
An Exchange-based AIoT Platform for Fast AI Application
Development

Yu-Cheng Liang
Department of Computer Science,
National Yang Ming Chiao Tung

University
Hsinchu, Taiwan

ycliang.c@nycu.edu.tw

Kun-Ru Wu
Department of Computer Science,
National Yang Ming Chiao Tung

University
Hsinchu, Taiwan

wu�sh@nycu.edu.tw

Kit-Lun Tong
School of Computing Sciences,

University of East Anglia
Norwich, UK

k.tong@uea.ac.uk

Yi Ren
School of Computing Sciences,

University of East Anglia
Norwich, UK

e.ren@uea.ac.uk

Yu-Chee Tseng
Department of Computer Science,
National Yang Ming Chiao Tung

University
Hsinchu, Taiwan

Miin Wu School of Computing,
National Cheng Kung University

Tainan, Taiwan
yctseng@cs.nycu.edu.tw

ABSTRACT

AIoT is the combination of Internet of Things (IoT) and Arti�-

cial Intelligence (AI) technologies. While IoT emphasizes more on

scalable and e�cient communications, AI focuses more on repro-

ducing human capabilities such as recognition and forecasting. An

e�cient AIoT platform may not be obtained directly from integrat-

ing existing IoT and AI serving platforms by considering the AIoT

service reproduction and evolution. In this work, we propose an

AIoT platform that empowers developers to build sophisticated and

scalable applications. Our platform is derived based on exchange-

based RabbitMQ broker and Advanced Message Queuing Protocol

(AMQP) to facilitate the communications among heterogeneous

data sources and AI models. By incorporating an AMQP broker,

it supports diverse data exchanges, AI models chaining, and �ex-

ible message routing and processing. AI models can be deployed

e�ciently through containerization with �exible and shared data

paths to facilitate computations. Hence, developers can focus on

service and application requirements. We also present a case study

in smart healthcare to validate our design.

CCS CONCEPTS

• Software and its engineering→ Software creation and man-

agement; Software system structures; • Networks → Network ser-

vices.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.

Q2SWinet ’23, October 30 – November 3, 2023, Montreal, Canada.

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0368-3/23/10. . . $15.00
https://doi.org/10.1145/3616391.3622770

KEYWORDS

AIoT; Application Platform; Advanced Message Queuing Proto-

col (AMQP); AI Models Chaining; Service Con�guration; Service-

Oriented Architecture

ACM Reference Format:

Yu-Cheng Liang, Kun-Ru Wu, Kit-Lun Tong, Yi Ren, and Yu-Chee Tseng.

2023. An Exchange-based AIoT Platform for Fast AI Application Devel-

opment. In Proceedings of the 19th ACM International Symposium on QoS

and Security for Wireless and Mobile Networks (Q2SWinet ’23), October 30 –

November 3, 2023, Montreal, Canada.. ACM, New York, NY, USA, 10 pages.

https://doi.org/10.1145/3616391.3622770

1 INTRODUCTION

As IoT technology continues to develop, more devices and equip-

ment are being connected to the Internet, creating an extensive data

network. However, simple IoT technology often faces challenges in

converting collected data into useful information and knowledge.

The emergence of arti�cial intelligence technologies o�ers new

possibilities to solve this problem. AIoT (Arti�cial Intelligence of

the Things) combines IoT with AI technologies, thus creating many

intelligent applications [2, 9, 21, 25, 26, 31, 38, 39].

A powerful and �exible AIoT platform is essential for achieving

complex and diverse AIoT applications. On the market, several IoT

platforms are available, including IBM Node-RED [11], AWS IoT

[35], Microsoft Azure IoT [28], and Google Cloud IoT [18], which

o�er a variety of IoT services, such as device management, data

collection and analysis, and support for multiple communication

protocols. On the other hand, there also exist various AI model

serving platforms, such as TensorFlow Serving [30], PyTorch Serv-

ing [12], Clipper [13], and BentoML [4], which enable developers

to deploy and execute their AI models at scale. However, directly

integrating an existing IoT platform and an existing AI model serv-

ing platform may present several challenges. First, an IoT platform

may lack knowledge to analyze and process large amounts of data,

105

https://doi.org/10.1145/3616391.3622770
https://doi.org/10.1145/3616391.3622770
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3616391.3622770&domain=pdf&date_stamp=2023-10-30

Q2SWinet ’23, October 30 – November 3, 2023, Montreal, Canada. Yu-Cheng Liang, Kun-Ru Wu, Kit-Lun Tong, Yi Ren, and Yu-Chee Tseng

particularly when integrating with AI models. Second, interoper-

ability issues may arise when integrating di�erent data formats

and communication protocols between IoT and AI systems. To il-

lustrate, IoT devices may generate data in JSON and XML formats,

while AI models may require input data in a speci�c format, such

as CSV or Tensor. Third, the lack of customization and �exibility

in existing platforms may not meet the speci�c requirements of an

AIoT application. Therefore, a dedicated AIoT platform designed to

address these challenges is necessary to meet the requirements of

AIoT applications [43].

Inspired by the above observations, we propose an AIoT plat-

form that empowers users to build sophisticated and scalable AIoT

applications. Our platform features a distributed and modular ar-

chitecture that provides �exibility and scalability. AI models and

applications are deployed through a container-based microservice

architecture, which simpli�es system management and updates.

Our platform allows an AIoT developer to integrate several modular

AI models to accomplish complex inference tasks. Moreover, we

use RabbitMQ broker [32] and AMQP protocol [40] to facilitate the

communications among heterogeneous data sources and AI models,

thus greatly relieving the pains of AIoT developers in handling the

interoperability issue.

The design of our AIoT platform has several features that conquer

the challenges faced by existing platforms. First, it enables users to

easily integrate multiple IoT devices and AI models into a single

application, reducing the complexity and time in developing an

AIoT application. Second, it allows for �exible and e�cient scaling

of services and straightforward management of AI model version

update issue. Third, it facilitates the building of complex inference

tasks, simplifying the development process and allowing for the

integration of multiple types of AI models. We also present a smart

healthcare application example to demonstrate the advantage of

these designs.

The rest of this paper is organized as follows. Section 2 presents

related works. Section 3 introduces our platform design. Section 4

demonstrates a case study in smart healthcare. Section 5 makes

comparisons to other works. Section 6 concludes this paper.

2 BACKGROUND AND RELATEDWORK

2.1 Background on Messaging Protocols

Messaging protocols play a critical role in the architecture of

any IoT and AIoT platform. It acts as the means of communication

between devices and the platform. The work [1, 29, 36] provided

a comprehensive comparison and introduction to the messaging

protocols that are commonly used in IoT systems. HTTP (Hyper-

Text Transfer Protocol) is a web-based request-response protocol

widely adopted in the context of World Wide Web (WWW). Due

to its reliability and ubiquity, HTTP has also been applied to IoT

solutions, especially when a direct Internet connection is possible.

MQTT (Message Queuing Telemetry Transport) is a lightweight

publish-subscribe messaging protocol designed for constrained de-

vices and low-bandwidth, high-latency, or unreliable networks. In

MQTT, a central broker handles the distribution of messages to

clients. AMQP (Advanced Message Queuing Protocol) is a protocol

designed for robust, �exible, and open messaging. It supports both

point-to-point and publish-subscribe models, making it a versatile

Table 1: Comparison of HTTP, MQTT, and AMQP protocols.

HTTP MQTT AMQP

Design Pattern Request-Response Publish-Subscribe Request-Response; Publish-Subscribe
Data Distribution 1-to-1 1-to-N; N-to-N 1-to-1; N-to-N
Interoperability High Low Moderate
Messaging Overhead High Low Moderate
Message Routing Direct Topic-based Direct; Topic; Fanout; Headers
Encoding Format Text Binary Binary

solution for many applications. Unlike HTTP and MQTT, AMQP

provides strong guarantees for message delivery, including con�r-

mations and the ability to resume interrupted transfers. The study

[6] used the AMQP protocol to implement low-cost devices in a

simulated factory to control industrial processes and integrate shop-

�oor communications. Reference [34] presented a framework for

developing digital twins that combine machine learning, IoT, and

3D visualization, and used AMQP for message exchange between

components. Tab. 1 compares these three key messaging protocols

in terms of design pattern, data distribution, messaging overhead,

message routing, and encoding format. AMQP o�ers high reliabil-

ity, �exible message routing capabilities, and a balanced trade-o�

between feature-richness and performance, making it an excellent

choice for AIoT applications.

2.2 IoT platforms

There are two main IoT architectures widely used to build IoT

applications: the Service-oriented Architecture (SOA-IoT) and the

Microservice-IoT architecture.

SOA-IoT is an extension of the traditional SOA, which utilizes

service-oriented design principles to support the development of

IoT applications [14]. Reference [7] proposed a smart IoT communi-

cation system manager based on SOA principles as a cost-e�ective

irrigation controller. SOA and IoT have been used in [16] to imple-

ment an M2M application in the �eld of road tra�c management.

The work [3] reviewed the applications of SOA in home-based pa-

tient care within the health industry and examined the potential

of IoT in telemedicine. However, SOA-IoT requires a centralized

architecture that needs to be fully designed and planned during the

development phase, which may not satisfy the dynamic nature of

AIoT applications.

Microservice IoT is an approach that utilizes the microservice

architecture to enhance scalability and �exibility for IoT appli-

cations. This approach splits a monolithic application into a set

of distributed services that are highly decoupled, thus reducing

maintenance and update e�orts and improving modularity [5]. The

study [22] explored the use of microservice architecture in building

a smart city IoT platform and discussed its bene�ts and challenges

compared to SOA approaches. In [37], the authors proposed an IoT

platform based on microservice architecture and validated it on a

smart farming application. The study [10] introduced a platform

that leverages a microservice IoT-Big Data architecture for the dis-

tributed sharing of multidisciplinary simulation models. However,

these approaches only focus on IoT applications. For complex AIoT

applications composed of a multitude of AI models, inter-service

communications often need to integrate IoT and AI services. This

could be a challenge when applying the current microservice IoT

architecture to AIoT applications.

106

An Exchange-based AIoT Platform for Fast AI Application Development Q2SWinet ’23, October 30 – November 3, 2023, Montreal, Canada.

Device Service

Controller

API

.
.
.

Service 1

Broker

Service 2

Broker

Service n

Broker

Queue 1

Central Broker

Queue 2

Queue q

.
.
.

AI Model

Model 1

API

Model m

Model 2

.
.
.

Exchange 1

Exchange 2

Exchange p

Manager

Figure 1: System architecture.

2.3 AI Model Serving Platforms

An AI model serving platform is designed to manage the deploy-

ment of machine learning models in a production environment.

Such a platform should handle tasks like model versioning, moni-

toring, scaling, and updating to ensure high performance and relia-

bility. Various serving platforms for AI models have been proposed

to facilitate deployment [4, 8, 13, 24, 30]. These systems typically

use containers to host machine learning models and handle infer-

ence requests via REST or RPC APIs. For instance, Clipper [13]

and DLHub [8] adopt separate Docker containers to ensure process

isolation, while BentoML [4] o�ers a uni�ed deployment frame-

work that acts as a bridge between machine learning frameworks

and serving platforms, simplifying the process of creating machine

learning services that are ready to deploy and scale. Additionally,

Pretzel [24] proposed a white box model that optimizes of predic-

tion pipelines with resource sharing. However, the above platforms

are not well-suited for AIoT applications, as they utilize a request-

response pattern and may fail to accommodate heterogeneous data

processing in AIoT applications.

3 DESIGN OF AIOT PLATFORM

In this section, we present the architecture of our platform, as

shown in Fig. 1. There are four main components: Device, Service,

Central Broker, and AI Model.

The Device component is primarily composed of various sensors.

These devices can collect and transmit data to the Service compo-

nent. Each device may have multiple sensors that collect di�erent

types of data from the environment. These data can range from

basic measurements such as temperature and humidity to more

complex information such as images and voices, depending on the

sensor types. Once data is collected, a device can transmit it to the

Service component for further processing and analysis. In addition,

the devices exhibit versatility in receiving processed results. Un-

like traditional systems, where devices are constrained to receive

their own processed data, our platform enables a device to receive

computed outcomes from other devices. This cross-device commu-

nication enhances the system’s interconnectedness and allows for

a broader scope of potential applications among various devices.

The Service component serves as an interface between the De-

vice and AI Model components. By preventing direct interactions

between a device and an AI model, such a separation of layers

ensures that the complexity of AI models is abstracted away from

devices, establishing a controlled environment for data handling

and processing. This component provides a set of RESTful APIs to

the application developers to manage services e�ectively, allowing

for querying, adding, and deleting existing services as needed. Each

service within this component is designed to connect with a variety

of AI models. This capability provides the �exibility for services

to o�er complex and customized functionalities according to dif-

ferent needs. Notably, the Service component is designed in such a

way that each service operates independently. The independence

of services allows for the seamless addition and deletion of services

without impacting others, promoting system robustness and scal-

ability. Moreover, each service is designed with its independent

message broker to facilitate the collection and transmission of data,

enabling e�cient and reliable data �ow.

The Central Broker leverages RabbitMQ’s message broker [32]

capabilities and serves as the communication hub. Each service

and AI model can e�ectively exchange data through this message

broker. The broker utilizes exchange bindings with di�erent AImod-

els to orchestrate complex inferencing processes. Each AI model

can have its own exchange binding, providing the system with a

powerful mechanism for managing message routing based on the

service con�guration’s speci�c needs and capabilities. This abil-

ity to customize message routing to di�erent AI models allows

for intricate decision-making and inferencing processes, thus sub-

stantially contributing to the platform’s ability to handle complex

AIoT applications. Another important feature of the RabbitMQ Cen-

tral Broker is its ability to support distributed computing through

its queue management. Multiple instances of the same model can

share a queue, allowing for the concurrent processing of messages.

This shared-queue design enables the system to distribute com-

putational loads across multiple instances of the same AI model,

enhancing the platform’s scalability and e�ciency, particularly in

high computational demands scenarios.

The AI Model component operates di�erent pre-trained AI mod-

els to consume the data generated by the Device component. As in

previous work [8, 13], these models are encapsulated as lightweight

containers following a microservice architecture to simplify the

deployment process. This encapsulation process promotes a stan-

dardized and simpli�ed work�ow, enabling easy model deployment

and allowing developers to focus on model development rather

than the intricacies of deployment. It also enhances the portabil-

ity of AI models, as they can be e�ortlessly moved or replicated

across di�erent environments. Management of these containers

is accomplished through a Docker Swarm cluster [20], a native

clustering and scheduling tool for Docker. Docker Swarm manages,

deploys, and scales these encapsulated AI models across the plat-

form. It provides a reliable and automated way of handling the

lifecycle of these model containers, ensuring their e�ective distribu-

tion and operation within the platform. With Docker Swarm, users

can scale up the system based on computational demands. It can

add model replicas as needed, allowing for a dynamic allocation

of resources that can handle varying workloads. This capability is

crucial for maintaining system performance during peak-usage as

well as under-usage periods, thus ensuring the platform to remain

responsive and e�ective in resource allocation.

3.1 AMQP Communication Architecture

The communication architecture of our AIoT platform is sup-

ported by the AMQP broker [40], an open standard application

107

Q2SWinet ’23, October 30 – November 3, 2023, Montreal, Canada. Yu-Cheng Liang, Kun-Ru Wu, Kit-Lun Tong, Yi Ren, and Yu-Chee Tseng

Publisher

Exchange

Direct

Fanout

Topic

Headers

binding key = “abc”

binding key = “a.*”

{“x-match”: “all”,
“a”: “1”, “b”: “2”}

binding key = “*.1”

Consumer

Consumer

Consumer

Consumer

AMQP Central BrokerMessage

routing key = “abc”

Message

routing key = “a.1”

Message

headers = {“a”: ”1”,
“b”: “2”}

Message

routing key = “b.1”

Message

routing key = “”

Queue

Queue

Queue

Queue

Figure 2: AQMP broker architecture.

layer protocol for message-oriented middleware. The AMQP bro-

ker essentially aids in facilitating message transmissions between

connected devices, services, and AI models. Its interoperability, re-

liability, and standardization make AMQP a favorable choice for

our AIoT platform.

The AMQP broker architecture is illustrated in Fig. 2. To e�ec-

tively route messages based on their binding keys, there are four

fundamental exchange types: Direct, Fanout, Topic, and Headers.

Each type of exchange has its distinct routing capabilities to fa-

cilitate message exchange within the system. In direct exchange,

messages are routed to queues with a binding key that exactly

matches the routing key of the messages. This allows for direct

one-to-one communication between a sender and a receiver. In

fanout exchange, a message is broadcast to all the bound queues of

the system, thus enabling distributing a message needs to multiple

receivers simultaneously. Topic exchange allows for more complex

routing based on pattern matching. A message can be routed to

one or many queues based on partial match between the routing

key and the patterns speci�ed by queues. The special character “*”

matches exactly one keyword, while “#” can match any number

of keywords, including none at all. Keywords are separated by a

period, denoted as “.”. In header exchange, routing decisions are de-

termined by message header attributes. This provides an alternative

for routing in more complex scenarios where key-based routing

might not be su�cient. When certain header attributes meet a spe-

ci�c “x-match-expression,” a message will be sent to a queue, where

“x-match” could be in the form of all or any. For example, in Fig. 2,

a message with a header attribute {"a":"1", "b":"2"} will be routed

to the queue with binding key = {"x-match":"all", "a":"1", "b":"2"},

while a message with a header attribute {"a":"1"} will not pass the

all criteria.

Another remarkable feature of AMQP is the “Exchange to Ex-

change Binding,” which allows an exchange to be bound to another

exchange. That is, an exchange can be further bound to an exchange,

thus creating a more complex routing scenario. Therefore, a mes-

sage can traverse multiple exchanges before reaching its destination

queue(s). This supports more dynamic routing to meet the diverse

AIoT application needs. For example, consider a scenario where the

topic exchange in Fig. 2 serves as a source exchange and is bound

to the fanout exchange as the destination exchange. This binding

facilitates a message with a routing key b.1 to be routed �rst to the

topic exchange, passed to the queue with binding key = “*.1”, and

then relayed to the fanout exchange. Therefore, all queues bound

to this fanout exchange will receive the message.

The choice of the ways to exchange data is particularly cru-

cial in future AIoT applications, where devices and data types are

diversi�ed and data should be routed to appropriate AI models

for processing. We raise some examples below. The �rst example

demonstrates that topic exchange facilitates routing messages to

one or multiple queues based on a partial matching rule to ensure

that data from speci�c types of devices can be channeled to the AI

models designed to process that data. Imagine a scenario where

we have several cameras and accelerometers in a smart healthcare

AIoT setting. The AI models designed to interpret camera images

and acceleration data are di�erent. A routing key “sensor.camera”

can be speci�ed for routing image data, and another “sensor.acc”

for routing acceleration data. The corresponding AI models can

subscribe to these keys for proper data processing.

The second example demonstrates the capability of using “ex-

change to exchange binding” to enhance topic exchange. It allows

exchanges to be connected as a chain or a graph by routing mes-

sages through multiple exchanges. Imagine the face recognition

task in gate control, where a chain of AI models, including object

detection, fake face detection, and face/ID recognition, need to be

executed sequentially. In addition, in case of a fake face being de-

tected, a tracking model may be triggered to �nd the roaming paths

for potential intruders. We could design a set AI models connected

as a graph via exchange to exchange binding to achieve this goal.

3.2 Chaining of Modules

Based on the exchange mechanisms of AMQP, we chain the

Device, Service, and AI Model components in our architecture. To

better illustrate the functionality and �ow of our AIoT platform,

let us consider a scenario in Fig. 3, which involves two devices

(Device1 and Device2), two AI models (Model1 and Model2), and

two services (ServiceA and ServiceB). Both Device1 and Device2

send out image data, but their data are processed di�erently by

ServiceA and ServiceB, respectively.

Model1 is an object detection model, which takes an image as

input and outputs the identi�ed objects in the image. Model2, on the

other hand, is a pose estimation model that takes an image as input

and outputs text data describing the joints in the pose(s). ServiceA

and ServiceB are two distinct services that leverage these AI models.

ServiceA only employs Model1, and hence, only performs object

detection. In contrast, ServiceB uses both Model1 and Model2 by

executing object detection followed by pose estimation.

In this con�guration, Device1 connects to the ServiceA broker.

The image data from Device1 is sent to the topic exchange within

ServiceA broker with routing key = ServiceA.Device1.InputQueue.

The data is put in InputQueue. ServiceA process uses binding key

= ServiceA.*.InputQueue to receive the above data and forwards

it to Model1 using routing key = ServiceA.Device1.null.image. De-

vice2, on the other hand, connects to ServiceB broker by send-

ing its data using routing key = ServiceB.Device2.InputQueue. Ser-

viceB process then transmits this data using routing key = Ser-

viceB.Device2.null.image. Model1 uses binding key = *.*.*.image to

get image data from both ServiceA and ServiceB. Model1 con-

ducts inference on each input image and performs object detec-

tion. After the inference is done, Model1 sends out its output to

108

An Exchange-based AIoT Platform for Fast AI Application Development Q2SWinet ’23, October 30 – November 3, 2023, Montreal, Canada.

ServiceA Broker

ServiceA.Device1.InputQueue ServiceA.Device1.Output1QueueDevice1 ServiceA

ServiceB Broker

ServiceB.Device2.InputQueue ServiceB.Device2.Output2Queue

Device2

ServiceB

ServiceA.Device1.Model1.image
Model1

Device1Queue

InputQueueDevice2Queue

Device2Queue

Model1QueueOutput1Queue

Model2QueueOutput2Queue

ServiceB.Device2.Model2.text Model2

ServiceB.Device2.Model1.image

ServiceA.Device1.null.image

ServiceB.Device2.null.image

(a) (b)

ServiceA.*.InputQueue

..*.image

..*.imageServiceB.*.Model2.textServiceB.*.InputQueue

Exchange
(Topic)

Exchange
(Topic)

Exchange
(Topic)

Exchange
(Topic)

InputQueue

Central Broker
routing key binding key

ServiceA.*.Model1.image

Figure 3: Examples of module chaining: (a) Device to Service and (b) Service to AI Model.

Device1 or Device2 using ServiceA.Device1.Model1.image or Ser-

viceB.Device2.Model1.image as routing key, respectively. In the case

of ServiceB, the exchange-to-exchange binding will use binding key

= *.*.Model1.image to ensures that the data processed by Model1

from Device2 is sent to Model2 for further processing. The �nal

pose estimation result from Model2 is dispatched using routing

key = ServiceB.Device2.Model2.text. Lastly, ServiceA and ServiceB

declare Output1Queue with binding key = ServiceA.*.Model1.image

and Output2Queue with binding key = ServiceB.*.Model2.text, re-

spectively, in the central broker to collect the results from Model1

and Model2. These results are then sent back to their corresponding

devices with routing keys = ServiceA.Device1.Output1Queue and

ServiceB.Device2.Output2Queue, respectively.

3.3 AI Model Deployment

Next, we introduce the details to deploy an AImodel (e.g., Model1

and Model2 in Fig. 3) within our AIoT platform. We use deploying

an object detection model as an example. The code in Listing Fig. 4

shows the encapsulation of an object detection model class for con-

suming messages, executing inference, and publishing results to

the central broker. Such a design o�ers a high degree of �exibility

by allowing models of the same inputs and outputs but di�erent

implementations to use the same exchange and queue, enabling

easy updates to AI models without the need to redesign the commu-

nication architecture. This allows for simple version updates of AI

models without the necessity of recon�guring the communication

framework. For instance, one can easily switch between FastRCNN

[17] and YOLO [33] for an object detection task, where a model

developer only needs to modify the inference code to deploy an

alternative model.

Upon instantiation, the Model class initiates a blocking connec-

tion to the central broker and establishes a communication channel.

It then declares a topic exchange with its ModelName and ‘argu-

ments’ that outline the outputs of the model. Concurrently, a queue

is declared and bound to the exchange using a binding key. This key,

formatted as Service.Client.Model.Datatype, enables the queue to

accept data from any client across di�erent services and even data

processed by other models, while the Datatype keyword of the key

designates the queue’s speci�c task type. For example, an object

detection model may be designed to accept either an original PNG

image or an already converted RGB formatted tensor. Depending

on the Datatype received, the model would perform di�erent oper-

ations. This �exibly handles di�erent data types, greatly enhancing

the adaptability and functionality of the model.

When the computed results are published to the model’s own ex-

change, the routing key follows the same Service.Client.Model.Datatype

format. However, in this case, the Model keyword is replaced with

the ModelName of this speci�c model and the Datatype keyword is

modi�ed according to the format of the computation results. With

the exchange-to-exchange binding feature, the results can be fur-

ther routed to the exchange of another model, facilitating a chain

of model operations and enhancing the versatility and complexity

of the system’s tasks.

Moreover, by merging this design with containerization, it is

possible to share exchange and queue across multiple instances

of the same model. This distribution of computational tasks sig-

ni�cantly boosts the system’s overall computational capacity. The

design thus bridges the gap between message consumption, model

computation, and result distribution, maximizing system e�ciency

and o�ering a higher level of performance.

3.4 Service Con�guration

Our platform can accept and process a service con�guration

�le that describes the service work�ow. It enables a dynamic and

�exible way for application developers to de�ne their services based

on speci�c application requirements.

To facilitate this, application developers upload a con�guration

JSON �le through the API provided by the Service Controller in the

Service component. This �le describes the service work�ow and

thus can support a wide range of use cases. Upon receiving this

service con�guration JSON �le, the Service Controller within the

109

Q2SWinet ’23, October 30 – November 3, 2023, Montreal, Canada. Yu-Cheng Liang, Kun-Ru Wu, Kit-Lun Tong, Yi Ren, and Yu-Chee Tseng

class Model():

 def __init__(self) -> None:

 self.connection = BlockingConnection(host, port)

 self.channel = self.connection.channel()

 self.exchange_declare(

 ModelName="YOLO",

 "topic",

 arguments=["image", "text"])

 self.queue_declare(ModelQueue="image")

 self.queue_bind(

 ModelQueue="image",

 ModelName="YOLO",

 binding_key)

 self.channel.basic_consume(

 ModelQueue="image",

 self.__callback)

 self.channel.start_consuming()

 def __callback(self, data) -> None:

 # Model inference here

 result = Model(data)

 self.channel.basic_publish(

 ModelName="YOLO",

 routing_key,

 result)

Figure 4: Python code for deploying an object detection

model (by YOLO).

platform �rst validates the content in the �le. It veri�es that its for-

mat meets the speci�cation. This phase is crucial as it protects the

platform from possible erroneous or incompatible con�gurations,

thereby maintaining the overall system integrity. After the valida-

tion, the Service Controller parses the JSON �le, creates a service

process, and then creates corresponding queues in the service bro-

ker and central broker (refer to the example in Fig. 3). These queues

serve as pipes for inter-process communications and data trans-

fer, streamlining the operation and coordination between devices

and AI models. Furthermore, to facilitate the incorporation of AI

models, the service process sets up exchange-to-exchange bindings

in the Central Broker for AI models in the service con�guration.

This function serves as communication junctions among AI models.

The service descriptions in the JSON �le set up a chain of model

operations in our system.

In Listing Fig. 5, we outline a con�guration for a “VisionFallDe-

tector” service, a vision-based fall detection system. The di�erent

sections of the JSON �le are explained as follows:

service: This �eld describes the service’s name, i.e., "Vision-

FallDetector." The Service Controller uses this to create a standalone

service broker and service process. The service process establishes

a topic exchange within the service broker to let devices send input

data. This functionality enables devices to access the backend AI

models.

central_broker: This de�nes the host and port of the central

broker. This facilitates connecting the service and AI models for

data exchange.

service_broker: The host and port of this service’s dedicated

AMQP broker are speci�ed in this �eld. Typically, port 5672 rep-

resents the connection port for the AMQP connection. Users may

specify di�erent ports to represent the connection port used by the

service broker. Each service has its independent message broker,

which helps manage and distribute tra�c e�ciently.

input: This �eld identi�es which InputQueue(s) will be created

within the service broker to receive and forward device input data

to the appropriate backend AI model’s exchange. The input name

follows the format DataName_DataFormat, and the service process

will receive this InputQueue’s data with a binding key following

the Service.Client.InputQueue pattern. For example, the service pro-

cess accepts PNG images transmitted from devices through the

png_image queue. The service process then forwards the data from

this queue to the corresponding AI model exchange with the Vision-

FallDetector.Client.null.image routing key. This format speci�cation

allows us to de�ne what kind of data each service can accept, en-

hancing the modularity of our platform.

output: This �eld details which OutputQueue(s) will be set up

in the central broker to receive the computation results from AI

models. These results are then forwarded to the service’s exchange,

enabling devices to access the computed data through DeviceQueue.

The output name follows the format DataName_DataFormat, and

the service process uses a routing key Service.Client.OutputQueue to

deliver the computation results to its exchange within the service

broker. For instance, the service process receives the computed fall

detection text results from the fall detection model. These results

come from the FallDetection_text queue and are sent to the service’s

exchange using the VisionFallDetector.Client.FallDetection_text rout-

ing key. This setup allows the reception of partial or all AI model

computation results and forwards these to the device for further

processing.

routing: This �eld represents the service’s data �ow by source-

destination pairs, including data �ow from InputQueue(s) to AI

model(s), the linkage between di�erent AI models, and the com-

putation results of AI models to OutputQueue. The routing forms

a DAG (directed acyclic graph) data�ow graph. In our example,

the service process receives a PNG image from devices through

the png_image queue and then sends it to the HumanDetector

model for processing. Once the HumanDetector model processes

the image, it passes a human bounding box to the FallDetectorGCN

model, which performs human fall detection. The �nal results are

sent to the FallDetection_text queue. This approach allows one to

establish connections using the deployed AI models and prede�ned

input-output formats. Therefore, intermediary results can be passed

between multiple AI models.

In summary, the service con�guration has the advantages of easy

customization, agility, and scalability. It provides a clear and concise

view of the service structure and can adapt to various requirements

of AIoT applications.

4 A CASE STUDY IN SMART HEALTHCARE

Smart healthcare holds a broad range of applications in AIoT,

from monitoring, examination, and surgery to rehabilitation [43].

Below, we conduct a case study in healthcare-related accident mon-

itoring for elders with constrained mobility. In particular, fall de-

tection [41] is studied.

110

An Exchange-based AIoT Platform for Fast AI Application Development Q2SWinet ’23, October 30 – November 3, 2023, Montreal, Canada.

 {"service": "VisionFallDetector",

 "central_broker": {

 "host": "HostName",

 "port" 5672

 },

 "service_broker:" {

 "host": "HostName",

 "port" 5672

 }

 "input": ["png_image"],

 "output": ["FallDetection_text"],

 "routing": [

 {"source": {"type": "input", "queue": "png_image"},

 "destination": [

 {"type": "server", "queue": "HumanDetector_input_image"}

]},

 {"source": {"type": "server", "queue": "HumanDetector_output_image"},

 "destination": [

 {"type": "server", "queue": "FallDetectorGCN_input_image"}

]},

 {"source": {"type": "server", "queue": "FallDetectorGCN_output_text"},

 "destination": [

 {"type": "output", "queue": "FallDetection_text"}

]}

]

 }

Figure 5: Service con�guration for a vision-based fall detec-

tion application.

Camera

Smartphone

Wearable device

Computer

Device

image

text

audio

text

acc

text

image

audio

text

acc

text

text

Service AI Model

Vision-based

fall detection

Sensor-based

fall detection

Speech

recognition

Accident

Monitoring

Service

Figure 6: Case study of a smart healthcare application.

4.1 Service Speci�cation

The speci�cation of the accident monitoring service is de�ned

in Fig. 6. It employs a speech recognition model, allowing nursing

sta� to control robots via voice commands remotely. These robots

use a vision-based model to detect falls in real-time from video

feeds, while patients are equipped with wearable devices using a

sensor-based model for fall detection.

Three AI models are to be deployed in this service. The �rst

model is a vision-based fall detection model as shown in Fig. 7(a),

which accepts image inputs and outputs fall detection result in a

text form. This model uses Tiny-YOLO [33] to identify people in

a frame and crops the bounding boxes with humans. AlphaPose

[15] is then used to obtain the skeleton of each person, followed

by ST-GCN [42] to predict each person’s action in a duration of 30

frames (in skeleton forms). If the predicted action is Fall or Lying

down, the model will output a warning message to its exchange.

(a)

(b)

T
in

y
-Y

O
LO

A
lp

h
a

P
o

se

30 joints

S
T

-G
C

N

1. Standing

2. Walking

3. Sitting

4. Lying Down

5. Stand up

6. Sit down

7. Fall Down

Output

X
1

X
2

FC

X
39

X
40

Softmax

3D

acceleration

data

256

256 2

Output

3

X
3

X
38

LSTM LSTM

LSTM LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

h
1

h
2

h
3

h
38

h
39

h
40

Hidden

layer

1. Fall Down

2. Else

Figure 7: Architecture of (a) vision-based and (b) sensor-based

fall detection model.

(a) (b)

0 1 2 3 4 5

-2

-1

0

2

3

4

5

6

1

A
cc

e
le

ro
m

e
te

r
d

a
ta

Time (second)

Fall Down

Fall Down: 31.38%

acc_x

acc_y

acc_z

Figure 8: Visualization results of fall detection: (a) vision-

based and (b) sensor-based.

The second AI model is for fall detection but in a sensor-based

manner, as shown in Fig. 7(b). It receives 40 records of 3D accelera-

tion data and determines whether a fall has occurred. To achieve

real-time detection, we adopt a lightweight double-layer Long Short-

Term Memory (LSTM) network. In other words, as soon as a po-

tential fall is detected, the model can instantly provide an alert or

intervention. Some visualization results of the vision-based model

(on the UR fall detection dataset [23]) and the sensor-based model

(on the Smartwatch dataset [27]) are presented in Fig. 8.

The third model is a speech recognition model. This model is

used to receive a voice command and transform it into a text form.

Through text commands, a robot in this service can be remotely con-

trolled in a hand-freemanner.We adopt the Deep Speech framework

[19], which can ensure accurate, real-time voice-to-text translation,

allowing for swift responses to potential emergencies.

4.2 Implementation Details

To deploy this service on our platform, we derive the service

con�guration �le in Fig. 9. Four devices are involved: (i) cam-

eras equipped by robots, smartphones equipped by nurses, (iii)

wearable devices equipped by patients, and (iv) a computer in

the monitoring center. A nurse uses a smartphone to give voice

commands to operate a robot. A voice command is transmitted

to the accident exchange in the service broker with a routing key

of Accident.Nurse.wav_audio. The audio is then forwarded to the

111

Q2SWinet ’23, October 30 – November 3, 2023, Montreal, Canada. Yu-Cheng Liang, Kun-Ru Wu, Kit-Lun Tong, Yi Ren, and Yu-Chee Tseng

command

Device

Accident.Robot.png_image

Accident.Nurse.wav_audio

Accident.Patient.acc_array

(Exchange)

Accident

Monitor

Accident

Service

png_image

acc_array

wav_audio

image

array

audio

Accident.Robot.Vision.text

Accident.Patient.Sensor.text

Accident.Nurse.Speech.text

AI Model

fall

fall

Accident.*.png_image

Accident.*.wav_audio

Accident.*.acc_array

Accident.Robot.fall

Accident.Patient.fall

Accident.Nurse.command

Accident.Patient.null.array

Accident.Robot.null.image

Accident.Nurse.null.audio

Accident.*.Vision.text

Accident.*.Sensor.text

Accident.*.Speech.text

..*.image

..*.array

..*.audio

routing key binding key

command

(Exchange)

Vision

FallDetector

(Exchange)

Sensor

FallDetector

fall

(Exchange)

Speech

Recognition

Figure 9: Data�ow of the smart healthcare example.

speech recognition model. The resulting text command is sent to

the command queue in the central broker with a routing key of

Accident.Nurse.Speech.text. This then enables the service process

to transfer it to the command queue declared by the robot in the

service broker. After receiving the command from the queue, the

robot activates its camera and starts its patrol task, continuously

sending real-time images to the accident exchange with a routing

key of Accident.Robot.png_image. Note that this design supports

multiple robots to perform patrolling tasks at the same time. Any

idle robot receiving a request from the command queue can im-

mediately start its task. The vision-based fall detection model in

the service uses images sent by robots to detect falls. If a fall is

detected, a message is sent to the central broker’s fall queue with

a routing key of Accident.Robot.Vision.text. This message is then

forwarded to the fall queue of the nurse and monitoring center in

the service broker. Simultaneously, the patient’s wearable device

continuously sends accelerometer data collected from the patient,

using the routing key Accident.Patient.acc_array to the accident

exchange. The sensor-based fall detection model uses this infor-

mation to calculate fall results. These results are then sent to the

fall queue with a routing key of Accident.Patient.Sensor.text. Thus,

the nurse and monitoring center can receive fall alerts detected

not only by the robot but also directly from the patient, allowing

hospital sta� to respond promptly.

This case study demonstrates the distinctive advantages of our

Exchange-based AIoT Platform, notably including its extensibility,

capacity for intelligent decision-making, and facilitation of fast

application development. For extensibility, multiple devices can be

integrated concurrently, as well illustrated in the case study where

multiple robots, smartphones, wearable devices, and computers

are seamlessly linked. For supporting intelligent decision-making,

multiple advanced AI models are integrated, such as speech recog-

nition for voice-to-text conversion and two-modality fall detection

by visual and wearable sensors. For fast application development,

by utilizing a service con�guration �le to describe the service �ow,

developers can easily recon�gure their work�ows and concentrate

on the application logistics. This would accelerate AIoT application

development processes.

5 COMPARISONS AND EVALUATIONS

5.1 Functionality Comparisons

In this section, we compare our platform with Node-RED and

BentoML.

Node-RED [11] is an open-source visual programming tool that

provides a browser-based �ow editor. It lets users connect and con-

�gure nodes visually to create applications and automate work�ows.

Node-RED follows a ’�ow-based programming‘ approach, where

nodes represent di�erent functionalities or services and are con-

nected to de�ne the logic and data �ow of the application. However,

Node-RED’s limitation in supporting diverse deep learning frame-

works, such as PyTorch, Keras, or Ca�e, poses a drawback when

developers seek to employ models built with these frameworks. In

contrast, our platform’s containerization capability enables seam-

less integration of multiple deep learning frameworks, o�ering

greater �exibility in model utilization. This �exibility allows devel-

opers to leverage a wide range of pre-existing models and easily

switch between implementations without necessitating modi�ca-

tions to the communication architecture. Moreover, our platform’s

approach eliminates the need for communication framework re-

con�guration when updating AI models. The process of model

updates and version control is simpli�ed. In contrast, Node-RED

requires potential reworking of the communication architecture

when handling model updates and versioning.

BentoML [4] is a high-level, Python-based model serving frame-

work designed to bridge the gap between Data Science and DevOps.

It adopts a Service-Oriented Architecture (SOA) approach to de�ne

services, employs ‘Runners’ to denote the computational logic of

models, allows API de�nition for specifying service input and out-

put, and supports the use of multiple models for complex inference

tasks. Fig. 10 shows how to derive our smart healthcare case study

in BentoML. For analogy, API1, API2, and API3 correspond to our

112

An Exchange-based AIoT Platform for Fast AI Application Development Q2SWinet ’23, October 30 – November 3, 2023, Montreal, Canada.

textimage

array text

audio text

YOLO, AlphaPose, ST-GCN,

LSTM, DeepSpeech

Runners

BENTOML Service

API1: YOLO, AlphaPose, ST-GCN

API2: LSTM

API3: DeepSpeech

Figure 10: Comparison of BentoML to our platform in the

smart hearlthcare case study.

vision-based fall detection model, sensor-based fall detection model,

and speech recognition model, respectively.

Our AIoT platform shares some similar features with BentoML,

but stands out through several distinctive features. First, both plat-

forms use multiple server queues for a model to operate with di�er-

ent inputs (the ‘Runner’ function of BentoML and the service input

and output queues of ours). However, our platform supports an addi-

tional advanced exchange-to-exchange bindingmechanism. Second,

unlike BentoML, which operates solely on a single machine, our

platform can distribute models across multiple machines for decen-

tralized processing. For instance, our smart healthcare application’s

vision-based fall detection model incorporates YOLO, AlphaPose,

and ST-GCN models, each running on a di�erent machine. Third,

BentoML uses a request-response (one-to-one) pattern, while our

platform supports both request-response and publish-subscribe pat-

terns to enable multipoint (many-to-many) communication. For

example, in our smart healthcare application, through simple con-

�gurations, the fall detection results derived from both vision-based

and sensor-based models are sent to both nurses and the monitoring

center. Fourth, BentoML’s API only returns the �nal computational

result and thus provides no insight into intermediate outcomes. Our

platform allows access to intermediate results during a sequence

of computational processes, thus improving the explainability of

a system. For example, in our smart healthcare application, the

human pose structure generated by AlphaPose can be sent back to

the monitoring center. Recording the pose structure during a fall

may help doctor’s diagnosis.

In essence, our AIoT platform introduces a new level of versatility

and adaptabilitywhen compared to traditionalmodels like BentoML.

With support for distributed processing, diverse communication

patterns, and �exible result handling, it emerges as an innovative

tool for AIoT applications.

5.2 Performance Evaluation

To understand how our AIoT platform performs, we test the

vision-based fall detection model by focusing on the design of

YOLO and AlphaPose components. We decouple them into separate

containers and feed a total of 600 images at a rate of 100 images

per second for 6 seconds. We evaluate the serving time to process

all images. The experiment uses two machines: Machine1 with an

Intel Xeon Silver 4210R CPU and 256GB of RAM, and Machine2

with an Intel i7-12700k CPU and 128GB of RAM. Both Machine1

0

10

20

30

40

50

1 2 3 4 5 6

S
e
rv

in
g
 T

im
e
 (

s
)

The number of duplicates (k)

merged distributed

Figure 11: Comparison on using merged and distributed con-

tainers for YOLO and AlphaPose.

0

2

4

6

8

10

12

14

16

100 200 300 400 500 600

T
im

e
(s

)

Number of transmitted images

intermerdiate propagating

robot YOLO AlphaPose
Monitoring

center
Intermediate:

image text

image

robot YOLO AlphaPose
Monitoring

center
Propagating:

Machine 1

image text

image

Machine 1 Machine 2

Machine 2

(a)

image

image

(b)

Figure 12: Comparison on ‘intermediate’ and ‘propagating’

data�ows.

and Machine2 use an NVIDIA RTX 3090 GPU for inference. We

consider two scenarios: (i) merged (putting YOLO and AlphaPose

containers on Machine1), and (ii) distributed (YOLO container on

Machine2 and AlphaPose container on Machine1).

In both tests, we duplicate each container : times, where : = 1..6,

to evaluate scalability under di�erent loads. As shown in Fig. 11,

the distributed setup consistently outperforms the merged setup

across all :s. It also shows that increasing : can reduce service time

in the beginning, but would lower down performance afterwards.

The increase in service time after : ≥ 5 is likely due to RabbitMQ’s

round-robin message distribution mechanism and resource con-

tention.

We also evaluate the performance di�erence between (i) send-

ing intermediate results directly to the monitoring center, and (ii)

propagating intermediate results step-by-step until reaching to

the monitoring center. Fig. 12(a) illustrates the two data�ows. In

Fig. 12(b), we evaluate the time taken for the monitoring center to

receive all results by varying the number of images transmitted.

The ‘intermediate’ setup consistently takes less time than the ‘prop-

agating’ setup in all cases. Moreover, the time di�erence enlarges

as more images are transmitted. This outcome demonstrates the

advantages of allowing sending out intermediate results in advance.

113

Q2SWinet ’23, October 30 – November 3, 2023, Montreal, Canada. Yu-Cheng Liang, Kun-Ru Wu, Kit-Lun Tong, Yi Ren, and Yu-Chee Tseng

6 CONCLUSIONS

In this work, we point out some limitations of existing IoT and

AI model serving platforms, particularly regarding interoperabil-

ity and extensibility. Our AIoT platform, which uses microservice

architecture and AMQP middleware, can e�ectively address these

problems. It simpli�es building complex inference tasks and allows

for integrating various types of AI models. Through a smart health-

care application, we demonstrated how our platform relieves the

above limitations by exploiting many-to-many communications.

Further, we showcased the advantages of our platform’s modular

design by evaluating the performance of distributed computing and

intermediate result dispatch mechanism. Overall, our platform of-

fers a �exible foundation for AIoT applications, demonstrating the

potential to transform the AIoT development process and ecosys-

tem.

ACKNOWLEDGMENTS

Y.-C. Tseng’s research is co-sponsored by ITRI and NSTC, Tai-

wan. This work is also �nancially supported by “Center for Open

Intelligent Connectivity” of “Higher Education Sprout Project” of

NYCU and MOE, Taiwan. The research of Yi Ren was supported in

part by EPSRC EP/T022566/1, EP/T024593/1, and the Royal Society

IEC\R3\213100.

REFERENCES
[1] Eyhab Al-Masri, Karan Raj Kalyanam, John Batts, Jonathan Kim, Sharanjit Singh,

Tammy Vo, and Charlotte Yan. 2020. Investigating Messaging Protocols for the
Internet of Things (IoT). IEEE Access 8 (2020), 94880–94911.

[2] Farman Ali, Shaker El-Sappagh, SM Riazul Islam, Daehan Kwak, Amjad Ali,
Muhammad Imran, and Kyung-Sup Kwak. 2020. A Smart Healthcare Monitoring
System for Heart Disease Prediction Based on Ensemble Deep Learning and
Feature Fusion. Information Fusion 63 (2020), 208–222.

[3] Karen Avila, Paul Sanmartin, Daladier Jabba, and Miguel Jimeno. 2017. Appli-
cations Based on Service-Oriented Architecture (SOA) in the Field of Home
Healthcare. Sensors 17, 8 (2017), 1703.

[4] bentoml.com. 2019. BentoML. https://www.bentoml.ai/.
[5] Björn Butzin, Frank Golatowski, and Dirk Timmermann. 2016. Microservices

Approach for the Internet of Things. In Proc. IEEE International Conference on
Emerging Technologies and Factory Automation (ETFA). 1–6.

[6] Gustavo Caiza, Erick S Llamuca, Carlos A Garcia, Fabian Gallardo-Cardenas,
David Lanas, and Marcelo V Garcia. 2019. Industrial Shop-Floor Integration
Based on AMQP protocol in an IoT Environment. In 2019 IEEE Fourth Ecuador
Technical Chapters Meeting (ETCM). IEEE, 1–6.

[7] Carlos Cambra, Sandra Sendra, Jaime Lloret, and Laura Garcia. 2017. An IoT
Service-Oriented System for Agriculture Monitoring. In Proc. IEEE International
Conference on Communications (ICC). 1–6.

[8] Ryan Chard, Zhuozhao Li, Kyle Chard, Logan Ward, Yadu Babuji, Anna Woodard,
Steven Tuecke, Ben Blaiszik, Michael J Franklin, and Ian Foster. 2019. DLHub:
Model and Data Serving for Science. In Proc. IEEE International Parallel and
Distributed Processing Symposium (IPDPS). 283–292.

[9] Ting-Hui Chiang, Zao-Hung Sun, Huan-Ruei Shiu, Kate Ching-Ju Lin, and Yu-
Chee Tseng. 2020. Magnetic Field-Based Localization in Factories Using Neural
NetworkWith Robotic Sampling. IEEE Sensors Journal 20, 21 (2020), 13110–13118.

[10] Michele Ciavotta, Marino Alge, Silvia Menato, Diego Rovere, and Paolo Pedraz-
zoli. 2017. A Microservice-Based Middleware for the Digital Factory. Procedia
manufacturing 11 (2017), 931–938.

[11] OpenJS Foundation & Contributors. 2015. Node-RED. https://nodered.org/.
[12] PyTorch Serve Contributors. 2016. Pytorch Serving. https://pytorch.org/serve/.
[13] Daniel Crankshaw, XinWang, Giulio Zhou, Michael J Franklin, Joseph E Gonzalez,

and Ion Stoica. 2017. Clipper: A Low-Latency Online Prediction Serving System.
In Proc. USENIX Conference on Networked Systems Design and Implementation
(NSDI), Vol. 17. 613–627.

[14] Li Da Xu, Wu He, and Shancang Li. 2014. Internet of Things in Industries: A
Survey. IEEE Transactions on Industrial Informatics 10, 4 (2014), 2233–2243.

[15] Hao-Shu Fang, Jiefeng Li, Hongyang Tang, Chao Xu, Haoyi Zhu, Yuliang Xiu,
Yong-Lu Li, and Cewu Lu. 2022. AlphaPose: Whole-Body Regional Multi-Person
Pose Estimation and Tracking in Real-Time. IEEE Transactions on Pattern Analysis
and Machine Intelligence (2022).

[16] Luca Foschini, Tarik Taleb, Antonio Corradi, and Dario Bottazzi. 2011. M2M-
based Metropolitan Platform for IMS-Enabled Road Tra�c Management in IoT.
IEEE Communications Magazine 49, 11 (2011), 50–57.

[17] Ross Girshick. 2015. Fast R-CNN. In Proc. IEEE International Conference on
Computer Vision. 1440–1448.

[18] Google. 2017. Google Cloud IoT. https://cloud.google.com/iot-core.
[19] Awni Hannun, Carl Case, Jared Casper, Bryan Catanzaro, Greg Diamos, Erich

Elsen, Ryan Prenger, Sanjeev Satheesh, Shubho Sengupta, Adam Coates, et al.
2014. Deep Speech: Scaling Up End-to-End Speech Recognition. arXiv:1412.5567
(2014).

[20] Docker Inc. 2017. Docker Swarm. https://docs.docker.com/engine/swarm/.
[21] Ruimin Ke, Zhibin Li, Jinjun Tang, Zewen Pan, and Yinhai Wang. 2019. Real-Time

Tra�c Flow Parameter Estimation From UAV Video Based on Ensemble Classi�er
and Optical Flow. IEEE Transactions on Intelligent Transportation Systems 20, 1
(2019), 54–64.

[22] Alexandr Krylovskiy,Marco Jahn, and Edoardo Patti. 2015. Designing a Smart City
Internet of Things Platform with Microservice Architecture. In Proc. International
Conference on Future Internet of Things and Cloud. 25–30.

[23] Bogdan Kwolek and Michal Kepski. 2014. Human Fall Detection on Embedded
Platform Using Depth Maps and Wireless Accelerometer. Computer Methods and
Programs in Biomedicine 117, 3 (2014), 489–501.

[24] Yunseong Lee, Alberto Scolari, Byung-GonChun,MarcoDomenico Santambrogio,
Markus Weimer, and Matteo Interlandi. 2018. PRETZEL: Opening the Black Box
of Machine Learning Prediction Serving Systems. In Proc. USENIX Symposium on
Operating Systems Design and Implementation (OSDI), Vol. 18. 611–626.

[25] Liangzhi Li, Kaoru Ota, and Mianxiong Dong. 2018. Deep Learning for Smart
Industry: E�cient Manufacture Inspection System With Fog Computing. IEEE
Transactions on Industrial Informatics 14, 10 (2018), 4665–4673.

[26] Yu-Ting Liu, Jen-Jee Chen, Yu-Chee Tseng, and Frank Y. Li. 2022. An Auto-
Encoder Multitask LSTM Model for Boundary Localization. IEEE Sensors Journal
22, 11 (2022), 10940–10953.

[27] Taylor R Mauldin, Marc E Canby, Vangelis Metsis, Anne HH Ngu, and
Coralys Cubero Rivera. 2018. SmartFall: A Smartwatch-Based Fall Detection
System Using Deep Learning. Sensors 18, 10 (2018), 3363.

[28] Microsoft. 2023. Microsoft Azure IoT. https://azure.microsoft.com/en-us/
solutions/iot.

[29] Nitin Naik. 2017. Choice of E�ective Messaging Protocols for IoT Systems: MQTT,
CoAP, AMQP and HTTP. In IEEE International Systems Engineering Symposium
(ISSE). 1–7.

[30] Christopher Olston, Noah Fiedel, Kiril Gorovoy, Jeremiah Harmsen, Li Lao, Fang-
wei Li, Vinu Rajashekhar, Sukriti Ramesh, and Jordan Soyke. 2017. Tensor�ow-
Serving: Flexible, High-Performance ML Serving. In Proc. NIPS Workshop on ML
Systems.

[31] Meng-Shiuan Pan, Yen-Ann Chen, Ting-Chou Chien, Yueh-Feng Lee, and Yu-
Chee Tseng. 2010. Automatic lighting control system and method. US Patent
7,843,353.

[32] RabbitMQ. 2023. RabbitMQ. https://www.rabbitmq.com/.
[33] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. 2016. You

Only Look Once: Uni�ed, Real-Time Object Detection. In Proc. IEEE conference
on Computer Vision and Pattern Recognition. 779–788.

[34] Julia Robles, Cristian Martín, and Manuel Díaz. 2023. OpenTwins: An Open-
Source Framework for the Design, Development and Integration of E�ective
3D-IoT-AI-powered Digital Twins. arXiv preprint arXiv:2301.05560 (2023).

[35] Amazon Web Services. 2023. AWS IoT. https://aws.amazon.com/iot/.
[36] Jeddou Sidna, Baina Amine, Najid Abdallah, and Hassan El Alami. 2020. Anal-

ysis and Evaluation of Communication Protocols for IoT Applications. In Proc.
International Conference on Intelligent Systems: Theories and Applications. 1–6.

[37] Sergio Trilles, Alberto González-Pérez, and Joaquín Huerta. 2020. An IoT Platform
Based on Microservices and Serverless Paradigms for Smart Farming Purposes.
Sensors 20, 8 (2020).

[38] Yu-Yun Tseng, Po-Min Hsu, Jen-Jee Chen, and Yu-Chee Tseng. 2020. Computer
Vision-Assisted Instant Alerts in 5G. In 2020 29th International Conference on
Computer Communications and Networks (ICCCN).

[39] Lan-Da Van, Ling-Yan Zhang, Chun-Hao Chang, Kit-Lun Tong, Kun-Ru Wu, and
Yu-Chee Tseng. 2021. Things in the air: tagging wearable IoT information on
drone videos. Discover Internet Things 1, 1 (2021).

[40] Steve Vinoski. 2006. Advanced Message Queuing Protocol. IEEE Internet Com-
puting 10, 6 (2006), 87–89.

[41] Xueyi Wang, Joshua Ellul, and George Azzopardi. 2020. Elderly Fall Detection
Systems: A Literature Survey. Frontiers in Robotics and AI 7 (2020), 71.

[42] Sijie Yan, Yuanjun Xiong, and Dahua Lin. 2018. Spatial Temporal Graph Convolu-
tional Networks for Skeleton-Based Action Recognition. In Proc. AAAI Conference
on Arti�cial Intelligence, Vol. 32.

[43] Jing Zhang and Dacheng Tao. 2020. Empowering Things With Intelligence: A
Survey of the Progress, Challenges, and Opportunities in Arti�cial Intelligence
of Things. IEEE Internet of Things Journal 8, 10 (2020), 7789–7817.

114

https://www.bentoml.ai/
https://nodered.org/
https://pytorch.org/serve/
https://cloud.google.com/iot-core
https://docs.docker.com/engine/swarm/
https://azure.microsoft.com/en-us/solutions/iot
https://azure.microsoft.com/en-us/solutions/iot
https://www.rabbitmq.com/
https://aws.amazon.com/iot/

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Background on Messaging Protocols
	2.2 IoT platforms
	2.3 AI Model Serving Platforms

	3 Design of AIoT Platform
	3.1 AMQP Communication Architecture
	3.2 Chaining of Modules
	3.3 AI Model Deployment
	3.4 Service Configuration

	4 A Case Study in Smart Healthcare
	4.1 Service Specification
	4.2 Implementation Details

	5 Comparisons and Evaluations
	5.1 Functionality Comparisons
	5.2 Performance Evaluation

	6 Conclusions
	Acknowledgments
	References

