipelines presented. Details of each are listed in Table 3.1. Datasets
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vary according to imaging platform and geographic region. For the purpose of this chapter,

we focus on the broad-scale habitat descriptions listed in Table 3.3: 1) Soft Substrate (SS)

with SS sponge communities, 2) Hard Substrate (HS) with HS sponge communities and 3)

Reef. For brevity, we refer to these as Soft Sub., Hard Sub. and Reef.

Pre-trained CNNs are designed to expect image data in a certain format before feature

extraction (or classification). For VGG16 (and other networks trained on ImageNet (151;

74; 79)), RGB images must be 224×224 pixels. We therefore resize images to 224 pixels

along the x-axis, preserving their aspect ratio. We then crop the center of images such that

they are square. Following standard practice, RGB values were also normalized (centered

and scaled) with respect to the ImageNet dataset.

Before undertaking any classification of the extracted high-dimensional feature space, we

took steps to better conceptualize it, reducing the number of features (or dimensions) to

≤3. Although the features themselves remain cryptic, this allows us to visually assess any

structure or clustering in the data that would enable good separation of classes and thus a

high performing model. For this task we use a Pairwise Controlled Manifold Approximation

(PaCMAP) (191), employed using the python library pacmap. This technique quickly finds

a low-dimensional representation of the complex feature space (that is structurally most-

similar) by calculating Euclidean distances between pairs of observations. By identifying

neighbouring pairs, mid-near pairs and further pairs, each with lessening ’attractiveness’ or

similiarity, they optimize a mapping that best maintains these point-based relationships.

By maintaining the relative ’attractiveness’ of these pair groups, PaCMAP can preserve the

local and global structure of the data. The technique is fast and simple to use and has been

proven to accurately capture data distributions (191).

Results

The VGG16 network activations resulted in a feature space with conspicuous clustering

of each habitat, see Fig. 7.3. This suggests the general features provided by the VGG16
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Figure 7.3: 2-Dimensional visualisation of the 3-Dimensional feature spaces for each

dataset, created using PaCMAP

network are suitable for classifying benthic habitats, though the extent to which may be

variable across the Datasets used and classes encountered. Across all datasets, the PaCMAP

dimensionality reduction showed the strongest partition of Soft Sub. & Hard Sub., aligning

with the distinct visual contrast of these habitat classes. Features associated with Reef

habitat were also clearly separable from Soft Sub. habitats. However, they do exhibit a

degree of overlap with Hard Sub., in 3 dimensions. This may indicate higher similarity

with this habitat, with respect to the general features extracted. The overlap of Hard

Sub. and Reef feature spaces, particularly within Datasets 2 & 3, is unsurprising given the

ecological association of Reef and hard substrates (147; 83). Larvae of coral species such

as Desmophyllum pertusum, responsible for creating the reef framework in the featured

datasets, require hard substrate to settle and build their communities (198; 147). Reef is

also more commonly associated with topographic highs (created by boulders and bedrock

for example) that enable elevation into currents for enhanced filter feeding (179; 130; 147).

Imagery classified as Reef will thus likely contain evidence of hard substrates. Some images

would also have featured the sub-class coral rubble, as described in Table 3.2. In a technical

sense, the texture and edge distributions of coral rubble in imagery, may exhibit more visual

similarity to seabed areas dominated by gravel.
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Figure 7.4: PaCMAP 2-Dimensional visualisation of Dataset 1 (Table 3.1) feature

space: a) 2D point cloud and b) zoomed region in which points are replaced by image

thumbnails for better conceptualization of feature variance.

Of the datasets, habitat clusters were particularly notable within Dataset 1, at both higher

(3D) (Figure 7.3) and lower (2D) dimensions (7.4). In Fig. 7.4 (B), image thumbnails

demonstrate the visual transition between image characteristics of each class for better

comprehension of the feature space. A gradient of seabed complexity is clearly evident from

the bottom left to the top right of the frame. The proximity of images, within and between

classes, can be seen to not only correlate well with seabed characteristics but also shows

some clustering based on illumination patterns.

It is important to note that although PaCMAP preserves the structure of high-dimensional

feature spaces well (191), this is a simplification. However, we still see reasonably clear class

associations across datasets; this could suggest that the class feature spaces may be even

more easily separable at higher dimensions.

7.3.2 Classifying deep benthic features

The PaCMAP dimensionality reduction demonstrated that the dataset features spaces do

exhibit clustering by habitat class and thus should support well-performing automatic classi-

fication. In this experiment we evaluate classification performance across the three datasets

128



Chapter 7. Simplifying automatic classification of benthic habitats

showing that combining an SVM classifier with a CNN feature extractor is a high-performing

and consistent ML approach and not a significant trade-off with its simplicity. Specifically,

we find a non-linear RBF SVM to be most suitable.

Setup

Interaction with the ML models in this work is conducted using different Python libraries.

CNN training and testing is conducted using torch whereas scikit-learn is used for the

SVM. To keep our model training and analysis pipelines equivalent, we therefore use sko-

rch, a scikit-learn compatible neural network library that wraps PyTorch. skorch has a

clear and simple interface. Users need only add the prepared datasets and model, and

specify the associated hyperparameters (Table 2.1). It then packages the CNN model and

allows the same scikit-learn training and evaluation procedure to be used for both models.

Documentation is available at (171).

To classify benthic habitats from imagery we used the ML workflow summarized in Table

7.1. For each dataset (Table 3.1), images were split into 80% training (including 5-fold

cross-validation) and 20% testing subsets. Splits were stratified to preserve the class-ratio.

For model preparation, we load a pre-trained VGG16 with ImageNet weights and freeze all

layers to prevent further training. For our CNN+SVM modelling approach, we duplicate

the network and retaining the architecture only up to the first FC layer (FC1). Note that

this is the same as the CNN feature extractor developed in Section 7.3.1. We then pair it

with a SVM, either a linear SVM or a non-linear RBF SVM; we evaluate both. Whereas

for our CNN method, we train only the final two FC layers of the downloaded VGG16

network. Thus we unfreeze (or replace) layers FC2 & FC3 to re-initialize the weights for

training. We also alter the number output nodes in FC3 to 3, the number of classes in the

datasets.

Each of the ML approaches require hyperparameters to classify imagery. Optimizing model

hyperparameters during training can increase model performance. For our CNN+SVM
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Table 7.1: Required steps in our ML workflows

Data Preparation

Organise images into class folder structure
Separate image dataset into training and testing
Resize imagery for CNN i.e. 224×224
Normalize images to ImageNet dataset (center & scale)

Model Preparation

Load pre-trained VGG16 (with ImageNet weights)
Freeze all layers
For CNN+SVM:
Duplicate the network
Remove all classification layers, except FC1
Initialize SVM with default parameters
For CNN:
Unfreeze (replace) FC2 & FC3 in classifer
Set FC3 outputs to the number of classes i.e. 3
Set hyperparameters i.e. learning rate, optimizer, loss function

Feature Extraction

Set batch size for feature extractor
Extract features from training and testing set

Classification

For CNN+SVM:
Optimize SVM hyperparameters with grid-search
Train SVM with optimal choice
For CNN:
Optimize learning rate during training

Performance Evaluation

Assess training performance
Predict classes in test data
Evaluate test performance

1Note that the order of steps may vary with ML frameworks (i.e. pytorch, tensorflow) or may be

achievable simultaneously 2Grey shading denotes model-specific steps

method, we follow recommendations by (84), authors of the LIBSVM library (24). We

use a non-linear RBF kernel for our SVM and run a k-fold (k = 5) cross-validated fine

grid-search (on the training data) of the parameters C and γ i.e. C = 23, 23.25, ..., 27 and

γ = 2−15, 2−13 & 2−11. For the linear SVM, we use the same parameter search for C

(its only required parameter). For comparison, we also look at the RBF and linear SVM

with default scikit-learn values, C = 1 and γ = 1/(f × V ar(F )), where f is the number

of features, F the features and V ar the variance. Each fold in the training dataset is

used once as a validation set, while the k − 1 remaining folds form the new training set.
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Hyperparameter combinations that received the highest average accuracy (proportion of

correct classifications), across validation folds were selected. This is a simple and relatively

fast process, subject to the size of the dataset.

Training a CNN is far more difficult and time-consuming. It requires monitoring of per-

formance (accuracy and loss) across epochs to ensure the model is effectively learning to

classify the feature space. It may then be manually interrupted upon issue or when a suit-

able model is developed. The large number of hyperparameters associated (Table 2.1) and

high computational demand, mean that an exhaustive grid-search is inappropriate. Instead

our preliminary work showed that recommended default parameters, were suitable for our

data. These include a batch-size of 32 images and a cross-entropy loss function. We also

used the Adam learning rate optimizer (97). The initial value was set to 1e-03 and then

automatically adjusted during training, in a way that improves performance. Adam is com-

putationally efficient and straight-forward to use; you need only specify its use and the rest

is handled. In preliminary work, each model was set to train for 100 epochs maximum.

However for later time-saving and better automation, we enabled early stopping if the val-

idation error (loss) does not reduce for 10 epochs. This identified a suitable number of

epochs for each dataset in the main experiment, 14, 14 and 23 epochs for Datasets 1, 2 and

3, respectively. As with SVM training, we conduct the CNN training protocol using 5-fold

cross-validation of the training set; the same k-folds as the SVM training.

Following cross-validation of each modelling approaches, mean validation accuracy across

k-folds was determined. We then undertook final training on the entire training dataset

with the best hyperparameter combinations (where relevant). Feature extraction and clas-

sification were supported by an NVIDIA GeForce RTX 2080 SUPER GPU (8GB VRAM)

and an Intel Core i7-9700 CPU.
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Results

In line with other research (120; 121; 122; 119; 132), we find that general features extracted

from imagery by ’off-the-shelf’ convolutional neural networks are suitable for classifying

benthic imagery with few errors. Of the SVMs compared, we found a non-linear RBF

kernel was best suited across datasets, factoring in both validation and test accuracies.

Performance was also improved with the optimisation of hyperparameters. In Table 7.2 we

list final training accuracy and mean accuracy across the 5-fold cross-validation (following

hyperparameter tuning), for each dataset and SVM approach. Training accuracy was always

highest for the linear SVMs, regardless of whether the hyperparameters were tuned, however

the comparative performance across validation sets was almost always lower, on average by

2.4x, than when employing a non-linear SVM. With the addition of hyperparameter tuning,

mean validation accuracy was always highest with an RBF SVM. These results indicate that

the Linear SVM may be over-fitting more to the training data.

In Table 7.3 we show the final test accuracy as well as the class-averaged Recall, Precision

and F1 scores. Overall accuracy on the test set was similar to the mean validation accuracy.

In each dataset, best performance was found with a hyperparameter-tuned RBF SVM, with

an average improvement of 3.3% over Linear SVMs and 1.6% over default RBF parameters.

Performance was more variable across the class-averaged metrics. Linear SVM performance

was fairly balanced across metrics. RBFs were found to be more precise in their predictions

by comparison, sometimes at the expense of recall. For interpreting marine imagery, it is

more important that predictions are correct (i.e. high precision) than identifying all images

of a class (i.e. high recall). These results therefore suggest that a good SVM approach for

our datasets is a non-linear RBF kernel. We note that highest RBF precision across datasets

is found using default hyperparameters, however the recall (for dataset 2 & 3) is extremeley

low by comparison. By tuning RBF hyperparameters we yield higher performance than a

Linear SVM and do not compromise the recall as much.
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Table 7.2: Classifier training performance: with tuned hyperparameters, mean cross-

validation (CV) and final training accuracy

Accuracy
Set Images Classifier Hyperparameters

Mean CV Train

SVM:Linear - 0.93 (± 0.003) 1.00
SVM:Lineard C = 23.0 0.93 (± 0.003) 1.00
SVM:RBFd - 0.95 (± 0.003) 0.97
SVM:RBF C = 23.0, γ = 2−15.0 0.96 (± 0.003) 0.98

1 6682

CNN lr = 0.001 0.92 (± 0.023) 0.98

SVM:Lineard - 0.87 (± 0.010) 1.00
SVM:Linear C = 23.0 0.87 (± 0.010) 1.00
SVM:RBFd - 0.87 (± 0.018) 0.91
SVM:RBF C = 23.75, γ = 2−15.0 0.91 (± 0.016) 0.97

2 992

CNN lr = 0.001 0.90 (± 0.015) 0.97

SVM:Lineard - 0.83 (± 0.021) 1.00
SVM:Linear C = 23.0 0.83 (± 0.021) 1.00
SVM:RBFd - 0.78 (± 0.016) 0.84
SVM:RBF C = 25.25, γ = 2−15.0 0.86 (± 0.020) 0.95

3 459

CNN lr = 0.001 0.82 (± 0.020) 0.95
1Subscript d denotes SVM with default hyperparameters 295% confidence intervals are shown in brackets

3Bold font dictates best results

For the remainder of this section, we compare the SVM classification performance to the

CNN. Note that when referring to the CNN+SVM hereforward, we refer explicitly to this

best SVM case, the hyperparameter-tuned RBF.

As with the SVM, the CNN classifier classified general deep features well. Across both

classification methods, training and validation accuracy were high, ranging from 0.95-0.98

(µ = 0.97±0.01) and 0.82-0.96 (µ = 0.9±0.04) respectively, see Table 7.2. Here, µ indicates

the mean and ± the 95% CI. Final test accuracy, detailed in Table 7.3, was comparable to

mean validation accuracy. Test accuracy even marginally exceeded validation performance

(by 2-3%) in Datasets 1 & 2 when using a CNN and by 1% in Dataset 3 when using

an SVM classifier. Across all datasets, classifier test accuracy ranged between 0.84-0.95

(µ = 0.9±0.03). We find that in general the simpler classification approach, CNN+SVM,
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Table 7.3: Classifier training performance: with overall test accuracy and class-

averaged metrics (Recall, Precision and F1 Score)

Set Images Classifier Accuracy Recall Precision F1 Score

SVM:Lineard 0.93 0.93 (± 0.025) 0.93 (± 0.022) 0.93 (± 0.023)
SVM:Linear 0.93 0.93 (± 0.025) 0.93 (± 0.022) 0.93 (± 0.023)
SVM:RBFd 0.95 0.92 (± 0.055) 0.97 (± 0.026) 0.94 (± 0.017)
SVM:RBF 0.95 0.93 (± 0.040) 0.96 (± 0.016) 0.95 (± 0.014)

1 1671

CNN 0.95 0.94 (± 0.018) 0.93 (± 0.029) 0.93 (± 0.023)

SVM:Lineard 0.86 0.75 (± 0.140) 0.76 (± 0.123) 0.75 (± 0.130)
SVM:Linear 0.86 0.75 (± 0.140) 0.76 (± 0.123) 0.75 (± 0.130)
SVM:RBFd 0.88 0.63 (± 0.370) 0.90 (± 0.098) 0.67 (± 0.297)
SVM:RBF 0.89 0.80 (± 0.106) 0.83 (± 0.070) 0.82 (± 0.088)

2 248

CNN 0.88 0.87 (± 0.039) 0.78 (± 0.145) 0.82 (± 0.085)

SVM:Lineard 0.82 0.82 (± 0.041) 0.82 (± 0.127) 0.82 (± 0.085)
SVM:Linear 0.82 0.82 (± 0.041) 0.82 (± 0.127) 0.82 (± 0.085)
SVM:RBFd 0.83 0.67 (± 0.315) 0.86 (± 0.126) 0.70 (± 0.207)
SVM:RBF 0.87 0.80 (± 0.138) 0.84 (± 0.049) 0.82 (± 0.095)

3 115

CNN 0.84 0.83 (± 0.168) 0.80 (± 0.085) 0.80 (± 0.099)
1Subscript d denotes SVM with default hyperparameters 295% confidence intervals are shown in brackets

3Bold font dictates best results

competes well with its complex counterpart, CNN, increasing accuracy up to 4% across all

test and validation sets.

Compared to test accuracy, mean F1 score was more varied across datasets, ranging between

0.8-0.95 (µ = 0.86 ± 0.05) across both methods. The lowest values were associated with

CNN classification (in Dataset 3). SVM mean F1 score was always >0.82; either matching

or exceeded CNN performance up to 2%. Of the components that contributed to the mean

F1 score, namely recall and precision, precision was always greatest for the SVM classifiers,

and higher than their scores for recall. By comparison recall was always highest for CNN

classifiers and lower than their scores for precision. This indicates the different priorities

of each classification approach. The SVM is more conservative in its predictions whereas

the CNN favours over-estimation - ensuring that more of each class is captured. Across

both methods, mean precision scored between 0.78-0.96 (µ = 0.86± 0.05). Use of an SVM
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Figure 7.5: Mean performance across Datasets for each habitat. Error bars demon-

strate 95% confidence intervals

increased mean precision by between 3-5%. Whereas mean recall ranged between 0.8-0.94

(µ = 0.86± 0.05), with SVM decreasing performance by between 1-7%.

Considering the habitats individually, dataset-averaged performance metrics were relatively

consistent across habitats and between classifiers (CNN or SVM) for each habitat, see Figure

7.5. Regarding the consistency of performance scores across metrics, for each habitat and

classifier, more variation was present in the classification of reef. Average performance

metrics for Reef varied between 0.77-0.89 (µ = 0.84±0.05) when using the CNN classifier and

0.77-0.87 (µ = 0.81± 0.04) with an SVM classifier. Soft Sub. and Hard Sub. performance

was more consistent across metrics by comparison. For Soft Sub., average performance

metrics ranging from 0.85-0.93 (µ = 0.9±0.03) for CNN classification compared to 0.88-0.9

(µ = 0.89±0.01) when using an SVM. Hard Sub. scored between 0.81-0.89 (µ = 0.84±0.03)

with a CNN and 0.86-0.9 (µ = 0.87 ± 0.01) with an SVM. These figures indicate that

regardless of class, dataset-averaged performance metrics are more similar to each other

(and thus more stable) when using an SVM. However, the average of these performance

metrics do not vary significantly between the two classifiers or between classes.

Comparing datasets, we see that the variability in performance metrics is somewhat reflec-

tive of the number of training images. In Figure 7.6 we show the overall and class-averaged

metric scores on the test datasets (as detailed in Table 7.3) and the corresponding number of

training images. Note that the size of training sets in Figure 7.6 have been square root trans-
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Figure 7.6: Overall, class-averaged and individual class performance across test

datasets - in order of decreasing training set size

formed for easier visual interpretation. Across datasets there is typically a general trend

of decreasing performance with shrinking training set size, with Dataset 1 (the largest)

scoring best followed by smaller datasets, 2 & 3. However, when focusing on individual

classes we see that the number of training images is not always sufficient alone to explain

variation in performance. Training sets were typically dominated by Soft Sub. followed

by Hard Sub. & Reef, however for each of these, performance often declined significantly

between the smaller datasets in which class representation was roughly equivalent. This

was particularly pronounced for Soft Sub. and Reef and common to both classifiers.

Overall, performance of our habitat recognition pipelines was found comparable or better

than accuracies reported following manual annotation of marine imagery (32; 118; 157; 42).

This demonstrates that these approaches meet standards required in the marine science

community and can be reliably integrated into image analysis pipelines for this application.

We also note that our results compare and compete well with those previously reported in
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benthic habitat classification, across various methods (161; 142; 132; 203; 204; 202), despite

the comparatively small size of some of our datasets. Interestingly, our structure-based

habitat classification also competes well with those that classify benthic imagery from a

textural perspective, featuring highly-zoomed imagery (16; 122; 119; 68; 69).

7.3.3 Time Considerations

In Section 7.3.2 we presented classification results of two modelling approaches,CNN+SVM

& CNN. In this experiment we further evaluate their performance with respect to train-

ing and testing time. We also consider the influence of hardware on computational effi-

ciency.

Setup

The success of CNNs in image classification is partially linked to the development and

availability of GPUs (108). Standard practice when using CNNs, either for feature extrac-

tion and/or classification, therefore involves GPU support. However, the computational

efficiency provided varies drastically with the GPU model used and by extension the ex-

pense. For some, budgets do not accommodate purchase of such expensive hardware. Cloud

services are available which provide access to GPU farms, some free of charge, yet their relia-

bility can be hindered by fluctuating usage limits and hardware availability. By comparison,

SVMs are highly memory efficient and do not require the use of a GPU. For this reason,

we compare the time required for training and testing for both the CNN+SVM & CNN

approaches, both with and without GPU support, exploring the magnitude of these differ-

ences and whether they are significant for an end-user. We use the same GPU & CPU from

Section 7.3.2, namely an NVIDIA GeForce RTX 2080 SUPER GPU (8GB VRAM) and an

Intel Core i7-9700 CPU. Due to the difference in modelling approaches and the number of

hyperparameters required we did not consider time associated with hyperparameter-tuning

for fair comparison.
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Results

The two modelling approaches yielded notable differences in training time. In Figure 7.7

we demonstrate final training, and testing time, for each approach. For visual clarity, time

is expressed as log(minutes). However, to facilitate better comprehension we discuss time

in minutes throughout this section. Training was consistently faster across datasets when

using an SVM. With a GPU, SVM training took between 0.58-16.21 (µ = 6±8.17) minutes,

∼2.4-5× faster than training a CNN, which took 2.89-38.78 (µ = 15.37 ± 18.74) minutes.

In Figure 7.7, we also demonstrate the decline to training speed when relying solely on a

CPU. Training time took, on average, 3.6 (±3.92) minutes longer for the CNN+SVM

when utilising a CPU, ranging between 1.35-24.69 (µ = 9.6 ± 12.09) minutes. However,

CNN training required, on average, 387.09 (±472.32) minutes more, ranging between 67.78-

1015.3 (µ = 402.46± 491.07) minutes; a significant deterioration in training time. Notably,

training each CNN+SVM with only a CPU was still faster than training each CNN with

a GPU.

Figure 7.7: Time required for training and testing phase, in order of decreasing

dataset size. Duration is presented in log(minutes) for phases run both with a GPU

and without (CPU)
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Testing time was found to be equivalent between the two classification approaches, but

vary with hardware. Using a GPU completed the testing phase, on average, 0.87 (±0.7)

minutes faster across both methods. GPU-enabled testing time ranged between 0.1-3.88

(µ = 1.43 ± 1.38) minutes compared to 0.28-5.87 (µ = 2.26 ± 2.9) minutes using just the

CPU.

7.4 Simplicity vs. Complexity

In this application, we note that SVM classifiers offer a good advantage over the more

complex CNN classifier, for the following reasons: 1) performance, 2) time constraint and

3) ease of implementation.

We have demonstrated that SVM classifers perform well and compete with CNN classifiers -

typically matching or improving performance metrics across datasets. SVM classifiers were

also more conservative in their predictions, a preferable trait in marine habitat classification.

Prediction accuracy is more important than capturing all instances of a class. The use of

an SVM classifier as an automated tool will thus be more appropriate for this application.

They are also not particularly sensitive to alterations in training set size, handling poorly

represented classes such as Reef reasonably well. SVMs always converge to an optimum, thus

irrespective of training set size, if the underlying data are suitable they are likely to perform

well. CNNs however, train iteratively, gradually improving their ability to fit complex

relationships to the high-dimensional feature data to enable class prediction. Naturally, they

may therefore require larger quantities of data to achieve higher performance. Interestingly,

in this work, the sensitivity of the CNN classifier to training set size appeared similar to

the SVM.

In terms of time constraints, we found that SVM’s train much faster than CNNs. We also

note that they are not as demanding with respect to computational resources. This was

evident from our speed comparisions, contrasting time with and without a GPU. Considering

that much of the heavy computation in the CNN+SVM approach is within the CNN
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feature extraction phase, this accounts for the less pronounced increase in training time

across datasets when using a CPU. Likely training time could be further improved if the

GPU was employed for SVM training. We found no advantage with respect to testing time in

utilising an SVM classifier. The classification process itself is not computationally intensive

across the two methods, they will therefore require similar time periods in this phase. Since

features must be extracted from test images before classification, the delay experienced

in absence of a GPU is to be expected. Although these CPU/GPU comparisons are an

extreme example, they emphasize well the importance of hardware considerations when

selecting modelling approaches in image classification – particularly when using complex

deep learning approaches. Note that time demands will likely vary with GPU type and

other hardware specifications such as the number of cores and processor model.

We also recommend the use of SVMs due to their ease of implementation. Training an

SVM is, programmatically, extremely straightforward, with training and testing possible

within only a few simple lines of code. A simple hyperparameter grid-search can also aid

optimal placement of the hyperplane, maximising performance. The relative complexity

with the CNN+SVM approach, and by extension the CNN approach, rather lies in data

management and feature extraction. The complexity of these steps is not so much related

to the actions required, but navigating the literature and knowing ”where to start”. As we

detail in Table 7.1, imagery must be organised within file structures according to class and

partitioned into training and test sets. The CNN must also be altered such that it performs

feature extraction only and images transformed (resized and normalized), with specialised

functions, such that there features can be extracted. There is a wealth or resources available

online but this can be overwhelming, most certainly for a novice user. As one of the contri-

butions of this chapter we hope to better guide the user with clear and detailed descriptions

of the methodological processes, with principles applicable across ML frameworks. Aside

from these preparations, training the CNN classifier, is further complicated since no op-

timal can be found. Performance metrics must therefore be monitored across epochs and

decisions made on when to stop training - typically the point at which training and test
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accuracy are near equivalent, to minimise over- and under- fitting. Hyperparameters are

also more extensive within a CNN and cannot be quickly optimised with a grid-search.

Instead experience is required in their selection and interpretation. In this work, we found

typical values used in the literature to be suitable - simplifying the approach in this aspect.

However, with each application, tuning and exploration of hyperparameters is particularly

essential with CNN classifiers to maximise their performance.

7.4.1 Improving performance

The approaches presented in this study were designed to minimize complexity and reflect

a, realistic, performance baseline. Results that the reader could expect when attempting

a similar classification task on their own data. That being said, there are some ways the

results could be potentially improved. These improvements can be broadly applied to the

following categories 1) the ground-truth (imagery) and 2) the extracted feature space. For

further details, see Chapter 2.

It is widely acknowledged that a model is only as good as the data upon which it was

trained and the work in this study is no exception. Model performance could thus be

improved by enhancing the suitability of the underlying dataset; through quality and/or

quantity. Quality-control to minimise error in manually-annotated datasets is important.

An interesting observation from our own work was that trained models identified some

manual annotation errors. Hence even an imperfect model, with <100% accuracy, could

provide a useful screening tool to improve quality of the ground-truth. Model performance

could also be improved through handling of class imbalance (105; 43). In the study survey

areas, and more widely, much of the seafloor is represented by soft sediment whereas areas of

reef framework are more scattered in their distribution. Image datasets therefore typically

reflect this fact. Models can develop biases based on these class imbalances, particularly

CNNs, such as over-predicting common classes. Down-weighting common classes or up-

sampling rare classes could thus improve model performance (105), though this strays from

realistic representation of the benthic environment.
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Aside from balancing class-proportions, increasing the amount of training data could also

increase performance (137; 203; 43). This is echoed in our own work, with increased perfor-

mance associated with the largest training sets. (43) demonstrated that increased perfor-

mance due to greater image quantity also extends beyond accuracy-based computer vision

metrics and applies to those related to ecology, such as abundance and diversity. Since

additional suitable data are not always available, a common method to increase availability

is to re-sample existing training data. Known as data augmentation, this creates duplicates

of training images that are typically modified through flips, crops and rotations. This aims

to create a representation of classes in imagery that better reflects reality. However, great

care must be taken to ensure these modifications do reflect reality; many of the common

augmentations may not in fact be applicable to marine datasets (177). Note that data

augmentation can also be used to solve class imbalance (105).

Increasing availability, and quality, of the ground-truth would also allow for sophistication of

feature spaces extacted by the CNN. We used transfer learning to extract general features

from our imagery, given the size of training data datasets and our target of minimising

complexity across approaches. With more imagery, it would be possible to tune the CNN

feature extractor or conduct scratch-based learning on our own datasets. This could in turn

create feature representations more suitable for automatic classification of benthic habitats.

Further modifications to the feature space that may improve performance link to their

reduction, either through importance selection or dimensionality reduction. Large feature

spaces suffer from the curse of dimensionality: whereby the space between data points grows

with the number of features or dimensions. Finding groups and similar properties amongst

data points in high-dimensions is thus difficult as points appear sparse. Data required

to fill these ’gaps’ increases almost exponentially with dimensionality. It may therefore

be prudent to condense their dimensions, using PacMAP (191) for example, if more data

are unavailable. Redundant features that have little relevance to decision functions can

also introduce noise and so it may be beneficial to remove them. Note that a feature

importance assessment cannot be conducted with a CNN (or SVM), instead some post-
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hoc analysis with an alternative ML model can be conducted. Alternatively, employing a

network which outputs less features, such as GoogleNet (176) and Inception V3 (176) could

be helpful.

7.5 Conclusion

In this study, we focused on automating a relatively simple but time-consuming manual

task that would benefit marine scientists: classifying benthic habitats in imagery.

We find that general features extracted from imagery by an ’off-the-shelf’ convolutional

neural network are suitable for classifying benthic imagery. Specifically, we find that they

exhibit relatively clear associations with broad deep-sea habitats; contributing to one of

a few known cases of this application. We show that SVM classifiers paired with a CNN

feature extractor offer a simple, fast and consistent framework for automatically classifying

benthic habitats. Using a CNN is, by comparison, less user-friendly. It is more conceptually

illusive and requires more complex training procedures and significantly higher time and

resource demands. Additionally, in its simplest baseline form, the performance does not

warrant this added complexity. Given the results, we therefore believe it is useful to first

employ the CNN+SVM approach over a CNN classifier, as it may prove sufficient.

The success of the CNN+SVM approach is not only illustrated in terms of high per-

formance, but in the generality of the results across multiple datasets; something that is

often missing from ML studies, unless comparing performance across benchmark datasets.

As shown in this study, some variation is to be expected across datasets, in part due to

their size. To therefore best demonstrate practical implementation, and encourage their

use within processing pipelines, research needs to move past ’proof of concept studies’ on

singular datasets alone.

In order to make the procedures more accessible to non-specialists, our work concentrated

on techniques that put simplicity before any potential improvement in habitat resolution.

It is particularly suited to offshore use; offering near real-time decision making in the field
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and the development of sampling protocols. Data collection can be triaged and quick, albeit

crude, insights into habitat presence provided. It can also support automation by grouping

images into similar categories (for annotation or model selection) or screen for labelling

errors, as well as allow exploration of old datasets.
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8 Conclusion

8.1 Contributions

In this thesis we have, broadly, focused on two problems within the analysis pipeline for

benthic images. First that underwater image quality is often too poor and second that it

is incredibly labour-intensive to analyse. Each of these problems was approached from a

strong perspective of the end-user, aiming to develop solutions that improve the analytical

experience for biologists with tools that are efficient and simpler to use. With this in mind,

we make eight contributions.

First we evaluate control-point tonal manipulations; describing the general characteristics a

TMO should possess to support image analysts in their benthic habitat assessments. This

provides a foundation upon which to evaluate and develop tone-mapping tools in supporting

benthic image interpretation.

In our second contribution, we explored the potential of the Rayleigh probability distribution

as an automatic tool, given its popularity in underwater image enhancement. However, we

found that it poorly summarized image brightness distributions, both before and after

bespoke tone-mapping by analysts. This suggests it does not possess suitable qualities

as previously believed. However, we note that image enhancement studies mostly judge

suitability with regards to (subjective) aesthetics, whilst our aim here is to ensure the

image is fit for analytical purposes. This does not discount aesthetics in the judgement of

quality, but the assessment protocol is different, and potentially more complex.

Instead, for our third contribution, we find brightness statistics are better described by the

Weibull probability distribution. This suggests that widely utilised tone mapping tools that
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enforce uniform or rayleigh distributions in image brightness histograms, such as HE and

CLHE, are unsuited to this application. This work provides a theoretical basis from which

to develop an image enhancement tool to better support benthic image annotation.

In our fourth contribution we present a novel algorithm, Weibull Tone Mapping, to model

the bespoke TMOs of analysts. In WTM, we fit a WD to brightness histograms of input

and analyst-adjusted output images, then solve for the tone map that matches the input

distribution to the enhanced output. The WTM tone map simplifies the TMOs into a two

parameter function which results in smoother tonal enhancements that are less prone to

artefacts.

For our fifth contribution we show that analysts find WTM helpful for image annotation but

that the method of colour rendering, from a brightness to colour enhancement, influences

their preference assessments. Analysts favour WTM images that preserve chromaticity.

This maintains the intrinsic colour balance of the input image and thus enhancements

appear more natural.

In our sixth contribution we provided analysts with an interactive WTM tool that allowed

users to enhance imagery according to the two intuitive Weibull parameters, which approx-

imately control brightness and contrast. This significantly shortens the time required to

create a bespoke tonal enhancement and was preferred by analysts over tone map construc-

tion via interactive control-points. This tool improved upon existing TMO functionality in

their annotation software and can easily be integrated into software to support live anno-

tation. Analysts can now quickly create custom tonal manipulations on a per-image-basis

quickly with an intuitive tool that is inspired by their own tonal enhancements.

In our seventh contribution, we further demonstrate the importance of personalized en-

hancements to improve underwater image analysis. We found that analysts prefer their

tailored WTM enhancements to automatic TMOs (Adobe Photoshop) that would be even

simpler and faster to employ - requiring just the click of a button. We also find that WTM
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is more consistently suitable for analysis over CLHE, a popular TMO, for which preference

strongly fluctuates.

Finally, for our last contribution, we target improvement of the image analysis bottleneck,

providing one of a few known cases of automatic benthic (deep-sea) habitat classification.

We provide analysts with an automation pipeline that leverages the power of deep learning

(VGG16) and transfer learning but is made simpler and more accessible with the use of a

support vector classifier. This is shown to be competitive with a convolutional neural net-

work in terms of performance, time and ease of implementation; multiple datasets validate

its practical utility. This work facilitates better comprehension and implementation of these

approaches by a non-specialist with finite resources.

8.2 Future Work

8.2.1 Image Processing

Despite the multiple contributions in this thesis to aid benthic image surveys there are a

number of possible areas on which to focus future work.

Although Weibull Tone Mapping simplifies and speeds-up the tone mapping process sig-

nificantly, it only describes properties an automatic TMO should have. An interesting

development to further support end-users in their analysis would be to create a magic but-

ton so to speak, that automatically provides a suitable enhancement based on the input

image. We have yet to resolve this in our investigation of input-output image pairs and

Weibull parameters. However, plans to collect more WTM adjustments from analysts on

additional datasets will provide opportunity for further exploration. An automatic enhance-

ment need not replace the dynamic use of WTM, merely act as a ‘first pass’ from which

analysts can further adjust an image if required. The benefit of WTM is in part linked to

its flexibility, creating diverse enhancements which can be quickly applied and re-adjusted
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throughout the annotation process, highlighting variable features that aid the analyst to

reach a classification.

In this thesis, we have focused only on global TMOs to initialize a strong foundation for

WTM theory. However, it is crucial to consider adaptive (local) tonal enhancements in

future work, particularly with underwater imaging. Adaptive transformation of pixel values,

in which unique tone maps are applied to image sub-regions, better maintains smaller feature

variations that could be important for analytical purposes. It also allows stronger brightness

modifications to be made without over-enhancement and would help to resolve vignetting

effects.

It is important to acknowledge that the Weibull Distribution exists in a 3-parameter form

(called the translated, or general, Weibull distribution) (93). The extra parameter allows a

given distribution shape to be shifted on the brightness axis. Thus, the ‘meaning’ of the third

terms overlaps with the lambda parameter. This said, it may be a more difficult adjustment

for a use to make. Currently, we have found that the 2-parameter form suffices in describing

and providing suitable brightness enhancements. However, should more complexity and

generality of brightness modifications be sought in the future, this provides an option.

Finally we remark that the usage of WTM need not be limited to underwater imagery.

Future work could explore its potential on photographic or medical images.

8.2.2 Computer Vision

A natural progression of this thesis and bridge between the two broad themes (Image

Processing and Computer Vision) would be to see if image enhancement, with WTM, could

improve automatic classification of benthic habitats. We have established that analysts

prefer WTM as a supporting tool in benthic image analysis. An intriguing advancement

would therefore be to determine if the same is true for a machine. Given that the WD is well

suited to explain the brightness statistics of benthic imagery, it might also prove interesting

to explore its capacity as a specialized underwater image augmentation tool to support
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deep learning. The design and application of data augmentation tools in deep learning is

an important area of research to improve the quality of automatic analyses. These tools

must reflect reality and be domain-specific (177). The WD, and WTM, therefore presents

an intriguing opportunity.

We highlighted the success of classification workflows on three datasets (Table 3.1) in this

work. However, an important next step, in integrating this automated solution into image

analysis workflows, is to validate the approach on datasets fully distinct to the training

data, in a process known as Domain Adaptation. This would help to ascertain the transfer-

ability of deep generic features. It would also be prudent to determine if there a significant

benefit in merging datasets and training together. This may better highlight what consti-

tutes an appropriate dataset for deep learning (task-dependant), but also present a better

representation of reality.

Our classification pipeline prioritised simplicity of the modelling approach over any potential

gains in resolution of habitat classifications. However, further work is required to focus

classification on habitat sub-classes listed in Table 3.2. This will require more sophisticated

methodology such as improving the underlying feature space to include more tailored deep

features. This could be achieved through training of more layers in a pre-trained network

(Transfer Learning) such as VGG16. Scratch-based learning could create even more suitable

feature spaces, yet this is unlikely to be applicable to this problem due the the lack of

sufficiently large, annotated ‘gold-standard’ datasets. Despite its current resolution, it still

forms an important component in developing a hierarchical, or ensemble, analysis tool for

benthic imagery. It represent the ‘first-pass’, identifying the next suitable analysis steps

and automatic tools to use, such as object detectors for specific taxa found within that

habitat.

Future work could also look at better integration of acoustic, optical and environmental

data to support contextual-based automation (142; 45; 169; 203). This would mimic analysis

protocols by humans and could not only provide improvements to performance - particularly
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in the case of visually indistinct taxa - but give biologists more confidence in automatic

classifications.

8.3 Final thoughts

My experience in undertaking this thesis, has found that navigating the path between ma-

rine science and computer science is incredibly challenging but crucial. There is huge drive

to optimize ocean observation with computer vision solutions, but this is coupled with a

technical illiteracy in these topics that requires large resources in time and funding to over-

come. The significant, yet exciting problems to be addressed, present a great opportunity

for collaboration with computer scientists. However, in reality these are few in number, and

though essential, cannot fully support the needs of the deep-sea community. It is therefore

becoming increasingly clear that we need to build multi-disciplinary capacity between these

fields. This is an intimidating, yet exhilarating, position to occupy. It is in developing these

skill-sets that we can both optimize collaborations and manage priorities between the two

disciplines, and bring new perspectives and ideas that could advance either field.

8.4 Publications

Game, C. A., Thompson, M. B., and Finlayson, G. D. (2020). Weibull tone mapping for

underwater imagery. Color and Imaging Conference, 28, 156–161.

Game, C. A., Thompson, M. B., and Finlayson, G. D. (2021). Chromatic weibull tone

mapping for underwater image enhancement. Proceedings of the International Colour As-

sociation Congress 2021, 239–244.

Game, C. A., Thompson, M. B., and Finlayson, G. D. (2023). Weibull Tone Mapping for

the Enhancement of Underwater Imagery. Sensors 23 (7), 3533.
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Game, C. A., Thompson, M. B., and Finlayson, G. D. (2023). Machine learning for non-

experts: A more accessible and simpler approach to automatic benthic habitat classification.

In Press: Frontiers of Marine Science.
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Abbreviations

CLHE Contrast Limited (Adaptive) Histogram Equalization.

CNN Convolutional Neural Network.

FC Fully Connected (layer).

GUI Graphical User Interface.

HE Histogram Equalization.

ML Machine Learning.

RBF Radial Basis Function.

RD Rayleigh Distribution.

SVM Support Vector Machine.

TMO Tone Mapping Operation.

WD Weibull Distribution.

WTM Weibull Tone Mapping.
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APPENDIX A SEABED CLASSIFICATION GUIDE 
Example Image Class Description 

 

A1 Soft sediments are the typical sediments 
expected to dominate the low reflectivity 
areas of the Norwegian Sea 

 

A2 Heavily bioturbated soft sediments 

 

A3 Single Sea pen / potential edge of 
sea pen community 

 

A4 Multiple Sea pens forming sea pen 
community.  
 
 
 
 
 
 
Note: Various species of sea pen 
including, but not limited to: Virgularia 
mirabilis, Kophobelemnon stelliferum, 
Funiculina quadrangularis, Umbellula 
encrinus and Pennatula phosphorea 



APPENDIX A SEABED CLASSIFICATION GUIDE 
Example Image Class Description 

 

B1 Gravel area 

 

B2 Scattered cobbles 

 

B3 Cobble and boulder area 

 

B4 Boulder area 



APPENDIX A SEABED CLASSIFICATION GUIDE 
Example Image Class Description 

 

C1 Coral rubble zone 

 

C2 Dead Lophelia pertusa reef framework 

 

C3 Live Lophelia pertusa reef,  
 
 
 
 
 
 
 
 
 
 
Note: The live elements are usually 
located on the current facing side of the 
coral mound 



APPENDIX A SEABED CLASSIFICATION GUIDE 
Example Image Class Description 

 

D1 Lone soft corals 

 

D2 Multiple colonies of a single soft coral 
species 
 
 
 
 
 
 
 
 
 
 
Note: Multiple colonies can be identified 
by their separate attachment points at the 
base. 

 

D3 Hard substrate soft coral community, 
multiple individuals with mixed species 
present 
 
 
 
 
 
 
 
Note: The bubblegum coral Paragorgia 
arborea is commonly present as two 
different colour morphs. This image 
therefore only contains two different 
species.  



APPENDIX A SEABED CLASSIFICATION GUIDE 
Example Image Class Description 

 

E Soft substrate sponge community. 
Please refer to Table 1.1 for guide to 
densities 

 

F Hard substrate sponge community. 
Please also use the density guides in 
Table 1.1. 

 

G Marine derived authigenic carbonate 
concretions (MDAC) 

 
  


