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Abstract 

Objective 

To systematically review the published parameters for the assessment of subchondral bone 

in human osteoarthritis (OA) using computed tomography (CT) and gain an overview of 

current practices and standards. 

Design 

A literature search of Medline, Embase and Cochrane Library databases was performed with 

search strategies tailored to each database (search from 2010 to January 2023). The search 

results were screened independently by two reviewers against pre-determined inclusion and 

exclusion criteria. Studies were deemed eligible if conducted in vivo/ex vivo in human adults 

(>18 years) using any type of CT to assess subchondral bone in OA. Extracted data from 

eligible studies were compiled in a qualitative summary and formal narrative synthesis.  

Results 
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This analysis included 202 studies. Four groups of CT modalities were identified to have 

been used for subchondral bone assessment in OA across nine anatomical locations. 

Subchondral bone parameters measuring similar features of OA were combined in six 

categories: (i) microstructure, (ii) bone adaptation, (iii) gross morphology (iv) mineralisation, 

(v) joint space, and (vi) mechanical properties. 

Conclusions 

Clinically meaningful parameter categories were identified as well as categories with the 

potential to become relevant in the clinical field. Furthermore, we stress the importance of 

quantification of parameters to improve their sensitivity and reliability for the evaluation of OA 

disease progression and the need for standardised measurement methods to improve their 

clinical value. 

Keywords: osteoarthritis, computed tomography, subchondral bone, systematic review 

 

1. Introduction 

Osteoarthritis (OA) is a disease affecting the whole joint, where bone plays an important role 

in the pathology. Subchondral sclerosis, osteophytes and cysts are recognised osseous 

features of OA that arise in early stages of disease [1-3]. Furthermore, studies have 

demonstrated that abnormal bone remodelling may be a precursor of cartilage degradation 

[4-6]. 

Computed tomography (CT) is an imaging technique with three-dimensional (3-D) 

reconstruction capabilities that employs X-ray to visualize the internal structure of an object 

of interest. Whilst it is not the only 3-D imaging modality available, its ability to image bone at 

high resolution with standardised segmentation protocols is currently unsurpassed [7, 8]. 

The technology can be adapted for various applications from clinical imaging to experimental 

tissue level characterisation. Micro-CT achieves resolutions on the micro-scale, but with high 
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radiation dose and limited sample size mainly suitable for tissue samples, biopsies and small 

animal studies [9]. Multidetector CT with helical (also sometimes called “spiral”) acquisition 

uses specialised detector arrays to reduce noise, improve resolution and reduce scanning 

times for subjects in vivo [10]. Cone-beam CT technology uses x-rays in the shape of a cone 

rather than a fan, as in multidetector CT. While this has a lower dose than conventional CT, 

maintaining resolution at this lower radiation dose comes at the cost of increased noise and 

poorer contrast resolution [11].  

Currently plain film/digital radiography and magnetic resonance imaging (MRI) are deemed 

the imaging modalities of choice for OA assessment [1, 12-14]. Plain film and digital 

radiography are standardly used for imaging of structural bone changes and joint space 

narrowing for OA diagnosis and disease severity assessment [1, 15]. The two-dimensional 

images allow for general assessments of bony structures but do not depict soft tissue, lack 

sensitivity to disease progression and local differences and are prone to positioning and 

image acquisition reproducibility issues [15-17]. MRI has been shown to be a valuable tool 

for soft tissue imaging, capturing changes of cartilage, ligaments, menisci, and synovium, as 

well as bone marrow oedemas [12, 14]. CT has advantages over both methods in the 

assessment of mineralised structures, especially bone. In particular, the capability to deliver 

higher resolution 3-D image reconstructions enables greater standardisation in analysis of 

bone structures compared to other imaging modalities [18, 19]. Conventional clinical CT 

scanners typically have a spatial resolution of 240 μm (Supplementary Table 15) [20-22] 

whereas 3T MRI scanners usually achieve a spatial resolution of 500 – 700 μm, depending 

on the acquisition protocol used [23]. More advanced CT technologies, such as high-

resolution peripheral quantitative CT (HR-pQCT) and photon-counting CT achieve spatial 

resolutions of 58 – 110 μm (Supplementary Table 15) [24, 25] capable of imaging bone 

microstructure using standardised acquisition and image processing protocols. Pre-clinical 

research has shown that additionally to larger structural changes, microstructure significantly 

changes in OA [26]. With a growing understanding of the importance of bone in OA 
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pathology, we consider it an important juncture to recognise the opportunities that CT holds 

in the imaging assessment of OA [27]. In this study, we systematically review categories of 

published parameters for the assessment of subchondral bone in human OA using CT to 

gain a general overview of current practices and standards. 

 

2. Methods 

2.1 Protocol and registration 

This systematic review followed a predetermined protocol and has been reported in 

accordance with the PRISMA 2020 statement [28]. The protocol was registered with 

PROSPERO, registration number CRD42021271530. 

2.2 Search strategy and study selection 

An electronic search of MEDLINE, EMBASE, and Cochrane Library databases was 

performed, each with a search strategy tailored to match their syntax. The search was 

limited from 2010 to September 2021, due to the limited application of CT in the context of 

OA before this timeframe. A full description of the search strategy used is recorded in 

Supplementary Tables 1-3. Because of the long duration between the first search and the 

publication, an additional secondary electronic search of the same databases from 

September 2021 to January 2023 was performed using the same search terms.  

2.3 Eligibility criteria 

Papers that met the following criteria were included in the review: (1) conducted in vivo/ex 

vivo in human adults (age ≥18 years old); (2) using any type of CT technology for the study; 

(3) studying subchondral bone, in synovial joints; (4) written in the English language; (5) 

having full-text paper available to authors; (6) not investigating r pre-operative arthroplasty 

planning; (7) not investigating post-arthroplasty imaging; and (8) published from 2010. 
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Criteria (6) and (7) aimed to focus the search on subchondral bone, as pre-operative 

arthroplasty planning and post-arthroplasty imaging mostly do not involve subchondral bone 

analysis. The titles and abstracts of the studies were independently screened by two 

reviewers (JES, DM). The full text of potential studies were screened against the inclusion 

criteria for the final selection independently by the same reviewers. Any disagreements that 

arose during screening were resolved by a third reviewer (TT).  

2.4 Data extraction 

The following data were extracted from included studies: (1) patient demographics (age, sex, 

body mass index (BMI)); (2) CT specifications (type, make, model, scan parameters); (3) 

joint examined; (4) details of joint positioning; (5) load-bearing status; (6) contrast agent 

details (use, route of administration, dose); (7) image processing methods (reconstruction 

parameters, post-processing analysis technique); (8) region of interest range and anatomical 

reference(s); (9) data type (quantitative/semi-quantitative/qualitative); (10) OA classification; 

(11) array of juxta-articular radiographic subchondral bone features described; (12) any 

predictors/correlates of the subchondral bone features measured; (13) simultaneous soft 

tissue assessment; (14) any clinical outcome predicted by/correlated with the measured 

subchondral bone features; (15) description of complications arisen from OA (e.g. 

osteonecrosis, chondrolysis, stress fractures); and (16) the use of any comparator modality. 

The data was extracted by one reviewer (JES) and, as per standard practice, randomly 

selected 10% of all extracted data was independently verified by a second reviewer (DM) 

[29]. Disagreements were resolved by a third reviewer (TT).  

2.5 Quality assessment 

A standardised quality scoring tool, Newcastle-Ottawa scale, developed by the Ottawa 

Hospital Research Institute was used to assess the scientific quality of case-control and 

cohort studies and a modified Newcastle-Ottawa scale adapted for cross-sectional studies 

was used for the quality assessment of cross-sectional studies (Supplementary Material 
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Tables 4-6) [30]. The tool comprises eight questions that evaluate study group selection, 

their comparability, and ascertainment of outcome or exposure of the respective study. The 

study designs were confirmed and subsequently the quality assessment was completed by 

one reviewer (JES). Ten percent of all quality assessments were independently verified by a 

second reviewer (DM). Disagreements were resolved by a third reviewer (TT).  

2.6 Data synthesis 

A meta-analysis was considered inappropriate for this study as the research question aimed 

to assess the frequency of reported CT parameters, rather than exploring comparisons or 

relationships requiring formal statistical testing. Therefore, a qualitative summary and formal 

narrative synthesis of the results were compiled to report findings of the review.  

3. Results 

3.1 Study selection 

The results of the search strategy are summarised in Figure 1. In total, 8813 papers were 

identified by the initial search across all databases of which 2280 duplicates were removed. 

The resulting 6533 papers were screened for title and abstract of which 6190 papers were 

excluded. The remaining 346 full-text articles were retrieved, of which three were 

irretrievable. After the full-text assessment, 246 were found to be relevant. Among these, 21 

did not specify the age of their participants and 23 included a small number of participants 

younger than 18 years and were, as per exclusion criteria, further excluded from analysis. 

The latter were not excluded earlier in the screening process as the majority of participants 

included in these studies were adults and it was only following detailed screening of the full-

text articles that select participants under 18 years included in those studies were identified. 

Finally, 202 full-text papers were included in the analysis. 
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3.2 Quality assessment 

Scores were separately assessed for cross-sectional, cohort and case-control studies. 

Detailed score and scoring items can be found in Supplementary Material Tables 4-9. 

Quality scores were calculated as a percentage of the total score (nine points; selection: 

four, comparability: two, exposure: three). The mean quality scores (range) of 188 cross-

sectional studies, 11 cohort studies and three case-control study were 51% (0 – 89), 66% 

Figure 1 | PRISMA flow diagram of study selection. 
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(33 – 89) and 63% (56 – 67) respectively. Little mean quality differences were observed 

between different categories, CT groups and anatomical location (Supplementary Figure 1). 

3.3 Study characteristics 

Table 1 categorises CT modalities reported in the included studies in four groups; 

conventional clinical-type CT, quantitative CT for human use, micro-/nano-CT and cone-

beam CT. Study characteristics are summarised in Table 2. Four reports used more than 

one CT type for their study [31-34] and 22 papers did not specify what type of CT technology 

was used, whereby no assumption could be made [35-56]. Furthermore, eight papers 

investigated more than one joint [32, 50, 57-62]. Of these, one study investigated multiple 

joints in the neck [57], five studies investigated multiple joints in the hand [50, 58-61], one 

study investigated multiple articulations within the knee [62], and one study investigated 

joints in the neck, shoulder, hip, knee, and ankle as well as two facet joints each of the 

lumbar, thoracic and cervical spine [32].  

Table 1 | Description of CT modalities included in each CT group defined and a brief explanation of 
each group. 

CT group CT modalities 

included  

Explanation 

Conventional 

clinical-type CT 

Multidetector CT 

Spiral CT  

Positron 

emission/CT 

Four-dimensional 

CT 

Thin-slice CT 

Fan-beam CT technologies conventionally used for 

radiological assessment 

Quantitative CT 

for human use 

Quantitative CT 

(QCT) 

CT technologies (QCT: fan-beam, HR-pQCT: cone-beam) 

usually including a density phantom during imaging 
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HR-pQCT commonly used for quantitative bone mineral density 

assessment in humans 

Micro-/ nano-CT MicroCT 

Synchrotron 

radiation CT 

Fan-beam CT technologies capable of micro-/ nano-scale 

resolution, commonly used for ex vivo/ pre-clinical in vivo 

investigations 

Cone-beam CT Cone-beam CT 

(CBCT) 

Cone-beam 

microCT 

(CBmicroCT) 

Cone-beam CT technologies commonly used for dental/ 

maxillofacial and upper/ lower limb assessment (CBCT) and 

ex vivo/ pre-clinical in vivo investigations (CBmicroCT) 

Table 2 | CT groups, anatomical locations, parameter categories and their corresponding references 
and reporting frequencies. 

Subject References Reporting 

frequency 

CT group Micro-/ nano-CT [31, 33, 34, 58, 63-129]  71 

Conventional clinical-

type CT 

[31, 32, 34, 57, 60, 62, 130-187]  64 

Cone-beam CT [33, 188-220]  34 

Quantitative CT for 

human use 

[31, 59, 61, 221-232]  15 

Anatomical 

location 

Knee [31-34, 42, 48, 53, 62-66, 73-80, 82-86, 94, 95, 

97, 99, 100, 102-108, 110, 114, 115, 122, 125, 

126, 139, 146, 148, 156, 166, 170, 171, 178, 

179, 182, 184, 203, 209-211, 220-228, 232] 

70 

 Hip [32, 41, 45, 67-72, 89-92, 96, 101, 109, 111-113, 

116-121, 123, 127-129, 133, 137, 158, 160, 176, 

38 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



11 
 

177, 229, 230, 233] 

 Wrist/ Hand [46, 50, 58-61, 87, 88, 93, 132, 138, 150, 151, 

163, 183, 231] 

28 

 Temporomandibular 

joint 

[172, 181, 188-199, 201, 202, 204-208, 213-216, 

219] 

26 

 Shoulder [32, 35-40, 43, 44, 47, 51, 52, 54-56, 124, 131, 

135, 136, 142, 143, 162, 174, 186] 

24 

 Spine [32, 49, 57, 98, 130, 140, 141, 144, 145, 149, 

152-155, 168, 169, 187] 

19 

 Ankle/ Foot [32, 81, 147, 159, 164, 165, 167, 173, 175, 180, 

185, 200, 212, 217, 218] 

15 

 Elbow [161] 1 

 Sacroiliac joint [134] 1 

Category Microstructure [33, 34, 47, 48, 59, 61, 63-78, 80-98, 100-112, 

114-129, 137, 138, 147, 159, 181, 182, 189, 

199, 202, 204, 206, 209, 210, 213, 221, 226, 

228-230, 232] 

90 

 Bone adaptation [31, 41, 46, 48, 50, 57, 58, 60, 61, 65, 109, 118, 

120, 121, 125, 127, 133, 134, 138, 139, 142, 

143, 146, 158, 159, 161, 163, 165, 166, 172, 

173, 181, 183-185, 187, 189-192, 194, 196, 197, 

199, 201, 202, 204, 205, 208, 211, 214, 216, 

218, 222, 229, 231, 233] 

57 

 Gross morphology [35-40, 42, 44, 50, 53-56, 60, 61, 69, 113, 131, 

132, 135, 136, 143, 147, 150, 152, 159, 165, 

54 
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171, 175, 177-181, 183, 186, 189-196, 198-201, 

205, 207, 208, 214, 217, 219] 

 Mineralisation [47, 48, 59, 61, 64-66, 69, 72, 74, 75, 78, 79, 87, 

89-92, 100, 103, 115-118, 120, 121, 124, 126, 

127, 142, 146, 148, 151, 160, 164, 167, 170, 

176, 181, 182, 186, 199, 203, 206, 223-227, 

230, 232, 234] 

52 

 OA classification [32, 43, 45, 49, 51, 52, 62, 99, 130, 131, 140, 

141, 144, 145, 149, 153-155, 162, 168, 169, 

174, 193, 212, 215] 

25 

 Joint space [35, 50, 57, 60, 134, 137, 158, 165-167, 172, 

199, 220, 222, 233] 

15 

 Mechanical 

properties 

[61, 63, 68, 82, 114, 124, 127, 176, 221] 9 

Study participants of the included studies were males and females of at least 18 years old. 

They either suffered from OA, were at risk of suffering from OA or served as control groups. 

Whilst studies focussing on pre-arthroplasty planning and post-arthroplasty imaging were 

excluded, studies using pre-arthroplasty images for alternative analysis were included. 

Furthermore, samples retrieved for micro-/nano-CT imaging were retrieved from patients 

undergoing arthroplasty or from body donors.  

Subchondral bone parameters assessed with CT technology were categorised into six 

subgroups as reported across the included studies. Parameters measuring similar features 

of OA were combined in categories and defined as: (i) microstructure; (ii) bone adaptation; 

(iii) gross morphology; (iv) mineralisation; (v) joint space; and (vi) mechanical properties. 

Twenty-five studies did not generate any subchondral bone parameters using segmentations 

but semi-quantitatively or qualitatively graded OA severity by visual inspection of CT images.  
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3.4 Microstructure 

Microstructural parameters included parameters such as trabecular and cortical thickness, 

porosity, trabecular separation or trabecular plate to rod ratio that assess the 

microarchitecture and were investigated in 30% of the included studies (Table 2, Figure 2). 

Microstructural parameters were predominantly measured at the hip (41%) and knee joints 

(39%). Of all measurements, 81% were acquired ex vivo with micro-/ nano-CT technology 

(Figure 3). Illustrated in Figure 4, reported microstructural parameters were almost 

exclusively quantitative (98%) with the exception of porosity (perforations/channels) [78] and 

bone thickness (cortical thickness) [204] that were analysed qualitatively in one study each.  
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Figure 2 | Report count of quantitative parameters measuring microstructure features in the respective 
anatomical location and distribution of CT technology used for measurement. Two qualitative 
parameters (Perforations/ channels: knee, micro-/ nano-CT; Cortical thickness: TMJ, cone-beam CT) 
are not included in the figure. A detailed description of parameters can be found in Supplementary 
Materials Table 10. 
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Figure 3 | Distribution of ex vivo and in vivo imaging in each 
category. 
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3.5 Bone adaptation 

Figure 4 | Distribution of (a) quantitative, semi-quantitative and qualitative 
measures in each category (total of 100% per category) and (b) CT technology 
used for measurement of all quantitative, semi-quantitative and qualitative 
parameters respectively in each category (total of 100% per quantitative, semi-
quantitative and qualitative group). 
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Bone adaptation parameters included those indicative of abnormal bone remodelling in the 

context of osteoarthritis, such as the presence of osteophytes, cysts, erosion, or sclerosis as 

well as measures of bone alteration over time, which were reported in 19% of all studies 

(Table 2, Figure 5). Studies reporting bone adaptation most frequently employed clinical-type 

CT (45%) and cone-beam CT (32%) technology. Cone-beam CT was nearly exclusively 

used to investigate temporomandibular joints (TMJ) [189-192, 194, 196, 197, 199, 201, 202, 

204, 205, 208, 214, 216] except for two studies that used it to investigate ankle [218] and 

knee joints [211], whereas conventional clinical-type CT was used to study joints across all 

anatomical locations. Qualitative parameters such as the presence or absence of 

osteophytes or subchondral cysts made up 42% of all bone adaptation parameters. The 

remaining half was made up of 35% quantitative and 23% semi-quantitative parameters 

(Figure 4). 
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3.6 Gross morphology 

This category encompassed parameters describing alignment and the shape of bone such 

as bone surface areas, alignment angles or bone flattening. Illustrated in Table 2, 18% of 

studies investigated gross morphology. A variety of parameters in many anatomical locations 

were recorded (Supplementary Figure 2). Gross morphological parameters were used to 

describe TMJ (27%), foot/ankle (21%), shoulder (17%), knee (13%), hand/wrist (12%), hip 

(10%) and spinal joints (<1%). Clinical-type CT (50%) and cone-beam CT (43%) were the 

dominant technology used. Parameters describing gross morphology were 60% quantitative, 

28% qualitative and 12% semi-quantitative (Figure 4).  

3.7 Mineralisation 

Mineralisation included parameters describing tissue mineralisation such as bone mineral 

density, tissue mineral density and attenuation values, which were analysed in 17% of 

studies (Table 2, Figure 6a). Micro-/nano-CT was used in 50% of studies and the main 

anatomical locations of interest were knee (51%), wrist/hand (19%) and hip joints (18%). 

Three reports of qualitative parameters were recorded (high-density mineralised protrusions 

attenuation [146], subchondral bone plate attenuation [146], free calcifications [199]), 

however the other 96% were quantitative (Figure 4). 

Figure 5 | Report count of quantitative, semi-quantitative and qualitative bone adaption 
parameters, anatomical location and CT group with which they were measured. One quantitative 
parameter (void fraction, measured in shoulder with clinical-type CT) is not included in figure. 
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3.8 Joint space 

Figure 6 | Report count of quantitative parameters measuring (a) mineralisation, anatomical location 
analysed and CT group used for measurement (three qualitative parameters (Attenuation (2x): knee, 
clinical-type CT; Free calcifications: TMJ, cone-beam CT) are not included in the figure) and (b) 
mechanical properties, anatomical location analysed and CT group used for measurement. 
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Joint space parameters described the space between the bony articular surfaces at the joint 

and were reported in 5% of studies (Table 2, Supplementary Figure 3). Clinical-type CT was 

used to determine joint space parameters in 79% of cases across various anatomical 

locations. The distribution of quantitative, semi-quantitative, and qualitative parameters was 

36%, 50% and 14%, respectively (Figure 4).  

3.9 Mechanical properties 

Estimated mechanical properties such as tissue stiffness and failure load were reported in 

3% of studies (Table 2, Figure 6b). These parameters were indirectly derived from finite 

element analysis techniques that were based on images obtained with all CT types, with the 

exception of one study that utilised CT image-guided mechanical evaluation [124]. 

Mechanical properties were derived for wrist/ hand (40%), hip (27%), knee (20%), and 

shoulder joints (13%) which were exclusively quantitative in nature (4). 
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4. Discussion 

This systematic review summarises published CT parameters describing subchondral bone 

measurements in humans with OA. We have devised appropriate categories encompassing 

these parameters and stratified them according to CT technology applied and the joints 

which were investigated. Here we summarise the narratives from these six major parameter 

categories, specifically microstructure, adaptation, gross morphology, mineralisation, joint 

space, and mechanical properties.  

Microstructure – bench to bedside 

Microstructural parameters were mainly analysed in studies analysing OA pathogenesis and 

characterising and phenotyping OA. They are considered useful to investigate the 

connections of different tissue changes as well as the influence of risk factors, resulting in 

indications for new disease biomarkers. Microstructure was also the subject of method 

development and validation studies, investigating the sensitivity and ability of novel methods 

to image microstructure. Micro-/nano-CT was the most frequently used technology for the 

analysis of bone microstructure, mainly in knee and hip joints. It can capture high-resolution 

images with spatial resolution down to 200nm (Supplementary Table 15) [235, 236], thus 

enabling quantitative assessment of trabecular architecture measuring features like 

trabecular thickness, trabecular number and cortical porosity. However, the radiation dose is 

too high and gantry size as well as maximum field of view are too small to be suitable for in 

vivo use in humans. As such, all studies using micro-/nano-CT investigated ex vivo bone 

samples, which also influenced which joints were examined. Bone samples were usually 

obtained from joint replacement surgeries where articulating bone material was removed. 

The knee and hip joints are the most frequently replaced joints, hence those were the joints 

mainly investigated.  

For in vivo measurement of microstructural parameters, it is recommended to use high 

resolution peripheral CT (HR-pQCT), not clinical CT or cone-beam CT. The resolution of 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



23 
 

current clinical CT technologies is not sufficient to image the microstructure of bone (200-

400μm). Only HR-pQCT has a spatial resolution high enough (58μm, 10% MTF) to analyse 

bone microstructure in vivo (Supplementary Table 15) [25]. However, its limited field of view 

restricts its use to extremities (ankle, wrist, elbow, and small knees) which has somewhat 

limited the translation of microstructural measures from bench to bedside. A more recent 

development in CT technology, photon-counting CT may speed up the translatability of 

microstructural measures. Rather than detectors integrating the energy of a series of x-ray 

photons, photon-counting CT uses energy-resolving detectors in pulse mode, measuring 

individual packets of photon energy that exceed a given threshold. By virtue of the reduced 

pixel electrode size in a detector, this clinical CT with photon-counting detector is capable of 

imaging bone at a spatial resolution comparable to HR-pQCT, without being restricted to the 

extremities (Supplementary Table 15) [24, 31, 237-239]. Whilst it has been applied in few 

OA investigations, this has potential for direct translation of relevant microstructural 

parameters identified in microCT studies into clinical applications [240]. Furthermore, it 

reduces the limitation of bone sample availability. It allows for investigation of microstructural 

changes in vivo in any joint without relying on joint replacement surgeries to retrieve bone 

samples.  

Bone adaptation – putting numbers to images 

Bone adaptation parameters were largely used in OA pathogenesis investigations and 

methods validation studies. They are often used to confirm the presence of OA in images 

and to validate the reliability and sensitivity of novel methods for OA detection. Bone 

adaptation was investigated at the TMJ more than any other joint. Imaging was mainly 

conducted with in vivo cone-beam CT, which is a standard CT technology used by dentists 

and maxillofacial specialists whose expertise includes TMJ disorders. Changes like bone 

erosion, osteophytes, and subchondral cysts were often seen as the basis of OA diagnosis 

at the TMJ using imaging [241, 242], while in other locations loss of joint space (along with 

osteophyte formation) tended to carry more weight. Nevertheless, bone adaptation at a 
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broad range of other joints was also analysed ex vivo using micro-/nano-CT and in vivo 

using clinical-type CT and quantitative CT. In clinical practice, the choice of CT technology 

for bone adaptation imaging should depend less on technological capability and more on the 

joint of interest. Cone-beam CT may be suitable for joints such as the TMJ and peripheral 

joints whereas clinical CT may be more appropriate for hip, shoulder, and spinal joints. 

Features like bone cysts, osteophytes, sclerosis and bone erosion were frequently assessed 

qualitatively, only recording the presence of these features, or using semi-quantitative 

scoring. They seem to be reliable features for OA diagnosis and if the presence or absence 

of bone adaptation was merely used to diagnose OA, this may suffice. However, it raises the 

question of how disease progression and treatment efficacy might be assessed using these 

properties. The judgement of the person scoring the images introduces a subjective 

component with inter- and intra-observer errors [243]. One’s image interpretations may vary 

from one time point to the next, particularly in unclear cases and different people may 

interpret the same image differently. Additionally, score differences have been observed 

between grading systems [243]. Quantifying the observed phenomena by measuring size, 

area and volume as suggested by multiple studies could aid with this [31, 48, 65, 120, 121, 

127, 133, 138, 139, 142, 143, 181, 183-185, 197, 216, 222, 229, 231], particularly with the 

knowledge of the role that bone plays in OA, potentially allowing a more accurate evaluation 

of disease progression and treatment efficacy.  

Gross morphology – the wild west of descriptions 

Gross morphology was of particular interest in pathogenesis studies investigating OA 

progression and connections between alignment, joint morphology, and OA development. It 

was also analysed to characterise different disease phenotypes. Most parameters describing 

the morphology of osteoarthritic bone evaluate alignment angles and changes to bone 

shape in images obtained in vivo with clinical-type CT. In order to measure such features, 

the chosen CT technology does not need to produce images of the highest resolution but the 

field of view of the scanner needs to be large enough to image the whole joint. Hence, cone-
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beam CT may suffice for smaller joints like the TMJ and ankle joints whereas clinical CT is 

required for larger joints like the knee, hip, or shoulder joints. In the shoulder, alignment 

measurements such as glenoid version and inclination are frequently reported in relation to 

osteoarthritis, but reference lines and anatomical references used for measurements varied 

between methods [35, 40, 54, 135, 136]. Likewise, subluxation of the metacarpal bone in the 

hand was reported as a measurement that captures osteoarthritic changes but approaches 

and anatomical references differed between reports [50, 132]. Multiple approaches for 

capturing bone shape changes were recorded. Cevidanes et al. [195] and Lynch et al. [171] 

employed statistical shape modelling to investigate changes to the bone in the TMJs and 

knee joint respectively. Knowles et al. [143] attempted to analyse bone loss in the glenoid of 

Walch classification B2 shoulders by defining a line of erosion which separates the glenoid 

into paleoglenoid and neoglenoid in images obtained from clinical-type CT. They found the 

position and angle of this line of erosion shifted with severity of OA, indicating asymmetric 

bone loss. Taken together, these studies suggest angles are easily measured for a trained 

individual and could be helpful in diagnosing OA and evaluating disease risk and 

progression. Such morphological changes seem likely to offer valuable insight into a pre-

determined risk for OA and evaluation of disease progression once manifested. However, 

there seems to be little consensus on measurement methods and approaches. If key 

measurements and standardised methods could be identified, they may not only serve as 

morphological descriptions but also add value to indirectly quantifying bone adaptation.  

Mineralisation – variability in the face of reliability 

Bone mineral density is commonly used to assess bone quality in diseases such as 

osteoporosis [244-246], yet OA is known to also cause substantial changes in bone 

mineralisation [247, 248]. Studies investigating bone mineralisation changes in OA 

predominantly involved quantitative measurements in knee and hip joints using ex vivo 

micro-CT and nano-CT, although in vivo analysis with quantitative and clinical-type CT also 

contributed 20% each. The recommended CT technologies to measure mineralisation of 
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bone are micro-/nano-CT for ex vivo and quantitative CT for in vivo measurements. The 

scanning of hydroxyapatite phantoms allows for quantitative assessment of mineralisation. 

Mainly studies investigating pathogenesis and disease phenotypes used mineralisation 

parameters. They often focus on the role of bone mineralisation in OA or phenotypical 

differences in mineralisation. Whilst most studies concluded that OA influenced bone 

mineralisation, the precise effect of OA on mineralisation remains unclear. Abnormal bone 

remodelling leads to osteophytes, cysts and sclerosis, which can make mineralisation greatly 

location- and depth-dependent. Johnston et al. [225], Sannmann et al. [227], and Myller et 

al. [203] showed how different locations in the knee have different mineral contents. They 

found mineralisation in superficial layers to be highest, decreasing with increasing bone 

depth. Furthermore, meniscal coverage was found to result in decreased mineral content in 

the underlying bone. Similarly, Knowles et al. [142] and Letissier et al. [47] showed that the 

shape and wear pattern in shoulder joints influenced bone mineralisation. Furthermore, the 

development of cysts and osteophytes were shown to affect mineral content. Measurements 

varied depending on whether the void caused by cysts was considered in global analysis or 

how close to the cysts local measurements were taken [65, 230]. Additionally, the type of 

mineralisation measure chosen for the analysis may affect any conclusions made. Bone 

mineral density is a mineralisation measure of a mixed bone volume containing both 

trabecular and cortical bone whereas tissue mineral density measures the mineral density 

within cortical bone, hence results may vary between them. As it currently stands, 

mineralisation does not seem to be a powerful measure for OA. Global metrics are often 

biased and fail to do justice to the local differences due to the heterogeneity of mineral 

distribution in OA derived from local disease features. Clear definitions and standards 

regarding measurement location are necessary to improve the reliability of mineralisation 

parameters. If this is achieved, they could become valuable parameters that are easy to 

obtain and clinically relevant. 
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Joint space – a ghost measure of subchondral bone 

Radiography is the most widely used clinical radiological method used to assess OA. 

However, it cannot accurately image soft tissue and is unable to depict cartilage directly, 

hence the need to use MRI (and to some extent ultrasound) for the assessment of cartilage 

and other joint soft tissue structures. Consequently, joint space narrowing has been used as 

a measurement that encompasses both cartilage health and meniscal damage at the knee. 

In the context of subchondral bone, it has been of particular interest in combination with 

bone adaptation parameters to confirm OA in images. Additionally, it was of interest in 

studies validating novel methods to measure joint space, making use of the advantages CT 

holds. The translation to CT has mainly occurred in clinical-type CT for the in vivo 

assessment of various joints across many anatomical locations except for one study that 

analysed vacuum phenomena ex vivo at sacroiliac joints. The important factor for CT 

technology choice here is also field of view and the joint of interest. Larger joints will require 

clinical-type CT whereas smaller joints may be imaged with cone-beam CT. Half of the 

included studies evaluated joint space semi-quantitatively, however, studies by Segal et al. 

[211, 249, 250] and Turmezei et al. [251-253] show that CT provides a more precise 

quantitative measure of joint space compared to radiography due to it being 3-D, thus 

increasing its sensitivity in the assessment of OA. Therefore, in the context of OA research, 

more precise and quantitative information related to joint space loss, assumed to be from 

factors such as cartilage degeneration and meniscal extrusion, captured by high resolution 

images of bone could be beneficial. Alternatively, CT arthrography has been shown to be an 

accurate method to assess cartilage directly using CT in combination with an intra-articular 

contrast agent [254-256]. 

Mechanical properties – estimating tissue quality 

Mechanical properties of bone can be estimated with finite element (FE) modelling based on 

images obtained with CT. To create an FE model, voxels from the CT image are converted 

to elements, which are then assigned material properties (elastic modulus and Poisson 
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ratio). Using this model, loading simulations can be performed to analyse and estimate 

mechanical properties of interest. Similarly, discrete element (DE) analysis is a 

computational method to estimate intra-articular contact stress. It is a faster method to obtain 

comparable information to FE analysis, but it sacrifices material property definitions and 

continuum mechanics, which takes deformation and transmission of force into account. 

Neither of these computational methods are commonly used to assess subchondral bone in 

OA because they are usually conducted on whole bones rather than bone compartments 

such as subchondral bone. In the few studies captured here, micro-/nano-CT and 

quantitative CT were mostly used for ex vivo FE analysis of knee, hand/wrist and hip joints. 

Crucial factors for FE analysis are bone shape and microstructure as well as mineralisation. 

Therefore, micro-/nano-CT and HR-pQCT are the recommended CT types to image joints for 

FE analysis. The studies that investigated mechanical properties of bone focused on the 

pathogenesis of OA. They investigated the impact of OA on parameters like stiffness, failure 

load and elastic modulus. FE and DE analysis permit different loading scenarios to be 

explored to aid in the assessment of OA progression and therapeutic efficacy. Accordingly, 

FE and DE analysis could be considered for subchondral bone assessment in OA.  

Limitations 

It is important to note that for joint space and mechanical properties, the search strategy did 

not capture the full field. The search parameters and inclusion criteria were aimed at 

subchondral bone, therefore many studies investigating joint space with CT in OA were not 

included because they did not mention subchondral bone. Furthermore, limited studies 

investigating mechanical properties were picked up by the search strategy due to them using 

FE modelling for whole bone analysis rather than recognising subchondral bone as a 

separate entity. Nevertheless, the available literature found via this search strategy 

highlights that they are relevant to the field of OA imaging with CT.  

Finally, the large scope of this review enabled a broad overview of CT parameters used for 

the assessment of subchondral bone in OA. Subsequent reviews and scientific studies could 
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focus on single parameter categories to deepen the discussion around specific parameters 

and their usefulness in different applications as well as appropriate CT technologies for their 

analysis. 

5. Conclusion 

With CT gaining popularity in OA research, this review has provided important insight into 

current applications for the assessment of OA. Six main categories of microstructure, bone 

adaptation, gross morphology, mineralisation, joint space and mechanical properties, were 

identified as being of interest in OA analysis with CT. This review can serve as a resource to 

anyone looking to use CT as an imaging modality to analyse bone in OA via a multitude of 

approaches. We have highlighted clinically meaningful parameter categories as well as 

categories that have potential to be translated into clinical application. Finally, we have 

stressed the importance of quantification of parameters to improve sensitivity and 

reproducibility, and the need for consistency and standardisation of protocols necessary for 

parameters in order to add value to future OA research and clinical practice.  
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Highlights 

 Choice of computed tomography technology for the desired analysis is important 

 Technological advances hold potential for translation of microstructural parameters 

 Quantification of parameters could improve their sensitivity and reliability 

 Standardised measurement methods are required to enhance parameters’ clinical value 
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