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Abstract:  11 

Data-driven quantitative defect reconstruction using ultrasonic guided waves has recently 12 

demonstrated great potential in the area of non-destructive testing (NDT) and structural health 13 

monitoring (SHM). In this paper, a novel deep learning-based framework, called Deep-guide, has 14 

been proposed to convert the inverse guided wave scattering problem into a data-driven manifold 15 

learning progress for defect reconstruction. The architecture of Deep-guide network consists of the 16 

efficient encoder-projection-decoder blocks to automatically realize the end-to-end mapping of 17 

noisy guided wave reflection coefficients in the wavenumber domain to defect profiles in the 18 

spatial domain by the manifold distribution principle and intelligent learning. Towards this, results 19 

by the modified boundary element method for efficient calculations of scattering fields of guided 20 

waves have been generated as acoustic emission signals of the Deep-guide to facilitate the training 21 

and extract the features homeomorphically. The correctness, robustness and efficiency of the 22 

proposed framework have been demonstrated throughout several examples and experimental tests 23 

of circular defects. It has been noted that Deep-guide has the ability to achieve the high-quality 24 

defect reconstructions and provides valuable insights into the development of effective data-driven 25 

techniques for structural health monitoring and complex defect reconstructions. 26 

 27 
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 29 

1.Introduction 30 

Ultrasonic guided waves (UGW) have been widely used in non-destructive testing (NDT), due to 31 

their superb inspection sensitivity and capability of traveling large distances without much 32 

attenuation[1-4]. Applying the mode control and frequency tuning techniques, researchers have 33 

enabled UGW to achieve the high-precision and long-distance detection with just 1 or 2 probes in 34 

a variety of unusual circumstances such as inspections under fluids, coatings, and insulation[5]. In 35 

general, the use of UGW to reconstruct structural defects can be attributed to an inverse scattering 36 

problem. Solutions to such problem have focused on the development of knowledge-driven or 37 

physical-analytical methods, which are based on the guided wave scattering theory to realize the 38 

mapping between characteristics of the scattered waves and the defect profiles.  39 

For the detection of defects in plate-like structures, Rose et al[6] deduced a dyadic Green’s 40 

function for a point moment/force in a plate using the Mindlin plate model. Employing the Born 41 

approximation, a relationship between the far-field scattering amplitude and the spatial Fourier 42 

transform was found to reconstruct the weak flexural inhomogeneity[7]. Subsequently, the far-field 43 
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approximation-based approaches to the quantitative reconstruction of plate thinnings in solving 44 

the inverse problems were developed using SH-waves[8] and Lamb waves[9], respectively. In 2011, 45 

a two-dimensional finite element (FE)-based inverse scheme was proposed to size strip-like 46 

defects in plates using guided Lamb wave modes for the known defect position along the plate 47 

guide[10]. This technique was also applied for the determination of a cracked zone, which was 48 

representative of a uniform and linear impact damage inside a composite plate[11]. In the field of 49 

defect detection in pipelines, Da et al[12] proposed a novel method (QDFT) for the quantitative 50 

reconstruction of pipeline defects using ultrasonic guided SH-waves. This method started from the 51 

boundary integral equation and derived the Fourier transform pair of the defect shape function and 52 

reflection coefficients using the Born approximation. Finally, the unknown defect was 53 

reconstructed throughout the reference model.  54 

Despite the successful realization of quantitative defect reconstructions, there are some 55 

limitations for such knowledge-driven approaches. First, the inverse model is usually an 56 

approximate description of the reality, and extending it might be challenging due to the 57 

multi-mode and dispersive properties of guide waves[13]. Relatively accurate analytical models, 58 

such as those based on the iterative optimization, hardly demonstrated the real-time capabilities 59 

due to the computational complexity; Second, as the scattered signals often contain noise, the 60 

signal processing has to be conducted to solve such the ill-posed inverse scattering problem using 61 

the knowledge-driven mode[12].  62 

Taking into account these facts, the data-driven method has been introduced to solve the 63 

guided waves scattering problem and also has widespread impacts on the strategies of problem 64 

solving in many diverse fields, including inverse reconstructions[14-17]. For example, Feng et al[18] 65 

proposed a general end-to-end deep learning-based 3D reconstruction framework, which 66 

stochastically reconstructed a three-dimensional (3D) structure of porous media from a given 67 

two-dimensional (2D) image. In[19], the potential of carrying out inverse problems with linear and 68 

non-linear behaviour using deep learning methods was investigated. Besides, Florent et al[20] 69 

addressed the inverse identification of apparent elastic properties of random heterogeneous 70 

materials using machine learning based on artificial neural networks. For the image reconstruction, 71 

Chen et al[21] combined the autoencoder, deconvolution network and shortcut connections into the 72 

residual encoder-decoder convolutional neural network (RED-CNN) for low-dose X-ray 73 

computed tomography (CT). In[22], a direct deep learning image reconstruction method, called 74 

AUTOMAP (automated transform by manifold approximation), was proposed. Good results were 75 

reported for variously undersampled magnetic resonance imaging (MRI). For positron emission 76 

tomography (PET), a novel end-to-end PET image reconstruction technique, called DeepPET, was 77 

proposed to take the PET sinogram data as the input for quickly outputs of high quality, 78 

quantitative PET images[23]. Recently, Gao et al[24] has developed a generative adversarial network 79 

(GAN)-based deep-learning model for low-quality defect image reconstructions. The experimental 80 

results show that the proposed method has achieved great performances under different masks and 81 

noises. In the field of non-destructive testing (NDT), Piao et al[25] fused the rational Bezier curve 82 

(RBC) model with the least-square support vector machine (LS-SVM) for fast reconstruction of 83 
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three-dimensional (3-D) defect profiles from three-axis magnetic flux leakage (MFL) signals. 84 

Zhang[26] et al proposed a semi-supervised probability imaging algorithm to present the damage 85 

state in aluminium plate and composite plate in the absence of damage samples. Since the limited 86 

size of datasets as the input is the major bottleneck in use of machine learning algorithms for 87 

engineering applications, a new model[27] to augment training data has been developed to estimate 88 

the size of local wall thinnings.  89 

Inspired by the successful applications of machine learning algorithms in engineering, a 90 

novel data-driven robust framework, called Deep-guide, has been proposed for the defect 91 

reconstruction in this paper. To generate datasets for training the proposed deep learning network, 92 

a modified boundary element method (MBEM) has been developed to efficiently calculate stress 93 

and displacement fields of the scattered waves for reflection coefficients, which are used as the 94 

input signals for manifold learning to realize the end to end mapping of the transformed features 95 

to defect profiles. The proposed Deep-guide has enabled the automated learning of defect profiles 96 

throughout the homeomorphic manifold analysis and facilitate the defect representation in the 97 

spatial domain from feature extractions of reflection coefficients in the wavenumber domain with 98 

high levels of accuracy and efficiency. 99 

 100 

2. Method 101 

2.1 Knowledge-driven guided wave analysis for solving the inverse problem 102 

Defect reconstruction in structures using guided waves belongs to solving an inverse problem 103 

in non-destructive testing, which can be formalized as 104 

�̂� = 𝓗(𝒙) + 𝒆 (1)                                     105 

where 𝓗(𝒙) is the mapping function to be constructed for describing the unknown defect profile 106 

𝒙 in use of the noisy signals �̂�. The mapping 𝓗: 𝒙 ∈ ℝ𝐷 → �̂� ∈ ℝ𝑀 is the forward operator 107 

that represents the guided wave scattering system in 𝑀 dimension from the 𝐷-dimension space. 108 

𝒆 denotes the signal noise in 𝑀-dimension space and it reflects a random source of corruptions in 109 

the data �̂�.  110 

When the wave scattering effect is weak, 𝓗 can be approximately formulated as a linear 111 

operator 𝓗 ∈ 𝑅𝑀×𝐷, and the corresponding inverse operator can be determined by 112 

𝒙 =  𝓗inv(𝒚) (2)                                     113 

where 𝓗inv defines the mapping from 𝑀 to 𝐷 dimension space. It is evident that one of linear 114 

guided wave defect reconstruction methods such as wavenumber-spatial domain transform[8] has 115 

successfully achieved good quality reconstructions of 𝒙 from 𝒚 by a linear mapping (e.g., 116 

Fourier transform). However, the scattering would be strong in practice and problems defined in 117 

Eq.1 are often ill-posed. Taking into account these facts, the standard approach for solving such 118 

problems is to reconstruct the defects by the formulation of an iterative modelling technique, such 119 

as Quantitative detection of Fourier transform (QDFT)[12]. The above observations inspire a 120 

knowledge-driven approach, where the forward and inverse operators are determined by physical 121 

principles of the defect reconstruction process.  122 

 123 

2.2 Manifold learning for guided wave-based defect reconstruction technique 124 

The proposed data-driven approach in this paper, called Deep-guide, is formulated as follows: 125 

𝒙 = 𝓗net(�̃� ; �̂�) (3)                                      126 
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where the operator 𝓗Net represents a deep neural network and realizes the end-to-end mapping 127 

of the noisy scattering signal �̃� to the unknown defect 𝒙. 𝓗Net is modelled by a vector of 128 

optimal parameters �̂�, which is optimized for the minimization of a loss function and also 129 

determined as follows: 130 

�̂� = argmin
𝜽

∑ 𝐿net(𝓗net(�̃�𝑛 ;  𝜽); 𝒙𝑛)𝑁
𝑛=1 (4)                          131 

where �̃�𝑛 is the vector encompassing the noisy inputs and it is paired with the vector 𝒙𝑛 of the 132 

desired outputs. It is noted that the role of the loss function 𝐿net for the network is to examine the 133 

total discrepancy between the training dataset pairs for the minimization. It is also necessary that 134 

the space represented by the training data should sufficiently cover the domain of potential future 135 

inputs. Obviously, when the training session for the neural network generation is complete, the 136 

network has the capability to map a new supplied input �̃� using 𝓗net for the correct prediction 137 

of the unknown ground truth 𝒙.  138 

The schematic diagram of Deep-guide is shown in Fig. 1 for the description of manifold 139 

learning-based structural defect reconstruction using the fusion of an arbitrary guided wave 140 

scattering analysis and a paired class of defects 𝒙 ∈ ℝ𝐷 and noisy scattering signals �̃� ∈ ℝ𝑀. 141 

Based on the manifold distribution principle[28] and the geometric interpretation of deep 142 

learning[29], there are two assumptions as follows: 1) Scattering signals �̃� and defects 𝒙 are able 143 

to be concentrated on the low-dimensional manifold 𝒫ℳand 𝒫𝒟, respectively. 𝒫ℳ is embedded 144 

in the input space ℳ ∈  ℝ𝑀 and 𝒫𝒟 is a subset of the output space 𝒟 ∈  ℝ𝐷; 2) The operator 145 

𝓗net can realize a smooth and homeomorphic mapping function between the scattering manifold 146 

𝒫ℳ and the reconstruction manifold �̃�𝒟, where �̃�𝒟 represents the approximation of 𝒫𝒟[24]. 147 

 148 
Fig. 1. The overall schematic architecture of the proposed Deep-guide for structural defect reconstruction. The 149 

deep-learning network including the encoder 𝜑, the adaption projection 𝑓 and the decoder 𝜓, realizes an 150 

end-to-end mapping between the scattering noise data �̃� and the approximate profile of defect �̂�. In the process 151 

of intelligent learning, the Deep-guide framework implicitly connects a scattering manifold 𝒫ℳ  from the 152 

scattering data �̃� with the approximate defect manifold �̃�𝒟 by realizing the reconstruction function �̂� = 𝜓 ∙ 𝑓 ∙153 

𝜑(�̃�). 154 

 155 

The neural network 𝓗net developed in Deep-guide consists of three parts: the encoder, the 156 

latent projection and the decoder. The decomposition of the mapping function 𝒙 = 𝓗net(�̃� ; �̂�) 157 

during the reconstruction process is shown in Fig. 2. First, the encoder operator 𝜑 takes a sample 158 
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�̃� ∈  ℳ and maps it to 𝒛ℳ ∈  ℱℳ, 𝒛ℳ = 𝜑(�̃�), where 𝒛ℳ is the latent representation of the 159 

scattering data �̃�. The encoder is mathematically formulated as follows: 160 

{(ℳ, �̃�), 𝒫ℳ}
𝜑
→ {(ℱℳ , 𝒛ℳ), 𝒢ℳ} (5)                           161 

It is noted that the role of the encoder 𝜑 ∶  ℳ → ℱℳ maps the scattering manifold 𝒫ℳ to its 162 

latent representation 𝒢 ℳ =  𝜑(𝒫ℳ) homeomorphically. This enables the feature extraction of 163 

the scattering data in a comparatively low-dimensional space and well capture of the main 164 

variations in the data. 165 

   Then, the adaption projection 𝑓 ∶  ℱℳ → ℱ𝒟 maps 𝒛ℳ to 𝒛𝒟 and the reduced scattering 166 

manifold  𝒢 ℳ to the adjustable manifold 𝒢𝒟, where  𝒢𝒟 is the latent representation of defect 167 

manifold 𝒫𝒟. The adaption projection realizes the inter-manifold projection and can be expressed 168 

by 169 

{(ℱℳ , 𝒛ℳ), 𝒢ℳ}
𝑓
→ {(ℱ𝒟 , 𝒛𝒟),  𝒢𝒟} (6)                           170 

Following the encoder and adaption projection processes, the decoder 𝜓 ∶  ℱ𝒟 → 𝒟 maps 171 

𝒛𝒟 to the reconstruction defect �̂�, and creates a local parametric representation  �̃�𝒟 of the 172 

adjustable manifold  𝒢𝒟. �̃�𝒟 approximates to the defect manifold 𝒫𝒟 and �̂� is similar to the 173 

ground truth 𝒙. The decoder is given by 174 

{(ℱ𝒟, 𝒛𝒟),  𝒢𝒟}
𝜓
→ {(𝒟 , �̂�), �̃�𝒟} (7)                            175 

Summarily, the inverse process �̂� = 𝜓 ∙ 𝑓 ∙ 𝜑(�̃�) of guided wave defect reconstruction is 176 

achieved with the mathematical representation shown in Eq (8) 177 

{(ℳ, �̃�),  𝒫ℳ}
𝜑
→ {(ℱℳ, 𝒛ℳ), 𝒢ℳ}

𝑓
→ {(ℱ𝒟, 𝒛𝒟),  𝒢𝒟}

𝜓
→ {(𝒟 , �̂�),  �̃�𝒟} (8) 178 

 179 

 180 

Fig. 2. The reconstruction process is decomposed into an encoding map 𝜑, an adaption projection 𝑓 and a 181 

decoding map 𝜓. 182 

 183 

It is worthy of noting that the input data �̃� is usually corrupted by noise and as described in 184 

denoising autoencoder[30], reconstruction of a defect using the contaminated scattering data can be 185 

inferred from the perspective of manifold learning and this indicates that the reconstruction 186 

operator 𝓗net in Deep-guide is robust to noise. As shown in Fig. 3, suppose that a special class 187 

of clean scattering data 𝒚 is represented by a manifold 𝒫ℳ  in a low-dimensional space. 188 
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Obviously, the sample �̃� with noisy contamination obtained by applying corruption process 189 

𝑞(𝒚 ̃| 𝒚) will locate its position away from the manifold and the crosses marked in red indicate 190 

this information. Throughout the learning process, the training stage aims at the determination of a 191 

stochastic mapping operator 𝑝(�̂� | 𝒚 ̃ ) that projects 𝒚 ̃ onto the clean reconstruction manifold 192 

 �̃�𝒟, which is similar to truth defect manifold 𝒫𝒟. Fig. 4 shows that the manifold structure of a 193 

scattering data set contains 200  clean signals and 200  noisy signals (with 15 dB white 194 

Gaussian noise). Each signal has the dimension of 300 × 1, and is treated as a point in the input 195 

space ℳ ∈ ℝ𝟑𝟎𝟎.  196 
In order to perform nonlinear dimensionality reduction on high-dimensional scattering 197 

signals, this study utilizes the t-Distributed Stochastic Neighbor Embedding (t-SNE) algorithm[31] 198 
to map scattering data onto a three-dimensional space, and each sample is represented as a single 199 
point in the reduced space of manifold. As compared with other manifold learning algorithms such 200 
as LLE[32], and Isomap[33], t-SNE has advantages including its remarkable effectiveness in 201 
preserving local structure, high-quality visualization for data exploration and analysis, and 202 
computational efficiency and scalability for large-scale datasets due to the implementation of 203 
stochastic gradient descent[22]. 204 

In Fig. 4a, the clean scattering signals are depicted as the symbol ‘circles’ marked in blue and 205 

the noise signals are marked in red. Fig. 4b shows the manifold structure of reconstruction results 206 

generated by the operator 𝓗net  using 400  samples of defects �̂�  with the dimension of 207 

144 × 1. Results demonstrate that the proposed operator 𝓗net in Deep-guide has the ability to 208 

remove the noise from the corrupted signals and reconstruct a clean manifold. 209 

 210 
Fig. 3. From the perspective of manifold learning: Schematics of the adaptive denoising capability in defect 211 

reconstruction.  212 

 213 
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 214 

Fig. 4. Visualization of the adaptive denoising in the process of defect reconstruction using t-SNE algorithm. 215 

Results of (a) the scattering dataset and (b) the reconstructed defects in three-dimensional space. 216 

 217 

2.3 Deep-guide network architecture 218 

To realize the manifold learning-assisted structural defect reconstruction in Section 2.2, the 219 

proposed Deep-guide network architecture is designed to extract main features from the noisy 220 

scattering signals using three components: an encoder 𝜑, an adaption projection 𝑓 and a decoder 221 

𝜓. The input data �̃� to the Deep-guide network is a 2𝑚 × 1 real-valued vector reshaped from a 222 

𝑚 × 1 complex-valued coefficients vector in frequency domain and the output �̂�  in spatial 223 

domain is of the size 𝑙 × 1 (𝑙 = 144 in this study). As shown in Fig 5, the encoder and the 224 

decoder consist of sequential blocks of convolutional layers and the adaption projection is 225 

composed of fully connected layers. The structure of the convolutional blocks includes the 226 

convolutional filters of 3 × 1 with stride 1, the batch normalization (BN) and the activation 227 

function of a rectified linear unit (ReLU). The encoder contracts the input data by a max pooling 228 

layer with stride 2 and outputs 32 features in dimension of 𝑚 × 1. Each feature is achieved by 229 

applying a non-linear function to the input scattering data �̃� and contains the useful information 230 

about the reconstruction defects. This is inspired by the mechanism of the homeomorphic 231 

mapping 𝒢 ℳ =  𝜑(𝒫ℳ) in the manifold learning process as aforementioned. The first hidden 232 

layer in adaption projection with 𝑙/2 neurons is fully connected to the output layer of the encoder 233 

and activated by the hyperbolic tangent function. Then, this hidden layer is duplicated and four 234 

convolutional layers with the same parameter setting as the layers in the encoder are repeated in 235 

the decoding process. After setting upsamples, the contracted adaption representation 𝒛𝒟  is 236 

projected by the decoder into reconstruction defects �̂�. 237 

 238 
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 239 

Fig. 5. The Deep-guide architecture is composed of a convolutional encoder (using a max pooling layer with stride 240 

2 for dimensionality reduction), a two-layer fully connected adaption projection and a convolutional upsampling 241 

decoder (using fractional stride of 0.5 for upsampling by a factor of 2).  242 

 243 

2.4 Dataset generation by guided wave analysis for solving the forward problem 244 

In this paper, reconstruction of surface thinning flaws in a 2-dimensional steel plate using guided 245 

waves is performed, with the aid of the proposed Deep-guide framework, which is capable of 246 

quantitative defect profile sizing using different types of incident guided waves, such as SH-waves 247 

and Lamb waves. 248 

The problem configuration is set as following: a thinning defect is localized on the upper 249 

surface of a two-dimensional plate as shown in Fig 6a, where ℎ represents the plate thickness, 𝑤 250 

and 𝑑 the width and depth of the defect, respectively. In order to simplify the problem, the plate 251 

is assumed to be infinitely large to suppress the edge reflections in modelling process. As shown 252 

by Fig. 6, 𝑆∞
− and 𝑆∞

+ are intact plate surfaces at left and right sides of the flaw, tending to minus 253 

and plus infinity of 𝑥1-axis, respectively. 𝐸− and 𝐸+ are points where scattered waves are 254 

observed, assumed to be located on 𝑆∞
− and 𝑆∞

+ , respectively, which are far enough from the 255 

defects. As an example, the guided Lamb wave of the 𝑛th mode is selected as the incident wave, 256 

propagating from the left side to right, and then scattered by the thinning part and the reflected and 257 

transmitted waves are observed at the far field. 258 

 259 
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 260 
Fig. 6. Illustration of the forward analysis of the guided wave scattering problem. (a) Iso view of the guided wave 261 

scattering by a plate thinning. (b) Schematic diagram for the modified boundary element method. 262 

 263 

According to the far-field assumption[8], the reflected and transmitted wave fields at the far 264 

field can be expressed as the summation of a series of guided Lamb wave modes: 265 

𝒖ref(𝒙, 𝜔) ≈ 𝑅1
−𝒖1−(𝒙, 𝜔) + 𝑅2

−𝒖2−(𝒙, 𝜔) + ⋯ + 𝑅𝑛
−𝒖𝑛−(𝒙, 𝜔)  where  𝒙 ∈ 𝑆∞

− (9)        266 

𝒖tra(𝒙, 𝜔) ≈ 𝑅1
+𝒖1+(𝒙, 𝜔) + 𝑅2

+𝒖2+(𝒙, 𝜔) + ⋯ + 𝑅𝑛
+𝒖𝑛+(𝒙, 𝜔)  where  𝒙 ∈ 𝑆∞

+ (10)             267 

where the coordinate vector 𝒙  is in the form of (𝑥1, 𝑥2) , 𝜔  is the circular frequency. 268 

𝒖𝑖±(𝒙, 𝜔) (𝑖 = 1 … 𝑛) is the unit wave structure of the ith Lamb mode propagating towards 269 

positive or negative 𝑥1  directions, respectively. 𝑅𝑖
±(𝜔)  are the corresponding complex 270 

amplitudes and termed as transmission and reflection coefficients, respectively.  271 

The transmission and reflection coefficients are in frequency domain, and can be obtained by FFT 272 

from time-domain data in practice[34]. To reconstruct the plate surface thinning defect, the matrix 273 

𝑹ref representing multifrequency reflection coefficients is taken as the input of Deep-guide 274 

framework to reconstruct the plate’ surface thinning defect. The Deep-guide neural network is 275 

mathematically formulated as 276 

𝒙 = 𝓗net(𝑹ref ; �̂�) (11)                                  277 

where  278 

𝑹ref = [
𝑅1

−(𝜔1) ⋯ 𝑅𝑛
−(𝜔1)

⋮ ⋱ ⋮
𝑅1

−(𝜔𝑚) ⋯ 𝑅𝑛
−(𝜔𝑚)

] (12)                            279 

𝓗Net and �̂� are defined in Eq. 3.  280 

In order to efficiently generate sufficient data for the powerful data-mining capability of 281 

Deep-guide framework, the modified boundary element method (MBEM)[35-36] has been applied to 282 

simulate and predict reflection coefficients of guided waves propagating through thinning defects. 283 

The role of MBEM in this research not only provides the theoretical basis, but an insight to the 284 
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fusion of numerical analysis and data-driven learning method for quantitative reconstruction of 285 

defects using ultrasonic guided waves in the field of nondestructive evaluation. As shown in Fig 286 

6b, 𝑆3 is the defect region. According to reciprocal theorem[37], the integral equation for solving 287 

the two-dimensional elastic wave scattering problem can be expressed as 288 

∫ [𝑢𝛼𝛽
∗ (𝑿, 𝒙, 𝜔)𝑡𝛼

sca(𝒙, 𝜔) − 𝑡𝛼𝛽
∗ (𝑿, 𝒙, 𝜔)𝑢𝛼

sca(𝒙, 𝜔)]𝑑𝑆(𝒙) =
1

2
𝑢𝛼

sca(𝑿, 𝜔)
 

𝑆

 𝛼, 𝛽 = 1,2    𝑿 ∈ 𝑆1 ∪ 𝑆2 ∪ 𝑆3 (13) 289 

where 𝑿 and 𝒙 are the source and field points, respectively. 𝜔 is the circular frequency; 𝑆3 290 

defines the flaw region; 𝑆1  and 𝑆2  are free-traction surfaces. 𝑢𝛼
sca(𝑿, 𝜔)  and 𝑡𝛼

sca(𝒙, 𝜔) 291 

denote displacements and stresses of the scattering wave. 𝑢𝛼𝛽
∗ (𝑿, 𝒙, 𝜔)  and 𝑡𝛼𝛽

∗ (𝑿, 𝒙, 𝜔) 292 

represent the full-space Green’s function of displacements and stresses. Since 𝑢𝛼
sca(𝒙, 𝜔) at the 293 

infinite boundary can be expressed in the form of Eqs. 9 and10, the integral term at the infinite 294 

boundary in Eq. 13 can be reformulated as follows: 295 

∫ 𝑡𝛼𝛽
∗ (𝑿, 𝒙, 𝜔)𝑢𝛼

 (𝒙, 𝜔)
 

𝑆∞
±

𝑑𝑆(𝒙) = ∑ 𝑅𝑖
±(𝜔)𝐴𝑖

±(𝑿)

𝑛

𝑖=1

= ∑ 𝑅𝑖
±(𝜔)

𝑛

𝑖=1

∫ 𝑡𝛼𝛽
∗ (𝑿, 𝒙, 𝜔)𝑢𝛼

𝑖±(𝒙, 𝜔)
 

𝑆∞
±

𝑑𝑆(𝒙) (14) 296 

where 𝑅𝑖
±(𝜔) is the scattering coefficient, 𝐴𝑖

±(𝑿) is defined as the modified item. Traditional 297 

boundary element method ignores the integral term at the infinite boundary, which leads to the 298 

spurious perturbation by reflected waves at the artificially truncated sections. In order to eliminate 299 

such influence and calculate the integral term, a fictitious boundary 𝑆4 is introduced to divide the 300 

whole boundaries into two regions shown in Fig. 6b. Applying a reciprocal identity method 301 

between a unit Lamb mode and the Green’s function with the source at 𝑿 to the half infinite plate 302 

bounded by 𝑆∞
±, the modified item 𝐴𝑖

±(𝑿) can also be expressed as 303 

𝐴𝑖
±(𝑿) = −

1

2
𝑢𝛼

inc(𝑿, 𝜔) − ∫ 𝑡𝛼𝛽
∗ (𝑿, 𝒙, 𝜔)𝑢𝛼

±(𝒙, 𝜔)𝑑𝑆(𝒙)
 

𝑆1
±+𝑆2

±+𝑆3
±+𝑆4

±

+ ∫ 𝑢𝛼𝛽
∗ (𝑿, 𝒙, 𝜔)𝑡𝛼

±(𝒙, 𝜔)𝑑𝑆(𝒙)
 

𝑆1
±+𝑆2

±+𝑆3
±+𝑆4

±
  𝛼, 𝛽 = 1,2    𝑿 ∈ 𝑆1 ∪ 𝑆2 ∪ 𝑆3     𝒙 ∈ 𝑆1 ∪ 𝑆2 ∪ 𝑆3 ∪ 𝑆4 (15)

 304 

Substituting Eq.15 into Eq.14, the discretized Eq. 13 can be rewritten as 305 

∑ ∑ 𝑻𝛾𝜂

𝑁𝑒

𝜂=1

⋅ 𝒖(𝒙𝜂 , 𝜔) + ∑[𝑅𝑖
−𝐴𝑖

−(𝑿𝛾) + 𝑅𝑖
+𝐴𝑖

+(𝑿𝛾 , 𝜔)] = ∑ ∑ 𝑮𝛾𝜂

𝑁𝑒

𝜂=1

⋅ 𝒕(𝒙𝜂 , 𝜔)

𝑒∈𝑆1∪𝑆2

𝑛

𝑖=1𝑒∈𝑆1∪𝑆2∪𝑆3

(16) 306 

where 𝑁𝑒 is the number of the discrete elements; 𝑻𝛾𝜂 and 𝑮𝛾𝜂 are the fundamental solutions 307 

matrixes of the local element. After assembling all element matrixes, the global equilibrium 308 

equation can be established as follows: 309 

𝑯 ⋅ 𝑼 + 𝑨 ⋅ 𝑹 = 𝑮 ⋅ 𝑻 (17)                                  310 

where global matrixes 𝑯, 𝑮, 𝑼, 𝑻, 𝑨 and 𝑹 are obtained by assembling 𝑻𝛾𝜂, 𝑮𝛾𝜂, the node 311 

displacement 𝒖(𝒙𝜂, 𝜔), the node traction 𝒕(𝒙𝜂, 𝜔), the correction 𝐴𝑖
±(𝑿) and the scattering 312 

coefficients 𝑅𝑖
±, respectively. 313 

Then, the acoustic signals of scattering coefficients are obtained by solving the Eq. 17. Based 314 

on the information for defect reconstruction using manifold learning described in Sections 2.2-2.4, 315 

the framework of the proposed Deep-guide can be illustrated in Algorithms 1 below. 316 

 317 

Algorithm 1: The manifold-learning assisted Deep-guide framework 318 
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 319 
 320 

In the following study, material properties of the steel plate include Young modulus 𝐸 =321 

207.18 Gpa , Poisson coefficient 𝜐 = 0.2949 , the density 𝜌 = 7800 kg/m3  and the plate 322 

thickness of 1 mm. The distance between two observation points 𝐸− and 𝐸+ is 8 mm and the 323 

size of element is 0.02 mm, which ensures the results of MBEM with a high level of accuracy. A 324 

dataset of 4096 noisy scattering signals from three common shapes of plate surface defects, i.e. 325 

rectangular, V-notch and Gaussian-curved flaws, have been obtained by MBEM. The original 326 

defect parameters and profiles are shown in Table 1 and Fig 7. The plate thickness in all cases is 327 

ℎ = 1 𝑚𝑚.  328 

 329 
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Table 1 Parameters for three types of defects 330 

 Maximum 

width 

𝑤𝑚𝑎𝑥  (𝑚𝑚) 

Minimum width 

𝑤𝑚𝑖𝑛  (𝑚𝑚) 

Maximum depth 

𝑑𝑚𝑎𝑥  (𝑚𝑚) 

Minimum depth 

𝑑𝑚𝑖𝑛  (𝑚𝑚) 

Rectangular defects 0.8 0.2 0.7 0.1 

V-notch defects 0.8 0.2 0.7 0.1 

Gaussian-curved defects 1.14 0.1 0.7 0.1 

 331 

 332 

Fig. 7. Illustration of three types of defect profiles: (a) Rectangular defects, (b) V-notch defects, (c) 333 

Gaussian-curved defects (maximum variance 𝑣𝑚𝑎𝑥 = 0.2, minimum variance 𝑣𝑚𝑖𝑛 = 0.02). 334 

 335 

The simulated 4096 signals have been calculated for the inputs of reflection coefficients 336 

regarding each defect. To demonstrate the robustness of the proposed Deep-guide network, all 337 

simulation results are corrupted by white Gaussian noise with the signal-to-noise ratio (SNR) 338 

randomly distributed between 5 𝑑𝐵 and 20 𝑑𝐵. Also, the original 4096 plate thinning defects 339 

have been treated as the ground truth. 340 

Among 4096 signals, 1024 samplings were obtained from the scattering analysis of three 341 

aforementioned types of defects using the incident 𝑆0 Lamb wave mode. For each defect, the 342 

circular frequency 𝜔  of the incident wave is ranged from 0.1 MHz to 4.0 MHz with the 343 

increment of 0.1, a total of 40 frequency samples. The amplitude coefficients of first seven 344 

Lamb wave modes have been used for the calculations at each frequency sample. Thus, the 345 

reflection coefficients of Lamb waves 𝑹Lamb can be expressed as follows: 346 

𝑹Lamb = [
𝑅1

−(𝜔1) ⋯ 𝑅7
−(𝜔1)

⋮ ⋱ ⋮
𝑅1

−(𝜔40) ⋯ 𝑅7
−(𝜔40)

] (18)                                347 

The remaining 3072 signals were obtained from the analysis using the incident 0th 348 

SH-mode. The circular frequency 𝜔 in the range of 0.1 MHz to 15.0 MHz with the increment 349 

of 0.1, includes a total of 150 frequency samples. The amplitude coefficients of the first ten 350 

SH-wave modes have been used for the calculations at each frequency sample. Therefore, the 351 

reflection coefficients of SH-waves 𝑹SH can be expressed as follows: 352 
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𝑹SH = [
𝑅1

−(𝜔1) ⋯ 𝑅10
− (𝜔1)

⋮ ⋱ ⋮
𝑅1

−(𝜔150) ⋯ 𝑅10
− (𝜔150)

] (19)                               353 

It is worth nothing that when Deep-guide is used for defect reconstruction, only a small 354 

number of frequency samples are required for the high-quality reconstruction. Numerical  355 

validations below will provide a reference to the number of frequency samples (𝐹ref) for practical 356 

applications of Deep-guide. 357 

 358 

2.5 Defect quality evaluation 359 

To quantitatively evaluate the quality of the reconstructed defects, two metrics have been used. 360 

The first criterion is the root mean square error (RMSE) formulated as: 361 

RMSE =  √
∑ (𝑥𝑖 − �̂�𝑖)2𝑁

𝑖=1

𝑁
(20) 362 

where 𝑁 is the number of sampling points to represent defects, 𝑥𝑖 is ground value of the truth 363 

defect and �̂�𝑖 is prediction value of the reconstructed defect. 364 

The second metrics used for the defect quality evaluation is the peak signal-to-noise ratio (PSNR) 365 

as follows: 366 

PSNR = 20 ∙ log10 (
𝑥max

RMSE
) (21) 367 

where 𝑥max is the maximal value of the ground truth defects 𝒙. A higher value of PSNR 368 

represents the better defect quality. 369 

 370 

3. Numerical Validation  371 

3.1 Validation of the proposed Deep-guide framework 372 

To develop the Deep-guide framework with better generality for efficiently solving the inverse 373 

problem of defect reconstructions, the deep neural network model 𝓗net has been trained using 374 

the first three modes of SH-waves and Lamb waves scattering signals, respectively. Following that, 375 

the unknown defects in the test set have been reconstructed. It is worth noting that the same 376 

network architecture and hyperparameters have been kept intact during the process of defect 377 

reconstructions whilst using two different input and output signals to evaluate the generality of the 378 

develop network. Reconstructions of defects with three types of profiles (Rectangular, V-notch 379 

and Gaussian-curved defects) using different modes of SH-waves and Lamb waves have been 380 

shown in Fig.8. The number of test samples (𝑁 =  450) in this research has been used. The 381 

state-of-art conventional knowledge-driven reconstruction method, which is called Born 382 

approximation-based Fourier transform (BFT)[8, 9] has been compared against the proposed 383 

method. The BFT is used to reconstruct defects using SH0 and S0 mode. It is noted that the 384 

Deep-guide framework takes less than 0.1 seconds for defect reconstruction as it only requires 385 

one pass to execute calculations. It can be observed that main features of the defects have been 386 

successfully reconstructed in all cases, where the remarkable capability of Deep-guide for defect 387 

reconstruction using different guided waves have been demonstrated.  388 

 389 
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 390 
Fig.8. Reconstruction results of plate surface defects using Deep-guide framework. Plate thickness ℎ = 1𝑚𝑚, 𝑤 391 

and 𝑑 are the width and depth of the defects, respectively. Each model has been trained by 1024 sampling data 392 

with 40 circular frequency samples. Reconstructed defects with various widths and depths using (a-c) SH-wave 393 

modes and (d-f) Lamb wave modes. The yellow lines represent the reconstruction results using BFT with SH0 and 394 

S0, respectively. 395 

 396 

Furthermore, the quantitative evaluations on the qualities of reconstruction, i.e., average 397 

RMSE and PSNR in the test set have been provided in Tables 2 and 3. For defect reconstructions 398 

by the 0th mode of SH-waves, the average RMSE is 0.0257, which is the lowest value as 399 

compared with results by the other two modes and BFT. Employing the developed Deep-guide 400 

framework for defect reconstruction, the result quality obtained by the 0th mode of SH-waves has 401 

been improved by 7% from 0.0275 of the first mode, 16.34% from 0.0299 of the second 402 

mode and 69.7% from 0.0435 of the BFT, respectively. The same conclusion can be drawn by 403 

the average PSNR - the best result is 25.3999 dB by the 0th mode, whilst 24.6997 dB is 404 

observed for the first mode, 23.6665 dB for the second mode and 21.2297 dB for the BFT. 405 

Overall, the best precision of defect reconstructions using the Deep-guide framework can be 406 

achieved by the 0th mode in first two cases. For Case 3, the result by the BFT is slightly better 407 

than defect reconstruction by the Deep-guide, this might owe to the fact that the Fourier method is 408 

more suitable for reconstructing smooth circular defects. It has been anticipated that the 0th mode 409 

would have the ability to reconstruct defects with complex profiles when the number of training 410 

data is increased. For the simple defect profile in Case 2, the highest accuracy of reconstruction of 411 

V-notch defects has been indicated by the RMSE value of 0.0133 obtained by the 0th mode of 412 

SH-waves. It has been observed that the average reconstruction performances using SH-waves can 413 

be evaluated by RMSE and PSNR over the entire test set with the values of 0.0277 and 414 

24.5887 dB, respectively.  415 

Furthermore, the same Deep-guide architecture has been applied for reconstruction of defects 416 

using Lamb waves. In Table 3, the smallest average RMSE (0.0262) of reconstructions by A0 417 

Lamb wave mode in three cases has been observed, as compared with 0.0333 by the S0 mode 418 

(27.1%  higher), 0.0442 by A1 mode (68.7%  higher) and 0.0444 by BFT (69.5%  higher) . 419 
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Similarly, the quality of defect reconstructions evaluated by the average PSNR value has been also 420 

provided to demonstrate the more accuracy of results by the A0 Lamb wave mode than those by 421 

the other two modes. Again, V-notch defect reconstruction using Lamb waves has the best 422 

precision with the average RMSE (0.027), which is improved by 31.85% and 52.22% from 423 

0.0356 and 0.0411 in Case 3 and 1, respectively. It is worth noting that the largest PSNR value 424 

of Gaussian-curved defect reconstructions by three Lamb wave modes is 25.0783 dB (A0 425 

mode), which indicates that the developed Deep-guide framework has the capability to reconstruct 426 

the defect with a complex profile. This has well agreed with the observation from the 427 

aforementioned reconstruction by SH-waves.  Also, the average RMSE over the entire test set 428 

using Lamb waves is 0.0346, which is increased by 24.91% from 0.0277 in Table 2 using 429 

SH-waves, and PSNR is decreased from 24.5887 dB to 23.6607 dB, accordingly.  430 

In summary, the quantitative evaluation on the quality of defect reconstructions by the 431 

proposed Deep-guide framework shows that: 1) Based on the results from entire test samples, the 432 

reconstruction accuracy of the Deep-guide method is higher than that of BFT. Moreover, the 433 

results of Deep-guide have noise-free waveform in non-defective regions, which is more favorable 434 

for defect localization. 2)The reconstruction by the lower order modes performs better using either 435 

SH-waves or Lamb waves; 2) Constructing different types of defects has different reconstruction 436 

precisions in terms of RMSE and PSNR. Also, the highest reconstruction precision can be 437 

observed for V-notch defect construction by SH-waves and Lamb waves. This can be interpreted 438 

from the perspective of manifold structure illustrated in Section 3) The precision of defect 439 

reconstruction using SH-waves ( 24.5887 dB ) is improved by 0.928 dB  from the result 440 

(23.6607 dB) using Lamb waves.  441 

 442 

Table 2 RMSE and PSNR of reconstructed defect shapes using SH-waves 443 

  0th Mode First Mode  Second Mode Average BFT 

Case 1 

Rectangular defect 

RMSE 0.0255 0.0257 0.036 0.029 0.0566 

PSNR(dB) 23.3692 22.9625 20.3295 22.2204 19.1993 

Case 2 

V-notch defect 

RMSE 0.0133 0.0136 0.0158 0.0142 0.0532 

PSNR(dB) 29.677 29.2967 28.0829 29.0189 19.7635 

Case 3 

Gaussian-curved 

defect 

RMSE 0.0384 0.0432 0.0379 0.0398 0.0207 

PSNR(dB) 23.1535 21.8398 22.5871 22.5268 24.7263 

Average 
RMSE 0.0257 0.0275 0.0299 0.0277 0.0435 

PSNR(dB) 25.3999 24.6997 23.6665 24.5887 21.2297 

 444 

Table 3 RMSE and PSNR of reconstructed defect shapes using Lamb waves 445 

  Mode = A0 Mode = S0 Mode = A1 Average BFT 

Case 1 

Rectangular defect 

RMSE 0.0345 0.0366 0.0522 0.0411 0.0586 

PSNR(dB) 23.0504 22.5365 19.4565 21.6811 18.8543 

Case 2 

V-notch defect 

RMSE 0.0176 0.0254 0.0379 0.027 0.0492 

PSNR(dB) 27.0774 25.0693 22.7761 24.9743 21.6754 

Case 3 

Gaussian-curved 

defect 

RMSE 0.0266 0.0379 0.0424 0.0356 0.0245 

PSNR(dB) 25.0783 24.2307 23.6713 24.3268 24.8053 
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Average 
RMSE 0.0262 0.0333 0.0442 0.0346 0.0444 

PSNR(dB) 25.0687 23.9455 21.968 23.6607 21.7783 

 446 

3.2 Verification of defect localization of the Deep-guide framework 447 

As the reflection coefficients (the input of the Deep guide framework) are complex numbers 448 

in nature, their phase information actually reflects the defect's position extracted by Deep guide 449 

network for defect localization. Fig. 9 has shown the reconstruction results by some representative 450 

methods such as QDFT[38] and BFT-SH[8] for double rectangular defects located at different 451 

positions along the width direction, demonstrating that the Deep-guide method has achieved the 452 

highest accuracy of defect localization. It has been noted that due to the periodicity of the wave 453 

field, defect localization can only be conducted in the vicinity of the defect area. Therefore, in 454 

practical inspection defect localization technique needs to consider the reception time of the wave 455 

signal: First, the defect's area is estimated based on the arrival time of the reflected wave and the 456 

wave speed, and then the precise localization is achieved by leveraging the phase information. 457 

 458 

Fig. 9. Reconstruction results of two rectangular defects located at different positions. 459 

 460 

It has been noted that the Deep-guide method has two advantages over the BFT and QDFT 461 

methods. Firstly, due to the complexity of guided wave scattering fields, BFT and QDFT methods 462 

can only construct approximate linear reconstruction models using Born approximation. While the 463 

Deep-guide method can achieve higher accuracy in reconstruction by the implementation of 464 

complex nonlinear mappings between scattering data and defect shapes; Secondly, for 465 

reconstructions by different types of guided waves or waveguides with different structures using 466 

BFT and QDFT methods, the derivation of analytical formulations and a time-consuming 467 

modelling process are required. On the contrary, the Deep-guide method has good universality and 468 

can be easily applied to different types of waveguides and defects. As the Deep-guide requires a 469 

large amount of sampling data as the input, it is challenging to achieve high-accuracy defect 470 

reconstructions using limited data. Therefore, further research studies are suggested to address this 471 

issue for the wide application of Deep-guide method in the fields of structural health monitoring 472 

and structural integrity. 473 

 474 

3.3 Verification of 3D defect reconstruction of the Deep-guide framework 475 

To validate the feasibility of the proposed method in solving 3D defect reconstructions, 476 

numerical experiments have been conducted to demonstrate the advantages of Deep-guide method. 477 

Technically, the 2D convolutional layer has been adopted to output the depth information of the 478 
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defect in the decoder module. Furthermore, to characterize the defect dimensions including the 479 

length, width and depth within the structure, the 3D convolutional layer enables the point cloud 480 

outputs to represent the complete defect information. With these implementations, the trained 481 

Deep-guide framework by 3D guided wave scattering data has the ability to reconstruct 3D 482 

defects including the cross-section and length information.  483 

Using the dimensionless parameters defined in Section 2.4, a surface defect in an infinitely 484 

plate with a thickness of 2ℎ in Fig.10(a) has been studied. The incident S0 mode of Lamb waves 485 

along the 𝑥1 direction has been exerted and further scattered upon encountering the defect to 486 

form a scattered wave field. 30 receivers around the defect have been placed in a circle to record 487 

the scattered wave signals. Three types of defects including the frustum, rectangular prism, and 488 

circular-rectangle combinations have been considered for reconstruction. 50 sample data for 489 

each type of defect have been used for defect reconstructions. The dimensionless frequency of 490 

scattered wave has been uniformly sampled in the range of 0.05 𝑡𝑜 0.1 with an increment of 0.01. 491 

In this numerical experiment, FEM has been used to simulate the scattered wave field of the 492 

defects shown in Fig. 10(b). The Deep guide framework with the implementation of a 2D 493 

convolutional layer as the Decoder has been adopted for defect depth reconstruction. The contour 494 

values by the neural network have represented the depth of the defect at each of 50 sampling 495 

points. Reconstruction results have been shown in Figs. 11-13 to represent three types of defects, 496 

respectively. It has been observed that the Deep-guide method has successfully realized 497 

three-dimensional defect reconstructions, simultaneously characterizing the length, width, and 498 

depth of the defects with high accuracy as compared with the ground values. 499 

 500 

Fig. 10. (a) Scattering of incident Lamb wave on defect, received by array sensors (b) Scattering wave field 501 

simulated by FEM. 502 

 503 
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 504 

Fig. 11. Reconstruction results of a conical-shaped defect, presented in top view and 3D Iso-view in the 𝑥𝑦 plane. 505 

 506 

 507 
 508 

Fig. 12. Reconstruction results of a rectangular-shaped defect, shown in top view and 3D Iso-view in the 𝑥𝑦 509 

plane. 510 

 511 
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 512 

Fig. 13. Reconstruction results of a combined defect with circular and rectangular shapes, presented in top view 513 

and 3D Iso-view in the 𝑥𝑦 plane. 514 

 515 

3.4 Effect of the number of frequency samples on the accuracy of reconstruction 516 

As described in Section 2.4, each item in the matrix of reflection coefficients 𝑹ref used to 517 

reconstruct defects represents the complex amplitude of the wave mode at different circular 518 

frequency. In practice, the process of defect reconstruction by fewer frequency samples means less 519 

computational and experimental cost. However, quantitatively defect reconstruction using existing 520 

knowledge-driven methods such as the wavenumber-spatial domain transform requires at least 521 

150 frequency samples[8]. Taking into account this situation, the effects of the number of 522 

frequency samples on the accuracy and efficiency of defect reconstruction using the 0th mode of 523 

SH-waves have been investigated in this section. To demonstrate the more superior performance 524 

of the proposed Deep-guide framework over the traditional methods for defect reconstruction, the 525 

maximal number of frequency samples used for defect reconstruction has been set to 100. 526 

A General Case Study 527 

    First, the Deep-guide models have been trained using reflection coefficients 𝑹ref  with 528 

different numbers of frequency samples. For a general scenario, a 450-sample dataset including 529 

three types of defects (Rectangular, V-notch and Gaussian-curved defects) has been applied to 530 

evaluate the capability of Deep-guide models for reconstructions of unknown defects in term of 531 

the accuracy. The test results show that in this general case, models generated with more 532 

frequency samples achieve better reconstruction performance, which is indicated by a relatively 533 

lower and narrower distribution of RMSE over the test dataset in Fig. 14a, whereas models trained 534 

by fewer frequency samples have poor predictions on defect reconstruction with a higher and 535 

wider range of RMSE. Also, it has been observed that the median value (0.018) of RMSE and the 536 

median value (24.285 dB) of PSNR have demonstrated that the model created by Deep-guide 537 

architecture with the input of 100  frequency samples has best prediction accuracy and 538 

superiority than other models, for example, the model by 40 frequency samples for defect 539 

reconstruction with RMSE of 0.026 (44.44% higher) and PSNR of 22.426 dB (1.859 dB 540 

lower). It has been noted that the model trained with only one frequency sample is still able to 541 

predict the defect reconstruction, however, the qualify is an issue due to results of the highest 542 
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RMSE (0.0732) and the lowest PSNR (14.0618 dB). Also, the boxplots show that when the 543 

number of frequency samples is more than 20, the reconstruction performance is relatively 544 

superior and stable as the number of frequency samples increases, while the reconstruction 545 

precision decreases rapidly when the number of frequency samples is less than 20. Therefore, the 546 

reference number of frequency samples (𝐹ref = 20) is suggested in such condition. Furthermore, 547 

to demonstrate the effect of the number of frequency samples on the accuracy of defect 548 

reconstruction from manifold space point of view, manifold structures for input datasets with 40 549 

frequency samples and 5 frequency samples have been visualized by t-SNE, respectively. As 550 

shown in Figs. 14c and d, the manifold structure of the 40 frequency samples dataset appears 551 

highly separable, as compared to the result by 5 frequency samples dataset. Indeed, the model 552 

trained with 40 frequency samples dataset performs better. Besides, it is worth noting that the 553 

green dots in Fig. 14c representing the manifold of the V-notch defects show higher separable, as 554 

compare with the manifolds of the other two types of defects. This interprets why the 555 

reconstruction of the V-notch defects can achieve the better accuracy shown in Section 3.1. 556 

 557 

Fig. 14. Analysis of defect reconstruction with different numbers of frequency samples. (a) Quantitative 558 

evaluations on the quality of reconstruction with RMSE over the entire 450 test data. The x axis represents the 559 

number of frequency samples used for training the Deep-guide models. The y axis denotes the values of RMSE 560 

between the reconstructed defects and the ground truth. Each box shows the interquartile range (IQR between Q1 561 

and Q3) of the training data. The central mark (the horizontal line in each box) shows the median value. The upper 562 

whisker extends from the hinge to the largest value no further than Q3+1.5×IQR and the lower whisker extends 563 

from the hinge to the smallest value at most Q1−1.5×IQR. For each box, 150 values randomly selected from the 564 

450 test results are shown as dots. (b) Quantitative evaluations on the quality of reconstruction with PSNR over the 565 

entire 450 test set. (c) Visualization of manifold structures of the input dataset with 40 frequency samples and (d) 5 566 

frequency samples, respectively. 567 

 568 
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A Special Case Study 569 

Usually, a high-accuracy detection and reconstruction for a particular flaw or defect is required in 570 

some areas such as railway transportation, oil pipelines and aerospace so that structural integrity 571 

can be quantitatively evaluated and assessed for the prediction of its remaining service life. Take 572 

into account this situation, a specific case for defect reconstruction has been investigated in this 573 

section. As the methodology applied to the above general scenario, 350  unknown 574 

Gaussian-curved defects have been used as training data to reconstruct this representative defect. 575 

The quantitative evaluations on the qualities of reconstruction, i.e., boxplots of the RMSE and 576 

PSNR over the entire test set have been provided in Figs. 15a and b. As the number of frequency 577 

samples increases, the trained neural network model has better predictions on defect 578 

reconstruction with a lower and narrower distribution of RMSE. It can be observed that the model 579 

trained with 100 data of frequency samples achieves superior performance with the lowest 580 

median value (0.0125) of RMSE and the highest median value (28.68 dB) of PSNR, while the 581 

model trained with only one frequency sample has poor prediction as the highest median RMSE 582 

value of 0.0547 (increased by 337.6%) and the lowest median PSNR value of 16.3656dB 583 

(decreased by 12.3144dB) can be identified. The similar conclusion can be drawn from Figs. 15c 584 

and d that the manifold structure by 40 frequency samples appears highly separable as compared 585 

with the manifold by 5 frequency samples, and therefore the reconstruction using 40 frequency 586 

samples has more powerful learning ability to discriminate one type of defect from others.  587 

 588 

 589 
Fig. 15. Analysis of defect reconstruction for specific defects (Gaussian-curved defects) with different number of 590 

frequency samples. Boxplots of (a) RMSE and (b) PSNR values for each test set by models trained with different 591 

number of frequency samples; (c) Manifold structure of the input data set with (c) 40 and (d) 5 frequency samples. 592 

 593 

Furthermore, it can be observed from the manifold structures in the aforementioned two 594 

cases that the manifold in the specific case has simpler and highly separable structure, thus it is 595 
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simpler to empower the learning to realize higher reconstruction precision. A more direct 596 

quantitative comparison of the reconstruction performance of the trained general and specific 597 

models has been shown in Fig. 16. It is worth noting that the Deep-guide model trained for 598 

reconstructing specific defects can realize high precision just using comparatively fewer frequency 599 

samples. For example, it can be observed from Fig. 16 that the general model needs 40 600 

frequency samples to reach the RMSE value of 0.026 or PSNR value of 22.426 dB, while only 601 

about 15 frequency samples for specific model are required. Overall, the superior robustness of 602 

the proposed Deep-guide framework has been demonstrated throughout two case studies. Also, 603 

defect reconstruction in the general case has the quality evaluated by the average RMSE value of 604 

0.0388 and PSNR value of 20.0082 dB, whilst the values of RMSE and PSNR are much 605 

improved to 0.0272 by 42.65% and 23.1672 dB by 3.159 dB in specific case, respectively.   606 

 607 
Fig. 16. (a) Comparison of the media RMSE on the entire test set from models trained with different number of 608 

frequency samples under two cases. (b) Comparison of the media PSNR on the entire test set from models trained 609 

with different number of frequency samples under two cases. 610 

 611 

3.5 Effect of training data size on the accuracy of reconstruction 612 

The major bottleneck for the application of deep learning to engineering is the limited size of 613 

available datasets. In non-destructive testing, the size of training data for data-driven model will 614 

directly affect the accuracy of defect detection and reconstruction. Taking into account this 615 

situation, it is necessary to investigate the impact of the size of the sample data on the 616 

reconstruction accuracy of the Deep-guide model, especially in the presence of small size samples. 617 

 First, the different size of sample data (data size 𝑆 =  600, 210, 30) has been considered for 618 

constructing the Deep-guide models. To obtain the input data, 40 reflection coefficients in each 619 

defect reconstruction problem have been obtained by the wave analysis using 0th SH-waves 620 

mode. After the generation of the intelligent models, 450 unknown defects in test set have been 621 

examined using the trained models. Quantitative evaluations on test results in two case studies 622 

have been illustrated by boxplots shown in Fig. 17. As the size of training samples decreases, the 623 

reconstruction accuracy evaluated by RMSE or PSNR becomes poorer due to the limited learning 624 

information for training the Deep-guide network. For example, for defect reconstruction in general 625 

case, the model trained with 600 sampling data has the best performance with the lowest median 626 

value (0.0294) of RMSE, as compared with 0.0442 by the model trained with 210 sampling 627 

data (50.94% higher) or 0.0548 by the model 30 sampling data (86.39% higher). The similar 628 

conclusion can be drawn on the quality of the Deep-guide model assessed by the median value of 629 
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PSNR shown in Fig. 17b – the best result is 24.3416 dB by the model trained with 600 sample 630 

data, whilst 20.4234 dB with the net value of 3.9182 dB and 17.7327 dB with the net value 631 

of 6.6089 dB by the trained models using 210 and 30 sampling data, respectively. Moreover, 632 

it is evident that the Deep-guide model for reconstructing the specific defects shows better 633 

reconstruction performance, which is evaluated by a relatively lower and narrower distribution of 634 

RMSR or a relatively higher and narrower range of PSNR over the test dataset in Fig. 17. In 635 

summary, to reconstruct specific defects, a comparatively high-accuracy reconstruction can be 636 

achieved by the model with even few training data, which provide a useful insight into the 637 

development of data-driven techniques for engineering applications with small size of the training 638 

samples. 639 

 640 

 641 
Fig. 17. Analysis the influence of the training data size on reconstruction performance in two cases. Boxplots of (a) 642 

RMSE values and (b) PSNR values for models trained by the different size of sampling data. 643 

 644 

 Furthermore, the correlation between the number of frequency samples and the size of 645 

sampling data has been investigated through the matrix view shown in Fig. 18. Influences of the 646 

number of frequency samples and the size of sampling data on the reconstruction accuracy of the 647 

Deep-guide framework has been indicated by the heatmap, which represents the RMSE or PSNR 648 

value of the item in the matrix. Deep-guide models have been trained by the different size of 649 

reflection coefficients, which have been obtained by the wave analysis using 0th SH-waves mode. 650 

Also, the number of circular frequency samples affecting the quality of defect reconstructs in 651 

general and specific cases has been studied. It has been noted that the larger the size of sampling 652 

data is used, the more the frequency samples are selected, the better the reconstruction quality is 653 

achieved. In practice, the amount of the available training data is usually small, and the defect 654 

reconstruction by fewer frequency samples takes benefits from less computational and 655 

experimental costs. Therefore, it is necessary to use as few training data and frequency samples as 656 

possible while meeting the reconstruction accuracy requirements. To better demonstrate the 657 

superiority of the proposed Deep-guide framework with an example, suppose that the defect 658 

reconstruction in Fig. 8 with the RMSE value less than 0.037 or the PSNR greater than 20 dB 659 

are deemed as the trustworthy quality within the acceptable tolerance. It can be observed in Fig. 660 

18 that to reconstruct a defect in the specific case, at least 150 training defects and 20 661 

frequency samples are required for the network training to meet the accuracy requirement, while 662 

to reconstruct a defect in the general case, at least 300 training defects and 40 frequency 663 
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samples need to be satisfied for the qualified model construction. Thus, the Deep-guide model has 664 

the ability to solve the specific defect reconstruction problem with a high level of accuracy using 665 

small training samples and a small amount of frequency samples. Moreover, to achieve a certain 666 

level of reconstruction accuracy, either the increase of the number of training samples or more 667 

frequency samples can be adopted as a solution to the problem, and the decision-making depends 668 

on the types of resources available. 669 

 670 

Fig. 18. A matrix view of the defect reconstruction accuracy against the different number of frequency samples and 671 

the different size of training data. Heatmap shows the distribution of reconstruction performance under different 672 

conditions. The blue box is the reconstruction accuracy that meets the accuracy criterion defined (RMSE ≤ 0.037 673 

or PSNR ≥ 20dB). (a) Average RMSE and (b) PSNR of the entire test set (N=350) by models trained under 674 

different conditions in the specific case. (c) Average RMSE and (d) PSNR of the entire general test set (N=450) by 675 

models trained under different conditions in the general case. 676 

 677 

4. Experimental Validation  678 

4.1 Experimental setup for ultrasonic measurements 679 

To validate the feasibility of the proposed reconstruction method, a circular array consisting of 32 680 

Electromagnetic Acoustic Transducers (EMATs) has been designed in this research to perform 681 

experimental tests for defect reconstruction. Two aluminum plates with the dimension of 682 

1200 mm ×  1200 mm ×  3 mm have been manufactured and an artificial circular defect has 683 

been intentionally created on the surface of each plate. The diameter and depth of the defect are 684 

set to 50  mm and 1  mm, respectively. One defect is located at the center of the plate 685 

𝑤𝑖𝑡ℎ 𝑡ℎ𝑒 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 (0, 0) mm, while the other is eccentrically placed with the coordinate 686 

(100, 0) mm. The transducer parameters, including coil numbers and distances, have been 687 
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carefully pre-adjusted to ensure the excitation creation of a relatively pure Lamb A0 mode with a 688 

central frequency of 250 kHz. Both the receiving and emitting probes have been manufactured 689 

using the advanced system, which comprises a signal generator (DG4062), power amplifier 690 

(RPR-4000), and oscilloscope (MS2024B) shown in Fig. 19a. A radial distance of 200 mm for 691 

the circular array has been deliberately used. During the process of experimental tests, the signal 692 

excitation has been generated at eight positions (Labels 1-5 and 29-32), as highlighted by the red 693 

dots in Fig. 19b. The signals have been then received by 32 probes (Labels 6-28). It should be 694 

noted that the data obtained from the receiving transducers in close proximity to the emitting 695 

points have been noticeably affected by unavoidable electromagnetic interference, leading to some 696 

inconsistent experimental data. Therefore, only data from the receiving transducers with Labels 697 

6-28 have been deemed reliable. Overall, the final dataset has comprised 8 (emission signals) × 698 

23 (receiving signals) matrix data. 699 

In this study, the processing of the received signals has consisted of the following steps: First, 700 

the arrival time of the wave packet has been determined by the point with the highest energy flux 701 

density in the wavelet transform spectrum. Then, a three-period window centered around the 702 

arrival time has been selected to preserve the signal, while noise and unwanted reflected signals 703 

from other regions have been eliminated by setting to zeros. Following that, the truncated signal 704 

has been performed by fast Fourier transformation (FFT) to extract the signal value at 250 kHz in 705 

the frequency domain. This value has corresponded with the reflection coefficient mentioned in 706 

Eq. 12 and served as an input for subsequent reconstruction of defects using the proposed in the 707 

Deep-guide framework. 708 

 709 

Fig. 19. (a) Experimental platform for electromagnetic ultrasonic non-destructive testing system. (b) Schematic 710 

diagram of EMATs array. 711 

 712 

4.2 Experimental results 713 

In this section, the neural network model has been trained using the simulation data from Section 714 

3.3, which consists of 49 instances of circular defects with various sizes and positions. As a  715 

demonstration of, the experimental data obtained in Section 4.1 as the input to the network for 716 

reconstruction of circular defects has been used to verify the proposed Deep-guide. The output of 717 

the neural network has been formatted in a form of a matrix with the dimension of 400 × 400, 718 

containing a total number of 160,000 pixel values. Fig. 20 has illustrated the reconstructed 719 
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results using the experimental data by the Deep-guide framework. It has been noted that 720 

Deep-guide has the ability to accurately predict the location of defects and the circular shape of 721 

the defects. In Fig.20 (c and d), the reconstruction by Deep-guide using the experimental data has 722 

not the same quality as that by the simulated data in Fig.8, for example, the RMSE of the 723 

experimental results (0.049) has increased by 87.02% and the PSNR (21.62dB) has been 724 

reduced to 3.25dB as compared to the results of A0 mode (RMSE=0.0262, PSNR=25.07dB) 725 

shown in Table 3. The main reasons can be explained as follows: 1) The experimental data 726 

contains environmental noise and human errors, which can affect the accuracy of the model 727 

trained by the simulation data; 2) Due to the electromagnetic interference, signals near the 728 

excitation probes cannot be reliably utilized, leading to a reduction in defect information provided 729 

to Deep-guide for reconstruction and thereby, decreasing the reconstruction accuracy; 3) In the 730 

experimental tests, only single-frequency scattered wave signals (250 KHz) have been used to 731 

improve the practicality of the experimental detection. However, as observed from the analysis 732 

results in Section 3.4, such signals have inevitably reduced the accuracy of the reconstruction. 733 

Overall, the experimental results have demonstrated that Deep-guide has the capability of 734 

extracting the accurate mapping relationship between defects and guided wave scattering signals 735 

through the training process on simulation data and its correctness has been also validated by the 736 

aforementioned experimental tests. The gained knowledge throughout this study has provided the 737 

opportunities to efficiently analyze and predict real-world measurements, enabling accurate 738 

reconstruction of defect positions and profiles. 739 

 740 

Fig. 20. Experimental results of defect reconstruction. Top view (a and b) and cross-sectional view (c and d) of the 741 

reconstructed results for central and eccentric defects, respectively. 742 

 743 
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5. Conclusions 744 

Deep-guide, a novel data-driven structural defect reconstruction framework, has been proposed in 745 

this paper to automatically realize the end-end mapping between the transformed features of 746 

acoustic scattering signals and defect profiles with high levels of accuracy and efficiency. Based 747 

on the manifold distribution principle, the architecture of Deep-guide comprising the 748 

encoder-projection-decoder blocks has been designed and trained with the data generated by the 749 

developed modified boundary element method. To demonstrate the correctness, generality and 750 

efficiency of Deep-guide, numerical and experimental validations have been performed with the 751 

main conclusions as follows: 752 

(1) Defect reconstructions using acoustic data generated by different modes of SH-waves and 753 

Lamb waves have demonstrated that Deep-guide has high levels of the accuracy, 754 

efficiency and generality. 755 

(2) The manifold structure of the scattering data affects the reconstruction performance, that 756 

is to say, Deep-guide has the more powerful learning ability for data manifold being a 757 

simpler, highly separable structure, leading to the higher reconstruction accuracy. 758 

(3) Through data training, a stochastic mapping that has the capability of adaptively 759 

denoising the scattering signals has been successfully learned, which indicates that 760 

Deep-guide has remarkable robustness and is able to effectively regularize the 761 

ill-posedness of the inverse guided wave scattering problem. 762 

(4) As compared with traditional knowledge-driven reconstruction approaches, Deep-guide 763 

can effectively reconstruct the defects with fewer frequency samples, especially for the 764 

specific defect type in engineering. Deep-guide model enables the problem solving with a 765 

high level of accuracy under the presence of small-size training samples and provides a 766 

useful insight into the development of effective data-driven techniques for structural 767 

health monitoring and complex defect reconstructions. 768 
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