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Abstract- This paper proposes a binary fault detection 

algorithm for detecting inner raceway bearing faults in a 4KW 

induction motor. The algorithm uses Support Vector Machine 

(SVM) and Projection Recurrent Neural Network (PRNN) 

techniques and is based on data collected experimentally at 

different speeds and load conditions. Time and frequency contents 

of the three-phase stator currents are analysed using Discrete 

Wavelet Transform (DWT), Power Spectral Density (PSD), and 

cepstrum analysis. A feature set is obtained using various 

statistical measures, and feature selection algorithms are used to 

select the most relevant features. The SVM is then trained using 

these features, and its optimisation problem is formulated as 

Constrained Nonlinear Programming (NCP). A PRNN is 

proposed to solve the NCP and obtain the optimal decision 

boundary of the SVM. The study demonstrates that the accuracy 

of the algorithm depends on the type of kernel function and the 

number of relevant features selected. The results suggest that the 

proposed algorithm is effective in detecting inner raceway bearing 

faults in induction motors. 
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I. INTRODUCTION  

Induction Motors (IMs) are one of the most widely used 
types of electric motors in the industry due to their reliability, 
robustness, and relative affordability compared to other motor 
types. They are commonly used in applications such as 
pumps, compressors, fans, wind generators, and solar panels 
[1]. However, over time, IMs may experience wear and tear, 
overloading, and misalignments, leading to bearing faults. 
These types of failures are responsible for 51% of the 
downtime experienced by IMs [2]. Early identification and 
diagnosis of bearing faults are critical to prevent further 
damage and avoid costly repairs, downtime, and loss of 
production. Therefore, it is essential to develop accurate and 
reliable fault detection and diagnosis techniques for IMs to 
ensure their efficient and continuous operation. 

Mechanical fault detection methods, such as acoustic 
monitoring, thermal imaging, and vibration analysis, can be 
utilised to detect potential bearing faults at an early stage 
before they become severe issues. Acoustic monitoring is a 
non-invasive method that uses sensors to quantify and analyse 
the audible emissions from the motor [3]. Thermal imaging 
can identify various types of bearing faults through thermal 
image processing, feature extraction, and machine learning 
algorithms [4]. Vibration analysis is a widely used technique 
for detecting potential defects or irregularities in bearings. It 
involves evaluating the vibration characteristics associated 
with engine bearings for different characteristic fault 

frequencies using a frequency-based method such as Fast 
Fourier Transform Spectral Analysis [5]. However, these 
methods can be affected by external noise and ambient 
temperature, are subject to sensor failure, and require 
specialised and expensive equipment. Nevertheless, they 
remain useful tools for early fault detection and are widely 
employed in industrial applications. 

A commonly used technique for identifying bearing faults 
is known as Motor Current Signature Analysis (MCSA). The 
basic idea is to examine the frequency spectrum of both 
healthy and faulty data to isolate the fault harmonic 
frequencies. This technique is a non-invasive and low-cost 
method that can be used to detect outer ring fault frequencies 
in induction motors using stator current signals and their 
probability distributions [6]. MCSA is sensitive to speed 
ripple, voltage variations, and ambient noise [7]. It is unable 
to detect incipient faults, and it is difficult to discriminate 
between different types of faults that may have similar 
signature patterns. These drawbacks can be mitigated by 
integrating MCSA with techniques such as Discrete Wavelet 
Transform (DWT) and Fast Fourier Transform (FFT). The 
first step is to convert the sampled data to the time-frequency 
domain using wavelet transform and then decompose it using 
FFT to investigate the frequency components that represent 
the bearing fault [8]. MCSA can also be combined with noise 
cancellation and wavelet analysis to estimate fault severity 
using the fault indexing parameters of the Power Spectral 
Density (PSD) [9]. These techniques assume that the signal is 
stationary. They are computationally intensive and are 
affected by the length of the time window used 

Machine learning algorithms, such as SVM, are capable of 
detecting and classifying various types of defects in IMs. 
SVM algorithms have been found to achieve high accuracy in 
fault classification while being robust to overfitting and able 
to handle noise in the data. Additionally, SVM algorithms 
require fewer hyperparameters to be tuned than other machine 
learning algorithms, such as artificial neural networks, making 
it easier to find the optimal configuration for the classification 
model. SVM algorithms can handle high-dimensional data 
and are able to identify the separating hyperplane [10]. In [11], 
the motor dynamic strain signals are pre-processed using FFT 
to obtain a dimensionality-reduced dataset by selecting the 
four highest picks of the PSD and then using Principal 
Component Analysis. An SVM algorithm is extended to 
detect the outer raceway bearing fault, with its main 
contribution being the ability to detect different severity levels 
of the bearing fault. In [12], an optimised stationary wavelet 



packet transform is used to extract the features from the motor 
current signals. A dataset containing the root mean square of 
the wavelet coefficients is then used to train and test an SVM-
based bearing fault detection algorithm. This method is 
characterised by optimised wavelet kernel functions. 
Similarly, in [13], a continuous wavelet transform is used to 
process the vibration signals and then, after feature extraction, 
an SVM algorithm based on linear kernel functions is applied 
to detect the bearing fault. The accuracy of the fault detection 
is evaluated in terms of the mother wavelet selection. When 
compared with artificial neural networks, SVM algorithms 
can achieve more accurate results with a simpler structure. 

For a large dataset with nonlinear kernel functions, solving 
the Constrained Optimisation Problem (COM) in SVM can be 
challenging. Projection recurrent neural networks have the 
ability to solve a variety of COMs with linear and nonlinear 
constraints. They are fast, have a simple structure, are easy to 
implement, and are asymptotically stable [14]. These 
optimisers are used to solve quadratic programming [15], and 
Constrained Nonlinear Programming (CNP) [16]. PRNNs can 
be integrated with the SVM to develop a fast, simple, and 
optimised classifier for bearing fault detection in the IM. 

In this paper, three-phase current signals are collected 
experimentally at different speeds from no load to full load for 
both healthy and faulty conditions. A feature set is provided 
using the time-domain signals, their DWT including detail and 
approximation coefficients, PSD, and cepstrum. A feature 
selection algorithm is developed to select the most relevant 
features for the training and testing datasets. The COM of 
SVM is formulated as a CNP. A PRNN, including dynamic 
and algebraic equations, is integrated into the SVM to 
minimise the CNP and obtain the optimal classification 
boundary. The rest of this paper is structured as follows: 
Section II presents the proposed fault detection algorithm. The 
experiments including the test rig and instruments are 
described in Section III. The data processing including 
obtaining DWT, PSD, and cepstrum from the current signals, 
is presented in Section IV. Sections V and VI present feature 
extraction and feature selection, respectively. Section VII 
describes the integration of SVM and PRNN. The 
classification results and the conclusion are presented in 
Sections VIII, and IX, respectively.  

II. PROPOSED BEARING FAULT DETECTION ALGORITHM 

As depicted in Figure 1, the bearings are composed of two 
rings, namely, the outer and inner rings, along with a cage 
containing evenly spaced balls to prevent any mutual contact 
[11]. The bearing fault can be characterised as a crack on the 
inner or outer raceway with early, intermediate, and severe 
levels. This paper focuses on detecting an intermediate 
bearing fault associated with the outer raceway. In the 
proposed method, only the three-phase currents from a 4 KW 
squirrel cage IM are utilised for detecting the bearing fault. 
Both healthy and faulty raw data are acquired at various 
speeds of the IM under different load conditions, ranging from 
no load to full load. Additionally, the DWT, PSD, and 
cepstrum of the current signals are computed to investigate the 
fault characteristics in both time and frequency domains. 

Several statistical features are subsequently extracted from 
the time and frequency signals, which include mean, standard 
deviation, kurtosis, skewness, crest factor, shape factor, 
impulse factor, and clearance factor. 

 
Fig. 1. Main parts of a rolling bearing   

A feature selection algorithm is applied to determine the 
most prominent features. Consequently, a dimensionally 
reduced feature set is utilised to train the SVM and identify 
the defect. To simplify the optimisation process and render it 
suitable for online classification and practical implementation, 
a PRNN is integrated with the SVM as a numerical optimiser 
to determine the optimal classification boundary. Figure 2 
illustrates the block diagram of the proposed fault detection 
algorithm, commencing from the data acquisition system and 
concluding with the detection of the bearing fault. 

 
Fig. 2. Block diagram of the fault detection algorithm  

III. EXPERIMENTAL TEST RIG SET-UP 

The experiment is carried out using a test rig with a 4KW 
induction motor coupled to a 4KW load motor as shown in 
Fig. 3. A torque transducer is mounted between the motors to 
measure the torque signals. A data acquisition system 
consisting of three current sensors, three voltage sensors, a 
Speedgoat and an input/output (I/O) module is set up to 
measure in particular the instantaneous three-phase currents 
for both healthy and fault conditions. The Speedgoat is a target 
machine that has an Intel 2.0 GHz quad-core CPU, Simulink 
Real-Time operating system, 4GB DDR3 RAM memory and 
4 I/O slots. The I/O module is a configurable FPGA board 
with 13 differential I/O lines.  

The current sensors referred to in this study are single-
channel Hall effect sensors with a closed-loop bi-directional 
module specifically designed to measure electric currents of 
up to 100A AC/DC. The measurement data obtained from 
these sensors is collected using the Simulink Real-Time 
toolbox of MATLAB, with a sampling time of one 
millisecond, and stored on the computer. 



 

Fig. 3. A view of the experimental rig and instrumentation system  

IV. MONITORING SIGNAL PROCESSING METHOD 

Different motor faults may exhibit distinct characteristics 
in either the time or spectral domain of the monitoring signal. 
For instance, a sudden change in signal amplitude can be 
easily recognised as a sharp spike or step change when 
observed in the time domain. Conversely, irregularities that 
cause alterations in the frequency content of signals are more 
readily identified by examining their spectra. By 
simultaneously scrutinising both types of time and frequency 
analysis, it is possible to identify and diagnose a broader range 
of potential faults within the given system. In this paper, a 
high-performance data acquisition system was used to initially 
acquire three-phase current signals from a 4KW IM. This 
initial dataset was obtained at various speeds and load 
conditions with a sampling time of 1 millisecond. A time 
window of 20 seconds was considered for each operating 
mode.  

For a real-time function 𝑥(𝑡), DWT is given by [8] 
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where 
0a and 

0b  are the scale and translation factors, 

respectively, m is the decomposition level, n is the translation 
step, 𝜓 is the wavelet function and t=kT, (k=0,1,…) where T 
is the sampling time. Low-pass and high-pass wavelet 
decomposition filters based on the biorthogonal spline 
wavelet are used to obtain the approximation and detail 
coefficients. Welch's spectrum estimation is employed to 
calculate the PSD, where the current signals are initially 
divided into overlapping segments. The periodogram for each 
segment is subsequently computed, and the outcomes are 
averaged to provide an overall estimation of the PSD as 
follows [17]: 
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where 𝑛𝑠  is the number of samples, M is the number of 
segments, 𝑣(𝑘) is the Hamming window as 
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where N+1 is the window length, and P denotes the power of 
Hamming window as 
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To calculate the cepstrum of a signal x(t), the initial step 
involves taking the Fourier transform of x(t). Subsequently, 
the magnitude of the Fourier transform is calculated, followed 
by taking the logarithm of that magnitude. Finally, the 
logarithm is subjected to the inverse Fourier transform [18]: 
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Figure 4 demonstrates an instance of the three-phase 
currents and their wavelet detail coefficients, PSD, and 
cepstrum at one of the operational modes of the defective 
motor. 

 
Fig. 4. Three-phase stator currents of the defective motor, their DWT, 

PSD and cepstrum   

V. FEATURE EXTRACTION FOR BEARING FAULT 

DETECTION 

Feature extraction is a critical step in fault detection 
because it transforms raw data into a set of relevant features 
that can be used to train machine learning models. It can 
reduce the dimensionality of the data, improve the signal-to-
noise ratio, and identify fault signatures. In this paper, several 
statistical features are applied to the processed data which are 
listed in Table I. The feature set is provided by applying these 
features to three-phase currents, wavelet approximation and 
detail coefficients, PSD and cepstrum signals. This means that 
there are 40 features corresponding to each operating mode for 
each phase of either a healthy or faulty motor. An example of 
the features obtained for the first phase of the faulty motor is 
shown in Figure 5. 

VI. FEATURE SELECTION PROCESS 

The objective of feature selection is to identify the most 
pertinent and informative features in a given dataset for the 
development of defect detection machine learning models. 
This process can enhance model effectiveness whilst reducing 
complexity during training and testing. In this study, an 
optimal set of features that are mutually and maximally 
dissimilar and can effectively represent the response variable 
is determined using the Minimum Redundancy Maximum 



Relevance (MRMR) algorithm [19]. The MRMR algorithm 
evaluates the relevance and redundancy of each feature to the 
target variable before selecting a subset of information that 
maximises relevance whilst minimising redundancy. 

 
Fig. 5. Features related to the first phase of the faulty motor  

TABLE I.  STATISTICAL FEATURES WITH THEIR DESCRIPTION AND 

DEFINITION [3] 

Feature Description Definition 

Mean 
The average value of a signal over 

time. 
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deviation 

A signal's dispersion in terms of 

variance around the mean. 
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Kurtosis 
A measure of distribution 

peakedness. 
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Skewness 
A measure of distribution 

asymmetry. 
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factor 

The peak-to-average ratio of a 

signal. 2
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factor 

A measure of the shape of a signal 

(RMS/mean). 
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Impulse 
factor 

A measure of the sharpness of a 
signal. 
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A measure of the alignment of 
motor components. 
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In general, the mutual information between two variables 
is a measure of the extent to which uncertainty in one variable 
can be reduced by knowing the other variable. For two random 
variables x and y, it is defined as follows [19]: 
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where P(.) is the probability function. In feature selection, the 
mutual information of a feature with the target variable 
determines its relevance, but the mutual information between 
the features determines its redundancy. The algorithm first 
determines the relevance 𝑉𝑆  and redundancy 𝑊𝑆  of each 
feature in a set S with respect to the target variable, y, as  
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 where |𝑆| is the number of features in S. The MRMR aims 
to find the most optimal set of features (S) that maximises 𝑉𝑆, 
and minimises 𝑊𝑆 . After calculating these values, the 
algorithm selects the features that have the largest Mutual 

Information Quotient (MIQ) value (max{
𝑉𝑥∈𝑆

𝑊𝑥∈𝑆
}) with nonzero 

relevance and redundancy in S.  

To rank the features based on the MIQ scoring function, a 
matrix of 40 features is initially provided, with each feature 
having 200 values composed of both healthy and faulty data. 
The first eight features relate to time domain signals, while the 
remaining four groups are associated with the DWT 
approximation coefficients, DWT detail coefficients, PSD, 
and cepstrum respectively. Figure 5 displays the feature ranks 
for the different phases of the IM. Based on these results, the 
most relevant features can be selected for training and testing 
the error detection algorithm. For instance, the impulse factor 
of the PSD, the shape factor of the cepstrum, and the shape 
factor of the DWT detail coefficients are the three most 
prominent features of the first phase of the IM. 
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Fig. 6. Ranking of features for each phase of the IM, a) 1st phase, 2) 2nd 

phase and 3) 3rd phase  
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VII. PRNN-SVM-BASED FAULT DETECTION METHOD 

SVM is a technique for supervised machine learning 
which is utilised for regression analysis and classification. The 
underlying principle behind SVM involves the determination 
of an appropriate decision boundary or hyperplane for data 
point classification. The SVM algorithm achieves this 
objective by maximising the margin or distance between the 
hyperplane and the nearest points from each class, which are 
commonly referred to as support vectors [20].   

In the case of a set of training data {(𝑥1, 𝑧1), . . . , (𝑥𝑛, 𝑧𝑛)} 
where 𝑥𝑖  represents the ith input vector and 𝑦𝑖  denotes its 
corresponding class label, the objective of SVM is to identify 
a hyperplane (𝐰, ℎ) that satisfies the following optimisation 
problem: 

( )

( )( )

min

. .      1,   1,2,...,
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is t z h i n+  =

i
w

w w

ψ w
i

x
         (9)    

where w is the weight vector perpendicular to the hyperplane, 
h is the bias term and 𝛙(𝒙𝒊) is the kernel function. Consider 
the dual of (9) using the Lagrange function as     
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where 𝜆𝑖 ≥ 0 is the Lagrange multiplier. Derivative of (10) to 
w and h returns:  
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Substituting (11) to (10) yields: 
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Assuming 𝜆𝑖∗ is the optimal solution of (11), the CNP of 
SVM can be expressed as follows [20]: 
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The optimal weight vector and bias term are as follows: 
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To solve (13), consider the following general CNP: 
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x
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where 𝐱 ∈ 𝑅𝑛, 𝑓: 𝑅𝑛 → 𝑅, 𝐠: 𝑅𝑛 → 𝑅𝑚, and 𝐡:𝑅𝑛 → 𝑅𝑟. 
The Karush-Kuhn-Tucker  (KKT) optimal conditions for 
optimal point (𝐱∗, 𝐲∗, 𝐳∗) is given by [16] 
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where y and z are the Lagrange multipliers. For a closed 
set Ω = {𝐱 ∈ 𝑅𝑛|𝐠(𝐱) ≤ 0, 𝐡(𝐱) = 0} , 𝐱∗  is the optimal 
solution of (14) if and only if the following equality holds: 

( )( )ΩPr − =x F x x                           (18)    

where 𝛼 > 0  is a positive scalar and 𝑃𝑟Ω(. )  is the 

projection operator, which is given ( )Ω
Ω

min
v

Pr x arg x v


= − . 

By corresponding (13) and (16), it can be written: 
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According to [16], the optimal (𝝀∗, 𝐲∗ , 𝐳∗) is the solution 
of the following conditions: 
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where ( )  Pr δ max 0,= . The dynamic model of PRNN 

to meet conditions in (20) is given below: 
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where 𝜀 > 0 is the convergence rate of PRNN. According 
to (20), the structure of the optimiser is simple, it is 
asymptotically stable and easy to implement. Using (21), the 
optimal  𝝀∗ is first obtained. The optimal weight vector 𝐰∗ 
and bias ℎ∗  are then calculated using (13). Finally, the 

decision boundary is obtained as ( ) ( ) *f h= +x ψ x w
* .  

VIII. FAULT DETECTION RESULTS 

To evaluate the proposed fault detection algorithm, 70% 
of the dataset, comprising randomly mixed healthy and faulty 
features, is used for training the PRNN-based SVM. The 
remaining 30% of the data is reserved for testing the 
algorithm's accuracy in detecting bearing faults by comparing 
predicted and true labels. The accuracy of the algorithm is 
assessed using various feature ranks based on Section V and 
for three different kernels: linear, polynomial and Radial Basis 
Function (RBF) functions. Figure 7 illustrates the results of 
the first phase of the IM for both the training and test phases. 
It shows that the RBF kernel function achieves the highest 
accuracy. Table II indicates that the highest average accuracy 
in both training and testing is obtained using the RBF kernel 
function. This is mainly due to the high non-linearity of the 
feature space, where a non-linear kernel function is better 
suited to discriminate between healthy and faulty features. The 
algorithm achieves the best error detection accuracy in the 
training phase (approximately 97%) using the RBF kernel 
function with only the six most relevant features. For the 
testing phase, the algorithm with the RBF kernel function and 
13 prominent features achieves the highest accuracy of 92%. 

 



TABLE II.  AVERAGE AND BEST ACCURACY OF THE ALGORITHM  

Kernel 
function 

Average 
accuracy 
(%) in the 
train phase 

Best accuracy 
(%) in the test 

phase 

Average 
accuracy (%) 
in the train 

phase 

Best 
accuracy 
(%) in the 
test phase 

RBF/ 
Feature rank 

93.9368 97.0588 86.7000 92 

40 6 40 11 

Polynomial/ 
Feature rank 

59.1029 64.1176 53.9167 60.23 
40 13 40 19 

Linear/ 
Feature rank 

51.7353 53.5294 43.6667 50.12 

40 30 40 30 
 

 
a) 

 
b) 

Fig. 7. Accuracy of the proposed algorithm with different feature ranks 

and kernel functions during training and test phases. Charts from front to 
behind correspond to the linear, polynomial, and RBF kernel 

functions, respectively.  

IX. CONCLUSION 

In this paper, a machine learning algorithm consisting of 
SVM and a numerical optimizer called PRNN was developed 
to detect inner ring faults in the bearing of an induction motor. 
The initial time-frequency data set was obtained using three-
phase currents and their DWT, PSD, and cepstrum, from 
which several statistical features were computed to form a 
feature set. A feature selection algorithm was used to identify 
the most relevant features, and the SVM optimization problem 
was formulated as a nonlinear programming problem and 
solved using PRNN. The results demonstrate that the best 
error detection accuracy can be achieved using an RBF kernel 
function and only six and thirteen prominent features for the 
training and testing phases, respectively. 
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