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Abstract: The integration of the physical and digital world has become increasingly important, and
location-based services have become the most sought-after application in the field of the Internet of
Things (IoT). This paper delves into the current research on ultra-wideband (UWB) indoor positioning
systems (IPS). It begins by examining the most common wireless communication-based technologies
for IPSs followed by a detailed explanation of UWB. Then, it presents an overview of the unique
characteristics of UWB technology and the challenges still faced by the IPS implementation. Finally,
the paper evaluates the advantages and limitations of using machine learning algorithms for UWB IPS.
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1. Introduction

With advancements in wireless communication technology, sixth generation (6G)
is bringing advanced technologies, such as mm-Wave [1–3], unmanned aerial vehicles
(UAVs) [4–6], tera-hertz (THz) communications [7–9], intelligent reflecting surfaces
(IRS) [10–12], non-orthogonal multiple access (NOMA) [13–15], etc., to overcome the limi-
tations of prior wireless generations. Indoor positioning systems (IPSs) and location-based
services have become a fundamental requirement for many Industrial Internet of Things
(IIoT) applications [16–18]. For global positioning in the outdoor environment aspect, global
navigation satellite systems (GNSSs), such as GPS, GLONASS, and the BeiDou navigation
satellite system, are widely used and can achieve positioning accuracy within a 4.9 m radius
in clear, open spaces [19,20]. However, despite these systems bringing great convenience
to human life, the positioning accuracy decreases significantly in indoor environments or
dense urban areas, where satellite signals are heavily attenuated when they pass through
building walls, leading to multipath conditions or complete signal blocking [21–24].

IPSs require high precision, often with centimeter-level accuracy, and are becoming
increasingly important for various applications, such as personal navigation in airports
and shopping malls, warehouse management and security, machine, and asset tracking
in smart factories, health monitoring in hospitals, personal information delivery tracking,
and commercial wheeled-robot control in industry areas [17,25–27]. However, indoor
environments are still challenging due to the heterogeneous nature and the presence of
various obstacles that cause variations in signal and noise levels, making high-precision
localization a difficult task. To address this challenge, various technologies have been
employed, including RFID, BLE, Wi-Fi and ZigBee [25,26,28,29]. These commercially
available technologies can provide IPSs with an accuracy of the meter order, which may
suffice for some applications. However, UWB technology is emerging as a more promising
technique for high-accuracy indoor localization, capable of achieving centimeter-level
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accuracy in larger-coverage areas in harsh environments with only a few reference anchors
and an effective radiated power (ERP) of 2W [30–32]. UWB has several attractive properties,
including high channel capacity because of its extremely wide bandwidth, which enables
low transmission power, and the extremely short time duration of the pulses (typically
nano- or picoseconds), which reduces multipath fading. The robustness to multipath effects
and high temporal resolution also make UWB a suitable technology for high-precision
localization by enabling precise ranging based on time of arrival (ToA), time difference of
arrival (TDoA) and two-way time of arrival (TW-ToA) techniques [33,34].

Several survey articles have been written on indoor localization, focusing on different
technologies and their strengths and weaknesses. Zafari et al. [35] conducted a compre-
hensive survey of different types of indoor positioning techniques, considering factors,
including the efficiency, hardware cost, reception, latency, scalability, and localization ac-
curacy. They also highlight the challenges that need to be addressed to achieve accurate
positioning systems. Sattarian et al. [36] reviewed the use of data mining technology in an
indoor positioning system for IoT applications and how data mining can help overcome
the challenges. Alarifi et al. [37] conducted a detailed analysis, including the strengths,
weaknesses, opportunities, and threats, of UWB positioning technologies. Additionally,
Hayward et al. [38] explored the potential applications of IPSs in the industrial sector.
However, these articles do not provide a detailed discussion on the effects of the non-line-
of-sight (NLoS) signal and some existing cutting-edge machine learning (ML) algorithms
that can be used to classify NLoS signals. There is a need for a comprehensive review that
summarizes these wireless technologies for IPSs and ML algorithms for UWB to provide a
better understanding of future research directions.

Firstly, this work presents an up-to-date applications of IPSs and the wireless tech-
nologies that can be used for IPS. Then, UWB characteristics and principles of position
estimation methods and algorithms are discussed. The second objective of this article is to
present a review of the NLoS signal’s effects on the UWB positioning system. Finally, the ar-
ticle discusses the existing ML algorithms used to classify or mitigate the positioning error
caused by NLoS signals and the main challenges for further work. The key contributions of
this work are as follows:

1. This work provides a detailed survey of the most common wireless communication-
based technologies for IPSs and evaluates these technologies using an evaluation
framework to highlight their pros and cons.

2. This paper provides a detailed discussion of various principles of position estimation
methods that can be used for IPS, and highlights the advantages and limitations of
using algorithms for UWB IPSs.

3. In addition, this paper presents a detailed explanation of UWB. Then, it presents an
overview of the unique characteristics of UWB technology and the challenges still
faced by IPS implementation.

4. This paper also presents an exhaustive review of the non-line-of sight (NLoS) signal’s
effects on the UWB positioning system and discusses the existing ML algorithms used
to classify or mitigate the positioning error caused by NLoS signals and the main
challenges for further work.

5. Finally, this work surveys and discusses the emerging state-of-the-art ML-based
research efforts in solving the challenge associated with NLoS effects for the UWB
presented and summarizes the existing popular ML algorithms for UWB IPS NLoS
classification and mitigation, such as k-NN, SVM, DT, NB, and NN.

This paper is organized as follows: Section 2 describes the techniques used for localization
in IIoT. Section 3 describes the characteristics of UWB. Section 4 explains UWB IPSs and
the principles of localization. Section 5 provides the definition of the NLoS signal and
importance of applying ML algorithms for the UWB system and presents the existing
ML algorithms and their comparisons. A complete section on future research directions,
challenges, and limitations is discussed in Section 6. Finally, the summary and conclusions
are presented in Section 7.
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2. Localization in IIoTs

In this section, the progress and the key benefits of IPSs are discussed. Popular wire-
less technologies employed for IPSs for IIoT, such as Wi-Fi, BLE, ZigBee, RFID, and UWB,
are revisited followed by analysis of the evaluation metrics, such as accuracy, coverage,
power consumption, etc., for such technologies.

2.1. Indoor Positioning System, IPS

IPSs have enabled various navigation applications that highly require the instant
location of a person and any objects in real time, uniformly localizing the mobile device
or objects in an indoor environment [39,40]. It has opened up various new possibilities in
industrial, consumer IoT markets and healthcare. In industrial environments, there is a
growing interest in IPSs for logistics and manufacturing to ensure the precise navigation of
automatic robots, tracking personal tools and equipment in large warehouses and factories.
In such environments, device movement can be potentially dangerous, so automatic device
tracking has become a fundamental aspect of Industry 4.0 for safety [41,42]. Addition-
ally, there is an increasing legal requirement for the continuous tracking of coal miners
in underground mines due to the increasing number of disasters with many fatalities.
These positioning systems can help to connect front-end workers and improve safety [43].
In the consumer IoT market, real-time and reliable location information can digitalize and
optimize virtually every aspect of asset and data management for efficiency and secu-
rity in manufacturing operations and working spaces [44]. Context-aware location-based
marketing is undergoing a great change and shows potential improvements in both sales
and profits side in e-commerce [45]. This type of marketing strategy enhances the shop-
ping experience in real time by considering the buyer’s social profile, shopping history,
feedback requirements, spending pattern, history of navigation, online behavior, and so
on. Finally, IPSs are attracting attention in healthcare due to the need to improve service
quality, such as monitoring biomedical equipment location or guiding patients in crowded
hospitals [46]. For example, in the case of emergency patients, doctors can track the safety
and mobility of patients instantly. Other applications, such as map construction and route
planning, are well suited for IPSs [47]. The map construction is a fingerprinting-based
localization approach that consists of an offline stage and an online stage. Fingerprints are
in the form of radio frequency (RF) signal strength, which is collected and stored in the
offline stage. The location pair consists of exhaustive records of the serviced area. For the
online stage, location estimation is estimated by comparing the collected testing records to
the stored training fingerprints. Furthermore, route planning for intelligent localization
and navigation systems is another extremely useful technology with both military and
commercial applications. For standard route planning algorithms, it generates a minimum
cost route based on a predetermined cost function. The beneficial opportunities for IPSs are
summarized in Figure 1.
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Figure 1. Key benefits of indoor positioning system (IPS).

2.2. Communication Technologies for Indoor Positioning System

In this following subsection, the most common existing wireless communication
technologies that are widely applied for indoor localization system [48–50], such as RFID,
Wi-Fi, Bluetooth, ZigBee, and UWB, are briefly presented and discussed.

• Wireless Fidelity, (Wi-Fi): Wi-Fi, a widely used wireless networking technology,
operates on the IEEE 802.11 standard and uses radio frequency bands of 2.5 GHz
for IEEE 802.11b and 5 GHz for IEEE 802.11a [49]. Many smart devices, such as
smartphones, tablets, and audio players, are Wi-Fi enabled, making Wi-Fi-based IPSs
more practical and cost effective. In a typical large indoor area, such as office buildings,
universities, and malls, the widespread distribution of Wi-Fi hotspots provides a
complete building coverage. Wi-Fi-based localization systems are typically based on
fingerprinting the radio signal strength indicator (RSSI) and have an accuracy range of
1–10 m [50]. Wi-Fi offers a reception range of about 100 m, and its low infrastructure
cost makes it a practical option for IPS. Its reasonable accuracy, availability, large
coverage, high data rate, and widespread support in many devices make Wi-Fi a
suitable choice for IPSs.

• Bluetooth Low Energy, (BLE): Bluetooth communication technology operates in the
radio frequency range from 2.402 GHz to 2.480 GHz [51]. It is designed for short-range
communication between devices and has become a competitive technology in IPSs due
to its characteristics of cost effectiveness, very low power consumption, long battery
life, high security, and communication efficiency [48,52]. Bluetooth-based localization
solutions typically use the RSSI-based range-estimate technique. The latest version of
Bluetooth, known as BLE, has a data rate of 24 Mbps, and the signal range coverage can
reach 70–100 m with the high power efficiency, making it ideal for use in public-space
areas, such as airports or shopping centers [53].

• ZigBee: ZigBee is a wireless communication protocol based on the IEEE 802.15.4
standard that is designed for personal-area networks that are cost effective, have low
data rate, and are energy efficient. It operates on different frequency bands, including
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868 MHz in Europe, 915 MHz in the USA, and 2.4 GHz in other regions. It can be easily
applied for IPSs with a coverage range of up to 100 m [54], which is ideal for most
indoor environments, including buildings and underground structures. The energy-
efficient feature of ZigBee makes it a suitable choice for IPSs in terms of low power
consumption.

• Radio Frequency Identification, (RFID): RFID is a key technology enabling the real-
time monitoring of objects. It involves data transfer and storage, and operates on
backscattering communication, which consists of a RFID reader, RFID tags, and data
processing system [55,56]. The RFID reader emits frequency pulses that are received
by the RFID tags, and the data are processed with the help of a chip embedded in
the tags. The RFID tag contains three different types, which are active, passive and
semi-active. Active RFID tags, which have an internal battery, are used in various
applications and operate in ultra-high frequency ranges with a coverage range of up
to 100 m [57–59]. RSSI information between the RFID tags and the reader is used to
estimate the range and localization, but this information is easily affected by multi-
path, noise, and changing channel conditions in indoor environments. Factors such as
node density, antenna type, and frequency used can also impact the accuracy of the
system. As a result, active RFID technology may not provide sub-meter-level precise
accuracy of the positioning system, but it is still popular due to its low cost, ease of
implementation, miniaturize size, and low power consumption [60,61].

• Ultra-WideBand, (UWB): UWB technology has gained popularity in precision indoor
positioning systems due to its advantages over narrowband-based technologies, such
as Bluetooth and Wi-Fi. Some factors of UWB include a very large bandwidth, very
high data rate, short signal transmission length, low transmission energy, and high
penetration capability [62–65]. These characteristics are also very important for high
precision indoor localization accuracy. Currently, UWB technology has already re-
ceived significantly attention in industry, as many companies have started to adopt it
for precise tracking and navigation systems. For example, the iPhone-13 from Apple
contains UWB for precise location tracking, and the Samsung Galaxy Note 20 Ultra
uses UWB as a digital key for doors and cars. The structure of a UWB signal is based on
the IEEE 802.15.4a–2011 standard, which involves the signal transmission of extremely
short pulses within a very large bandwidth, specifically from 3.1 to 10.6 GHz [65–67],
rather than broadcasting on separate frequencies. Due to its large bandwidth and
short pulses, UWB systems are highly precise and secure, and are less susceptible to
multipath interference and fading.

• Evaluation Metrics of different technologies: Evaluation metrics can explain the
parameters which affect the performance of a technology. The metrics of different
wireless indoor positioning technologies are summarized in Figure 2. The technolo-
gies are compared in terms of accuracy, energy efficiency, range coverage, and cost.
The maximum metric achievable by a technology is 9. From the figure, it can be
observed that UWB is highly accurate as compared to BLE, Wi-Fi, RFID and ZigBEE.
However, the lowest power consumed is by BLE followed by RFID, ZigBEE, UWB,
and Wi-Fi. Finally, it can be concluded that there is a trade-off when selecting an appro-
priate technology, and depending upon the application, the most suitable technology
should be chosen.
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Figure 2. Wireless technologies for IPS comparison in terms of coverage, precision, energy efficiency
and cost.

3. UWB Characteristics

3.1. UWB Definition

Developed in the 1970s, UWB is a wireless radio technology developed initially for
classified applications by the US military, but the focus has shifted to impulse radio UWB
(IR-UWB) with ongoing research, according to [64]. To distinguish UWB from narrow-band
signals, the Federal Communications Commission (FCC) has defined that UWB can be
treated as a radio frequency (RF) signal: firstly, when the occupying bandwidth is greater
than or equal to 500 MHz, and secondly, the fractional bandwidth of UWB has to be greater
than 20% of the center frequency [65] and expressed as

B f = 2×
(

fH − fL
fH + fL

)
, (1)

where B f is a dimensionless frequency-independent indicator, and fH and fL mean the
higher and lower cut-off frequencies at −10 dB of the UWB pulse spectrum. B f and band
ratio Br help determine the types of communication. Table 1 summarizes the communi-
cation band usage scenario by classifying the communication system as a narrow-band,
wide-band or ultra-wideband system.

Table 1. Communication band usage scenarios.

Communication Fractional Band Ratio
Band Bandwidth B f Br( fH / fL)

Narrow-band 0.00 < B f ≤ 0.01 0.00 < Br ≤ 1.01
Wide-band 0.01 < B f ≤ 0.25 1.01 < Br ≤ 1.29
UWB 0.25 < B f < 2.00 Br ≥ 1.29

3.2. Pulse Shape

The impulse radio version of UWB technology is commonly known as a pulse-based
UWB system. In this system, the UWB pulse, often referred to as a Gaussian doublet, utilizes
a square pulse due to its ease of generation through the simple on/off switching of a tran-
sistor. However, as previously noted, UWB pulses are typically measured in nanoseconds
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or picoseconds, and the rapid on/off switching makes the pulse shape non-rectangular but
rather helps approximate it as a Gaussian function [17,27]. The basic modulation methods
can be applied for UWB to encode information including pulse position modulation (PPM),
burst position modulation (BPM), pulse amplitude modulation (PAM), and on–off keying
(OOK) [68,69]. Generally, higher-order modulations can achieve higher throughput or good
spectral efficiencies by enabling more bits to be sent per symbol [68–70]. PPM is a common
method for creating an M-ary system and is easy to implement but requires very good time
resolution to modulate the pulses. In BPPM, the pulses can be sent at the same rate, and the
changes of UWB shape depend on the transmitted value [71]. PAM modulation is based
on using the pulse amplitude to encode information and allows for the use of an arbitrary
number of different pulses. The OOK method can be also considered a particular case of
PAM, whereas only a binary set of pulses is allowed. A UWB signal can be represented
as a UWB signal transmitted by the help of K pulses; the pulses are within a period of
Tp that consists of certain frames, where each information symbol is considered a UWB
signal [62,63].

3.3. Advantages of UWB

• Large Channel Capacity: According to Hartley–Shannon’s capacity formula, the
channel capacity increases linearly with bandwidth [66]. In such a case, the availability
of some bandwidth which operates in typical gigahertz for UWB signals suggests that
data rates of gigabits per second (Gbps) can be achieved. UWB technology transmits
very short pulses within an extremely large bandwidth from 3.1 to 10.6 GHz, which
provides a significant bandwidth advantage and a short duty cycle. As a result, UWB
offers a larger capacity and higher data rates, making it an excellent choice [68,69,71].

• Simple transceiver architecture and low cost: UWB uses carrierless waves to transmit
data [68,69,71,72]. As a result, carrier oscillators are not required in order to transmit
the carrier frequency for the signal transmission. This eliminates the requirements
for a carrier recovery stage for the receiver side, and the UWB transceiver does not
require modulators, demodulators, or intermediate frequency components [68,69,71,
72]. This simplicity in the UWB transceiver architecture makes it more lightweight
and beneficial compared to narrowband signals. Furthermore, the system power
consumption is significantly reduced due to these characteristics. Additionally, the low
complexity of the UWB system and the smaller chip sizes reduce the cost of the system.

• Multipath Immunity and Low Power Spectral Density (PSD): Multipath refers to
the phenomenon in which an electromagnetic signal travels through various paths dur-
ing transmission due to factors such as signal reflection, signal absorption, diffraction,
and scattering of energy by the presence of objects in the environment [65–67]. UWB
communication systems have a large bandwidth, which allows them to operate at
high data rates, making them highly robust. They are also capable of performing well
in the condition of low signal-to-noise ratio (SNR) communication channels, providing
immunity against multipath conditions. This factor makes UWB communication
ideal for indoor positioning applications under NLoS conditions. Furthermore, UWB
systems have good anti-multipath performance and are not sensitive to channel atten-
uation. The signal transmitting of UWB is of a low average power spectral density
because of the short-pulse nature of the transmission, which places it within the noise
floor (typical −40 dBm/MHz), thus allowing for less transmitter power consumption,
increased power efficiency, and resistance against jamming and interception as shown
in Figure 3.
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Figure 3. Comparison of the attributes of UWB spectrum with various positioning technologies.

3.4. IEEE 802.15.4 UWB Physical Layer (PHY)

The UWB physical layer (PHY) waveform operates on a signaling scheme called the
impulse radio, which uses band-limited data pulses. Three different frequency bands are
defined by the IEEE 802.15.4 standard: the sub-gigahertz band, low band and high band.
The sub-gigahertz band has one channel that spans from typically 249.6 MHz to 749.6 MHz.
The low band covers the spectrum from typically 3.1 GHz to 4.8 GHz and consists of four
channels (channel 1 to channel 4). The high band occupies the range 5.8 GHz to 10.6 GHz
and includes 11 channels (channel 5 to channel 15), which are listed in Table 2. These
optional channels can increase the communication range and positioning accuracy, as well
as improving resistance to multipath interference. Figure 4 shows the UWB packet format.
The packet or frame consists of three parts: a synchronization header (SHR), which includes
the preamble sequence and the start of frame delimiter (SFD), a physical layer header
(PHR), and the data portion. The preamble is made up of pulses that are used to detect the
frame and are composed of two parts: the preamble and the SFD. The SFD marks the end
of the preamble and the start of the PHY header, and it is used to determine the accurate
frame reception timestamp that is essential for precise localization. The UWB PHY contains
a mandatory short SFD of 8 symbols for the default and medium data rates, and an optional
SFD of 64 symbols for the nominal low data rate of 110 kbps. The number of symbols in
the preamble can be classified as 16, 64, 1024, or 4096 symbols, and the options are defined
based on the application requirements. One of these preamble lengths has to be supported
in order for the device to comply with the UWB standard.

Figure 4. UWB PHY frame.
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Table 2. UWB PHY channel definitions.

Group Channel Center Bandwidth Mandatory
Band Number Frequency (MHz) /Optional

(MHz)

Sub-GHz 0 499.2 499.2 Mandatory

Low

1 3494.4 499.2 Optional
2 3993.6 499.2 Optional
3 4492.8 499.2 Mandatory
4 3993.6 1331.2 Optional

High

5 6486.6 499.2 Optional
6 6988.8 499.2 Optional
7 6489.6 1081.6 Optional
8 7488.0 499.2 Optional
9 7987.2 499.2 Mandatory

10 8486.4 499.2 Optional
11 7987.2 1331.2 Optional
12 8985.6 499.2 Optional
13 9484.8 499.2 Optional
14 9984.0 499.2 Optional
15 9484.8 1354.97 Optional

4. UWB Indoor Positioning System
4.1. Architecture of UWB-Based IPS

Figure 5 depicts a typical UWB-based indoor localization system consisting of two
types of nodes- anchors with known positions and tags with unknown positions. The sys-
tem also includes a location server for sensor processing data and an interface device for
viewing the positioning results. The localization process involves setting one of the anchors
as the reference point and using the time-of-flight (ToF) technique to estimate the distance
between each anchor and tag. Trilateration or multi-angulation techniques are then used to
determine the coordinates of the tag in a 2D or 3D environment, depending on the number
of anchors available. To improve accuracy in complex indoor environments, additional
units, such as navigation frameworks, network gateways, user interfaces, multi-sensor
technologies, and NLoS mitigation methods, are required. An NLoS detection algorithm
is used to detect the presence of NLoS signals in the measurement data, and the model
obtained from this algorithm is then used to refine the positioning algorithm. The choice of
the NLoS detection algorithm and the positioning algorithm depends on the specific appli-
cation requirements and the properties of the environment to achieve accurate positioning
using the UWB IPS.

4.2. UWB Ranging Algorithms

IPS ranging algorithms can be basically classified into four categories based on their
underlying principle—time, signal, angulation, and proximity detection—as illustrated in
Figure 6. Time-based algorithms include time of arrival (ToA), time difference of arrival
(TDoA), two-way (TW)-ToA and phase of arrival (PoA). Signal-based algorithms rely on
RSSI and channel state information (CSI). Angulation-based algorithms use angle of arrival
(AoA) and angle of departure (AoD) to determine position. Proximity detection-based
techniques use RSSI and Cell-ID. ToA, TW-ToA, TDoA, AoA, and RSSI are commonly
used with UWB in the literature. In the upcoming sections, we will discuss these methods
in detail.
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Figure 5. Basic elements of UWB positioning system.

Figure 6. Classification of localization algorithms.

• Time of Arrival (ToA): According to [67], the majority of UWB-based IPSs employ the
ToA algorithm to determine the position of mobile tags. This is because the positioning
algorithm is simple to implement and provides high accuracy. The ToA algorithm
measures the flight time between the anchors and tags and calculates the estimated
range between each anchor and tag as illustrated in Figure 7a. The clocks of the
anchors and tags are synchronized precisely, and a timestamp is sent from the i-th
tag to the j-th anchor. The j-th anchor then sends back a reply after processing the
timestamp, with Treplyj

denoting the processing time of the j-th anchor. Let Troundi
be

the total time taken by the i-th tag, the total propagation time for τij the j-th anchor,
and the i-th tag can be expressed as

τij =
Troundi

− Treplyj

2
. (2)

The estimate range di,j between the i-th anchor and j-th tag can be determined as

di,j = c× τi,j, (3)
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where c = 3× 108 m/s representing the speed of light.
The above equations reveal that the ToA algorithm is susceptible to errors resulting
from time measurements. A 1 µs time measurement error can result in an error
of 300 m using RF wave velocity. Therefore, the ToA algorithm requires precisely
synchronized clocks for both anchors and tags, which can be challenging in terms
of hardware design and cost effectiveness. After determining the estimated range
between each anchor and tag, trilateration theory can be employed to calculate the
position of the mobile tag using the ranges obtained from more than three anchors at
fixed known locations as shown in Figure 7b. To estimate the position of the i-th tag
with respect to the j-th anchor, let us set the coordinates of the j-th anchor as (xj, yj)
and being fixed in known positioning. Set the coordinates of the i-th tag as (x̂i, ŷi),
where (·̂) denotes the estimated position. The position of the tag is estimated by
intersecting circles (in 2D) or spheres (in 3D) with radii d(i, j) and d(i, j, k), respectively.
The optimal position of the tag (x̂i, ŷi, ẑi) can be obtained by applying the least-squares
solution and the minimum mean square error estimation algorithm

(x̂i, ŷi, ẑi) = min
(xi ,yi ,zi)

4

∑
j=1

[
dj −

√
(x̂i − xj)2 + (ŷi − yj)2 + (ẑi − zj)2

]2
. (4)

(a) (b)

Figure 7. ToA positioning algorithm. (a) Signal propagation time calculations. (b) Estimated
range scheme.

• Two-Way Time of Arrival (TW-ToA): The ToA method described above can offer
high positioning accuracy but requires precise synchronization of the anchors and
tags, which can be challenging to implement. Alternatively, the TW-ToA method
shown in Figure 8 can be used to measure the signal propagation time τ and eliminate
the synchronization requirement. The total propagation time for τij between the j-th
anchor and i-th tag can be calculated using the TW-ToA method and is expressed as

τij =
1
4
(
TWR1roundi

+ TWR1j + TWR2roundi
+ TWR2j

)
, (5)

where TWR1roundi
and TWR2roundi

are the two-way return time and TWR1j and
TWR2j are the responding time of the anchor and the tag, respectively, as shown in
Figure 8.
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Figure 8. TW-ToA positioning algorithm.

• Time Difference of Arrival (TDoA): TDoA is another time-based measurement algo-
rithm related to ToA and TWR-ToA. The principle of this algorithm is to measure the
difference in arrival time between two signals as shown in Figure 9. While the anchor
still requires precisely synchronized clocks, the tags do not need to be as precisely
synchronized compared to the ToA method. This leads to high-power efficiency, as
only one transmission message is required from the tag to the anchor. The location of
the mobile tag can be obtained from the intersection of multiple hyperbolas. Consider
that the anchors are located at (xi, yi), i = 1, 2, 3. and the coordinates of the tag are
(x̂, ŷ). The distance between the target and the reference base station can be expressed
as a difference in arrival time, given as√

(x̂− xi)2 + (ŷ− yi)2 = c(ti1 − ti2), i = 1, 2, 3. (6)

Figure 9. TDoA positioning algorithm.

• Angle of Arrival (AoA): The AoA algorithm, as shown in Figure 10, estimates the
position of a mobile object based on angle measurements obtained by antenna arrays
at the receiver side. The phase difference between two anchors is used to calculate
each angle measurement, and the location of the mobile object can be determined from
the intersection of the angle lines. In a two-dimensional Cartesian coordinate system,
two anchors are located at (xi, yi), i = 1, 2, and the coordinates of the mobile object
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are (x̂, ŷ). The angles related to anchor-i from the standpoint of the mobile object are
θi, i = 1, 2. The angles measured by the anchors are denoted as αi, i = 1, 2. The location
of the tag can be formulated as

yi − ŷ = (xi − x̂) tan(θi), i = 1, 2. (7)

where θi and αi have the following relation:

θi = 180◦ − αi, i = 1, 2. (8)

The target’s location (x̂, ŷ) can be figured out by solving the equation.

Figure 10. AoA positioning algorithm.

• Received Signal Strength Identification (RSSI): To further expand on the RSSI algo-
rithm, location fingerprinting involves collecting a database of RSSI values at known
locations in the environment, known as “fingerprints”. When a mobile tag enters
the environment, its RSSI values are compared to the fingerprints in the database to
determine its location. This approach can improve the accuracy of the RSSI-based po-
sitioning system, but it requires significant effort to build and maintain the fingerprint
database. Additionally, changes in the environment, such as moving objects or changes
in building materials, can impact the accuracy of the system. Overall, RSSI-based
algorithms can provide a low-cost solution for indoor localization, but their accuracy
can be impacted by various environmental factors. In addition, these algorithms
may not be suitable for applications that require high precision, such as industrial
automation or autonomous vehicle navigation. The theoretical relationship between
received signal strength and distance is as follows:

di = d0

(
10
(

P(di)−Pt−PL(d0)+xσ
10

))−1
n

(9)

where d0 is the reference distance, Pt and PL(d0) are transmitted power and pass loss
at the reference point, and xσ is a Gaussian random variable with zero mean that
represents shadow fading and the path loss exponent.

• Comparison of Positioning Algorithms: Table 3 summarizes the advantages and
disadvantages of the mentioned positioning algorithms. These positioning algorithms
are compared in terms of accuracy, efficiency and cost in Figure 11. From the figure,
it can be observed that TDoA, TWR-ToA, and ToA have the highest accuracy. RSSI
followed by ToA and AoA have the lowest implementation cost, while ToA followed by
TDoA and TWR-ToA have the highest efficiency. From the figure, it can be concluded



Sensors 2023, 23, 5710 14 of 28

that there is a trade-off when selecting the positioning algorithms, and depending
upon the requirements, the positioning algorithm should be selected and preferred.
Finally, to conclude this section, the current advances for UWB positioning algorithms
in the literature are summarized in Table 4. The table categorizes each paper con-
cerning the publication year, positioning algorithm applied, and the basic description
explaining the rationale and methodology for each paper.

Table 3. Advantages and disadvantages of positioning algorithms.

Algorithm Advantages Disadvantages

Easy to implement. High cost.
ToA Higher scalability. Requires precise clock.

TW-ToA High positioning efficiency. High cost.
No precise synchronization clock is required. Longer signal processing time.

TDoA No synchronization for anchors is required. High power consumption.
Fewer anchors required.

Provide high accuracy with short range. Complex hardware design.
AoA Complex algorithm with longer running time. High power consumption.

Fewer anchors required.

Cost effective and low hardware complexity. Provides low precision accuracy.
RSSI No requirement for time counting devices. Requires large data for fingerprinting training.

Figure 11. Comparison of the different positioning algorithms in terms of accuracy, cost and efficiency.
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Table 4. Key positioning algorithms and their description.

Paper Year Positioning Algorithm Description

[72] 2020 1D and ToA Improving the UWB IPS accuracy by proposing a modified leading edge
2D detection with LS trilateration filtering.

[73] 2023 3D ToA Proposed convolutional neural networks (CNNs) to estimate the range and
then mitigated the errors by utilizing channel impulse responses (CIRs).

[74] 2021 3D TDoA Proposed anchor selection theory for improving the accuracy of IPS.

[75] 2022 3D TW-ToA A messaging framework that optimizes the usage of resources. The results
showed an improvement in error to as low as 5.4 mm when using 6 anchors.

[76] 2022 2D AoA A fusion positioning system based on BLE-AOA and UWB was developed.
It enhances the accuracy reaching below the sub-meter level.

[77] 2020 2D and RSSI An RSSI IPS based on neural network is designed. Positioning error is <1 m
3D and the average positioning error is 0.4436 m.

5. Detection in UWB Positioning Algorithms

Generally, in a UWB IPS, the signals are classified as either a LoS or NLoS
signal [27,78–81]. There are some papers where the signals are classified as having quasi-
LoS (QLoS); see [82,83] and references therein. The detection of the UWB positioning
system is classified as LoS and NLoS in Figure 12. In LoS conditions, where there is a clear
environment and there are no obstacles between the anchor and the tag, the estimated
range between each anchor and tag (d1, d2, d3) can be calculated accurately, allowing the
trilateration theory to be applied and the position of the tag to be accurately obtained
as shown in Figure 12c. However, in NLoS conditions, where the signal is attenuated or
refracted by obstacles causing a positive bias, the distance measurement for anchor 3 (d

′
3) is

estimated inaccurately. This causes the circles to overlap as shown in Figure 12d, resulting
in the tag’s location being in any highlighted area rather than an accurate location point.
As a result, the localization accuracy of the tag is seriously affected. Therefore, from Fig-
ure 12, it can be observed that the trilateration positioning algorithm suffers from positive
bias NLoS errors. This positioning error can be solved by employing a joint approach of
employing empirical and ML models. ML models can be used to classify these LoS and
NLoS conditions to improve the accuracy of the positioning algorithm. Let us now look
into ML models in detail for NLoS classification.

(a) (b)

Figure 12. Cont.
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(c) (d)

Figure 12. Detection of UWB positioning system. (a) Signal propagation in LoS scenario. (b) Signal
propagation in NLoS scenario. (c) Positioning algorithm in LoS scenario. (d) Positioning algorithm in
NLoS scenario.

5.1. Machine Learning For UWB In NLoS

To improve the accuracy of UWB positioning systems, specific NLoS mitigation
techniques are required for various applications. Figure 13 illustrates a block diagram of a
complete UWB precise IPS, which starts by fixing the anchors for the coordinate system
and locates the mobile UWB tags within the indoor environment. The collected raw data
will be used by an additional processing step for NLoS detection, which is performed using
an ML classification algorithm that has been pre-trained with the raw measurement data.
This model is used to mitigate the NLoS effects. For NLoS classification, the ML is used
to classify the LoS and NLoS by different signal features or CIR values. For NLoS error
correction, the ML can be applied for predicting the error ei,j accurately. The actual range
ri,j between the i-th anchor (xi, yi, zi) and the j-th tag (xi, yi, zi) is defined as:

ri,j =
√
(xi − xj)2 + (yi − yj)2 + (zi − zj)2. (10)

The estimated distance di,j in term of the coordinate of the i-th anchor and the j-th tag
is determined through calculating the signal round trip time of the ToA. The positioning
of the i-th anchors is known and constant; therefore, the estimated distance di,j in a three-
dimensional scenarios is given as:

dLoS
i,j = ri,j + εi,j, (11)

where εi,j is the measurement error.
For NLoS conditions, the signal direct path is reflected or blocked due to the presence

of obstacles; therefore, there will be further signal propagation delay, resulting in NLoS
error ei,j. The estimated distance di,j can be calculated as:

dNLoS
i,j = ri,j + εi,j + ei,j, (12)

where ei,j is the independent positive measurement bias error. Finally, the corresponding
ranging error δi can be expressed as:

δi =

{
εi,j, LoS,
εi,j + ei,j, NLoS.

(13)
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The ML algorithm can now be trained to classify the LoS and the NLoS component for
the UWB signal. Therefore, high-accuracy NLoS classification and accurate prediction of
ei,j is crucial for precision IPS.

Figure 13. Blocks of machine learning NLoS detection for UWB precise positioning process.

5.2. Recent Advances in ML for NLoS Effects

In this section, we will present an overview of several research papers in the current
literature related to UWB IPSs. The existing research work based on ML for UWB IPSs can be
classified into two main categories: NLoS detection and NLoS error correction approaches.
The primary goal of NLoS detection is to accurately classify the NLoS signal and then
mitigate its effects. On the other hand, the primary objective of error correction is to identify
the errors in the UWB ranges using precise ground truth, which can have a positive impact
on the localization accuracy. Specifically, when there are at least four anchors available for
3D localization, an anchor selection algorithm can be used to mitigate range errors based
on their NLoS detection before providing the ranges to the localization algorithm.

• NLoS Classification: In the UWB feature-based methods category, two papers are
mentioned. Sang et al. [79] use three ML approaches to classify NLoS into multiple
classes (LoS and NLoS) based on 12 extracted features, achieving an accuracy of up to
91.9% in the best case. Similarly, Zeng et al. [80] use a genetic algorithm to find the best
combination of 18 features in an office environment, achieving an NLoS classification
accuracy of 96%.
In contrast, the non-feature-based methods category includes three papers. Jiang et al. [81]
use a CNN to identify NLoS signals after denoising raw CIR data using a reversible
transformation method, achieving an average accuracy increase of 27.9% for NLoS
classification accuracy. Fan et al. [84] propose an unsupervised ML approach based on
Gaussian mixture models to identify NLoS links from unlabeled data. Jiang et al. [85]
use a CNN to extract non-temporal features from UWB raw CIR data, and then feed the
features into long short-term memory for NLoS classification, achieving an accuracy
of 82.14%.
Compared to the feature-based methods, the papers based on raw CIR measurements
provide superior performance for NLoS detection. However, the authors did not
evaluate the performance of the proposed approaches in unseen environments, which
limits their suitability in practical settings. In contrast, Park et al. [86] propose transfer
learning based on neural networks (NN) and convolutional neural networks (CNN)
to identify UWB NLoS signals in unseen environments.

• NLoS Error Correction: Besides NLoS detection, UWB error correction is mentioned
in [87–90]. Similar to the NLoS approaches, some research papers focused on extracting
features from the CIR data. The authors of [87] extracted the features based on
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distance measurement and received signal strength. Then the authors proposed
local spatial feature extraction, temporal feature extraction, and position prediction
to improve the positioning accuracy. Authors in [89] mainly focus on the UWB
measured range associated with NLoS. A large dataset comprising of the measured
distance and 7 different signal features are trained by an (ANN) to perform error
prediction. The focus of [88] is on UWB feature-based error correction. Two classes
of non-parametric regression techniques include a support vector machine and the
Gaussian process and are applied by the authors to directly mitigate the ranging error
in the physical layer, based on 6 signal features from the received waveform and the
estimated distance. The fraction of residual errors less than 1m is increased from
63% to around 90% by using support vector machine- and Gaussian process-based
mitigation. Finally, in paper [90], a semi-supervised autoencoder-based ML approach
is proposed by the authors, based on raw CIR data, to achieve high IPS accuracy for
low-cost edge devices. The results achieve 29% higher localization accuracy than
state-of-the-art deep neural networks in complex environments.

5.3. Ml-Algorithms for UWB IPS

As mentioned, various types of ML algorithms have been proposed and used in a
large range of applications for improving the IPS, especially for NLoS detection and error
correction. Among the existing successive development of ML algorithms mentioned
above, SVM, DT, NB, and NN have gradually improved the positioning accuracy and
significant usefulness of IPSs. These algorithms are discussed in detail in this section.

• k-Nearest Neighbors (k-NN): k-NN is a type of the non-parametric-based supervised
learning classifier that can be applied to both regression and classification. It typically
uses the assumption of the data feature similarity that the data points can be found
near one to another. The new data can be assigned a value based on how similarly
the data match the points trained in the training set [91,92]. The advantages of k-NN
algorithm can be summarized: Firstly, it is easy to implement and achieve high-
accuracy results. Secondly, it is suitable for multi-label classification cation issues.
In contrast, the disadvantage is that the algorithm requires large calculations, which
can increase the memory overhead. Moreover, it provides relatively low-accuracy
results when the sample is imbalanced [93–95].

• Support Vector Machine (SVM): SVM is a typical classic supervised ML algorithm
that adopts the structural risk minimization principle to solve both classification and
regression problems under high-dimensional space substitution [96]. It provides ro-
bust and superior performance without tuning several parameters due to it being
based on the framework of statistical learning theory compared with other ML algo-
rithms [97]. The main principle of the algorithm consists in estimating a hyperplane
that can maximize the distance between the values of interest in each class. As shown
in Figure 14, for a linearly separable dataset, there is only one separating hyper-plane
with the largest geometric interval. Let us consider that a training dataset contains
n points of the form T = (x1, y1), ..., (xn, yn), where the yi is labeled as 1 or −1. xi is
the p-dimensional real feature vector and xi ∈ Rn. The hyper-plane is the maximum
margin determined to divide the group of points xi into group yi = 1 and group
yi = −1. The hyper-plane can be described by the following linear equation:

wTx + b = 0 (14)

The advantages of SVM are as follows: firstly, strict mathematical theory support and
strong interpretability due to the algorithm not requiring typical statistical methods,
thus simplifying the usual classification and regression problems; secondly, it is easy
to find key samples (i.e., support vectors) that are critical to the algorithm which
can handle nonlinear classification and regression tasks; and thirdly, the calculation
complexity of the algorithm depends on the number of support vectors instead of
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the dimensionality of the sample space, which can simplify the calculation process.
In contrast, the disadvantage is that the training time is long due to the prediction
running time being proportional to the number of support vectors.

Figure 14. SVM algorithm.

• Decision Tree (DT): The DT algorithm is very suitable for large datasets with complex
different features due to its ability to mimic human-like thinking for interpreting
the data [98,99]. The advantage of DT is that it can break down the dataset into
smaller subsets to operate the classification, which can minimize the classification
error. In addition, DT can decide which attribute is the best at each tree node to ensure
the high accuracy of the classification. The main advantage of decision tree learning
is that it can minimize the error at the tree root due to it creating a single outcome
by creating the tree at every leaf. Meanwhile, each tree root will also take a longer
running time, which is the main disadvantage; therefore, it is not suitable for the
application, which requires a fast response.

• Naive Bayes(NB): The Naïve Bayesian approach is based on the Bayesian principle
for conditional probabilities [100,101]. The algorithm calculates the probability of
each attribute value, then gives the values of each instance’s attributes. All instance
probabilities are from the training set, and then the maximum probability is used to
predict the class of the new instance. Given a new dataset of the form < a1, a2, . . . , an >,
the predicted class for this instance dataset lpredicted is

lpredicted = arg max
l∈L

P(l)
n

∏
i=1

P(ai | l). (15)

where L is a vector of all attribute values, P(l) is the prior probability of l, P(a|l) is the
probability of l given condition a, and P(l) is the prior probability of a.

• Neural Network (NN): In recent times, the neural network (NN), one type of deep
learning (DL), has become relatively competitive for classification, clustering, pat-
tern recognition and regression in various different areas [102]. It is an information
management model that works in a similar way to the biological nervous systems
function of the human brain [103]. The advantage of NN application is that it provides
more accurate results due to complex natural systems with large numbers of inputs;
thus, the network can generate the best possible result without the requirement of re-
designing the output criteria [104]. In order to accomplish high-precision positioning,
different NN models were proposed and evaluated for the implementation, such as the



Sensors 2023, 23, 5710 20 of 28

multi-layer perceptron (MLP) [105], radial basis function (RBF) [106] and generalized
regression neural network (GRNN).

5.4. Performance of ML Algorithms

As stated, signal features can be extracted and used for NLoS classification and
mitigation. This sub-section presents the results obtained by applying ML-based algorithms,
such as KNN-, SVM-, DT-, NB-, and NN-based UWB signal features. For this experiment,
1000 LoS and 100 NLoS UWB signals are used [17,78]. The performance is compared with
the running time, confusion matrix, and the correct rate (CR) for LoS and NLoS components.
The findings are summarized in Table 5. The confusion matrix depicts metrics, true positive
(TP), false positive (FP), false negative (FN), and true negative (TN), respectively. The best
classification performance is achieved by the NN algorithm. TP = 983 refers to LoS,
resulting in a correct rate of 98.3%, which means 17 samples out of 1000 samples were
inaccurately classified. The average running time of NN is 0.0606 s, which is better than
that of the other considered algorithms. The precision and recall can reach 98.9% and 98.3%,
respectively, and the overall accuracy is 97.5%. Compared to NN, NB follows closely and
has similar performance, while the rest of the algorithms reach a slightly lower running
time, and their classification accuracy is also lower in the considered experiment.

Table 5. Running time and confusion matrix of state-of-the-art ML algorithms for NLoS classification.

Running LoS NLoS
Algorithm Time CR CR TP FN FP TN Precision Recall Accuracy

k-NN 0.0491 s 97.5% 79% 975 25 21 79 97.9% 97.5% 95.8%
SVM 0.1166 s 97.4% 87% 974 26 13 87 98.7% 97.4% 96.5%
DT 0.9742 s 97.7% 86% 977 23 14 86 98.6% 97.7% 96.6%
NB 0.0385 s 97.9% 88% 979 21 12 88 98.8% 97.9% 97.0%
NN 0.0606 s 98.3% 89% 983 17 11 89 98.9% 98.3% 97.5%

Figure 15 compares the receiver operating characteristics (ROC) curve and the area
under the curve (AUC) of the discussed algorithms. The figure is plotted for the false
positive rate (FPR) versus the true positive rate (TPR). The closer the curve to the upper
left corner, the better the performance of the classifier. It is easily noticeable that the NN
algorithm has the largest AUC of 0.984. Hence, it is superior to other algorithms and
can classify the NLoS signals with the highest accuracy and, thus, improves the overall
performance of the IPS.

Figure 15. Receiver operating characteristics (ROC) and area under the curve (AUC) comparison of
the state-of-the-art ML algorithms.
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6. Future Work, Challenges, and Limitations

Various ML-based algorithms have been proposed to mitigate the NLoS effects on
IPS. However, the adaptation of ML-based methods for UWB indoor localization is still in
its infancy, and some issues still need further investigation. The future directions can be
summarized as follows.

6.1. Availability of Training Data

Both supervised and unsupervised ML algorithms are data dependent, requiring
adequate data for training robust models. The amount and quality of the collected training
data significantly affect the performance of ML algorithms. Achieving high accuracy
localization becomes challenging when the training data are imbalanced, particularly
when there are only a few NLoS as compared to LoS components in the data samples and
vice versa. In situations where there is an imbalance in the dataset, existing ML algorithms
face difficulties in training a robust classifier to classify the NLoS signal. To solve this
problem, it is important to develop standard ML methods for training and predicting data
that are independent, such as GD, GGD, and WNB algorithms [17,78,79].

6.2. Time Efficiency

The training time and response time of the ML model are also indispensable factors
that influence IPS performance [107]. The training time means the time used for the
ML algorithm to train the algorithm with an offline dataset and build the model; in the
meantime, the response time means the time used for the model to predict the output for
the given new testing data. In particular, for fast-moving objects, this could pose a challenge
for the proposed methods due to the ML requiring a specific duration to process the NLoS
signal. Additionally, the NLoS classification process may also require more processing
time in dynamic scenarios. Therefore, it is crucial to test the proposed methods in such
conditions to evaluate their performance and identify potential limitations. Future work
needs to consider conducting experiments in dynamic scenarios to assess the effectiveness
of the ML algorithms. The authors in [108] focused on proposing a dynamic video coding
approach that utilizes dynamic video recording resolution adjustment on wearable cameras
and Lyapunov-based video preprocessing on smartphones. The results show that the
approach achieves up to 50% reduction in power consumption on smartphones and up to
60% reduction in average delay.

6.3. Extensibility and Scalability

There has been ongoing research addressing both NLoS detection and error correction
to improve the performance of UWB IPS. However, it is worth noticing that the perfor-
mance of the proposed approaches in the literature has not been evaluated in totally new
environments yet. In such new environments, training datasets are collected using different
techniques, and the collected data may vastly vary due to different factors, including device
heterogeneity, such as different device topologies, the size of the room, the presence of
objects, etc. Moreover, training separate models for each distinct environment requires
considerable effort and time, and the UWB devices cannot remain in the same configura-
tion [109]. Furthermore, the environments may change over time, necessitating frequent
model updates. As a result, traditional ML algorithms are limited in their adaptability to
entirely new environments. However, if collecting data and training different models for
each unique environment, that would require considerable work and time (i.e., setting up
the devices, performing large data collections, and executing the training model process).
Even then, the environment may already change as time progresses, seriously requiring to
update the models frequently [110]. Therefore, conventional techniques requiring new big
datasets and completely new models are limited in their versatility to unseen and changing
environments with different UWB configurations. To address this shortcoming, a transfer
learning (TL) framework could be proposed, TL is an ML approach that can help with
this task. Transferring the knowledge learned from one task to another similar task may
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not reliably transfer knowledge from a known domain to a new target domain with a
satisfactory level of accuracy.

6.4. Variability

IPSs are hardware device based. The location estimation and NLoS mitigation are
based on performance with user devices, which include limited storage capacity and
computational capability. It is challenging to implement the ML model due to the models
requiring computational and storage overhead for extracting complex signal features
automatically from large amounts of collected data [111]. Moreover, a trained robust model
could require retraining again when the definition, state and situation are changed in
real-time localization systems. However, with the exponential growth in wireless networks,
such as upcoming 6G and cloud facilities, it is expected for this computational burden to
be handled successfully in the future and achieve numerous robust ML-based location
services indoors.

6.5. Energy Consumption

Energy consumption has remained another concern for IoT-based positioning sys-
tems [8]. The trade-off between energy consumption and accuracy performance is a
formidable challenge. For the high-accuracy positioning system, it is usually required to
have more signal features for ML algorithms to reach higher NLoS classification accuracy
with very high energy consumption of the systems, which could significantly reduce the
battery life of IoT-based smart devices. Therefore, the technique and algorithm have to
maintain a balance between positioning accuracy and energy requirements, especially cru-
cial in mobile objects with fast movement. In such cases, ML algorithm optimization could
be the approach, where the IoT-based positioning system continuously consumes a small
amount of energy with remaining high-precision accuracy. The authors in [112] proposed
an offline method to achieve minimum power consumption and an online solution to save
energy for energy-aware video streaming on smartphones. Experimental results show that
that the method can save energy, while achieving a better trade-off by implementing the
online solution on Android-based smartphones.

6.6. Map Construction and Route Planning

The map construction technique collects the data of mapping from the physical space
to the fingerprint space. It then trains the model and employs inverse mapping to estimate
the location of the user or device. A unique challenge of map construction is that the
measurements taken by training are not guaranteed to perform in the same physical
space, and the measurements may also be obtained from different devices, resulting in an
error [113]. On the other hand, route planning can play a critical role in determining the
effective path to reach the end goal by considering various factors, such as distance, traffic,
safety hazards, energy and time constraints, leading to an optimized journey with minimal
cost to the device [114,115].

7. Summary and Conclusions

This paper delves into the current UWB IPS research. It starts with a detailed de-
scription of different wireless common technologies for IPSs, such as Wi-Fi, BLE, ZigBee,
RFID and UWB, along with the research efforts in this regard. Then, it is followed by
an evaluation of the advantages and disadvantages of localization algorithms for IPS.
The paper also thoroughly surveys the unique characteristics of UWB technology and the
challenges still faced by the IPS implementation. The state-of-the-art ML-based research
efforts in solving the challenge associated with NLoS effects for UWB are also surveyed
and discussed. Furthermore, k-NN, SVM, DT, NB, and NN techniques for ML-based UWB
IPSs for indoor localization are discussed in detail as well as some of the obtained results
of the UWB IPSs system development so that the ranging error can be reduced to less
than 10 m. Finally, the paper identifies limitations and potential open problems for further
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research related to the successful deployment of ML-based localization techniques and
future research directions in this regard.
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Abbreviations
The following abbreviations are used in this manuscript:

2-Dimensional 2D
3-Dimensional 3D
Angle of Arrival AoA
Angle of Departure AoD
Bluetooth Low Energy BLE
Burst Position Modulation BPM
Channel Impulse Response CIR
Channel State Information CSI
Decision Tree DT
Effective Radiated Power ERP
Global Navigation Satellite Systems GNSSs
Inertial Positioning System IPS
Internet of Things IoT
k-Nearest Neighbor k-NN
Machine Learning ML
Naive Bayes NB
Neural Network NN
Non-Line-of-Sight NLoS
On–Off Keying OOK
Phase of Arrival PoA
Physical Layer PHY
Physical Layer Header PHR
Power Spectral Density PSD
Pulse Amplitude Modulation PAM
Pulse Position Modulation PPM
Radio Frequency Identification RFID
Received Signal Strength Indicators RSSIs
Signal-to-Noise Ratio SNR
Start of Frame Delimiter SFD
Support Vector Machine SVM
Synchronization Header SHR
Time Difference of Arrival TDoA
Time-of-Arrival ToA
Time-of-Flight ToF
Transfer Learning TL
Two-Way Time of Arrival TW-ToA
Ultra-Wideband UWB
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Wireless Fidelity Wi-Fi
Wireless Personal Area Networks WPANs
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