
EVALUATION BIREPRESENTATIONS OF AFFINE TYPE A SOERGEL
BIMODULES

MARCO MACKAAY, VANESSA MIEMIETZ, AND PEDRO VAZ

ABSTRACT. In this paper, we use Soergel calculus to define a monoidal functor, called the evalua-
tion functor, from extended affine type A Soergel bimodules to the homotopy category of bounded
complexes in finite type A Soergel bimodules. This functor categorifies the well-known evalua-
tion homomorphism from the extended affine type A Hecke algebra to the finite type A Hecke
algebra. Through it, one can pull back the triangulated birepresentation induced by any finitary
birepresentation of finite type A Soergel bimodules to obtain a triangulated birepresentation of
extended affine type A Soergel bimodules. We show that if the initial finitary birepresentation
in finite type A is a cell birepresentation, the evaluation birepresentation in extended affine type
A has a finitary cover, which we illustrate by working out the case of cell birepresentations with
subregular apex in detail.
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1. INTRODUCTION

Finitary birepresentation theory of finite type Soergel bimodules in characteristic zero has been
a topic of intensive study, with many interesting results, in the last couple of years [KMMZ2019,
MM2017, MMMTZ2019, MT2019, Zimm2017]. In this paper, we initiate the study of a class of
finitary and triangulated birepresentations of affine type A Soergel bimodules. The bicategories
of these Soergel bimodules are no longer finitary and, therefore, new phenomena show up in
their birepresentation theory. For example, there are no known interesting triangulated birepre-
sentations in finite type, whereas we do give examples of such birepresentations in affine type
A.

To describe these, let us briefly recall the decategorified setting first. In type A, as is well-
known, there are evaluation maps from the affine Hecke algebra to the finite type Hecke algebra.
These are homomorphisms of algebras, so any representation of the latter algebra can be pulled
back to a representation of the former algebra through such a map. These so-called evaluation
representations form an important and well-studied class of finite-dimensional representations
of affine type A Hecke algebras, see e.g. [CP1996, DF2016, LNT2003] and references therein.

Several authors ([MT2017, Introduction] and [E2018, Section 1.6]) have conjectured that these
evaluation maps can be categorified by monoidal evaluation functors (i.e., pseudofunctors be-
tween one-object bicategories) from affine type A Soergel bimodules to the homotopy category
of bounded complexes in finite type A Soergel bimodules. In this paper, we indeed define such
functors and use them to categorify the aforementioned evaluation representations in the form
of triangulated birepresentations, obtained by pulling back the triangulated birepresentations in-
duced by finitary birepresentations of finite type A Soergel bimodules through these functors.
Moreover, in case the original finitary birepresentation is simple transitive, we show that the
evaluation birepresentation admits a finitary cover, i.e., a finitary birepresentation together with
an essentially surjective and epimorphic morphism of additive birepresentations from that cover
to the evaluation birepresentation. This categorifies the well-known fact that the corresponding
evaluation representations are quotients of certain cell representations defined by Graham and
Lehrer [GL1998].

Let us finish this introduction with a disclaimer. We do not present a theory of triangulated
birepresentations in this paper. First of all, it is not yet clear whether our evaluation functors can
be extended to triangulated functors between the homotopy category of bounded complexes in
affine type A Soergel bimodules and its counterpart in finite type A. Proving the existence of
such an extension is a non-trivial exercise in obstruction theory, which will have to be addressed
in the future. This extension problem was first mentioned in [E2018, Section 16], where it is con-
jectured to be solvable, and a similar problem will have to be solved in order to prove [AL-ELR,
Conjecture 1.2] for the categorification of the internal braid group action on quantum groups.
Secondly, some ingredients for a theory of triangulated birepresentations can already be found in
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the literature, e.g. [E2018, EH2018, Hog2017, LM2022, Stev2011], but many foundational re-
sults are still missing. In general, it is not clear which parts of finitary birepresentation theory, e.g.
the notion of simple transitive birepresentation, the categorical (weak) Jordan-Hölder theorem,
the relation with (co)algebra 1-morphisms, the double-centralizer theorem (see [MMMTZ2020]
and references therein), generalize to the triangulated setting and/or in which form exactly. These
questions need to be answered first, before one can even think of categorifying the induction
product of evaluation representations from [LNT2003, Section 2.5]. Finally, all of this is just
for affine type A. Hecke algebras of other affine Coxeter types also have interesting finite-
dimensional representations, but there are no evaluation morphisms in those cases, so other ideas
will be needed to categorify those representations. In other words, the results in this paper are
(hopefully) just the tip of a (tricky) triangulated iceberg.

Plan of the paper. In Section 2, we recall the basics of extended and non-extended affine Hecke
algebras of affine type A, the evaluation maps, the Graham-Lehrer cell modules and the evalua-
tion representations. Everything in this section is well-documented in the literature and we only
recall the details that are needed in the rest of this paper.

In Section 3, we briefly recall Soergel calculus in finite and affine type A, the latter both in the
non-extended and the extended version. Again, nothing new is presented, so the specialists can
skip this section and move on to the next one. Of course, in the remainder we often refer to the
diagrammatic equations in this section, which is exactly why we recall them.

In Section 4, we first recall some basic results on Rouquier complexes in finite type A and
then focus on a special type of Rouquier complex, which is fundamental for the definition of the
evaluation functors in the next section. In particular, we develop a mixed diagrammatic calculus
for morphisms between products of Bott-Samelson bimodules and these special Rouquier com-
plexes, all in finite type A. To the best of our knowledge, this extension of the usual Soergel
calculus is new.

In Section 5, we define the evaluation functors by assigning a bounded complex of finite type
A Soergel bimodules (or, more precisely, of finite type A Bott-Samelson bimodules) to each
extended affine type A Bott-Samelson bimodule and a map between such complexes to each
generating extended affine type A Soergel calculus diagram. The main result of this section, and
of this paper, is that this assigment is well-defined up to homotopy equivalence.

In Section 6, we first introduce the notion of a triangulated birepresentation of an additive
bicategory and define evaluation birepresentations of Soergel bimodules in extended affine type
A, which are important examples. We then prove that each evaluation birepresentation has a
(possibly non-unique) finitary cover. Finally, we study in detail the simplest non-trivial evalua-
tion birepresentations, which are the ones induced by cell birepresentations of finite type A with
subregular apex. As we show, these admit a simple transitive finitary cover whose underlying
algebra is a signed version of the zigzag algebra of affine type A.
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2. THE DECATEGORIFIED STORY

From now on, fix d ∈ N≥3 and let Î := Z/dZ and I := {1, . . . , d − 1}. By a slight abuse of
notation, we will often identify Î with the set of representatives {0, 1, . . . , d− 1} and consider I
as a subset of Î .

Let Ŝd be the affine Weyl group of type Âd−1. It is generated by si, i ∈ Î , subject to relations

s2i = 1, sisj = sjsi if |i− j| > 1, sisi+1si = si+1sisi+1,

for i ∈ Î . The extended affine Weyl group Ŝext
d is the semidirect product

〈ρ〉n Ŝd,

where 〈ρ〉 is an infinite cyclic group generated by ρ and

ρsiρ
−1 = si+1,

for i ∈ Î . The finite Weyl group of type Ad−1 is the symmetric group on d letters, Sd, corre-
sponding to the subgroup of Ŝd generated by si, i ∈ I .

Remark 2.1. In some papers, the name extended affine Weyl group of type Âd−1 is used for the
quotient of Ŝd by the ideal generated by ρd. However, there are no evaluation maps from the
extended affine Hecke algebra corresponding to that quotient to the finite type Hecke algebra, so
we will not consider it in this paper.

2.1. Hecke algebras. Let k = C(q), where q is a formal parameter. The extended affine Hecke
algebra Ĥext

d is the k-algebra generated by Ti, i ∈ Î , and ρ±1, with relations

(Ti + q)(Ti − q−1) = 0, TiTj = TjTi if |i− j| > 1, TiTi+1Ti = Ti+1TiTi+1,(1)

ρρ−1 = 1 = ρ−1ρ, ρTiρ
−1 = Ti+1,(2)

for i, j ∈ Î . Note that Ti is invertible for every i ∈ Î with

T−1i = Ti + q − q−1.

As is well-known, Ĥext
d is a q-deformation of the group algebra C[Ŝext

d ] with basis (the regular
basis) given by {ρmTw | m ∈ Z, w ∈ Ŝd}, where Tw := Ti1 · · ·Ti` for any reduced expression
(rex) si1 · · · si` of w.

Another presentation is given in terms of the Kazhdan–Lusztig generators bi := Ti + q, for
i ∈ Î , and ρ±1, subject to relations

b2i = [2]bi, bibj = bjbi if |i− j| > 1, bibi+1bi + bi+1 = bi+1bibi+1 + bi,(3)

ρρ−1 = 1 = ρ−1ρ, ρbiρ
−1 = bi+1,(4)
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for i ∈ Î , where [2] := q + q−1. Note that Ti = bi − q and T−1i = bi − q−1, for every i ∈ Î .
The Kazhdan–Lusztig basis is given by {ρmbw | m ∈ Z, w ∈ Ŝd}, where bw is defined for an
arbitrary rex of w (and is independent of that choice).

The (non-extended) affine Hecke algebra Ĥd is the subalgebra of Ĥext
d generated by either

Ti, i ∈ Î , subject to relations (1), or bi, i ∈ Î , subject to relations (3).
The finite Hecke algebra Hd is the k-subalgebra of Ĥd generated by either Ti, i ∈ I, subject

to relations (1), or bi, i ∈ I subject to relations (3).

2.2. Evaluation maps.

Definition 2.2. For any a ∈ k×, there are two evaluation maps eva, ev′a : Ĥext
d → Hd. These are

defined as the homomorphisms of k-algebras determined by

eva(Ti) = Ti, for i ∈ I,(5)

eva(ρ) = aT−11 · · ·T−1d−1(6)

and

ev′a(Ti) = Ti, for i ∈ I,(7)

ev′a(ρ) = aT1 · · ·Td−1,(8)

respectively.

The definition implies that

(9) eva(T0) = eva(ρ
−1T1ρ) = Td−1 · · ·T2T1T−12 · · ·T−1d−1

and

(10) ev′a(T0) = ev′a(ρ
−1T1ρ) = T−1d−1 · · ·T

−1
2 T1T2 · · ·Td−1,

so the restrictions of eva and ev′a to Ĥd do not depend on a.
In terms of the Kazhdan–Lusztig generators we have

eva(bi) = bi, for i ∈ I,(11)

eva(b0) = eva(ρ
−1b1ρ) = (bd−1 − q) · · · (b1 − q)b1(b1 − q−1) · · · (bd−1 − q−1)(12)

and

ev′a(bi) = bi, for i ∈ I,(13)

ev′a(b0) = ev′a(ρ
−1b1ρ) = (bd−1 − q−1) · · · (b1 − q−1)b1(b1 − q) · · · (bd−1 − q).(14)

Another way of saying this is that the evaluation maps do not preserve the bar involution, but
rather satisfy

(15) eva(x) = ev′a(x),

for any x ∈ Ĥext
d and a = a(q) ∈ k×.

One can also define eva and ev′a using a third presentation of Ĥext
d , called the Bernstein pre-

sentation. In that presentation, Ĥext
d is defined as some sort of semidirect product of Hd and
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k[Y ±11 . . . , Y ±1d ]. However, there are several possible choices for the algebra of Laurent polyno-
mials. In [E2018], two such choices are given with different variables: y1, . . . , yd and y∗1, . . . , y

∗
d

respectively. The interaction of Hd and these polynomial algebras is defined by

T−1i yiT
−1
i = yi+1(16)

and

Tiy
∗
i Ti = y∗i+1,(17)

respectively, for i ∈ I .
The relation between these two Bernstein presentations and our first presentation of Ĥext

d is
given by

y1 = ρTd−1 · · ·T2T1,(18)

yi = T−1i−1 · · ·T−12 T−11 ρTd−1 · · ·Ti+1Ti, i = 2, . . . , d− 1,(19)

resp.

y∗1 = ρT−1d−1 · · ·T
−1
2 T−11 ,(20)

y∗i = Ti−1 · · ·T2T1ρT−1d−1 · · ·T
−1
i+1T

−1
i , i = 2, . . . , d− 1.(21)

It follows that the evaluation map eva : Ĥext
d → Hd is the unique homomorphism of algebras

sending Ti to Ti, for i ∈ I , and y1 to a, while ev′a : Ĥext
d → Hd is the unique homomorphism of

algebras sending Ti to Ti, for i ∈ I , and y∗1 to a. The latter coincides with the flattening map [
in [E2018, §2.6] for a = 1.

We will categorify the evaluation map eva in Section 5.1. The categorification of ev′a is very
similar and the relation between the two evaluation maps in (15) also categorifies, since the
categorification of the bar-involution is given by flipping diagrams upside-down, inverting the
orientation of the differentials in complexes and changing the sign of homological and grading
shifts.

Remark 2.3. Some remarks about the various conventions in the literature are in order. We try
to follow conventions close to those in [E2018]. Our presentation of the extended affine Hecke
algebra in Section 2.1 agrees with [E2018], as does the relation between the standard generators
and the Kazhdan–Lusztig generators. Some authors use the inverse of ρ in (2). Our choice of
conventions implies the absence of certain powers of q in the definition of the evaluation maps,
in comparison with some of the sources in the literature. For more information on evaluation
maps, see e.g. [CP1996, §5.1] and [DF2016, (5.0.2)]. There are more possible evaluation maps,
but we only consider these two in this paper.

2.3. Graham-Lehrer cell modules. Consider the Âd−1 Coxeter diagram Γ̂d−1 with its vertices
ordered counterclockwise and top vertex numbered 0, e.g.

1 2 3 4 5 6 7

0
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for d = 8. For any z ∈ k
×, the Graham-Lehrer cell module M̂z of Ĥd corresponding to z and

the partition (d− 1, 1) has underlying vector space

(22) M̂z := Span
k

{
mi | i ∈ Î

}
and the action of Ĥd on M̂z is given by

(23) bimj =



[2]mi, if j ≡ i mod d;

zm1, if i− 1 ≡ 0 ≡ j mod d;

z−1m0, if i ≡ 0 ≡ j − 1 mod d;

mj, if i ≡ j ± 1 mod d, but none of the above;

0, else.

It is easy to see that M̂z is isomorphic to Wd−2,±
√
z(d) in [GL1998, Definition 2.6], where mi

is identified with the cup diagram on a cylinder with d−2 straight lines and only one cup, whose
endpoints are i and i+ 1. When i 6= 0, the whole diagram corresponding to mi lives on the front
part of the cylinder, but when i = 0, the cup of m0 goes around the back of the cylinder. Note
that we have used δ = [2], rather than δ = −[2]. As remarked in [GL1998, text above Corollary
2.9.1], Wd−2,

√
z(d) and Wd−2,−

√
z(d) are isomorphic, which is clear from the fact that both are

isomorphic to M̂z.
The Graham-Lehrer cell module M̂z can be made into an Ĥext

d -module, but not in a unique
way. As a matter of fact, for each λ ∈ k×, we can define

(24) ρmj = λzδj,0mj+1,

for j ∈ Î . It is easy to verify that this gives a well-defined action and we denote the corresponding
Graham-Lehrer cell module of Ĥext

d by M̂z,λ. Note that the restriction of M̂z,λ to Ĥd is equal to
M̂z, for all λ ∈ k×, and that the action of ρd on M̂z,λ is simply multiplication by λdz.

Graham and Lehrer [GL1998, Theorem 2.8] defined a k-bilinear form

(25) 〈·, ·〉 : M̂z ⊗ M̂z−1 → k,

which in our notation is determined by

(26) 〈mi,mj〉 =



[2], if j ≡ i mod d;

z, if i ≡ 0 ≡ j − 1 mod d;

z−1, if i− 1 ≡ 0 ≡ j mod d;

1, if i ≡ j ± 1 mod d, but none of the above;

0, else.

This induces a k-bilinear form on M̂z,λ⊗ M̂z−1,λ−1 , satisfying 〈ρnbwmj,mk〉 = 〈mj, b
?
wρ
−nmk〉,

for any w ∈ Ŵ , n ∈ Z and j, k ∈ Î , where b?w = bw−1 is the dual Kazhdan-Lusztig basis element.
Therefore, the radical of the bilinear form

rad(〈·, ·〉) =
{
m ∈ M̂z,λ | 〈m,m′〉 = 0, ∀m′ ∈ M̂z−1,λ−1

}



8 M. Mackaay, V. Miemietz, P. Vaz

is an Ĥext
d -submodule of M̂z,λ. Graham and Lehrer [GL1998, Theorem 2.8] proved that the

quotient module M̂z/rad(〈·, ·〉) of Ĥd is simple, and the same holds for the quotient module
M̂z,λ/rad(〈·, ·〉) of Ĥext

d , of course. A straightforward calculation shows that the radical of the
bilinear form on M̂z,λ is zero unless z = (−q)±d (independently of λ), in which case it has
dimension one and is generated by

(27) n± :=
d∑

k=1

(−q)∓kmk.

Note that, when z = (−q)±d, we have ρ n± = λ(−q)±1n± and bin± = 0 for all i ∈ Î .
When z = (−q)±d, put M̂±

d,λ := M̂(−q)±d,λ±1 and let

(28) L̂±d,λ := M̂±
d,λ/〈n±〉

be the simple quotient Ĥext
d -modules of dimension d− 1. Finally, denote the restriction of these

simple modules to Ĥd by

(29) L̂±d := M̂±
d /〈n±〉.

As explained above, these restrictions do not depend on λ ∈ k×.

2.4. Evaluation modules. Let M be a finite-dimensional Hd-module (over k). Recall that, for
any a ∈ k×, there are two evaluation maps eva, ev′a : Ĥext

d → Hd (see Definition 2.2).

Definition 2.4. For any a ∈ k
×, the evaluation modules M eva and M ev′a of Ĥext

d are the pull-
backs of M through eva and ev′a, respectively.

The actions of Ĥext
d on M eva and M ev′a can be computed using the explicit formulas in

Definition 2.2 and below. In this paper, we only consider the case when M := Md is the
simple Hd-module corresponding to the partition (d − 1, 1). There are several ways to de-
fine Md explicitly and the definition we choose here is tailor-made for categorification. Take
Md := span

k
{mi | i ∈ I}, with the action of Hd being given by

(30) bimj =


[2]mi, if j = i;

mi, if j = i± 1;

0, else,

for i, j ∈ I . It is easy to show that Md is simple, but this is well-known so we leave it as an
exercise to the reader. The action of the T±1i = bi − q±1 is also easy to give explicitly:

(31) T±1i mj =


q∓1mi, if j = i;

mi − q±1mj, if j = i± 1;

−q±1mj, else.
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Note that, as vector spaces, M eva
d = M

ev′a
d = Md, and the action of bi ∈ Ĥext

d , for i ∈ I , is the
same as above because eva(bi) = bi. A simple calculation now shows that

(32) eva(ρ)mj = aT−11 · · ·T−1d−1mj =

{
a(−q)2−dmj+1, if j = 1, . . . , d− 2;

aq
∑d−1

k=1(−q)1−kmk, if j = d− 1,

and

(33) ev′a(ρ)mj = aT1 · · ·Td−1mj =

{
a(−q)d−2mj+1, if j = 1, . . . , d− 2;

aq−1
∑d−1

k=1(−q)k−1mk, if j = d− 1.

The actions of b0 can then be computed using the equation b0 = ρ−1b1ρ, but we omit the calcu-
lation because will not need the result.

Recall the simple quotients L̂±d,λ of the Graham-Lehrer cell modules M̂±
d,λ, defined in (28).

Theorem 2.5. Let a = λ(−q)d−2. There are two isomorphisms of Ĥext
d -modules

L̂+
d,λ
∼= M eva

d ;

L̂−d,λ
∼= M

ev′
a−1

d .

Moreover, there is a perfect pairing of Ĥext
d -modules

M eva
d ⊗M

ev′
a−1

d → k.

Proof. To show the first part, it suffices to compute the action of ρ on L̂+
d,λ and compare it to (32).

Let mk be the image of mk under the projection M̂+
d,λ → L̂+

d,λ, for k ∈ Î . Then {m1, . . . ,md−1}
is a basis of L̂+

d,λ, because m0 = −
∑d−1

k=1(−q)kmd−k. This implies that in L̂+
d,λ we have

ρmj =

{
λmj+1, if j = 1, . . . , d− 2;

−λ
∑d−1

k=1(−q)kmd−k, if j = d− 1.

This is indeed the same as in (32) because aq = λ(−q)d−2q = −λ(−q)d−1.
Similarly, L̂−d,λ ∼= M

ev′
a−1

d , as in L̂−d,λ we have m0 = −
∑d−1

k=1(−q)−kmd−k, so

ρmj =

{
λ−1mj+1, if j = 1, . . . , d− 2;

−λ−1
∑d−1

k=1(−q)−kmd−k, if j = d− 1,

which is the same as in (33) because a−1q−1 = λ−1(−q)2−dq−1 = −λ−1(−q)1−d.
For the second part, note that the two Ĥext

d -modules L̂+
d,λ and L̂−d,λ are dual to each other,

because we could also consider the radical defined by

rad′(〈·, ·〉) =
{
m′ ∈ M̂z−1,λ−1 | 〈m,m′〉 = 0, ∀m ∈ M̂z,λ

}
,

which is an Ĥext
d -submodule of M̂z−1,λ−1 . As before, this radical is zero unless z = (−q)±d.

For these two values of z and any value of λ ∈ k
×, the two simple quotients of M̂z−1,λ−1 are
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isomorphic to L̂∓d,λ and the bilinear form descends to a perfect pairing

L̂+
d,λ ⊗ L̂

−
d,λ → k.

By the first part, this is equivalent to a perfect pairing

M eva
d ⊗M

ev′
a−1

d → k,

for a = λ(−q)d−2. �

Remark 2.6. We claim no originality w.r.t. Theorem 2.5, but we do not know of any reference
in the literature where one can find it explicitly, which is why we have proved it here.

3. REMINDERS ON SOERGEL CATEGORIES

In this section we briefly recall the definition of the diagrammatic Soergel category of non-
extended and extended affine type A and finite type A, but before we do that we start with a brief
section on graded categories and categories with shift.

3.1. Graded categories and categories with shift. All categories in this paper are assumed
to be essentially small, meaning that they are equivalent to small categories, so set-theoretic
questions play no role.

We call a C-linear category A graded if it is enriched over the category of Z-graded vector
spaces, and we call a C-linear functor between such graded categories degree-preserving if it
preserves the degrees of homogeneous morphisms.

We say that a C-linear categoryA has a shift (or, alternatively, that it is a category with shift) if
there is a C-linear automorphism 〈1〉 of A. If such a shift exists, we define 〈r〉 as the composite
of r copies of 〈1〉 for any r ∈ Z≥0, and −r copies of the inverse of 〈1〉 for any r ∈ Z≤0. By
definition, therefore, we have 〈r + s〉 = 〈r〉 ◦ 〈s〉, for all r, s ∈ Z, and 〈0〉 = IdA.

Given a graded category A, let Ash be the associated C-linear category with shift, whose
objects are formal integer shifts of objects in A and whose hom-spaces are defined by

Ash (X〈r〉, Y 〈s〉) := A (X, Y )s−r

for everyX, Y ∈ A and r, s ∈ Z. Note thatAsh is no longer a graded category. If the Hom-spaces
of A are finite-dimensional in every degree, then the hom-spaces of Ash are finite-dimensional.

Given two graded categories A and B, any degree-preserving, C-linear functor F : A → B
induces a unique C-linear functor F : Ash → Bsh, denoted by the same symbol, which commutes
with the shifts.

Conversely, given any C-linear categoryAwith shift, letAgr be the associated graded category
with shift, whose objects are those of A and whose graded Hom-spaces are defined by

Agr (X, Y ) :=
⊕
s∈Z

A (X, Y 〈s〉) ,

for any X, Y ∈ A.
Given two C-linear categories A and B with shifts, any C-linear functor F : A → B commut-

ing with the shifts induces a unique degree-preserving, C-linear functor F : Agr → Bgr, denoted
by the same symbol.
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Thus (−)sh and (−)gr define a pair of 2-functors between the 2-category of graded categories
and the 2-category of C-linear categories with shift. It is not hard to show, see e.g. [EMTW2020,
Proposition 11.9], that (−)sh is left adjoint to (−)gr, i.e., that there is a functorial isomorphism

Fun
(
Ash,B

) ∼= Fun (A,Bgr)

for A a graded category and B a C-linear category with shift. Here the first functor category is
between categories with shift and the second between graded categories.

For more details on graded categories and categories with shift, and also on additive closures
and idempotent completions (a.k.a. Karoubi closures/envelopes), see e.g. [EMTW2020, Sections
11.2.1-11.2.4].

3.2. Soergel calculus in finite and non-extended affine type A. The finite type A diagram-
matic Soergel calculus was introduced by Elias–Khovanov [EKh2010] and generalized to all
Coxeter types by Elias–Williamson [EW2016]. The extended affine Soergel calculus was first
defined in [MT2017] and studied more systematically in [E2018]. We refer to the latter two
papers for more details. For the specialists, we remark that we use the so-called root span real-
ization of the Cartan datum of finite and affine type A below.

Denote by S = {si | i ∈ Î} the set of simple reflections of Ŝd. The diagrammatic Bott-
Samelson category of type Âd−1, denoted B̂Sd, is the Z-graded, C-linear, additive, monoidal
category whose objects are formal finite direct sums of finite words in the alphabet S, and whose
graded vector spaces of morphisms are defined below in terms of homogeneous generating dia-
grams and relations. In general, we can write the objects as vectors of words and morphisms as
matrices of equivalence classes of diagrams.

As usual, we will color the strands to facilitate the reading of the diagrams. These colors
correspond to the elements of Î , so henceforth we will also refer to those elements as colors.
When there are too many different colors in a diagram, the colors are sometimes indicated by
labels next to the strands. We say that two colors i, j ∈ Î are adjacent if i ≡ j ± 1 mod d and
that they are distant otherwise. The generating diagrams are

Degree 1 −1 0 0

and the diagrams obtained from these by a rotation of 180 degrees (which have the same degrees).
The colors of the 4-valent vertices are assumed to be distant, whereas those of the 6-valent
vertices are assumed to be adjacent.

Diagrams can be stacked vertically (composition of morphisms) and juxtaposed horizontally
(monoidal product of morphisms), while adding the degrees, and are subject to the relations
below. We denote by IdX the identity morphism of X and write fg for the monoidal product
of morphisms f and g (or, equivalently, horizontal composition when considering the monoidal
category as a one-object bicategory). We also assume isotopy invariance and cyclicity, meaning
that closed parts of the diagrams can be moved around freely in the plane as long as they do not
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cross any other strands and the boundary is fixed, and all diagrams can be bent and rotated and
the bent and rotated versions of the relations also hold.

• Relations involving one color:

=(34)

=(35)

= 0(36)

+ = 2(37)

• Relations involving two distant colors:

=(38)

=(39)

=(40)

• Relations involving two adjacent colors:

= +(41)

= −(42)

=(43)

− =
1

2

(
−

)
(44)
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• Relation involving three distant colors:

(45) =

• Relation involving distant dumbbells:

(46) − = 0

• Relation involving two adjacent colors and one distant from the other two:

(47) =

• Relation involving three colors such that one of them is adjacent to the other two:

(48) =

Note that the empty word is the identity object in B̂Sd and its endomorphisms are the closed
diagrams, which by the relations above are equal to polynomials in the colored dumbbells

As each dumbbell has degree 2, the degree of any polynomial in these dumbbells, as a morphism
in ŜBS , is twice its polynomial degree. From now on, we denote this polynomial algebra by R.

Note further that, by relations (37), (44) and (46), the morphism

(49)
d−1∑
i=0

i

is central, in the sense that it can be slid through all diagrams (i.e. it commutes horizontally with
all morphisms). Note that this morphism is equal to y (up to sign, depending on conventions)
in [MT2017], because it is equal to the sum of all simple roots.

Let B̂S
sh

d be the category with shift associated to B̂Sd, see Section 3.1.

Definition 3.1. The diagrammatic Soergel category Ŝd is the idempotent completion of the dia-

grammatic Bott-Samelson category with shift B̂S
sh

d .

Remark 3.2. In the following sections, we sometimes state and prove diagrammatic equations
in B̂Sd, in which case there are no shifts for the source and target objects, instead of Ŝd, in which
case the source and target objects are carefully shifted. This is just to simplify notation and makes
no essential difference in our case. As long as the equations in B̂Sd are between homogeneous
diagrams of the same degree, they give rise to an equality between morphisms in Ŝd, which is the
key point.
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The diagrammatic Bott-Samelson category B̂Sd is equivalent to the algebraic category of Bott-
Samelson bimodules and bimodule maps and the diagrammatic Soergel category Ŝd is equiv-
alent to the algebraic category of Soergel bimodules and degree-preserving bimodule maps,
see [EW2016, Theorem 6.28]. For convenience, we will therefore denote the objects of B̂Sd
by Bw = Bsi1

· · ·Bsi`
, where w = si1 · · · si` is a finite word in the alphabet S. In particular, the

monoidal product is given by BuBv = Buv, where uv is the concatenation of the words u and v.
Let us also recall the so-called Categorification Theorem, due to Soergel in finite type A, to

Härterich [Har1999] in affine type A and to Elias–Williamson [EW2014, EW2016] in general
Coxeter type.

Theorem 3.3. For any w ∈ Ŝd and rex w = si1 · · · si` of w, there is an indecomposable object
Bw ∈ Ŝd, independent of the choice of rex, such that

Bw
∼= Bw ⊕

⊕
u≺w

B⊕hw,uu ,

where ≺ is the Bruhat order in Ŝd and hw,u ∈ N[q, q−1] is the graded multiplicity of Bu in the
decomposition of Bw.

Moreover, the Z[q, q−1]-linear map

Ĥ
Z[q,q−1]
d → [Ŝd]⊕

bw 7→ Bw, w ∈ Ŝd

is an isomorphism of algebras, where ĤZ[q,q−1]
d is the integral form of Ĥd.

Let Ŝgr
d be the graded monoidal category associated to Ŝd, see Section 3.1. For every u, v ∈ Ŝ,

the graded Hom-space

Ŝ
gr
d (Bu,Bv) =

⊕
t∈Z

Ŝd (Bu,Bv〈t〉)

is a free left (or right) graded R-module of finite graded rank, given by Soergel’s Hom-formula:

(50) grkR

(
Ŝ
gr
d (Bu,Bv)

)
= (bu, bv),

where (−,−) is the well-known sesquilinear form on Ĥd, see e.g. [EW2016, Section 2.4 and
Theorem 3.15].

Definition 3.4. The diagrammatic Bott-Samelson category and the diagrammatic Soergel cate-
gory of finite type Ad−1, denoted BSd and Sd respectively, are defined as B̂Sd and Ŝd but only
using the colors I .

Note that BSd and Sd are monoidal subcategories of B̂Sd and Ŝd, respectively, but that the
natural embeddings are not full because e.g. the 0-colored dumbbell is not a morphism in BSd
and Sd.
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3.3. Soergel calculus in extended affine type A. In this subsection we briefly sketch how to
enhance B̂Sd and Ŝd to get the extended diagrammatic Soergel category of type Âd−1, denoted
B̂S

ext

d and Ŝext
d , which were introduced in [MT2017] and further studied in [E2018]. We refer to

those two papers for more details.
The objects of B̂S

ext

d are formal direct sums of words in the alphabet S ∪ {ρ, ρ−1}. Because
of the link with algebraic bimodules, we write Bn

ρ for ρn, for any n ∈ Z.
There are also new generating diagrams, all of degree zero, involving oriented strands. The

generators involving only oriented strands are

(51)

and the generating diagrams involving oriented strands and adjacent colored strands are

(52)

i− 1

i

i

i− 1

i

i− 1 i

i− 1

The new morphisms satisfy the following relations, where we again assume isotopy invariance
and cyclicity.

• Relations involving only oriented strands:

= 1 =(53)

= =(54)

• Relation involving oriented strands and distant colored strands:

(55)

i

i− 1

j

j − 1

=

i

i− 1

j

j − 1

• Relations involving oriented strands and two adjacent colored strands:

i

i

i− 1 =

i i− 1

i− 1

i =

i− 1

(56)
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i

i− 1

=

i− 1
i− 1

i

=

i

(57)

i− 1

i

=

i− 1

i

(58)

• Relations involving oriented strands and three adjacent colored strands:

i+ 1 i

i− 1

=

i+ 1 i

i− 1

i

i− 1

i+ 1

=

i i+ 1

i− 1

(59)

By relations (57), the sum of all colored dumbbells in (49) also commutes with oriented
strands, so the corresponding morphism is also central in B̂S

ext

d .
In general, any object in B̂S

ext

d is isomorphic to a direct sum of objects of the form Bn
ρBw, for

some n ∈ Z and word w in S. By the relations in (53), there is an isomorphism of vector spaces
(and of algebras) (

B̂S
ext

d

)0 (
Bm
ρ ,B

n
ρ

) ∼= {CidBmρ , if m = n;

{0}, else.

Recall that R = B̂S(∅,∅) is the polynomial algebra in the colored dumbbells. Then the isomor-
phism above generalizes to an isomorphism of graded R-R-bimodules

B̂S
ext

d

(
Bm
ρ ,B

n
ρ

) ∼= {Rτm , if m = n;

{0}, else,

where τ is the automorphism of R which sends the i-colored dumbbell to the i + 1-colored
dumbbell, for any i ∈ Î , and Rτm is the free rank-one R-R-bimodule with the normal left R-
action and the right R-action twisted by τm.

Moreover, the black oriented part and the non-oriented colored part of any diagram can be
separated by the above relations, resulting in an isomorphism of graded R-R-bimodules

B̂S
ext

d

(
Bm
ρ Bu,B

m
ρ Bv

) ∼= {Rτm ⊗R B̂Sd (Bu,Bv) , if m = n;

{0}, else.
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In particular, this implies that the natural embedding B̂Sd ↪→ B̂S
ext

d is full. For the proofs of
these results, see [E2018, Section 3.3].

Definition 3.5. The extended diagrammatic Soergel category Ŝext
d is the idempotent completion

of
(
B̂S

ext

d

)sh
.

The above results on the Hom-spaces in B̂S
ext

d and Theorem 3.3 imply the following general-
ization to the extended case, see [MT2017, Theorem 2.5].

Theorem 3.6. For any n ∈ Z andw ∈ Ŝd, the object Bn
ρBw ∈ Ŝext

d is indecomposable. Moreover,
the Z[q, q−1]-linear map (

Ĥext
d

)Z[q,q−1]

→ [Ŝext
d ]⊕

ρnbw 7→ Bn
ρBw, n ∈ Z, w ∈ Ŝd

is an isomorphism of algebras.

4. ROUQUIER COMPLEXES

For A a C-linear, additive category, we write Kb(A) for the homotopy category of bounded
complexes in A. If A is monoidal, then the usual monoidal product of chain complexes equips
Kb(A) with a monoidal structure as well. If A is graded, then Kb(A) is bigraded and we denote
the shift inherited from A by 〈·〉 and the homological shift by [·].

Remark 4.1. Throughout this section, we sometimes state and prove diagrammatic equations in
Kb(BSd), instead of Kb(Sd). This makes no real difference in our case, as the differentials of
the complexes in Kb(BSd) below are always given by matrices of homogeneous diagrams of the
same degree, so they always give rise to objects in Kb(Sd). See also Remark 3.2.

Let C = Sd. For the simple reflection si ∈ W the Rouquier complex Ti := Tsi ∈ Kb(Sd) is
defined by

(60) Ti := Bi −−−→ R〈1〉,

with Bi placed in homological degree zero (we always underline terms in homological degree
zero). This complex is invertible in Kb(Sd), with inverse given by

(61) T−1i := R〈−1〉 −−−→ Bi,

as follows from the homotopy equivalences which we recall below. These complexes were in-
troduced in [Rou2006] and categorify the usual generators of the braid group, in particular, they
satisfy the braid relations up to homotopy equivalence [Rou2006, Theorem 3.2]. By Matsumoto’s
theorem, this implies that, for any w ∈ Sn, the complex Tw can be defined as

(62) Tw := Ti1 · · ·Ti` ,
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where w = si1 · · · si` is any rex of w (i.e., up to homotopy equivalence, the complex does not
depend on the choice of rex).

In subsection 4.1, we briefly recall the results on Rouquier complexes that are relevant for
the definition of the evaluation functor. For more details, see [Rou2006], [EKr2010, §3] and
[EMTW2020, Chapter 19]. In Subsection 4.2, we introduce a special Rouquier complex, denoted
Tρ, and develop a diagrammatic calculus for morphisms in Kb(Sd) whose source and/or target
contain tensor powers of Tρ and T−1ρ . To the best of our knowledge, this extension of Soergel
calculus has not appeared in the literature before.

4.1. Some diagrammatic shortcuts I: general Rouquier complexes. For i ∈ I , let φi : T−1i Ti →
R denote the homotopy equivalence (where 1 stands for the identity map)

(63)

R

1

Bi〈−1〉

BiBi

⊕
R

Bi〈1〉

-
-

and ψi : TiT
−1
i → R the analogous homotopy equivalence

(64)

R

1

Bi〈−1〉

BiBi

⊕
R

Bi〈1〉

-
-

in Kb(Sd). These maps are well-known, see e.g. [EKr2010, §3].

Remark 4.2. The backward arrows (from right to left) in (63) and (64) indicate the homotopies
which prove that the composites of the downward arrows followed by the upward arrows are
homotopic to the identity on T−1i Ti and TiT

−1
i , respectively. Throughout the paper, we will use

backward arrows to indicate homotopies.

Let further ηi,± : T±1i T∓1i → T±1i RT∓1i be the canonical isomorphisms Kb(Sd), for any i ∈ I ,
both given by ab 7→ a1b. To simplify notation, we write 1m for 1 · · · 1 (m times) in the sequel.

The following is the Movie Move MM2 in [EKr2010, §3].
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Lemma 4.3. For any i ∈ I , the composite maps

Ti
a7→1a−−−→ RTi

ψ−1
i IdTi−−−−−→ TiT

−1
i Ti

IdTi φi−−−−→ TiR
ab7→ab−−−→ Ti,

Ti
a7→a1−−−→ TiR

IdTi φ
−1
i−−−−−→ TiT

−1
i Ti

ψi IdTi−−−−→ RTi
ba7→ba−−−→ Ti,

are both equal to IdTi in Kb(Sd), and the composite maps

T−1i
a7→1a−−−→ RT−1i

φ−1
i Id−1

Ti−−−−−→ T−1i TiT
−1
i

Id−1
Ti

ψi
−−−−→ T−1i R

ab 7→ab−−−→ T−1i ,

T−1i
a7→a1−−−→ T−1i R

Id−1
Ti

ψ−1
i−−−−−→ T−1i TiT

−1
i

φi Id
−1
Ti−−−−→ RT−1i

ba7→ba−−−→ T−1i ,

are both equal to IdTi
−1 in Kb(Sd).

We now introduce the diagrammatics for the maps involving T±1i that will be needed in the
sequel. For any i ∈ I , we depict the identity morphisms of T±1i as

IdTi :=

i

and IdT−1
i

:=

i

The degree zero homotopy equivalences in (63) and (64) (which are the units and counits of left
and right adjunction of Ti and T−1i ) are then depicted as

i

,
i

,

i

and
i

and the above remarks translate into the following diagrammatic relations.

Lemma 4.4. For any i ∈ I , we have the following relations between morphisms of Kb(Sd):

i

= 1 =
i

(65)

ii

=

i

,

i i

=

i

(66)

i

=

i

=

i i

=

i

=

i

(67)

Remark 4.5. Just for the record, we give some further results about Rouquier complexes, all
well-known to experts.
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• For any i ∈ {1, . . . , d − 2}, the isomorphism between TiTi+1Ti and Ti+1TiTi+1 in
Kb(Sd) (see [EKr2010, §3] for the maps) can be represented by the degree zero diagrams

i ii+ 1 i+ 1 i+ 1i

satisfying the relations

i+ 1 i+ 1i

=

i+ 1 i+ 1i i ii+ 1

=

i ii+ 1

There are similar diagrams and relations for braid moves involving the inverses of Rouquier
complexes, see e.g. [EW2017, §5]. In Remark 4.13 below, we introduce some new dia-
grams.
• For any i ∈ I , the cone of the map f : Ti → T−1i , which is the identity on Bi and zero

everywhere else, is isomorphic to

R〈−1〉
i

−−−−→ R〈1〉.

in Kb(Sd). The distinguished triangle

T−1i → Cone(f)→ Ti → Ti[1]

categorifies the quadratic relation in the Hecke algebra Hd.

The remaining lemmas of this subsection are all known to experts and not hard to derive.
Some of them can be found in the literature (see e.g. [GH2022]). We give all relevant homotopy
equivalences explicitly for completeness. Further, to keep the notation as simple as possible, we
state some equations in Kb(BSd). Being homogeneous, they also give rise to equations between
morphisms in Kb(Sd), as explained in Remark 4.1.

Lemma 4.6. For any i, j ∈ I such that j = i± 1, the following dumbbell-slide relations hold in
Kb(BSd):

i
i

= −
i

i

j
i

=
j

i

+
i

i
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Proof. We are actually going to prove the equations in Kb(Sd), fixing the shifts of the objects.
For the first equation, consider

Ti : Bi R〈1〉

+ 2

2

Ti〈2〉 : Bi〈2〉 R〈3〉

The vertical arrows correspond to the map of complexes represented by

i
i

+
i

i

and the diagonal arrow is a homotopy. Using (37), we see that the map of complexes is null-
homotopic.

For the second equation, consider

Ti : Bi R〈1〉

− − −
−

Ti〈2〉 : Bi〈2〉 R〈3〉

The vertical arrows correspond to the map of complexes represented by

j
i

−
j

i

−
i

i

and the diagonal arrow is a homotopy. Using (44), we see that the map of complexes is null-
homotopic. �

Lemma 4.7. There is an isomorphism

T±1i BiT
∓1
i
∼= Bi

in Kb(Sd).
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Proof. Recall that BiBi
∼= Bi〈1〉 ⊕ Bi〈−1〉 in Sd. Using that isomorphism, it is easy to see that

TiBi
∼= Bi〈−1〉 in Kb(Sd), with the homotopy equivalence between the complexes being given

by

TiBi : BiBi Bi〈1〉

1
2

−1
2

Bi〈−1〉 : Bi〈−1〉

An analogous homotopy equivalence shows that BiTi
∼= Bi〈−1〉 in Kb(Sd) and thus that TiBi

∼=
BiTi in Kb(Sd).

Of course, the above also implies that BiT
−1
i
∼= Bi〈1〉 ∼= T−1i Bi in Kb(Sd). �

Lemma 4.8. For each 1 ≤ i ≤ d− 2, there are isomorphisms

fi,± : T±1i+1BiT
∓1
i+1 → T∓1i Bi+1T

±1
i

in Kb(Sd).

Proof. In this case, the complexes are actually isomorphic, not just homotopy equivalent. In the
following figure, we exhibit the isomorphism fi,− : T−1i+1BiTi+1 → TiBi+1T

−1
i and its inverse

gi,− (to avoid cluttering, we do not write labels in diagrams if they are clear from context):

T−1i+1BiTi+1 : BiBi+1〈−1〉

(
Bi+1BiBi+1

Bi

)
Bi+1Bi〈1〉


−

 (
,
)

1 1gi,− f i,−

TiBi+1T
−1
i : BiBi+1〈−1〉

(
BiBi+1Bi

Bi+1

)
Bi+1Bi〈1〉

( ) (
,−

)

Here f i,− and gi,− are, respectively,

f i,− =


0

 , gi,− =

 −

− 0

 .

The maps fi,− = (1, f i,−, 1) and gi,− = (1, gi,−, 1) are mutual inverses and a pleasant exercise,
using the relation in (41), shows that both of them are chain maps. The complexes Ti+1BiT

−1
i+1
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and T−1i Bi+1Ti are isomorphic too, as they are adjoint to T−1i+1BiTi+1 and TiBi+1T
−1
i , respec-

tively. Similarly, we obtain the isomorphism fi,+ : Ti+1BiT
−1
i+1 → T−1i Bi+1Ti and its inverse

gi,+. �

Recall the homotopy equivalences φi : T−1i Ti → R and ψi : TiT
−1
i → R and put δi,+ :=

φ−1i ◦ ψi+1 and δi,− := ψ−1i ◦ φi+1 (we suppress the maps ηi,± whenever we use the diagrams
and ). Below, we keep the notation from Lemma 4.8.

Lemma 4.9. For each 1 ≤ i ≤ d− 2, the following maps are equal to zero in Kb(Sd):

fi,± ◦
(
IdT±1

i+1 i
IdT∓1

i+1

)
−
(
IdT∓1

i i+ 1
IdT±1

i

)
◦ δi,± :(68)

T±1i+1T
∓1
i+1 →T∓1i Bi+1T

±1
i 〈1〉,(

IdT∓1
i i+ 1

IdT±1
i

)
◦ fi,± − δi,± ◦

(
IdT±1

i+1 i
IdT∓1

i+1

)
:(69)

T±1i+1BiT
∓1
i+1〈−1〉 →T∓1i T±1i ,

f−1i,± ◦
(
IdT∓1

i i+ 1
IdT±1

i

)
−
(
IdT±1

i+1 i
IdT∓1

i+1

)
◦ δ−1i,± :(70)

T∓1i T±1i →T±1i BiT
∓1
i 〈1〉,(

IdT±1
i+1 i

IdT∓1
i+1

)
◦ f−1i,± − δ−1i,± ◦

(
IdT∓1

i i+ 1
IdT±1

i

)
:(71)

T∓1i Bi+1T
±1
i 〈−1〉 →T±1i+1T

∓1
i+1.

Proof. We only need to prove that the maps in (68) and (69) are null-homotopic for fi,− and
δi,−. Pre- and post-composing those two maps with the appropriate isomorphisms proves the
analogous statement for the maps in (70) and (71) as well. Note further that f−1i,+ and fi,− become
equal after switching i and i + 1, and so do δ−1i.+ and δi,−. Since the two-color Soergel calculus
relations are invariant under switching the two colors, the relations in this lemma hold for the
pairs (f±1i,−, δ

±1
i,−) if and only if they hold for the pairs (f∓1i,+, δ

∓1
i,+).
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Let us, therefore, prove the first two equations for fi,− and δi,−. It is not hard to compute that
the map of complexes in (68) is given by the vertical arrows in the diagram below:

T−1i+1Ti+1 : Bi+1〈−1〉

(
Bi+1Bi+1

R

)
Bi+1〈1〉


−

 (
,
)g

H0 H1

TiBi+1T
−1
i 〈1〉 : BiBi+1

(
BiBi+1Bi〈1〉

Bi+1〈1〉

)
Bi+1Bi〈2〉

( ) (
,−

)

where

g =

 0

− −

 .

It is also easy to check that this map is null-homotopic, with homotopies

H0 =
(

, 0
)
, H1 =

(
0

−

)
.

This establishes (68). The proof of (69) can be obtained by a vertical reflexion of the diagrams
above and exchanging the labels i and i+ 1. �

Remark 4.10. The isomorphisms in Lemma 4.8 have a diagrammatic interpretation in terms of
degree zero generators in Kb(BSd)

i+ 1i+ 1 i i+ 1i i

and relations

i+ 1i

=

i+ 1i i i+ 1

=

i i+ 1

Using these diagrams, Lemma 4.9 translates into

i+ 1
i

=

i+ 1 i
i+ 1

=

i
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i i+ 1

=

i i+ 1 i+ 1 i

=

i+ 1 i

There are also analogous diagrams and relations with reversed orientation of the oriented strands.

Lemma 4.11. There exist the following isomorphisms in Kb(Sd):

T−1i T−1i−1Bi
∼= Bi−1T

−1
i T−1i−1, i ∈ I,(72)

Ti−1TiBi−1 ∼= BiTi−1Ti, i ∈ I,(73)

T±1i T±1i−1Bj
∼= BjT

±1
i T±1i−1, j /∈ {i− 2, i− 1, i, i+ 1}.(74)

Proof. We start with (72), proving that both chain complexes have retractions that are homotopy
equivalent to each other. Here is a homotopy equivalence between the complex T−1i T−1i−1Bi and
its retraction (T−1i T−1i−1Bi)retr:

T−1i T−1i−1Bi : Bi〈−2〉

(
BiBi〈−1〉

Bi−1Bi〈−1〉

)
BiBi−1Bi

(
−

) (
,

)

1 1
gl fl

Bi〈−2〉


Bi〈−2〉

Bi

Bi−1Bi〈−1〉

 BiBi−1Bi


1
2

1
2

−


h =

(
2·, 0, 0

)
(

, ,

)

1g′l f ′l

(T−1i T−1i−1Bi)retr :

(
Bi

Bi−1Bi〈−1〉

)
BiBi−1Bi

(
,

)

The upper vertical arrows correspond to the mutually inverse maps (1, fl, 1) and (1, gl, 1) induced
by the isomorphism BiBi

∼= Bi〈−1〉 ⊕ Bi〈1〉. The maps fl and gl are

fl =


1
2

0

1
2

0

0

 , gl =

 0

0 0

 .
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The lower vertical maps are the mutually up-to-homotopy inverse maps (f ′l , 1) and (g′l, 1)
given below.

f ′l =

− 0

2 0

 , g′l =


0 0

0

0

 .

The fact that they define a homotopy equivalence uses the homotopy h (whose only non-zero
entry is multiplication by 2) in the complex in the middle. We leave the details to the reader.

The following diagram gives a homotopy equivalence between the complex Bi−1T
−1
i T−1i−1 and

its retraction (Bi−1T
−1
i T−1i−1)retr:

Bi−1T
−1
i T−1i−1 : Bi−1〈−2〉

(
Bi−1Bi〈−1〉

Bi−1Bi−1〈−1〉

)
Bi−1BiBi−1


−

 (
,

)

1 1
gr fr

Bi−1〈−2〉


Bi−1Bi〈−1〉

Bi−1〈−2〉

Bi−1

 Bi−1BiBi−1

 −1
2

−1
2


h =

(
0, 2·, 0

)
(

, ,

)

1g′r f ′r

(Bi−1T
−1
i T−1i−1)retr :

(
Bi−1Bi〈−1〉

Bi−1

)
Bi−1BiBi−1

(
,

)

The upper vertical arrows correspond to the mutually inverse maps (1, fr, 1) and (1, gr, 1), with
fr and gr being

fr =


0

0 1
2

0 1
2

 , gr =

 0 0

0

 .
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The lower vertical arrows correspond to the mutually up-to-homotopy inverse maps (f ′r, 1) and
(g′r, 1) given below.

f ′r =

 2 0

0 −

 , g′r =


0

0 0

0

 .

We leave the details to the reader.
The diagram below shows that the complexes (T−1i T−1i−1Bi)retr and (Bi−1T

−1
i T−1i−1)retr are ho-

motopy equivalent.

(T−1i T−1i−1Bi)retr :

(
Bi

Bi−1Bi〈−1〉

)
BiBi−1Bi

(
,

)
(
−

0

)

(Bi−1T
−1
i T−1i−1)retr :

(
Bi−1Bi〈−1〉

Bi−1

)
Bi−1BiBi−1

(
,

)
(

0

−

)

(
0

0

) (
0

0

)

This finishes the proof of the existence of the isomorphism in (72).
Tensoring both complexes in (72) with Ti−1Ti on the left and on the right yields the isomor-

phism in (73).
The equivalence in (74) is clear, because the two complexes are canonically isomorphic. �

Remark 4.12. The isomorphisms in Lemma 4.11 also have a diagrammatic interpretation in
terms of degree zero generators in Kb(BSd)

i i− 1 ii− 1 i i− 1 i i− 1

and relations

i

=

i− 1 i− 1

=

i i

=

i− 1 i− 1

=

i
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Remark 4.13. The following will not be used in the sequel. The canonical isomorphisms
BiT

±1
j
∼= T±1j Bi, for distant i and j, translate into the generators

ji j i ji j i

satisfying the relations

i j

=

i j ij

=

ij i j

=

i j ij

=

ij

There are also maps Bi → T−1i , Ti → Bi, R → Ti and T−1i → R of non-zero degree in
Kb(BSd), depicted respectively as

and satisfying certain diagrammatic relations, which are easy to deduce. Note also that the
composite

=:

is the map T−1i → Ti mentioned in Remark 4.5.

4.2. Some diagrammatic shortcuts II: special Rouquier complexes T±1ρ . In this subsection,
we introduce and study a special Rouquier complex, denoted Tρ, which will play an important
role in the definition of the evaluation functors.

Definition 4.14. Define

Tρ := T1 · · ·Td−1 and T−1ρ := T−1d−1 · · ·T
−1
1

in Kb(Sd).

In order to develop a diagrammatic calculus for these special Rouquier complexes, we first
picture the identity morphisms of Tρ and T−1ρ as upward and downward oriented arrows, respec-
tively:

(75) :=

1 2

· · ·
d− 1

and :=

12

· · ·
d− 1
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Further, we introduce oriented cups and caps

:=

d− 1 2 1

· · · · · ·

:=

12d− 1

· · ·· · ·

(76)

:=

1 2 d− 1

· · · · · ·
:=

d− 121

· · ·· · ·(77)

These correspond to the units and counits of left and right adjunction for Tρ and T−1ρ in Kb(Sd).
Algebraically, they can be expressed in terms of the maps given in Section 4.1:

:= (1d−2ψ−1d−11
d−2) ◦ (1d−3ηd−2,+ψ

−1
d−21

d−3) ◦ · · · ◦ (1η2,+ψ
−1
2 1)(78)

◦ (η1,+ψ
−1
1 ) : R→ TρT

−1
ρ ,

:= (1d−2φ−11 1d−2) ◦ (1d−3η2,−φ
−1
2 1d−3) ◦ · · · ◦ (1ηd−2,−φ

−1
d−21)(79)

◦ (ηd−1,−φ
−1
d−1) : R→ T−1ρ Tρ,

:= (φ1η
−1
1,−) ◦ (1φ2η

−1
2,−1) ◦ · · · ◦ (1d−3φ2η

−1
2,−1d−3)(80)

◦ (1d−2φ11
d−2) : T−1ρ Tρ → R,

:= (ψd−1η
−1
d−1,+) ◦ (1ψd−2η

−1
d−2,+1) ◦ · · · ◦ (1d−3ψ2η

−1
2,+1d−3)(81)

◦ (1d−2ψd−11
d−2) : TρT

−1
ρ → R.

Lemma 4.15. The oriented cups and caps satisfy the following relations in Kb(Sd)

(82) = 1 =

(83) = =

(84) = = = =

Proof. The relations in (84) are a consequence of Lemma 4.3. The other relations are immediate.
�
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The next diagrammatic generators involving oriented strands are the mixed crossings, which
correspond to the following degree-zero isomorphisms in in Kb(Sd), for i ∈ I:

(85)

i

i− 1

= IdT−1
d−1···T

−1
i+1
Fi,r IdT−1

i−2···T
−1
1

: T−1ρ Bi → Bi−1T
−1
ρ ,

where in homological degrees −2, −1 and 0, respectively, we define

(86) Fi,r :=

0,

  ,

 .

This is the map obtained from the homotopy equivalence in Lemma 4.11 by tensoring on the
left with the identity morphism of T−1d−1 · · ·T

−1
i+1 and on the right with the identity morphism

of T−1i−2 · · ·T−11 , and using when necessary the permutation isomorphism between T−1i Bj and
BjT

−1
i if |i− j| 6= 1.

Analogously,

i− 1

i

= IdT−1
d−1···T

−1
i+1
Gi,r IdT−1

i−2···T
−1
1

: : Bi−1T
−1
ρ → T−1ρ Bi,

with

(87) Gi,r =

0,

  ,

 .

Of course, there are also mixed crossings involving Tρ, which are depicted as

i− 1

i

: TρBi−1 → BiTρ and

i

i− 1

: BiTρ → TρBi−1.

Lemma 4.16. For distant colors i, j ∈ I , we have

(88)

i

i− 1

j

j − 1

=

i

i− 1

j

j − 1

in Kb(Sd).

Proof. It is clear that the map in (85) commutes with the 4-valent crossing for distant colors. �

The proof of the following lemma is immediate and, therefore, omitted.
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Lemma 4.17. The mixed crossings in Kb(Sd) satisfy the relations

i

i

i− 1 =

i

i

i− 1

i− 1

i =

i− 1

i− 1

i− 1

i− 1

i =

i− 1

i− 1

i

i

i− 1 =

i

i
(89)

Lemma 4.18. The following diagrammatic relations hold in in Kb(BSd):

i

i− 1

=

i− 1
i

i− 1

=

i− 1

i

i− 1

=

i− 1
i

i− 1

=

i− 1

(90)

Proof. We prove the first relation in (90), the proof of the others being similar. By (86), the maps
of complexes corresponding to the two sides of (90) are

= IdT−1
d−1···T

−1
i+1
F IdT−1

i−2···T
−1
1
,

where in homological degrees (−2,−1, 0), respectively, we have

F =

0,

  ,

 ,

and

= IdT−1
d−1···T

−1
i+1
G IdT−1

i−2···T
−1
1
,

where in the same homological degrees we have

G =

 ,

 0

0

 ,

 .
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The diagram below shows that F −G is zero in Kb(Sd):

(91)

Bi−1T
−1
i T−1i−1〈1〉 : Bi−1〈−1〉

(
Bi−1Bi

Bi−1Bi−1

)
Bi−1BiBi−1〈1〉


−

 (
,

)

T−1i T−1i−1 : R〈−2〉

(
Bi〈−1〉

Bi−1〈−1〉

)
BiBi−1

(
−

) (
,

)F −G − (F −G)−1H−1 H0

with

(F −G)−1 =

 0

−

 , H−1 =
(

0,
)
, H0 =

(
0
)
.

This finishes the proof. �

Lemma 4.19. The following diagrammatic equalities hold in Kb(Sd):

ii− 1

=

i− 1 i i− 1i

=

i i− 1

(92)

ii− 1

=

i− 1 i i− 1i

=

i i− 1

(93)

Proof. We prove the first relation in (92), as the other can be proved in a similar way. The proof
is a consequence of the fact that the composites

Bi−1T
−1
ρ Bi −−−−−→ Bi−1Bi−1T

−1
ρ −−−→ T−1ρ

and

Bi−1T
−1
ρ Bi −−−−−→ T−1ρ BiBi −−−→ T−1ρ ,
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are both given by

(94) IdT−1
d−1···T

−1
i+1

0,

  ,

 IdT−1
i−2···T

−1
1
.

This computation is straightforward and uses (86) and (87). �

Remark 4.20. By Lemma 4.19, we can define

ii− 1

:=

ii− 1

=

i− 1 i

and similarly

i− 1i

,

ii− 1

and

i− 1i

Lemma 4.21. The following pitchfork relations hold in Kb(BSd):

i

i− 1i− 1

=

i

i− 1i− 1

,

i− 1

i i

=

i− 1

i i

,

i− 1

ii

=

i− 1

ii

,

i

i− 1i− 1

=

i

i− 1i− 1

.

(95)

Proof. We only prove the first relation in (95), as the others can be proved in a similar way.
Relations (85) and (86) imply that

= IdT−1
d−1···T

−1
i+1
F IdT−1

i−2···T
−1
1

: T−1ρ BiBi → Bi−1Bi−1T
−1
ρ ,

where F in homological degrees −2, −1 and 0, respectively, is given by

(96) F =

0,

 + +

+ +

 ,

 .

Pre-composing with
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results in

= IdT−1
d−1···T

−1
i+1
Fpitchfork IdT−1

i−2···T
−1
1
,

where

(97) Fpitchfork =

0,

  ,

 .

In homological degree zero we have used (43) with a blue dot on the leftmost blue endpoint. The
proof is now completed by the observation that

is given by exactly the same map, which can be seen immediately by post-composing the mixed
crossing in (85) with

and using (86). �

Lemma 4.22. The following diagrammatic equalities hold in Kb(Sd), for any adjacent triple
i− 1, i, i+ 1 ∈ I:

(98)

i+ 1 i+ 1

i

i

i− 1 i− 1

=

i+ 1 i+ 1i

i− 1 i− 1i

i i

i− 1

i+ 1

i i

=

i ii+ 1

i ii− 1

Proof. Both diagrams in the first equality represent morphisms between T−1ρ Bi+1BiBi+1Tρ and
Bi−1BiBi−1. By (56), there is an isomorphism T−1ρ Bi+1BiBi+1Tρ

∼= BiBi−1Bi, so both diagrams
correspond to morphisms in

Sd (BiBi−1Bi,Bi−1BiBi−1) .

Recall that BiBi−1Bi
∼= Bi(i−1)i ⊕ Bi and Bi−1BiBi−1 ∼= Bi(i−1)i ⊕ Bi−1, which implies that

Sd (BiBi−1Bi,Bi−1BiBi−1) ∼= Sd
(
Bi(i−1)i,Bi(i−1)i

) ∼= C

by Soergel’s Hom-formula in (50).
In particular, this implies that the two diagrams in the first equality are multiples of each other.

To check that they are actually equal, one can attach a dot at an appropriate place. For example,
one can easily check that

=

in Kb(BSd) by using relations (41) and (90), followed by (89) and (95). The second equality of
the statement is proved in the same way. �
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The mixed 6-valent vertices represent the following isomorphisms in Kb(Sd), obtained by
recursive application of Lemma 4.8:

1

d− 1

: T−1ρ B1Tρ → TρBd−1T
−1
ρ

1

d− 1

: TρBd−1T
−1
ρ → T−1ρ B1Tρ

(99)

Remark 4.23. To understand why we have introduced the mixed 6-valent vertices above, recall
that the evaluation functors are (yet to be defined) functors from Ŝext

d to Kb(Sd), and that in Ŝext
d

there are mutually inverse isomorphisms

1

d− 1

:=

1

d− 1

0 and

1

d− 1

:=

1

d− 1

0

Lemma 4.24. The mixed 6-valent vertices satisfy

1

1

=

1 d− 1

d− 1

=

d− 1

(100)

in Kb(Sd).

Lemma 4.25. The mixed 6-valent vertices also satisfy the following dot relations in Kb(BSd):

d− 1

=

d− 1 1

=

1

(101)

d− 1

=

d− 1 1

=

1

(102)

Proof. Apply Lemma 4.9 recursively. �
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Lemma 4.26. The following mixed dumbbell-slide relation holds in Kb(BSd):

i

=
i− 1

i = 2, . . . , d− 1(103)

1

= −
d−1∑
i=1 i

(104)

−
d−1∑
i=1 i

=
d− 1

(105)

Proof. The equality in (103) is an immediate consequence of (90).
For (104) apply the non-oriented dumbbell-slides from Lemma 4.6

1

1

= −

1

1

and

i+ 1

i

=

i+ 1

i

+

i+ 1

i+ 1

recursively.
Finally, for (105) use the same non-oriented dumbbell-slides as above but with the colors i and

i+ 1 swapped. �

To prove Lemmas 4.27 to 4.30 below, we use the same strategy as in the proof of Lemma 4.22:
we first check that a certain hom-space is one-dimensional and then conclude that two morphisms
in that hom-space are equal by attaching dots to the corresponding diagrams.

Lemma 4.27. The mixed 6-valent vertices satisfy the following cyclicity relations in Kb(Sd):

1d− 1

=

d− 1 1 d− 11

=

1 d− 1

(106)

1d− 1

=

d− 1 1 d− 11

=

1 d− 1

(107)

Proof. We only prove the first relation in (106), as the remaining ones are proved in the same
way. We claim that the two morphisms in (106) are multiples of one another. To see this, note
that TρBd−1T

−1
ρ
∼= T−1ρ B1Tρ and B1B1

∼= B1〈−1〉 ⊕ B1〈1〉, whence

Kb(Sd)
(
R,TρBd−1T

−1
ρ T−1ρ B1Tρ

) ∼= Kb(Sd) (R,TρB1B1Tρ)
∼= Sd (R,B1B1)
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∼= Sd (R,B1〈−1〉 ⊕ B1〈1〉) ,
where we have used the biadjointness of Tρ and its inverse, and the fullness of the natural em-
bedding of Sd in Kb(Sd), for the second isomorphism. By Soergel’s Hom-formula in (50), we
know that

dimC (Sd (R,B1〈−1〉)) = 0 and dimC (Sd (R,B1〈1〉)) = 1

and hence
dimC

(
Kb(Sd)

(
R,TρBd−1T

−1
ρ T−1ρ BiTρ

))
= 1.

Attaching a dot to one of the colored strands (say with 1) on both sides of (106) and using the
relations in Lemma 4.25 and certain isotopies shows that both morphisms are equal in Kb(BSd).

�

Lemma 4.28. For each j ∈ I distant from 1 and d− 1, the following equalities hold in Kb(Sd):

(108)

1

d− 1

j

=

1

d− 1j 1

d− 1

j

=

1

d− 1j

Proof. We only prove the first equality, as the other can be proved in the same way. By adjoint-
ness, proving the first equaltiy in (108) is equivalent to proving the equality

(109)

d− 1 1

j

=

d− 1 1

j

in Kb(Sd).
For any j ∈ I distant from 1 and d− 1, the same arguments as before (and the fact that B1 and

Bj+1 commute) prove the following isomorphisms of hom-spaces:

Kb(Sd)
(
Bj,TρBd−1T

−1
ρ BjT

−1
ρ B1Tρ

) ∼= Kb(Sd)
(
Bj,T

−1
ρ B1TρBjT

−1
ρ B1Tρ

)
∼= Kb(Sd)

(
TρBjT

−1
ρ ,B1TρBjT

−1
ρ B1

)
∼= Sd (Bj+1,B1Bj+1B1)
∼= Sd (Bj+1,Bj+1B1B1)
∼= Sd (Bj+1,Bj+1B1〈−1〉 ⊕ Bj+1B1〈1〉)

By Soergel’s Hom-formula in (50), we know that

dimC (Sd (Bj+1,Bj+1B1〈−1〉)) = 0 and dimC (Sd (Bj+1,Bj+1B1〈1〉)) = 1

whence
dimC

(
Kb(Sd)

(
Bj,TρBd−1T

−1
ρ BjT

−1
ρ B1Tρ

))
= 1

and the equality in (109) can be proved by attaching dots to these diagrams at appropriate places.
�
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Lemma 4.29. The following equalities are true in Kb(Sd):

(110)

d− 1 d− 11

=

1d− 1 d− 1

Proof. We first note that

T−1ρ B1TρBd−1T
−1
ρ B1Tρ

∼= TρBd−1T
−1
ρ Bd−1TρBd−1T

−1
ρ

∼= TρBd−1Bd−2Bd−1T
−1
ρ ,

and

Bd−1T
−1
ρ B1TρBd−1 ∼= Bd−1TρBd−1T

−1
ρ Bd−1

∼= TρBd−2Bd−1Bd−2T
−1
ρ ,

and therefore

Kb(Sd)
(
Bd−1T

−1
ρ B1TρBd−1,T

−1
ρ B1TρBd−1T

−1
ρ B1Tρ

)
∼= Sd (Bd−1Bd−2Bd−1,Bd−2Bd−1Bd−2)

By the decompositions

Bd−1Bd−2Bd−1 ∼= B(d−1)(d−2)(d−1) ⊕ Bd−1 and Bd−2Bd−1Bd−2 ∼= B(d−1)(d−2)(d−1) ⊕ Bd−2

and Soergel’s Hom-formula in (50), we conclude that

dimC
(
Kb(Sd)

(
Bd−1T

−1
ρ B1TρBd−1,T

−1
ρ B1TρBd−1T

−1
ρ B1Tρ

))
= 1.

Thus the two diagrams in (110) are scalar multiples of each other and the equality now follows
by attaching dots to these diagrams at appropriate places. �

The proof of the following lemma uses exactly the same arguments as above and is left as an
exercise to the reader.

Lemma 4.30. The following equalities hold in Kb(Sd):

1

1

2
=

1

2
(111)
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d− 11

3

=

3

1 d− 1

(112)

1

d− 1

d− 1

=

d− 1

d− 1

(113)

5. EVALUATION FUNCTORS

In this section, we finally define the evaluation functors Evr,s : Ŝext
d → Kb(Sd), for r, s ∈ Z,

which categorify the evaluation maps eva from Definition 2.2, for a = (−1)sqr with r, s ∈ Z.
The other evaluation maps in that definition, denoted ev′a, can be categorified likewise, but we
don’t work out the details here.

Remark 5.1. To be really precise, we actually define a degree-preserving functor from B̂S
ext

d

to Kb((BSsh
d )gr) which uniquely determines Evr,s, see Remarks 3.2 and 4.1. Note that (BSsh

d )gr

is a graded category with shift, and that X〈t〉 ∼= X for every X ∈ (BSsh
d )gr and t ∈ Z. The

natural, degree-preserving embedding of BSd into (BSsh
d )gr is therefore fully faithful and essen-

tially surjective, although it is not an equivalence of graded categories because its inverse is not
degree-preserving. However, for our purposes all that matters is that the monoidal subcategory of
degree-zero morphisms ((BSsh

d )gr)0 is isomorphic with BSsh
d , which implies that the idempotent

completion of both is Sd. This might sound a bit complicated, but we can not simply define a
functor from B̂S

ext

d to Kb(BSd) because the image of Bρ requires non-trivial internal shifts when
r 6= 0.

5.1. Definition. Let r, s ∈ Z be arbitrary but fixed for the remainder of this section.
The evaluation functor is the monoidal, C-linear functor

(114) Evr,s : Ŝext
d → Kb(Sd)

commuting with shifts which is uniquely determined (see Remark 5.1) by the monoidal, degree-
preserving, C-linear functor

(115) Evr,s : B̂S
ext

d → Kb((BSsh
d )gr)

defined below. Note that we use the same notation for both functors.

• On the (non-full) subcategory BSd of B̂S
ext

d , the evaluation functor Evr,s is the identity.
More specifically, this means that Evr,s(Bi) := Bi for every i ∈ I and that Evr,s sends
any diagram without unoriented 0-colored strands and oriented strands to itself.
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On other objects of B̂S
ext

d , it is defined as

Evr,s(B0) := T−1ρ B1Tρ,(116)

Evr,s(B±1ρ ) := T±1ρ 〈±r〉[±s].(117)

On other morphisms it is defined as follows.
• On oriented and 0-colored generators:

Evr,s
( )

= Evr,s
( )

=(118)

Evr,s
( )

= Evr,s
( )

=(119)

Evr,s
( )

= Evr,s
( )

=(120)

(121) Evr,s
( 0 )

=

1

Evr,s
( 0 )

=

1

Evr,s
(

0

)
=

1

(122)

Evr,s
(

0

)
=

1

Evr,s
(

0

)
=

11

(123)

• On generators including strands with distant colors:

Evr,s
(

0 i

)
=

i1

for i 6= 1, d− 1(124)

Evr,s
(

0i

)
=

i 1

for i 6= 1, d− 1(125)

• On generators including strands with adjacent colors:

Evr,s
(

i

i− 1 )
=

i

i− 1

Evr,s
(
i− 1

i )
=

i− 1

i

(126)
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Evr,s
( i− 1

i

)
=

i− 1

i

Evr,s
( i

i− 1

)
=

i

i− 1

(127)

if i 6= 0, 1, while

Evr,s
(

1

0 )
= Evr,s

(
0

1)
=(128)

Evr,s
( 0

1

)
= Evr,s

(1

0

)
=(129)

Evr,s
(

0

d− 1 )
=

1

d− 1

Evr,s
(
d− 1

0)
=

1

d− 1

(130)

Evr,s
( d− 1

0

)
=

1

d− 1

Evr,s
( 0

d− 1

)
=

1

d− 1

(131)

and

Evr,s
(

01 1

)
=

1

(132)

Evr,s
(

0 01

)
=

1

(133)
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Evr,s
(

0d− 1 d− 1

)
=

d− 1

d− 1 d− 11

1 1

(134)

Evr,s
(

0 0d− 1

)
=

d− 1

d− 1 d− 11

1 1

(135)

This ends the definition of Evr,s.

Remark 5.2. Since T−1ρ B1Tρ
∼= TρBd−1T

−1
ρ in Kb((BSsh

d )gr), we could have defined Evr,s(B0)

as TρBd−1T
−1
ρ . These two choices result in naturally isomorphic evaluation functors, the iso-

morphim being induced by the 6-valent vertices (99), as can be checked by straightforward dia-
grammatic calculations.

Remark 5.3. The apparent lack of symmetry between the image via Evr,s of the mixed 4-vertices
involving strands colored 0 and 1, and the corresponding image of the mixed 4-vertices involving
colored 0 and d− 1 ((128) to (131)) is explained by Remark 5.2. Note also that

Evr,s

(
1

d− 1

0

)
=

1

d− 1

and Evr,s

( 1

d− 1

0

)
=

1

d− 1

5.2. Proof of well-definedness.

Theorem 5.4. The monoidal functor Evr,s is well-defined.

Proof. The fact that Evr,s preserves isotopy invariance follows from Lemma 4.15, Lemma 4.19
and Lemma 4.27, together with isotopy invariance of the usual (non-oriented) Soergel calculus.
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• Relations involving only one color. We only need to check for color 0. Relations (34)
and (35) are clear. For the remaining one-color relations we have

Evr,s
(

0

)
=

1

(82)
=

(36)
= 0,

and

Evr,s
(

0

+

0

)
=

1

+

1

(83)
= +

(37)
= 2

1

= Evr,s
(
2

0

)
.

• Relations involving two distant colors. Here j 6= 1, d− 1.

Evr,s

(
0 j

)
=

1 j

(38),(89)
=

1 j

= Evr,s

( )
,

Evr,s
( 0

j

)
=

1

j

(39),(89)
=

1

j

= Evr,s
( )

,

Evr,s
(

0

j
)

=

1

(40),(89)
=

1

= Evr,s
( )

.

The corresponding relations with the colors 0 and j switched are proved in the same way.
• Relations involving two adjacent colors. We have to check the cases involving either the

pair (0, 1) or the pair (0, d− 1). For the pair (0, 1) we compute:

Evr,s
( 0 )

=

1

(90)
=

1

(41)
= +

(83),(89),(90)
= + = Evr,s

(
+

)
,
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Evr,s


0

 =
(89)
=

(42)
= +

(83),(89),(90)
= + = Evr,s

 +

 ,

Evr,s


0

 =

1

(82),(89)
=

(43)
=

(82),(89)
= = Evr,s

  ,

Evr,s
(

0

−
0

)
=

1

−
1

(103)
=

2

−
2

(44)
=

1

2

(
−

)

(83),(84)
=

1

2

(
−

)
=

1

2
Evr,s

(
−

)
.

The relations with the colors 0 and 1 switched are proved in the same way. The relations
for the pair (0, d−1) can be proved similarly, using the image of the corresponding mixed
6-valent vertex, of course.
• The relation involving three distant colors is straightforward and follows from the obser-

vation that the case involving colors 0, i and j, with i, j ∈ I and distant implies checking
a relation involving the colors 1, i+ 1 and j + 1, which are still distant.
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• The relation involving a distant dumbbell colored i ∈ {2, . . . , d − 2} and a straight line
colored 0 is straightforward, because (103) implies that it reduces to the same relation in-
volving a distant dumbbell with color i+1 and a straight line colored 1. Similarly, the re-
lation involving a distant dumbbell colored 0 and a straight line colored i ∈ {2, . . . , d−2}
reduces to the relation involving a distant dumbbell colored 1 and a straight line colored
i+ 1, thanks to (89).
• Relation involving two adjacent colors and one distant from the other two. If the distant

color in (47) is 0, the proof is straightforward. Otherwise, we compute

Evr,s
(

01

)
=

1

(47),(89),(88)
=

1

= Evr,s
( )

,

and

Evr,s
(

0d− 1

)
=

d− 1

d− 1 d− 11

1 1

(47),(88),(108)
=

d− 1

d− 1 d− 11

1 1

= Evr,s
( )

.

The relations with the adjacent colors exchanged are proved in the same way.
• Relation involving three adjacent colors. We need to check the cases of three adjacent

colors belonging to {d− 2, d− 1, 0, 1, 2}. Starting with the case of (0, 1, d− 1), we have

Evr,s


1 0 d− 1

 =
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and

Evr,s


 =

To prove that these are equal, first use the relations in Lemma 4.29 and Lemma 4.30 to
write them in the form

1
3

2 .

Then observe that the parts of the diagrams inside the dashed circle are exactly as the two
sides of (48) with colors (1, 2, 3), which completes the proof of this case.

The remaining cases can be proved in similar ways, but they are actually a bit easier.
For example, for the colors (0, 1, 2) we have

Evr,s


2 1 0

 =
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and

Evr,s


 =

Proceeding as in the previous case, but using the relations in Lemma 4.22 and Lemma 4.17,
results in two diagrams which differ only by parts that are equal to the two sides of (48)
with colors (1, 2, 3) again.
• Relations involving oriented strands. Relations (53) and (54) translate under Evr,s into

relations (82) and (83), respectively. The remaining relations (55) to (59) translate into
relations (88), (89), (90), (95) and (98) (together with some obvious relations in the usual
(non-oriented) Soergel calculus), respectively, if they don’t involve the color 0.

However, if one of the strands is colored 0, then there is something to check. For each
relation, we prove one case involving the colors 0 and 1 and one case involving the colors
0 and d− 1, the other cases being similar.

– For relation (55), we have

Evr,s

(
1

0 )
=

(89)
= = Evr,s

( )

and

Evr,s

(
0

d− 1 )
=

1

d− 1

(89),(108)
=

1

d− 1

= Evr,s

( )

– For relation (56), we have

Evr,s


1

 =

1

(82)
= Evr,s
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and

Evr,s


0

 =

1

(83)
=

(100)
= Evr,s




– for relation (57), we have

Evr,s
(

1

)
= =

(83)
= = Evr,s

( )

and

Evr,s
(

0

)
=

1

d− 1

(82),(101)
= = Evr,s

( )
– For relation (58), we have

Evr,s
(

0

)
=

1

= Evr,s
( )

and

Evr,s
(

0

)
=

1

(113)
=

1

= Evr,s
( )

– Relation (59) actually consists of two (similar) relations. For the first of them, we
have

Evr,s
(

2 1

0)
=

(89)
= = Evr,s

( )

and

Evr,s
(

1 0

d− 1)
=

(100)
=

(110)
= = Evr,s

( )
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To check this relation with colors (d− 2, d− 1, 0), use (89) and (100).
For the second relation in (59), we have

Evr,s
(

1

0

2

)
=

(82),(89)
= = Evr,s

( )

and

Evr,s
(

0

d− 1

1

)
=

(83),(100)
=

(110)
= Evr,s

( )

Checking the relation with colors (d− 2, d− 1, 0) uses (100), (89) and (83).
This ends the proof of Theorem 5.4. �

Remark 5.5. (1) The functor Evr,s is not full: For example, the special Rouquier complex
Evr,s(B−1ρ ) = T−1ρ 〈−r〉[−s] has the form

· · · → Bd−1 · · ·B1〈−r〉[−s]→ 0.

Therefore, there is an obvious (non-null-homotopic) map from Bd−1 · · ·B1〈−r〉[−s] to
T−1ρ 〈−r〉[−s], which is the identity on Bd−1 · · ·B1〈−r〉[−s] and zero elsewhere, but this
map is not in the image of Evr,s.

(2) By (51) and (104), the evaluation functor Evr,s maps the central morphism
d−1∑
i=0

i

to zero. We could have defined B̂S
ext

d over the polynomial ring C[y, x1, . . . , xd−1] as in
[MT2017] and extended Evr,s to that ”base ring”. In that case, the central morphism y
(which is equal to the above dumbbell sum, as already remarked) would be sent to zero
by the evaluation functor, which makes perfect sense as the extended base ring of BSd
would be C[x1, . . . , xd].

6. EVALUATION BIREPRESENTATIONS AND FINITARY COVERS

6.1. Recollections on birepresentation theory. In the following, we will work with graded
(finitary or triangulated) birepresentations of graded, additive bicategories. The particular bicat-
egory we are interested in is, of course, Ŝext

d , which we view as a bicategory with one object in
the usual way.

We call a graded, C-linear, additive categoryA graded-finitary ifAsh is idempotent complete,
morphism spaces between indecomposables are finite-dimensional and there are only finitely
many isomorphism classes of indecomposables up to isomorphism and grading shift. Note that
A need not be finitary, because the Hom-spaces might be infinite-dimensional, although they are
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finite-dimensional in each degree. This is why we write graded-finitary and not graded, finitary.
We denote the 2-category of graded, resp. graded-finitary, C-linear, additive categories, degree-
preserving C-linear functors and natural transformations by Ag

C, resp. Agf
C . A (locally) graded,

additive bicategory C is one whose morphism categories are enriched over Ag
C and a (locally)

graded-finitary bicategory C is one whose morphism categories are enriched over Agf
C and whose

identity 1-morphisms are indecomposable. Note that, to shorten the string of adjectives, we drop
the adjective C-linear, even though it is implicit in the enrichment. A graded, additive (resp.
graded-finitary) birepresentation is a degree-preserving pseudofunctor from C to Ag

C (resp. Agf
C ).

Since we are mainly interested in Ŝext
d , we will also abuse notation and call additive (bi)cate-

gories of the form Ash graded-finitary provided A is. Similarly, given a graded-finitary birep-
resentation M of a graded, additive bicategory C, we will also call the birepresentation Msh of
Csh (which acts on categories M(i)sh, for objects i, via functors which commute with shifts)
graded-finitary. For more detail on these constructions, we refer to [MMMTZ2019, Section 2.6].

We will also be considering triangulated birepresentations of graded, additive bicategories.
Denote by TC the bicategory of triangulated, C-linear categories, (C-linear) triangulated functors
and natural transformations. A triangulated birepresentation of a C-linear, additive bicategory C
is a (C-linear) pseudofunctor from C to TgfC . In order to consider graded versions, we restrict our-
selves to the 2-full subbicategory TgC of TC whose objects are triangulated categories of the form
Kb(Ash) for a graded, C-linear, additive category A, and whose functors are degree-preserving
triangulated functors. A graded-triangulated birepresentation of an additive, graded bicategory
C is then a degree-preserving (C-linear) pseudofunctor from C to TgC.

Similarly to the finitary case above, we will call a birepresentation graded, triangulated if a bi-
category of the form Csh acts on triangulated categories of the form T sh via triangulated functors
commuting with shifts. These are birepresentations obtained by taking a graded birepresentation
of C acting on T , closing under shifts, and then restricting to morphisms of degree zero.

In some cases, graded-finitary birepresentations will have an additional shift functor (coming
from the homological shift in a triangulated birepresentation), with respect to which morphisms
in the underlying categories will have degree zero. We call such birepresentations bigraded-
finitary.

Given a (locally) additive, graded bicategory, the set of isomorphism classes of indecompos-
able 1-morphisms up to grading shift can be given three natural partial preorders: the left preorder
([F] ≤L [G] if and only if [G] appears as a direct summand of [HF] for some 1-morphism H),
the right preorder ([F] ≤R [G] if and only if [G] appears as a direct summand of [FH] for some
1-morphism H) and the two-sided preorder ([F] ≤J [G] if and only if [G] appears as a direct
summand of [H1FH2] for some 1-morphisms H1,H2), and the corresponding equivalence classes
are called left, right and two-sided cells, respectively.

If C is graded-finitary, we can associate to any left cell a so-called graded cell 2-representation,
which is the quotient of the left 2-ideal in C generated by the identities on the 1-morphisms in
the cell, by the unique maximal ideal of the resulting birepresentation (i.e. the unique maximal
ideal of the underlying categories which is stable under the action of C). For more details (in the
ungraded case, but the graded one is analogous), see e.g. [MM2016, Section 3.3].
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6.2. Finitary covers of evaluation cell birepresentations. Let M be a graded-finitary birep-
resentation of Sd, for any d ∈ N≥2. Then Kb(M), as a graded, triangulated birepresentation of
Kb(Sd), induces a graded, triangulated birepresentation of Ŝext

d , the evaluation birepresentation
MEvr,s , resp. MEv′r,s , by pull-back through the evaluation functors Evr,s, resp. Ev′r,s, for any
r, s ∈ Z.

In this subsection we show that, if M is a cell birepresentation of Sd, then MEvr,s has a
bigraded-finitary cover in the following sense.

Definition 6.1. A bigraded-finitary cover of a graded, triangulated birepresentation N of a
graded, additive bicategory C is a bigraded-finitary birepresentation L of C together with a faith-
ful morphism of linear additive bigraded birepresentations Φ: L → N whose essential image
generates N as a graded triangulated category.

Proposition 6.2. Let M be the graded cell birepresentation associated to some left cell L of Sd.
Then MEvr,s has a bigraded-finitary cover.

Proof. By [EH2018, Proposition 4.31], Td
ρ acts as Id〈x〉[y] on MEvr,s , for some x, y ∈ Z. Let

L be the closure under isomorphisms, direct sums, direct summands, grading and homological
shifts of the Evr,s(Ti

ρ)Bw, for i ∈ Î and w ∈ L. Relation (56) implies that L is a bigraded-finitary
birepresentation of Ŝext

d .
The inclusion functor L ↪→MEvr,s is a morphism of linear additive bigraded birepresentations

and its essential image generates Kb(M), which is the underlying graded triangulated category
of MEvr,s . �

We refer to Corollary 6.5 for an example demonstrating that Φ is not full in general.

Remark 6.3. It is easy to see that L is transitive, and it looks likely that calculations, using the
explicit descriptions of the representing bimodules for the Bw given in [MMMTZ2019, Section
4.3], one can verify that it is indeed simple transitive.

6.3. The zigzag algebras. Let us first recall the affine zigzag algebra Ẑd over C associated to
the Âd−1 Dynkin diagram. As is well-known, there are two isomorphism classes of affine zigzag
algebras with invertible integer coefficients, and we use a specific representative of either one or
the other depending on the parity of d.

Let ei, i ∈ Î , denote the orthogonal idempotents associated to the vertices of the zigzag quiver

(136)
0•

�� ��
1• **

33

2•jj · · · d−2• ++ d−1•kk

ll

and i1|i2| . . . |ik the path in the quiver from ik to i1 via ik−1, . . . , i2. The relations in Ẑd are

i|i+ 1|i+ 2 = 0 = i|i− 1|i− 2, i ∈ Î;(137)



52 M. Mackaay, V. Miemietz, P. Vaz

i|i+ 1|i = i|i− 1|i, i ∈ I;(138)

0|1|0 = (−1)d(0|d− 1|0).(139)

For convenience, we also use the notation

`i := i|i+ 1|i,

for any i ∈ Î . This algebra has dimension 4d, it is positively graded by putting the degree of
every path equal to its length, and it is a graded Frobenius algebra with non-degenerate trace
defined by

(140) tr(`i) = 1 for every i ∈ Î; tr(a) = 0 when deg(a) 6= 2.

This means that Ẑ?
d
∼= Ẑd〈2〉 as graded left, resp. right, Ẑd-modules. Define the non-degenerate

bilinear pairing 〈., .〉 : Ẑd ⊗ Ẑd → C as usual

(141) 〈a, b〉 := tr(ab), a, b ∈ Ẑd,

and recall that two bases of Ẑd, say {ai | i = 1 . . . , 4d} and {a?i | 1, . . . , 4d}, are called dual to
each other if they satisfy

〈ai, a?j〉 = δi,j, i, j = 1, . . . , 4d,

where δi,j is the Kronecker delta. With respect to the bilinear form on Ẑd, there is a natural pair
of dual bases {ei, `i, (i|i± 1)}i∈Î and {e?i , `?i , (i|i± 1)?}i∈Î , such that

e?i = `i, `
?
i = ei, i ∈ Î;(142)

(i|(i± 1))? = (i± 1)|i, i ∈ I;(143)

(0|(d− 1))? = (−1)d((d− 1)|0).(144)

Note that Ẑd is symmetric when d is even and only weakly symmetric when d is odd.
Let Ẑd−fgproj, resp. fgproj−Ẑd, be the category of finite-dimensional, graded, projective

left, resp. right, Ẑd-modules and degree-preserving module maps. The indecomposable objects
in these categories are isomorphic to Ẑdei〈t〉, resp. eiẐd〈t〉, for some i ∈ Î and t ∈ Z.

Finally, let Ẑd−fgbiproj−Ẑd be the monoidal category of all finite-dimensional, graded, bipro-
jective Ẑd−Ẑd-bimodules and degree-preserving bimodule maps. A bimodule is called biprojec-
tive if it is projective as a graded left module and as a graded right module, but not necessarily
as a graded bimodule. Every indecomposable projective object in this category is isomorphic to

Ẑdei ⊗ ejẐd〈t〉,

for some i, j ∈ Î and t ∈ Z. The monoidal structure of Ẑd−fgbiproj−Ẑd is given by tensoring
over Ẑd and the unit object is Ẑd, which is biprojective but not projective as a bimodule over itself.
Recall that any exact, graded endofunctor of Ẑd−fgproj is naturally isomorphic to B ⊗Ẑd −,
for some B ∈ Ẑd−fgbiproj−Ẑd. Natural transformations between exact, graded endofunctors
correspond to Ẑd−Ẑd-bimodule maps and the composition of endofunctors corresponds to the
tensor product of the corresponding bimodules over Ẑd.
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Let τ be the degree-preserving algebra automorphism of Ẑd induced by the counterclockwise
rotation of the Dynkin diagram defined by

(145) ei 7→ ei+1, 0|(d− 1) 7→ (−1)d(1|0), i|j 7→ (i+ 1)|(j + 1),

for i, j ∈ Î , such that j = i ± 1 but (i, j) 6= (0, d − 1). Note that τ d = id when d is even, and
(τ)2d = id when d is odd. By definition, the twisted bimodule

(146) Ẑτ
n ∈ Ẑd−fgbiproj−Ẑd

has underlying vector space Ẑd, while the left and right Ẑd-actions are defined by

(147) a ·L b ·R c := abτ(c),

for a, b, c ∈ Ẑd. It is clear that Ẑτ
d
∼= Ẑd as left and as right Ẑd-modules, but not as Ẑd-Ẑd-

bimodules. As a consequence, Ẑτ
d is biprojective. It is, however, not projective as a Ẑd-Ẑd-

bimodule. We record the existence of an isomorphism

Ẑτk

d ⊗Ẑd Ẑ
τm

d
∼= Ẑτk+m

d(148)

in Ẑd−fgbiproj−Ẑd, for every pair k,m ∈ Z.
Note further that there exist isomorphisms of left, resp. right, Ẑd-modules

(149) Ẑτ
d ⊗Ẑd Ẑdei

∼= Ẑdei+1 and eiẐd ⊗Ẑd Ẑ
τ
d
∼= ei−1Ẑd

and, therefore, an isomorphism of Ẑd-Ẑd-bimodules

(150) Ẑτ
d ⊗Ẑd Ẑdei ⊗ eiẐd

∼= Ẑdei+1 ⊗ ei+1Ẑd ⊗Ẑd Ẑ
τ
d

for every i ∈ Î .
The zigzag algebra Zd of finite type Ad−1 is by definition the idempotent subalgebra

(151) (e1 + · · ·+ ed−1)Ẑd(e1 + · · ·+ ed−1).

6.4. The birepresentations. Let Z = Zd denote the zigzag algebra of finite type Ad−1. Re-
call the finitary birepresentation Md of Sd acting on Z-gproj, the finitary category of finite-
dimensional, graded projective Z-modules, by graded, biprojective Z-Z-bimodules. Under this
birepresentation, 1 = R acts by tensoring (over Z) with Z and each Bi acts by tensoring (over
Z) with Zei ⊗ eiZ〈1〉, for i ∈ I . The image of the generating Soergel diagrams is given by

Md

(
i

)
: Zei ⊗ eiZ〈1〉 → Z

aei ⊗ eib 7→ aeib,

(152)

Md

( i )
: Z → Zei ⊗ eiZ〈1〉

ej 7→

{
(−1)i (`i ⊗ ei + ei ⊗ `i) , j = i;

(−1)i (j|i⊗ i|j) , j ± 1 = i,

(153)
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Md

( i

i i

)
: Zei ⊗ eiZei ⊗ eiZ〈2〉 → Zei ⊗ eiZ〈1〉

ei ⊗ eiaei ⊗ ei 7→ (−1)itr(eiaei)ei ⊗ ei

(154)

Md

(
i

i i )
: Zei ⊗ eiZ〈1〉 → Zei ⊗ eiZei ⊗ eiZ〈2〉

ei ⊗ ei 7→ ei ⊗ ei ⊗ ei,

(155)

while all other generating Soergel diagrams are sent to zero. The proof that this is well-defined
is a straightforward computation and similar to the proof of [MT2019, Theorem I]. It is easy to
see that this birepresentation decategorifies to the representation Md of Hd, given in (30).

Now, consider the triangulated birepresentations MEvr,s and MEv′−r,−s of Ŝext
d , for r, s ∈ Z,

obtained by pulling Kb(M) back through the evaluation functors Evr,s and Ev′−r,−s. These de-
categorify to M eva and M eva−1 defined in (32) and (33), respectively, where a = (−1)sqr. The
case (r, s) = (d − 2, 2 − d) is somewhat special, as it corresponds to the so-called Tate twist,
but the general case can easily be derived from this one by shifting the bigrading in all argu-
ments below. To keep the notation simple, we therefore consider MEvr,s for the fixed choice
(r, s) = (d− 2, 2− d) first.

Define the complex

(156) X0 :=
(
Zed−1〈1〉 → Zed−2〈2〉 → · · · → Ze1〈d− 1〉

)
where the term Zed−1〈1〉 is in homological degree 0 and the differential in position i is given by
right multiplication by d− i− 1|d− i− 2. We further set Xi := Zei, for i ∈ I .

In Proposition 6.2, the rank of the bigraded-finitary cover L of an evaluation cell birepresen-
tation is not necessarily minimal. In the following proposition, we give a minimal finitary cover
for MEvr,s .

Proposition 6.4. The bigraded-finitary subcategory

M̂d−2,2−d := add {(X0 ⊕X1 ⊕ · · · ⊕Xd−1)〈i〉[j] | i, j ∈ Z}

is stable under the action of Ŝext
d , and hence carries the structure of a finitary birepresentation of

Ŝext
d , which we denote by the same symbol.

Proof. We need to check stability under B1 . . . ,Bd−1 and Tρ. The action of B1 . . . ,Bd−1 sta-
bilises add {X1 ⊕ · · · ⊕Xd−1〈i〉[j] | i, j ∈ Z} since this is just the finitary birepresentation of
Sd described above. We therefore first compute Bi(X0) for i ∈ I and then verify stability of
add {X1 ⊕ · · · ⊕Xd−1〈i〉[j] | i, j ∈ Z} under Tρ.

Notice that, for i ∈ {2, · · · d− 2}, Bi(X0) is given by the complex

Zei ⊗
(
eiZei+1〈d− i〉 → eiZei〈d− i+ 1〉 → eiZei−1〈d− i+ 2〉

)
.
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Notice that, as a Z-module, this is just Zei tensored with a complex of vector spaces, so it suffices
to argue that said complex of vector spaces is null-homotopic. This is indeed the case since the
first map embeds a one-dimensional space into a two-dimensional space, and the second map
is a surjection onto another one-dimensional space. It follows that the whole complex is null-
homotopic.

Further, B1(X0) is given by

Ze1 ⊗
(
e1Ze2〈d− 1〉 → e1Ze1〈d〉

)
with map 1|2 7→ `1, which is injective, hence the summand surviving Gaussian elimination is
Ze1 ⊗ e1〈d〉 in homological degree d− 2. Thus the result is homotopy equivalent to Ze1〈d〉[2−
d] = X1〈d〉[2− d].

On the other extreme, Bd−1(X0) is given by

Zed−1 ⊗
(
ed−1Zed−1〈2〉 → ed−1Zed−2〈3〉

)
where the map is right multiplication by d − 1|d − 2, which is surjective. The kernel is thus
Zed−1 ⊗ `d−1〈2〉 and the result is homotopy equivalent to Zed−1 = Xd−1 without any shifts.

Thus add {X0 ⊕X1 ⊕ · · · ⊕Xd−1〈i〉[j] | i, j ∈ Z} is stable under the action of B1, . . . ,Bd−1.
It remains to show that M̂ is stable under the action of Tρ. Recall from Section 5.1 that
Evd−2,2−d(Tρ) = T−11 · · ·T−1d−1〈d− 2〉[2− d] and

T−1i = R〈−1〉 −−−→ Bi.

Using the definition of Md above, it is easy to see that the complex representing Evd−2,2−d(Tρ)
is

(157)
Ze1 ⊗ e1Z〈1〉

,,
Ze1 ⊗ e2Z〈2〉

**
Ze2 ⊗ e2Z〈1〉

33

++

. . .

)). . . Ze1 ⊗ ed−2Z〈d− 2〉
,,

Z〈−1〉

AA

99

��

%%

**

44

Ze1 ⊗ ed−1Z〈d− 1〉

. .
.

Ze2 ⊗ ed−1Z〈d− 2〉
22

Zed−2 ⊗ ed−2Z〈1〉
++

33

. .
.

55

Zed−2 ⊗ ed−1Z〈2〉

44

Zed−1 ⊗ ed−1Z〈1〉
22
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Here, in the first differential, whose source is Z〈−1〉, the component mapping to Zei ⊗ eiZ〈1〉
is given by

ej 7→

{
`i ⊗ ei + ei ⊗ `i, if i = j;

j|i⊗ i|j, if i 6= j.

The other differentials are all vectors of Z-Z-bimodule maps which are equal to the tensor prod-
uct of ±id on one tensor factor and i|i+ 1, for some i = 1, . . . , d− 2, on the other tensor factor.
For our arguments below, the signs of these maps are not important.

We are first going to prove that Evd−2,2−d(Tρ)(Xi) ' Xi+1, for any i = 1, . . . , d − 2.
Since ejZei = {0} when |i − j| > 1, the non-zero part of the complex corresponding to
Evd−2,2−d(Tρ)(Xi) is

Zei−1 ⊗ ei−1Zei〈1〉 //

))

Zei−2 ⊗ ei−1Zei〈2〉 //

''

· · · Ze1 ⊗ ei−1Zei〈i− 1〉

))
Zei〈−1〉

66

//

((

Zei ⊗ eiZei〈1〉 //

))

Zei−1 ⊗ eiZei〈2〉 //

''

· · · Ze2 ⊗ eiZei〈i− 1〉 //

))

Ze1 ⊗ eiZei〈i〉

))
Zei+1 ⊗ ei+1Zei〈1〉 // Zei ⊗ ei+1Zei〈2〉 // · · · Ze3 ⊗ ei+1Zei〈i− 1〉 // Ze2 ⊗ ei+1Zei〈i〉 // Ze1 ⊗ ei+1Zei〈i+ 1〉

By Gaussian elimination, one can then see that this is homotopy equivalent to the purple Zei+1⊗
ei+1Zei〈1〉 in homological degree zero, which is isomorphic to Xi+1. To explain this, we iden-
tity each vertex of the diagram above by its pair of coordinates (row number, column number),
where we number the rows of the complex by 1,2,3 from top to bottom and the columns by their
homological degree. As in the diagram above, we omit the signs of all maps below, since they
are not important for our argument. Using these conventions, first note that the the part of the
complex (2,−1)→ (2, 0)→ (3, 1) is given by

Zei ⊗
(
k〈−1〉 → eiZei〈1〉 → ei+1Zei〈2〉

)
where the complex of vector spaces is split by the same arguments as above and hence null-
homotopic. Thus these three terms cancel in the Gaussian elimination procedure. Similarly,
every part of the complex of the form (1, j) → (2, j + 1) → (3, j + 2), for j = 0, . . . , i − 2, is
given by

Zei−j−1 ⊗
(
ei−1Zei〈j + 1〉 → eiZei〈j + 2〉 → ei+1Zei〈j + 3〉

)
is split and hence null-homotopic. Hence all these triples of terms cancel in the Gaussian elim-
ination procedure, which in the end only leaves the purple one, proving the desired homotopy
equivalence.

The next homotopy equivalence we are going to prove is Evd−2,2−d(Tρ)(Xd−1) ' X0. The
non-zero part of the complex Evd−2,2−d(Tρ)(Xd−1) is
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Zed−2 ⊗ ed−2Zed−1〈1〉 //

%%

Zed−3 ⊗ ed−2Zed−1〈2〉 //

  

· · · //

!!

Ze1 ⊗ ed−2Zed−1〈d− 2〉

**
Zed−1〈−1〉

55

))

Ze1 ⊗ ed−1Zed−1〈d− 1〉

Zed−1 ⊗ ed−1Zed−1〈1〉 // Zed−2 ⊗ ed−1Zed−1〈2〉 // · · · // Ze2 ⊗ ed−1Zed−1〈d− 2〉

44

where the differentials are as above. Note that again all maps pointing to the south-east in the
complex are given by the tensor product of the identity of some Zed−j with an injective map of
vector spaces hence split. Thus, by Gaussian elimination, this complex is homotopy equivalent
to the direct summand of the purple subcomplex for which the right tensor factor is restricted to
multiples of ed−1. This direct summand is indeed isomorphic to X0.

The remaining case of the action of Evd−2,2−d(Tρ) on X0 can be replaced by considering
the action of Evd−2,2−d(Tρ)

−1 on X1, which is analogous to the action of Evd−2,2−d(Tρ) on
Xd−2. �

Similarly, we can define an additive birepresentation M̂r,s of Ŝext
d , for any r, s ∈ Z.

Corollary 6.5. For any r, s ∈ Z, there is a morphism of additive Ŝext
d -birepresentations Φ: M̂r,s →

MEvr,s , induced by the embedding from Proposition 6.4. This makes M̂r,s into a finitary cover of
MEvr,s .

Proof. All assertions follow immediately from Proposition 6.4. �

Remark 6.6. Note that M̂r,s decategorifies to the Graham–Lehrer cell module M̂d,λ with λ =
(−1)s−(2−d)qr−(d−2), as can be easily seen by comparing the action of the generators on the Xi

with the decategorified action in (23) and (24). Moreover, Φ decategorifies to the projection of
M̂r,s onto L+

d,(−1)s−(2−d)qr−(d−2) .

Proposition 6.7. For any r, s ∈ Z, there is an isomorphism of ungraded algebras

EndMEvr,s (X0 ⊕ · · · ⊕Xd−1) ∼= Ẑ.

Proof. Without loss of generality, we assume that (r, s) = (d − 2, 2 − d), as before. De-
note by pd−1 : X0 → Xd−1 the projection onto the component in homological degree 0 and by
jd : Xd−1 → X0 the map induced by multiplication with `d−1. Similarly, denote by j1 : X1[2 −
d] → X0 the inclusion of the component in homological degree d − 2 and by p1 : X0 →
X1[2 − d] the map induced by multiplication with `1. We remark that pd−1, jd−1, j1, p1 have
degrees 1, 1, 1 − d, d + 1, respectively. Moreover, we denote the maps Zei → Zei±1 given by
right multiplication by i|i ± 1 by ri|i±1. Then it is a straightforward calculation to verify that
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EndMEva (X0 ⊕ · · · ⊕Xd−1) is given by the path algebra of the quiver

(158)
0•

p1

��

pd−1

��
1•

r1|2
**

j1

33

2•
r2|1

jj · · · d−2•
rd−2|d−1

++ d−1•
rd−1|d−2

kk

jd−1

ll

modulo the relations defining Ẑ under the isomorphism sending ri|i±1 to i ± 1|i, pi to i|0 and
ji to 0|i for i ∈ {1, d − 1}. To verify the sign in the relation involving 0 we observe that the
endomorphism of X0 given by j1p1 + (−1)d−1jd−1pd−1 is (omitting shifts for readability) given
by the solid arrows in the diagram

(159) Zed−1 //

`d−1

��

Zed−2

0
��rd−2|d−1zz

// · · · // Ze2 //

0
��r2|3

}}

Ze1

`1
��r1|2||

Zed−1 // Zed−2 // · · · // Ze2 // Ze1

and is null-homotopic via the homotopy indicated by the dashed arrows. �

Remark 6.8. The natural bigrading of EndMEvr,s (X0 ⊕ · · · ⊕ Xd−1) induces a bigrading on Ẑ
via the isomorphism in Proposition 6.7. Note that it does not depend on (r, s) ∈ Z2, as long as
we keep the gradings of the Xi fixed. Assuming that (r, s) = (d − 2, 2 − d), we see that it is
given by

deg(i|i+ 1) = (1, 0), i ∈ I;(160)

deg(i|i− 1) = (1, 0), i ∈ Î \{1};(161)
deg(0|1) = (d+ 1, 2− d);(162)
deg(1|0) = (1− d, d− 2).(163)

Note that the first entry of this bigrading is compatible with the above grading of Ẑ except for
the degrees of the arrows between 0 and 1.

The explicit 2-action of Ŝext
d on M̂r,s is given

• on 1-morphisms by

F (i) := Ẑdei ⊗ eiẐd〈1〉, i ∈ Î;(164)

F (±) := Ẑτ±1

d 〈r〉[s],(165)

• on 2-morphisms by

F

(
i

)
: Ẑdei ⊗ eiẐd〈1〉 → Ẑd

aei ⊗ eib 7→ aeib,

(166)
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F

(
i
)

: Ẑd → Ẑdei ⊗ eiẐd〈1〉

ej 7→


(−1)i (`i ⊗ ei + ei ⊗ `i) , j = i;

(−1)i (j|i⊗ i|j) , j ± 1 = i 6= 0;

1|0⊗ 0|1, j = 1, i = 0;

(−1)d(d− 1|0⊗ 0|d− 1), j = d− 1, i = 0,

(167)

F


i

i i

 : Ẑdei ⊗ eiẐdei ⊗ eiẐd〈2〉 → Ẑdei ⊗ eiẐd〈1〉

ei ⊗ eiaei ⊗ ei 7→ (−1)itr(eiaei)ei ⊗ ei

F


i

i i
 : Ẑdei ⊗ eiẐd〈1〉 → Ẑdei ⊗ eiẐdei ⊗ eiẐd〈2〉

ei ⊗ ei 7→ ei ⊗ ei ⊗ ei.

(168)

The generating 2-morphisms involving an oriented black strand in (51) and (52) are
sent to the isomorphisms in (148) and (150), respectively, and all other generating 2-
morphisms are sent to zero.

Remark 6.9. We could alternatively have used the evaluation functor Ev′−r,−s to obtain another
evaluation birepresentation and its finitary cover.
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