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Abstract: In piezotronics, PN junctions usually possess both piezoelectricity and 

semiconductor properties. This allows them to be manipulated mechanically by 

external forces through the coupling between deformation and free carriers. For a 

conventional non-piezoelectric PN junction, however, the mechanical manipulation 

seems difficult to achieve. In this paper, we theoretically demonstrate that this problem 

may be addressed via structural design. A composite beam model consisting of a 

piezoelectric dielectric layer and two non-piezoelectric PN junction layers is proposed. 

Then its electromechanical response under three different types of shear loads is 

examined based on a one-dimensional phenomenological theory. Results show as 

expected that the electrical behaviors of the junction can be tuned mechanically when 

the external force is applied on the interface, which provides a new idea for the design 

of piezotronic devices. Further, the effects of the doping level, thickness ratio, and 

material combination are also investigated, providing a comprehensive understanding 

of the proposed composite model. 
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1. Introduction 

In piezoelectric semiconductors (PSs), the free carriers are coupled to the 

mechanical fields through piezoelectric effect, which allows the semiconductor 

behavior to be tuned by external force [1]. This unique coupling has been employed to 

develop a variety of novel electronic devices such as energy harvesters and 

nanogenerators [2-4], field-effect transistors [5-7], acoustic charge transport devices [8], 

as well as strain, gas, humidity and chemical sensors [5, 9]. With the development of 

material science, different types of PS structures, including 1D nanofibers, 2D 

nanoplates and 3D nanofilms [5, 10, 11] have been successfully synthesized, and the 

related studies have gradually formed a new research area called piezotronics [12-14]. 

The fundamental theory of piezotronics consists of the conventional theory of 

piezoelectricity [15] and the drift-diffusion theory of semiconductors [16], which has 

been used to solve various problems in PSs, such as vibrations [17, 18], acoustic wave 

propagations [19], fractures [20-25], as well as field distribution analysis of rods and 

PN junctions[26-36]. 

PN junction can be considered as the most basic building block of electronic 

devices. For a conventional non-piezoelectric PN junction, the current flowing through 

it is mainly tuned electrically by gate voltage. While for the PS PN junction in 

piezotronics, it is usually tuned mechanically by force. This is because the potential 

barrier configuration is coupled to deformation through the piezoelectric effect of the 

junction itself. Recently, Yang et al. found a particular way to mechanically tune the 

conventional PN junctions [34]. They proposed a specific layered model, in which the 



conventional PN junction layer made of Si is sandwished between two piezoelectric 

layers. When subjected to bending, the electric field produced by the piezoelectric 

layers drives free carriers to redistribute and consequently changes the barrier height 

and width. It should be noted that in their simulations, the Euler-Bernoulli beam theory 

was used, which means that the shear stress and shear deformation of the beam have 

been neglected. As is well known, however, when the cantilever beam is under an 

external shear force and its slenderness ratio is relatively small, the shear deformation 

will be very significant and the shear stress will dominate near the middle, as shown in 

Fig. 1. Therefore in this paper, we attempt to propose a composite beam model that can 

take full advantage of the shear deformation to manipulate conventional PN junctions. 

Theoretical analyses based on the Timoshenko beam theory will be performed to 

demonstrate the desired coupling. 

 

Fig. 1 The shear stress dominates near the middle of the beam under a shear force 

The one-dimensional equations for shear bending of the proposed PS composite 

beam will be introduced in Section 2. The analytical expressions of the coupled 

electromechanical fields will be derived in Section 3. Then some numerical results and 

discussions will be given in Section 4. Finally, the conclusions will be summarized in 

Section 5. 



2. One-dimensional equations for the composite beam in shear bending  

 

 

Fig. 2 PN junctions in a composite beam consisting of a non-piezoelectric 

semiconductor layer and two piezoelectric dielectric layers 

Consider the composite fiber shown in Fig. 2. It is composed of a piezoelectric 

material layer (1) with height 2c (e.g., PZT material polarized along the 3x direction) 

and two non-piezoelectric semiconductor layers (2) with height h (e.g., Si). The 

piezoelectric layer is placed in the middle because the shear force is larger there, as 

shown in Fig. 1. The left halves of the Si layers are holes dominated p type and the right 

halves are electrons dominated n type. They are both of length L. The left end of the 

composite beam is fixed. In this situation, the fields can be approximately described as 

[33]: 

3 1 1 3 1 1( , ) ( , ) ( , ) ( , ) ( , ) ( , ),x t x t u x t x x t x t xu t  = = =， ，   (1) 

where ω is the bending displacement, Ψ is the thickness shear displacement and φ is the 

electric potential. 

As usual [32-35], the hole concentration p and electron concentration n in the 

semiconductor layers are respectively denoted by p = p0 + Δp and n = n0 + Δn, in which 



p0 and n0 are their initial concentrations in the unstrained reference state, Δp and Δn 

their small perturbations. We have: 

1 1( , ) ( , ).p p x t n n x t   ，   (2) 

The one-dimensional field equations are [37]: 
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where Q is the shear force in the cross section, M the bending moment, D̂ the total 

axial electric displacement in the cross section, q the elementary charge, A(2) the cross-

sectional area of the semiconductor layer, J
 p 

1 and J
 n 

1 the hole and electron current 

densities in the axial direction. Eq. (3)1 and Eq. (3)2 are Newton's law, Eq. (3)3 is Gauss' 

law (charge equation of electrostatics), and Eq. (3)4 and (3)5 are the conservation of 

charge for holes and electrons (continuity equations). The one-dimensional constitutive 

relations for the proposed model are: 
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in which e̅15  is the piezoelectric stress constant of the piezoelectric material. The 

relevant strain and electric field components are: 
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The material and geometric parameters in Eq. (4) can be expressed as: 
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The Einstein relation is: 
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11 and μ
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11 are the mobility of holes and electrons, D
 p 

11 and D
 n 

11 are the diffusion 

coefficients of holes and electrons, kB is the Boltzmann constant, and T is the Kelvin 

temperature. The axial electric displacement D can be obtained using the following 

expression: 

(1) (2) ).ˆ / (D D A A= +  (9)

  

3. Electromechanical fields near the PN junction 

Next, the analytical expressions for the field distributions of the PN junction will 

be derived. From Eq. (3)1 and Eq. (4)1 we have: 

(1)
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From Eq. (3)3 and (4)3, we can derive that: 

(1) (2)

15 ,11 ,1 ,11 .ˆˆ( ) ( )A e A q p n A   + − =  −   (11) 



Assuming that there’s no current flowing through the junction, then Eq. (4)4 and (4)5 

give: 
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Integrating Eq. (12), we obtain: 
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Substituting Eq. (13) and (10) into Eq. (11) yields: 
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The general solution of Eq. (14) is: 
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Consider the case that the beam is under an shear force F, then from Eq. (3)2, Eq. (4)2 

and Q = F, we have: 

,11 .D F =
  (17) 

The integration of Eq. (17) gives: 

2

1 5 1 6 ,
1

2

F
x C x C

D
 = + +   (18) 

Substituting Eq. (18) into Eq. (10), the integration yields that: 
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In above equations, 1 7C C−  are undetermined constants. 

We use a prime to represent the quantities in the left half of the junction, and a 

double prime to represent those in the right half. For the left half (x1 < 0), we have: 

(2)

1 2
3 1 4 1

2 *

( )
,sinh cosh

C C A
C x C x    

 

 +
     = +

 
+

  (20) 

2

1 5 1 6 ,
1

2

F
x C x C

D
  = + +

  (21) 

(1)

1 15 7
1,ˆˆ

Fx e A C
dx

cA


 

− +
= − 

  (22) 

0 11
1

11

0 11
2

11

,

.

p

p

n

n

q
qp

p C
D

qn
n C

D
q





−


 = − +


 = − +

  (23) 

Similarly, for the right half (x1 > 0), we have: 
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When the external force F is applied on the right end face of the beam, the boundary 

conditions and the continuity conditions at the interface are: 
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In order to fix the arbitrary constant in the electric potential, it is necessary to suppose 

that: 

(0) 0. =   (30) 

For the electrically neutral beam without end charges and end currents of this paper, 

Δp and Δn must satisfy the following global charge neutrality condition: 
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Only one of Eq. (31) is independent. The other is obtained by integrating Eq. (3) 

between -L and L and using the boundary and continuity conditions of D̂ in (28) and 

(29), which means that: 
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Substituting Eq. (20)-(27) into (28)-(29) and one of (31) yields a system of 

equations containing undetermined constants, and they can be solved on a computer 

using MATLAB. 

4. Numerical results and discussion 

In this section, the electromechanical fields in the proposed model under three 

different types of mechanical loads will be investigated. In simulations, we set L = 10 

μm, b = 50 nm, h = 10 nm and c = 15 nm. The initial carrier concentrations are assumed 

to take the following form: 
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It is obvious that different values of λ correspond to different doping profiles. 

4.1. Force on the end face 

 

Fig. 3 Composite beam with the shear force F acting on the right end face 
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 Fig. 4 Electromechanical fields near PN junctions with different doping levels: 

(a) Electric potential φ; (b) Electric field E; (c) Hole concentration perturbation Δp; 

(d) Electron concentration perturbation Δn; (e) Hole concentration distribution p; (f) 

Electron concentration distribution n; (g) Bending displacement ω; (h) Thickness 

shear displacement Ψ; (i) Shear strain S5. 



Firstly, we investigate the case of the shear force F acting on the right end face of 

the beam, as shown in Fig. 3. The electromechanical field distributions for different 

values of λ when F = 40 pN are displayed in Fig. 4. It should be noted that for the 

electrical fields, only the parts within |x1|< 1 μm are plotted since we are quite interested 

in their variations near the interface and they have already stabilized at x1=±1 μm. In 

Fig. 4(a) and (b), the typical electric potential and electric field distributions of PN 

junctions appear, indicating that the phenomenological coupled theory used in the 

present paper gives a correct description of the PN junction characteristics. Moreover, 

a larger λ leads to stronger fields, which is consistent with the conclusion obtained in 

Ref. [34]. The carrier concentrations and their perturbations are shown in (c)-(f). When 

λ is large, there are more free carriers in the beam, thus they are more susceptible to 

perturbation, which is well represented in the figures. The mechanical fields, including 

the bending displacement ω, the thickness shear displacement Ψ, and the shear strain 

S5 are shown in (g)-(i). It can be seen that the variation of doping level hardly affect the 

distributions of these mechanical fields. This is because they are coupled indirectly 

through the piezoelectric effect. In addition, to verify the correctness of our linearized 

model, the comparison of φ in (a) with the results obtained by solving the nonlinear 

version of Eq. (3) using the finite element method is shown in Appendix. There are 

minor differences between the curves, but this does not affect the qualitative 

conclusions in the present paper. 
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Fig. 5 Electromechanical fields near PN junctions with different thickness ratios: 

(a) Electric potential φ; (b) Electric field E; (c) Hole concentration perturbation Δp; 

(d) Electron concentration perturbation Δn; (e) Bending displacement ω; (f) 

Thickness shear displacement Ψ; (g) Shear strain S5. 

The effects of the thickness ratio h/c when F = 40 pN are demonstrated in Fig. 5. 

For a constant h+c, as h/c decreases, the semiconductor layers become thinner while 

the piezoelectric layer becomes thicker. Then the number of mobile charges in the 

composite fiber must decrease and the piezoelectric coupling will get stronger. 

Normally, the carrier screen effect should weaken and the electric field should increase 

at this time. But surprisingly, as shown in (b), E1 decreases with h/c even if the 

mechanical fields in (e)-(g) get stronger. This anomaly will be explained later when we 

study the effects of different values of F. 
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(c) (d) 

Fig. 6 Electromechanical fields near PN junctions with different material 

combinations: (a) Electric potential φ; (b) Electric field E; (c) Bending displacement 

ω; (d) Thickness shear displacement Ψ. 

Fig. 6 shows the influence of different material combinations on the 

electromechanical field distributions of the PN junction when F is fixed to 40 pN. In 

simulations, the materials of the piezoelectric layer are chosen to be PZT-5H, PZT-4, 

BaTiO3 and PVDF, respectively. Their material coefficients are form Ref.[15]. We see 

that the electrical field distributions for PZT-5H, PZT-4 and BaTiO3 exhibit relatively 

small differences. This is due to the minor differences in material coefficient between 

these three materials. In contrast, the curves of PVDF deviate from the rest, which is 

due to its much smaller piezoelectric coefficient. 
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Fig. 7 Electromechanical fields near PN junctions for different values of F: (a) 

Electric potential φ; (b) Electric field E; (c) Bending displacement ω; (d) Thickness 

shear displacement Ψ; (e) Shear force Q; (f) Bending moment M.  

Fig. 7 shows the field distributions for different values of applied end force F. It 

can be found that the mechanical fields ω and ψ vary dramatically, while the electrical 

fields near the interface remains unchanged. This seems to imply that the external shear 

force cannot be used to manipulate the barrier properties of such a homogeneous PN 

junction. However, the situation will be different when the action point of the external 

shear force changes, which will be discussed in the next section. At least, now we see 

why the electric field decreases with the increase of the mechanical fields in Fig. 5. For 

such a case where the external shear force acts on the end face, the properties of the PN 

junction will not be affected by mechanical fields. The decrease of E1 in Fig. 5(b) is 

purely caused by the coupling between free carriers and the piezoelectric effect. The 

distributions of internal shear force Q and bending moment M for different F are  

plotted in (e) and (f). Q is constant along the beam and M decrease to zero at the right 

face as expected. 

4.2. Force at the interface  



In this subsection, the case of the shear force F acting at the PN junction interface 

is investigated. For the beam in Fig. 8, the boundary conditions become: 
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Fig. 8 Composite beam with the shear force F acting at the PN junction interface 
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Fig. 9 Electromechanical fields near PN junctions for different values of F. (a) 

Electric potential φ; (b) Electric field E; (c) Bending displacement ω; (d) Thickness 

shear displacement Ψ; (e) Shear force Q; (f) Bending moment M. 

In Section 4.1, we found that the electrical properties of the junction cannot be 

tuned by the external end force. However, as shown in Fig. 9 (a) and (b), when the shear 

force is acting at the interface, the piezoelectric effect is such that the distributions of φ 

and E will vary with F. This may be developed as a novel tuning approach of 

homogeneous PS PN junctions. The corresponding mechanical fields are shown in (c) 

– (f). It shows clearly that the shear force Q and the bending moment M equal to zero 

at the right half of the beam, which is due to F acting at the interface causing the right 

part to be stress free. 

4.3. Distributed force 

When the composite beam is subjected to a distributed force f as shown in Fig. 10, 

the boundary conditions become: 
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Fig. 10 Composite beam subjected to a distributed force f  
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Fig. 11 Electromechanical fields near the PN junction for different values of 

distributed force f: (a) Electric potential φ; (b) Electric field E; (c) Bending 

displacement ω; (d) Thickness shear displacement Ψ; (e) Shear force Q; (f) Bending 

moment M. 

The electromechanical field distributions are displayed in Fig. 11. Similar to Fig. 

7, for different values of f, the electrical fields in (a) and (b) remain almost unchanged. 

That’s to say, the distributed force is similarly not applicable to the manipulation of 

homogeneous junctions. The values of Q are no longer constants and the curves of M 

are no longer linear, which is different to Fig. 7 and is not surprising. 

5. Conclusions 

In this paper, the electromechanical field distributions of the PN junction in a 

composite beam consisting of a piezoelectric dielectric layer and two non-piezoelectric 

semiconductor layers are investigated. It is suitable for the bending of PN junctions 

under shear deformation or shear force. Based on the macroscopic piezoelectric 

semiconductor theory, the effects of the doping level, thickness ratio, and material 

combination are systematically studied. Analytical results show that homogeneous 

junctions are difficult to be tuned by external shear force unless the action point locates 

near the interface. This may provide a new approach to the mechanical manipulation of 

conventional PN junctions when shear force dominates. 

In addition, the indirect piezoelectric effect of composite structures composed of 

piezoelectric media and non piezoelectric semiconductors provides a novel approach 



for the design of piezoelectric devices. In the future, more in-depth theoretical and 

experimental research should be conducted on this issue. 

Acknowledgments 

 

This work was supported by the National Natural Science Foundation of China 

(12061131013, 11972276, 12172171, and 12211530064), the State Key Laboratory of 

Mechanics and Control of Mechanical Structures at NUAA (No. MCMS-I-0522G01), 

the Fundamental Research Funds for the Central Universities (NS2022011 and 

NE2020002), National Natural Science Foundation of Jiangsu Province (BK20211176), 

Local Science and Technology Development Fund Projects Guided by the Central 

Government (2021Szvup061), Jiangsu High-Level Innovative and Entrepreneurial 

Talents Introduction Plan (Shuangchuang Doctor Program, JSSCBS20210166), and a 

project funded by the Priority Academic Program Development of Jiangsu Higher 

Education Institutions (PAPD). 

 

Appendix 



 

Fig. A Comparison of the linear analytical and nonlinear numerical results  

In Fig. A, it can be seen that the difference between the linearization theory derived 

in this paper and the nonlinear solution of COMSOL is relatively small, which can 

verify the correctness of the theory in this paper. 
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