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Abstract: In this paper, an analytical framework is presented for device detection in an impulse radio
(IR) ultra-wide bandwidth (UWB) system and its performance analysis is carried out. The Neyman–
Pearson (NP) criteria is employed for this device-free detection. Different from the frequency-based
approaches, the proposed detection method utilizes time domain concepts. The characteristic function
(CF) is utilized to measure the moments of the presence and absence of the device. Furthermore,
this method is easily extendable to existing device-free and device-based techniques. This method
can also be applied to different pulse-based UWB systems which use different modulation schemes
compared to IR-UWB. In addition, the proposed method does not require training to measure or
calibrate the system operating parameters. From the simulation results, it is observed that an optimal
threshold can be chosen to improve the ROC for UWB system. It is shown that the probability of false
alarm, PFA, has an inverse relationship with the detection threshold and frame length. Particularly, to
maintain PFA < 10−5 for a frame length of 300 ns, it is required that the threshold should be greater
than 2.2. It is also shown that for a fix PFA, the probability of detection PD increases with an increase
in interference-to-noise ratio (INR). Furthermore, PD approaches 1 for INR > −2 dB even for a very
low PFA i.e., PFA = 1× 10−7. It is also shown that a 2 times increase in the interference energy results
in a 3 dB improvement in INR for a fixed PFA = 0.1 and PD = 0.5. Finally, the derived performance
expressions are corroborated through simulation.

Keywords: ultrawide bandwidth systems; Neyman–Pearson; probability of detection; probability of
false alarm; characteristic function; signal processing

1. Introduction

COVID-19 has had a significant impact on our lifestyle [1]. Physical distancing,
wearing masks, avoiding crowds, and maintaining better hygiene are becoming the new
norms [2,3]. It has been advised to maintain at least a 1-meter distance between yourself
and others [3]. Despite this, there are no concrete studies on the recommended distance
between individuals in the indoor environment, where an intelligent guess would be more
than 1 meter. However, at this moment, there are no particular devices that can help or
provide accurate information of this distance to the user [4]. Furthermore, measurement of
this distance becomes problematic, especially for indoor environments [4,5]. For indoor
environments, when trying to measure this distance, two different approaches have been
proposed: wearable [6] and device-free [7]. The wearable one is the most widely used
approach, and the users are tracked by the sensor placed on the device [8–10]. The device-
free approach has the ability to track people passively without having any contact with
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the person, resulting in a device-free communication [11–13]. Furthermore, device-free
communications can provide more flexibility, comfort, and mobility compared to the
wearable approach [14,15].

It is well known that the global positioning system (GPS) is a promising technology to
provide outdoor positioning [16]. However, its limited penetration though solid objects makes
it unreliable and inaccurate for indoor positioning [17]. To address this, several techniques
including Wireless Fidelity (WiFi), Radio Frequency Identification(RFID), Bluetooth Low
Energy (BLE) and ZigBee, where the localization is performed based on the received signal
strength have been explored [18–22]. However, these techniques have drawbacks such as
low accuracy, low data-rate and/or short range communication [18–22]. Furthermore, when
using narrow-band device-free indoor communication, multipath fading and a cluttered
environment make it difficult to design a low-cost and low-complexity receiver [23–25].

Ultrawide bandwidth (UWB) is a revolutionary low-power communication tech-
nology [26,27]. A UWB system offers many advantages such as high data rate, fading
robustness, high precision ranging, obstacle penetration capability, and low-cost transceiver
implementation [27–31]. All these advantages have made UWB a promising technique
for device-free communications [24–26,32]. Initially, a UWB system was implemented
with the help of a slow time hopping (STH) pulse position modulation (PPM) also known
as the impulse radio (IR) [33]. However, different modulation schemes such as on–off
keying (OOK) [34], pulse amplitude modulation (PAM) [34] and pulse shape modulation
(PSM) [35,36], and different multiple access schemes such as direct-sequence (DS) [37]
and hybrid Direct-Sequence and Time-Hopping (DS-TH) [38] have been implemented
for UWB systems. In contrast to the received signal strength based positioning, UWB
exploits either the time of arrival (ToA) or time difference of arrival (TDoA) for real-time
positioning [39,40]. In [41], authors proposed an indoor positioning system based on UWB
and long-range (LoRa) wireless technologies. Simulation results showed that the proposed
system can achieve an accuracy of 15 cm. However, the proposed system was not inves-
tigated experimentally. The respiratory movement of a person is detected in laboratory
conditions by using UWB radar, in [42]. The influence of a user state and environment
was carried out in [43]. The performance of a UWB-based system by deploying anchor
nodes on the floor was experimentally investigated in [44]. An elderly people tracking
system based on the combination of UWB and Bluetooth low energy has been proposed
in [45]. Artificial intelligence and machine learning techniques were developed in [39,40] to
improve the indoor localisation to less than 10 cm by classifying them into line of sight (LoS)
and non-LoS environments. All of these approaches used experimental demonstrations
and no analytical framework was developed for a UWB system. An analytical framework
was developed for UWB radar in [46]. However, this approach utilized the frequency
domain technique to measure the vital signs such as breathing rate and heartbeat frequency.
Cramer-Rao lower bounds (CRLBs) for estimation of signal parameters for single- and
multi-path channel conditions were studied in [47].

In this paper, we develop a novel device-free indoor detection method that can be
applied to IR-UWB networks. UWB technology is capable of localizing within 10–30 cm
depending on different environments, where the indoor industrial environment is the
most challenging due to a large number of reflections. By developing this UWB analytical
framework, the device detection can be achieved with high accuracy followed by distance
prediction, especially when operating in an LoS indoor environment. The development
of such a framework at this moment is critical and will further lead to an accurate indoor
localization system that is not present at the moment. This new method can be easily
extended to existing device-free and device-based techniques and is easily applicable to
any pulse-based UWB system using arbitrary multiple access or a modulation scheme. The
main contributions of this paper are summarised as follows:

• The proposed detection method utilizes time domain concepts, which are different
from the frequency-based approaches discussed in [39,40,42,43,46].
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• In the context of using an UWB system as an indoor radar, the Neyman–Pearson (NP)
criteria is applied. Detection probability and miss probability for a slow time hopping
pulse position modulation (STH-PPM) system is developed.

• Characteristic function (CF) is utilized to measure the moments of the presence of the
user. With the help of CF, higher orders of the moments can be calculated if required.

• No training is required to measure or calibrate the system operating parameters as
needed in [24,25].

The rest of the paper is organized as follows. Section 2 describes the system model of
the STH-PPM UWB system. The channel model, transmitted, and received signal is also
discussed in this section. Section 3 help design the basic hypotheses testing for the proposed
STH-PPM UWB system. In Section 4, the presence of the user is modelled and CF is utilized
to measure the mean and variance of the user. The optimal threshold is also calculated in
this section. In Section 5, the corresponding PFA and PD are derived. Performance analysis
is carried out in Section 6. Finally, the paper is concluded in Section 7.

2. System Model
2.1. Transmitted Signal

Generally, a transmitted UWB signal is composed of Ns pulses and is mathematically
expressed as

s(t) =
Ns−1

∑
j=0

ψ(t− jTf ), (1)

where ψ(·) denotes the UWB pulse, Tf is the frame duration and j represents the frame index
(the system is assumed to be a slow time-hopping system in which the number of frames
and pulses is equal). Various different pulses, ψ(t), have been recommended for use in UWB
systems. These pulses are derived based on a Gaussian pulse and its derivatives, modified
hermite polynomial, and Gaussian modulated sinusoidal pulses, etc., and references within
them [48,49].

2.2. Channel Model

The Saleh–Valenzuela (SV) channel model has been proposed for UWB communication
in the 3 GHz to 10 GHz range [31,50–54]. The impulse response of the SV channel model is
represented as

h(t) =
V−1

∑
v=0

U−1

∑
u=0

hu,vδ(t− Tv − Tu,v),

=
L−1

∑
l=0

hlδ(t− Tl), (2)

where hu,v is the tap weight of the u-th ray in the v-th cluster, Tv represents the delay of the
v-th cluster, Tu,v is the delay of u-th ray in the v-th cluster, U is the total number of rays
and V is the total number of clusters experienced by the transmitted signal. As shown
in (2), the rays of all the clusters can be expressed as L multipaths, where L = UV and Tl
represent the delay of the l-th multipath [55,56].

2.3. Received Signal

The received signal is expressed as

y(t) =
K−1

∑
k=0

L−1

∑
l=0

Ns−1

∑
j=0

hlψ(t− jTf − lTl) + n(t), (3)
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where the index k represents the k-th device. The noise n(t) is modelled as an additive
white Gaussian noise with mean 0 and variance σ2. Finally, the received signal of an
STH-PPM system can be expressed as [26]

yyy = sss + iii + nnn, (4)

where

sss =
[
s(0,0), s(0,1), · · · , s(Ns−1,L−1)

]T
, (5)

iii =
[
i(0,0), i(0,1), · · · , i(Ns−1,L−1)

]T
, (6)

nnn =
[
n(0,0), n(0,1), · · · , n(Ns−1,L−1)

]T
, (7)

respectively. sss is the desired signal, iii denotes the effect of the present devices, nnn is the
additive white Gaussian noise (AWGN) added at the receiver, Ns denotes the repetition
code length, L is the number of multipaths present in the system. (j, l) represents the signal
of the j-th frame and l-th multipath. Presence or absence of a device can be determined by
the following expression

i(j,l) =

{
0, absence of device
i(k)
(j,l), presence of device

, (8)

where the index k represents the k-th device.

3. Device Detection

For a desired frame j and the l-th multipath, the hypothesis containing the information
about the user and the device can be represented as

Hypothesis 1 (H1). y(j,l) = s(j,l) + n(j,l), absence of a device

Hypothesis 2 (H2). y(j,l) = s(j,l) + i(j,l) + n(j,l), presence of a device

As the main objective is to determine whether another device is present or not, s(j,l)
does not convey any relevant information and it can be subtracted. Thus, yielding the
following modified hypothesis

Hypothesis 3 (H3). r(j,l) = n(j,l), absence of a device

Hypothesis 4 (H4). r(j,l) = i(j,l) + n(j,l), presence of a device,

where r(j,l) = y(j,l) − s(j,l). Now, with the modified hypothesis we can easily determine the
probability density function (pdf). The pdf of r(j,l) given H1 can be obtained as

p
(

r(j,l); H1

)
=

1√
2πσ

exp

−
(

r(j,l)

)2

2σ2

. (9)

While, the pdf of r(j,l) given H2 is obtained as

p
(

r(j,l); H2

)
=

1√
2πσ

exp

−
(

r(j,l) − i(j,l)

)2

2σ2

. (10)

A likelihood ratio test, which is the ratio between the above two hypotheses yields
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γ(j,l) =
p
(

r(j,l); H2

)
p
(

r(j,l); H1

) =

exp
(
− (r(j,l)−i(j,l))

2

2σ2

)
exp

(
− (r(j,l))

2

2σ2

)

= exp

2
(

r(j,l)

)(
i(j,l)

)
−
(

i(j,l)

)2

2σ2

 (11)

As i(j,l) is unknown, we need to replace it with an estimate. In the upcoming section,
we will employ characteristic function (CF) to determine the moments of i(j,l). As the device
can enter the network at any moment of time, it is assumed to be uniformly distributed
between the transmission of the frame. Furthermore, the impact will have an effect on K
slots of transmission; therefore, a window-based approach is required which measures
this effect. Assuming that the user is impacted over the duration of frame Tf , and delay
τm, then

∆(m) =
1

Tf

m=τm+Tf /2

∑
m=τm−Tf /2

γ(m), (12)

where m = (jL + l). The effective threshold depending on length K will be given as

γ =
1
K

K

∑
k=0

γ(k). (13)

Finally the presence of the device is determined as

∆(m) ≤ γ, absence of a device

∆(m) > γ, presence of a device. (14)

Next, the moments of i(j,l) are derived, which will be used for the device detection.

4. Device Presence Modelling

In this section, the mean and variance are calculated when the device is present.
This will later be used for designing the Neyman–Pearson criteria. First, the characteristic
function (CF) is determined, followed by its moments. With known moments, the mean
and variance can be easily calculated. Furthermore, the CF can help measure higher order
moments which will help in determining the kurtosis, which can be used for determining
the shape of the density as mentioned in [57].

4.1. Characteristic Function (CF)

The CF for known j-th frame, l-th channel tap, conditioned on αk is given as

Φ
i(k)
(j,l)

(ω) =
∫

αk

Φi(j,l) |αk
(ω) fαk (αk)dαk

=
1

Tf

∫ Tf
2

−
Tf
2

exp
(

jωh(l,k)R(αk)
)

dαk, (15)

where αk is the time shift between the time hopping code and the k-th user, Tf is the frame
duration and h(l,k) is the UWB channel characteristics which the device experiences. The

device moments can be calculated by the CF of i(k)
(j,l), which can help in determining the

detection and false alarm probability for the UWB system.
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4.2. Device Presence Moments

The mth moment of random variable X, with the help of its CF can be evaluated
as [58]

E(Xm) = (−j)m dmΦx(ω)

dωm

∣∣∣∣
ω=0

. (16)

Using the above formula, the mean when the user is present is given as

µi = E
(
(i(k)
(j,l))

)
=
−j
Tf

∫ Tf
2

−
Tf
2

jh(l,k)R(αk) exp
(

jωh(l,k)R(αk)
)

dαk

∣∣∣∣∣∣
ω=0

=
h(l,k)
Tf

∫ Tf
2

−
Tf
2

R(αk)dαk (17)

and the second moment is represented as

E
(
(i(k)
(j,l))

)2
=
−1
Tf

∫ Tf
2

−
Tf
2

j2
(

h(l,k)
)2

R2(αk) exp
(

jωh(l,k)R(αk)
)

dαk

∣∣∣∣∣∣
ω=0

=
(h(l,k))2

Tf

∫ Tf
2

−
Tf
2

R2(αk)dαk

= (h(l,k))
2σ2

i , (18)

where

σ2
i =

1
Tf

∫ ∞

−∞

[∫ ∞

−∞
ψrec(t− x)ψ∗rec(t)dt

]2
dx

=
1

Tf

∫ ∞

−∞
R2(x)dx. (19)

Finally, the variance of the presence of user is given as

Var
(

i(k)
(j,l)

)
= (h(l,k))

2σ2
i −

 h(l,k)
Tf

∫ Tf
2

−
Tf
2

R(αk)dαk

2

= (h(l,k))
2σ2

i −
(h(l,k))2σ2

i
Tf

= (h(l,k))
2σ2

i

(
1− 1

Tf

)
(20)

5. Performance Analysis

In this section, the probability of false alarm PFA and probability of detection PD
are calculated.

5.1. Probability of False Alarm

The probability of false alarm PFA is given as



Sensors 2021, 21, 3255 7 of 19

PFA = P{∆(m) > γ|no device is present}

=
∫ ∞

γ

1√
2πσa

exp

(
− (x− µa)

2

2σ2
a

)
dx

= Q
(

γ− µa

σa

)
, (21)

where Q(·) is the standard Gaussian Q-function, given as

Q(t) =
1√
2π

∫ ∞

t
exp

(
− t2

2

)
dt. (22)

and µa and σ2
a are calculated in (A2) and (A7), respectively, as shown in Appendix A.

5.2. Probability of Detection

The probability of detection PD is given as

PD = P{∆(m) > γ|device is present}

=
∫ ∞

γ

1√
2πσp

exp

(
−
(
x− µp

)2

2σ2
p

)
dx

= Q
(

γ− µp

σp

)
, (23)

where µp and σ2
p are calculated in (A9) and (A14), respectively, as shown in Appendix B.

5.3. Optimized Threshold γ

In this section, we try to relate the optimized threshold γ. For PFA, the Q-function
is monotonically decreasing for γ−µa

σa
≥ 0. Therefore, from (21), the threshold γ is

calculated as

γ = µa + σaQ−1(PFA) (24)

Substituting the above in (23), we get

PD = Q

(
µa + σaQ−1(PFA)− µp

σp

)
(25)

6. Performance Analysis and Discussion

In this section, the performance of the receiver is discussed by using the probability
of false alarm and detection as calculated in the previous section. We will first look at
the affect of the pulse duration on the probability of false alarm followed by the effects
of interference noise ratio (INR) and transmitted energy of the interference on the UWB
system. Usually, the change in environment due to the presence of the device is modelled as
a sinusoidal [47,50,51,59,60]. The two unknown parameters, frequency and time shift, help
in determining the presence of a device. Furthermore, the device will be moving indoors
and the speed will be less than 5 km/h, which will result in a normalized doppler frequency
of 1× 10−7, having a very slow effect on the channel coefficients. The simulations are
performed based on the IEEE 802.15.4a channel model final report [54]. However, the SV
parameters were simulated using an indoor industrial environment [53], as it is corresponds
to the most challenging environment with a large number of reflections. Note that, our
simulations were carried out based on the Saleh–Valenzuela (S–V) channel model, which
is characterized by the parameters 1/Λ = 14.11 ns, cluster decay rate = 2.63 ns and
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ray power decay = 4.58 ns. The term INR is defined as INR = σ2
i /σ2. The simulation

parameters are shown in Table 1.

Table 1. The path loss and small-scale fading parameters for the simulated line of sight (LoS)
Industrial ultra-wide bandwidth (UWB) channel, as mentioned in [53,54].

Path Loss exponent n 1.2

Shadowing Standard Deviation σs 6 dB

Path Loss at 1 m distance PL0 56.7 dB

Antenna Loss Aant 3 dB

Frequency dependence of Path Loss κ −1.103

Nakagami-m factor mean m0 0.36 dB

Nakagami-m factor variance m̂0 1.13

Nakagami-m for strong components m̃0 12.99 dB

Let us study the effects of threshold over the frame duration. Figure 1 shows the false
alarm probability as a function of the threshold γ for different values of frame duration.
These curves are plotted with the help of (23), where µa and σa are calculated using (29)
and (34), respectively. In this simulation, the INR was fixed to 5 dB. It can be observed
that as the frame duration increases, the value of threshold decreases. For a false alarm
probability equal to 10−6, it can be observed that a threshold of 2.26 will be required to
detect a frame length of 300 ns. However, for a frame length of 100 ns, the threshold value
should be around 3.25. This satisfies the result as calculated in (A7). From (A7), it can be
analysed that as the frame duration Tf increases, σ2

a decreases, resulting in a lower value
of γ, as shown in (24). It can be also observed from the figure that for γ = µa = 1, the
PFA = 0.5.
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Figure 1. Probability of false alarm versus threshold when using different frame duration at
interference noise ratio (INR) = 5 dB.
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In Figure 2, NP criteria is adopted to calculate the detection probability (PD) and false
alarm probability (PFA) in STH-UWB systems. Figure 2 was simulated using (23) and (27).
The value for µa, µp, σa and σp are calculated using (29), (36), (34) and (41), respectively.
Figure 2 illustrates the effect of interference to noise ratio (INR). From this figure, it is
obvious that as the INR increases the PD improves and PFA decreases, which results in
easier detection of the device. It can be observed from Figure 2 that, for PFA = 0.2, the
device is detected with probability 0.98, when an INR of −5 dB. However, as the INR
decreases PD will be reduced significantly to 80% and below depending upon the INR value.
With these receiver operating characteristics (ROC)s for STH-UWB radar can be designed.
This threshold detection will help increase the PD and reduce PFA for a given INR.
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Figure 2. Receiver operating characteristics for UWB system with different interference to noise
ratio (INR).

In Figure 3, it is observed that for a given PFA, the detection performance increases
monotonically with the INR. The pulse duration was fixed to Tf = 100 ns. Figure 3 was
simulated using (27), where the value for µp and σp are calculated using (36) and (41),
respectively. From the figure, it becomes obvious that in order to improve the detection
performance, either PFA is increased or the INR is increased. For a fixed PFA = 1× 10−5,
we need an improvement of 3 dB in INR to improve the detection probability from 0.3 to
0.8. However, for lower PFA = 0.1, we will require an improvement of 8 dB to reach the
same detection probability. Therefore, it can be concluded from the figure that for higher
PFA, higher increase in INR is required as compared to lower PFA.

In order to further clarify this concept, we have plotted Figure 4. Figure 4 shows the
effect of increasing the energy of the interference. The pulse duration was fixed to Tf = 100
ns. Figure 4 was simulated using (27), where the value for µp and σp are calculated using
(36) and (41), respectively. By doubling the interference energy, there is a improvement of
3 dB in INR for a fixed PFA = 0.1 and PD = 0.5. The other main point of Figure 4 is found
when comparing the performance of IR UWB system to DS-UWB system. In IR-UWB, there
is only a single transmitted pulse in a frame duration, while for a DS system, Ns pulses
are transmitted in each frame, resulting in a decrease of transmitted power. If a DS-UWB
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system transmits two pulses in a frame, then there will be a decrease of 3 dB in INR for a
fixed PFA at PD = 0.5.
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Figure 3. Detection performance of UWB system on linear PFA scale.
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The performance of the proposed detection method is corroborated with the derived
analytical expressions of probability of miss-detection. The performance of the simulated
algorithm matches exactly with the derived theoretical performance expressions, which
indicates that the algorithm achieves benchmark performance. Moreover, the derived
expressions of PFA and PD can be utilized to plot the ROC and determine the operating point
for the algorithm in various environments. Figure 5 corroborates the derived analytical
expression of the probability of miss-detection, i.e., PMD = 1− PD, through simulation. The
probability of miss-detection is plotted with varying the SNR per bit and the parameter M.
A general trend observed is that the miss-detection probability reduces as the SNR increases.
In addition, it can be observed that as M increases, the miss-detection probability reduces.
This trend is observed because M indicates that the transmission time is divided into M
orthogonal slots. Each user randomly chooses a slot for transmission and this reduces the
collision/interference probability. As a result, as M increases, the miss-detection probability
reduces due to lower interference. Finally, it can be noted that the simulation results match
exactly with the derived analytical expression.
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Figure 5. Simulated and calculated Probability of miss detection curve comparison for STH M−ary
PPM System. The curves labelled as “Exact” are plotted using (27) where as the markers denote the
simulation performance using (16).

7. Conclusions

In this paper, a novel device-free detection method is proposed for an indoor STH-
PPM UWB system. Our method relies solely on calculating the characteristic function
(CF) of the device. 1st and 2nd moments are calculated using this CF, to develop decision
statistics which are employed to design and develop the receiver operating characteristics
(ROC)s. Particularly, it was shown that PFA can be reduced by increasing the detection
threshold and/or frame length. Furthermore, probability of detection approaches 1 for
an interference-to-noise ratio greater than −5 dB, even for a very low probability of false
alarm. Through numerical simulations, it is shown that the proposed detection method
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is able to detect the presence of the device and results in satisfactory performance with
a reduced probability of false alarm. Moreover, the simulation results corroborated the
derived performance expressions. The proposed detector can be implemented in a real
time system. As a future work, similar to [17], we are planning to implement and test this
algorithm on a UWB kit and carry out the measurements in an industrial warehouse.
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List of Symbols

The following symbols are used in this manuscript:

s(t) Transmitted Signal
y(t) Received Signal
n(t) AWGN Noise
ψ(t) Time domain UWB pulse
Ns Number of pulses
j index of Frame
t index of Time
k index of Device
h(t) Channel Impulse Response
V Number of Clusters
U Number of Rays in Clusters
Tf Frame duration
L Total Number of multipath
Tl Delay of the l-th multipath
K Number of devices
hl Channel impulse response of l multipath
σ2 AWGN Noise Variance
γ Threshold
E(Xm) m-th moment
µa Mean when Deviceis Absent
µp Mean when Device is Present
σa Variance when Device is Absent
σp Variance when Device is Present
R(·) Autocorrelation of the UWB pulse
δ(·) Dirac delta Function

Appendix A

In this appendix, we will calculate the mean and variance when the device is not
present. In the absence of the user, the sliding window is given as

∆(m|no device is present) =
1

Tf

τm+Tf /2

∑
m=τm−Tf /2

γ(m|H1), (A1)
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The mean of the above can be calculated as

µa = E{∆(m|no device is present)},

= E

 1
Tf

τm+Tf /2

∑
m=τm−Tf /2

γ(m|H1)

,

=
1

Tf

τm+Tf /2

∑
m=τm−Tf /2

E{γ(m|H1)},

=
1

Tf

τm+Tf /2

∑
m=τm−Tf /2

∫ ∞

−∞
exp

(
2rmim − i2m

2σ2

)
1√
2πσ

exp
(
− r2

m
2σ2

)
drm,

=
1

Tf

τm+Tf /2

∑
m=τm−Tf /2

1√
2πσ

∫ ∞

−∞
exp

(
− (rm − im)2

2σ2

)
drm︸ ︷︷ ︸

1

,

=
1

Tf

τm+Tf /2

∑
m=τm−Tf /2

1

= 1. (A2)

Let us now calculate the second moment.

E{∆2(m, m̃|no device is present)}

= E


 1

Tf

τm+Tf /2

∑
m=τm−Tf /2

γ(m|H1)

 1
Tf

τm̃+Tf /2

∑
m̃=τm̃−Tf /2

γ(m̃|H1)


=

1
T2

f

τm+Tf /2

∑
m=τm−Tf /2

τm̃+Tf /2

∑
m̃=τm̃−Tf /2

E{γ(m|H1)γ(m̃|H1)} (A3)

When m 6= m̃, the above can be given as

E{γ(m|H1)γ( ˜m|H1)} = E{γ(m|H1)}E{γ(m̃|H1)}
= 1. (A4)

While, for m = m̃, the above reduces to

E{γ(m|H1)γ(m|H1)} = E{γ(m|H1)
2}

=
∫ ∞

−∞
exp

(
2rmim − i2m

σ2

)
1√
2πσ

exp
(
− r2

m
2σ2

)
drm,

= exp
(

i2m
σ2

)
1√
2πσ

∫ ∞

−∞
exp

(
− (rm − 2im)2

2σ2

)
drm︸ ︷︷ ︸

1

,

= exp

(
h2

mσ2
i

σ2

)
(A5)

where σ2 is the variance of the AWGN and i2m = h2
mσ2

i according to (18). Now, substitut-
ing (A4) and (A5) in (A3), we obtain
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E{∆2(m, m̃|no device is present)} =
1

T2
f

(
Tf

(
exp

(
h2

mσ2
i

σ2

))
+ (T2

f − Tf )1

)

= 1 +
1

Tf

(
exp

(
h2

mσ2
i

σ2

)
− 1

)
(A6)

Finally, the variance is given as

σ2
a = E{∆2(m, m̃|no device is present)} − E{∆(m|no device is present)}2

= 1 +
1

Tf

(
exp

(
h2

mσ2
i

σ2

)
− 1

)
− 1

=
1

Tf

(
exp

(
h2

mσ2
i

σ2

)
− 1

)
(A7)

Appendix B

In this appendix, we will calculate the mean and variance when the device is present.
In the presence of the device, the sliding window is given as

∆(m|device is present) =
1

Tf

τm+Tf /2

∑
m=τm−Tf /2

γ(m|H2). (A8)

The mean of the above can be calculated as

µp = E{∆(m|device is present)} = E

 1
Tf

τm+Tf /2

∑
m=τm−Tf /2

γ(m|H2)


=

1
Tf

τm+Tf /2

∑
m=τm−Tf /2

E{γ(m|H2)}

=
1

Tf

τm+Tf /2

∑
m=τm−Tf /2

E
{

exp
(

2rmim − i2m
2σ2

)}

=
1

Tf

τm+Tf /2

∑
m=τm−Tf /2

∫ ∞

−∞
exp

(
2rmim − i2m

2σ2

)
1√
2πσ

exp
(
− (rm − im)2

2σ2

)
drm

=
1

Tf

τm+Tf /2

∑
m=τm−Tf /2

exp
(

i2m
σ2

) ∫ ∞

−∞

1√
2πσ

exp
(
− (rm − 2im)2

2σ2

)
drm︸ ︷︷ ︸

1

=
1

Tf

τm+Tf /2

∑
m=τm−Tf /2

exp

(
h2

mσ2
i

σ2

)
(A9)
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The second moment is calculated as

E{∆2(m, m̃|device is present)}

= E


 1

Tf

τm+Tf /2

∑
m=τm−Tf /2

γ(m|H2)

 1
Tf

τm̃+Tf /2

∑
m̃=τm̃−Tf /2

γ(m̃|H2)


=

1
T2

f

τm+Tf /2

∑
m=τm−Tf /2

τm̃+Tf /2

∑
m̃=τm̃−Tf /2

E{γ(m|H2)γ(m̃|H2)} (A10)

When m 6= m̃, the above can be given as

E{γ(m|H2)γ(m̃|H2)} = E{γ(m|H2)}E{γ(m̃|H2)}

= exp

(
h2

mσ2
i

σ2

)
exp

(
h2

m̃σ2
i

σ2

)

= exp

(
(h2

m + h2
m̃)σ

2
i

σ2

)
(A11)

While for m = m̃, the above reduces to

E{γ(m|H2)γ(m|H2)}
= E{γ(m|H2)

2}

=
∫ ∞

−∞

(
exp

(
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))2 1√
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= exp
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= exp
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)
(A12)

Now, substituting (A11) and (A12) in (A10), we get

E{∆2(m, m̃|device is present)}

=
1

T2
f

(
Tf exp

(
3h2

mσ2
i

σ2

)
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f − Tf ) exp

(
(h2
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2
i
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(
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+

1
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(
3h2

mσ2
i

σ2
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2
i
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(A13)

Finally, the variance will be given as

σ2
p = E{∆2(m, m̃|device is present)} − E{∆(m|device is present)}2

= exp

(
(h2

m + h2
m̃)σ

2
i

σ2

)
+

1
Tf

(
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(
3h2

mσ2
i

σ2

)
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(
(h2
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2
i

σ2
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(
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2
i

σ2
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− 1

Tf

(
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(
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i

σ2
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(
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2
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=
1
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(
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i
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)
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(
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i
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(A14)
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