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Abstract
Convergent evolution is an important process in which independent species evolve
similar features usually over a long period of time. It occurswithmany different species
across the tree of life, and is often caused by the fact that species have to adapt to similar
environmental niches. In this paper, we introduce and study properties of a distance-
based model for convergent evolution in which we assume that two ancestral species
converge for a certain period of time within a collection of species that have otherwise
evolved according to an evolutionary clock. Under these assumptions it follows that
we obtain a distance on the collection that is a modification of an ultrametric distance
arising from an equidistant phylogenetic tree. As well as characterising when this
modifieddistance is a treemetric,wegive conditions in termsof themodel’s parameters
for when it is still possible to recover the underlying tree and also its height, even in
case the modified distance is not a tree metric.
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1 Introduction

One of the central questions in the area of phylogenetics is to develop models and
algorithms to reconstruct the evolutionary history of a set of species (or taxa) in terms
of a phylogenetic tree (Felsenstein 2004). Typically, this is an edge-weighted, rooted
tree whose leaves correspond to the set of species in question. A key evolutionary
assumption that underpins most phylogenetic models and phylogenetic tree recon-
struction methods is that once a speciation has occurred the child species are then
conditionally independent and that they diverge from each other at a fairly constant
rate. This assumption implies that pairs of species with an older least common ances-
tor will be at a greater evolutionary distance from each other—in terms of either their
molecular sequences or morphology—than those with a more recent least common
ancestor (Zuckerkandl and Pauling 1965).

Even so, there are several biological processes which do not conform to this gen-
eral rule. For example, in virus evolution, recombination events might introduce
large chunks of genetic material from one virus into another (Pérez-Losada et al.
2015), bacterial species are known to exchange genes via horizontal gene transfer
Dagan and Martin (2006), and both plant and animal species can exchange genetic
material through processes such as hybridisation and introgression (Mallet 2005). In
extreme cases this latter process is sufficient to cause “reverse speciation” (Rudman
and Schluter 2016), a process that is of increasing interest in conservation genetics
(Bohling 2016; Seehausen 2006). These types of evolution are commonly known as
reticulate evolution and there is a growing body of literature concerning the use of a
generalisation of phylogenetic trees called (rooted) phylogenetic networks to model
and represent such evolutionary scenarios (Bapteste et al. 2013).

Another important evolutionary process which may also cause species to become
more alike even in cases where they are not more genetically similar is known as
convergent evolution. It occurs with many different species across the tree of life, and,
in contrast to reticulate evolution, genetic material is not exchanged (see e.g. Sackton
and Clark (2019) for a recent review). Convergent evolution usually acts over long
periods of time and there has been less attention on modelling this gradual process.

In Sumner et al. (2012), a very general Markov model of character evolution was
proposed that allowed species to either diverge or converge according to different
partitions of the species set in different epochs. These convergence-divergence models
were explored further in Mitchell (2016) andMitchell et al. (2018) where questions of
identifiability and distinguishability of different subclasses of model were addressed
(Mitchell 2016; Mitchell et al. 2018). Perhaps unsurprisingly, they found that not all
convergence-divergence models could be distinguished from each other or from the
standard tree model.

Despite these advances, to our best knowledge no-one has investigated models
allowing convergence of species from the perspective of distance data. Evolutionary
distances are commonly inferred from species data, for example, from morphological
features or molecular sequences, and there are several approaches to reconstruct evo-
lutionary trees from such distances [e.g. (Felsenstein, 2004, Chapter 11)]. Here we are
interested in modelling the situation where convergence between species or lineages
has occurred over a sustained period and acts so as to reduce the evolutionary distance
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Fig. 1 An example of a convergence model on the set of species X = {a, b, c, d, e, f , x, y, z} associated
to an edge-weighted rooted tree T with root ρT . The weights of the edges are proportional to their lengths.
The points r , s represent two ancestral species which have converged to give rise to the species r ′, s′,
respectively, over a period of time that is proportional to the length of the two bold paths

between species or at least slows down their rate of divergence. In particular, we seek
to understand when such processes will leave a discernible trace in distance data, and
to characterise the situations where the underlying tree topology is recoverable.

An illustration of our distance-based convergence model is presented in Fig. 1 (see
Sect. 3 for precise definitions). We start with an edge-weighted, rooted phylogenetic
tree T on a collection X of species in which the length of any path from the root
ρT of T to any leaf has the same length (i.e. T is an equidistant tree (Semple and
Steel 2003)). Such trees are commonly used to represent the evolutionary history of a
collection of species that have undergone “clock-like” evolution.

Under this assumption, the evolutionary distance dT (x, y) between any pair of
species x, y ∈ X is given by taking the length of the shortest path between x and
y in T , so that dT (x, y) is proportional to twice the time that has passed since the
last common ancestor of x and y speciated. To model convergence, we assume that
at some time in the past two ancestral species (or lineages), represented by the two
points r , s in T at the same distance to ρT , have been subject to convergence for a
certain period of time. We represent this by two equal-length and disjoint paths in T
(represented in bold) that start at r and s and end at two points r ′ and s′, respectively.
In particular, we are also assuming that r ′ and s′ will diverge from one another after
the convergence period has ended.

Using the information given by this model we adjust the distance dT on X to obtain
a new distance d ′

T on X as follows. For any x, y ∈ X that lie below the points r and
s we subtract a certain amount off of the distance dT (x, y) that is proportional to the
period of time that the ancestors of x and y have undergone convergence as determined
by the two disjoint paths. Note that the distance d ′

T should be thought of as being a
distance that is inferred directly from the set of species X . These distances could,
for example, be given by computing some distance between molecular sequences
representing species in X , morphological data, or broader genomic features such as
gene presence/absence. The mathematical aim is to then understand when we can
recover T from d ′

T . Interestingly, as we shall see, for our model of convergence even
though d ′

T will no longer necessarily correspond to an equidistant tree, it may still be
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possible to recover the topology of T from d ′
T , even in case d ′

T does not correspond
to any tree.

We now summarise the contents of the rest of this paper. In Sect. 2, we present
some basic definitions and facts concerning phylogenetic trees, ultrametrics and tree
metrics. In Sect. 3, we present our model of convergence and characterise when the
map d ′

T above is in fact a distance (Lemma 1). In Sect. 4, we then focus on the question
of how to recover the topology of T from d ′

T . To do this we consider three-leaved
subtrees of T called triplets, and characterise when d ′

T is triplet respecting, that is,
when it is possible to recover the triplets of T (and hence the topology of T ) from
d ′
T (Theorem 3). In Sect. 5, under the assumption that d ′

T is triplet-respecting, we
characterise when d ′

T is either an ultrametric or a tree metric (Theorem 8). In Sect. 6,
we then focus in when it is possible to also recover the height of T from d ′

T in case
we are able to recover T from d ′

T (Theorem 11). We conclude in Sect. 7 with a brief
discussion of possible future directions.

2 Preliminaries

In this paper, X is a finite set (of species or taxa) and n = |X |. We assume n ≥ 3.
A distance (on X) is a function d : X × X → R≥0 such that, for all x, y ∈ X ,

d(x, y) = 0 if and only if x = y, and d(x, y) = d(y, x) (i.e. d is symmetric). A
distance d on X is

• a metric if for all distinct x, y, z ∈ X , d(x, y) ≤ d(x, z) + d(z, y);
• a tree metric if it satisfies the four-point condition, i. e. for all (not necessarily
distinct) x, y, u, v ∈ X ,

d(x, y) + d(u, v) ≤ max{d(x, u) + d(y, v), d(x, v) + d(y, u)}; (1)

• an ultrametric if for all distinct x, y, z ∈ X ,

d(x, y) ≤ max{d(x, z), d(y, z)}. (2)

Note that an ultrametric is a tree metric, a tree metric is a metric, and that there are
tree metrics that are not ultrametrics, metrics that are not tree metrics and distances
that are not metrics. Also note that if d is a metric on X , then d is a tree metric if and
only if d satisfies the 4-point condition for every pairwise distinct x, y, u, v ∈ X .

A (binary) phylogenetic tree T (on X ) is a rooted tree, with root ρ = ρT and
leaf-set X such that the degree of ρ is two and the degree of any other non-leaf vertex
in T is three. An edge-weighted phylogenetic tree T = (T , w) is a phylogenetic tree
T = (V , E) together with a weight function w : E → R>0, which assigns a positive
weight to each edge in T . To a phylogenetic tree T on X , we associate the distance
dT = d(T ,w) on X given by, for x, y ∈ X , setting dT (x, y) equal to the length of the
path in T between x and y (i.e. the sum of the edge-weights taken over the edges in
the path in T between x and y). Note that dT is necessarily a tree metric.

We shall also consider an edge-weighted phylogenetic tree T = (T , w) as being
a continuous object, that is, we consider an edge e of T with weight w(e) as being a
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Fig. 2 a Example of a convergence scenario (T = (T , w), R, ε) on X = {x, y, z, t}, where T is the
depicted phylogenetic tree on X , h(ρT ) = 2, h(lcaT (t, x)) = 1, h(lcaT (y, z)) = 3

2 , α = 1
4 , β = 7

4 , and

0 < ε < 4
3 . b The distance matrix for dT . c The distance matrix dε . Note that dε is a metric, but not a tree

metric

real, closed interval with lengthw(e). In particular, we will consider a point in T to be
an element in some edge of T . Note that vertices in T are considered as points in T ,
and that we will use the terms vertex and point interchangeably when it is clear what
we mean from the context. When we want to emphasise that a point is not a vertex we
shall say that it is inside of an edge. Note that we have a natural ordering of the points
in T . Given two points a, b in T , we say that a is above b (or b is below a) if either
a = b or the path from the root of T to b (thought of as a continuous object) contains
a; if b is below a and not equal to a we say that b is strictly below a. Moreover, we
define the least common ancestor lca(a, b) = lcaT (a, b) of a and b to be the lowest
point in T that is above both a and b. Note that lca(a, a) = a.

An equidistant tree is an edge-weighted phylogenetic tree T = (T , w) such that
for any two leaves x and y of T the length of the path in T from the root ρ of T
to x equals the length of the path in T from ρ to y. Given such a tree T , the height
h(a) = hT (a) of a point a of T is the length of the path in T from a to any leaf below
a. We refer to the height of the root of T as the height of T . We call an equidistant
tree generic if for any pair v,w of distinct non-leaf vertices in T , h(v) �= h(w).

3 Convergence scenarios

In this section, we formally define our convergence model which is based on the
following parameters: (1) a real non-negative number ε ≥ 0, (2) a generic equidistant
tree T = (T , w) on X with height h > 0, (3) two non-negative numbers α and β

with 0 < α < β < h, and α, β not equal to the height of any vertex in T , and (4) a
convergence set R in T , that is, a set of four distinct points say r , r ′, s, s′, each one of
them inside some edge of T , such r , s have height β, the points r ′, s′ have height α,
the point r ′ is below r , and the point s′ is below s. We call a triple (T , R, ε) consisting
of some choice of these parameters a convergence scenario (on X) (see Fig. 2 for an
example). From now on, T = (T , w), α, β, and ε will be as described above.
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We now define some additional terminology for convergence scenarios. For such a
scenario (T , R, ε) we call the points in R with height β the top points of R and the
points with height α the bottom points of R. We define lca(R) = lcaT (R) to be the
least common ancestor of the top points of R (which is necessarily a vertex in T ). We
say that two distinct elements x, y in X are (strictly below) below R if x is below one
(bottom) top point of R and y is below the other (bottom) top point of R. In addition,
given two elements x, y in X below R, we define

hR(x, y) = max{h(lcaT (r ′, x)), h(lcaT (s′, y))},

where r ′ (respectively s′) is the bottom element in R, so that x and r ′ (respectively
s′ and y) are both below the same top point in R. In addition, we associate a map
dε = d(T ,R)

ε : X × X → R to (T , R, ε) as follows. Let x, y ∈ X . If x, y are below
R (so that they are necessarily distinct), then set

dε(x, y) = dT (x, y) − 2ε(β − hR(x, y)),

else set dε(x, y) = dT (x, y).
To help illustrate these concepts, consider the convergence scenario pictured in

Fig. 2. Then t and z are below R, but not strictly below R, whereas x and y are
strictly below R. Furthermore, h(lcaT (r ′, t)) = 1 < 3

2 = h(lcaT (s′, z)) and
h(lcaT (r ′, x)) = α = h(lcaT (s′, y)). Hence, hR(t, z) = 3

2 and hR(x, y) = α.
Finally, since dT (t, z) = 4 = dT (x, y) we obtain, for example, dε(t, z) = 4 −
2ε(β − 3

2 ) = 4 − 3
2ε + ε = 4 − ε

2 and dε(x, y) = 4 − 2ε(β − α) = 4 − 3ε. Since y
and z are not both below R, we obtain dε(y, z) = dT (y, z) = 3.

Note that dε ≤ dT , dε is symmetric, and that dε may take on negative values
[i.e., it is what is commonly called a dissimilarity map (Semple and Steel 2003)].
Loosely speaking, we can interpret the map dε as follows. For any two taxa x and y,
the quantity dT (x, y) is proportional to the time that x and y have diverged from one
another. We then subtract 2ε(β − hR(x, y)) from this quantity to model the fact that
some ancestors of x and y have converged for a period of time that is proportional to
the quantity β − hR(x, y).

In general, given dε , we are interested in recovering the topology of the phylogenetic
tree T that gives rise to dε . Since in real applications dε will be non-negative (e.g., it
could be a distance matrix computed from a multiple sequence alignment), in rest of
this paper we shall focus on the case where dε is a distance. We conclude this section
by giving a characterisation for when this is the case.

Lemma 1 Let (T , R, ε) be a convergence scenario. Then dε is a distance if and only
if

ε <
h(lca(R))

(β − α)
.

Proof Suppose ε <
h(lca(R))

(β−α)
. Since dT is a distance on X , to show that dε is a distance

it clearly suffices to show that dε(x, y) > 0 for all x, y ∈ X below R. Let x, y ∈ X
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be below R. Then hR(x, y) ≥ α, and so

dε(x, y) = dT (x, y) − 2ε(β − hR(x, y)) = 2h(lca(R)) − 2ε(β − hR(x, y))

≥ 2[h(lca(R)) − ε(β − α)] > 0.

Conversely, if dε is a distance, then pick some x, y ∈ X distinct and strictly below
R. Then dε(x, y) > 0. If x is below the bottom point r ′ ∈ R and y is below the
bottom point s′ ∈ R, it follows that h(lcaT (r ′, x)) = h(lcaT (s′, y)) = α. Hence,
hR(x, y) = α and so

0 < dε(x, y) = dT (x, y) − 2ε(β − hR(x, y)) = 2h(lca(R)) − 2ε(β − α),

which implies ε < h(lca(R))/(β − α). �	
Note that there exist convergence scenarios (T , R, ε) for which dε is a distance but

not a metric (see for example Sect. 5, Fig. 4(8) where h(ρT ) = 10, h(lcaT (x, y)) = 1,
h(lcaT (x, z)) = 1

5 , β = 3
4 , α = 1

4 , and ε = 5). There does not appear to be a simple
characterisation along the lines of Lemma 1 for when dε is a metric, although in
Sect. 5 we shall give a characterisation for when dε is a metric in case dε enjoys some
additional properties.

4 Recovering the topology of the tree from a convergence scenario

In this section, given a convergence scenario (T , R, ε) with dε = d(T ,R)
ε a distance,

we are interested in understanding when we can recover the topology of T from dε .
To this end, we begin by recalling some useful facts concerning phylogenetic trees.

A triplet is a phylogenetic tree with three leaves. If x, y, z are the leaves of a triplet,
and the least common ancestor of x and y in the triplet is not the root of the triplet, then
we denote the triplet by ((x, y), z). Given a phylogenetic tree T with leaf set X , we can
induce a triplet on every subset of X of size three by simply taking the tree spanned by
the leaves in this subset and suppressing all non-root vertices contained in precisely
two edges. We let R(T ) denote the set of triplets on X induced by T in this way.
Note that R(T ) completely determines T (Semple and Steel 2003, Theorem 6.4.1)
(i.e. there is no phylogenetic tree T ′ on X different from T withR(T ′) = R(T )).

Now, for the convergence scenario (T , R, ε), we associate a set of triplets to dε by
putting

R(dε) = {((x, y), z) : {x, y, z} ∈
(
X

3

)
and dε(x, y) < min{dε(x, z), dε(y, z)}}.

In case ε = 0, we have R(dε) = R(T ) but R(dε) = R(T ) need not hold in
general. For example,R(dε) �= R(T ) for the convergence scenario pictured in Fig. 2
for ε = 1 because ((x, y), z) ∈ R(dε) − R(T ). Motivated by this, we say that dε is
triplet respecting if R(dε) = R(T ). It follows that if dε is triplet respecting, then we
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Fig. 3 The configurations used within the proof of Theorem 3

can recover T from R(dε) using, for example, the Build algorithm (Semple and
Steel 2003).

Interestingly, there are convergence scenarios (T , R, ε) where dε is a distance that
is not a tree metric (and therefore not an ultrametric), but where dε is still triplet
respecting (e.g. in Fig. 2 take any ε with 0 < ε < 1

3 ). Thus in some cases we can
recover the tree T from dε even though dε is not a tree metric. Hence, it is of interest
to characterise when dε is a triplet respecting distance.

To this end, we begin with a useful but somewhat technical observation. Given a
convergence scenario (T , R, ε) on X , we associate a convergence scenario to each
triple Y = {x, y, z} ⊆ X , for which ((x, y), z) ∈ R(T ) and dε |Y �= dT |Y (i.e.
dε(a, b) �= dT (a, b) for some a, b ∈ Y ) as follows.

LetQ denote the edge-weighted triplet ((x, y), z)whose edge weighting is induced
by the edge-weighting of T (so that Q is an edge-weighted phylogenetic tree on Y ).
Note that since dε |Y �= dT |Y , at least two elements in Y must be below R, and so the
top points in R are contained inQ. Even so, the bottom points of R will not necessarily
be contained in Q. However, by interchanging the roles of x and y if necessary, we
obtain a triple (Q, R∗ = {r , s, r∗, s∗}, ε) as pictured in one of Fig. 3i–iv by giving
labels r and s to the top points of R and giving the points r∗ and s∗ height equal to
max{hr ′ , hs′ , α}, where hr ′ and hs′ are the heights of the points where the paths from
r ′ and s′ to lca(R) join Q, respectively. We refer to (Q, R∗, ε) as the restriction of
(T , R, ε) to Y . For example, for the triplet ((x, y), z) coming from the phylogenetic
tree in Fig. 1, we would obtain the convergence scenario as in Fig. 3ii, where r∗ and
s∗ have height equal to the height of the vertex v in Fig. 1 (since r∗ = v, s∗ = s′ and
v is higher than s′).

The proof of the following is routine case checking, and so we omit it.

Lemma 2 Let (T , R, ε) be a convergence scenario on X and let Y = {x, y, z} be a
triple of distinct elements in X such that ((x, y), z) ∈ R(T ) and dε |Y �= dT |Y . Then
the triple (Q, R∗, ε) defined in the preceding paragraph is a convergence scenario on
Y . Moreover, dε |Y = d(Q,R∗)

ε .

We call a convergence scenario (T , R, ε) a cherry scenario if the points in R are all
contained in two edges of some cherry in T , that is, two leaves in T that are adjacent
to a common vertex.
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Theorem 3 Suppose that (T , R, ε) is a convergence scenario on X such that dε is
a distance. If (T , R, ε) is a cherry scenario, then dε is triplet respecting, else dε is
triplet respecting if and only if for all distinct x, z ∈ X strictly below R and y ∈ X
such that ((x, y), z) ∈ R(T ),

ε <
dT (x, z) − dT (x, y)

2(β − α)
. (3)

Proof Put dε = d(T ,R)
ε and d∗

ε = d(Q,R∗)
ε . If (T = (T , w), R, ε) is a cherry scenario,

then it is straight-forward to see that dε is triplet respecting.
Now, suppose that (T , R, ε) is not a cherry scenario. Suppose first that dε is triplet

respecting, so that R(dε) = R(T ) holds. Suppose x, z ∈ X are strictly below R and
y ∈ X is such that ((x, y), z) ∈ R(T ). Then, dε(x, y) = dT (x, y), dε(x, z) ≤ dε(y, z)
and dε(x, z) = dT (x, z)−2ε(β −α). Moreover, sinceR(dε) = R(T ), we must have
dε(x, y) < min{dε(x, z), dε(y, z)}. Hence,

dT (x, y) = dε(x, y) < dε(x, z) = dT (x, z) − 2ε(β − α),

which implies that Inequality (3) holds.
Conversely, suppose that ((x, y), z) ∈ R(T ) that x, z are strictly below R and

that Inequality (3) holds. We will show that dε(x, y) < min{dε(x, z), dε(y, z)}, from
which it follows that R(dε) = R(T ) (i.e. dε is triplet respecting). Put Y = {x, y, z}.
If dε |Y = dT |Y , then the inequality clearly holds. So, suppose dε |Y �= dT |Y . Then
consider the convergence scenario (Q, R∗, ε) that is obtained by restricting T to Y
which, without loss of generality, must be as in one of the configurations in Fig. 3i–iv.
By Lemma 2 dε |Y = d∗

ε , and so considering each of the cases (i)–(iv) in Fig. 3 we
have dε(x, y) < min{dε(x, z), dε(y, z)} since in (i) by (3)

dε(x, y) = dT (x, y) < dT (x, z) − 2ε(β − α) = dε(x, z)

and dT (y, z) = dT (x, z) implies dε(x, z) = dε(y, z); in (ii) using similar reasoning
to case (i), dε(x, y) = dT (x, y) < dε(x, z) ≤ dε(y, z); in (iii) using similar reasoning
to case (i) again, dε(x, y) < dε(x, z) ≤ dε(y, z), and in (iv) by (3)

dε(x, y) < dT (x, y) < dT (x, z) = dε(x, z),

and dε(y, z) = dT (y, z) = dT (x, z). �	
As a consequence of Theorem 3, we immediately obtain the following simple

condition which guarantees that the distance dε is triplet respecting.

Corollary 4 Suppose that (T = (T , w), R, ε) is a convergence scenario such that dε

is a distance. If (T , R, ε) is not a cherry scenario and

ε < min{ w(e)

β − α
: e is an edge in T not containing a leaf of T }
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e1

Fig. 4 A phylogenetic tree T , together with a table that indicates in each column which edges contain
the top points r , s and bottom points r ′, s′ used to form a convergence scenario. For example, column 10
indicates that top point r is contained in edge e3, bottom point r ′ is in edge e1 and points s, s′ are both
contained in edge e4. The last row indicates whether the configuration gives rise to a distance satisfying the
four-point condition or not (see Lemma 7)

then dε is triplet-respecting

Proof This follows from Theorem 3 since if x, y, z ∈ X such that x, z are strictly
below R and y ∈ X such that ((x, y), z) ∈ R(T ) then (dT (x, z) − dT (x, y))/2 is
equal to the length of the path in T between lca(R) and lcaT (x, y) and this path must
contain at least one edge in T which does not contain a leaf. �	

Note that the converse of Corollary 4 does not hold. For example, consider the
convergence scenario depicted in Fig. 4(10) where α = 1

2 , β = 3
2 , h(lcaT (y, z)) = 2,

h(lcaT (x, z)) = 1, and h(ρT ) = 2 + δ, for δ > 0. Then the bound on ε given in
Theorem 3 is 1 (it is given by the three elements x, y, z), and for ε = 1

2 , dε is a triplet
respecting distance. So if the converse of Corollary 4 held, then for δ = 1

1000 we would
have 1

2 = ε < δ = 1
1000 which is impossible.

5 Triplet respectingmetrics

In this section, in case a convergence scenario gives rise to a triplet respecting distance
dε , we want to characterise under which circumstances dε is a metric, a tree metric
or an ultrametric. Note that these are proper subclasses since there are examples of
triplet respecting distances dε where:

(1) dε is a distance but not a metric (in Fig. 4(8) take h(ρT ) = 10, h(lca(x, y)) = 1,
h(lca(x, z)) = 1

5 , β = 3
4 , α = 1

4 , and ε = 5),
(2) dε is a metric but not a tree metric (in Fig. 5(6) take h(ρT ) = 2, h(lca(x, y)) = 1,

h(lca(t, z)) = 1 + δ, β = 3
4 , α = 1

4 , and ε, δ > 0 are both small), and
(3) dε is a tree metric but not an ultrametric (in Fig. 4(8) take h(ρT ) = 3,

h(lca(x, y)) = 2, h(lca(x, z)) = 1, β = 1 + δ, α = 1 − δ, and ε, δ > 0
are both small).

We start by characterising when a triplet respecting distance is a metric.

Theorem 5 Suppose that (T , R, ε) is a convergence scenario such that dε is a triplet
respecting distance. Then dε is a metric if and only if for all distinct x, z ∈ X strictly
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below R and y ∈ X such that ((x, y), z) ∈ R(T ) and lcaT (x, y) is not below a bottom
point of R,

ε <
dT (x, y)

2(min{β, hT (lca(x, y))} − α)
. (4)

Proof First note that since dε is a distance, dε is a metric if and only if the triangle
inequality holds for every triple Y = {x, y, z} of distinct elements x, y, z ∈ X , i.e.
(A) dε(x, y) ≤ dε(x, z) + dε(z, y), (B) dε(x, z) ≤ dε(x, y) + dε(y, z), and (C)
dε(y, z) ≤ dε(y, x) + dε(x, z) all hold.

(⇐) Suppose Y = {x, y, z} is a triple of elements in X . To show that dε is a metric,
we need to show that (A)–(C) hold. If dε(p, q) = dT (p, q) for all p, q ∈ Y , then
these all hold since dT restricted to Y is a metric. So, suppose this is not the case.
To check that (A)–(C) hold, without loss of generality, by Lemma 2 we may assume
that the convergence scenario (T , R, ε) restricts to Y to give a convergence scenario
(Q, R∗ = {r , r∗, s, s∗}, ε) as in one of Fig. 3i–iv and that dε |Y = d(Q,R∗)

ε . We now
check that (A)–(C) hold in each of the Cases (i)–(iv).

First, note that since dε is triplet respecting, we have

dε(x, y) < min{dε(x, z), dε(y, z)},

and so (A) must hold for all Cases (i)–(iv).
Moreover, in Cases (i) and (iv) dε(x, z) = dε(y, z), and so in these cases (B) and

(C) must always hold too. And, in Cases (ii) and (iii) dε(x, z) ≤ dε(y, z), and so in
these cases (B) holds. Hence, it suffices to show that (C) holds for Cases (ii) and (iii).

Let γ be the height of r∗ and s∗ in the convergence scenario (Q, R∗ =
{r , r∗, s, s∗}, ε). Note that γ ≥ α. In Case (ii), (C) holds if and only if

dT (y, z) − 2ε(β − h(lcaT (x, y))) ≤ dT (y, x) + dT (x, z) − 2ε(β − γ ).

Since dT (x, z) = dT (y, z) this last inequality holds if and only if

ε ≤ dT (x, y)

2(h(lcaT (x, y)) − γ )
. (5)

But, since γ ≥ α, this last inequality holds by Inequality (4).
In Case (iii), (C) holds if and only if

dε(y, z) = dT (y, z) ≤ dT (x, z) + dT (y, x) − 2ε(β − γ ),

which since dT (x, z) = dT (y, z), holds if and only if

ε ≤ dT (x, y)

2(β − γ )
. (6)

Again, since γ ≥ α, this last inequality holds by Inequality (4).
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x

e6

e2 e3 e4

e5

y z t

e1

ρT

Fig. 5 A phylogenetic tree T , together with a table that indicates in each column which edges contain
the top points r , s and bottom points r ′, s′ used to form a convergence scenario as in Fig. 4. The last row
indicates whether the configuration gives rise to a distance satisfying the four-point condition or not (see
Lemma 7)

(⇒) Suppose that dε is a metric so that, in particular, (C) holds for every x, y, z ∈ X
distinct. Now, suppose x, z ∈ X are distinct and strictly below R and y ∈ X is such
that ((x, y), z) ∈ R(T ) and lcaT (x, y) is not below a bottom point of R. Then it
follows that either Case (ii) or (iii) must hold in Fig. 3 and the height of r∗ and
s∗ in the convergence scenario (Q, R∗ = {r , r∗, s, s∗}, ε) given by restricting to
Y = {x, y, z} must be equal to α. But, as shown above, (C) holds in Case (ii) if
and only if Inequality (5) holds, from which Inequality (4) follows, and (C) holds in
Case (iii) if and only if Inequality (6) holds, from which Inequality (4) again follows.

�	
Note that since the right hand side of the inequality in the statement of Theorem 5

is always greater than 1, we have the following simple condition for ensuring that a
triplet respecting distance is a metric.

Corollary 6 Suppose dε is a triplet respecting distance. If ε ≤ 1, then dε is a metric.

We now conclude this section by presenting a characterisation for when dε is a tree
metric or an ultrametric in case it is a triplet respecting metric. We first state a useful
lemma.

Lemma 7 Suppose that (T = (T , w), R, ε) is a convergence scenario such that dε is a
triplet respectingmetric, and T is one of the trees in Figs. 4 or 5with leaf set {x, y, z, t}.
Then dε satisfies the 4-point condition if and only if T is one of the configurations in:

• Figure 4: (1), (2), (4), (7), (8), (9), (12), or
• Figure 5: (1), (2), (3), (7).

Proof Note that since dε is a metric we only need to check that the 4-point condition
holds for x, y, z, t all pairwise distinct (i.e. we do not need to consider subsets of
{x, y, z, t}). This is a straight-forward check using the fact that dT satisfies the 4-
point condition and Theorem 3. For example, the distance dε arising from tree T as in
Fig. 5 configuration (6) satisfies dε(x, y) = dT (x, y), dε(t, z) = dT (t, z), dε(x, z) =
dT (x, z), dε(y, t) = dT (y, t), dε(x, t) = dT (x, t) − 2ε(β − α) and dε(y, z) =
dT (y, z), and so, as dT (x, y)+dT (t, z) < dT (x, z)+dT (y, t) = dT (x, t)+dT (y, z)
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Fig. 6 Possible placements of r , r ′, s, s′ for the proof of Theorem 8

(since dT satisfies the 4-point condition),

max{dε(x, y) + dε(t, z), dε(x, z) + dε(y, t)} < dε(x, t) + dε(y, z),

from which it follows that dε does not satisfy the 4-point condition. However, in Fig. 5
configuration (1), we have dε(x, y) = dT (x, y), dε(z, t) = dT (z, t), dε(x, z) =
dT (x, z)−2ε(β−α), dε(y, t) = dT (y, t)−2ε(β−α), dε(x, t) = dT (x, t)−2ε(β−α)

and dε(y, z) = dT (y, z) − 2ε(β − α). Therefore, dε satisfies the 4-point condition
since dT (x, y) + dT (z, t) < dT (x, z) + dT (y, t) = dT (x, t) + dT (y, z) (since dT
satisfies the 4-point condition) and by Theorem 3 dT (x, z) − dT (x, y) > 2ε(β − α)

and dT (y, t) − dT (z, t) > 2ε(β − α) both hold, from which it follows that

dε(x, y) + dε(z, t) < dε(x, z) + dε(y, t) = dε(x, t) + dε(y, z).

�	

Theorem 8 Suppose that (T = (T , w), R, ε) is a convergence scenario such that dε

is a triplet respecting metric. Then dε is a tree metric if and only if precisely one of
the following holds (see Fig. 6):

(a) There exist edges e, e′ in T such that |e ∩ e′| = 1 and |R ∩ e| = |R ∩ e′| = 2.
(b) There exist edges e, e′, e′′ in T such that e and e′′ both contain the root of T ,

|e ∩ e′| = 1, |e′ ∩ e′′| = 0, and |R ∩ e′| = |R ∩ e′′| = 2.
(c) There exist edges e, e′, e′′ in T such that e and e′ both contain the root of T ,

|e ∩ e′′| = 1, |R ∩ e| = |R ∩ e′′| = 1 and |R ∩ e′| = 2.

Moreover, dε is an ultrametric if and only if (a) holds. In particular, if dε is a triplet
respecting treemetric (or ultrametric), then dε = d(T ,w′) wherew′ is some (necessarily
unique) edge weighting of T .

Proof We begin by considering the first statement of the theorem. If |X | = 3 then the
statement holds since any metric on a set of size 3 is a tree metric, and precisely one
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of the cases (a)-(c) can apply since they detail all possible convergence scenarios on
X . So assume for the remainder of the proof that |X | ≥ 4.

Now, suppose dε is a tree metric on X . Put R = {r , r ′, s, s′} and ρ = ρT . To see
that one of (a)–(c) holds, we perform a case analysis in which we show that one of
(a)–(c) must hold or that we can find a subset Y ⊆ X of X of size 4 so that, in view
of Lemma 7, dε |Y is not a tree metric which is impossible.

Suppose first that neither of the top points in R is contained in an edge of T that
contains ρ. We claim that (a) must hold. To see why this is the case, let e be an edge of
T that contains r . Then lca(r , s) �= ρ since otherwise we can find leaves x, y, z, t ∈ X
such that the convergence scenario obtained by restricting T to Y = {x, y, z, t} would
be as in Fig. 5(6), which is impossible by Lemma 7. Moreover, r and r ′ must both be
contained in e since otherwise we could choose elements x, y, z, t ∈ X such that T
restricted to Y = {x, y, z, t} would be as in Fig. 4(10) which is impossible. Similarly,
as r , r ′ are both in e, s and s′ must both be contained in the same edge e′ of T since
otherwise we could obtain a contradiction using Fig. 4(10) again by reversing the roles
of r , r ′ and s, s′. And, finally, e ∩ e′ �= ∅ since otherwise (reversing the roles of r , r ′
and s, s′ if necessary), we could choose elements x, y, z, t ∈ X such that T restricted
to Y = {x, y, z, t} would be as in Fig. 4(11) which is impossible. So (a) must hold as
claimed.

Now, assume r is in edge e of T with ρ ∈ e so that, in particular, lca(R) = ρ. Then
either r ′ is contained in e or r ′ is contained in an edge e′′ with |e′′ ∩ e| = 1. Indeed,
if this were not the case, then there would exist at least two vertices in V (T ) that are
contained in the path in T between r and r ′. So, we could find leaves x, y, z, t ∈ X
such that the convergence scenario obtained by restricting T to Y = {x, y, z, t} would
be as in Fig. 4(3) which is impossible.

Let e′ be the edge in T that contains s. We first consider the case that r ′ is contained
in e. Note that in the case ρ ∈ e′. Indeed, if not, then (b) must hold since otherwise
we could find leaves x, y, z, t ∈ X such that the convergence scenario obtained by
restricting T to Y = {x, y, z, t} would be as in Fig. 4(5) or (6) with the roles of r , r ′
and s, s′, reversed, which is impossible. Note also that s′ must either be in e′ or in
an edge e′′ of T with e′ ∩ e′′ �= ∅, otherwise we could obtain a configuration as in
Fig. 4(3) with the roles of r , r ′ and s, s′ reversed. But then (a) holds if s′ is contained
in e′ and otherwise (b) holds.

Finally, suppose r ′ is not contained in e. Then ρ ∈ e′ since otherwise we can find
x, y, z, t ∈ X and use Fig. 5(5) to obtain a contradiction. Moreover, s′ is contained in
e′ otherwise we could find x, y, z, t ∈ X and use Fig. 5(4) to obtain a contradiction.
Thus (c) must hold.

Conversely, suppose precisely one of (a)–(c) holds. We will show that dε is a tree
metric. Take any Y ⊆ X with |Y | = 4. It suffices to show that dε |Y is a tree metric. If
dε |Y = dT |Y then this is clearly the case. So we may assume dε |Y �= dT |Y .

If one of (a) or (b) holds, then sincedε |Y �= dT |Y theremust be somepair of elements
in Y that is strictly below R. It follows that we can assume that Y = {x, y, z, t} and
that T restricted to Y must be as in Figs. 4(1),(4),(8), (9), (12) or 5(1),(3),(7). In either
of these cases dε |Y must be a tree metric by Lemma 7.

Similarly, if (c) holds then since dε |Y �= dT |Y there must be an element in Y that
is below s′. Also, there must be (i) an element in Y that is below r but not below r ′
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or (ii) an element in Y that is below r ′. If both (i) and (ii) hold, it follows that we
can assume that Y = {x, y, z, t} and that T restricted to Y must be as in Figs. 5(2)
or 4(2),(7). In either of these cases dε |Y must be a tree metric by Lemma 7. If only one
of (i) or (ii) holds, then a similar argument can be used where we may need to restrict
to four elements in X to obtain a convergence scenario in a similar way to that used
in Lemma 2 before applying Lemma 7.

We now consider the second statement in the theorem. First, suppose that (a) holds
so that there exist edges e, e′ in T such that r , r ′ are points in e, s, s′ are points in e′
and |e ∩ e′| = 1. To see that dε is an ultrametric, we need to show that Inequality (2)
holds for all x, y, z ∈ X distinct, i.e. that two of the values dε(x, y), dε(x, z) and
dε(y, z) are equal and not less than the third. It clearly suffices to show that this is the
case for x ∈ X below r ′ in T , y ∈ X below s′ in T , and z ∈ X .

If ((x, y), z) is a triplet in R(T ), then it easily seen that dε(x, y) < dε(x, z) =
dε(y, z). Otherwise, we can assume without loss of generality that ((x, z), y) is a
triplet in R(T ). Since dε is triplet respecting, dε(x, z) ≤ min{dε(x, y), dε(z, y)}
follows. Clearly dε(x, y) = dε(z, y) and so dε(x, z) ≤ dε(x, y) = dε(y, z).

Conversely, assume that dε is an ultrametric. Then dε is a tree metric. Hence,
precisely one of (a)–(c) in Theorem 8 must hold. We now show that neither (b) nor
(c) can hold, which will complete the proof of the theorem.

So, assume for contradiction that either (b) or (c) holds. If (b) holds, then pick
x ∈ X below r ′ in T , z ∈ X below s′ in T and y ∈ X below the vertex in e∩ e′ but not
below r in T . And, if (c) holds, then pick x ∈ X below r ′ in T , z ∈ X below s′ in T
and y ∈ X below r but not below r ′ in T . In either case, since dε is a triplet respecting
ultrametric we must have dε(y, z) = dε(x, z) (as the two largest values of dε |{x,y,z}
must be equal). But this is clearly impossible since, by the definition of dε , we must
have dε(y, z) > dε(x, z) in both cases (b) and (c).

The last statement of the theorem holds in view of (Semple and Steel, 2003, Theo-
rems 7.1.8 and 7.2.5). �	

Remark 1 There are examples where dε is an ultrametric but the characterisation
given in Theorem 8 does not hold. For example, take Fig. 4(7) with h(ρT ) = 101,
h(lcaT (x, z)) = 1, h(lcaT (x, y)) = 981

2 , α = 98, β = 99, and ε = 5. However, note
that in this example dε is not triplet respecting.

6 Recovering the height of the tree within a convergence scenario

Consider the two convergence scenarios given in Fig. 4(7) with h(ρT ) = 5,
h(lca(x, y)) = 3, h(lca(x, z)) = 1, α = 21

2 and β = 31
2 and in Fig. 4(8) with

h(ρT ) = 41
2 , h(lca(x, y)) = 3, h(lca(x, z)) = 1, α = 11

2 and β = 2. Then it can be
checked that, for ε = 1, both scenarios give rise to the same map dε which, in view
of Lemma 1 is a distance, in view of Theorem 3 is triplet respecting and, in view of
Theorem 5 is a metric even though the height of T in the two scenarios is different.
In particular, for this example, even though we can recover the topology of T from
dε since it is a triplet respecting metric, we are not able to identify the height of T
from dε in the sense that there are different choices of R (but with the same ε and T )

123



   17 Page 16 of 23 B. Holland et al.

which induce the same dε . Motivated by this example, in this section for a convergence
scenario (T , R, ε) that gives rise to a triplet respecting metric, we shall characterise
which choices of R ensure that we are able to recover the height of T from dε (see
Theorem 11 below).

To make this more precise, for a convergence scenario (T = (T , w), R, ε) we
denote dε also by d(w,R)

ε to emphasise the choice of w and R. In addition, for some
choice of w and R, we shall say that the height of (T , w) is identifiable from d(w,R)

ε if
there does not exist a choice of w′ and R′ with (w′, R′) �= (w, R) such that d(w,R)

ε =
d(w′,R′)
ε and h(T ,w)(ρT ) �= h(T ,w′)(ρT ).
We now give some key examples of some choices of R in a convergence scenario

where it is not possible to identify the height of the underlying tree. From now on,
given a convergence scenario (T = (T , w), R, ε), we put hw(a) = h(T ,w)(a) for any
point a in T if T is clear from the context. Note that in the following lemma we only
require that dε is a triplet respecting distance.

Lemma 9 Suppose that (T , R, ε) is a convergence scenario such that dε is a triplet
respecting distance. If R is one of the configurations in Fig. 7, then the height of T is
not identifiable from dε .

Proof Put T = (T , w) and ρ = ρT . For R as in Fig. 7, let l = hw(r) − hw(r ′) =
hw(s) − hw(s′). We now consider each of the configurations (A)–(C) in Fig. 7.

First, suppose R = {r , r ′, s, s′} is as in Fig. 7A. Let v �= ρ denote the vertex in this
configuration that is contained in the edges e, e′ which contain r , r ′, s, s′. Note that
for any leaf x below e and any leaf y below e′, we have dε(x, y) = 2hw(v) − 2εl.

We first claim that min{w(e), w(e′)} > εl. Indeed, suppose that there are precisely
two leaves x and y below v. Then x and y form a cherry of T . Hence, w(e) = w(e′)
because (T , w) is equidistant. Since d(w,R)

ε is a distance

d(w,R)
ε (x, y) = dT (x, y) − 2εl = 2w(e) − 2εl > 0,

and so w(e) > εl. If there are at least three leaves in T below v, then we may
assume without loss of generality that w(e) = min{w(e), w(e′)}, so that in par-
ticular there must be at least two leaves below r ′. Let x and y be two leaves
below r ′ such that lcaT (x, y) is a child of v, and let z be a leaf below s′. Then
dT (x, z) − dT (x, y) = 2w(e). Since d(w,R)

ε is triplet respecting but not a cherry
scenario it follows by Theorem 3 that w(e) > εl. So the claim follows.

Now, consider the edge-weightingw′ of T that is obtained as follows. Add εδ, some
δ > 0 small, to the weights of the two edges containing the root of T , subtract εl from
the weights of the edges e and e′ (which is possible since min{w(e), w(e′)} > εl),
add εl to the weight of the edge containing v and not equal to e, e′ (which exists
as v �= ρ), and keep all other edge weights the same. In addition, place p, p′ into
one edge containing ρ and q, q ′ into the other edge containing the root of T so
that hw′(p) − hw′(p′) = hw′(q) − hw′(q ′) = δ, which is possible by taking δ to
be sufficiently small. Then for R′ = {p, p′, q, q ′}, it is straight-forward to check

that (w, R) �= (w′, R′), d(w,R)
ε = d(w′,R′)

ε , and hw(ρ) �= hw′(ρ) (since hw′(ρ) =
hw(ρ) + εδ).
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Now, suppose R = {r , r ′, s, s′} is as in Fig. 7B where r ′ and s′ are as indicated in
its caption. Consider the edge-weighting w′ of the tree T obtained by replacing the
weights of the edges in T containing ρ with the same weight plus εδ for some small
δ > 0, and keeping all other edges the same weight. Relative to the weighting w′,
place p, q in the same edges of T as r , s, respectively, at height hw(r)+ δ, hw(s)+ δ,
respectively (which is possible since we can choose δ to be sufficiently small), and
place p′, q ′ in the same edges as r ′, s′ with heights (relative to w′) hw(r ′) and hw(s′),
respectively. Then for R′ = {p, p′, q, q ′}, it is straight-forward to check that (w, R) �=
(w′, R′), d(w,R)

ε = d(w′,R′)
ε and hw(ρ) �= hw′(ρ) (since hw′(ρ) = hw(ρ) + el).

Finally, suppose R = {r , r ′, s, s′} is as in Fig. 7C. Consider the weighting w′ of T
that is obtained by replacing the weights of the edges in T containing ρ with the same
weight plus εδ, some δ > 0 small, and keeping all other edges the same weight. Let u
be the vertex in T adjacent to ρ and above r , r ′. Relative to the weightingw′, place q at
height hw(u)+ δ and p at the same height in the other edge that contains the root of T
(which is possible by taking δ sufficiently small). Also, place q ′ in the same edge as r ′
at height hw(u)− l (which is possible since the edge containing r , r ′ in T with weight
w has length greater than l), and p′ at the same height in the same edge that contains
p. Then for R′ = {p, p′, q, q ′}, it is straight-forward to check that (w, R) �= (w′, R′),
d(w,R)
ε = d(w′,R′)

ε , and hw(ρ) �= hw′(ρ) (since hw′(ρ) = hw(ρ) + εδ). �	
We now prove a technical lemma that we will use to prove the main result of this

section. Note that this result does not depend on edge-weights.

Lemma 10 Suppose that (T = (T , w), R, ε) is a convergence scenario. Then R is
not as in one of the configurations pictured in Fig. 7B or C if and only if precisely one
of the Conditions (a)–(e) below holds:

(a) There are x, y, z, t ∈ X such that lcaT (x, t) = ρT , u = lcaT (x, y) and v =
lcaT (z, t) are the children of ρT , one top point in R is in the edge {ρT , v}, one
bottom point of R lies on the path between v and t and two points in R lie on the
path between u and x.

(b) There are x, y, z, t ∈ X such that lcaT (x, t) = ρT , two points in R lie on the path
between ρT and x, u = lcaT (y, t) is a child of ρT , v = lcaT (z, t) is a child of u,
and two points in R lie on the path between v and t.

(c) There are x, y, z, t ∈ X such that lcaT (x, t) = ρT , two points in R lie on the path
between ρT and x, u = lcaT (y, t) is a child of ρT , v = lcaT (z, t) is a child of u,
one top point in R is in the edge {u, v}, and one bottom point in R lies on the path
between v and t.

(d) There are x, y, z, t ∈ X such that u = lcaT (x, y) and v = lcaT (z, t) are the
children of ρT , two points in R lie on the path in T between u and x, and two
points in R lie on the path in T between v and z.

(e) All of the points in R are contained in one of the subtrees of T whose root is a
child of ρT .

Proof It is straight-forward to see that if any of Conditions (a)–(e) holds then R is not
as in Fig. 7B or C.

Conversely, suppose that R is not as in Fig. 7B or C. First note that we may assume
that lca(R) = ρT , otherwise (e) holds.
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Fig. 7 The convergence scenarios considered in Theorem 11. The edge-weights assigned by w to T are

arbitrary, but chosen so that d(w,R)
ε is a triplet respecting metric. In B, r ′ and s′ can be in any edge of T

below r and s, respectively. Note that the roles of r , r ′ and s, s′ are interchangeable

Suppose first that one of the top points in R, say r , is in an edge of T that contains
the root ρT of T . By Fig. 7B, the top point s is not contained in the other edge incident
with ρT . Now, if the point r ′ ∈ R below r is not contained in the same edge as r , then
(a) holds. On the other hand, if r ′ is contained in the same edge as r , then as Fig. 7C
cannot hold it follows that (c) holds in case s is in an edge incident with a child of ρT ,
and that (b) holds otherwise.

Now, suppose that r is in an edge of T that does not contain the root of T and s ∈ R
is the other top point. By the preceding paragraphwith the role of s and r interchanged,
we can assume that s is also in an edge of T that does not contain the root of T . But
then (d) holds. �	

We now prove the main result of this section.

Theorem 11 Suppose that (T = (T , w), R, ε) is a convergence scenario such that
dε = d(T ,R)

ε is a triplet respecting metric. Then the height of T is identifiable from
dε if and only if R is not as one of the configurations in Fig. 7. Moreover, if this is the
case, then hT (ρT ) = 1

2 maxx,y∈X {dε(x, y)}.
Proof The ‘if’ direction follows immediately by Lemma 9.

For the ‘only if direction’, let h = hw, h′ = hw′ and, for u a point in T or (T , w′), let
h(u) = hw(u) or h′(u) = hw′(u), respectively. Furthermore, put ρ = ρT , h′ = h′(ρ)

and h = h(ρ). To see that this direction holds, suppose that R = {r , r ′, s, s′} is not
as in Fig. 7A–C and assume for contradiction that the height of T in not identifiable
from dε . Then there exists some (w′, R′ = {p, p′, q, q ′}) �= (w, R)with h′ �= h. such

that d(w,R)
ε = d(w′,R′)

ε .
First note that since R is not as in Fig. 7A–C, and, in particular, not as in Fig. 7B,

C, we may assume that one of Lemma 10(a)–(e) holds and that if Lemma 10(e) holds
then R is not as in Fig. 7A. Using the notation in Lemma 10(a)–(e), we now show that
each of these cases leads to a contradiction, which will complete the proof of the first
part of the theorem.
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First note that if (a) holds, then since d(w′,R′)
ε (y, z) = d(w,R)

ε (y, z) = 2h, and
h′ �= h, it follows that h′ > h, and that p, q are contained in the two edges that
contain the root of T . A similar argument can also be applied to each of the cases
(b)–(e) to show that in all of these cases p, q must be in the two edges that contain the
root of T , so we shall assume this from now on.
Lemma 10(a) holds: Without loss of generality assume that r and r ′ are on the path
from u to x , s is in the edge {ρ, v}, and s′ is on the path from v to t in T . Note that
this implies h(u) > h(v). Also, without loss of generality, we assume that p is above
u and q is above v in (T , w′).

Now, lca(q ′, t) �= v since d(w′,R′)
ε (x, z) = d(w,R)

ε (x, z) > d(w,R)
ε (x, t) =

d(w′,R′)
ε (x, t), and lcaT (p′, x) �= u since d(w′,R′)

ε (z, y) = d(w,R)
ε (z, y) >

d(w,R)
ε (z, x) = d(w′,R′)

ε (z, x). Moreover, q ′ is not above v since otherwise

d(w′,R′)
ε (x, z) = d(w,R)

ε (x, z) > d(w,R)
ε (x, t) = d(w′,R′)

ε (x, t) which is impossible.
Hence, using a similar argument, we see that q ′ must in fact lie on the path from v to
t as d(w,R)

ε (b, x) ≥ d(w,R)
ε (b, t) for all b �= t with lcaT (b, z) = v. Note also that p′ is

not above u since otherwise h(v) = h′(v) > h′(u) = h(u) which is a contradiction.
In addition, since d(w,R)

ε (b, t) ≥ d(w,R)
ε (t, x) for all b �= x with lcaT (b, y) = u, it

follows that p′ must lie on the path from u to x .
Now, suppose h′ = h + γ (γ > 0), δ = h′(p) − h′(u), τ = h′(u) − h′(p′) and

κ = h(s) − h(v). Then, since h′(u) = h(u) > h(v) = h′(v), d(w,R)
ε (y, z) = 2 h =

d(w′,R′)
ε (y, z) = 2(h + γ ) − 2εδ. So γ = εδ. Also, d(w,R)

ε (x, z) = 2 h − 2εκ =
d(w′,R′)
ε (x, z) = 2(h + εδ) − 2ε(δ + τ). Hence κ = τ . But this is impossible, since

κ < h(u) − h(v) and τ > h(u) − h(v).
Lemma 10(b) holds:Without loss of generality assume that r , r ′ are on the path from
ρ to x and s, s′ are on the path from v to t . Also, without loss of generality, assume
that p is on the path from ρ to x and q is in the edge {ρ, u} in (T , w′).

Note thatq ′ cannot be in the same edge {ρ, u} asq since this impliesd(w′,R′)
ε (x, y) =

d(w,R)
ε (x, y) > d(w,R)

ε (x, t) = d(w′,R′)
ε (x, t) which is impossible. Thus q ′ must be

below u. But then we would have d(w′,R′)
ε (x, y) = d(w,R)

ε (x, y) = d(w,R)
ε (x, z) =

d(w′,R′)
ε (x, z) which is also impossible.
Lemma 10(c) holds:Without loss of generality, assume that r , r ′ are on the path from
ρ to x , s is in the edge {u, v} and s′ is on the path from v to t in (T , w′). Without loss
of generality, we assume that q is contained in the edge {ρ, u}.

Using similar arguments to the ones in case (a), note that lcaT (q ′, y) �= v since
d(w,R)
ε (y, x) > d(w,R)

ε (z, x), q ′ is not in the edge {u, v} and lcaT (q ′, t) �= v since
d(w,R)
ε (z, x) > d(w,R)

ε (t, x), and thus q ′ is on the path from v to t since d(w,R)
ε (b, x) ≥

d(w,R)
ε (b, t) for all b �= t with lcaT (b, z) = v.
So, suppose h′ = h + γ (γ > 0), κ = h(s) − h(v), τ = h′(u) − h′(v) and

δ = h′(q) − h′(u). Then 2 h = d(w,R)
ε (x, y) = d(w′,R′)

ε (x, y) = 2(h + γ ) − 2εδ. So

γ = εδ. Also, 2 h − 2εκ = d(w,R)
ε (x, z) = d(w′,R′)

ε (x, z) = 2(h + εδ) − 2ε(δ + τ).
Hence κ = τ . But this is impossible since κ < h(u) − h(v) = h′(u) − h′(v) = τ .
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Lemma 10(d) holds: Without loss of generality, assume r , r ′ lie on the path in T
between u and x , and that s, s′ lie on the path in T between v and z. Without loss of
generality, we assume that p is contained in the edge {ρ, u}.

Note that as d(w,R)
ε is a triplet respecting metric, by Theorem 8 d(w,R)

ε is not an
ultrametric, and so p′ and q ′ are not both in the same edges as p and q, respectively
(otherwise, by Theorem 8, dε would be an ultrametric).

Without loss of generality, suppose that p′ is not in the same edge as p. Then p′
must be on the path in (T , w′) from u to x , otherwise there would be some b ∈ X−{x}
below p′ with lcaT (b, x) = u or lcaT (b, x) below u, which implies d(w′,R′)

ε (x, z) >

d(w′,R′)
ε (b, z), which contradicts d(w,R)

ε (x, z) = d(w,R)
ε (b, z). A similar argument also

implies that q ′ must be on the path in T from q to z.
Now if q ′ is below v, then this leads immediately to a contradiction since it implies

that d(w′,R′)
ε (y, z) < d(w′,R′)

ε (y, t), but d(w,R)
ε (y, z) = d(w,R)

ε (y, t). And if q ′ is in the
same edge {ρ, v} as q, then we again obtain a contradiction since then d(w′,R′)

ε (x, z) =
d(w′,R′)
ε (x, t), but d(w,R)

ε (x, z) < d(w,R)
ε (x, t).

Lemma 10(e) holds and R is not as in Fig. 7A: Note that as Lemma 10(e) holds, we

must have d(w,R)
ε (x, y) = 2h = d(w′,R′)

ε (x, y) for all x, y in X with lcaT (x, y) = ρT .
But then, as h �= h′, it is straight-forward to check that p and p′ must be in the same
edge of T that contains the root, and that the same holds for q and q ′. Hence, since dε

is a triplet respecting metric by assumption it follows that d(w′,R′)
ε is an ultrametric by

Theorem 8. But this is impossible since R is not as in Fig. 7A and so, by Theorem 8,

d(w,R)
ε = d(w′,R′)

ε is not an ultrametric.
The last statement of the theorem holds since if R is one of the configurations in

Lemma10, then it is straight-forward to check that theremust exist some a, b ∈ X such
that d(w,R)

ε (a, b) = 2h (since in all of (a)–(e) at least one of the edges in T containing
the root of T does not contain a top point of R), and clearly d(w,R)

ε (x, y) ≤ 2h for all
x, y ∈ X . �	
Corollary 12 Suppose that (T , R, ε) is a convergence scenario such that dε is a triplet
respecting tree metric. Then the height of T is not identifiable from dε .

Proof If dε is a tree metric, then, by Theorem 8, R must be as in Fig. 6. But if the
height of T is identifiable from dε , then, by Theorem 11, either Lemma 10(a)–(d)
holds or Lemma 10(e) holds and R is not as in Fig. 7A. But it is straight-forward to
check that this is impossible. �	
Remark 2 The situation in Theorem 11 getsmore complicated if we allow the ε param-
eter to also vary. For example, consider the convergence scenario (T = (T , w), R, ε)

in Fig. 5(5) where the weight of the edge {ρT , lcaT (x, y)} is 2, h(lcaT (x, y)) = 4,
h(lcaT (z, t)) = 2, β = 3, α = 3

2 and ε = 1
2 , and the convergence scenario

(T = (T , w′), R′, ε′) in Fig. 5(4) where the weight of the edge {ρT , lcaT (x, y)}
is 2 1

4 , h(lcaT (x, y)) = 4, h(lcaT (z, t)) = 2, β ′ = 5 and α′ = 1, where

ε′ = 1
4 . Then d(w,R)

ε is a triplet respecting metric. Moreover, d(w′,R′)
ε′ = d(w,R)

ε and
hT (ρT ) = 6 1

4 �= 6 = hT ′(ρT ), even though the configuration of R in T is not as in
Fig. 7 (since R corresponds to the configuration given in Lemma 10(a)). It could be
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interesting to understand when the height of T is identifiable in case the ε parameter
is also allowed to vary.

7 Discussion

We have introduced a new distance-based model for convergent evolution and char-
acterised when the model leads to a tree metric, as well as giving conditions in terms
of the model’s parameters for when it still possible to recover the underlying tree and
its height even in case we do not obtain a tree metric. Our model is similar in nature
to the convergence-divergence models presented in Mitchell et al. (2018) in which
a probabilistic approach is developed based on a Markov model of character evolu-
tion. In our distance-based approach convergence is acting in a linear way, whereas
in the character-based approach two sequences that are converging converge faster
when they are further apart and more slowly as they get closer since there are fewer
mismatch sites to “correct”.

In Mitchell et al. (2018), the authors mainly focus on phylogenetic trees that have
three or four leaves, where they also find cases in which convergence gives rise to
tree metrics (e.g. in (Mitchell et al., 2018, Fig. 6) they give an example similar to our
Fig. 4(8)). Since ourmodel can be applied to a set of species of arbitrary size it could be
interesting to understand if there are deeper connections between the two approaches
that could be exploited to give further insights into convergent evolution for larger
data sets. A starting point might be to consider the interplay of our approach with the
Jukes-Cantor model (Jukes and Cantor 1969), one of the simplest Markov models that
is used to correct distance data in evolutionary studies [see e.g. (Felsenstein, 2004,
Chapter 11)].

Our results suggest that under some circumstances the tree topology and some
information about convergence events may be recoverable from observed distances.
We give conditions for recovering the topology of the underlying tree and its overall
height. In general, the starting and ending points α and β are not precisely recoverable
as they only effect the distances via their difference β − α. However, if ε is assumed
known it may be possible to determine β −α and also to determine on what edges the
points r , s, r ′ and s′ in the convergence set must lie. If the strength of convergence ε is
not known then it will presumably not be possible to determine β−α as strong conver-
gence acting for a shorter time period would appear equivalent to weaker convergence
acting over a longer time period. However, in this case it may again be possible to at
least localise which edges the points r , s, r ′ and s′ occur on.

More generally, we have only considered the case of a single pair of convergent
paths. In future work, it would be interesting to consider conditions under which mul-
tiple convergence events might be distinguishable from simple tree-like evolution.
Even so, some care may need to be taken with choosing the number of parameters
as there could be issues with overfitting [see (Steel 2005)], as well as our underlying
assumption of clock-like evolution [see (Mitchell et al. 2018, p. 914) for related dis-
cussion]. Furthermore, in practice it would be useful to develop algorithms to return
a phylogenetic tree along with pairs of sets of edges for which there is evidence of
convergence operating given a distance matrix as input.
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While this paper shows that it will not be possible to recover all convergence events
(or even one convergence event) from an observed distance in general, the results
suggest intriguing possibilities for algorithms that could at least recover some partial
information. This could be particularly useful in cases where convergence events have
had a small enough impact so that the input metric is still triplet preserving.

One approach that we hope to explore in future work is to develop a method based
upon algorithmic variants of theBuild algorithmwhich can construct phylogenetic
trees from sets of triplets [see e.g. Semple and Steel (2000)]. More specifically, we
would begin by computing an unweighted tree T from a collection of triplets inferred
from an input distance d on a set X , after which we would set the height of any internal
vertex of T to be half the maximum taken over all distances between all pairs of taxa
whose least common ancestor is that vertex. The distance associated to this weighted
tree, T , then forms an ultrametric, dT , that is greater than or equal to the observed
distance d for any pair in X . We would then look for a convergence scenario (T , R, ε)

with the aim of minimising the discrepancies d(T ,R)
ε (x, y) − d(x, y), x, y ∈ X . Note

that, in general, we would expect some variation from d being an ultrametric just due
to random sampling rather than convergence, sowewould probably need to also define
some threshold of improvement to control the addition of convergence events.

Finally, as noted in the introduction, reticulate processes can also lead to a break
down in the divergence model for evolution. Interestingly, in Francis and Steel (2015,
Theorem 5) it is shown that in case a special type of phylogenetic network called a
horizontal gene transfer network has a single cycle, then the so-called average distance
(Willson 2012) that it induces satisfy the four-point condition if and only if the arcs in
the network satisfy certain specific conditions. This result has similarities to what we
find in Theorem 3, and points to the fact that models of reticulate evolution can also
lead to tree metrics. Thus, it will be important to develop approaches that will allow
us to distinguish between distances that are generated by reticulate versus convergent
evolution. However this may not always be mathematically possible, in which case, as
suggested in Mitchell et al. (2018), it may be useful to consider additional biological
or biogeographical information to help decide which model to employ.
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