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Abstract

Recessions create uncertain economic environments which agents must navigate when making costly

decisions. Across four chapters, this thesis adds to the current understanding of how time-varying

economic uncertainty can be measured and how it a�ects real economic activity, especially during

times of economic crisis.

The �rst two chapters introduce a new framework for examining the response of investment to

changes in economic regime. Both the price of a �rm's output good and its production function

depend on a continuous time Markov chain which switches between an expansionary regime and a

recessionary regime. The latter is characterised by higher uncertainty about the output price and

lower productivity in the production process.

Chapter one models an investor's decision to acquire and sell this �rm. Switches between regimes

produce various patterns of acquisitions and sales depending on the di�erences in uncertainty and

productivity between the regimes. The model provides a mechanism for explaining the wave like

pattern of acquisitions over the business cycle. Chapter two focuses on the active �rm's capital

accumulation policy. Here, the model can generate lumpy patterns of investment following switches

between the regimes, and demonstrates how entering a persistent recessionary regime with high

uncertainty and low productivity can lead to extended periods of low investment.

Chapter three estimates the e�ect of a �rm's idiosyncratic uncertainty, as measured by the

volatility its stock returns, on its investment rate using almost 30 years of U.S. data. Consistent

with the predictions of the models in the �rst two chapters, the relationship between the variables

is negative. The increase in uncertainty during the Great Recession also played a large role in

causing the observed fall in investment. Furthermore, there is evidence that uncertainty has been

more of a drag on investment after the Great Recession; �rms with growth opportunities su�cient

to neutralise its e�ect before the recession are sensitive to its variation in the years after.

Despite widespread use in the literature, the volatility of stock returns is not an ideal measure

of economic uncertainty. Using an instrumental variable SVAR model, chapter four set identi�es

shocks to uncertainty and stock market volatility and demonstrates that the latter can vary even



when there is no change in economic uncertainty. The identi�ed shocks also produce di�erent

impulse response functions for several key macroeconomic indicators. The price of gold around

events that make the future harder to predict is used as an instrument for uncertainty shocks while

exogenous changes in the spread between Baa-rated corporate bonds and the 10-year treasury bond

rate is used as a proxy for shocks to stock market volatility.
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Introduction

The slow recovery from the Great Recession of 2008 led to a surge in literature examining the causes

of protracted recessions (Ball, 2014; Blanchard et al., 2015; Cerra et al., 2023). Economists pointed

to a range of factors such as debt overhang, austerity measures, and liquidity traps as sources of the

decline and weak recovery in key macroeconomic indicators (Jermann & Quadrini, 2012; DeLong

& Summers, 2012; Eggertsson & Krugman, 2012). In their review of the channels through which

the Great Recession a�ected the U.S. economy, Stock & Watson (2012) highlighted the role of the

�nancial upheaval in the aftermath of the subprime mortgage crisis. However, they also concluded

that one of the main drivers of the decline in activity was heightened economic uncertainty1. In

an in�uential paper which aims to create an empirical measure of uncertainty, Jurado et al. (2015)

de�ne this concept as the conditional volatility of a disturbance that is unforecastable from the

perspective of economic agents2. Essentially, uncertainty re�ects how di�cult it is for agents to

forecast the future.

Since Bernanke (1983) and Dixit & Pindyck (1994), most of the models explaining the relation-

ship between uncertainty and economic activity have been based on the theory of `real options'.

Any agent making a decision which incurs an unrecoverable cost must decide when they should act

given they can continue waiting for more information about the future. This is analogous to an

investor holding a �nancial option giving the right but not the obligation to purchase or sell an

asset for a �xed price. While classical economic theory states an action should be taken when the

1The authors put the weak recovery after the recession primarily down to declining labour force participation,
while recognising the magnitude of the shocks to other macroeconomic variables also played a role in delaying the
recovery.

2Early work by Frank Knight (1921) distinguished uncertainty from risk on the basis that the former is unob-
servable while the latter can be measured. The literature has moved away from this de�nition and towards that of
Jurado et al. (2015), which is also adopted in this thesis.
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marginal bene�t of that action outweighs the marginal cost, real option theory appreciates that

waiting for more information has real economic value for the agent. Hence, the optimal time to act

is modi�ed such that the bene�t outweighs the monetary cost plus the value of waiting, which is

higher when uncertainty about the future is higher. Consequently, with all else constant, economic

activity declines in uncertain periods because the optimal decision rule tells agents to hold back

from making irreversible decisions. Note that if the decision is fully reversible there is nothing to

be gained by delaying the action until more is known about the future.

Uncertainty has remained a key concern for economists since the Great Recession. This is in part

because of the frequency of uncertainty shocks in the succeeding years. Examples include the results

of the U.S. presidential election and Brexit referendum in 2016, the outbreak of the Coronavirus

pandemic in 2019, and the Russian invasion of Ukraine in 2022. Davis (2019) also points out a

gradual increase in economic policy uncertainty due to a breakdown in international trade relations.

According to the World Uncertainty Index of Ahir et al. (2022) such a sequence of uncertainty shocks

in a changing global environment has resulted in the period since 2012 being the most uncertain in

the past 60 years. Policy makers will be alarmed by this observation given the predictions of the real

options theory and Stock & Watson's (2012) conclusion about uncertainty's key role in propagating

the Great Recession. Indeed, current managing director of the IMF Christalina Georgieva (2020)

cited increasing uncertainty as the key theme of the next decade.

Clearly, agents make decisions in an environment not just characterised by uncertainty, but

by time-varying uncertainty. Moreover, uncertainty moves counter cyclically, periods of relative

prosperity are associated with lower uncertainty while periods of economic distress make it di�cult

to forecast the future (Bloom, 2009; Baker et al., 2016; Jurado et al., 2015). Early real options models

tended not take this fact into consideration when examining the optimal timing of actions3. Its

counter-cyclical property also means that periods of high uncertainty tend to arrive simultaneously

with declines in other economic variables. In fact, Bloom et al. (2018) show that recessions are

characterised by a decrease in the level and increase in the variance of plant-level total factor

productivity (TFP) and sales growth.

3Two exceptions are Bloom et al. (2007) who model uncertainty as a stochastic mean-reverting process and Guo
et al. (2005) who consider switches between higher-uncertainty and lower-uncertainty regimes.
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This thesis contributes to both the theoretical and empirical literature examining the conse-

quences of uncertainty for economic activity on the microeconomic and macroeconomic level4. The

�rst two chapters are concerned with the optimal timing of investment decisions5 in an environment

which includes both time-varying uncertainty and productivity. While Bloom et al. (2018) considers

these factors in a general equilibrium setting to examine the impact of exogenous shocks, I model

them in a regime switching framework representing transitions between periods of prosperity and

recession to examine the optimal timing of investment decisions.

A perfectly-competitive �rm produces an output good whose price follows a geometric Brownian

motion with drift and volatility parameters dependent on a continuous time Markov chain switching

between an expansionary and a recessionary regime. The volatility parameter is higher in the

recessionary regime, which introduces time-varying uncertainty into the model. The productivity

parameter of the �rm's Cobb-Douglas production function depends on the same Markov chain,

and is lower in the recessionary regime. The persistence of the two regimes is determined by the

transition probabilities of the Markov chain in a given time interval.

This more closely replicates the changes in economic conditions faced by investors and �rms

compared to previous models in the literature. Chapter one considers a representative investor

making a decision to purchase an in�nitely-lived �rm while chapter two considers an active �rm

deciding when to adjust its capital stock. In both chapters, the solution to the decision problem

involves �nding the threshold values of the stochastic process underlying the value of the �rm which

justify a change in action. I make the decision problem more realistic by allowing some of the initial

cost of the investment to be recovered in the future, rather than assuming total irreversibility.

Finding these solutions involves solving complex systems of simultaneous non-linear equations,

which will generally be done numerically.

After solving, the models make a novel set of predictions about the dynamics of investment when

transitioning to and from recessionary regimes. The investor in chapter one is making a decision

4While related, each chapter in this thesis could stand alone and has its own introduction which will discuss the
motivation and �ndings more thoroughly.

5Most of the real options literature has focused on adjustments in �xed capital rather than labour. Furthermore,
Bloom (2009) �nds much weaker evidence for the kinds of irreversible costs required for the application of real options
theory in hiring and �ring compared to capital stock adjustments. The �rst three chapters follow this tendency and
focus on investment activity.
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about whether to acquire a representative �rm outright, which she can sell at a later date for a

fraction of its purchase price. Corporate acquisitions are known to display `wave' like behaviour

which follows the business cycle and are in�uenced by technology shocks (Harford, 2005). The

model provides a mechanism to explain this behaviour. Regime switches can trigger immediate

decisions to acquire or sell the �rm if the price of the output good lies above or below the required

threshold.

When the recessionary regime is characterised by a large decrease in productivity compared to

the expansionary regime, it is very likely that transitioning to the recessionary regime will result in

the investor immediately selling the �rm, if she owned it, and the heightened uncertainty will result

in a much lower chance that she will buy the �rm again while in the recessionary regime due to the

real options e�ect. However, transitioning back to the expansionary regime is more likely to trigger

an immediate acquisition. For many investors and �rms, this implies a new wave of acquisitions.

On the other hand, if the recessionary regime has similar productivity levels to the expansionary

regime, transitioning to the former will not cause an immediate change in the investor's decision to

own the �rm or continue holding the option to invest, but she will still be less willing to change her

current action while in the recessionary regime.

Chapter two uses the same regime-switching stochastic process as chapter one, so there are par-

allels between the conclusions it produces for �rm capital accumulation and those made about the

one-shot investment decision in chapter one. These conclusions build upon the literature describ-

ing �rm-level investment patterns as `lumpy', meaning capital adjustments tend to be clustered in

discrete packages (Doms & Dunne, 1998; Cooper & Haltiwanger, 2006; Bloom et al., 2007; Fiori,

2012). For large productivity di�erences between the regimes, transitioning to the recessionary

regime always triggers a large discrete decrease in the capital stock while returning to the expan-

sionary regime implies an analogous increase in the capital stock. Investment is very responsive to

regime changes in this case. In contrast, if the only di�erence between the regimes is higher uncer-

tainty in the recessionary regime, transitioning to this regime has no immediate e�ect on the capital

stock, but a relatively higher (lower) value of the marginal unit of capital is still required to justify

investment (disinvestment). These dynamics are also dependent on the persistence of the regimes,

the �rm is less willing to build its capital stock, and more willing to decrease it, in both regimes
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when the recessionary regime is more persistent. Thus, transitioning to a persistent recessionary

regime featuring higher uncertainty and lower productivity will feature much less investment for an

extended period.

Clearly, the model provides an explanation for why investment recovery might be weak in the

years following a recession, thereby highlighting a channel through which recessions cause persistent

declines in economic activity. Weak investment can have a long-run impact on growth rates due

to a lack of capital accumulation relative to previous trends. By equipping workers with more or

better machinery, investment in the capital stock provides a base from which future innovation is

driven (De Long & Summers, 1991). Policy makers such as Yellen (2016) note the importance of

this issue for the future of macroeconomic policy. If recessions cast shadows over future growth

rates, there is greater justi�cation for government intervention to hasten recoveries.

Motivated by the models studied in the �rst two chapters and the large decline in investment

between 2008 and 2009, chapter three estimates the empirical relationship between uncertainty

and �rm-level investment over almost 30 years of annual data and examines how this relationship

changed in the aftermath of the Great Recession. The econometric model is grounded in the theory

outlined in Hayashi (1982) which relates investment to a measure of a �rm's growth opportunities

determined by the market value of its capital stock relative to its replacement cost (Tobin's Q). This

is the empirical analogue of the marginal value of capital, which determines the optimal investment

rule of the representative �rm in chapter two.

Previous work in this area has not focused on the implications of the model for investment during

recessions, or whether there is evidence that the estimated coe�cients change after such periods of

economic upheaval. In line with previous studies, the model also controls for the �rm's �nancing

structure (leverage and cash �ows) and the �rst lag of investment. Interaction terms explore whether

the relationships between the explanatory variables and the investment rate are contingent on each

other, and whether the Great Recession had a lasting impact on these relationships. An instrumental

variable generalised method of moments estimator recovers the coe�cients capturing the relationship

between the investment rate and the explanatory variables, and the results are shown to be robust

to various relevant changes in speci�cation.

As expected, uncertainty is found to have a negative impact on the investment rate and appears
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to be a signi�cant driver of the decline in investment during the Great Recession. Despite being

signi�cantly correlated with investment over the whole sample, there is little evidence to suggest

changes in cash �ows or leverage during the Great Recession were responsible for the decline. The

primary driver, however, seems to be the decrease in growth opportunities, as measured by Tobin's

Q. The negative impact of uncertainty on investment is attenuated by higher growth opportunities,

which makes sense in light of the model in chapter two, where uncertainty increased the value of the

marginal product of capital that justi�ed investment. Given Tobin's Q is the empirical analogue of

the marginal value of capital, the strength of uncertainty's e�ect on investment decreases when it

is very high. However, there is evidence that this attenuating e�ect of higher Q was weaker in the

years after the Great Recession, so uncertainty was more damaging to investment in the years after

2008 for a given value of Q.

Despite the stock of literature examining the e�ect of uncertainty on economic activity, mea-

suring uncertainty remains a di�cult task. Chapter three, expanding on other widely-cited studies,

uses the conditional volatility of �rms' idiosyncratic stock returns. However, stock returns can

become more volatile even when there is no change in how easy it is for agents to forecast the

future. While Jurado et al. (2015) and Aït-Sahalia et al. (2021) pointed this out, they only pro-

vided cursory evidence as to how uncertainty and stock market volatility di�er. A more formal

examination is given in Arnold & Vrugt (2008), who �nd little evidence that stock market volatil-

ity causes increases in economic uncertainty. However, they do not attempt to identify structural

shocks to the variables in their vector autoregression (VAR) model, which is necessary if one wants

to understand how exogenous innovations in the variables a�ect the real economy or estimate their

contemporaneous relationship.

Building on this hypothesis, chapter four separates structural shocks to uncertainty from struc-

tural shocks to stock market volatility in an instrumental variable structural VAR model and ex-

amines the impact of these shocks on several key U.S. macroeconomic indicators. The proxy for

uncertainty shocks is constructed from the variation in the price of gold around events expected to

increase uncertainty about future economic conditions while the proxy for stock market volatility

shocks comes from innovations in the credit spread between Baa rated corporate bonds and the 10-

year treasury bond rate, which captures exogenous changes in investor sentiment and credit supply
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conditions. Set identi�cation is used because these proxies are both correlated with the shock they

do not target, though this correlation is weaker than with the shock they do target.

In keeping with previous studies, uncertainty shocks cause a decline in economic activity which

persists for several months. This is matched with a persistent increase in stock market volatility.

On the other hand, the identi�ed shocks to stock market volatility do not signi�cantly increase

economic uncertainty. These shocks also have a much weaker e�ect on real economic activity but

account for a larger proportion of the variation in wages, in�ation, and the federal funds rate. This

con�rms the hypothesis that increases in stock market volatility do not necessarily imply an increase

in economic uncertainty, and that any measures of uncertainty based solely on stock markets will

come to erroneous conclusions.

The �rst three chapters focus on the investment decision of individual agents and the variable

capturing uncertainty in each case is assumed to be exogenously determined. In chapter four,

however, it is shown that uncertainty is partly dependent on variation in other macroeconomic

variables. Ludvigson et al. (2021) provide a general overview of which studies assume uncertainty is

endogenous and which assume it is exogenous. Notably, the real options literature tends to assume

uncertainty is an exogenous driver of the business cycle, as do the models of Bloom (2009) and Bloom

et al. (2018), where uncertainty comes from the process underlying growth. As for models where

uncertainty is endogenous, Bachmann & Moscarini (2011) suggest that uncertainty increases during

recessions because of an increase in risk-seeking behaviour which raises the observed cross-sectional

dispersion in macroeconomic time series. Alternatively, Fajgelbaum et al. (2017) suggest endogenous

uncertainty is the result of a slowdown in information �ows, which consequently makes the future

harder to predict. Their model produces `uncertainty traps', where an initial increase in uncertainty

discourages investment, which reduces activity and causes a further increase in uncertainty because

agents are less able to learn from one another. This mechanism further discourages activity and

ampli�es the e�ect of recessions.

Ludvigson et al. (2021) aimed to determine whether uncertainty was an endogenous response

or exogenous driver of the business cycle. They �nd that uncertainty about �nancial markets is

more likely to be the driver of output �uctuations, while the increase in macroeconomic uncertainty

around recessions arises endogenously as a result of shocks to output. The authors also acknowledge
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that uncertainty increases the severity of other shocks during recessions. These results are in

contrast to those in Carriero et al. (2018), who found that �nancial uncertainty is endogenous

and macroeconomic uncertainty is exogenous when considering their e�ect on the U.S. economy.

Angelini et al. (2019) also concluded that uncertainty was primarily an exogenous driver of the

business cycle and that the e�ects of uncertainty shocks are larger in recessionary periods.

It is worth mentioning that there are theories other than real options explaining the relationship

between uncertainty and economic activity, and not all of them expect the relationship to be nega-

tive. While Gilchrist et al. (2014) recognise the real option e�ect of uncertainty, they suggest that

it primarily a�ects the real economy by increasing the required rate of return on corporate bonds,

which makes debt �nancing more expensive. Alternatively, Fernández-Villaverde et al. (2011) and

Basu & Bundick (2017) explain the negative relationship between uncertainty and activity through

a precautionary savings e�ect. A positive relationship between uncertainty and activity can be

produced in models where the agent's value function is convex in the variable which generates the

uncertainty, as in Hartman (1972) and Abel (1983). Fernández-Villaverde & Guerrón-Quintana

(2020) show that uncertainty shocks can be expansionary in a macroeconomic model without nom-

inal rigidities or �nancial frictions.
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Chapter 1

A Regime-Switching Model of Corporate

Acquisitions

1.1 Introduction

The economy often transitions into periods characterised by a slowdown in economic activity and

high uncertainty which investors must navigate when considering whether to acquire a new �rm.

Furthermore, disruptions to the supply side of the economy or the market for loanable funds may

reduce the economy's productive potential and trigger periods of persistently lower output levels

relative to previous trends, consequently reducing the expected future value of proposed projects

(Ball, 2014; Blanchard et al., 2015; Cerra et al., 2023). While acquisitions can be very pro�table

and provide growth opportunities in terms of size, market share, and innovation, they also have a

high failure rate and often do not yield their expected bene�t when they do succeed (Bonaime et al.,

2018; Renneboog & Vansteenkiste, 2019). Buying at the wrong time could result in the failure of an

otherwise promising project and, from a policy perspective, when promising start-ups are acquired

by larger �rms only to be dropped because of inadequate returns, the potential loss in innovation

is a drag on economic growth (Fons-Rosen et al., 2022).

While the e�ects of uncertainty on the decision to undertake a one-o� investment project are

well described by the real options literature (Bernanke, 1983; Dixit & Pindyck, 1994), these models

tend to assume that uncertainty and productivity are constant over time. Furthermore, invest-
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ment decisions are usually assumed to be fully irreversible, so the investor cannot recover any of

the initial acquisition cost. At least some of the acquired �rm's assets will have resale value, so

some of the losses from acquisitions which do not yield their expected bene�t can be recovered,

making the assumption of irreversibility unrealistic (O�cer, 2007). Therefore, the predictions that

current models make about acquisitions over the business cycle are limited. This motivates a more

comprehensive framework which can account for the observed characteristics of low-productivity,

high-uncertainty regimes where acquiring agents know they can recover at least part of the cost of

their investment.

To incorporate these factors into current models evaluating optimal investment timing, this

chapter considers a representative investor's decision to acquire an in�nitely-lived �rm whose output

price and production function are dependent on a regime-switching process. For clarity, I will call

the acquiring party the `investor' and the acquired party the `�rm' throughout. Also, for simplicity,

I ignore any other assets the investor might own and just focus on the bene�ts accrued by ownership

of the in�nitely-lived �rm.

One of the two regimes features some or all of the following characteristics relative to the other

regime; lower productivity, lower growth in the output price, and higher uncertainty about the future

output price. Switching to this regime represents an economic downturn, so I call it the `recessionary

regime' and call the other the `expansionary regime'. The persistence of the regimes is determined

by the probability of switching regime within a given interval of time, a low probability of switching

means the regime is persistent and the �rm's productivity remains below its previous level for a

long period, while the output price remains lower and more volatile. The model therefore generates

changes in the economic environment along the lines of Bloom et al. (2018), where economic shocks

cause changes in both the levels and volatility of key parameters a�ecting the decision problem.

The �ow of pro�t from ownership of the �rm must be su�ciently high or low to justify purchasing

or selling it. Because pro�ts change stochastically with the output price, solving the decision

problem involves �nding the critical values of the output price which justify a change in the investor's

current ownership position (whether she holds the �rm itself or the option to acquire the �rm).

Crucially, the investor's acquisition of the �rm is at least partially irreversible, meaning the full cost

cannot be recovered. The degree of irreversibility is controlled by a sale price which can either be
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zero, the fully irreversible case, or some constant value less than the purchase price.

When the investor does not own the �rm, she still holds the option to purchase it at a later

date. This option has real economic value and needs to be considered when evaluating the costs

and bene�ts of an investment decision. Similarly, she holds an option to sell the �rm at a later date

when she currently owns it, so the full bene�t of ownership is the sum of the value of the �rm and

the option value of selling it at a later date. Uncertainty primarily a�ects investment decisions by

increasing the value of waiting for more information before changing the current ownership position.

In other words, higher uncertainty increases the project's option value. Meanwhile, changes in

productivity a�ect the investment decision by changing the expected future value of the project.

Intuitively, the critical value of the output price justifying the acquisition of a �rm is lower when

the productivity of the �rm is higher, because more productive �rms are still pro�table at lower

output prices. Likewise, the output price must be relatively low to justify selling a more productive

�rm at a later date.

In this set up, I make three main contributions to the literature. The �rst is including the partial

irreversibility of acquisitions in a regime switching context. Initially, I suppose the investor cannot

sell the �rm once it has been acquired. I demonstrate that this fully-irreversible case produces a

very similar solution to the model of capital accumulation by Guo et al. (2005), characterised by

two critical values of the output price which justify investment in each regime. In the partially

reversible case, there are four critical values justifying a change in the investor's current policy,

two justifying acquisition and sale in regime one and two justifying acquisition and sale in regime

two. Partial reversibility is, in general, a more realistic representation of the investor's decision, as

there is usually some potential resale value in an acquisition, whether in the form of �xed assets or

intangible assets such as intellectual property rights.

The second is the inclusion of regime-dependent productivity levels which cause a persistent fall

in the �rm's output from its original level. When combined with a low probability of switching back

to the higher-productivity state, the model replicates the persistence of recessions pointed out by

Cerra & Saxena (2008), Ball (2014), and Blanchard et al. (2015). Therefore, unlike previous models,

this chapter embeds the investor's acquisition decision in a framework which more closely replicates

the business cycle. Third, I show that the immediate e�ect of a regime switch on the investor's own-

11



ership position depends on which parameters change and the magnitude of the changes. For many

investors and �rms, an immediate change in ownership position following a regime switch implies a

wave like pattern of acquisitions related to the business cycle, which is observed in empirical data

(Mitchell & Mulherin, 1996; Harford, 2005). Immediate changes are more likely when productivity

di�erences between the regimes are large.

The key results are as follows. Compared to the expansionary regime, the investor delays her

decision to acquire the �rm in the recessionary regime if she currently does not own it, and likewise

delays her decision to sell the �rm if she does currently own it. Simultaneous productivity declines

and uncertainty increases exaggerate the delay when buying the �rm because a less productive �rm

will only generate a su�ciently high expected pro�t �ow once the output price reaches a relatively

higher level. With very persistent recessionary regimes, the output price required to make new

acquisitions becomes higher still. These �ndings agree with empirical literature suggesting that the

number of acquisitions falls in the aftermath of negative economic shocks (Mitchell & Mulherin,

1996; Maksimovic & Phillips, 2001; Harford, 2005). However, there is ambiguity about the direction

of the regime change on the investor's desire to sell the �rm. While uncertainty favours delaying

the sale, lower productivity favours selling the �rm at higher values of the output price compared

to the expansionary regime because the expected future pro�t �ow generated from ownership of the

�rm does not justifying hanging onto it despite relatively high output prices.

If productivity declines are large enough, there is a region of the output price for which the

investor will always change her current ownership position after a regime switch. This creates an

aggressive business-cycle e�ect on acquisitions in this region of the output price where the investor

always sells the �rm after switching to the recessionary regime and always buys it back when the

economy returns to the expansionary regime. This �nding predicts a large uptake in acquisitions

when periods of depressed economic activity are resolved. Without very large productivity shocks,

switching to the recessionary regime will not result in an immediate change in the investor's current

ownership position and the decline in the number of acquisitions in the recessionary regime comes

solely through the real options e�ect of waiting for more information before making a partially

irreversible decision.

The rest of this chapter is structured as followed. Section 1.2 discusses some relevant previous
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studies in this �eld. Sections 1.3 and 1.4 set up the model and introduces the solution methods.

Section 1.5 solves the model in the fully irreversible case when the sale price of the �rm is zero and

1.6 does the same for the partially reversible case. A conclusion summarises the key �ndings of the

chapter.

1.2 Related Literature

This chapter is linked to the literature examining how the business cycle in�uences the frequency

of mergers & acquisitions in the economy. Since the model examines the decision to make a one-o�

purchase of an in�nitely-lived project providing an inde�nite pro�t �ow, it is more applicable to

acquisitions than mergers. Maksimovic & Phillips (2001) found that the frequency of corporate asset

purchases is strongly pro-cyclical, with 7% of plants changing owners in expansion years compared

to an annual average of 3.89% in the whole sample. Both Mitchell & Mulherin (1996) and Harford

(2005) show that corporate mergers, acquisitions, and takeovers tend to come in waves which are

related to regulatory and technology shocks. Furthermore, Nguyen & Phan (2017) and Bonaime

et al. (2018) �nd that higher uncertainty about future economic policy can negatively a�ect the

number of mergers & acquisitions. Consistent with real option theories, the decrease is larger when

the costs are less recoverable. These �ndings motivate a formal examination of how the number

of acquisitions can be a�ected by economic downturns, periods which are known to coincide with

heightened uncertainty (Jurado et al., 2015). Successful acquisitions stoke innovation and bene�t

�rms through synergy e�ects (Bonaime et al., 2018; Jones & Miskell, 2007), so understanding the

response of acquisitions to economic shocks is also interesting for policy makers.

Lukas et al. (2019) also modelled acquisitions under uncertainty, however, their focus was on

how uncertainty changes a �rm's acquisition strategy rather than on how economic shocks change

the incentive to undertake acquisitions. They �nd that �rms planning on making acquisitions will

prefer to target several smaller �rms than make one large purchase when uncertainty is high. Ebina

et al. (2022) use a real options model to examine the conditions under which a �rm will bid for

a takeover and what type of amalgamation will occur. Hostile takeovers occur when directors do

not wish the �rm to change ownership but a third party acquires a su�cient stake to take control
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regardless. Friendly takeovers occur when all parties agree to this course of action. In Ebina et al.'s

model, �rms consider the option value of waiting and the fear of a pre-emptive hostile takeover by

other �rms in their decision problem, and the authors show that higher volatility of future cash

�ows tends to result in more hostile takeovers. This chapter does not consider the nature of the

takeover, whether hostile or friendly, and only considers the bene�ts for the acquiring party.

The foundational model for this chapter is found in Dixit & Pindyck (1994, pp.215-229). An

investor has the option to make a lump-sum purchase of a project whose value depends on an output

price following a geometric Brownian motion (GBM) with constant drift and volatility parameters.

The investor can sell the project for a constant sum less than the purchase price at a later date, so

acquiring the project also means acquiring this option1. Dixit & Pindyck show that as the volatility

of the output price increases, a greater wedge is placed between the thresholds justifying purchase

and sale of the project because the option value of waiting for more information before making a

costly decision is increasing in volatility. Therefore, their model predicts that higher uncertainty

causes lower activity. Equating increasing volatility with increasing uncertainty is common to all the

theoretical models reviewed in this chapter but is not technically accurate. Volatility measures the

spread of a distribution around a measure of central tendency, usually the mean, while uncertainty

is about the di�culty estimating the parameters of a distribution, including the mean (Aït-Sahalia

et al., 2021). I address this issue in more detail in chapter four and for now continue to equate

volatility with uncertainty.

One signi�cant limitation of Dixit & Pindyck's model is the assumption of constant uncertainty.

In reality, uncertainty moves counter-cyclically and is higher during economic downturns (Bloom,

2009; Jurado et al., 2015). Guo et al. (2005) introduce time-varying volatility by making the

stochastic GBM underlying the value of the �rm dependent on a continuous-time Markov chain

(CTMC) which switches between two regimes, with the average time until a switch occurs governed

by a Poisson distribution. They consider a �rm who adjusts their capital stock upwards and

assume downward adjustments are impossible, so the decision problem features total irreversibility.

As one would expect, the threshold justifying investment is higher in the high-volatility regime.

1Real options theory borrows directly from the theory of pricing �nancial options. The option to buy the project
resembles an American call option and the option to sell resembles an American put option. Hence, the value of the
option to buy is increasing in the output price and the option to sell is decreasing in the output price.
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Additionally, it is also higher when the persistence of the regimes are lower because the option

value of waiting increases when switches between regimes are very frequent.

An important feature of their model implies that an investor's ownership position may or may

not change immediately after a regime switch. Suppose the economy is currently in the high-

uncertainty regime. If the GBM underlying the value of the �rm (the price of the output good in

this chapter) is such that the investor would not acquire the �rm in the high-uncertainty regime

(the GBM is below the threshold value necessary for adjustment in this regime) but would do so

in the low-uncertainty regime (the GBM is above the threshold value necessary for adjustment in

the other regime), then a regime switch to the low-uncertainty regime will cause the investor to

immediately purchase the �rm. Guo et al. describes the region of values of the GBM for which a

change in regime brings about an immediate change in policy as a transient region. Such regions

will feature heavily in this chapter and the next.

Guo et al. (2005) focus on capital accumulation, which is the subject of the next chapter.

Here, rather than acquiring an arbitrary project as in the Dixit & Pindyck (1994, pp.215-229)

case, the investor acquires a �rm which produces with a Cobb-Douglas production function along

the lines of Abel (1983). I let the same CTMC which a�ects the regime of the output price

also a�ect the production function through an exogenous productivity parameter, so switching to

the low-productivity regime also causes a persistent fall in output. Bloom et al. (2018) shows the

substantial negative impact that �rst-moment and second-moment shocks to �rm-level productivity

has on macroeconomic variables. Their model highlights one of the key observations from real

business cycle (RBC) theory, that economic shocks a�ect the productive potential of the economy

and therefore persist much longer than transitory demand-side shocks. Indeed, some recessions

appear to cause very persistent or even permanent shortfalls of output from previous trends (Cerra

& Saxena, 2008; Ball, 2014; Blanchard et al., 2015). As mentioned, there is empirical evidence that

these shocks a�ect the frequency of acquisitions (Mitchell & Mulherin, 1996; Harford, 2005).

Bloom et al. (2018) suggest that declines in productivity during high uncertainty periods is due

to the slow down in hiring and investment preventing the e�cient allocation of resources from low

productivity �rms to high productivity �rms. Furceri et al. (2021) �nds evidence in a sample of

18 advanced economies that the misallocation of resources during recessions leads to a fall in the
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level of TFP. Additionally, Blanchard et al. (2015) �nd that over half of recessions are followed

not only by a period of lower output levels but also with lower output growth relative to the pre-

recessional trend, suggesting that economic shocks usually do have an impact on the productivity

and technology process underlying growth. Other potential causes of drops in productivity are

disruptions in supply chains caused by geo-political crises such as the Russo-Ukraine war or the oil

crisis of the 1970s, disruptions in productions lines such as those experienced during the Coronavirus

pandemic, or di�culties obtaining �nancial capital due to an increase in borrowing constraints like

during the Great Recession of 2008.

In the model, the investor knows the values of the parameters in both regimes and the probability

of a regime switch occurring in a given time interval. Therefore, while the exact time of an economic

downturn is unknown, how bad the downturn will be is known in advance. This characterisation

of business cycles, as switches between periods relative prosperity and depression, is in contrast

to the model of Bloom et al. (2018), where downturns are triggered by random exogenous shocks.

Hamilton (1989) �rst showed that the growth in the trend of GNP could be described by a two-

regime Markov chain. Cerra & Saxena (2005a) and Cerra & Saxena (2005b) show that switching to

a regime with negative growth rates will cause permanent shortfalls in output relative to previous

trends if there is no 'recovery' regime where growth is faster than the normal growth regime. They

later found that permanent shortfalls actually appear to be the empirical norm (Cerra & Saxena,

2008). For simplicity, regime switches in this chapter cause changes in the level of productivity

rather than growth, so the level of productivity remains depressed for as long as the recessionary

regime lasts.
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1.3 Description of the Firm

1.3.1 Geometric Brownian Motion for Output Price

The price of the output good, Pt, follows a GBM with a known drift rate αi, a known volatility σi,

and Wt being a standard Brownian motion

dPt = αiPtdt+ σiPtdWt. (1.3.1)

The subscript i indicates that the parameter depends on the observable CTMC εt ∈ {1, 2} so i = 1

whenever εt = 1. The rate of leaving regime i and switching to regime j is given by λij. In other

words, the time between switches in εt follows an exponential distribution with an average event

time (the time it takes to leave state i) of 1/λij. If τi is the time at which the process leaves regime

i, then for the interval ∆t

Pr (τi > ∆t) = e−λij∆t ≈ 1− λij∆t

is the probability that εt will switch to regime j after a period of time longer than ∆t and

Pr (τi < ∆t) = 1− e−λij∆t ≈ λij∆t

is the probability that εt will switch to regime j after a period of time shorter than ∆t. Therefore,

the following transition matrix describes the regime switching behaviour of εt in the interval ∆t

(1− λ12∆t) λ12∆t

λ21∆t (1− λ21∆t)

 .
Figure 1.3.1 shows a discrete time approximation of the regime switching GBM (orange line) in

comparison to two standard GBM processes which have the same drift and volatility parameters as

the two regimes but no regime switching. The red line is the result of always being in regime two

and the blue line is the result of always being in regime one. The shaded area represents periods
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Figure 1.3.1: Discrete Time Approximation of Price Process
In the �gure, α1 = 0.04, α2 = −0.04, σ1 = 0.05, σ2 = 0.15, λ12 = 0.05, and λ21 = 0.25. The time interval is
∆t = 1

365 , so the αi and σi parameters can be interpreted as the annualised drift and volatility parameters and the

time increment is one day. The Brownian Motion is approximated as
√

∆t multiplied by a random draw from the
standard normal distribution. The parameter values were chosen purely in the interest of making the graph easy to
interpret.

where εt = 2, so the unshaded regions represent periods where εt = 1. λ12 < λ21 implies that the

economy spends more time in regime one over the sample period. Because α1 > 0 and α2 < 0 in this

example, price will tend to grow over time in regime one and fall over time in regime two. Higher

volatility in regime two (0.05 < 0.15) means the time path of Pt is more jagged because there is a

larger distribution of observations around the mean growth path. I maintain the assumption that

α1 > α2 and σ1 < σ2 throughout and refer to regime two as the `recessionary regime'.

1.3.2 Production and Costs

A representative investor possesses the option to acquire an in�nitely-lived �rm producing with a

Cobb-Douglas production function

F (Lt, Kt, εt) = ωiL
a
tK

b
t (1.3.2)

18



where F is the output of the �rm, Kt is capital stock used in production, Lt is quantity labour, and

ωi is a regime-switching productivity parameter dependent on the same CTMC εt. Let ω1 ≥ ω2

re�ect the fact that economic downturns are often associated with dips in aggregate and �rm-

level productivity, as discussed in section 1.2. This parameter will a�ect the level of output after

regime switches in the next two chapters, which requires recessionary regimes to a�ect the level of

productivity. In this chapter and the next, I interpret the ωi parameter as �rm-speci�c but switches

in εt a�ecting the whole economy. In the representative agent model, all �rms use the production

function in equation 1.3.2 but may have di�erent values of ωi.

The market for the output good is perfectly competitive. The production function exhibits

decreasing returns to scale, so the elasticity of output with respect to labour and capital, a and b

respectively, are both less than one. This assumption permits a positive pro�t �ow given the �rm

produces the output good using the optimal levels of capital and labour. These optimal levels are

determined by the parameters a and b, and a linear cost function comprised of the wages paid to

labour, w, and the price of capital goods, r. All factors adjust instantaneously, so the �rm can

always adjust its stock of labour and capital to the optimal level in the interval ∆t.

1.3.3 Pro�ts

The pro�t function is derived by assuming the �rm always minimises costs and solving the con-

strained optimisation problem given by the Lagrangian

min
Kt,Lt

L = [wLt + rKt] + µ
[
F − ωiKa

t L
b
t

]
. (1.3.3)

Di�erentiating the minimised cost function with respect to F and setting equal to Pt (marginal cost

equals marginal revenue) gives the pro�t maximising level of output, which can then be substituted

into the revenue (PtF ) and cost functions to obtain the maximised pro�t function given by equation

1.3.4

Π (Pt, εt) = [1− (a+ b)]

[
ωiPt

( a
w

)a( b
r

)b] 1
1−(a+b)

. (1.3.4)

Because Π (Pt, εt) is a function of Pt and Pt follows a GBM, Π (Pt, εt) also follows a GBM, only
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with modi�ed drift and volatility parameters compared to equation 1.3.1.

dΠ (Pt, εt) = α̂iΠdt+ σ̂iΠdWt (1.3.5)

Where α̂i =
[
αi [1− (a+ b)] + (a+ b) 1

2
σ2
i

]
and σ̂i = σi [1− (a+ b)] . The same transition matrix

governs the probability of switching between regimes in the interval ∆t. Figure 1.3.2 shows a

discrete time approximation of the pro�t process relative to the price process where the parameters

remain as they were in �gure 1.3.1. The volatility of the pro�t �ow is lower compared to the price

process, as evident from the expression de�ning σ̂i and the fact that 0 < [1− (a+ b)] < 1.

Figure 1.3.2: Discrete Time Approximation of Pro�t Process

Having speci�ed the variables and constants in the model, the following sections drop time

subscripts and arguments of functions to keep the equations concise. As stated in (Dixit & Pindyck,

1994, p.107), the fact that the �rm is in�nitely lived and the pro�t function and parameters of the

GBM are not explicit functions of time means the value of the �rm is also not a function of time

insofar as the calendar date is irrelevant in determining its value. The initial conditions do matter

but from there on the problem looks the same no matter the value of t.
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1.4 Value of the Firm

1.4.1 The Fundamental Value

The value of the �rm, Vi is the net present value of the �ow of all future pro�ts in regime i discounted

at a constant rate ρ. This means Vi is also dependent on the regime of the GBM in equation 1.3.1.

Over the interval dt, the �rm gives a pro�t �ow of Πidt and has an expected value over the rest of

its in�nite lifespan. The sum of the immediate pro�t �ow and the expected present value gives the

model's Bellman equation.

Since the pro�t �ow can be in one of two regimes over the interval dt, the Bellman equation

must also re�ect the change in the value of the �rm caused by a regime switch. In the interval

∆t, the pro�t �ow is (1− λij∆t) (Πi∆t) + λij∆t (Πj∆t). All terms of order (∆t)2 go to zero much

faster than those of ∆t and so should be ignored in the limit as ∆t→ 0. Thus, only the term Πi∆t

survives. It is clearer to present the di�erential equations below for the value of the �rm and the

option value as functions of the price of the output good rather than the pro�t �ow. Hence, let

h = [1− (a+ b)]

[( a
w

)a( b
r

)b] 1
1−(a+b)

and ν = 1
1−(a+b)

so the pro�t �ow is

Πi = hωνi P
ν .

The Bellman equation is

Vi = Πidt+ e−ρdt E[(1− λijdt)(Vi + dVi) + λijdt(Vj + dVj)]. (1.4.1)

Expanding Vi using Ito's lemma, ignoring all di�erential terms of order greater than dt (such as

dt2) and rearranging yields the following second-order di�erential equation describing the dynamics

of Vi over the interval dt

1

2
σ2
i P

2V
′′

i + αiPV
′

i − (ρ+ λij)Vi + hωνi P
ν + λijVj = 0. (1.4.2)
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It is normal in this �eld to assume there are no 'speculative bubbles' regarding the value of the

technology (Dixit & Pindyck, 1994, p.180). Mathematically, this means ignoring the homogeneous

part of the solution to the di�erential equation. Economically, it means the investor does not

consider the option value of selling the �rm. This assumption is necessary when considering the

case of irreversible acquisitions. It also means the non-homogeneous solution of equation 1.4.2

has an economically intuitive interpretation as the expected net present value of the technology,

taking into account the drift and volatility parameters of the pro�t �ow as well as the probability

of switching to the other regime

Vi = Eεt
∫ ∞

0

e−ρt [Πi | ε = i] dt. (1.4.3)

Direct substitution into 1.4.2 shows that Vi = θihP
ν , where θi is some constant to be determined,

solves the di�erential equation if

θi =
ωνi + λijω

ν
j θj

(ρ+ λij)− αiν − 1
2
σ2
i ν (ν − 1)

.

Now let

ηi(x) = (ρ+ λij)− αi(x)− 1

2
σ2
i x (x− 1) (1.4.4)

then the value of the �rm is given in equation 1.4.5, where the expression for θj is substituted into

θi

Vi =
ηj(ν)ωνi + λijω

ν
j

ηi(ν)ηj(ν)− λijλji
hP ν = θihP

ν . (1.4.5)

In order for θi to be positive, ηi(ν) > 0 must hold. Given that ρ > αi is assumed to ensure waiting

for more information is not always the best policy, this condition implies that either ρ should not

be too small or that σi and ν should not be too large. ν is relatively small when the returns to

scale of the production function are su�ciently decreasing, a similar condition exists for the model

in (Dixit & Pindyck, 1994, p.365). I ensure this by keeping ν less than the positive root of ηi(z)

and H(z) de�ned below. Volatility is under the control of the modeller and in most studies of this

kind it is kept around 0.2 (Dixit & Pindyck, 1994, p.156; Guo et al., 2005). Therefore, I primarily
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use ρ to ensure the discounted present value of the �rm is positive and that there is some �nite

value of P which justi�es exercising the option.

1.4.2 The Option Value

The value of the option to invest in the technology, Φi, can also be solved as a function of the price

of the output good. The Bellman equation for the option to invest in the technology is

Φi = e−ρdt E[(1− λijdt)(Φi + dΦi) + λijdt(Φj + dΦj)] (1.4.6)

which, after expansion using Ito's lemma, yields the homogeneous linear di�erential equation 1.4.7.

As required, the value of the option in state i is dependent on the dynamics of the option in state j

1
2
σ2
i P

2Φ
′′

i + αiPΦ
′

i − (ρ+ λij)Φi + λijΦj = 0. (1.4.7)

Again, direct substitution of

Φ1 =
4∑
j=1

AjP
zj and Φ2 =

4∑
j=1

BjP
zj (1.4.8)

into 1.4.7 solves the di�erential equation if there four real roots to the following quartic equation

H(z) = η1(z)η2(z)− λ12λ21 = 0 (1.4.9)

in which case η1(zj)

λ12
Aj = Bj and the relationship between Aj and Bj is �xed. Appendix 1.A.1

demonstrates that two of these roots are greater than one, call them z1 and z2, and two of them

are negative, z3 and z4. Notice that every constant of integration is multiplied by P raised to the

power of zj and that the subscript of the constant matches the subscript of the associated zj.

More constants of integration will be needed later in this chapter as the solutions to the dif-

ferential equations change when considering transient regions and when the acquisition of the �rm

is allowed to be partially reversible. For future reference, table 1.4.1 gives an overview of the no-

tation adopted for these constants. It only includes the constants which need to be identi�ed, so
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it does not include the Bj constants above because these are known as soon as the Aj are found.

At present, I have only introduced constants Aj and Bj with j ∈ {1, 2, 3, 4} and stated that their

subscripts match those on the roots of the characteristic equation which they are associated with.

The use of the other constants and the meanings of the terms in the column headers will become

clear throughout the chapter.

Con�guration
Constants Regime Associated

Root Sign
Region Φ/V Nested Separated

A1, A2 1 +,+ Base Φ1 3 3

A3, A4 1 −,− Base V1 3 3

C1, C2 2 +,− Transient ΦT
2 3 3

C3, C4 2 +,− Transient V T
2 3 7

C5, C6 1 +,− Transient V T
1 7 3

D1, D2, D3, D4 1 +,+,−,− Linking V L
1 7 3

Table 1.4.1: Naming Conventions for the Constants of Integration

1.5 Irreversible Investment

1.5.1 Option Value in a Transient Region

In the irreversible case, the investor purchases the �rm for a constant one-time purchase price I

and cannot sell it at a later date. Terms in Φi associated with a negative power imply that as the

price of the output good goes to zero, the value of the option will go to in�nity. This is inconsistent

with the logic that the value of the option to invest in the �rm should go to zero as P goes to zero.

Hence, set A3 = A4 = B3 = B4 = 0. I show that the solution to the investor's problem in this

framework is similar to that of a �rm deciding when to adjust its capital stock upwards under total

irreversibility, as in Guo et al. (2005). I borrow the terminology used in their study and refer to

regions of P for which a switch in regime brings an immediate change in the investor's ownership

position as transient regions.

Equation 1.4.7 assumes that the option to invest in the �rm will not be exercised in regime j

following a switch in the CTMC. But even though the output price may not be su�cient to justify

exercising the option in regime i, it could be su�cient for regime j. In this case, a switch in the
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CTMC will mean the investor immediately acquires the �rm itself (minus the purchase price I)

rather than the option to invest in the �rm. For exposition, assume that the CTMC is currently

in regime two and P is such that the investor should not exercise her option to invest in the �rm.

However, if there is a switch to regime one, P is such that exercising the option is justi�ed. The

di�erential equation needs to be modi�ed accordingly, with the option value in state one being

replaced by the payo� for exercising the option to invest; V1 − I. As will be seen, the assumption

that regime two represents an economic downturn implies Φ2 is in a transient region for some range

of values of the output price, but the exact same reasoning could be applied to Φ1 if no constraints

were placed on the relative values of the parameters, so the result is fully generalisable. For clarity,

let ΦT
2 be the value of Φ2 when it is in the transient region. Then the di�erential equation describing

the dynamics of the option value is

1

2
σ2

2P
2
(
ΦT

2

)′′
+ α2P

(
ΦT

2

)′ − (ρ+ λ21)
(
ΦT

2

)
+ λ21[θ1hP

ν − I] = 0. (1.5.1)

The solution to 1.5.1 consists of a homogeneous and non-homogeneous part, the former re�ecting

the option to invest in the �rm and the change in the option value that occurs at the boundary

of the transient region, and the latter re�ecting the probability weighted value acquired due to a

switch in the CTMC to regime two (Guo et al., 2005). Because the transient region is bounded

above and below by the investment thresholds in the two regimes, it does not make sense to think

of the case where P goes to zero, so there is no argument to eliminate either of the constants of

integration from the homogeneous part of the solution. Let γ1 > 1 and γ2 < 0 be the roots of η2(γ)

and note that λ21θ1
η2(ν)

=
(
θ2 − ων2

η2(ν)

)
, then 1.5.2 is the solution to 1.5.1

ΦT
2 = C1P

γ1 + C2P
γ2 +

(
θ2 −

ων2
η2(ν)

)
hP ν − λ21I

ρ+λ21
. (1.5.2)

The model predicts that if the economy is currently in the recessionary regime and P > P ∗1 , the

investor will immediately purchase the �rm if there is a regime switch to the expansionary regime.

Therefore, there could be a sudden increase in the number of acquisitions when switching to an

expansionary regime. This requires the output price be relatively high in the recessionary regime
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which is less likely due to the lower value of α2. In economic terms; if the pro�tability of the �rm

does not slip too far during the recession, there may be an burst in activity after the return to the

expansionary regime.

1.5.2 Boundary Conditions

With Φ2 in a transient region over some range of values of the output price, there are six unknowns

in the model; four constants of integration A1, A2, C1 and C2, and two threshold values of P , P ∗1

and P ∗2 , justifying investment in the �rm in regime one and two respectively. This requires six

equations. Four of these are provided by the value matching and smooth pasting conditions at

the threshold values of P , which ensure that exercising the option is indeed the investor's optimal

strategy at these values. Value matching sets the option values equal to the value of the project

at the boundary, which is intuitive as the boundary can be seen as a point of indi�erence between

holding the option and holding the project, and smooth pasting ensures these equations meet

tangentially at the boundary2

2∑
j=1

Aj (P ∗1 )zj = θ1h (P ∗1 )ν − I (1.5.3)

2∑
j=1

zjAj (P ∗1 )zj−1 = νθ1h (P ∗1 )ν−1 (1.5.4)

2∑
j=1

Cj (P ∗2 )γj +

(
θ2 −

ων2
η2(ν)

)
h (P ∗2 )ν − λ21I

ρ+ λ21

= θ2h (P ∗2 )ν − I (1.5.5)

2∑
j=1

γjCj (P ∗2 )γj−1 + ν

(
θ2 −

ων2
η2(ν)

)
h (P ∗2 )ν−1 = νθ2h (P ∗2 )ν−1 . (1.5.6)

2See (Dixit & Pindyck, 1994, pp.130-131) for an intuitive explanation of the value matching and smooth pasting
conditions in the context of an optimal stopping problem.
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The �nal two conditions ensure than Φ2 and ΦT
2 and their �rst derivatives are equal at the threshold

value P ∗1

2∑
j=1

Cj (P ∗1 )γj +

(
θ2 −

ων2
η2(ν)

)
h (P ∗1 )ν − λ21I

ρ+ λ21

=
2∑
j=1

η1(zj)

λ12

Aj (P ∗1 )zj (1.5.7)

2∑
j=1

γjCj (P ∗1 )γj−1 + ν

(
θ2 −

ων2
η2(ν)

)
h (P ∗1 )ν−1 =

2∑
j=1

zj
η1(zj)

λ12

Aj (P ∗1 )zj−1 (1.5.8)

Further intuition behind these conditions is given in (Dixit, 1993, pp.30-31).

To solve this system, �rst �nd the constants of integration which solve the �rst four boundary

conditions then substitute these expressions into equations 1.5.7 and 1.5.8 and derive a non-linear

equation in R =
P ∗1
P ∗2
. Finding a unique root R < 1 to this equation means identifying a pair of

thresholds which ensure P ∗1 < P ∗2 . The solution has a very similar form to a model of capital

accumulation by Guo et al. (2005).

1.5.3 Constants of Integration

The constants of integration which solve equations 1.5.3 to 1.5.6 are given by:

A1 = − 1

(z2 − z1) (P ∗1 )z1
[(ν − z2) (θ1h (P ∗1 )ν) + z2I] (1.5.9)

A2 = − 1

(z1 − z2) (P ∗1 )z2
[(ν − z1) (θ1h (P ∗1 )ν) + z1I] (1.5.10)

C1 = − 1

(γ2 − γ1) (P ∗2 )γ1

[
(ν − γ2)

(
ων2
η2(ν)

h (P ∗2 )ν
)

+ γ2
ρI

ρ+ λ21

]
(1.5.11)

C2 = − 1

(γ1 − γ2) (P ∗2 )γ2

[
(ν − γ1)

(
ων2
η2(ν)

h (P ∗2 )ν
)

+ γ1
ρI

ρ+ λ21

]
. (1.5.12)

Their values are such that V1 = Φ1 at P ∗1 , ΦT
2 = V2 at P ∗2 , and ΦT

2 = Φ2 at P ∗1 . A1 and A2 together

indicate the value of the option to acquire the �rm in regime one. Their sum will be positive because

the expected discounted pro�t �ow generated by the �rm is positive. Likewise, C1 and C2 together

re�ect the option value of acquiring the �rm in the transient region of regime two and their sum

will also be positive. I will devote more time to discussing the constants of integration in the case

of partially irreversible acquisitions.
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1.5.4 Non-linear Equation in R

Substituting the constants of integration into equations 1.5.7 and 1.5.8 and rearranging gives two

non-linear equations which de�ne the value of h (P ∗2 )ν ,

h (P ∗2 )ν =
I
(
γ2Rγ1−γ1Rγ2

γ2−γ1
ρ

ρ+λ21
+ η1(z2)z1−η1(z1)z2

λ12(z2−z1)
+ λ21

ρ+λ21

)
Rν
(
θ2 + (ν−z2)η1(z1)−(ν−z1)η1(z2)

λ12(z2−z1)
θ1 − ων2

η2(ν)

)
+ (ν−γ1)Rγ2−(ν−γ2)Rγ1

γ2−γ1
ων2
η2(ν)

(1.5.13)

h (P ∗2 )ν =
I
(
γ1γ2(Rγ1−Rγ2 )

γ2−γ1
ρ

ρ+λ21
+ z1z2(η1(z2)−η1(z1))

λ12(z2−z1)

)
Rν
(
νθ2 + z1(ν−z2)η1(z1)−z2(ν−z1)η1(z2)

λ12(z2−z1)
θ1 − νων2

η2(ν)

)
+ γ2(ν−γ1)Rγ2−γ1(ν−γ2)Rγ1

γ2−γ1
ων2
η2(ν)

. (1.5.14)

These two equations must be equal, so divide 1.5.13 by 1.5.14 to get one equation and one unknown,

R. I �nd the root of this expression numerically, using reasonable values for the parameters in the

model based on Guo et al. (2005) and real-world data. Substituting R into 1.5.13 gives h (P ∗2 )ν ,

which after rearranging and solving for P ∗2 and using the fact that P ∗1 = RP ∗2 gives the threshold price

level in regime one. With this found, the threshold justifying investment could also be expressed in

terms of Π∗i by multiplying the expressions by ωi. Importantly, R will tend towards one as α1 → α2,

σ1 → σ2, and ω1 → ω2 meaning that switching between two identical processes reduces the model

to one without switching where there is only one critical value of P justifying investment.

1.5.5 Numerical Solutions to the Non-linear equation

Table 1.5.2 shows how the thresholds values of P in the two regimes change as the parameters of

the model change by one percentage point. I calibrate the model so that regime two represents

an economic downturn and demonstrate how the investment thresholds change when the disparity

between the two regimes becomes greater. Thus, the table shows the e�ect of making the downturn

more severe; with higher uncertainty, lower price growth, and lower productivity. Likewise, it

shows the e�ect of making the other regime better for investors; with higher price growth, lower

uncertainty, and higher productivity. In both cases, I show the e�ect of increasing the persistence of

the regimes, which means decreasing the probability of switching to the other regime in the interval

dt. Table 1.5.1 gives some base values for the parameters in the model; unless stated otherwise,

these are the values the parameters take in the simulations.
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a b α1 α2 σ1 σ2 ω1 ω2 ρ λ12 λ21 I r w
0.1 0.2 0.02 0.01 0.2 0.25 1 1 0.1 0.05 0.25 10 1 1

Table 1.5.1: Parameter Values

The base rate of transition from an expansion to a recession is chosen based on the average

number of quarters an expansion has lasted since 1950 according to the NBER's method of identi-

fying turning points in the business cycle. Since 1/λij is the expected time elapsed before a switch,

and the average time between recessions is 20.5 quarters, 1/λ12 = 20.5 so λ12 ≈ 0.05. Likewise, the

transition rate from a recession to an expansion is the inverse of the average number of quarters

recessions have lasted since 1950, which is just above 4, yielding λ21 = 0.25. The discount rate used

by the investor is set at a base rate of 10%. This is much higher than the average interest rate

on three-month treasury bills since 1950 (4%), however, is more in line with recent estimates by

Gormsen & Huber (2023) from 2500 �rms across 20 countries which suggests an average required

return on investment projects of 16%. Mechanically, ρ must be su�ciently large to ensure the

positive roots of η2(z) and H(z) are greater than ν, otherwise the discounted value of pro�ts would

be negative. The base rate of nominal growth in the price of the output good and its volatility is

in a range consistent with the models of Guo et al. (2005) and (Dixit & Pindyck, 1994, p.153) and

should be interpreted as quarterly rates. In the base case, ωi = 1 so the regime change does not

have an e�ect on productivity. The value of I does not play a signi�cant role in the model, it just

scales the values of the thresholds up or down.

With these values, the base value of P ∗1 is 3.1774 and the base value of P ∗2 is 3.4517. Expressed

in terms of pro�t �ow, the values are 1.6587 and 1.8670 respectively. Therefore, the model predicts

that switching to a high-uncertainty regime with lower price growth will cause the price justifying

the acquisition of a new �rm to increase, suggesting a fall in acquisitions during downturns. This

is consistent with the results of Nguyen & Phan (2017) and Bonaime et al. (2018) discussed in

section 1.2 as well as the models of investment under uncertainty in Dixit & Pindyck (1994). For

completeness, the constants of integration are A1 = 0.002, A2 = 1.33, C1 = 0.02, and C2 = 17.85.

The parameters a�ect both the value of the �rm and the value of the option to invest, the former

through the constants θi and θ2− (ων2/η2(ν)), and the latter through the roots of the characteristic

polynomials and the constants of integration. Any parameter which increases the characteristic roots
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Parameter ∆ ∆P ∗1 ∆P ∗2
α1 + -0.083 -0.047
α2 − 0.0103 0.0575
σ1 − -0.0583 -0.0138
σ2 + 0.0036 0.0526
λ12 − -0.0049 -0.0023
λ21 − 0.0005 0.0029
ρ + 0.1733 0.1805
ω1 + -0.0292 -0.0096
ω2 − 0.0023 0.0251

Table 1.5.2: Simulation Results

z1, z2, and γ1 will decrease the investment threshold by decreasing the option value of waiting. The

comparative statics of the roots are discussed in appendix 1.A.2. Any parameter which increases

θi will also decrease the investment threshold by increasing the expected present value of the �rm,

thus making purchase more attractive even at relatively lower output prices.

The �rst key result from table 1.5.2 is that the threshold justifying investment is higher in

high uncertainty regimes and increases as uncertainty in that regime increases, as shown from the

e�ect of a one percentage point increase in σ2. Investors adopt a wait-and-see mentality which

dampens the amount of acquisitions in regime two. It also causes a slight increase in the threshold

in regime one because the decision to purchase the �rm in regime one has to be conditioned on the

option value in regime two, which is now higher. Note that the convexity of the labour-optimised

pro�t function means increases in σ2 will increase the expected discounted value of the �rm for the

investor. Hence, the option value of waiting is su�ciently large to overcome the expected increase in

future pro�ts generated by the higher volatility parameter, which lowers the investment threshold.

This is a consequence of the restriction that ν is less than the roots of ηi(z) and H(z).

Higher persistence of the recessionary regime (lower λ21) results in a higher investment threshold,

though the e�ect of a one percentage point change is notably lower than it is for the other parameters

in the model. A lower λ21 lowers the positive root γ1 which will tend to increase the investment

threshold. The intuition is that as the high-uncertainty regime becomes more persistent, the value

of waiting for more information is higher (in both regimes). For the base parameters chosen, lower

λ21 also reduces the expected fundamental value of the �rm in both regimes, which also causes

the investment threshold to increase because the opportunity cost of not purchasing the project is
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lower.

In contrast, the investment threshold decreases when the low-uncertainty regime becomes more

persistent. Given the initial parameters, lower λ12 will decrease the larger positive root (z1), and

increase the smaller positive root (z2) so there is ambiguity about the e�ect on the investment

threshold. Additionally, the fundamental value of the �rm increases when λ12 is lower which will

favour earlier exercise. Together, table 1.5.2 shows these e�ects cause a fall in the investment

threshold. Economically, as the low-volatility regime becomes more persistent, the option value of

waiting for more information falls. Acquiring the �rm makes more sense when relatively prosperous

periods are expected to last longer.

Changes in ωi a�ect the thresholds in both regimes by in�uencing the expected present value

of future pro�t �ows in both regimes. Higher ω1 means the investor will purchase the technology

earlier because the pro�t �ow it generates will outweigh the cost of purchase plus the option value

of waiting at a lower value of P . It also means the probability-weighted value of a regime switch

from regime one to regime two is higher, i.e. λ21[θ1hP
ν − I] is higher, which will favour earlier

exercise in regime two. Likewise, lower ω2 means the investor will wait longer before exercising

her option because the expected pro�t �ow is lower. This is a mechanism through which low-

productivity regimes can reduce the amount of acquisitions and can explain their business cycle

dynamics pointed out by Maksimovic & Phillips (2001).

Overall, this analysis reveals that highly-persistent economic regimes which cause both high

uncertainty and low productivity will signi�cantly dampen the number of acquisitions. The e�ects

are not just limited to the recessionary regime because investors take both regimes into consideration

when solving their decision problem.

1.6 Partially Reversible Investment

1.6.1 Value of the Firm with Reversibility

If the �rm can be sold at a later date for U < I, part of the homogeneous solution to 1.4.2 should

be kept alive to re�ect the option value of selling it at a later date. The investor is also able
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to buy the �rm back after they have sold it for the same purchase price I. O�cer (2007) notes

that selling subsidiaries is a common method for cash-strapped �rms to overcome liquidity issues.

The homogeneous solution to 1.4.2 will have exactly the same form as 1.4.8. In this instance, the

constants of integration associated with terms featuring positive powers of z (z1 and z2) should be

set equal to zero, because the option value of selling the project will be worth very little for very

large values of P . Hence, A1 = A2 = B1 = B2 = 0 and the value of the �rm is

V1 = θ1hP
ν + A3P

z3 + A4P
z4 (1.6.1)

V2 = θ2hP
ν +

η1(z3)

λ12

A3P
z3 +

η1(z4)

λ12

A4P
z4 . (1.6.2)

As before, the investor will purchase the project when the option value is equal to the value of the

�rm minus the purchase cost. However, if the price of the output good is su�ciently low the investor

will sell the project for a lump sum U and acquire the option to repurchase it at a later date. This

means there are four critical values to locate in the model; two values of P justifying investment

and disinvestment in regime one, P I
1 and PU

1 , and two corresponding thresholds in regime two P I
2

and PU
2 . Importantly, the investor always owns the �rm in regime i when price is above the upper

threshold in regime i and likewise always holds the option to purchase it when price is below the

lower threshold in regime i. Whenever PU
i < P < P I

i , the investor could hold either the �rm or the

option.

1.6.2 Transient Regions with Reversibility

The locations of the transient regions depend on the con�gurations of the investment and disinvest-

ment thresholds. By con�guration, I mean the location of the thresholds in regime one relative to

the thresholds in regime two. In this chapter, I consider two con�gurations; a `nested con�guration'

where the thresholds in one regime are bounded by those of the other regime, and a `separated

con�guration' where the sale threshold in one regime is higher than the purchase threshold in the
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other regime3. There is also an intermediate case where the thresholds overlap, so the sale threshold

in one of the regimes is bounded by the purchase and sale thresholds in the other regime. This

chapter only focuses on the two extreme cases with the understanding that the `overlapping con-

�guration' is produced by parameter values lying somewhere in between. Chapter two focuses on

capital accumulation rather than a one-time purchase and includes a solution in the overlapping

con�guration. Figure 1.6.1 shows the locations of the transient regions in the two con�gurations.

Notice that in �gure 1.6.1, P I
2 is always the rightmost threshold, implying that it is the highest

threshold value of P . Likewise, PU
2 is the leftmost threshold in the nested con�guration and is

higher than P I
1 in the separated con�guration. This is a consequence of the assumptions which

made regime two the recessionary regime. σ2 > σ1, α2 < α1 and ω2 ≤ ω1 all imply the investment

threshold in regime two will always lie above the investment threshold in regime one. Hence, a

nested con�guration must have PU
2 as the lowest threshold value of P and a separated con�guration

must have PU
2 > P I

1 .

Of course, I could have chosen regime one to be the recessionary regime, in which case the

subscripts in �gure 1.6.1 should all be swapped. The key point is that the results in this section are

fully generalisable. The restrictions making regime two the recessionary regime means this chapter

is only concerned with the con�gurations in �gure 1.6.1, however, if I swapped the subscripts of all

the parameter values it would produce the same con�guration but would also swap the subscripts

of the threshold values of P .

Remember that transient regions occur whenever a regime switch causes an immediate change

in the investor's policy. For example, in panel 1.6.1a if PU
2 < P < PU

1 and the investor currently

owns the �rm in regime two, a switch to regime one will cause the investor to immediately sell

the project and acquire the option to invest in regime one because the price of the output good is

below the critical value justifying sale in regime one. If the CTMC is in regime one and the investor

possessed the option in the region PU
2 < P < PU

1 , the regime switch would not cause a change

in the ownership position because the output price is not su�ciently high to justify purchase in

3A separated con�guration is only possible if I, U , or F changes when the regime changes. I will show why
this is the case in chapter two. In the knife-edge case where PU2 = PU1 in the nested con�guration, the boundary
conditions will give 10 equations but 9 unknowns, so there is no solution. The same is true in the knife-edge case for
the separated con�guration. It would be very di�cult to �nd parameter values which cause these knife-edge cases
though so this chapter and the next are not concerned with them.
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(a) Nested Con�guration

(b) Separated Con�guration

Figure 1.6.1: Con�gurations of the Boundaries

regime two. Similarly, if P I
1 < P < P I

2 and the investor currently holds the option to invest in

regime two, a switch to regime one would justify the immediate purchase of the �rm. If the investor

currently owned the �rm in this region, however, a switch to regime one would not cause a change

in ownership position because P is far above the threshold required to sell the �rm in regime one.

Notice that transient regions only occur for regime two in the nested con�guration. Hence, V T
2

denotes the value of the �rm in regime two within the transient region PU
2 < P < PU

1 while ΦT
2

denotes the value of the option to invest in regime two within the transient region P I
1 < P < P I

2 .

The same logic applies when locating the transient regions in panel 1.6.1b. For example, if the

investor owns the �rm in the region PU
1 < P < P I

1 , a switch from regime one to regime two justi�es

selling the �rm and acquiring the option. If the investor instead held the option in regime one, the

regime switch would not cause a change in ownership position. Therefore, the value of the �rm is

in a transient region between PU
1 < P < P I

1 . By the same argument, the option value in regime

two is transient in the region PU
2 < P < P I

2 . The di�erential equations and in the transient regions
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of �gure 1.6.1 are

1

2
σ2

2P
2
(
ΦT

2

)′′
+ α2P

(
ΦT

2

)′ − (ρ+ λ21)
(
ΦT

2

)
+ λ21 [θ1hP

ν + A3P
z3 + A4P

z4 − I] = 0, (1.6.3)

1

2
σ2

2P
2
(
V T

2

)′′
+ α2P

(
V T

2

)′ − (ρ+ λ21)
(
V T

2

)
+ hων2P

ν + λ21 [A1P
z1 + A2P

z2 + U ] = 0, (1.6.4)

and,

1

2
σ2

1P
2
(
V T

1

)′′
+ α1P

(
V T

1

)′ − (ρ+ λ12)
(
V T

1

)
+ hων1P

ν + λ12

[
η1(z1)
λ12

A1P
z1 + η1(z2)

λ12
A2P

z2 + U
]

= 0.

(1.6.5)

Equation 1.6.3 states that if the investor holds the option in regime two, a switch to regime one

means she immediately acquires the �rm minus the purchase cost. Likewise, a switch in regime

causes the investor to immediately sell the �rm she currently owns in equations 1.6.4 and 1.6.5.

Remembering that
(
θ2 − ων2

η2(ν)

)
= λ21

θ1
η2(ν)

and from the quartic equation η2(zj)

λ21
= λ12

η1(zj)
, the solutions

to these three equations are:

ΦT
2 = C1P

γ1 + C2P
γ2 +

(
θ2 −

ων2
η2(ν)

)
hP ν − λ21I

ρ+λ21
+ η1(z1)

λ12
A3P

z3 + η1(z4)
λ12

A4P
z4 , (1.6.6)

V T
2 = C3P

γ1 + C4P
γ2 + λ12

η1(ν)
hων1P

ν + λ21U
ρ+λ21

+ η1(z1)
λ12

A1P
z1 + η1(z2)

λ12
A2P

z2 , (1.6.7)

and,

V T
1 = C5P

β1 + C6P
β2 + λ12

η1(ν)
hων1P

ν + λ12U
ρ+λ12

+ A1P
z1 + A2P

z2 . (1.6.8)

Where β1 > 1 and β2 < 0 are the roots of η1(z). Table 1.4.1 helps keep track of the notation used

for the constants of integration.
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1.6.3 Linking Region

The separated con�guration contains a region where the value of the project in regime one and the

option value in regime two are simultaneously transient in the region between P I
1 and PU

2 , forming

another system of coupled di�erential equations. A regime switch in this region always causes a

change in the investor's ownership position; she will own the �rm in regime one and hold the option

in regime two. I call this the linking region because it bridges the gap between the lower threshold

in regime two and the upper threshold in regime one. Let V L
1 be the value of the �rm in regime

one and ΦL
2 be the option value in regime two in the linking region.

The system of coupled di�erential equations is

1

2
σ2

1P
2
(
V L

1

)′′
+ α1P

(
V L

1

)′
− (ρ+ λ12)

(
V L

1

)
+ hων1P

ν + λ12

(
ΦL

2 + U
)

= 0 (1.6.9)

1

2
σ2

2P
2
(
ΦL

2

)′′
+ α2P

(
ΦL

2

)′ − (ρ+ λ21)
(
ΦL

2

)
+ λ21

[
V L

1 − I
]

= 0 (1.6.10)

which has the solution

V L
1 = θ3hP

ν + ϑ1 +
4∑
j=1

DjP
zj (1.6.11)

ΦL
2 = θ4hP

ν + ϑ2 +
4∑
j=1

η1(zj)

λ12

DjP
zj (1.6.12)

where

θ3 =
ων1η2(ν)

η1(ν)η2(ν)− λ12λ21

, θ4 =
λ21ω

ν
1

η1(ν)η2(ν)− λ12λ21

,

ϑ1 = − λ12λ21I − (ρ+ λ21)λ12U

(ρ+ λ12) (ρ+ λ21)− λ12λ21

, and ϑ2 =
λ12λ21U − (ρ+ λ12)λ21I

(ρ+ λ12) (ρ+ λ21)− λ12λ21

.

As before, in the limit as the transition rates tend towards zero, these expressions would reduce to

their equivalents in a model without regime switching. The ϑi terms account for the probability

weighted value of a regime switch when the output price is inside the linking region. The constants

of integration Dj re�ect the option values of buying (D1 and D2) and selling (D3 and D4) the �rm
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in the linking region.

1.6.4 Nested Con�guration Boundary Conditions

There are twelve equations and twelve unknowns in the nested con�guration; four threshold values

justifying investment and disinvestment in the two regimes and eight constants of integration. Table

1.4.1 will help keep track of the constants of integration used in the following sections. Regime one

has A1 and A2 associated with the option value of investment, as well as A3 and A4 associated with

the option value of selling the �rm. The set of value matching and smooth pasting conditions given

below pin down the unknowns at the threshold values of P in regime one. For consistency with the

graphical representation of the solutions in the following sections, I write the boundary conditions

such that the right-hand side is always a constant and Vi terms always appear �rst on the left-hand

side

V1(P I
1 )− Φ1(P I

1 ) = I V1(PU
1 )− Φ1(PU

1 ) = U (1.6.13)

V ′1(P I
1 )− Φ′1(P I

1 ) = 0 V ′1(PU
1 )− Φ′1(PU

1 ) = 0. (1.6.14)

Regime two has C3 and C4 associated with the option to sell the �rm in the transient region between

PU
2 and PU

1 , and C1 and C2 associated with the option to purchase the �rm in the transient region

between P I
1 and P I

2 . As always, the value of the �rm (including the option to sell it later) must be

equal to the option of purchasing it at the boundaries justifying a change in policy. Additionally, V2

and V T
2 must meet tangentially at the PU

1 boundary and likewise for Φ2 and ΦT
2 at the P I

1 boundary,

hence,

V2(P I
2 )− ΦT

2 (P I
2 ) = I V T

2 (PU
2 )− Φ2(PU

2 ) = U (1.6.15)

V ′2(P I
2 )−

(
ΦT

2

)′
(P I

2 ) = 0
(
V T

2

)′
(PU

2 )− Φ′2(PU
2 ) = 0 (1.6.16)
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Φ2(P I
1 )− ΦT

2 (P I
1 ) = 0 V2(PU

1 )− V T
2 (PU

1 ) = 0 (1.6.17)

Φ′2(P I
1 )−

(
ΦT

2

)′
(P I

1 ) = 0 V ′2(PU
1 )−

(
V T

2

)′
(PU

1 ) = 0. (1.6.18)

1.6.5 Nested Con�guration Solution

The same base parameter values are used as in 1.5.5 with the addition of U = 9. The nested

con�guration is characteristic of regime switches which a�ect uncertainty but have only a modest

a�ect on the drift of the output price or on the productivity parameter. An example of such an

event is the result of the 2016 U.S. presidential election or the UK's decision to leave the European

Union. These events created high uncertainty over future economic policy and of potential access

to global markets but had only moderate immediate supply-chain or production line e�ects for the

majority of economic sectors (Aït-Sahalia et al., 2021).

P I
1 PU

1 P I
2 PU

2

2.8393 1.5626 3.1169 1.4609
A1 A2 A3 A4

0.011745 1.5133 4.9478 2.4439
C1 C2 C3 C4

0.061596 0.40661 -0.03155 2.2679

Table 1.6.1: Nested Con�guration Solution

Table 1.6.1 gives the values of the thresholds and constants of integration in this con�guration

using the base parameters from table 1.5.1 but with σ2 = 0.3 to make the di�erence between the

thresholds easier to see when they are graphed in �gure 1.6.2. The �rst panel shows the tangency

points between I, U , and the function V1(P ) − Φ1(P ) while the second panel con�rms that the

variables in the transient regions smooth paste with V2 and Φ2 at the regime one thresholds. The

stars on the horizontal axis represent the threshold values of price, blue in regime one and red in

regime two.

The shape of the blue function in �gure 1.6.2 is explained in (Dixit & Pindyck, 1994, p.220) and

38



(a) Thresholds in the Nested Con�guration

(b) Transient Regions in the Nested Con�guration

Figure 1.6.2: Nested Con�guration
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gives some intuition about the signs of the constants of integration. The full expression is

V1(P )− Φ1(P ) = θ1hP
ν +

2∑
j=3

AjP
zj −

2∑
j=1

AjP
zj

where all the Aj terms are positive in the numerical solution. Given z3 < 0 and z4 < 0 the

terms containing these powers dominate for small values of P , which explains why the function

is initially decreasing. This allows the function to have a local (in the range [PU
2 , P

I
2 ]) minimum

where V1(P ) − Φ1(P ) = U . A1 and A2 are positive but there is a minus sign in front of them in

V1(P ) − Φ1(P ). Because z1 > z2 > ν, the slope of the blue curve is diminishing after the local

minimum. Eventually, the terms including A1 and A2 will dominate and the function must slope

downwards again. The values of the constants of integration are such that V1(P ) − Φ1(P ) has its

local maximum at P 1
I where it is tangent to I.

The same logic can be applied to the transient regions. Given the equation for the dashed red

line,

V2(P )− ΦT
2 (P ) = −C1P

γ1 − C2P
γ2 +

ων2
η2(ν)

hP ν + λ21I
(ρ+λ21)

with C1 = 0.06 and C2 = 0.41, the function is initially upward sloping. However, it will also

be diminishing because the restriction that γ1 > ν means the term C1P
γ1 eventually dominates,

allowing the function to have a local maximum at P I
2 , as required. So it must be the case that

C1 > 0 in this model. The value of C2 depends on how far P I
1 is from P I

2 . Remember that ΦT
2 (P )

must also smooth paste with Φ2(P ) at P I
1 . If the thresholds are far apart, the slope of V2(P )−ΦT

2 (P )

after P I
1 must be relatively shallow, while if they are close together the slope must be steep. With

γ2 < 0 and a minus sign in front of the C2, higher values of C2 mean a steeper slope and that the

thresholds are relatively close together.

The solid red line in 1.6.2 has a very similar form;

V T
2 (P )− Φ2(P ) = C3P

γ1 + C4P
γ2 +

ων2
η2(ν)

hP ν + λ21U
(ρ+λ21)

with C3 = −0.03155 and C4 = 2.2679. C4 must be positive to ensure the function is tangent to U

at PU
2 . C3 depends on the distance between PU

2 and PU
1 . The slope of the function gets steeper as
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C3 increases, meaning the thresholds must lie relatively close together.

The investment thresholds in table 1.6.1 are lower than those in section 1.5.5, even with a higher

value of σ2 in this section. This re�ects the fact that the acquisition is now partially reversible.

When some of the cost is recoverable, the investor is willing to acquire the �rm even at lower values

of P . Models which do not take into account the partial reversibility of investment decisions will

tend to overestimate the e�ect of uncertainty on the number of acquisitions.

As expected based on the results of table 1.5.2, higher uncertainty in the recessionary regime

increases the wedge between the two investment thresholds and the two disinvestment thresholds. It

also increases the wedge between PU
i and P I

i . Figure 1.6.3 shows the e�ect increasing σ2 has on the

thresholds. The scales on the vertical axis reveal that the changes are smaller in regime one. In the

high-uncertainty regime the investor requires a higher price to justify purchasing the �rm, implying

fewer acquisitions. Furthermore, if she currently owns the �rm, an investor requires a lower output

price to justify selling it. Acquisitions which are not pro�table enough to maintain in expansionary

regimes are kept alive in high-uncertainty regimes. Holding onto unpro�table projects while waiting

for more information is itself a potential driving force for the misallocation of resources responsible

for creating low productivity in high uncertainty regimes, as described in Bloom et al. (2018).

While the model predicts less activity in the recessionary regime, switching to regime two will

not cause an immediate change in the investors ownership position. If the investor owned the �rm

in regime one she will continue to hold it immediately after the regime switch and likewise if she

held the option. There will not be a wave of acquisitions or sales to mark the transition to the

recessionary regime. In fact, the ownership position is only immediately a�ected when switching

back to the expansionary regime. If the output price is above P I
1 , the return to the expansionary

regime is accompanied by an immediate acquisition. If it is below PU
1 , there will be an immediate

sale.

Notice that the transient region between P I
1 and P I

2 is larger than the one between PU
1 and

PU
2 . This can be explained by the fact that the lower α2 in the recessionary regime will tend to

increase the investment threshold and the disinvestment threshold. Higher uncertainty and lower

price growth thus have competing e�ects on the disinvestment threshold and tend to make the

transient region between PU
1 and PU

2 smaller than the one between P I
1 and P I

2 . So on the one hand,
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Figure 1.6.3: Nested Con�guration Thresholds with Increasing Uncertainty

by decreasing the size of the transient region, lower α2 makes it less likely the output price will be

such that there is a wave of sales after switching back to the expansionary regime. But on the other

hand, if α2 is negative, the output price will tend to drift downwards over time, making it unlikely

that P will be such that V T
2 is transient and the switch to an expansionary regime is followed by an

increase in acquisitions. Succinctly, recessionary regimes characterised by higher uncertainty but

little change in productivity or price growth will have lower acquisitions and sales compared to the

expansionary regime, but will not begin with a change in ownership position and will only end with

one under quite speci�c conditions.

1.6.6 Separated Con�guration Boundary Conditions

The additional linking region means there are sixteen equations and sixteen unknowns in the sep-

arated con�guration. These are mostly the same as in the nested con�guration except C5 and C6

replace C3 and C4 because the value of the �rm in regime one is now in a transient region between

PU
1 and P I

1 while the value of the �rm in regime two is never in a transient region. There are also the
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constants {Dj}4
j=1 associated with the option values to buy and sell the �rm in the linking region

(see �gure 1.6.1b, and table 1.4.1 to keep track of the constants). The following eight equations

establish the values of all the Cj terms in the model as well as the investment and disinvestment

thresholds

V T
1 (P I

1 )− Φ1(P I
1 ) = I V T

1 (PU
1 )− Φ1(PU

1 ) = U (1.6.19)

(
V T

1

)′
(P I

1 )− Φ′1(P I
1 ) = 0

(
V T

1

)′
(PU

1 )− Φ′1(PU
1 ) = 0 (1.6.20)

V2(P I
2 )− ΦT

2 (P I
2 ) = I V2(PU

2 )− ΦT
2 (PU

2 ) = U (1.6.21)

V ′2(P I
2 )−

(
ΦT

2

)′
(P I

2 ) = 0 V ′2(PU
2 )−

(
ΦT

2

)′
(PU

2 ) = 0. (1.6.22)

The values of Cj can be found algebraically following the method of Abel & Eberly (1996). The

thresholds are then determined by two non-linear equations as functions of the ratio of the in-

vestment and disinvestment thresholds in regime one and two respectively. I have relegated these

solutions to the appendix because chapter two examines a similar model which does not have a

linking region and consequently does not require the additional step of identifying the constants of

integration in this region. The expressions in the appendix fully characterise the solution without

the presence of the linking region. In the present case, the constants of integration {Dj}4
j=1 as well
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as {Aj}4
j=1 must also be found. This is achieved by the following eight equations

V L
1 (P I

1 )− V T
1 (P I

1 ) = 0 V L
1 (PU

2 )− V T
1 (PU

2 ) = 0 (1.6.23)

(
V L

1

)′
(P I

1 )−
(
V T

1

)′
(P I

1 ) = 0
(
V L

1

)′
(PU

2 )−
(
V T

1

)′
(PU

2 ) = 0 (1.6.24)

ΦL
2 (P I

1 )− Φ2(P I
1 ) = 0 ΦL

2 (PU
2 )− ΦT

2 (PU
2 ) = 0 (1.6.25)

(
ΦL

2

)′
(P I

1 )− Φ′2(P I
1 ) = 0

(
ΦL

2

)′
(PU

2 )−
(
ΦT

2

)′
(PU

2 ) = 0. (1.6.26)

1.6.7 Separated Con�guration Solution

With the base parameters from 1.5.1, I set ω2 = 0.3 to produce a separated con�guration. The

di�erence in between ω2 and ω1 must be su�ciently large to push the sale threshold in regime two

above the purchase threshold in regime one. Smaller di�erences in ωi are required when σi in the two

regimes are relatively similar, and when α2 is relatively low, because the lower boundary in regime

two will already be reasonably close to P I
1 . As mentioned, the �rst eight boundary conditions of the

separated con�guration are enough to pin down the thresholds. For the parameter speci�cations in

1.5.1 but with ω2 = 0.3, �gure 1.6.4a graphs the numerical solution for the separated con�guration.

The values of the constants of integration are given in table 1.6.2.

P I
1 PU

1 P I
2 PU

2

2.897 1.5798 9.5471 4.1635
A1 A2 A3 A4

0.0057 1.1505 13.177 -17.484
C1 C2 C5 C6

0.0004 -41.486 -0.360 5.811
D1 D2 D3 D4

−2× 105 0.0198 6.1856 0.4532

Table 1.6.2: Constants of Integration in the Separated Con�guration

Notice that C1 and C5 have opposite signs, as do C2 and C6. This is because I always write

the boundary conditions in the form Vi − Φi, which means the terms including C1 and C2 have
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the been moved to the left hand side of the equation, thus changing their sign. In the separated

con�guration, the signs of these constants of integration are certain. The blue and red curves in

�gure 1.6.4a have the same shape as that of the entry and exit model by (Dixit & Pindyck, 1994,

p.220), only the function in regime two is elongated which produces the key result P I
1 < PU

2 . Figure

1.6.4b shows that V L
1 smooth pastes with the V1 at PL

2 , and with V T
1 at P I

1 . Analogously, the second

panel demonstrates that ΦL
2 smooth pastes with the ΦT

2 at PL
2 and with Φ2 at P I

1 .

Unlike higher uncertainty, lower productivity causes an increase in the threshold justifying the

sale of the �rm in regime two. Because the expected stream of payments from the �rm is now lower

for any given output price, the investor is willing to sell it for the one-time sale price U at a higher

output price compared to the case where ω1 = ω2. This e�ect is compounded if the persistence of the

recessionary regime also increases. Figure 1.6.5 shows the change in the thresholds as ω2 decreases

for λ21 = 0.25 and λ21 = 0.1. The insight is that more persistent low-productivity regimes cause

investors to abandon their previous acquisitions sooner. As was the case without productivity

di�erences, the price required to justify acquiring a �rm is higher in recessionary regimes, and

increases slightly further when the regime is more persistent.

The separated con�guration implies very aggressive business cycle dynamics. In the linking

region, a regime switch will always cause investors to change their ownership position between the

option and the �rm. Switching from regime one to regime two in the linking region causes an aban-

donment of �rms which are no longer pro�table enough to keep. If regime two is very persistent

and displays higher volatility, fewer investors will undertake new acquisitions because the threshold

justifying investment is higher. However, contrary to the results in the nested con�guration, the

separated con�guration also predicts a degree of creative destruction. Acquisitions which would be

maintained in regime one are abandoned at a much higher price in regime two, so only the most

productive acquisitions survive during the recession. If P is above the threshold justifying invest-

ment in regime one when the recession ends and the economy switches back to the expansionary

regime, the investor immediately acquires the �rm. Again, this is another source of the waves of

corporate takeovers pointed out in Mitchell & Mulherin (1996), Maksimovic & Phillips (2001), and

Harford (2005).
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(a) Thresholds in the Separated Con�guration

(b) Transient Region and Linking Region in

Regime One

(c) Transient Regions and Linking Regions in

Regime Two

Figure 1.6.4: Separated Con�guration
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Figure 1.6.5: E�ect on Productivity Shocks
This �gure uses the base parameters from table 1.5.1. The red lines are for λ21 = 0.25 and the green lines are for
λ21 = 0.1. Higher persistence (lower λ21) compounds the e�ect of productivity shocks.

1.7 Conclusion

This chapter modelled a representative investor's decision to acquire a perfectly-competitive �rm

given the stochastic price of the output good and the production function followed a CTMC switch-

ing between recessionary and expansionary regimes. It solved the investor's problem both in a fully

irreversible case where the cost of the acquisition could not be recovered and in a partially reversible

case where at least some of the initial cost could be recovered. This framework is an improvement

over previous models because it allows for both time-varying uncertainty and productivity, both

of which are key characteristics of business cycles. Hence, a wider range of predictions about in-

vestor behaviour in di�erent economic regimes was possible. Solving the problem involved �nding

the value of the �rm and the value of the option to invest in the �rm as functions of the output

price and then applying a set of boundary conditions to identify the threshold values of price which

triggered a change in the ownership position.

The solution in the irreversible case turned out to be very similar to the model of capital accu-

mulation in Guo et al. (2005) and had closed-form solutions once the root of a non-linear equation

in the ratio of the investment thresholds was known. The standard result from the real options
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literature holds; the higher uncertainty regime has a wider region of inaction where the investor

does not change her current ownership position. As uncertainty increases, the region of inaction

increases in both regimes. In the irreversible case, this means there will be fewer acquisitions. If

the economy is in the recessionary regime but the output price is such that investment is justi�ed

in the expansionary regime, a regime switch causes the representative investor to immediately pur-

chase the �rm. If the productivity of the �rm is also lower during the recessionary regime and the

regime is persistent, the threshold justifying investment in both regimes is even higher. The sudden

increase in acquisitions after the recession then becomes less likely given the output price would

have to be that much higher in the recessionary regime.

With partial reversibility, the systems of equations formed by the boundary conditions are too

complex to permit a closed-form solution but can be solved numerically. The con�gurations of

the investment and disinvestment thresholds determine how the investor will respond to regime

changes. These con�gurations are produced by the di�erence in parameter values between the

regimes. A nested con�guration is produced when uncertainty in the recessionary regime is higher

than the expansionary regime but there are only modest di�erences in productivity and price growth.

Changes in ownership position are less likely in the recessionary regime, so there is a stagnation of

acquisition activity. An investor holding the option to invest will require high values of the output

price to purchase the �rm and an investor in ownership of the �rm will require very low output

prices to justify selling the �rm. There is a range of values of the output price for which a switch

to the expansionary regime causes an immediate change in ownership position, an immediate sale

if the output price is between the sale thresholds of the two regimes and an immediate purchase if

the output price is between the purchase threshold of the two regimes.

Immediate changes in ownership position are more likely in a separated con�guration. Such

con�gurations are the result of large declines in productivity. The investment and disinvestment

thresholds are both relatively high in the recessionary regime, implying fewer acquisitions and more

sales for many investors and �rms. Regime switches in this con�guration will likely trigger waves of

acquisitions and sales. The model opens several future avenues for empirical research explaining the

response of acquisitions to the business cycle. Most notably, attention should be paid to whether

the dynamic changes in the number of acquisitions after regime switches in uncertainty and total
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factor productivity match the predictions seen in the nested and separated con�gurations. While

this chapter simpli�ed the problem by ignoring other assets owned by the investor, future studies

could consider an investor who owns several �rms and potential synergy e�ects between the acquired

�rm and others owned by the investor.
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Appendix 1.A

1.A.1 Proving the of Existence of Quartic Roots

Theorem 1. The quartic equation H(z) = η1(z)η2(z)− λ12λ21 has two real roots greater than one

and two real roots less than zero.

Figure 1.A.1 shows an example of the quartic equation, its roots, and its turning points (zn

and zp). The proof follows from some discernable facts about the two quadratics η1(z) and η2(z)

(de�ned in equation 1.4.4), the value of the quartic at zero and one, and the intermediate value

theorem.

Figure 1.A.1: Example Quartic

Proof. First, H(0) = ρ2+ρ (λ12 + λ21) > 0 and H(1) = [λ12 + (ρ− α1)] [λ21 + (ρ− α2)]−λ12λ21 > 0

given ρ > αi. Furthermore, the quadratics, η1(z) and η2(z), have one root greater than one if

(ρ− αi) + λij > 0 and one root less than zero if 2σ2
i (ρ+ λij) > 0. The �rst is true under the

assumption that ρ > αi and the second is true because all the terms are positive. Both quadratics

are also positive at zero because ηi(0) = (ρ+ λij) > 0. Thus, both quadratics are concave with one

root greater than one and one root less than zero. As in the main body of the chapter, let β1 > 1
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and β2 < 0 be the roots of η1(z) and γ1 > 1 and γ2 < 0 be the roots of η2(z). For convenience and

without loss of generality, let β1 < γ1 and β2 > γ2.

When z is equal to the smallest positive quadratic root (β1), the quartic must be negative. Given

H(1) > 0 and H(β1) = −λ12λ21 < 0 then there must be a root of the quartic between one and

β1 by the intermediate value theorem. Eventually, at some higher value of z both quadratics will

be negative, so their product must be positive. Given λ12λ21 is just some �nite constant greater

than zero, the product η1(z)η2(z) with z > γ1 must eventually be larger than λ12λ21 because

η1(z)η2(z)→∞ as z →∞. The quartic thus has another root greater than γ1.

The same argument works for the two negative roots. When z is equal to the largest negative

root (β2), the quartic must be negative. But because H(0) > 0, there must be a root between zero

and β2 by the intermediate value theorem. Eventually, at some value of z < γ2 both quadratics will

be negative, so their product must be positive and eventually will be greater than λ12λ21. Therefore,

the quartic will again intercept the horizontal axis which gives the �nal root.

1.A.2 Comparative Static for the Quartic Roots

Totally di�erentiating the quartic and evaluating at the two positive roots gives more insight into

the dynamics of the model as the parameters of the regime-switching GBM change. First, an

increase in σi will decrease z1 and z2. This result is consistent with that of Dixit & Pindyck (1994,

p.144) in a model without regime switching. Their model is also simple enough to algebraically

show that the threshold justifying investment will be higher when the root of the characteristic

equation of the homogeneous part of the solution to 1.4.2 decreases, however, the complexity of

equations 1.5.13 and 1.5.14 makes this additional step impractical in the regime switching model.

Instead, numerical solutions showed that increases in σi raised the threshold justifying investment.

Totally di�erentiating equation 1.4.9 with respect to σi gives

∂H

∂z

∂z

∂σi
+
∂H

∂σi
= 0.
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Calculate

∂H

∂z

∣∣∣∣
z=z1

= −
[(
α1 −

1

2
σ2

1

)
+ σ2

1z1

]
η2(z1)−

[(
α2 −

1

2
σ2

2

)
+ σ2

2z1

]
η1(z1) > 0

and

∂H

∂z

∣∣∣∣
z=z2

= −
[(
α1 −

1

2
σ2

1

)
+ σ2

1z2

]
η2(z2)−

[(
α2 −

1

2
σ2

2

)
+ σ2

2z2

]
η1(z2) < 0.

The terms in square brackets are positive as long as αi
σi

+ zi >
1
2
, which is guaranteed given ν > 1

and the restriction that zi > ν. Also,

∂H

∂σi

∣∣∣∣
z=z1

= − [σiz1 (z1 − 1)] ηj(z1) > 0

and

∂H

∂σi

∣∣∣∣
z=z2

= − [σiz2 (z2 − 1)] ηj(z2) < 0.

Hence, it must be the case that

∂z

∂σi

∣∣∣∣
z=z1

< 0 and
∂z

∂σi

∣∣∣∣
z=z2

< 0

in order for the total di�erential formula to balance. The sign of this derivative is analogous to the

simple model without regime switching. The same method can be applied to the other parameters

in the model. A full summary of the sign of the derivative of the positive roots with respect to each

of the parameters can be found in table 1.A.1 using the parameters from table 1.5.1. Note that the

derivative of the quartic with respect to λij is

ρ− αjz −
1

2
σjz(z − 1).

When evaluated at the largest quartic roots in absolute value, this quadratic is de�nitely negative.

However, it is ambiguous as to whether it is positive or negative for the quartic roots with the
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smallest absolute value. Hence, the e�ect of the change in λij on the two smaller roots is ambiguous.

Parameter ∆z1 ∆z2 ∆z3 ∆z4

σi − − + +
αi − − − −
ρ + + − −
λ12 + − + −
λ21 + + − −

Table 1.A.1: Response of Roots to Marginal Increase in Parameters

Increases in σi will lower the positive roots, consistent with Dixit & Pindyck (1994). However,

the sign of the derivative with respect to ρ is not consistent with their model, which argues that

the relationship between ρ and the positive roots should be negative. Figure 1.A.1 can again help

resolve this apparent inconsistency. Dixit & Pindyck (1994) assume a �xed relationship between ρ

and αi given by ξi = ρ − αi > 0. Any change in ρ will now have an e�ect on αi if ξi is to remain

�xed. In this case, given the positive roots of the two quartics are both greater than one, ηi(z)

will shift downwards when ρ increases and given the derivative of the quadratics are negative at

β1 and γ1 this must mean that the positive root decreases in ρ. This chapter assumes no such

�xed relationship between ρ and αi which means changes in ρ shift ηi(z) upwards and the positive

root increases in ρ. A change in ρ holding αi constant means ξi must increase. The latter can be

thought of as the dividend payments which accrue from holding the �rm, in other words, it re�ects

the opportunity cost of holding the option to invest in the �rm rather than the �rm itself (Dixit &

Pindyck, 1994, p.149). When this increases, the investor will choose to exercise the option earlier.

But table 1.5.2 shows that the threshold justifying investment is increasing in ρ, which indicates

that the decrease in the discounted value of the �rm outweighs the increase in the opportunity cost

of not exercising the option to invest.

1.A.3 Algebraic Solutions for Separated Con�guration

This solution will be seen again in chapter two, therefore, I merely present it here and defer discussion

about it until then. First, de�ne the function

ψ (x;κ1, κ2) =
xκ1 − xν

xκ1 − xκ2
. (1.A.1)
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The values of the constants of integration which satisfy the boundary conditions 6.19 - 6.22 are

C5 = − ν

β1

ων1
η1(ν)

[1− ψ(G1; β1, β2)]h
(
PL

1

)ν−β1
< 0 (1.A.2)

C6 = − ν

β2

ων1
η1(ν)

[ψ(G1; β1, β2)]h
(
PL

1

)ν−β2
> 0 (1.A.3)

C1 =
ν

γ1

ων2
η2(ν)

[1− ψ(G2; γ1, γ2)]h
(
PL

2

)ν−γ1
< 0 (1.A.4)

C2 =
ν

γ2

ων2
η2(ν)

[ψ(G2; γ1, γ2)]h
(
PL

2

)ν−γ2
> 0 (1.A.5)

To simplify notation, let

Ω1(G1) =
ων1
η1(ν)

[
1− ν [1− ψ(G1; β1, β2)]

β1

− ν [ψ(G1; β1, β2)]

β2

]

and

Ω2(G2) =
ων2
η2(ν)

[
1− ν [1− ψ(G2; γ1, γ2)]

γ1

− ν [ψ(G2; γ1, γ2)]

γ2

]
.

These equations are what is left over after substituting the constants of integration into the value

matching conditions and factoring out the common term. Collecting all terms containing I or U

to the right-hand side of the equation and dividing through by Ωi(Gi) gives four equations de�ning

hP ν at the boundaries

h
(
P I

1

)ν
=

(ρ+ λ12) I − λ12U

Ω1(G−1
1 ) (ρ+ λ12)

(1.A.6)

h
(
PU

1

)ν
=

ρU

Ω1(G1) (ρ+ λ12)
(1.A.7)

h
(
P I

2

)ν
=

ρI

Ω2(G−1
2 ) (ρ+ λ21)

(1.A.8)

h
(
PU

2

)ν
=

(ρ+ λ21)U − λ21I

Ω2(G2) (ρ+ λ21)
. (1.A.9)
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Now divide 1.A.6 by 1.A.7 and 1.A.8 by 1.A.9 to obtain two non-linear equations inG1 andG2. Using

the result in Abel & Eberly (1996) there is a unique G1 > 1 and G2 > 1 which satis�es the following

two non-linear equations 1.A.10 and 1.A.11 respectively as long as I > U and (ρ+ λ21)U−λ21I > 0,

so the wedge between the purchase and sale price is not too large

Ω1(G−1
1 )Gν

1 −
(

(ρ+ λ12) I − λ12U

ρU

)
Ω1(G1) = 0 (1.A.10)

Ω2(G−1
2 )Gν

2 −
(

ρI

(ρ+ λ21)U − λ21I

)
Ω2(G2) = 0. (1.A.11)

1.A.4 Convergence to a Model without Regime Switching

Table 1.A.2 shows that the model converges to a modi�ed form of the one presented in Abel &

Eberly (1996) when the transition probabilities go towards zero. The last four rows of the table

show the values of the constants of integration obtained by running two models which have the same

parameter values as the two regimes but no regime switching. In Abel & Eberly's model, there are

two constants of integration and two threshold values determining investment and disinvestment.

In this section, let NS+
i (NS for `no switching') be the constant of integration associated with the

positive root in regime i and NS−i do the same for the constant of integration associated with the

negative root. I set λ12 = λ21 = 0.0001 in the simulations and use the baseline parameters in 1.5.1.

It is easy to see that the thresholds converge.

Recall that η1(zj)

λ12
Aj = Bj. Furthermore, it can be veri�ed from the quartic equation; z1 → β1,

z2 → γ1, z3 → γ2, and z4 → β2 as the transition probabilities go to zero. Table 1.A.2 reveals that

as λ12, λ21 → 0, A1 + A2 → NS+
1 , A3 + A4 → NS−1 , B1 + B2 → NS+

2 , and B3 + B4 → NS−2 . This

result has an analogue in the fully irreversible case, as the transition probabilities go to zero the

sum of A1 and A2 in section 1.5.3 converge towards the single constant obtained in an irreversible

investment model without regime switching as found in Dixit & Pindyck (1994, pp.136-147).

Transient regions were de�ned over values of P where switching brings about an immediate

change in ownership position. The fact this occurred over a �nite range of values of P meant

no limiting arguments were applied to eliminate constants of integration. Without switching, this
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Nested Con�guration Separated Con�guration
Unknown λ12 = λ21 ≈ 0 No Switching λ12 = λ21 ≈ 0 No Switching

P I
1 2.8332 2.8332 2.8333 2.8332

PU
1 1.5623 1.5623 1.5623 1.5623
P I

2 3.0037 3.0037 10.0123 10.0125
PU

2 1.5201 1.5201 5.0668 5.0671
A1 1.3916 - 1.4062 -
A2 0.0203 - 0.0018 -
A3 0.0119 - 0.0707 -
A4 7.2142 - 7.1219 -
B1 -0.0159 - -0.016 -
B2 1.3444 - 0.1184 -
B3 6.6866 - 39.7423 -
B4 -0.0069 - -0.0069 -
C1 1.3242 - 0.0981 -
C2 -6.6726 - -39.7284 -
C3 -1.3241 - - -
C4 6.6744 - - -
C5 - - -1.4076 -
C6 - - 7.2211 -

η1(z1)
λ12

D1 - - 1× 10−5 -
η1(z2)
λ12

D2 - - 0.0981 -
D3 - - 2× 10−5 -
D4 - - 7.2211 -
NS+

1 - 1.4124 - 1.4124
NS−1 - 7.2255 - 7.2255
NS+

2 - 1.3280 - 0.0985
NS−2 - 6.6801 - 39.7287

Table 1.A.2: Convergence to a Model without Regime Switching as λ12 = λ21 → 0.

argument is no longer meaningful and one of the constants in each of the transient regions will have

to be removed to get back to a model without regime switching. Focus on the nested con�guration

in table 1.A.2. It shows that C1 converges to NS
+
2 and C4 converges to NS

−
2 . Because C2 appears in

the equation de�ning the value of the option (see table 1.4.1), which should go to zero as P → 0, and

is associated with the negative root γ2, it should be removed without regime switching. Likewise,

C3 should be removed when considering the equation de�ning the value of the �rm. Then, all that is

left are the constants of integration in regime two. This logic applies to the separated con�guration

as well.

For the linking region, two of the constants tend towards zero as the transition probabilities

tend towards zero. Section 1.6.3 also pointed out that the expressions de�ning the value of the

56



�rm and the option value in this region reduced to their equivalent without regime switching when

this occurs. What remains is just the option value given by the parameters used in regime two,

η1(z2)
λ12

D2P
z2 , and the value of the �rm given the parameters used in regime one, D4P

z4 +
ων1
η1(ν)

hP ν ,

if there was no regime switching.
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Chapter 2

Partially Irreversible Investment in a

Regime Switching Economy

2.1 Introduction

A �rm deciding when to adjust its capital stock does so in an economic environment characterised

by switches between periods of higher and lower uncertainty. The optimal timing of investment can

be very di�erent in these two regimes. High uncertainty regimes also tend to coincide with periods of

declining productivity, which also a�ects the incentive to undertake partially irreversible investment

decisions. These observations have become particularly salient given recent empirical �ndings that

recessions, periods of low economic activity usually accompanied by heightened uncertainty, tend

to have a persistent negative e�ect on economic activity long after the initial shock has passed

(Ball, 2014; Blanchard et al., 2015; Cerra et al., 2023). Investment decisions today not only form

a component of GDP but also lay the foundations of production and innovation in future periods,

which suggests its behaviour in di�erent regimes could play a key role in depressing economic

activity. However, no current model of �rm-level investment examines the impact of switching to

a regime capturing the empirical characteristics of recessions, with both heightened uncertainty

and depressed productivity. This motivates a formal investigation of a pro�t-maximising �rm's

decisions under these conditions to properly inform policy makers and managers who plan their

optimal responses after regime changes.
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This chapter models a perfectly-competitive representative �rm's decision to adjust its capital

stock given that its output price follows a geometric Brownian motion (GBM) whose drift and

volatility parameters follow a continuous time Markov chain (CTMC) switching between two regimes

and its production function contains a productivity parameter dependent on the same CTMC.

Within this more comprehensive model of business cycle dynamics compared to previous literature,

I show how investment decisions will respond to changes in uncertainty and productivity.

Just like in chapter one, one regime is characterised by higher uncertainty and lower produc-

tivity, which puts the �rm's decision in a framework which re�ects Bloom et al.'s 2018 observation

that recessions produce both increases in �rm-level uncertainty and decreases in productivity. Also

following from chapter one, the �rm produces with a Cobb-Douglas production function with de-

creasing returns to scale. Unlike previous models, both upward and downward adjustments in the

capital stock are permitted, which is an analogue to the investor being able to buy and sell the

�rm in chapter one. Bidirectional adjustment of the capital stock is more representative of a �rm's

actual decision problem compared to the case where investment decisions are totally irreversible

and downward adjustments are not permitted.

I derive an expression for the marginal value of capital from the Bellman equation representing

the dynamics of the �rm's value. This expression is just the numerator of what the literature calls

Tobin's marginal q. It includes both the fundamental value of the next unit of capital based on the

present expected discounted value of future pro�t �ows and the real option value associated with

adjusting the capital stock upwards and downwards. Using a set of value matching and smooth

pasting conditions, which demand the marginal value of capital should meet tangentially with its

marginal cost whenever it is optimal to adjust the capital stock up or down, I pin down the threshold

values of the marginal value of capital which determine changes in the capital stock in both regimes.

The model generates the familiar result that increasing uncertainty widens the �rm's region of

inaction, meaning it waits longer before making capital stock adjustments when the economy enters

a higher volatility regime. Capital stock adjustments come in discrete bursts whenever the marginal

value of capital reaches the required thresholds. The quantity of capital installed is just su�cient to

return to the inaction region. Such dynamics are consistent with plant-level evidence which suggests

adjustments in the capital stock are `lumpy', meaning a period of inactivity is followed by a large
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adjustment and subsequent return to inactivity.

The introduction of regime switching productivity exaggerates the lumpiness by directly a�ecting

the marginal productivity of capital. Economies experiencing episodes of high uncertainty coupled

with large declines in productivity will immediately see decreases in �rms' capital stocks followed

by periods of depressed investment where little activity takes place. Conversely, when the recession

ends and the economy switches back to the expansionary regime, there is a sudden large positive

adjustment in �rms' capital stocks. Investment thus becomes very volatile over the business cycle

when the di�erence between productivity levels between the regimes is large.

The persistence of the recessionary regime is determined entirely by a constant transition rate.

When this is low, the recessionary regime persists for a long time and activity will remain depressed

relative to the expansionary regime. Weak investment recovery is a potential drag on economic

growth, so explaining the mechanisms through which this occurs is vital for policy makers (Yellen,

2016). On the other hand, high transition rates imply low persistence and quick recoveries, so

investment is only depressed for a short time.

The rest of this chapter is organised as follows. Section 2.2 gives an overview of the previous

literature on �rm-level investment theory and its response to changes in the economic environment.

Section 2.3 sets up the �rm's problem and de�nes its optimal investment rule while 1.4 solves

its dynamic programming problem to �nd an expression for Tobin's marginal q. All remaining

unknowns are determined in section 2.5. A brief conclusion summarises the results.

2.2 Related Literature

Neoclassical economic theory states that a �rm should accumulate capital such that it maintains the

expected present discounted value of the marginal revenue product of capital (q) equal to its user

cost (Jorgenson, 1963; Tobin, 1969). If the �rm's production function, F , satis�es ∂F/∂K → 0 as

K →∞ and ∂F/∂K →∞ as K → 0, this means purchasing capital when q is above the user cost

and selling capital when it is below the marginal cost. The equivalence of q and user cost remains

central to the theory of capital accumulation, however, the introduction of partial irreversibility,

uncertainty, and non-linear adjustment costs to the neoclassical model improved its explanatory
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power for �rm-level investment patterns (Dixit & Pindyck, 1994; Fiori, 2012; Gilchrist et al., 2014).

This chapter integrates these concepts together and puts them in a regime switching context to

examine the response of �rm-level investment to changes in the economic environment consistent

with the �ndings in Bloom et al. (2018).

Under the canonical theory, uncertainty impacts investment through an 'option value' e�ect

which is only relevant when there is a bene�t of waiting for more information. If all decisions

are fully reversible, uncertainty does not create an option value of delaying decisions (Dixit &

Pindyck, 1994, p.6). Uncertainty can still impact investment decisions through its e�ect on the

fundamental part of q (the part of q not based on the option value of waiting). The sign of this

relationship depends on the curvature of the marginal revenue product function in terms of the

variable generating the uncertainty. If it is convex, uncertainty will increase q, if it is concave,

uncertainty will decrease q (Abel, 1983).

Uncertainty in investment theory is generally modelled as the volatility of a stochastic process

such as a GBM which a�ects the �rm's pro�t function. If the �rm is in a competitive market, a

natural candidate for the stochastic variable is the price of the output good. This is adopted by

Abel (1983) and Abel & Eberly (1997). Alternatively, the stochastic variable could represent a

random component of the demand function faced by the �rm, with an additional deterministic part

being a function of the �rm's output. This is suitable if the �rm has a degree of market power and

is used by Bertola (1988) and Abel & Eberly (1996). As in chapter one, this chapter assumes a

perfectly competitive �rm and thus follows the approach of Abel (1983). This is the �rst study to

solve a perfectly competitive �rm's decision problem in a partially reversible setting.

For a �rm seeking to choose investment such that it maintains its optimal capital stock, the

easiest way to introduce irreversibility is to assume that once the �rm has made the decision to

invest in the marginal unit it cannot be uninstalled at a later date. Good examples of this assumption

are found in (Dixit & Pindyck, 1994, pp.357-367) and Guo et al. (2005). Abel & Eberly (1996)

introduce partial reversibility by allowing the �rm to sell a marginal unit of installed capital for

a fraction of the price it paid for the good. This makes sense if capital goods have a degree of

specialisation which makes them di�cult to repurpose, if there are additional costs associated with

bringing used capital goods to the market, or if there are asymmetric information e�ects in second-
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hand markets for capital goods (Abel & Eberly, 1994). While more realistic, partial reversibility

makes �nding closed-form solutions much more di�cult, Abel & Eberly (1996) themselves can only

give a local approximation of a solution to their model when the ratio of the purchase and resale

price of capital is close to unity.

Firm-level investment is described as 'lumpy', occasional periods of inactivity are broken up by

large adjustments in the capital stock which show far lower persistence than suggested by earlier

work which assumed the cost of capital was convex, re�ecting a time-to-build e�ect penalising

large adjustments in the capital stock in small windows of time (Doms & Dunne, 1998; Cooper &

Haltiwanger, 2006). Lumpy investment patterns can be reproduced in models which incorporate

the (partial) irreversibility of investment decisions1. Abel & Eberly (1996) is a classic example. A

'wedge' between the purchase and resale prices of capital generates a region of the model's state

space where q is neither high enough to justify investment in the capital stock, nor low enough to

justify disinvestment. This is known as the 'region of inaction'. Investment only becomes di�erent

from zero if the stochastic process underlying q reaches some critical value which brings a tangency

point between the q and the price of capital. Their model falls into the category of (S, s) control

policies introduced by Arrow et al. (1951) where a controller makes a discrete adjustment to the

quantity of goods in an inventory once the process describing the �ows into that inventory reaches

some critical value. The lower case 's' represents the critical value or boundary and the upper case

'S' represents the size of the adjustment.

The aim of these control policies is always to return to a state of inaction and solving the

model requires �nding the critical values which trigger action. Dixit (1991) highlights two types

of adjustments in (S, s) models which are important in this chapter; barrier control and impulse

control. Barrier control applies at the boundaries of the model and involves small instantaneous

discrete adjustments in the inventory to prevent it from crossing the boundary. Impulse control

applies whenever the quantity of goods in the inventory is beyond its boundary and involves the

controller making a discrete adjustment su�cient to return to a state of inaction. Usually, the

1Another possibility is to introduce a �xed cost of adjusting the capital stock. There is empirical evidence to
suggest these costs exist (Bloom, 2009) but, as explained by (Dixit & Pindyck, 1994, p.386) including them in the
continuous time model considered in this chapter will mean incurring a cost at every instant of time the adjustment
takes place, which over an interval ∆t would be in�nitely costly.
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inventory will only be above the boundary because of the starting values, after the �rm returns to

the inaction region, barrier control takes over and the controller always acts to keep the inventory

below its critical value (Harrison & Taksar, 1983).

Given some level of irreversibility in the model and the volatility of a stochastic process, Bernanke

(1983), Abel (1983), and Dixit & Pindyck (1994) applied the concept of the 'option value' from

�nancial literature to the case of investment decisions. The classical investment rule stating �rms

should invest when q is greater than the marginal cost of investment is wrong under this framework

because it does not take into account the uncertainty of the future value of q. In general, �rms

should wait longer before making the decision to invest in highly uncertain environments. Studies

by Bloom et al. (2007), Bloom (2009), Bachmann et al. (2013), Gilchrist et al. (2014), and Bloom

et al. (2018) have shown empirically that uncertainty shocks do indeed have persistent e�ects on

real economic activity.

Another important observation in Bloom (2009) and Bloom et al. (2018) is that uncertainty

shocks tend to occur alongside dips in aggregate and �rm-level productivity. Bloom (2009) suggests

that the dip in investment and hiring reduces reallocation of resources from low productivity to high

productivity �rms, which is a primary source of productivity in the economy. Since Hamilton (1989),

regime switching has been a popular method of modelling the dynamics of economic variables over

the business cycle. A good example in the context of �rm-level investment is Guo et al. (2005).

They consider the case of totally irreversible investment in a two regime model and demonstrate that

increasing uncertainty in one of the regimes drives a wedge between the regime-speci�c thresholds

justifying investment. Guo et al. introduced her regime switching process in (1999) where the drift

and volatility parameters of a GBM depend on a CTMC with the rate of leaving a given regime

following an exponential distribution.

Bloom et al. (2018) �nd that investment drops by as much as 15% after an uncertainty shock and

GDP overall drops sharply by around 2.5% before bouncing back quickly and continuing a sluggish

growth path afterwards. Importantly, investment also remains depressed for 12 quarters after the

shock while the weaker irreversibilities in the labour market means labour demand returns to its

pre-shock growth rate relatively quickly. Their characterisation of a recession is an event which

causes a negative �rst-moment shock and a positive second-moment shock to the productivity of
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the �rm. Based on the evidence in Blanchard et al. (2015), shocks originating from the energy

or �nance sectors exhibit more persistence than a typical economic shock so the transition rate

from the recessionary regime will be lower. Jurado et al. (2015) �nd the largest spikes in economic

uncertainty during these protracted recessions. There are no productivity parameters embedded in

the regime switching model of Guo et al. (2005), so a typical recession is marked solely through

changes in demand by a transition to a state which has a lower drift and a higher volatility compared

to the regime representing 'normal' economic circumstances. This chapter augments their model to

consider changes in productivity between regimes.

2.3 Description of the Firm

2.3.1 Regime Switching Price Process

The regime switching stochastic process is the same as in chapter one. Pt, follows a GBM, where αi

is the drift parameter, σi is the volatility parameter and Wt is a standard Brownian motion. The

parameters αi and σi depend on the regime of εt ∈ {1, 2}, which follows a CTMC independent of

Wt . The probability of switching between regimes in the interval ∆t is described by the following

transition matrix

(1− λ12∆t) λ12∆t

λ21∆t (1− λ21∆t)

 . (2.3.1)

Equation 2.3.2 describes the resulting GBM for the output price

Pt = αiPtdt+ σiPtdWt. (2.3.2)

As in chapter one, the economy switches to a recessionary regime when εt = 2, so let σ1 < σ2. This

re�ects Bloom's (2009) observation that recessions (and even less severe disruptions in economic

conditions) are associated with periods of high volatility on the stock market, a proxy measure

for economic uncertainty2. The model does not account for equity markets, hence, the volatility of

2Finding appropriate measures of uncertainty is a di�cult task which ideally needs to determine how di�cult it

64



output price proxies for uncertainty faced by the �rm. If α1 > α2 and λ12 < λ21, then a transition to

regime two represents a typical recession; there is a general fall in the expected growth of prices and

increase in uncertainty which shows some persistence but much less than the regime representing

normal economic conditions.

2.3.2 Inputs and Production

The �rm's production function

F (εt, Kt, Lt) = ωiL
a
tK

b
t (2.3.3)

depends on two inputs, capital (Kt) and labour (Lt) with a + b < 1 ensuring decreasing returns

to scale. Decreasing returns allows competitive �rms to make positive pro�ts and turns out to

be a necessary assumption in (S, s) models of capital accumulation. If returns to scale were not

decreasing, a threshold value of Pt justifying the installation of a marginal unit of capital would also

justify the installation of all succeeding marginal units of capital (Dixit & Pindyck, 1994, p.365).

The wage paid to labour is w and labour is fully adjustable, so the �rm can �nd its optimal

level by solving an instantaneous maximisation problem. This assumption has empirical justi�-

cation from Bloom (2009), who �nds that ignoring labour adjustment costs does not prevent his

general equilibrium model from achieving a good �t for real-world data. On the other hand, capital

adjustment costs are important for achieving a good �t, so there is weaker evidence that labour

adjustment costs play a signi�cant role over the business cycle. It also simpli�es the model because

operating pro�ts (Π), the stream of payments received from selling output on the market minus

labour costs, can be expressed solely as a function of Kt and Pt.

Capital cannot be adjusted immediately, it is �xed in any interval of time ∆t. For this reason,

capital costs will enter into the de�nition of operating pro�t in section 2.3.4. What can change over

this interval is gross investment; the �ow of new capital goods into the �rm. Let It > 0 represent the

total cumulation of all purchases of capital until time t (installing capital) and let Ut > 0 represent

the total cumulation of all sales of capital until time t (uninstalling capital). Installed capital

is for agents to forecast the innovations in all relevant economic variables for their decision problems. Some widely
cited attempts come from Bachmann et al. (2013), Jurado et al. (2015), and Baker et al. (2016). See also the more
recent global measure by Ahir et al. (2022). Chapters three and four will deal with this in more detail
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depreciates at a constant rate determined by δ. Therefore, in the in�nitesimally small interval dt,

net additions to the capital stock are given by

dKt = dIt − dUt − δKtdt. (2.3.4)

The capital accumulation constraint is de�ned in di�erential terms, using dIt and dUt, because the

�rm's optimal investment policy is such that Kt is not technically di�erentiable with respect to

time as investment occurs in discrete bursts (Bagliano & Bertola, 2004, pp.86-89). The notation in

equation 2.3.4 is similar to that of Abel & Eberly (1996).

ωi represents a regime-dependent constant exogenous technology multiplier. It depends on the

same CTMC εt. Let ω2 ≤ ω1 re�ect the fact that periods of high uncertainty are often associated

with dips in aggregate and �rm-level productivity. As in chapter one, I assume this productivity

parameter is speci�c to the �rm.

2.3.3 Investment Costs

Capital costs φI to buy and can be sold for φU , with φI > φU , so the �rm cannot make in�nite

pro�ts by purchasing capital and then selling it for a higher price at a later date. This captures

the partial irreversibility of investment decisions. Equation 2.3.5 shows the cost of purchasing and

selling capital goods

φk =


φI if It > 0

φU if Ut > 0.

(2.3.5)

For notational convenience, let R ≡ φI
φU

> 1 be the ratio of the purchase and sale prices of capital. As

simple economic reasoning would suggest, a higher R will mean the range of values of the stochastic

variable for which the �rm does not adjust its capital stock in either direction increases.
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2.3.4 Operating Pro�t and Cash Flows

Operating pro�t is total revenue minus total production costs as shown in equation 2.3.6. It does

not take into account investment costs, which come under the de�nition of cash �ows (Ψ); the

stream of payments accrued from selling output on the market after accounting for labour costs

and the cost of adjusting the capital stock. Using these de�nitions and the fact that labour is

fully adjustable at every instant of time means that pro�ts can be written independently of the

level of labour. Maximising operating pro�ts with respect to labour and substituting the derived

optimal Lt into 2.3.6 gives operating pro�t as a function of output price and the capital stock

where h = (1− a)
(
a
w

) a
1−a . These expressions are identical to those in Abel (1983) except for the

exogenous productivity parameter. Maximising labour before choosing the capital stock makes

operating pro�ts a convex function of price given the marginal product of labour is diminishing.

Furthermore, the operating pro�t function is concave in the capital stock because of the assumption

that a+ b < 1.

Π(Pt, εt, Kt, Lt) = ωiPtL
a
tK

b
t −WtLt (2.3.6)

Π(Pt, εt, Kt) = hω
1

1−a
i P

1
1−a
t K

b
1−a
t (2.3.7)

Ψ (Pt, εt, Kt, It, Ut) = Π(Pt, Kt)− φIdIt + φUdUt (2.3.8)

The �rst derivative of 2.3.7 with respect to Kt plays an important role in the model because it

determines the fundamental value of the marginal unit of capital, that is, the value of the marginal

unit of capital without considering the speculative value added by expected future price movements.

It is the marginal revenue product of capital given that labour has already been maximised. This

is easy to see by noting that 2.3.9 can also be derived by �rst calculating the marginal revenue

product of capital PtFKt = bωiPtL
a
tK

b−1
t and then substituting in the optimal level of labour
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Lt =
(
a
w

) 1
1−a P

1
1−a
t K

1
1−a
t

ΠKt = bh
1−aω

1
1−a
i P

1
1−a
t K

a+b−1
1−a

t = h̃ωνi P
νK(a+b−1)ν . (2.3.9)

De�ning h̃ = b
(
a
w

) a
1−a and ν = 1

1−a makes the notation in the rest of the chapter less cumbersome.

2.3.5 The Firm's Objective

The �rm's objective is to choose a �ow of capital goods which maximises the present discounted sum

of all future cash �ows, where ρ is the constant discount factor used by the �rm. Since the expected

present discounted sum of all future cash �ows is just the value of the �rm, this is equivalent to saying

the �rm aims to maximise its value, V . It does this through its investment policy. The variables

It and Ut are not di�erentiable due to the optimal investment policy in (S, s) models allowing for

discrete jumps in the capital stock. In technical terms, they are not absolutely continuous and so

cannot be integrated by standard Riemann integration3 (Harrison & Taksar, 1983; Abel & Eberly,

1996). Therefore, dIt and dUt must be interpreted as Riemann-Stieltjes integrals, which do not

require the function to be absolutely continuous, if their expected value is to be de�ned in equation

2.3.10

V (Pt, εt, Kt) ≡ max
It,Ut,Kt

E
∫ ∞

0

[Π(Pt, εt, Kt)dt− φIdIt + φUdUt] e
−ρtdt (2.3.10)

s.t. dKt − dIt + dUt + δKt = 0.

Intuitively, the �rm should invest in a marginal unit of capital when the marginal product of that

unit is greater than its cost of installation. Likewise, the �rm should sell a marginal unit of capital

when the marginal product of that unit is less than the sale price of capital. Because the sale and

purchase prices are not equal in this model, there is a region of inaction, where the �rm neither

invests nor divests.
3The Cantor function or `devil's staircase' is a classic example of a continuous function that is not absolutely

continuous.
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2.3.6 Investment Rule

Optimal investment is de�ned at the point where the marginal contribution of a unit of capital to

the value of the �rm is equal to the marginal cost of investment in that unit. Let VKt (Pt, εt, Kt)

denote the change in the value of the �rm given a marginal change in capital. Then the optimal

investment rule for the �rm is de�ned by equation 2.3.11, where VKt (Pt, εt, Kt) is equated with the

marginal cost of purchasing or selling capital goods

VKt (Pt, εt, Kt) ≡ qt (Pt, εt, Kt) = φk. (2.3.11)

The value gained by a marginal change in capital must be greater than the marginal cost of

capital goods, φI , for investment to take place, and less than the resale price, φU , for disinvestment

to take place. For φU ≤ VKt (Pt, εt, Kt) ≤ φI , investment is zero. VKt (Pt, εt, Kt) is the numerator of

what is traditionally called Tobin's marginal q, the ratio of the marginal value of installed capital to

its cost of installation (Hayashi, 1982). It is simpler in this model to interpret q in absolute terms,

not scaled by the price of capital, so let VKt (Pt, εt, Kt) ≡ q (Pt, εt, Kt) and call it `absolute q' (Abel

& Eberly, 1996). The �rm's investment policy is to maintain q (Pt, εt, Kt) = φk.

Now imagine q (Pt, εt, Kt) > φI . This will occur due to increases in Pt and the depreciation of

Kt, both of which drive the marginal revenue product of capital upwards. This means the marginal

value of capital is greater than its cost so the �rm should invest. Because the production function

exhibits decreasing returns to scale, increasing the capital stock leads to a decrease in the marginal

value of capital. Therefore, when q (Pt, εt, Kt) > φI the �rm instantaneously invests an amount of

capital such that it immediately returns to its optimality condition q (Pt, εt, Kt) = φI . This policy

is known as 'barrier control' (Dixit & Pindyck, 1994, p.362) and is represented in �gure 2.4.1.

A similar argument holds in the case of disinvestment. As mentioned, for value of q (Pt, εt, Kt)

between φI and φU , the �rm should maintain a policy of zero investment. For this reason, the

region between φI and φU is called the 'inaction region'. The analysis focuses on the �rm's problem

in this region since its investment policy means it immediately returns to this region whenever it

adjusts its capital stock. The fact that q (Pt, εt, Kt) = φk everywhere outside of the inaction region

means V (Pt, εt, Kt) is known everywhere outside the inaction region.
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2.4 Capital Accumulation

2.4.1 Bellman Equation

Dynamic programming �nds V (Pt, Kt, εt) as a function of price and capital by splitting the �rm's

problem up into two parts; the immediate �ow of operating pro�ts in the interval dt, and the

expected present value gained from adjusting the capital stock. The Bellman equation describing

the value of the �rm is the sum of these two parts and after manipulation yields a di�erential

equation for the value of the �rm. The �rm's decision problem takes place over an in�nite horizon

and V (Pt, Kt, εt) does not explicitly depend on time, so time is not relevant for the value of the �rm

beyond the values of the variables at t = 0 (Dixit & Pindyck, 1994, p.107). To avoid the notation

in this section becoming too cluttered, I will stop writing subscripts denoting time and arguments

of functions from this point on.

As in chapter one, the value of the �rm is regime dependent and the �rm must account for

the fact that ε can suddenly switch to a new regime. The subscript i ∈ {1, 2} denotes the value

of the �rm in regime of one and two respectively. Because switches in regime also a�ect the

production function, Πi denotes the pro�t �ow in regime i. In the interval ∆t, the pro�t �ow is

(1− λij∆t) (Πi∆t) +λij∆t (Πj∆t). All terms of order (∆t)2 go to zero much faster those of ∆t and

so should be ignored in further derivations. Thus, only the term Πi∆t survives. The Bellman is

de�ned over the in�nitesimal interval dt in 2.4.1

Vi = (Πidt− φIdI + φUdU) + e−ρdt [E{(1− λijdt)(Vi + dVi) + λijdt(Vj + dVj)}] . (2.4.1)

Applying Ito's lemma, dividing through by dt, and remembering that Vi,K ≡ qi gives the following

di�erential equation describing the value of the �rm in both regimes

1

2
σ2
i P

2 (Vi)PP + α1P (Vi)P − (ρ+ λij)Vi − δKqi + Πi + λijVj = 0. (2.4.2)

The two terms (qi − φI) dI and (qi − φU) dU are missing from equation 2.4.2 because dI > 0 only

if q = φI and dU > 0 only if q = φU . Hence, these two expressions are always zero and 2.4.2 holds
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for both inactive and active investment policies (Abel & Eberly, 1996).

Because qi ≡ (Vi)K , the �rst derivative of equation 2.4.2 gives a di�erential equation governing

the dynamics of qi

1

2
σ2

1P
2 (qi)PP + α1P (qi)P − (ρ+ δ + λij)qi − δK (qi)K + (Πi)K + λijqj = 0. (2.4.3)

Although equation 2.4.3 is a PDE, the fact that every term is homogeneous in the state variables P

and K means that �nding a solution is still possible using the conventional techniques from chapter

one. However, a simple transformation can turn this partial di�erential equation into an ordinary

di�erential equation (ODE), which will simplify the steps and notation in the succeeding sections.

Let y = P/K1−a−b. This is a stochastic variable with the same volatility and rate of switching

as the process in 2.3.2 but an adjusted drift parameter to account for the depreciation in capital,

given by µi = αi + (1− a− b) δ. Now qi is a function of this stochastic variable so rewrite equation

2.4.3 as an ODE in y

1

2
σ2
i y

2q′′i + µiyq
′
i − (ρ+ δ + λij)qi + h̃ωνi y

ν + λijqj = 0. (2.4.4)

The succeeding sections will work in terms of this transformed variable.

2.4.2 Transient Regions

Equation 2.4.4 assumes that a change in regime will not cause the �rm to immediately change its

investment policy from inactive to active. In this case, a switch from regime i to regime j means

the �rm acquires the option to make a marginal adjustment in the capital stock in regime j, which

has a value qj. However, the parameters in the model can be such that although it is not worth

adjusting the capital stock in regime i, it is doing so in regime j. Hence, a switch to regime j

leads to an immediate adjustment of the capital stock su�cient to bring the value of qj into the

inaction region for regime j. This is known as `impulse control' and is demonstrated alongside

barrier control in 2.4.1 which plots the threshold values of output price justifying investment (PH
i )

and disinvestment (PL
i ) in regime i and regime j as functions of K. The thresholds are �rst found

71



in terms of y = P/K1−a−b, which means the thresholds expressed in terms of P must be concave

functions of K.

For demonstration, imagine a �xed level of K. Impulse control occurs in the regions
[
PH
j , P

H
i

]
and

[
PL
i , P

L
j

]
following a switch from regime i to regime j. In this diagram, these regions can only

be reached when ε = i because the barrier control policy prevents qj from going beyond the PH
j

and PL
j boundaries when ε = j. Other con�gurations of the thresholds are possible and will be

explained in greater detail below.

Figure 2.4.1: Barrier Control and Impulse Control
In the �gure, qi is in a transient region for a �xed K whenever qi ∈

[
PHj , P

H
i

]
and qi ∈

[
PLi , P

L
j

]
because a switch to

regime j means immediately paying φI or φU in order to move to the inaction region for regime j between
[
PLj , P

H
j

]
.

Given the �rm's investment rule in equation 2.3.11, the value of qj is known outside the inaction

region; it is just equal to the marginal cost of capital. For concreteness, suppose ε = i and

φU < qi < φI , so the �rm is inactive. Now suppose that if ε switches to regime j then qj > φI so

the �rm will immediately invest to restore qj = φI . In this case, equation 2.4.4 needs to be modi�ed

to equate qj with φI in the event of a regime switch. The same argument applies for a downward

adjustment of the capital stock; although disinvestment may not currently be worthwhile in regime

i, the GBM can switch at a point where it is optimal to sell capital in regime j. Equation 2.4.5

describes the dynamics of qi when in a `transient' state, denoted qTi
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1

2
σ2
i y

2
(
qTi
)′′

+ µiy
(
qTi
)′ − (ρ+ δ + λij)

(
qTi
)

+ h̃ωνi y
ν + λijφk = 0. (2.4.5)

2.4.3 Fundamental Value of q

Suppose that q1 = θ1h̃ω
ν
1y

ν and q2 = θ2h̃ω
ν
2y

ν . Additionally, de�ne the function

ηi(x) = (ρ+ δ + λij)− µix− 1
2
σ2
i x (x− 1) . (2.4.6)

Taking the �rst and second derivatives of these trial solutions and substituting them into the

di�erential equations shows that they solve the di�erential equation if the constants are given by4

θi =
ηi(ν) + λji

(
ωj
ωi

)ν
ηi(ν)ηj(ν)− λijλji

.

Reassuringly, if λ12 = λ21 = 0 these constants take on values consistent with a model without

regime switching. The non-homogeneous solution is

qi = θih̃ω
ν
i y

ν . (2.4.7)

It is clear from 2.3.9 and the de�nition of y that h̃ωνi y
ν is the marginal product of capital.

Equation 2.4.7 is the expected present discounted value of the marginal unit of capital taking into

consideration the dynamics of P , K, and ε if the �rm maintains an inactive investment policy in

all future periods. As discussed in Guo et al. (2005), this result can also be obtained by application

of the Feynman-Kac formula,

θi (Πi)K = EP,ε
[∫ ∞

0

(
(Πi)K e

−(ρ+δ)t | ε = i
)
dt

]
. (2.4.8)

4There has been a subtle change in the de�nition of θi from chapter one in that an ωνi term has been factored
out. This was done to keep the notation in this chapter closer to Abel & Eberly (1996). The equations in chapter
one were more concise without making this factorisation but the solutions in this chapter are mostly numerical, so
there is no loss of clarity by factoring out the ωνi here.
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η1 (ν) > 0 and η2 (ν) > 0 must hold for the integral in 2.4.8 to converge. Notice also that if

this were not the case qi could be negative. This is guaranteed in the models of (Abel & Eberly,

1996) and (Guo et al., 2005) because the operating pro�t function is concave in the stochastic

variable. Convergence is assumed in this model and ensured by the chosen parameters in all the

simulations below. Given the assumption from Dixit & Pindyck (1994) that ρ > αi, this is achieved

by preventing σi being too large and keeping ν less than the roots of ηi(z) and H(z) below.

The non-homogeneous solution to 2.4.5 is

qTi =



θTi h̃ω
ν
i y

ν +
λijφI

ρ+ δ + λij
if qj = φI

θTi h̃ω
ν
i y

ν +
λijφU

ρ+ δ + λij
if qj = φU

(2.4.9)

where θTi = 1
ηi(ν)

. The �rst term in these expressions is the value generated from the marginal

product of capital and the second in the probability weighted value gained from a regime switch.

2.4.4 Option Value of q

For the homogeneous solution to the equations for q1 and q2, let q1 =
∑4

j=1Ajy
zj and q2 =∑4

j=1Bjy
zj . Again, substitution into the di�erential equations in the system de�ned by 2.4.4 gives

−
4∑
j=1

η1(zj)Ajy
zj = −λ12

4∑
j=1

Bjy
zj (2.4.10)

−
4∑
j=1

η2(zj)Bjy
zj = −λ21

4∑
j=1

Ajy
zj . (2.4.11)

The method of undetermined coe�cients yields η1(zj)

λ12
Aj = Bj and

η2(zj)

λ21
Bj = Aj. Therefore, the

following quartic equation must hold for the variable z, which will have two roots greater than one

and two negative less than zero

H(z) = η1(z)η2(z)− λ12λ21 = 0. (2.4.12)
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Chapter one proved the existence and locations of these roots. Then, the homogeneous solution is

given by

q1 =
4∑
j=1

Ajy
zj (2.4.13)

q2 =
4∑
j=1

η1(zj)

λ12

Ajy
zj . (2.4.14)

If the non-homogeneous solution is the value of qi given the �rm remains in the inaction region,

the homogeneous solution accounts for the option value of adjusting the capital stock. Terms with

negative powers in 2.4.13 and 2.4.14 are the option values associated with disinvestment and the

terms with positive powers are associated with investment. Again, the solutions take a di�erent

form in transient regions. Let γ1 > 1 and γ2 < 0 be the roots of η2(z) and β1 > 1 and β2 < 0 be

the roots of η1(z). Then the homogeneous solutions in the transient regions are given below

qT1 =


D1y

β1 +D2y
β2 if q2 = φI

D3y
β1 +D4y

β2 if q2 = φU

(2.4.15)

qT2 =


C1y

γ1 + C2y
γ2 if q1 = φI

C3y
γ1 + C4y

γ2 if q1 = φU .

(2.4.16)

I have used Ci for the constants of integration when qT2 is in a transient region to maintain consistency

with chapter one. Table 2.4.1 should help keep track of the names of the constants of integration

used in this chapter.

75



2.4.5 Boundary Conditions

The marginal purchase and resale prices of capital form the boundaries of the inaction region,

therefore, qi = φI at the upper boundary and qi = φU at the lower boundary. Call the values of the

stochastic variable y at these boundaries yHi and yLi respectively (H for high and L for low). These

will be referred to as the threshold values of y. Therefore,

qi
(
yHi
)

= φI and qi
(
yLi
)

= φU (2.4.17)

at the boundaries. These are value matching conditions. The smooth pasting conditions ensure that

qi and φk meet at a tangency point by equating the derivatives of the expressions on both sides of

2.4.17

q′i
(
yHi
)

= 0 and q′i
(
yLi
)

= 0. (2.4.18)

If qj is in a transient region of [K,P ] space both above the yHi threshold and below the yLi threshold,

then the value matching and smooth pasting conditions also apply to qTj

qTj
(
yHj
)

= φI and qTj
(
yLj
)

= φU (2.4.19)

(
qTj
)′ (

yHj
)

= 0 and
(
qTj
)′ (

yLj
)

= 0. (2.4.20)

Finally qj and qTj should smooth paste together at the yHi and yLi boundaries (see Guo et al.

(2005) and Dixit (1993, p.31)) as in the conditions below

lim
y↑yHi

qj = lim
y↓yHi

qTj and lim
y↓yLi

qj = lim
y↑yLi

qTj (2.4.21)

lim
y↑yHi

q′j = lim
y↓yHi

(
qTj
)′

and lim
y↓yLi

q′j = lim
y↑yLi

(
qTj
)′
. (2.4.22)
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Conditions 2.4.21 and 2.4.22 change depending on the region of the state space where qi and

qj are transient. There are six possible con�gurations of the boundaries, as shown in �gure 2.4.2

below. A `nested con�guration' occurs when the boundaries of one regime lie entirely within the

boundaries of another regime. An `overlapping con�guration' occurs when the investment or disin-

vestment boundary of regime i lies within the interval
[
PL
j , P

H
j

]
for a given K. Finally, a `separated

con�guration' occurs when the interval
[
PL
i , P

H
i

]
lies entirely above

[
PL
j , P

H
j

]
. The separated con-

�guration requires PL
i > PH

j . This is only possible if the regime switching a�ects the marginal

revenue product of capital or the purchase and resale prices of capital. Section 2.5.1 explains this in

more detail. Conditions 2.4.21 and 2.4.22 do not apply when in the separated con�guration because

qi is always in a transient region.

In chapter one, there was a 'linking region' which bridged the gap between PL
i and PH

j in the

separated con�guration. Because of the barrier control policy, qi = φk everywhere outside the

inaction region and the �rm immediately installs an amount of capital su�cient to return it to the

inaction region whenever qi hits a boundary (Dixit & Pindyck, 1994, p.362). Therefore, there is no

linking region in this model because qi will never spend time between PL
i and PH

j . Despite this,

there will still be several constants of integration to keep track of. Table 2.4.1 should make this

easier. The constants C1 and C2 will be required in every con�guration. This is a consequence of

PH
2 always being the uppermost boundary in the left-hand side of �gure 2.4.2. Analogously, D1

and D2 will never be required because PL
1 is always the lowermost boundary. The qj column gives

the value of qj in the other regime.

It is clear from �gure 2.4.2 that there are actually three pairs of con�gurations which mirror

each other insofar as swapping the subscripts of the left-hand panels gives the con�gurations in

the right-hand panels. Given the assumption that regime two represents a recessionary regime, the

left-hand panels are the ones this chapter is interested in. After �nding the solutions to the model

for the left-hand panels, the solutions to the right-hand panels can easily be derived by swapping

all regime one parameters with those from regime two and vice-versa. Therefore, the solutions in

the next section focus on the separated con�guration in panel 2.4.2a, the nested con�guration in

panel 2.4.2c, and the overlapping con�guration in panel 2.4.2e.
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(a) (b)

Separated Con�guration

(c) (d)

Nested Con�guration

(e) (f)

Overlapping Con�guration

Figure 2.4.2: Con�gurations of the Boundaries
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Con�guration
Constants Regime Associated

Root Sign
Region qj Separated Nested Overlapping

A1, A2 1 +,+ Base qj 7 3 3

A3, A4 1 −,− Base qj 7 3 3

C1, C2 2 +,− Transient φI 3 3 3

C3, C4 2 +,− Transient φU 7 3 7

D1, D2 1 +,− Transient φI 7 7 7

D3, D4 1 +,− Transient φU 3 7 3

Table 2.4.1: Naming Conventions for the Constants of Integration Given I Focus on the Left-Hand
Side of Figure 2.4.2

2.4.6 Value of the Firm

Before solving the model, there is one more convergence condition to be aware of. It must be possible

to get back to Vi from qi by taking the anti-derivative of qi with respect to K. If the constants

of integration in the homogeneous solution for qi represent the value of a marginal adjustment of

the capital stock at the boundaries, then in the expression for the value of the �rm they represent

the expected option value of all future increases and decreases in the capital stock. Solutions

for the constants of integration will be given in the next section. As show by Dixit & Pindyck

(1994, p.365), the terms associated with increases in the capital stock in equation 2.4.14 should

be integrated between he initial capital stock and in�nity to re�ect the option value of all future

increases in the capital stock. Similarly, the terms associated with decreases in the capital stock

should be integrated between the initial capital stock and zero to re�ect the option value of all

future decreases in the capital stock. This leads to the following expressions, remembering that
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y = P/K1−a−b, z1 > 1, z3 < 0, β1 > 1, and β2 < 0

∫ ∞
K

A1P
z1Kz1(a+b−1)dK = 1

1−z1(1−a−b)A1P
z1K1−z1(1−a−b) i� z1 >

1
1−a−b

∫ K

0

A3P
z3Kz3(a+b−1)dK = 1

1−z3(1−a−b)A3P
z3K1−z3(1−a−b) i� z3 <

1
1−a−b

∫ ∞
K

C1P
β1Kβ1(a+b−1)dK = 1

1−β1(1−a−b)A1P
z1K1−β1(1−a−b) i� β1 >

1
1−a−b

∫ K

0

C2P
β2Kβ2(a+b−1)dK = 1

1−β2(1−a−b)C2P
β2K1−β2(1−a−b) i� β2 <

1
1−a−b .

The same process can be carried out for all the other constants of integration in the model. More

generally, all the positive roots in the model must be greater than 1
1−a−b and all negative roots must

be less than 1
1−a−b . The latter condition is guaranteed by the fact that 1

1−a−b > 0 but the former

must be assumed in this model and is achieved by ensuring that 1
a−a−b is less than the positive roots

of ηi(z) and H(z). A similar assumption exists in (Dixit & Pindyck, 1994, p.365). Again in the

models of Abel & Eberly (1996) and Guo et al. (2005) this is guaranteed by the marginal revenue

product of capital being concave in the stochastic variable.

2.5 Solution and Discussion

This section provides solutions for the remaining unknowns in the model, and discusses the implica-

tions of the results for �rm-level capital accumulation. In the overlapping and nested con�gurations

shown in �gure 2.4.2, the remaining unknowns are found as part of a system of twelve equations and

twelve unknowns. These non-linear systems are too complex to solve algebraically but numerical

solutions are available. However, �nding a solution to the separated con�guration requires solving

a simpler system of eight equations and eight unknowns, which are actually two separate systems

of four equations and four unknowns, due to the fact that q1 and q2 are always inside a transient

region, so conditions 2.4.21 and 2.4.22 do not apply. This means the switching parameters in one
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regime have no e�ect on decisions in the other regime. The solution in this case turns out to be

a modi�ed form of the solution in Abel & Eberly (1996) where the system of eight equations is

characterised by just two non-linear equations whose roots are the ratios of the investment and

disinvestment thresholds in regime one and regime two.

I start by showing the algebraic solution in the separated con�guration and then provide nu-

merical solutions to the other two con�gurations. The same baseline parameter values from chapter

one will apply to numerical solutions in this chapter as well. For convenience, table 2.5.1 lists them

again, along with the new parameters δ = 0.025, φI = 10, and φU = 9. The value of δ is an estimate

of the quarterly depreciation rate for U.S. �rms taken from Gilchrist et al. (2014). The transition

rates, λij are set to re�ect the proportion of quarters since 1950 the U.S. has spent in a recession and

expansion. All other parameters are chosen based on Dixit & Pindyck (1994), Guo et al. (2005),

and Abel & Eberly (1996).

a b α1 α2 σ1 σ2 ω1 ω2 ρ δ λ12 λ21 φI φU r w
0.1 0.2 0.02 0.01 0.2 0.25 1 1 0.1 0.025 0.05 0.25 10 9 1 1

Table 2.5.1: Parameter Values

2.5.1 Separated Con�guration

In the separated con�guration 2.4.2a, qi is always transient in both regimes because switching to

the other regime immediately triggers an active investment or disinvestment policy in the form of

impulse control. Here, regime two parameters have no e�ect on the option values in regime one

and vice-versa. There are only four constants of integration in the model and conditions 2.4.21 and

2.4.22 do not apply. The general solution for qi in this region is

qTi =



θT1 h̃ω
ν
1y

ν +
λ12φU

ρ+ δ + λ12

+D3y
β1 +D4y

β2 if ε = 1

θT2 h̃ω
ν
2y

ν +
λ21φI

ρ+ δ + λ21

+ C1y
γ1 + C2y

γ2 if ε = 2

. (2.5.1)
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To solve, let G1 = yH1 /y
L
1 and G2 = yH2 /y

L
2 . Next, de�ne the function

ψ (x;κ1, κ2) =
xκ1 − xν

xκ1 − xκ2
. (2.5.2)

An important feature of this function is that

ψ (G1; β1, β2)xβ2−ν = ψ
(
G−1

1 ; β1, β2

)
,

and likewise for ψ (G2; γ1, γ2). Abel & Eberly (1996) use this function to solve their (S,s) investment

model with partial irreversibility but without regime switching. Prior to their paper Bertola (1988)

believed it was impossible to �nd an analytical solution to this system, despite numerical solutions

suggesting that their was a unique solution.

The value matching and smooth pasting conditions in equations 2.4.19 and 2.4.20 ensure qT1 and

qT2 are equal to the purchase and sale prices of capital at the boundaries. (Again, because the �rm's

investment policy ensures qTi is always inside the inaction region, conditions 2.4.21 and 2.4.22 do

not apply.) The values of the constants of integration which satisfy these boundary conditions are

D3 = − ν

β1

[1− ψ(G1; β1, β2)] θT1 h̃ω
ν
1

(
yL1
)ν−β1

< 0 (2.5.3)

D4 = − ν

β2

[ψ(G1; β1, β2)] θT1 h̃ω
ν
1

(
yL1
)ν−β2

> 0 (2.5.4)

C1 = − ν

γ1

[1− ψ(G2; γ1, γ2)] θT2 h̃ω
ν
2

(
yL2
)ν−γ1

< 0 (2.5.5)

C2 = − ν

γ2

[ψ(G2; γ1, γ2)] θT2 h̃ω
ν
2

(
yL2
)ν−γ2

> 0 (2.5.6)

as long as equations 2.5.11 and 2.5.12 have unique solutions greater than one. D3 and C1 re�ect the

option value of investment in regime one and regime two respectively. They are negative because

increasing the capital stock by a marginal unit causes qTi to fall by the assumption of diminishing

marginal product of capital. For the same reason, D4 and C2 are positive because they re�ect the

option value of selling the marginal unit of capital. To simplify notation, let

Ω1(G1) = θT1

[
1− ν [1− ψ(G1; β1, β2)]

β1

− ν [ψ(G1; β1, β2)]

β2

]
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and

Ω2(G2) = θT2

[
1− ν [1− ψ(G2; γ1, γ2)]

γ1

− ν [ψ(G2; γ1, γ2)]

γ2

]
.

These equations are what is left over after substituting the constants of integration into the boundary

conditions 2.4.17 and 2.4.18 and factoring out the common term, which is the marginal revenue

product of capital at the boundaries. Collecting all terms containing φk to the right-hand side of

the equation and dividing through by Ωi(Gi) gives four equations de�ning marginal revenue product

of capital at the boundaries

h̃ων1
(
yH1
)ν

=
(ρ+ δ + λ12)φI − λ12φU

Ω1(G−1
1 ) (ρ+ δ + λ12)

(2.5.7)

h̃ων1
(
yL1
)ν

=
(ρ+ δ)φU

Ω1(G1) (ρ+ δ + λ12)
(2.5.8)

h̃ων2
(
yH2
)ν

=
(ρ+ δ)φI

Ω2(G−1
2 ) (ρ+ δ + λ21)

(2.5.9)

h̃ων2
(
yL2
)ν

=
(ρ+ δ + λ21)φU − λ21φI

Ω2(G2) (ρ+ δ + λ21)
. (2.5.10)

Now divide 2.5.7 by 2.5.8 and 2.5.9 by 2.5.10 to obtain two non-linear equations in G1 and G2. Using

the result in Abel & Eberly (1996) there is a unique G1 > 1 and G2 > 1 which satis�es the following

two non-linear equations 2.5.11 and 2.5.12 respectively as long as φI > φU and (ρ+ δ + λ21)φU −

λ21φI > 0, so the wedge between the capital prices in not too large5

5Otherwise the fundamental component of the marginal product of capital at the disinvestment boundary in
regime two could be negative. The marginal resale value of capital must be larger than the probability-weighted
value of the marginal unit of capital in the event of a switch from regime two to regime one.
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Ω1(G−1
1 )Gν

1 −
(

(ρ+ δ + λ12)φI − λ12φU
(ρ+ δ)φU

)
Ω1(G1) = 0 (2.5.11)

Ω2(G−1
2 )Gν

2 −
(

(ρ+ δ)φI
(ρ+ δ + λ21)φU − λ21φI

)
Ω2(G2) = 0. (2.5.12)

As is obvious from �gure 2.4.2c, yH1 < yL2 must hold for this solution to be correct. This can

never be the case if regime switching does not a�ect the marginal revenue product of capital or

the marginal price of capital. The reason is that the model converges to having just one price of

capital when the ratio of the thresholds goes to unity, which establishes a maximum disinvestment

threshold and a minimum investment threshold determined by the user cost of capital in Jorgenson

(1963). It could be the case that either φI → φU from above or φU → φI from below. Because

the minimum investment threshold is higher than the maximum disinvestment threshold, a dis-

investment threshold can never sit above an investment threshold in [K,P ] space without regime

switching productivity.

To see why, �rst notice that by the application of L'Hôpital's rule

lim
x→1

ψ (x;κ1, κ2) =
κ1 − ν
κ1 − κ2

.

Also, it can be veri�ed that

1− νµ1

ρ+ δ + λ12

−
1
2
σ2

1ν(ν − 1)

ρ+ δ + λ12

= 1−
(
ν − β2

β1 − β2

)
ν

β1

−
(
β1 − ν
β1 − β2

)
ν

β2

1− νµ2

ρ+ δ + λ21

−
1
2
σ2

2ν(ν − 1)

ρ+ δ + λ21

= 1−
(
ν − γ2

γ1 − γ2

)
ν

γ1

−
(
γ1 − ν
γ1 − γ2

)
ν

γ2

.

The expressions on the right hand side of the last two equations are the result of substituting the

limit of ψ (G1; β1, β2) as G1 → 1 and ψ (G2; γ1, γ2) as G2 → 1 into Ω1(G1) and Ω2(G2) respectively.
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Now, note that

ηi(ν)× c =
1

ρ+ δ + λij
if c = 1− νµi

ρ+ δ + λij
−

1
2
σ2
i ν(ν − 1)

ρ+ δ + λij
.

Then it must be the case that Ωi(1) = 1
ρ+δ+λij

, which in turn can be substituted into equations

2.5.11 and 2.5.12 along with Gi = 1 to yield φI = φU . This �nding makes economic sense. It states

that if there is no wedge between the thresholds justifying investment and disinvestment, capital

adjustments must be fully reversible and there can only be one price of capital in the model. Now

suppose that φU → φI so φI is the only price of capital in the model and that ω1 = ω2 = 1 so

there are no di�erences in productivity between the regimes. Equations 2.5.7 and 2.5.9 immediately

reveal that

yH1 = yH2 =

(
(ρ+ δ)φI

h̃

) 1
ν

.

This condition gives the minimum investment threshold in the model. Likewise if φI → φU so φU

is the only price of capital in the model, then

yL1 = yL2 =

(
(ρ+ δ)φU

h̃

) 1
ν

which is the maximum disinvestment threshold.

Given φI > φU , the minimum investment threshold must always be greater than the maximum

disinvestment threshold. There is no combination of αi, σi, and λij which can push the disinvestment

(investment) threshold above the maximum (minimum) determined by the Jorgensonian user cost.

Figure 2.A.1 and in the appendix demonstrates this in [K,P ] space. As α2 decreases or σ2 increases,

PL
2 converges to the Jorgensonian user cost given by the lower black curve6.

It is also clear why regime switching technology allows yH1 < yL2 . The minimum investment and

maximum disinvestment thresholds in regime one and two can be di�erent when ω1 6= ω2. The

6Note that decreases in λ21 also bring P
L
2 closer to its maximum possible value but λ21 = 0.001 in these simulations

so its e�ect on PL2 is already negligibly small.
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minimum investment boundary in regime one becomes

yH1 =
1

ω1

(
(ρ+ δ)φI

h̃

) 1
ν

and the maximum disinvestment boundary in regime two becomes

yL2 =
1

ω2

(
(ρ+ δ)φU

h̃

) 1
ν

.

Clearly, for a small enough ω2, yH1 < yL2 . In economic terms, this means that the di�erence in

productivity between the regimes must be su�ciently large to produce a separated con�guration.

The key characteristic of the separated con�guration is that switches to regimes characterised

by higher uncertainty and lower productivity always cause an immediate decrease in the �rm's

capital stock followed by a period of increased inaction, regardless of how close to its adjustment

threshold the �rm was before the regime switch. The initial disinvestment is due to impulse control

following the regime shift while the latter is due to the greater wedge between the investment

and disinvestment thresholds in regime two. When transitioning from the recessionary regime, the

�rm installs a lump of capital and is then willing to invest at a lower price of the output good.

Therefore, di�erences in productivity large enough to produce a separated con�guration will lead

to very aggressive response of capital accumulation to the business cycle. Firms with very di�erent

productivity levels between the two regimes will adjust their capital stocks in large lumps whenever

there is a change in regime. The higher yL2 , the larger the discrete jump in the capital stock necessary

to move to the inaction region of regime two following a switch from regime one.

The �rst row of table 2.5.2 shows a numerical solution to the separated con�guration using the

baseline parameters. The second and third rows show the e�ect of decreasing the productivity level

in regime two by 5 percentage points and increasing uncertainty by 5 percentage points respectively.

Lower productivity in regime two increases both the investment and disinvestment thresholds. A

higher price of the output good is now required for the �rm to add to its capital stock and is also

su�cient to justify subtracting from its capital stock. Overall, recessions will be associated with

less investment and more disinvestment compared to the expansionary regime.
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yH2 yL2 G2 C1 C2

ω2 = 0.3 27.70 11.94 2.32 −1× 10−5 2473.59
ω2 = 0.25 33.24 14.32 2.32 −6× 10−6 4601.61
σ2 = 0.3 29 11.49 2.52 −5× 10−5 456.53

σ2 = 0.3 & ω2 = 0.25 34.80 13.79 2.52 −3× 10−5 746.73

Table 2.5.2: Separated Con�guration

As mentioned, regime two parameters have no e�ect on the unknowns in regime one in a sepa-

rated con�guration. This comes from the fact that switching to the other regime always gives the

known payo� φk and triggers a discrete adjustment in the capital stock. The unknowns in regime

one are yH1 = 8.38, yL1 = 4.48, G1 = 1.87, D1 = −0.02, and D4 = 2.32 for all speci�cations in table

2.5.2. C1 is very close to zero and C2 is very large relative to the constants of integration in regime

one. This is because the disinvestment threshold is so high. It means there is a relatively large

increase in q2 if the �rm removes the marginal unit of capital. Likewise, there is a relatively small

decrease in q2 if the �rm installs the marginal unit of capital. When the capital stock is relatively

unproductive in the recessionary regime, the marginal value of the next unit of capital is greatly

increased by reducing the capital stock.

While uncertainty also causes upward movements in the investment threshold, it decreases the

disinvestment threshold. The model therefore predicts some ambiguity about whether there will

be more or less disinvestment following a switch to a recessionary regime with lower productivity

and higher uncertainty. This is intriguing in light of the fact that downward adjustments in the

capital stock are known to be less frequent in �rm-level data (Doms & Dunne, 1998; Cooper &

Haltiwanger, 2006). The third column of table 2.5.2 shows that in this case the upward e�ect from

productivity dominates and the disinvestment threshold increases. Notice also that only changes in

uncertainty alter the ratio between the investment and disinvestment thresholds.

2.5.2 Nested Con�guration

A switch from regime one to regime two in the region
[
yL1 , y

H
1

]
means acquiring the expected present

discounted value of the marginal unit of capital plus the options to install and uninstall the next

marginal unit. The regions between
[
yH1 , y

H
2

]
and

[
yL2 , y

L
1

]
can only be reached in regime two.
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Switching in the region
[
yH1 , y

H
2

]
triggers immediate investment in the form of impulse control, so q2

is in a transient region with q1 = φI . Likewise, switching in the region
[
yL2 , y

L
1

]
triggers immediate

disinvestment, so q2 is in a transient region with q1 = φU . The general solution to q1 is

q1 = θ1h̃ω
ν
1y

ν +
4∑
j=1

Ajy
zj (2.5.13)

and the general solution for q2 is

q2 =



θ2h̃ω
ν
2y

ν +
4∑
j=1

η1(zj)

λ12

Ajy
zj if q2 ∈

[
yL1 , y

H
1

]

θT2 h̃ω
ν
2y

ν +
λ21φI

ρ+ δ + λ21

+
2∑
j=1

Cjy
γj if q2 ∈

[
yH1 , y

H
2

]

θT2 h̃ω
ν
2y

ν +
λ21φU

ρ+ δ + λ21

+
2∑
j=3

Cjy
γj if q2 ∈

[
yL2 , y

L
1

]
.

(2.5.14)

The boundary conditions are exactly as speci�ed in 2.4.5 where i = 1 and j = 2. Evaluating

these four equations at the boundaries gives a system of twelve equations and twelve unknowns

which is not solvable using the techniques of Abel & Eberly (1996) and Guo et al. (2005). However,

numerical solutions are available whose validity can be checked by comparison to a model without

regime switching. As λ12 → 0 and λ21 → 0, the model converges to a modi�ed form of Abel &

Eberly (1996), which does have closed-form solutions once the ratio of capital prices is known. I

present solutions in appendix 2.A.2 which show this convergence by setting λ12 = λ21 = 0.0001 .

Nested con�gurations are characterised by one regime having higher uncertainty about the out-

put price than the other. This is because higher uncertainty in one regime will push the investment

threshold upwards and disinvestment threshold downwards, allowing the thresholds in the other

regime to lie between those in the high-uncertainty regime. As oppose to the separated con�gura-

tion, switching to a recessionary regime in a nested con�guration never results in a lump adjustment

in the capital stock. Such adjustments only occur when switching from a recessionary regime. If the
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switch to the recessionary regime occurs when P and K are such that qT2 is in the region [yH1 , y
H
2 ],

there is an immediate lump increase in the capital stock. Likewise, there will be a lump decrease

in the capital stock when ε switches from regime 1 to regime 2 and qT2 is in the region [yL1 , y
L
2 ]. The

dynamics of investment after switching from a high-uncertainty regime are therefore ambiguous, if

P was relatively high a �rm who was delaying the decision to invest will suddenly install a lump

of capital, while if P is relatively low a �rm who was delaying the decision to disinvest will sell a

lump of capital.

As shown in the �rst column of table 2.5.3, the baseline parameters produce a nested con�g-

uration. It is �rst interesting to note that under the assumption of no downward adjustment in

the capital stock, as in Guo et al. (2005), and using the baselines parameter values in this chapter,

the investment threshold in regime one is 8.78 and the investment threshold in regime two is 9.53.

For completeness, there are four constants of integration in the fully irreversible model, given the

baseline parameters, they have values 3 × 10−5, -0.116, -0.001 and -524.65. Comparison with yH1

and yH2 in table 2.5.3 reveals that if the �rm has the option to adjust the capital stock downwards

as well as upwards, they will invest at lower prices of the output good. This makes sense because

the decision to purchase capital is now only partially irreversible, so the �rm can recover some

of the cost of investment at a later date. The regime switching model in Guo et al. (2005) thus

overestimates the price required for investment to take place for a given set of starting parameters.

As σ2 increases to 0.4 in the second column, yH2 increases and yL2 decreases but notice also the

slight changes in the regime one thresholds as well. Higher uncertainty in the recessionary regime

has also caused a change in the optimal decision in the other regime, speci�cally, the region of

inaction has increased. Given the values of the other parameters, regime one's investment threshold

has been a�ected more than its disinvestment threshold. The third column resets σ2 = 0.25 and

shows the e�ect of making the expansionary regime less persistent (higher λ12), meaning it is more

likely for ε to switch to the recessionary regime. This leads to increases in all of the thresholds in

the model, relatively small increases in regime two and larger increases in regime one. If recessions

are expected to occur more frequently, a higher value of the output price for a given K will be

required to justify investment and �rms are willing to decrease their capital stocks at higher prices

of the output good.
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Unknown σ2 = 0.25 σ2 = 0.4 λ12 = 0.15
yH1 8.1853 8.2073 8.2087
yL1 4.4254 4.425 4.4302
yH2 8.6436 9.8542 8.6476
yL2 4.3067 3.899 4.3089
A1 −3× 10−5 -0.0021 −1× 10−5

A2 -0.1196 -0.1604 -0.1171
A3 76.851 11.046 61.442
A4 122.9 198.07 298.29
C1 -0.0008 -0.0081 -0.0008
C2 -67.971 1.9308 -69.467
C3 -0.0002 -0.0049 -0.0002
C4 104.39 13.229 104.5

Table 2.5.3: Nested Con�guration

The constants of integration must simultaneously ensure that it is optimal to adjust the capital

stock when y is at a threshold value and that qT2 is tangent to q2 at the investment and disinvestment

thresholds in regime one. Figure 2.5.1a shows the graph for q1 from the second results columns of

table 2.5.3. It has the same shape as the functions encountered in chapter one when outside of the

transient regions. The threshold values of y are marked by stars on the horizontal axis, blue in

regime one and red in regime two.

Given chapter one covered this in some detail, I will only comment that A3 > 0 and A4 > 0 in

table 2.5.3 means q1 is decreasing for small values of y but these terms become less in�uential as

y increases. There is always the fundamental part of qi which is convex in y, in this case given by

θ1h̃ω
ν
1y

ν . This means the function starts increasing after the fundamental part starts to dominate

the terms containing A3 and A4, which produces a local (in the range [yL1 , y
H
2 ]) minimum at yL1

where q1 = φU , after which the function slopes upwards. Then, A1 < 0 and A2 < 0, as well as the

restriction that ν < z1 < z2, means the function is diminishing before reaching a local maximum at

yH1 where q1 = φI .

Figure 2.5.1b graphs qT2 in the cases where q1 = φI and q1 = φU . I have omitted the q2 function

so the panel is not too cluttered. Panel 2.5.1c shows that q2 is indeed tangent to qT2 at regime

one's threshold values, as required. Returning to 2.5.1b, given C4 > 0, qT2 |q1=φU (the dashed line)

slopes downwards for small values of y, before reaching a local minimum at yL2 where qT2 = φU . C3

is negative in this case and indicates how steep the function has to be after the local minimum to

90



(a) q1

(b) qT2

(c) q2 − qT2

Figure 2.5.1: qi at the Boundaries in the Nested Con�guration
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smooth paste with q2 at yL1 . The lower (more negative) it is, the more gradual the slope and the

further away yL1 is from yL2 .

For qT2 |q1=φI (the solid line), C1 < 0 and γ1 > ν allows this function to have a maximum at yH2

because the term C1y
γ1 dominates θT2 h̃ω

ν
2y

ν and means the slope of qT2 is diminishing between yH1

and yH2 . C2 takes on both positive and negative values in table 2.5.3. If yH1 is relatively close to yH2

the function qT2 must be steeper in this interval, so C2 can be negative to ensure this. Otherwise,

when yH1 is relatively far away from yH2 , higher values of C2 allow the slope to be more gradual.

2.5.3 Overlapping Con�guration

From �gure 2.4.2e, q2 is in a transient region in the interval
[
yH1 , y

H
2

]
with q1 = φI , however, q1 is

in a transient region for
[
yL1 , y

L
2

]
with q2 = φU . The general solution for qi is now

q1 =



θ1h̃ω
ν
1y

ν +
4∑
j=1

Ajy
zj if q1 ∈

[
yL2 , y

H
1

]

θT1 h̃ω
ν
1y

ν +
λ12φU

ρ+ δ + λ12

+
2∑
j=3

Djy
γj if q1 ∈

[
yL1 , y

L
2

]
(2.5.15)

and the general solution for q2 is

q2 =



θ2h̃ω
ν
2y

ν +
4∑
j=1

η1(zj)

λ12

Ajy
zj if q2 ∈

[
yL2 , y

H
1

]

θT2 h̃ω
ν
2y

ν +
λ21φI

ρ+ δ + λ21

+
2∑
j=1

Cjy
γj if q2 ∈

[
yH1 , y

H
2

]
(2.5.16)

The boundary conditions 2.4.21 and 2.4.22 are slightly modi�ed in the overlapping con�guration

because both q1 and q2 are in a transient region over some range of [K,P ] space. In this section,

they are given by

lim
y↑yH1

q2 = lim
y↓yH1

qT2 and lim
y↓yL2

q1 = lim
y↑yL2

qT1 (2.5.17)
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lim
y↑yH1

q′2 = lim
y↓yH1

(
qT2
)′

and lim
y↓yL2

q′1 = lim
y↑yL2

(
qT1
)′
. (2.5.18)

As with the nested con�guration substituting the general solutions for qi into the relevant bound-

ary conditions produces a system of twelve equations and twelve unknowns which can be solved

numerically. The overlapping con�guration in �gure 2.4.2e tends to occur when regime two has a

higher volatility and a much lower drift or moderately lower productivity parameter compared to

regime one. It can therefore be viewed as and intermediate case; the result of switching to a more

severe recession than the nested con�guration but not as severe as the separated con�guration.

Between yH1 and yH2 where q2 is transient, switching to regime one will have the same e�ect as

in the nested con�guration, the �rm will immediately install a lump of capital. As in the other

con�gurations, switching from a recessionary regime results in a wave of investment. However, with

q1 transient between yL1 and yL2 , switching to the recessionary regime in this region will result in a

lump decrease in the capital stock. This decrease will be smaller than in the separated con�guration

because yL2 is lower than yH1 . It is also possible that ε switches from regime one to regime two while

q1 is not in the transient region. In this case, the switch will have no immediate e�ect on the capital

stock but the �rm will be closer to its disinvestment threshold now that the economy is in the

recessionary regime (see �gure 2.4.2e).

Unknown α2 = −0.04 ω2 = 0.8 ω2 = 0.8 & λ21 = 0.15
yH1 8.2072 8.2642 8.2738
yL1 4.4376 4.458 4.4608
yH2 8.9847 10.53 10.651
yL2 4.4916 5.0695 5.176
A1 4× 10−7 −7× 10−5 -0.0004
A2 -0.0795 -0.1119 -0.1068
A3 37.063 89.047 64.877
A4 166.05 68.576 90.828
C1 -0.0001 -0.0004 -0.0019
C2 -5.8639 15.322 69.837
D3 -0.0227 -0.02295 -0.02299
D4 206.65 208.65 208.92

Table 2.5.4: Overlapping Con�guration

Table 2.5.4 shows some parameter combinations which produce an overlapping con�guration.

In the �rst column, the drift parameter in regime two is −0.04, so the output price tends to decline
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over time when in this regime. As required, yL2 now lies above yL1 . Relative to the �rst column of

table 2.5.3, all of the thresholds have increased, re�ecting the fact with the much lower growth in the

output price in regime two, installing capital is fundamentally less valuable for the �rm. A similar,

but larger, e�ect is found in the second column of table 2.5.4 after a decline in the productivity

parameter in regime two relative to the baseline case. As shown in the third column, increasing the

persistence of the recessionary regime (decreasing λ21) causes further increases in the thresholds.

Installing capital is less valuable when recessions are more persistent and selling the marginal unit

is justi�ed at a higher price of the output good.

Figure 2.5.2 shows the solutions in the third results column of table 2.5.4 graphically. The �rst

panel shows that q2 smooth pastes with φU at yL2 and q2 smooth pastes with φI at yH1 . Because

both regimes now feature a transient region over some range of y, neither qi function smooth pastes

with both φI and φU . Instead, the second panel shows how qT1 smooth pastes with φU at yL1 and qT2

smooth pastes with φI at yH2 . The �nal panel shows the equivalence of qi and q
T
i at the boundaries

de�ning the transient regions.

Again, C2 changes sign in the second and third results columns of table 2.5.4, re�ecting the fact

that yH2 is relatively far away from yH1 and the function must increase gradually over this region

to ensure the boundary conditions are satis�ed. The slight decrease in D3 between the �rst and

second columns likewise accounts for the fact that yL2 is further away from yL1 .

2.6 Conclusion

By incorporating regime switching uncertainty and productivity into a model of optimal capital

accumulation, this chapter has demonstrated how switching between expansionary and recessionary

regimes produces lumpy adjustments in a representative �rm's capital stock, followed by periods of

enhanced or depressed investment activity. Previous related studies have tended to assume both

uncertainty and productivity are time invariant, which limits the predictions they can make about

�rms' optimal investment policy over the business cycle. In contrast, this chapter shows that there

are multiple possible responses of �rm-level investment to regime changes where the only �nancial

friction is a wedge between the purchase and sale prices of capital.
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(a) q1 and q2

(b) qT1 and qT2

(c) q1 − qT1 and q2 − qT2

Figure 2.5.2: qi at the Boundaries in the Overlapping Con�guration
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The price of the perfectly competitive �rm's output good followed a GBM whose drift and

volatility parameters were dependent on a CTMC switching between two regimes representing ex-

pansions and contractions. Time-varying uncertainty was introduced through this regime switching

volatility parameter. The productivity parameter in the �rm's Cobb-Douglas production function

was also dependent on the CTMC, and introduced time-vary productivity into the model. Thus the

model captures two observed characteristics of recessions; higher uncertainty and lower productiv-

ity. The �rm's decision problem was solved by �nding the threshold values of the stochastic variable

underlying the value of the marginal unit of capital which triggered a change in investment policy.

With two regimes and partial reversibility of investment regimes, there were four such thresholds to

locate, and their relative positions generated a set of predictions about the response of investment

to regime changes.

The most radical patters of investment activity were produced in the separated con�guration,

where switching to the recessionary regime always resulted in a lump decrease in the capital stock

and switching to the expansionary regime always resulted in a lump increase in the capital stock.

Higher uncertainty in the recessionary regime also meant investment activity would be reduced.

This required very large di�erences in productivity between the two regimes and suggests this kind

of investment pattern will only be observed in �rms or plants whose productivity level is highly

dependent on the state of the economy.

A nested con�guration, where the thresholds in the expansionary regime lied within those of

the recessionary regime, was produced when the latter regime displayed higher uncertainty but the

di�erences in the productivity and drift parameters were relatively small. Here, transitioning into

the recessionary regime does not produce a lump adjustment in the capital stock but does result

in lower investment activity because the �rm's region of inaction widens. Upon switching back to

the expansionary regime, the �rm may remain inactive, install capital, or sell capital depending

on whether the value of the marginal unit of capital is above or below the investment threshold

in the expansionary regime when the regime switch occurs. Hence, coming out of periods of high

uncertainty can be marked by lump changes in capital stocks.

The overlapping con�guration, when the disinvestment threshold in regime one was lower than

that in regime two, represented an intermediate case where the recessionary regime displayed higher

96



uncertainty but also notably lower productivity or growth in the output price. Lump adjustments

in the capital stock are now possible, but not certain, in both regimes. For a given K, switching

to an expansionary regime may be marked by a lump increase in the capital stock if the output

price is high enough and switching to a recessionary regime may be marked by a lump decrease

in the capital stock if the output price is low enough. Because higher uncertainty decreases the

disinvestment threshold but lower drift and productivity have the opposite e�ect, there is ambiguity

about how simultaneous changes in these variables will a�ect the sale of capital.

Overall, the model makes testable predictions about the response of investment activity to

regime changes. Future work could identify whether periods of high uncertainty and low produc-

tivity produce patterns of �rm level investment which match these predictions. This would give

policy makers forecasting future investment additional insight into how changes in the economic

environment might a�ect �rms' optimal investment decisions. One shortcoming of the model is that

productivity only changes with ε. In reality, �rm-level productivity would also be better modelled

as a stochastic process where regime changes a�ected its growth and its volatility, rather than lead-

ing to persistent falls in its level. This would complicate the model but is another future avenue of

research.

97



Appendix 2.A

2.A.1 Convergence to Minimum and Maximum Boundaries in the Sep-

arated Con�guration

Figure 2.A.1: Minimum Investment and Maximum Disinvestment Boundaries without
Regime-Switching Technology

Here, α1 = 0.04, α2 = −0.1, σ1 = σ2 = 0.07, and λ12 = λ21 = 0.001. These parameters are extreme and demonstrate
that the existence of the maximum disinvestment and minimum investment thresholds which are shown by the black
curves.

2.A.2 Convergence to a Model without Regime Switching in the Nested

and Overlapping Con�gurations

Abel & Eberly's (1996) model has four unknowns, the two threshold values of the stochastic variable

triggering adjustments in the capital stock and two constants of integration giving the change in

the value of q at these boundaries. As the regime switching parameters go to zero, both regimes

should converge to Abel & Eberly's model, given the drift and uncertainty of the stochastic GBM

process and the parameters in the production function. In this section, let AEH
i be the constant

of integration associated with the value of q in regime i at the investment boundary and AEL
i do

the same for the disinvestment boundary. Table 2.A.1 shows the convergence in the nested and
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overlapping con�gurations.

Nested Con�guration Overlapping Con�guration
Unknown λ12 = λ21 ≈ 0 No Switching λ12 = λ21 ≈ 0 No Switching

yH1 8.1721 8.1721 8.1722 8.1721
yL1 4.4223 4.4223 4.4223 4.4223
yH2 8.6992 8.6993 9.1314 9.1315
yL2 4.3214 4.3214 4.5668 4.5669
A1 -0.119 - 4× 10−6 -
A2 -0.0028 - -0.1215 -
A3 0.0527 - 0.0244 -
A4 148.21 - 148.25 -
B1 0.0024 - -0.0047 -
B2 -0.1133 - -0.0001 -
B3 44.1155 - 27.6982 -
B4 -0.091 - -0.0476 -
C1 -0.1105 - -0.0047 -
C2 44.048 - 27.668 -
C3 -0.1105 - - -
C4 44.062 - - -
D3 - - -0.1214 -
D4 - - 148.3 -
AEH

1 - -0.1218 - -0.1218
AEL

1 - 148.199 - 148.199
AEH

2 - -0.1109 - -0.0047
AEL

2 - 44.0512 - 27.6731

Table 2.A.1: Convergence to a Model without Regime Switching as λ12 = λ21 → 0.

One di�erence from chapter one is worth mentioning. The constants of integration in the

transient regions now both converge to those in the model without regime switching, whereas

chapter one argued that one from each pair needed to be eliminated to get back to the standard

model. This is because qi is always bounded by the investment and disinvestment thresholds in this

chapter, so there is no argument to eliminate the constants as y gets very large or very small. The

constants in the transient regions all show the required convergence to re�ect this.
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Chapter 3

Determinants of Corporate Investment and

the Impact of the Great Recession: The

Role of Balance Sheets and Uncertainty

3.1 Introduction

In the aftermath of the Great Recession (GR) of 2008-2009, U.S. Gross Fixed Capital Formation

(GFCF) showed a dramatic decline. Including the minor fall in the two quarters before the GR

o�cially hit (according to the NBER's method of identifying turning points in the business cycle),

quarterly GFCF growth was negative for over two years during this period. GFCF did not recover

to its pre-recessional level until the last quarter of 2012. Similar to the observations Cerra & Saxena

(2008) make about GDP, GFCF does not display a sustained period of above average growth after

a large recession to return to previous trends but instead remains depressed for a few quarters after

the recession before returning to its normal growth path. Relative to GDP, the decline and delayed

recovery appears more dramatic. Between 1989 and 2019, the average GFCF to GDP ratio was

20.6%, a rate not seen until 9 years after the recession. These dynamics are shown in �gure 3.1.1b.

The shaded areas are the NBER recessionary periods. Large declines in investment during recessions

coupled with delayed recoveries concern policy makers because investment decisions today a�ect the

capital stock available to drive growth and innovation in future periods. Former head of the Federal
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Reserve Janet Yellen (2016) noted that the justi�cation for expansionary policies after recessions is

greater if they are expected to leave scars on the economy which a�ect growth in future periods.

The aim of this chapter is to identify the variables that a�ect the investment rate over the

business cycle and examine their role in causing its decline after the GR. Furthermore, in light of

the scale of the GR and the weak performance of investment relative to GDP, I also examine whether

these relationships changed in the years after the crisis. To accomplish this, I use a representative

sample of 1658 listed U.S. �rms' company accounts data and stock price information to understand

the factors underlying corporate investment. Building on chapter two of this thesis, the econometric

model is based on the q-theory of investment outlined in Hayashi (1982), which relates investment

rates (additions to �xed assets divided by the capital stock) to a measure of �rms' �nancial growth

opportunities which is empirically known as Tobin's average Q1. This model is augmented with

other variables that are also found to be signi�cant predictors of the investment rate; net sales,

uncertainty, leverage, cash �ows, size, and the lag of the investment rate itself. Other models

examining the determinants of corporate investment in the existing literature tend not to include

all of these variables, so the regression coe�cients in this chapter are robust to the inclusion of a

wider range of relevant predictors.

The coe�cient on the lagged dependent variable is known to be biased if estimated with a

�xed e�ects model, which removes unobserved time-invariant factors by subtracting the individual-

speci�c mean from each observation in the sample (Nickell, 1981). Therefore, the generalised method

of moments (GMM) estimator by Arellano & Bond (1991) recovers the coe�cients capturing the

relationships between the variables and the investment rate. Here, the bias introduced by including

the lagged dependent variable is dealt with by using past lags as instruments in a transformed model.

Instead of the conventional �rst di�erence transformation used in these models, a forward orthogonal

deviations transformation (FOD) removes the time-invariant error term, which also creates a source

of bias in the estimated coe�cients because it is likely correlated with the explanatory variables.

The FOD transformation subtracts the mean of all future values from the current observation, so any

1Tobin's marginal q was described in chapter two as the marginal value of the next unit of capital. Outside of
(S,s) investment models, it is usually de�ned as the ratio of this variable to the marginal cost of capital. Average
Q is its empirical analogue, most simply de�ned as the market value of the capital stock divided by its replacement
cost. Hayashi (1982) gives the necessary conditions for these concepts to be identical. I use a capitalised Q in this
chapter to keep the concepts distinct.
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(a) Gross Fixed Capital Formation (blue line) and its Growth (red line)

(b) U.S. Gross Fixed Capital Formation as a Proportion of GDP

Figure 3.1.1: Investment Time Series

102



factors which do not change over time (observed or unobserved) are removed. It has an advantage

over �rst di�erencing because it does not mean sacri�cing observations early in the sample.

Most of the variables have a precedent in previous literature and are readily available from

company book data. However, measuring uncertainty is a di�cult task because there can be no

forecastable information contained in the measure and it must be forward looking. Following Leahy

& Whited (1996) and Gilchrist et al. (2014), I base my measure on the idiosyncratic volatility

of �rms' stock returns. Unlike these studies, I examine whether there are signi�cant changes in

the estimated relationship between uncertainty and investment when uncertainty is measured by

the simple volatility (standard deviation) of returns compared to a measure constructed after �rst

purging returns of their forecastable information in a four-factor asset pricing model. Stock markets

can move even when there is no change in uncertainty, which is a source of potential contamination

in the measure. Indeed, section 3.4.2 suggests that the results do not change whether using simple

volatility or volatility conditional on common risk factors. I examine in chapter four whether changes

in uncertainty and stock market volatility have di�erent e�ects on the real economy.

The key result of this chapter is that the decline in growth opportunities (Q) and rise in uncer-

tainty were the key determining factors in causing the decline in �rms' investment rates during the

GR. Over the business cycle, these variables also show the most signi�cant interaction; there is ev-

idence that �rms with the lowest growth opportunities are more a�ected by increasing uncertainty.

This makes sense given the model studied in chapter two, where uncertainty raised the marginal

value of capital required to justify investment. Firms with high enough growth opportunities will

not be a�ected by increases in uncertainty. However, there is evidence that high growth opportuni-

ties were less e�ective at attenuating the negative relationship between uncertainty and investment

in the years after the GR. It also appears that �rms were less able to make use of their growth

opportunities after the crisis because the coe�cient on Q falls in the years after the GR compared

to those before.

The results support the theory that the real options e�ect plays a big role in determining

investment over the business cycle and especially during crises, when uncertainty is very high

(Bloom, 2009; Jurado et al., 2015). In contrast, there is little evidence to suggest that �rms in the

U.S. were hampered by �nancing issues during or immediately after the GR. Despite these variables

103



having a statistically signi�cant relationship with the investment rate, neither the average cash �ows

nor leverage ratios held by �rms greatly changed during this period compared to uncertainty and

growth opportunities. This corroborates with earlier �ndings in Banerjee et al. (2015). Overall,

the results highlight that the combination of declining growth opportunities and high uncertainty

mattered most for determining the fall in investment during the GR. Recessions come from di�erent

sources, but after recessions originating in �nancial markets this chapter suggests sending clear

signals to the market about future policy in order to reduce uncertainty may placate the e�ect of

the recession on corporate investment

The rest of this chapter is organised as follows. Section 3.2 �rst reviews the literature on the

determinants of �rm-level investment. Information on the sample and the econometric speci�cation

is outlined in 3.3. The results and robustness checks are presented and discussed in 3.4 before a

brief conclusion summarises the chapter.

3.2 Related Literature

3.2.1 Balance Sheets and Investment

The Modigliani & Miller (1958) hypothesis states that in the absence of �nancial frictions, a �rm's

capital structure should not matter for investment decisions. This has since been challenged on

numerous fronts. In a relatively simple model of a �rm's decision to expand capacity, Myers (1977)

shows that debt �nancing can prevent �rms undertaking pro�table investment. The additional

liability creates a wedge between the cost of acquiring the new asset and the increase in the value of

the �rm once is is installed, so the assets that would be purchased if funded through internal funds

are avoided under debt �nancing. Firms with higher debt to equity ratios also pose a higher risk

of default and will therefore pay higher interest rates on their debt, which in turn leads to credit

rationing and cuts leveraged �rms o� from a primary channel of funding investment (Merton, 1974;

Stiglitz & Weiss, 1981). Firm's who cannot use debt to �nance otherwise pro�table investments

are said to su�er from `debt overhang'. Lang et al. (1996) noted that leverage reduces investment

for �rms with low growth prospects, as measured by Tobin's Q, but does not have a signi�cant
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e�ect for �rms with higher growth prospects. Their �nding implies that �rms with su�ciently high

growth prospects can accumulate higher debt before they face binding credit constraints.

In the absence of access to loanable funds, cash �ows may become a more important determinant

of corporate investment. As a measure of the liquid assets coming into a �rm in a given period,

cash �ows provide an indication of the internal funds available for investment projects (Gilchrist &

Himmelberg, 1995). Early empirical work by Fazzari et al. (1988) found evidence that �rms with

cash �ow issues and those facing borrowing constraints have lower investment spending compared

to more pro�table �rms. This is especially true for smaller and younger �rms who represent a

riskier prospect for �nancial intermediaries and investors. However, in contrast to the prediction of

Fazzari et al. (1988), Lang et al. (1996) found that lower leverage had a larger positive impact on

investment compared with higher cash �ows.

Bernanke et al. (1996) outline how these �nancial market imperfections help propagate macroe-

conomic shocks. When the economy stalls, some �rms become credit constrained, perhaps because

lenders call in their debts or because drops in equity prices or increases in risk premiums increase

leverage ratios. Firms must delever before undertaking more investment �nanced through the debt

channel. Furthermore, the fall in consumer spending reduces cash �ows which further cripples the

�rms' capability to fund new projects. This `�nancial accelerator' mechanism is similar to the `sud-

den stop' literature explained by Mendoza (2010) where in�ows of foreign capital dry up after a

shock to the �nancial system. This mechanism was examined as a key component in propagating

the impact of the 1990s Asian crisis on the real economy of South-East Asian nations (Coulibaly &

Millar, 2011; Dagher, 2014). Like in Fazzari et al. (1988), smaller �rms were particularly at risk of

facing binding borrowing constraints when highly levered.

A large unexpected shock with origins in the �nancial sector, like the GR, will intensify �rms'

balance sheet deterioration and by the �nancial accelerator and sudden stop theories could lead to a

protracted decline in investment expenditure. Gebauer et al. (2018) and Kalemli-Özcan et al. (2022)

study the e�ects of debt overhang on European �rms after the GR. The former study suggests a

debt-to-asset ratio over 80% distorts investment spending through higher default risks and costs of

debt �nancing. The latter uses a unique �rm-level dataset which links individual �rms with their

primary bank and estimate that 40% of the drop in aggregate investment after the GR was caused
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by debt overhang.

Fewer studies have examined the relationship between non-�nancial �rms' balance sheets and

investment in the U.S. after the GR, with more attention given to household and investment bank

debt-to-equity ratios (Gertler & Gilchrist, 2018). One exception is Giroud & Mueller (2016). Their

key �nding is that more levered �rms cut back on employment, but they also �nd that, just like

in Europe, �rms with higher leverage ratios �nd it harder to raise capital and cut back more on

investment. It is worth noting that when considering cross-country di�erences, the organisation

of the �nancial sector is important. Market-based systems, like the U.S., are more likely to rely

on internally generated funds compared to bank-based systems, hence, cash �ows may be more

important in determining investment (Bond et al., 2003).

On aggregate, Banerjee et al. (2015) note that the issuance of debt and equity remained relatively

strong in the U.S. after the recession, meaning there was no substantial drop in the supply of funds

from these sources. Additionally, compared to a �rm with the same characteristics in the 1990s,

U.S. �rms after the crisis held 10% more cash after the Great Recession (Pinkowitz et al., 2013).

Bliss et al. (2015) show that dividend payments and share repurchases both fell after the crisis.

This trend was most notable for highly levered �rms, who can then use these funds to maintain

cash balances and also potentially fund investment. The key point is that for high-growth �rms

with lower leverage, access to lines of credit may not have changed after the recession.

3.2.2 Uncertainty and Investment

As outlined chapter two, a �rm's real option to expand capacity is more valuable during times of

uncertainty. In that model, the required added value of the marginal unit of capital which justi�es

expansion of the capital stock is higher in higher uncertainty regimes. Most studies seeking to test

this hypothesis on the �rm-or-establishment level base their measure of uncertainty on the volatility

of �rms' idiosyncratic stock returns. In theory, a �rm's stock price re�ects the expected present

discounted value of all its future pro�t �ows, taking into account all relevant information available at

the time (Malkiel, 2003). A representative sample indexing the value of U.S. equities should reveal

investors' estimate of future pro�t �ows. The average deviation of changes in stock prices around
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the mean gives an indication of how di�cult it is for investors to predict the future pro�tability of

�rms, taking into account both idiosyncratic information about the �rm and information about the

macroeconomy. Hence, stock market volatility is in theory a good measure of economic uncertainty

(Leahy & Whited, 1996).

However, previous studies recognise that some of the variation in stock prices is forecastable

and, therefore, not uncertain. While Bloom et al. (2007) and Baum et al. (2008) use the simple

standard volatility of daily stock returns each year to measure uncertainty, Bulan (2005), Panousi

& Papanikolaou (2012) and Gilchrist et al. (2014) use the residuals from an asset pricing model.

This chapter builds on Gilchrist et al.'s method because they use the four factor Fama-French-

Carhart four factor model rather than a single-factor model including only the market portfolio.

One potential drawback of their approach was already pointed out by Leahy & Whited (1996)

who note that uncertainty should be based on future expectations rather than ex post data. They

construct forecasts of �rms' idiosyncratic uncertainty and their exposure to market uncertainty

using a panel-data VAR model. As mentioned, stock prices today should re�ect the markets best

estimation of a �rm's future value so in this sense they already contain information based on

expectations. None of these studies consider the volatility of errors based on the di�erence between

predicted returns and actual returns, which in theory is closer to the idea of uncertainty because

it captures the di�erence between the expected change in the value of the �rm (predicted returns)

and the change actually observed. This chapter considers this extension.

The �ndings of these studies have been broadly consistent; higher idiosyncratic uncertainty

has a negative relationship with investment rates, consistent with the real options literature in

Dixit & Pindyck (1994). Once idiosyncratic volatility is accounted for, there is not a signi�cant

relationship between investment rates and a �rms' exposure to aggregate market uncertainty (Leahy

& Whited, 1996; Bulan, 2005). In Leahy & Whited (1996) the negative relationship disappeared

after controlling for Tobin's Q, which the authors interpret as evidence for the fact that uncertainty

a�ects investment by changing Q. In contrast, Bulan (2005) found uncertainty a�ects investment

even after controlling for Q and the marginal product of capital. Her results were also robust

to including cash �ows. In this chapter, uncertainty is signi�cant even after controlling for Q

but a statistically signi�cant interaction term between the two reveals the e�ect of uncertainty on
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investment is neutralised by high values of Q, as the real option models in Abel & Eberly (1996)

and (Dixit & Pindyck, 1994, pp.357-367) suggest. Rather than controlling for �rm leverage in the

regression model, both Leahy & Whited (1996) and Bulan (2005) scale �rms' stock volatility by

their debt-to-equity ratio based on the observed positive relationship between stock volatility and

leverage (Aït-Sahalia et al., 2013).

After controlling for the credit spread between the yield on individual corporate bonds and

a risk-free asset, Gilchrist et al. (2014) found that the signi�cance of the estimated relationship

between uncertainty and the investment rate was reduced. Credit spreads are a measure of how

di�cult it is for �rms to access credit or the `tightness' of �nancial conditions. When credit spreads

are high it signals that lenders believe there is a higher risk that �rms will default on their loans.

Risk and uncertainty are related but distinct concepts, the outcome of a gamble can be uncertain

but if the downside loss is relatively low then it should not be classed as high risk. Nonetheless, as

the average deviation of economic variables from their expected historical mean increases, as they

will in times of increasing uncertainty, the riskiness of investments will tend to increase. In this

chapter, the ease of accessing credit is controlled for by the leverage ratio but it is worth noting that

there is still a potential source of bias in the uncertainty-investment relationship if credit spreads

are correlated with uncertainty after conditioning on leverage2.

3.3 Data and Methodology

3.3.1 Sample

The sample is an unbalanced panel of 1658 U.S. �rms gathered from Thomson Reuters' Worldscope

database3 between 1992 and 2019. I restricted the sample to focus on �rms listed on a stock exchange

because �rms who are traded over the counter (OTC) usually publish relatively little book data

2Corporate bond data does not have su�cient coverage in the Worldscope database to include a �rm-level credit
spread measure in this chapter.

3It is more common to use Compustat when focusing on a sample of U.S. �rms. Ulbricht & Weiner (2005) notes
that the two databases lead to comparable results, with similar coverage of �rms' accounts. Because most cited
studies use Compustat, it is interesting to examine whether a di�erent sample leads to di�erent conclusions. The
baseline models 3.4.1 suggest estimated coe�cients are similar in sign and magnitude compared to previous literature,
so there is no evidence that very di�erent conclusions will be drawn from the di�erent datasets.
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and therefore display a large number of missing values in their series. Nofsinger & Varma (2014)

also note that they do not have the same level of regulatory oversight and trade in their equity is

dominated by individual investors trading on speculation rather than the fundamental value of the

�rm. As discussed, using stock prices as a measure of uncertainty makes the assumption that a

�rm's market value re�ects investor's best estimate of the future discounted pro�t �ows of the �rm.

Banks, �nancial service �rms, insurers and real estate investment funds were not sampled on the

basis that �rms in these sectors are likely to have di�erent optimal investment strategies, are likely

to operate under investment insurance schemes often unavailable to other �rms, and are subject to

di�erent regulations in terms of capital requirements (Medina, 2012). While some studies such as

Leahy & Whited (1996) restrict their focus to manufacturing �rms on the basis that they should

be the driving force of �xed investment, this is not followed in this paper and service �rms are

included in the analysis. Gilchrist et al. (2014) and Kalemli-Özcan et al. (2022) also include service

�rms. Indeed, the results suggest there is no statistically signi�cant di�erence in investment rates

between service �rms and manufacturing �rms. There may still be some concern than service sector

and manufacturing �rms face di�erent regulations that are not controlled for in this study which

potentially a�ects the results. However, estimated coe�cients were similar when service sector �rms

were removed from the sample.

The dependent variable is the natural log of the investment rate: ln
(

Iit
Ki,t−1

)
≡ ψit where Iit is

annual expenditures on capital goods andKi,t−1 is last year's stock of property plant and equipment,

where i ∈ {1, ..., 1658} and t ∈ {1, ..., 28}. A large number of �rms have some missing values for

the dependent variable. This is largely due to the increasing coverage of the Worldscope database

throughout the 1990s. Figure 3.3.1 shows how the number of �rms in the sample grows until the

year 1999 before stabilising between 1150 and 1200. The introduction of new �rms into the sample

could a�ect estimates if those �rms have characteristics which a�ect investment that cannot be

controlled for in the database. This is a form of sample selection bias. For example, managers of

�rms that have just been listed may have a stronger preference for expansion compared to more

established �rms. I test for this by comparing the results from the full sample to those of a restricted

sample including only those �rms who are present from the start. A similar restriction includes

only �rms present from the year 2000 onwards. Neither signi�cantly alters the results.
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Figure 3.3.1: Number of Firms in the Sample over Time

The histogram in �gure 3.3.2a shows the distribution of missing values for the dependent variable.

As depicted, 42.76% of �rms (709) have fewer than 10% of their observations missing, while 57.06%

(931) have fewer than 20% missing. Firms with a very high number of missing values either arrive in

the sample late or drop out soon after entering. I remove any �rm with fewer than 10 observations

to prevent these �uctuations in sample size from a�ecting the results. There is also a concern

about the quality of book-keeping for �rms who drop out of the sample and re-enter it at a later

date. These �rms might have lower regulatory standards or may have been temporarily removed

from a listed stock exchange. Figure 3.3.2b shows the distribution of runs of missing values. Zero

runs of missing values naturally means the �rm has no missing values. All �rms have at least one

missing value because the dependent variable uses the lag of the capital stock, Ki,t−1. One run

of missing values means once the �rm entered the sample it was present in all subsequent years.

Values greater than one are the number of times the �rm left the sample. I remove any �rm which

leaves the sample more than twice.

Applying these restrictions to the dependent variable leaves 1058 �rms. These �rms have rea-

sonably complete series for the other variables discussed in the following sections as well, suggesting
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the restrictions have removed �rms with poor record keeping. One exception is cash �ows, where

about half of �rms have roughly 50% of their values missing. Taking cash �ows out of the baseline

regressions does not change the signs of the coe�cients and their magnitude remains similar. The

standard errors decrease though, because the sample size increases by around 50%. Cash �ows

are highly signi�cant in the regression models and correlated with other explanatory variables, so

leaving it out biases the coe�cients on other explanatory variables it is correlated with and creates

correlation between the explanatory variables and the error term. Hence, I keep it in the model

and note here that its inclusion in�ates the standard errors.

3.3.2 Book Variables

Book variables which in�uence investment rates other than average Q (Q̃it)4 are leverage (LEVit),

cash �ows relative to the capital stock (CFit), net sales relative to the capital stock (Yit), and size

(L̃it) (the number of employees). Average Q is de�ned as in Chortareas et al. (2021) as the ratio

of total liabilities plus market capitalization to common shareholder equity plus total liabilities.

Leverage is total liabilities divided by total assets as in Kalemli-Özcan et al. (2022); total debt

divided by common shareholder equity, another common measure of leverage (seeBulan (2005)) did

not have a signi�cant e�ect on the investment rate after controlling for the other variables. The

sales to capital ratio is an indication of the marginal product of capital5. Although it does not take

into account the di�erence between sales and production Gilchrist & Himmelberg (1998) found that

there is a 0.99 correlation between �rms' production levels (which tend to only be available for a few

�rms) and their sales. They note that Yit can be used as a measure of a �rm's growth opportunities

beyond Q̃it and call it `fundamental Q'. To avoid confusion with the more conventional Tobin's

Q, I will refer to it as capturing `real growth opportunities' as opposed to the �nancial growth

opportunities captured by Q̃it.

To reduce the in�uence of outliers, all variables were winsorised at the 0.5% level, setting any

values above the 99.5th or below the 0.5th percentile equal to the value at that percentile. Win-

4Average Q and size are marked with a tilde because later I will take logs of these variables and work with logs

for the rest of the chapter, the notation will be less cumbersome if ln
(
Q̃it

)
= Qit.

5Suppose a �rm produces with a Cobb-Douglas production function with inputs of capital and labour, Y =
KαL1−α, then Y/K is the marginal product of capital as a proportion of capital's constant share in income.
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(a) Distribution of Missing Values by Firm for the Dependent Variable

(b) Runs of Missing Values for the Dependent Variable

Figure 3.3.2: Missing Values in the Dependent Variable
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sorising is common in the literature and the choice of percentile a�ects fewer observations than

others in the �eld (Bulan, 2005; Kalemli-Özcan et al., 2022). It is more appropriate than trimming

the distribution in this case because there is no reason to believe these outliers are mistakes, for

instance, service-sector �rms with very small capital stocks will naturally generate very large sales

to output ratios if they are successful. However some observations are very extreme and will have

a signi�cant in�uence on coe�cient estimates (Chatterjee & Hadi, 1986). Even after winsorising,

the distributions display a large positive skew and high kurtosis, so observations in the tails of the

distributions might still have a large e�ect on the results. Taking the natural log of the variables

produces distributions closer to normality. Table 1 gives some summary statistics of the book vari-

ables used in the model before taking the log. Note that the minimum value of CFit is zero so I

add one to all observations before taking the log (Gilchrist et al., 2014).

N Mean Standard Deviation Min Max
Yit 25997 1336.536 2747.955 19.39105 24469.05
Q̃it 26827 2.146946 1.696368 .5286462 12.81989
CFit 17613 230.4786 703.2919 0 7064.167
LEVit 27139 .5006233 .2429175 .0165959 1.529492
L̃it 26273 16587.11 42225.37 19 350000

Table 3.3.1: Summary Statistics for the Book Variables

3.3.3 Uncertainty

Uncertainty is measured by the idiosyncratic volatility of �rms' stock returns. As discussed in section

3.2, the measure of uncertainty should be forward looking and free from forecastable variation. In

theory, equity prices should already be forward looking because they represent the market's best

estimate of the present discounted value of a �rm. I use the four factor asset pricing model of Fama

& French (1993) and Carhart (1997) to remove forecastable variation from stock returns. Gilchrist

et al. (2014) use the standard deviation of the error term from this regression as their measure of

�rm-speci�c uncertainty. Formally, if ritd represents the log di�erence in a �rm's stock price on day
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td

ritd −RFtd = γ0 + γ1MKTtd + γ2SMBtd + γ3HMLtd + γ4MOMtd + υitd (3.3.1)

σFFCit =

√∑Td
td=1 (υitd − ῡit)

2

td − 1
. (3.3.2)

These regressions are run for each �rm in each year in the sample, so Td is approximately 252, the

number of trading days in the year. I have subscripted the terms in the �rst equation with td to show

that they change daily. As with the book variables in the previous section, σFFCit varies annually.

RFtd is the risk-free rate which means γ0 re�ects the risk-premium on the �rm's stock when all other

risk factors are zero. Notice the lack of an i subscript because the risk-free rate varies over time

but not across �rms. The next four variables are the risk factors that explain variation in risk-free

returns, available at the daily frequency from Kenneth French's website. MKTtd is the risk-free

return on the market portfolio, an equally weighted portfolio of all stocks on the NYSE, AMEX,

and NASDAQ stock exchanges. SMBtd is the di�erence in returns between a portfolio formed of

�rms with low market capitalisation and high market capitalisation. Analogously, HMLtd is the

di�erence in returns between �rms with a high book-to-market value and those with a low book-

to-market value. In both cases the thresholds used to determine what is big (high) and small (low)

are based on the percentiles of the data. MOMtd re�ects Carhart's (1997) observation that stocks

with higher returns in the recent past tend to display higher returns in the near future.

Leahy & Whited (1996) criticised the use of ex post data to construct measures of uncertainty

because uncertainty is about expectations and not actual outcomes. I use the parameters estimated

in equation 3.3.1 to compute the error variance from the Fama-French-Carhart model (FEV) each

day between the �rm's expected return and their actual returns the year after the estimation period.

This generates the di�erence between the �rm's best estimate of their risk-free returns on that date,

given they have previously estimated their stock's loadings on the risk factors, and what is actually

observed. The model is trained on the previous three years of data. For example, the errors for

the year 2000 are generated based on estimating 3.3.1 between the years 1997 to 1999 and then
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calculating the di�erence between predicted and actual returns in the year 2000. I chose a window of

three years to strike a balance between using the data to produce reliable parameter estimates and

losing years from the sample which must be kept back in training data. This method assumes all

�rms in the sample use the asset pricing model in 3.3.1 to estimate their loadings on the risk factors

and update the model annually. Let this measure of uncertainty be denoted by σFEVit . Because

it addresses the issues raised by Gilchrist et al. (2014) and Leahy & Whited (1996), it will be the

primary measure of uncertainty in the chapter.

I compare the results of this estimate to a forecast of next year's volatility, again based on

three years of training data, assuming the variance of return errors in 3.3.1 follow a GARCH(1, 1)

process. Hansen & Lunde (2005) found that including higher autoregressive and moving average

terms generally does not improve GARCH estimates. If Xit generically denotes the explanatory

variables,

υitd |Xit ∼ N
(
0, η2

itd

)
(3.3.3)

η2
itd

= θ0 + θ1υ
2
i,td−1 + θ2η

2
i,td−1. (3.3.4)

Annual uncertainty in this case is the mean of the forecasted daily GARCH volatility for the whole

year6

σGit =
1

Td

Td∑
td=1

ηitd . (3.3.5)

Unlike previous studies, I examine whether the relationship between uncertainty and investment

based on these measures of uncertainty di�ers from a measure based on the annual standard devia-

tion of risk-adjusted returns. If the other measure produces results close to this baseline (σBit ), then

there is evidence that the uncertainty measures are tainted by variation in stock markets not due

to uncertainty (Jurado et al., 2015). Figure 3.3.3 shows the annual median idiosyncratic volatility

across �rms in the sample. The large increase in volatility during the late 1990s re�ects dot-com

6GARCH is often initialised by setting the conditional variance on the �rst day equal to the unconditional variance
for the whole sample. Once the volatility on the �rst day has been determined, 3.3.4 can be estimated from the
model error and the initial value of υ2itd .
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bubble's formation and burst throughout 2000-2001. This bubble highlights Jurado et al.'s criticism

of equity market-based-measures of uncertainty, while the formation of the bubble may partly be

due to the uncertainty about the future pro�tability of the new wave of technology start-ups, it

also re�ects investor's over-reaction to news and the in�uence of noise traders (De Bondt & Thaler,

1987; De Long et al., 1991). It is therefore important to examine how removing this event from the

sample changes the results in the next section.

Figure 3.3.3: Uncertainty Measures

3.3.4 Econometric Speci�cation

Equation 3.3.6 gives the full econometric speci�cation of the log of the investment rate (ψit), where

the lower case letters or the absence of a tilde in the explanatory variables indicates that they are

in logs. Dj are dummy variables for each year in the sample controlling for time variant shocks

common to all �rms, which can bias estimates and create correlation in the errors across �rms in

116



the sample

ψit = β0+β1yi,t−1+β2Qi,t−1+β3σit+β4levi,t−1+β5cfi,t−1+β6Li,t−1+α1ψi,t−1+
24∑
j=1

δjDj+ui+εit. (3.3.6)

There are 24 time dummies for the years 1996 to 2019. Three years from the sample were held back

in training data for the measures of uncertainty. Notice also that the explanatory variables are all

lagged one year in 3.3.6, so the end of year investment rate in year t is a�ected by the variables as

they were in year t − 1. This re�ects the fact that investment projects take time to plan, �nance,

and ultimately install (Fazzari et al., 1988; Bulan, 2005; Tori & Onaran, 2018). The only variable

which has a contemporaneous a�ect on the investment rate is uncertainty, which is a measure of

how hard it is for a manager to predict economic conditions over the next year. All variables enter

the equation in logs to reduce the positive skew of the distributions and mitigate the in�uence of

observations in the tails. This also means the coe�cients can be interpreted as the elasticity of the

investment rate with respect to the explanatory variables.

ui + εit is the model's error term; with ui representing time-invariant factors not included in the

model and εit doing the same for time-variant factors. The latter is assumed to be uncorrelated with

the explanatory variables but I relax this assumption in one of the models considered in section 3.4.3.

But it is very likely that some of the explanatory variables are correlated with ui, for example, one

component of ui might be the �rm's risk aversion, more risk-averse �rms will have lower leverage on

average and may also have lower investment rates since adding to the capital stock means incurring

a partially irreversible cost. This implies a �xed e�ects estimator is more appropriate because of

the potential bias introduced by the correlation between the explanatory variables and error term.

The �xed e�ects estimator works by subtracting the sample mean from all variables for each �rm,

hence, removing any e�ects which do not change over time7. Indeed, for a model without the lagged

dependent variable, the estimated correlation between the time invariant error and the explanatory

variables is -0.61 and a Hausman (1978) test suggests that there is a systematic di�erence between

the �xed e�ects and random e�ects coe�cients (χ2(32) = 695.94, p-value = 0). Clustered standard

errors are used in light of the possible heteroskedasticity in the time varying error term.

Bloom et al. (2007), Bulan (2005), and Gilchrist et al. (2014) recognise the importance of

7I add back the mean across observations and over time in order to estimate β0.
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the �rst lag of the investment rate in explaining current rates. Eberly et al. (2012) argue that

lagged investment rates predict current rates so well because managers who are undecided about

what investment budget to set tend to revert to last year's value as a reference point (Bloom

et al., 2012). However, dynamic panel data models come with further challenges because of the

correlation between ui and ψi,t−1. Even after removing the time-invariant error by the �xed-e�ects

transformation, Nickell (1981) pointed out that the mean of the dependent variable will contain

information correlated with the mean of the error term, which introduces an invariably negative

bias to the parameter α1 in equation 3.3.6.

First di�erencing the model, as oppose to time demeaning, also removes unobserved time-

invariant heterogeneity but because ∆ψi,t−1 = ψi,t−1 − ψi,t−2 and ∆εit = εit − εi,t−1 there is still

a source of endogeneity because by equation 3.3.6 ψi,t−1 was generated using the error εi,t−1. First

di�erencing also magni�es gaps in unbalanced panels and throws out potentially useful information.

Arellano & Bover (1995) suggest using a forward-orthogonal deviations (FOD) transformation in-

stead, which subtracts the forward mean from each observation within each panel. Formally, for a

generic variable xit, the FOD transformation x⊥it is:

x⊥it = xit −
1

T − t

T−t∑
s=t+1

xis (3.3.7)

so the FOD-transformed error is:

ε⊥it = εit −
1

T − t

T−t∑
s=t+1

εis (3.3.8)

and for lagged dependent variable, this can be written as

ψ⊥i,t−1 = ψi,t−1 −
1

T − t+ 1
ψit −

1

T − t+ 1

T−t∑
s=t+1

ψis (3.3.9)

I will refer to GMM models using a FOD transformation as `deviations GMM'.

Anderson & Hsiao (1982) proposed using further lags of the dependent variable as instruments

for the lag of the �rst di�erence (∆ψi,t−1). Although ∆ψit is correlated with ∆εit through ψi,t−1,
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the next lag, ψi,t−2, should be correlated with ∆ψit and under the assumption that the errors are

not serially correlated it will also be exogenous. With the FOD transformation, there is a source of

endogeneity between ψ⊥i,t−1 and ε⊥it through the term 1
T−t+1

ψit in equation 3.3.9. However, the �rst

lag of ψit should now be available as an instrument because ε⊥it contains no terms of order t − 1.

The availability of one extra lag is another advantage of the FOD transformation.

The e�ciency of this instrumental variable approach can be improved by re-imagining the as-

sumed exogeneity of the instruments as moment conditions and allowing the number of lags available

as instruments to grow with the sample. For exposition, if t = 5 the moment conditions between

the instrument matrix Zit and the FOD transformed error, ε⊥it are

E





0 0 0 0 0 0 0 0 0 0

ψi1 0 0 0 0 0 0 0 0 0

0 ψi2 ψi1 0 0 0 0 0 0 0

0 0 0 ψi3 ψi2 ψi1 0 0 0 0

0 0 0 0 0 0 ψi4 ψi3 ψi2 ψi1



′

ε⊥i1

ε⊥i2

ε⊥i3

ε⊥i4

ε⊥i5




= 0. (3.3.10)

Notice that the Zit matrix has to be transposed before multiplication. There is a 10 × 5 matrix

and a 5× 1 vector inside the expectation, so their product will yield a 10× 1 column vector. The

�rst row contains all zeros because there are no moment conditions to specify at t = 1. Multiplying

the matrices inside the expectation reveals that each moment condition for every lag at every time

period is expressed individually, so the vector of moment conditions is

[
E[ψi1ε

⊥
i2] E[ψi2ε

⊥
i3] E[ψi1ε

⊥
i3] E[ψi3ε

⊥
i4] E[ψi2ε

⊥
i4] E[ψi1ε

⊥
i4] E[ψi4ε

⊥
i5] E[ψi3ε

⊥
i5] E[ψi2ε

⊥
i5] E[ψi1ε

⊥
i5]
]′

= 0.

This means the number of moment conditions will almost always be greater than the number of

explanatory variables and the model will be overidenti�ed. GMM estimation is used in this instance

to minimise the magnitude of the matrix of moment conditions, essentially choosing the GMM-

estimated coe�cients such that E[Z′itε
⊥
it ] is as close to zero as possible. The algebraic derivation

of this estimator, and discussion of its asymptotic and small sample e�ciency, can be found in

Roodman (2009b). This chapter uses the two-step estimator outlined therein, which generally

119



improves e�ciency compared to one-step GMM, and makes the small sample correction proposed

by Windmeijer (2005).

Explanatory variables suspected of being endogenous can also be included in Zit and instru-

mented for using their lagged values. To be clear, an endogenous variable in this context is one

which is correlated with the contemporaneous time-varying error term εit. Insofar as these lagged

variables a�ect the investment rate, they also help achieve a more e�cient estimate of α1. It is

common in the GMM-literature to distinguish endogenous regressors from predetermined regressors.

The latter are not correlated with the contemporaneous error but are correlated with past errors, so

E[xitεi,t−1] 6= 0. The �rst column of table 3.4.3 allows the regressors to be correlated with the time

varying error term. For the models in table 3.4.1, the assumption that the explanatory variables

are uncorrelated with εit rules out reverse causality between uncertainty and the investment rate.

Gilchrist & Himmelberg (1998) and Gilchrist et al. (2005) are examples of studies using panel-data

VAR models in the corporate investment literature.

If the error term is not autocorrelated or correlated across individuals, the GMM estimation

method of Arellano & Bond (1991) reduces the bias and variance of the estimated α̂1. Arellano &

Bover (1995) and Blundell & Bond (1998) then developed a system GMM approach, where both

the levels and di�erenced (or FOD) forms of equation 3.3.6 are used to recover α1. They use

lagged di�erences of the dependent variable as instruments in the level equation and lagged levels

as instruments in the di�erenced equation. This method is even more e�cient but requires the

additional assumption that the di�erenced instruments used in the level equation are uncorrelated

with the time-invariant error-term ui (Roodman, 2009b).

While these models o�er a convenient way to estimate dynamic relationships, they are also

complex and impose non-trivial assumptions on the data. Arellano & Bond (1991) developed a test

for serial correlation in the residuals, which will violate the exogeneity assumption of the instruments

if detected. Unlike single instruments in two-stage-least-squares, a Hansen test is available to check

whether there is evidence to suggest the instruments are truly exogenous. Under the null that

the moment conditions are valid and the instruments are exogenous, the Hansen statistic will

follow a χ2 distribution with degrees of freedom equal to the number of instruments minus the

number of estimated coe�cients (this is just the number of overidentifying restrictions). Roodman
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(2009a) warns that this test is weakened by the number of instruments in the model, which grows

quadratically with the number of time periods available in the Arellano & Bond (1991) estimator

and quartically in the system GMM approach. There are essentially two ways to limit the number

of instruments in the model. The �rst is to choose a maximum lag length for the instruments in

Zit and the second is to `collapse' the matrix so the moment conditions are written as one equation

for each time period rather than expressing each moment condition individually. Continuing the

previous example where t = 5, the moment conditions become

E





0 0 0 0 0

ψi1 0 0 0 0

ψi2 ψi1 0 0 0

ψi3 ψi2 ψi1 0 0

ψi4 ψi3 ψi2 ψi1 0



′

ε⊥i1

ε⊥i2

ε⊥i3

ε⊥i4

ε⊥i5




= 0. (3.3.11)

3.4 Results

3.4.1 Comparison of Models

Table 3.4.1 compares the estimated coe�cients in equation 3.3.6 generated by �ve linear estimators,

all of which maintain the assumption that the regressors are uncorrelated with the time varying error

term εit. All the variables in the model are in logs, so the coe�cients should be interpreted as the

percentage change in the investment rate caused by a 1% change in the given variable, holding all

other explanatory variables and the time-invariant error term constant. The reported χ2 statistic

with J − r degrees of freedom is the test statistic for the Hansen test of the over-identi�cation

restrictions, where J is the number of instruments and r is the number of estimated coe�cients.

The A-bond statistic is for the Arellano & Bond (1991) test for serial correlation in the residuals.

Time dummies are included in all regressions and are always jointly signi�cant at the 1% level. All

results tables in this section show t-statistics in parentheses under the estimated coe�cients and

the stars indicate statistical signi�cance at the 1%, 5%, and 10% levels.

The �rst column shows the results from a �xed e�ects model without including the lagged
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dependent variable. Contrasting these results with the third column demonstrates the changes on

the coe�cients due to the omitted variable bias. Although the �xed e�ects estimator in column

three is also expected to be biased because of the correlation between the lagged dependent variable

and εit discussed in Nickell (1981), the signs and signi�cance of the coe�cients that it generates are

supported by the results of the instrumental variable GMM estimators.

Columns two and three set bounds for the expected value of the coe�cient on ψi,t−1. The OLS

estimator is known to be biased in panel-data models where the regressors are correlated with the

time invariant error ui. In the case of the lagged dependent variable, this bias is expected to be

positive. ui can be thought of as the average unexplained investment rate over the sample. A

negative exogenous shock to the investment rate at time t will cause a negative deviation of the

unexplained investment rate from the sample average, so ui will appear to be lower over the whole

sample. However, at t + 1 both ui and the lagged dependent variable will be lower. Hence, there

is an expected positive correlation between ui and ψi,t−1 so the coe�cient α̂1 should be upward

biased. Roodman (2009b) notes that the expected positive bias of the OLS estimate for the lagged

dependent variable and the invariably negative bias of the �xed e�ect estimator provide convenient

thresholds for determining an acceptable range of α1. This is important because the estimates from

the GMM models in columns four and �ve of table 3.4.1 are sensitive the researchers assumptions.

I now focus on interpreting the coe�cients of the deviations GMM model in column four, which

are consistent as long as the explanatory variables are uncorrelated with the time varying error term.

In theory, growth opportunities alone should be all that is required to predict investment rates, with

the rest of the variation being the result of exogenous shocks. The model has been further augmented

by several other variables which previous empirical and theoretical work suggests is correlated with

investment rates.

In this model, which is more comprehensive in its range of explanatory variables than others in

the �eld, the acceptable range for the coe�cient of the lagged dependent variable is between 0.506

and 0.254. The coe�cient on ψi,t−1 is 0.282, and therefore falls within this range. This estimate

is 11% greater than the one obtained from �xed e�ects. The bias of the coe�cient on the lagged

dependent variable is known to diminish as the time-dimension of the panel increases. Judson &

Owen (1999) showed with Monte-Carlo simulations that with 30 periods the bias falls to around

122



20% of the true parameter value. Therefore, it is reasonable to expect in this sample that the

magnitude of the bias is quite small, and the �xed e�ect estimates will lie close to GMM.

As in Gilchrist & Himmelberg (1998), Bulan (2005), and Gulen & Ion (2016), both real and

�nancial growth opportunities have a signi�cant positive e�ect on the log of the investment rate. A

1% increase in net sales to capital stock ratio in year t−1 causes a 0.26% increase in the investment

rate, holding other explanatory variables and individual heterogeneity constant. Financial growth

opportunities have a similar e�ect, with the 1% increase in Tobin's average Q causing a 0.34%

increase in the investment rate. This is consistent with the q-theory literature since Hayashi (1982)

but the magnitude of the coe�cient is notably lower than the 0.645 found by Gilchrist et al. (2014)

in a model which only controls for uncertainty.

Cash �ows and size both have their expected signs, but have a much weaker e�ect on the

investment rate compared to growth opportunities. The positive relationship between cash �ows

and investment rates is well-established, but it is interesting that it remains signi�cant even after

controlling for �nancial and real growth opportunities as well as leverage. It suggests that even

after controlling for access to credit markets and �nancial performance, cash-strapped �rms will

still invest less than those with a healthy �ow of liquid assets. Smaller �rms tend to invest a higher

proportion of their capital stock partly because expansion is easier at smaller scales but also because

growth is an important part of survival for small �rms in competitive markets (Evans, 1987). A 1%

increase in the number of employees causes a 0.06% fall in the investment rate.

The e�ects of leverage and uncertainty are both negative and signi�cant at the one percent level.

The coe�cient on uncertainty is about 0.03 percentage points greater than that found by Gilchrist

et al. (2014) in a model with only Tobin's Q as a control variable. A 1% increase in either of these

variables causes a 0.12% fall in the investment rate, so the strength of the e�ect of a 1% change is

not as strong as for growth opportunities or the lagged dependent variable, but is greater than that

of size and cash �ows. Given leverage is statistically signi�cant, there is evidence that U.S. �rms in

�nancial distress struggle to access credit markets to fund investment. This agrees with the results

in Lang et al. (1996), who used a smaller dataset of U.S. �rms (640 �rms sampled over 19 years).

The decline in the predicted investment rate due to uncertainty occurs even when controlling

for a �rm's access to credit markets through leverage and available liquid assets through cash �ows.
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Gilchrist et al. (2014) found that controlling for credit spreads between corporate bonds and a

proxy for the risk free interest rate, which they also interpret as a measure of credit tightness,

rendered uncertainty's e�ect on investment statistically insigni�cant. This di�erence in results may

be because credit spreads are a better indication of the willingness of investors to lend to distressed

�rms or because it captures other factors which a�ect investment and also correlate with uncertainty,

such as risk preferences.

Fixed E�ects OLS Fixed E�ects II Deviations GMM System GMM
yi,t−1 0.407*** 0.0801*** 0.264*** 0.256*** 0.237***

(15.73) (8.81) (11.52) (10.46) (9.43)

Qi,t−1 0.389*** 0.225*** 0.339*** 0.334*** 0.343***
(15.54) (15.08) (15.54) (15.92) (15.76)

σFEVit -0.125*** -0.0360** -0.128*** -0.118*** -0.127***
(-4.49) (-2.20) (-5.42) (-5.15) (-5.06)

levi,t−1 -0.154*** -0.0160 -0.110*** -0.118*** -0.112***
(-6.15) (-1.06) (-5.39) (-5.66) (-5.24)

cfi,t−1 0.0500*** 0.0368*** 0.0444*** 0.0449*** 0.0424***
(5.51) (6.32) (5.62) (5.76) (5.37)

Li,t−1 -0.0210 0.00653 -0.0552*** -0.0620*** -0.0414***
(-1.08) (1.23) (-3.52) (-4.05) (-2.95)

ψi,t−1 0.506*** 0.254*** 0.282*** 0.303***
(33.67) (15.76) (12.85) (12.59)

β0 1.464*** 0.959*** 1.684*** 1.619***
(5.81) (8.53) (8.22) (7.69)

N 15501 15497 15497 14444 15497
R2 0.261 0.491 0.311

RMSE 0.565 0.612 0.546
J 55 57
χ2 23.58 43.92

p-value 0.486 0.0111
A-Bond 1.038 1.165
p-value 0.299 0.244

Table 3.4.1: Regression Results

Under the assumption that the regressors other than the lagged dependent variable are unrelated

to the time-varying error, the deviations GMM model passes the basic diagnostic tests. The number
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of instruments was limited by collapsing the Zit matrix as demonstrated in 3.3.11. The Hansen-test

χ2 statistic with 24 degrees of freedom is 23.58 and the associated p-value is 0.486, thus failing to

reject the null hypothesis that the moment conditions are valid and the instruments are exogenous

from the FOD-transformed error. Roodman (2009a) warned that p-values over 0.25 may be a sign

that the test statistic has been weakened by the number of instruments, however, with only 55

instruments and 1011 panels in the sample, it seems unlikely that instrument proliferation is an

issue in this case. The test for serial correlation devised by Arellano & Bond (1991) suggests there

is no evidence that the residuals are autocorrelated at the second lag.

When the coe�cient estimate on the lagged dependent variable is close to the �xed e�ect es-

timate, it is good practice to compare the conclusions of deviations GMM to the system GMM

estimator outlined in Blundell & Bond (1998). As mentioned in section 3.3.4, this estimator re-

quires the additional assumption that lagged di�erences of the dependent variable are not correlated

with the untransformed time varying error εit or the �xed e�ects ui, so they are available as instru-

ments for ψi,t−1 in the levels equation. Although there is still no evidence of serial correlation in the

residuals, the Hansen test rejects the null hypothesis that the instruments are valid at the 5% level,

implying the lagged di�erences of the investment rate are correlated with the composite error term.

The coe�cient on ψi,t−1 has increased by 0.021 percentage points but the estimate is not valid.

3.4.2 Uncertainty Measures

Table 3.4.2 presents the results of running the same models as in table 3.4.1 but with the other

measures of uncertainty constructed from �rm-level stock price data in section 3.3.3. All measures

have a negative relationship with investment, which is signi�cant at the 1% level in all instances

except under the biased OLS. The coe�cient on σGit is notably smaller in magnitude compared to

the other measures.

The results in 3.4.2 highlight an important point which has generally been overlooked in the

uncertainty literature so far, that the various methods of purging stock returns of their forecastable

component and ensuring the measure is forward-looking does not lead to signi�cantly di�erent

results compared to using the simple standard deviation of stock returns. Table 3.4.2 could be
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Fixed E�ects OLS Fixed E�ects II Deviations GMM System GMM
σBit -0.111*** -0.0303* -0.122*** -0.116*** -0.127***

(-3.86) (-1.74) (-5.08) (-4.99) (-5.10)
N 15766 15762 15762 14706 15762

σFFCit -0.109*** -0.0373** -0.117*** -0.107*** -0.117***
(-4.09) (-2.32) (-5.11) (-4.83) (-4.85)

N 15766 15762 15762 14706 15762
σGit -0.0608*** -0.00594 -0.0521*** -0.0456*** -0.0529**

(-3.14) (-0.45) (-3.20) (-2.87) (-3.20)
N 13776 13772 13772 12719 13772

Table 3.4.2: Uncertainty Measures

taken as evidence that the e�cient market hypothesis holds and equity markets re�ect investors'

best estimates of the future pro�tability of �rms, so the standard deviation of stock returns in

a given year is a good re�ection of the uncertainty faced by economic agents. Alternatively, it

could re�ect the fact that the methods implemented to partial out the forecastable component of

stock returns did not eliminate the in�uence of other factors that a�ect equity market volatility

independently of uncertainty. In chapter four, I try to separate these e�ects at the aggregate level.

Presently, I interpret the the coe�cient on σFEVit with caution, knowing it may contain variation

related to factors other than uncertainty.

3.4.3 Further Robustness Checks

The models in table 3.4.3 show that the results from the deviations GMM model in table 3.4.1

are robust to some salient sample restrictions and assumptions about the model. The �rst column

allows the explanatory variables to be correlated with the time-varying error term εit. Here, the

coe�cients on the other explanatory variables are also estimated using all their available lags. Even

when collapsing the instrument matrix as in 3.3.11, the number of instruments still grows to 201.

The Hansen statistic does not reject the null hypothesis that the identi�cation restrictions are valid,

furthermore, it is not large enough to suggest that the larger number of instruments has weakened

the power of the test (as mentioned, Roodman (2009a) suggests a p-value greater than 0.25 might

be cause for suspicion when the number of instruments is large). There is also no evidence of serial

correlation in the residuals based in the Arellano-Bond test. While the parameters have generally
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increased in absolute value, notice especially that a 1% increase in Li,t−1 now causes a 0.2% decrease

in the investment rate holding the other variables and unobserved �rm heterogeneity constant, the

coe�cient on the lagged dependent variable has fallen below its expected range based on the OLS

and �xed e�ects models in columns two and three of table 3.4.1. Hence, there is evidence that this

coe�cient is downward biased when assuming the explanatory variables are contemporaneously

correlated with the time varying error term.

Endogenous Regressors After 2000 Manufacturing Firms Permanent Firms
yi,t−1 0.231*** 0.287*** 0.264*** 0.225***

(5.12) (9.44) (8.42) (8.09)

Qi,t−1 0.456*** 0.316*** 0.314*** 0.318***
(11.78) (12.71) (12.87) (12.91)

σFEVit -0.153*** -0.127*** -0.107*** -0.0572**
(-2.79) (-5.02) (-3.59) (-2.40)

levi,t−1 -0.149*** -0.121*** -0.114*** -0.0909***
(-3.87) (-4.84) (-4.68) (-3.45)

cfi,t−1 0.0444*** 0.0483*** 0.0506*** 0.0323***
(3.96) (5.63) (4.68) (3.83)

Li,t−1 -0.201*** -0.0720*** -0.0410** -0.0689***
(-3.95) (-3.62) (-2.11) (-3.77)

ψi,t−1 0.246*** 0.255*** 0.287*** 0.393***
(10.76) (9.66) (9.85) (15.83)

N 14444 12387 9256 7805
J 201 49 55 55
χ2 192.8 21.57 26.43 25.01

p-value 0.111 0.605 0.332 0.405
A-Bond 0.800 0.852 1.081 1.046
p-value 0.424 0.394 0.280 0.295

Table 3.4.3: Robustness Checks of Deviations GMM Model

Section 3.3.1 noted that the number of �rms in the sample increases dramatically between 1995

and 2000. If the new �rms have characteristics correlated with investment rates but not accounted

for in the model, it will bias the regression coe�cients. Column two of table 3.4.3 suggests that

this is not the case. The signs and statistical signi�cance of the variables remain the same as in

table 3.4.1. Running this model with an OLS estimator and then a �xed e�ects estimator, the
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expected range of the coe�cient on the dependent variable is between 0.51 and 0.22, which does

indeed bound the coe�cient on ψi,t−1 in column two. This �nding is also true for the next two

columns of table 3.4.3.

Previous studies like Leahy & Whited (1996) and Bulan (2005) restricted attention to manufac-

turing �rms, yet the results in this chapter suggest that there is no statistically signi�cant di�erence

in the e�ects of the explanatory variables on investment rates in manufacturing, service, or energy

and mining sectors. Restricting the sample to include only manufacturing �rms does not change

any of the conclusions from the baseline deviations GMM model. Interaction terms between an

indicator variable capturing the three sectors and the explanatory variables indicate whether the

e�ect of the latter is conditional on a �rm's sector. These interaction terms are all insigni�cant,

with two exceptions. Table 3.4.4 shows that the investment rate for �rms in the energy and mining

sectors is less sensitive to changes in real growth opportunities (yi,t−1) compared to manufacturing

�rms. A 1% increase in yi,t−1 leads to a 0.129% increase in ψi,t−1 in the energy and mining sector

compared to a 0.273% increase in the manufacturing sector. Furthermore, investment rates are

much more sensitive to �nancial growth opportunities (Qi,t−1) in the energy and mining sector,

the coe�cient being more than twice as large than for manufacturing �rms. Notice the interaction

terms are not signi�cant for the service sector, so the e�ect of growth opportunities on investment

rates in these �rms is statistically indistinguishable from that of manufacturing �rms.

Interaction with Sector:
Manufacturing Services Energy and Mining

yi,t−1 0.273*** -0.0149 -0.144***
(9.55) (-0.30) (-3.22)

Qi,t−1 0.330*** -0.0319 0.365***
(13.99) (-0.68) (5.47)

N J χ2(24) A-Bond
14301 59 23.25 1.110

Table 3.4.4: E�ect of Growth Opportunities on ψit when Interacted with an Indicator Variable
Capturing Economic Sector

If the sample is restricted to include only those �rms with complete time-series for the depen-

dent variable, the coe�cient on σFEVit is about half the size of its value in the baseline model, and

only signi�cant at the 5% level. This might suggest that well-established �rms are less a�ected by
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idiosyncratic uncertainty. From a real options perspective, this would occur if investment decisions

for these �rms are easier to reverse. Well-established �rms may have developed practices through

past experience which makes them better at hedging the costs of investment projects8. The co-

e�cient on the lagged dependent variable is also larger for these �rms, suggesting they are more

likely base their investment decisions this year on their decisions in the previous year (Eberly et al.,

2012). Aside from these observations, the coe�cients are relatively similar to the baseline model

after making this restriction.

3.4.4 Interactions with Growth Opportunities

Lang et al. (1996) previously noted that high leverage is more of a drag on investment rates for

�rms with smaller values of Q. Firms viewed as having strong future prospects can invest more

aggressively with higher leverage ratios because they can attract capital through equity markets

and maintain lower premiums on debt, thereby mitigating the �nancial burden of that debt. A

similar argument also means that the e�ect of cash �ows on investment might be dependent on

growth opportunities. I test whether the e�ects the explanatory variables have on the investment

rate is dependent on growth opportunities by interacting the explanatory variables with Qi,t−1. I

also test for signi�cant interaction terms between yi,t−1 and the explanatory variables, appreciating

the observation by Gilchrist & Himmelberg (1998) that net sales capture real growth opportunities.

Bloom et al. (2007) previously conditioned uncertainty's e�ect on investment on the net sales

to capital ratio, while Gulen & Ion (2016) did the same for �nancial growth opportunities. Given

Evans's (1987) �nding that smaller �rms face di�erent incentives and have di�erent optimal strate-

gies compared to larger �rms, I also tested for interaction e�ects between the other explanatory

variables and Li,t−1, however, none of these interactions were statistically signi�cant after controlling

for interactions with growth opportunities.

In addition to the interactions between the variables and growth opportunities, uncertainty,

Tobin's Q, and cash �ows showed statistically signi�cant quadratic relationships with the investment

rate (at the 5% signi�cance level or lower). It is generally easier to interpret non-linear relationships

in the model if they are presented graphically. Therefore, I have relegated the full table of coe�cients

8See Panousi & Papanikolaou (2012) for discussion of measuring the irreversibility of investment projects.
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to appendix 3.A.1. Figure 3.A.1 in the appendix plots the predicted value of the investment rate

inside its 95% con�dence interval over the range of the variables found in the sample. Despite their

signi�cance, the �gures reveal that for the range of values observed in the sample, the non-linearity

is quite weak, so the linear speci�cation in 3.3.6 is a good approximation of the relationship.

Two interaction terms between the other variables and growth opportunities were statistically

signi�cant. The �rst was between Qi,t−1 and σFEVit . This relationship is displayed in �gure 3.4.1a,

which shows the estimated marginal e�ect of uncertainty on the investment rate for increasing values

of Qi,t−1, holding the other variables constant at their medians. The negative e�ect of uncertainty

on the investment rate is mitigated for �rms with higher growth opportunities. For �rms with Qi,t−1

greater than unity, uncertainty actually has a negligible e�ect on the investment rate. The estimates

from Qi,t−1 = 1 to Qi,t−1 = 1.8 are not statistically distinguishable from zero. In contrast, for �rms

with a value of Qi,t−1 close to zero, a 1% increase in uncertainty will cause a 0.23% decrease in the

investment rate if all variables are held at their median values. This is in line with the model of

capital accumulation in chapter two. There, uncertainty created a region of inaction where the �rm

delayed its decision to undertake partially irreversible investment until the marginal value of the

next unit of capital was su�ciently high. Firms with larger values of Q will add to their capital

stock even in times of heightened uncertainty because the expected value of expansion is su�ciently

high to overcome the option value of waiting until uncertainty declines (Dixit & Pindyck, 1994;

Abel & Eberly, 1996).

The e�ect of uncertainty on the investment rate is not dependent on yi,t−1 after controlling

for Qi,t−1, so higher net sales will not mitigate the negative e�ect of uncertainty on investment.

However, �gure 3.4.1b shows that the marginal e�ect of yi,t−1 on the investment rate is attenuated

by higher cash �ows. Higher net sales relative to the capital stock always has a positive e�ect on the

investment rate, but the e�ect of a 1% increase in net sales is much smaller as long as the �rm has

a healthy �ow of liquid capital. This is partly explained by the fact that high cash �ows make �rms

less dependent on revenue generated through sales to fund investment spending. It also implies that

investment declines due to low real growth opportunities can be o�set if signi�cant cash �ows can

be raised from other sources.
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(a) Marginal E�ect of Uncertainty on the Investment Rate

(b) Marginal E�ect of Net Sales on the Investment Rate

Figure 3.4.1: Signi�cant Interaction Terms
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3.4.5 Impact of the Great Recession

The dynamic aspect of the model introduced by the lagged dependent variable means the changes

in the variables the year the recession hit will propagate through the system. The dashed lines in

�gure 3.4.2 shows this in the case where each of the explanatory variables from column four of table

3.4.1 are set equal to their mean change across �rms in 2008, which is just the mean growth rate

given the variables are all in logs. The e�ect of this change in each of the variables on the change

in the investment rate is shown holding the other variables constant, i.e. assuming they did not

change in 2008. The initial change in the investment rate of zero is also assumed to be zero and

any exogenous shocks are ignored. For example, denote the mean change in Qi,t−1 in 2008 as ∆Q̄0,

then:

∆ψ̄1 = β̂2∆Q̄0

∆ψ̄2 = α̂1β̂2∆Q̄0

∆ψ̄3 = α̂2
1β̂2∆Q̄0

...

∆ψ̄n = α̂n−1
1 β̂2∆Q̄0.

The e�ect of the change diminishes over time as long as α̂1 < 1.

In �gure 3.4.2, time zero shows the initial impact of the change in a given variable on the

investment rate, holding other variables constant at their means (so they are assumed not to change).

Further time periods show the e�ect of the change in the following years given the dynamic nature

of the model. The changes brought about by Tobin's Q and uncertainty are so much larger that

they are plotted on a separate panel for clarity. This highlights the key role of declining growth

opportunities and higher uncertainty in determining the initial fall in investment during GR.

There are some changes in these dynamics when the interaction terms are considered, as dis-

played by the solid lines in �gure 3.4.2. For example, the e�ect of the average change in uncertainty
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Figure 3.4.2: Change in the Investment Rate due to Change in the Explanatory Variables in 2008

holding other variables constant is

β3

(
∆σFEVt

)
+ γ1∆

(
σFEVt

)2

+ γ2

(
∆σFEVt ×Qt−1

)
.

When the interaction between Qi,t−1 and σFEVit is considered, the change in these variables leads to

an even larger fall in the investment rate. However, there are only minor di�erences in the impact

of the other variables after controlling for the interaction terms. Hence, the evidence suggests that

the immediate fall in the investment rate after the GR was mediated largely through changes in

uncertainty and Tobin's Q. Notice that even after two years the impact of the changes in these

variables in 2008 is still larger than the initial fall caused by changes in variables such as cash �ows

and leverage.
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Figure 3.4.2 gives some idea of the initial impact and propagation of the change in the variables

after the crisis but obscures the full dynamics during the recessionary and the recovery periods.

Figure 3.4.3 sheds light on this by plotting the predicted investment rate over these periods using

the model including statistically signi�cant interaction terms and non-linear e�ects. The horizontal

line in each of the panels represents the predicted investment rate holding all variables at their full-

sample median (15.36%). The black curves show the investment rate when the speci�ed variable

is set equal to its median value in the two years before (pre-recession), the two years during (mid-

recession), and the two years after (post-recession) the GR with all other variables held at their

full-sample median. The blue and red curves repeat this process for the 10th percentile and the 90th

percentile of the speci�ed variable, again holding all other variables at their full-sample medians.

For reference, �gure 3.A.2 in the appendix shows how the distributions of the explanatory

variables change between pre-recession, mid-recession, and the post-recession periods. For example,

the median level of σFEVit increased by 0.46 percentage points (13.37% of its pre-recession value)

between the pre-recession and mid-recession periods, which is a relatively large change compared to

the other variables. The 90th percentile increased by even more, 0.53 percentage points (13.89% of

its pre-recession value), suggesting that the increase in uncertainty was concentrated in the upper-

end of the distribution. This large increase is not surprising in light of the �nding by Bloom (2009)

and Jurado et al. (2015) that uncertainty is strongly counter-cyclical. In contrast, median leverage

remained fairly stable across the three periods, echoing the observation in Banerjee et al. (2015)

and Kalemli-Özcan et al. (2022) that U.S. �rms typically did not display the signi�cant increases

in debt witnessed in European �rms after the GR.

The variation in the predicted investment rate within each period is captured by the vertical

distance between the curves in �gure 3.4.3. Changes between the periods show the predicted

response of the investment rate to the change in the speci�ed variable if all other variables are held

constant in that period. For example, setting σFEVit equal to its median value in the pre-recession

period while holding all other variables at their full-sample median gives a predicted investment

rate of 15.54%, slightly above the rate predicted if σFEVit was also at its full-sample median. This

re�ects that fact that uncertainty was lower in the pre-recession period relative to the full sample.

The positive coe�cient on the (see �gure 3.4.4d) interaction term between uncertainty and Tobin's
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(a) Net Sales (b) Q

(c) Uncertainty (d) Leverage

(e) Cash Flows (f) Size

Figure 3.4.3: Predicted Values of the Investment Rate
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Q means all the values in panel 3.4.3c are larger that they would be if the interaction term was

ignored. If σFEVit is set to its value at the 10th percentile, which of course is a relatively lower level of

uncertainty, while holding all other variables at their full-sample median, the predicted investment

rate is 16%.

As expected from the previous discussion, changes in uncertainty and Tobin's Q had the largest

e�ect on the investment rate during the recession, holding other variables constant. The change

in the median value of Qi,t−1 between the pre-recession and mid-recession periods is predicted to

cause a 1.44 percentage point decline in the investment rate. Meanwhile, the change in the median

of σFEVit between these periods causes a 0.92 percentage point decline. Notably, the median value

of Qi,t−1 did not su�ciently recover to bring the investment rate back to its pre-recessional level in

the two years after the crisis. Qi,t−1 was therefore a drag on the recovery of investment after the

GR.

Notice the change brought about by the increase in uncertainty during the recession was much

larger at the 90th percentile of the distribution. This is due to the in�uence of the negative coe�cient

on the quadratic term
(
σFEVit

)2
(see �gure 3.A.1b in the appendix). Higher uncertainty decreases

the investment rate at an increasing rate. By contrast, the change in the predicted investment

rate is much lower as uncertainty changes from its value at the 10th percentile in the pre-recession

period to its value at the 10th percentile in the mid-recession period. Note also that the variance

of the predicted investment rate within each period caused by adjusting the value of σFEVit is lower

compared to Tobin's Q. For example, in the mid-recession period, the predicted investment rate

ranges between 11.98% and 18.24% for Qi,t−1 but the corresponding values for uncertainty range

between 12.69% and 15.7%.

Other than decreases caused by lower yi,t−1 at the 90th percentile of the distribution, there is

little evidence to suggest that any of the other variables changed substantially enough to cause

notable changes in the investment rate over the six year period. Despite this, the variation in the

predicted investment rate for some of the variables within each period is large. The lowest predicted

investment rate in the �gure is obtained by setting yi,t−1 equal to its value at the 10th percentile.

Thus, when looking at the e�ects of variables in isolation, �rms with the lowest sales to capital

ratios will display the lowest investment rates in each period.
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Interacting the variables on an indicator variable encoding the pre-recession, mid-recession, and

post-recession periods yields no signi�cant coe�cients. Hence, there is no evidence to suggest that

the estimated coe�cients changed during these periods. Despite this, there is evidence to suggest

that �rms were less able to make use of their growth opportunities and that uncertainty was a

greater drag on investment in the post-crisis period. There are several mechanisms through which

an event such as the GR could cause the estimated coe�cients in 3.4.1 to change in its aftermath.

For example, the negative e�ect of uncertainty on investment may have been larger during and in

the years after the GR if the option value of waiting before making irreversible decisions was valued

higher by managers who were now more wary of the prospect of an economic shock. Changes in

�nancial regulations and investor preferences could also mean leverage and cash �ows had di�erent

e�ects on investment in the post-crisis period.

I test for changes in the relationship between the investment rate and the explanatory variables

after the GR by interacting them with an indicator variable taking a value of zero between 1996 and

2007 and a value of one for all years after. The indicator variable itself does not enter the regression

due to perfect collinearity between it and the time dummies. The results are presented in table

3.4.5. I have used the model without non-linear and interaction terms in this table because it is

di�cult to interpret their coe�cients. I show their post-crisis changes graphically in �gure 3.4.4. In

table 3.4.5, note that the Hansen test does not reject the null hypothesis that the over-identi�cation

assumptions are valid and there is no evidence that the errors display serial correlation based on

the test developed by Arellano & Bond (1991).

The only coe�cient that appeared to signi�cantly change after the GR is the one on Qi,t−1.

Before the GR, a 1% increase in Qi,t−1 caused a 0.379% increase in the investment rate but after

the GR it only caused a 0.275% increase. Economically, this means that �rms on average responded

less aggressively to their growth opportunities after the recession, which is consistent with the idea

that a greater level of caution was exercised by managers after the GR. Despite this, there is only

weak evidence that uncertainty had a stronger negative e�ect on investment. At the 5% signi�cant

level, the decrease in the investment rate caused by a 1% increase in uncertainty was -0.09 percentage

points larger after the recession compared to before, so there is some evidence that managers valued

their options to delay before making investment decisions more highly after the GR. There is also
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Parameter Interaction
ψi,t−1 0.222*** 0.0529**

(9.93) (2.17)

yi,t−1 0.276*** 0.0151
(10.42) (0.91)

Qi,t−1 0.379*** -0.104***
(14.90) (-3.40)

σFEVit -0.0829** -0.0857**
(-2.51) (-2.47)

levi,t−1 -0.119*** 0.00511
(-4.52) (0.18)

cfi,t−1 0.0561*** -0.0196*
(5.43) (-1.88)

Li,t−1 -0.0498*** -0.0108
(-3.07) (-1.18)

N χ2(63) A-Bond
14444 26.25 0.964

Table 3.4.5: Interactions with GR Indicator

evidence at the 5% signi�cance level that the auto-regressive e�ect of the investment rate was 0.05

percentage points higher after the GR, implying changes in the explanatory variables will cause

more persistent e�ects on the investment rate.

Figure 3.4.4 demonstrates the change in the coe�cients after the GR when including the interac-

tion and non-linear terms in the model. The blue lines represent their value in the period 1996-2007

and the red lines represent the period 2008-2019. All the changes in the marginal e�ects presented

are signi�cant at the 1% level except for in panel 3.4.4c, so while there was weak evidence that the

linear coe�cient on uncertainty was more negative after the crisis, this signi�cance disappears when

considering all interaction terms and non-linear e�ects. The lines in panel 3.4.4c slope downwards

because the quadratic term on uncertainty is negative, so the negative e�ect of higher uncertainty

on the investment rate is increasing in the level of uncertainty.

To make the interpretation of the graphs clear, before the GR a 1% increase in Tobin's Q when

Qi,t−1 = 1 caused a 0.31% increase in the investment rate holding other variables constant. After
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(a) Net Sales and Cash Flows (b) Q

(c) Uncertainty (d) Uncertainty and Q

(e) Cash Flows

Figure 3.4.4: Marginal E�ects of Variables on the Investment Rate
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the GR, a 1% increase if Qi,t−1 = 1 caused just a 0.22% increase. This change is statistically

signi�cant, which means the e�ect of increasing Qi,t−1 on the investment rate diminished faster

after the recession. Again, �rms with high growth opportunities were less able or less willing to

invest after the crisis. Note however that the marginal e�ect is always positive over the range of

Qi,t−1 observed in the sample.

Figure 3.4.1b previously showed that the positive e�ect of real growth opportunities on the

investment rate was dampened by higher cash �ows, suggesting that net sales matter less for in-

vestment when there is a healthy �ow of liquid assets coming into the �rm. After the crisis, this

relationship still exists but net sales appear to matter more regardless of cash �ows, as evident by

the fact that the red line in panel 3.4.4a lies above the blue line. Furthermore, from panel 3.4.4e,

the positive marginal e�ect of cash �ows diminishes faster after the crisis. In sum, these results

seem to imply that investment was less sensitive to cash �ows after the GR.

The lower sensitivity of investment to cash �ows and growth opportunities after the GR suggests

�rms were more hesitant about making irreversible decisions. While there was weak evidence in the

linear model of table 3.4.5 that uncertainty had a more negative e�ect on investment after the GR,

there was no evidence of this in model including interaction terms and non-linear e�ects. However,

panel 3.4.4d shows that high growth opportunities were less e�ective at mitigating the negative

impact of uncertainty on the investment rate after the GR. Whereas before the recession a value of

Qi,t−1 = 0.75 would mean the marginal e�ect of uncertainty on the investment rate was very close

to zero, after the recession a 1% increase in σFEVit leads to a 0.1% decline in the investment rate.

This is consistent with the idea that �rms' attached greater value to their option to wait before

making irreversible decisions after the GR. A higher value of Tobin's Q is required after the GR

to neutralise the e�ect of higher uncertainty on the investment rate, just as in the models of Abel

& Eberly (1996) and Guo et al. (2005) a higher marginal q is required to justify investment when

the real option is more valuable. Overall, the evidence in this section points to higher uncertainty

and �rms being less responsive to their growth opportunities as the main covariates driving the

dynamics of corporate investment in the aftermath of the GR.
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3.5 Conclusion

This chapter used an instrumental variable GMM estimator to examine the determinates of corpo-

rate investment rate over the business cycle in a dynamic panel data model based on the q-theory of

investment. The model was more comprehensive than previous studies in the literature and allowed

for non-linear relationships and interaction terms between the variables. The net-sales to capital

ratio, Tobin's Q, uncertainty, leverage, cash �ows, and �rm size were all found to be statistically

signi�cant predictors of the investment rate over the business cycle. I ensured the results were

robust to various sample restrictions and assumptions. Most notably, there is no evidence that the

results change when restricting the full sample to include only manufacturing �rms. Studies which

exclude service sector �rms should have strong justi�cation as to why the restriction is necessary.

Two interaction terms between the explanatory were signi�cant. Higher cash �ows appear to

mitigate the positive e�ect of the net-sales to capital ratio on the investment rate, which suggests

the revenues generated from sales are less important in determining investment when �rms have a

healthy �ow of liquid capital. The other signi�cant interaction term was between uncertainty and

Tobin's Q. Higher values of Q neutralised the negative e�ect of uncertainty on the investment rate.

This is in line with the real-options literature arguing that uncertainty drives a wedge between the

marginal bene�t of installing capital and its user cost. For high enough values of Q, expanding the

capital stock is worthwhile despite high uncertainty about the future pro�tability of investment.

Within this set-up, the fall in growth opportunities and increase in uncertainty during the GR

were shown to cause a large fall in the predicted investment rate relative to the other variables in

the model. I used the dynamic nature of the model to show how these changes would propagate

through the system in the succeeding years. The data suggests that any �nancing issues �rms

had during the crisis were relatively minor and soon resolved. Interaction terms with an indicator

variable capturing the years before and after the GR revealed that �rms were less willing or less able

to make use of their growth opportunities in the years after the crisis. There was some evidence

that uncertainty may have had a more negative e�ect in the years after the crisis, suggesting �rms

attached higher value to their options of waiting for more information before making investment

decisions. This �nding was corroborated by the fact that higher Q was not as e�ective at mitigating
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the negative impact of uncertainty after the recession compared to before. In other words, Q had

to be relatively higher after the recession to justify investment given the level of uncertainty.

These �ndings present a problem for policy makers because it is harder to �nd policy instruments

to aid low growth opportunities and high uncertainty compared to assisting �rms in mending their

balance sheets. Policy makers should send clear signals to the market to try and reduce uncertainty

in the aftermath of recessions. Finally, note the measure of uncertainty used in this paper is likely

contaminated by variation in stock markets independent of uncertainty. The di�erent macroeco-

nomic e�ects of changes in uncertainty and changes in stock market volatility will be examined in

the next chapter.
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Appendix 3.A

3.A.1 Model with Interaction Terms

Deviations GMM
ψi,t−1 0.276***

(12.53)

yi,t−1 0.355***
(11.46)

Qi,t−1 -0.0697
(-0.68)

σFEVit 0.368***
(2.65)

levi,t−1 -0.107
(-1.55)

cfi,t−1 0.126***
(4.08)

Li,t−1 -0.0589***
(-3.35)

yi,t−1 × cfi,t−1 -0.0258***
(-4.67)

Qi,t−1 × Qi,t−1 -0.0611***
(-2.71)

Qi,t−1 × σFEVit 0.132***
(4.95)

σFEVit × σFEVit -0.0763***
(-3.75)

cfi,t−1 × cfi,t−1 0.0124***
(4.23)

N 14444
J 60
χ2 23.70

p-value 0.479
A−Bond 1.186

p-value 0.236

Table 3.A.1: Signi�cant Interaction Terms between Variables
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3.A.2 Quadratic Forms

(a) Predicted Investment Rate as a Function of Q

(b) Predicted Investment Rate as a Function of Uncertainty

(c) Predicted Investment Rate as a Function of Cash Flows

Figure 3.A.1: Quadratic Forms of Variables inside a 95% Con�dence Interval
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3.A.3 Median Values of the Variables around the Great Recession

(a) Net Sales (b) Q

(c) Uncertainty (d) Leverage

(e) Cash Flows (f) Size

Figure 3.A.2: Changes in Variables around the Great Recession
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Chapter 4

Identifying Uncertainty and Stock Market

Volatility Shocks with an Instrumental

Variable SVAR model

4.1 Introduction

The real options theory introduced in the previous chapters makes testable predictions about the

e�ect of uncertainty on real economic activity. As the value of waiting for more information in-

creases, �rms delay investment and hiring decisions until the uncertainty is resolved, which de-

creases economic activity. Testing these hypotheses is di�cult because uncertainty is not observ-

able; economists must construct measures of uncertainty based on available data. One common

approach is to use the volatility of stock market returns, on the justi�cation that periods where

returns substantially deviate from their average value suggests that it is harder to predict the future

value of investments. According to the e�cient markets hypothesis (EMH), changes in �rms' stock

prices should re�ect changes in investors' beliefs about the future value of �rms.

However, stock market volatility (SMV) can vary independently of uncertainty. As a result,

any estimates of the e�ect of uncertainty on the macroeconomy will be tainted by variation in the

uncertainty measure which is actually caused by movements in SMV independently of uncertainty.

While previous researchers have appreciated this problem, none have shown the di�erential e�ects
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of shocks to SMV and uncertainty on the macroeconomy. Furthermore, the causal relationship

between uncertainty and SMV has been overlooked by previous literature, which tends to focus on

the response of the level of stock market returns to uncertainty shocks1. Having a clear picture of

these relationships is crucial from a policy making perspective as well as an academic perspective,

as central banks must have exact knowledge of what type of shock they are facing before targeting

them with policy instruments.

This chapter uses a set-identi�cation approach to estimate the macroeconomic e�ects of struc-

tural shocks to uncertainty and stock market volatility in an instrumental variable structural vector

auto-regression (SVAR-IV) model. The variation in the price of gold around events which make fu-

ture innovations in economic variables harder to predict is used to construct a proxy for uncertainty

shocks. Exogenous shocks to the credit spread between Baa-rated corporate bonds and the 10-year

treasury bond rate proxy for shocks to risk preferences which a�ect SMV. I show that uncertainty

and SMV, despite being treated as interchangeable in previous studies, produce di�erent impulse

response functions for key macroeconomic variables. Speci�cally, uncertainty shocks account for

more of the variation in real economic variables and have a relatively smaller impact on prices.

The opposite is true for the identi�ed shocks to SMV, which have a weaker e�ect on real economic

activity but make up a greater proportion of the variation in prices. Furthermore, changes in SMV

originating from shocks to risk preferences do not cause a signi�cant contemporaneous movement

in uncertainty, and as the shock is resolved uncertainty will actually decrease as agents update their

forecasting modes. These results validate the predictions of several authors who suggest that stock

market based measures of economic uncertainty will lead to erroneous conclusions.

Alongside these primary �ndings, I address some shortcomings in the previous literature this

chapter builds upon. Speci�cally, I ensure the results are robust to potential measurement error in

the gold price instrument for uncertainty shocks and improve on the methodology used by Stock &

Watson (2012) to isolate exogenous innovations in a series when constructing the proxy for struc-

tural shocks to SMV. Additionally, I use a moving block bootstrap (MBB) to construct con�dence

intervals for the impulse response functions (IRFs) in section 4.5. This is an improvement on the

1One exception is Baker et al. (2016), who show that their measure of Economic Policy Uncertainty is a signi�cant
predictor of the 30-day implied volatility of options traded on the S&P 500 (the VIX index introduced later in the
chapter). However, they do not try to establish the direction of causal relationships between the two.
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wild bootstrapping approach of Pi�er & Podstawski (2018) who also identify uncertainty shocks

with an instrument based on the variation in gold prices around events which increase uncertainty.

I use the measure of uncertainty constructed by Jurado, Lugdvigson, and Ng (2015). Their paper

is widely cited in related literature and has the advantage of being independent of any theoretical

assumptions. In section 4.5.4, I compare the results generated from this measure to those generated

by using the Economic Policy Uncertainty (EPU) index of Baker et al. (2016) as the measure of

uncertainty. SMV is measured by the standard deviation of logarithmic returns on the S&P500

as in Aït-Sahalia et al. (2021). Both of these variables are used at the monthly frequency. When

choosing the other macroeconomic variables in the VAR model, I follow Bloom (2009), who was

the �rst to examine the impact of uncertainty shocks on the macroeconomy and remains one of the

most in�uential papers in the �eld. Pi�er & Podstawski (2018) also follow their speci�cation.

In this framework, set-identi�cation of the contemporaneous e�ects from structural shocks to

uncertainty and SMV can be achieved in three steps. First, run the reduced-form VAR model and

estimate its residuals and covariance matrix. Second, perform a linear regression of the reduced-form

residuals from each equation in the VAR on the instruments for the structural shocks. The estimated

coe�cients from these regressions represent the contemporaneous e�ects of shocks to uncertainty

and SMV but are only correct up to a constant scale factor determined by the relationship between

the instruments and the structural shocks. The third step combines the estimated coe�cients

from step two and the information in the reduced-form covariance matrix to obtain the desired

contemporaneous responses of variables to structural uncertainty and SMV shocks.

After an overview of the related literature, I provide a comprehensive overview of the method-

ological approach in this paper in section 4.3, expanding on the steps outlined above. Section 4.4

then presents the variables and instruments used in the chapter. The results are presented and

discussed in section 4.5, followed by a brief conclusion.
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4.2 Related Literature

4.2.1 Uncertainty and Volatility

Jurado et al. (2015) de�ne uncertainty as the conditional volatility of a disturbance that is un-

forecastable from the perspective of economic agents. The h-step ahead uncertainty of a variable

xit ∈ xt = (x1t, . . . , xNt), where Ωt is the information available to agents at time t, is

Uxit(h) ≡
√

E
[
(xi,t+h − E[xi,t+h|Ωt])

2 |Ωt

]
. (4.2.1)

There must be some forecast error to prevent this expression begin equal to zero, so Ωt does

not allow agents to perfectly predict the future. Uncertainty is a forward-looking concept and any

future variation that can be predicted based on the information set available to agents in the current

period is not uncertain. Using this de�nition, Jurado et al. construct a measure of macroeconomic

uncertainty by taking a weighted average of the conditional volatility of forecast errors from over

130 economic time series.

Uxt (h) ≡ 1

N

N∑
i=1

Uxit(h). (4.2.2)

This represents a gold-standard in uncertainty measurement but is di�cult to construct and

does not have an analogue for low-frequency �rm-level data, which may be the researcher's pri-

mary interest. This fact explains the popularity of measures of uncertainty based on SMV. In the

macroeconomic literature, these can be found in Bloom (2009) and Chuliá et al. (2017) while Leahy

& Whited (1996), Bloom et al. (2007), Bulan (2005), and Panousi & Papanikolaou (2012) provide

examples using �rm-level data, as does chapter three of this thesis. Gilchrist et al. (2014) examines

SMV-derived uncertainty on both the �rm-level and aggregate level.

In theory, a �rm's stock price re�ects the expected present discounted value of all its future

pro�t �ows, taking into account all relevant information available at the time (Malkiel, 2003).

A representative sample indexing the value of U.S. equities should, therefore, reveal investors'

best estimate of the expected future performance of the U.S. economy. The average deviation of

changes in stock prices around the mean gives an indication of how di�cult it is for investors to
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predict the future pro�tability of �rms, taking into account both idiosyncratic information about

the �rm and information about the macroeconomy. Future movements in stock prices are also not

forecastable under the EMH, as they are driven by random shocks which cause investors to update

their expectations about the future pro�tability of �rms. From this theoretical view of the stock

market, the literature cited above justi�es the use of SMV as a measure of economic uncertainty.

However, as was discussed brie�y in chapter three, there are problems with this argument. Fun-

damentally, volatility measures the spread of a variable's distribution while uncertainty is concerned

with the di�culty estimating the parameters of that distribution (Aït-Sahalia et al., 2021). Vari-

ables with a higher volatility tend to be harder to predict because the range of possible future values

tends to be wider, but it is the deviation of an observed value from an agent's best estimate in the

previous period which underlines the concept of uncertainty (Jurado et al., 2015).

Stock returns are also partly predictable based on an asset's loading on risk factors such as those

identi�ed by Fama & French (1992) or Carhart (1997). Bulan (2005) and Gilchrist et al. (2014)

used asset pricing models to try to remove this predictable information but the evidence presented

in chapter three casts doubt as to whether this will lead to actual di�erences in the estimated e�ect

of SMV-measured uncertainty on real economic variables compared to using the standard deviation

of returns without conditioning on any risk factors.

More importantly, SMV can vary even when there is no change in the di�culty forecasting

economic variables. This can be due to factors such as the in�uence of noise traders who invest in

equities based on speculation not related to �rm fundamentals (De Long et al., 1990, 1991), changes

in the willingness to supply liquid capital which leads to a burst of equity trading (Allen & Gale,

1994), or changes in risk preferences which cause large movements to or from risky investments such

as equities (Drees & Eckwert, 1997; Campbell & Cochrane, 1999; Brandt & Wang, 2003). There

is also the observed tendency for stock returns to become more volatile after decreases in price.

One common argument suggests this occurs because �rms' debt-to-equity ratios increase following

a decline in asset prices, which makes stocks more risky and more volatile (Aït-Sahalia et al., 2013)2.

Risk is another concept which can be con�ated with volatility but the two are actually distinct,

2But see the evidence against this hypothesis in Hasanhodzic & Lo (2011). The hypothesis, known as the `leverage
e�ect', is often attributed to Black (1976), however, it is di�cult to �nd the original source.
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an investment could display a very large average deviation from its mean but if the downside risk

remains low it does not represent signi�cant risk to the investor. Changes in any of these factors

can trigger variation in SMV independently of uncertainty.

Previously, Schwert (1989) described a `volatility paradox' by showing that SMV is unrelated

to other forms of macroeconomic volatility. In contrast, Ahn & Lee (2006) found evidence of

a bidirectional relationship between SMV and the volatility of real output in several countries.

Arnold & Vrugt (2008) appreciate that ex post measures of volatility can smooth over signi�cant

ex ante variation. They construct a measure of uncertainty based on the dispersion of forecasts in

the Survey of Professional Forecasters and demonstrate that this measure is signi�cantly related to

SMV. Furthermore, they perform Granger causality tests between SMV and the forecast dispersion

of several macroeconomic variables. They �nd that uncertainty in four of the variables is signi�cantly

linked with SMV but overall there is little evidence of bidirectional relationships. They do not

attempt to estimate contemporaneous relationships in their VAR model. For a large country like

the U.S., global asset markets can also be a�ected by increases in domestic uncertainty, Su et al.

(2019) �nd that higher U.S. uncertainty causes increases in SMV in both industrialised and emerging

foreign economies.

Joëts et al. (2017) examined the disconnect between uncertainty and the volatility of returns

for 19 commodities. Using a structural threshold vector autoregressive model (TVAR), they show

that agricultural and industrial price volatility is highly sensitive to uncertainty, while volatility in

precious metals shows a less aggressive response. The largest disconnect is found between uncer-

tainty and oil price volatility, meaning that shocks to the latter often did not cause any increase in

uncertainty. Similarly, this chapter �nds that, on average, shocks to SMV do not have a signi�cant

impact on macroeconomic uncertainty. However, Van Robays (2016) found that higher uncertainty

tends to cause increases in oil price volatility because it heightens the sensitivity of oil prices to

supply and demands shocks. Notably, uncertainty in her study is equated with the volatility of

industrial production rather than on expectations or forecast errors.

Jurado et al. (2015) and Baker et al. (2016) construct alternative measures of macroeconomic

uncertainty. The former is based on the aggregation of forecast errors described in equations 4.2.1

and 4.2.2 while the latter is based on the number of times keywords related to economic uncertainty
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appear in newspapers. Aït-Sahalia et al. (2021) demonstrates that the news-based measure by

Baker et al. (2016) is frequently in a state of disconnect with stock market volatility, as measured

by the standard deviation of returns on the S&P 500. The authors show that equity returns are

positively related to uncertainty but negatively related to SMV. They suggest that uncertainty

causes a capital �ight to safe assets which lowers their required return while driving up the required

return on risky assets. Higher volatility is associated with lower returns because lower returns

increase debt to equity ratios and thereby make stocks more risky as explained in Aït-Sahalia et al.

(2013). Their model thereby presents a solution as to why the sign of the relationship between

returns and volatility appears to be sample dependent; it may be confounded by the e�ects of

uncertainty.

4.2.2 Macroeconomic E�ects

There is a large body of literature discussing the macroeconomic e�ects of uncertainty but no studies

so far have focused on separating shocks to uncertainty from those a�ecting SMV independently of

uncertainty. Bloom (2009) measures uncertainty shocks based on large spikes in the Chicago Board

of Options Exchange VXO index and shows that uncertainty causes declines in economic activity

followed by quick recoveries and a period of `overshoot' in a SVAR model. The VXO is calculated

from the implied volatility of a hypothetical option on the S&P 100 index with 30 days until expiry

and is commonly used as a measure of economic uncertainty. Its derivation from �nancial options

makes it a forward looking measure but Jurado et al. (2015) notes that its variation will still be

contaminated by factors a�ecting SMV independently of uncertainty. Their uncertainty measure

based on the conditional volatility of forecast errors shows that large uncertainty shocks are less

common than Bloom's analysis would suggest, but they lead to more persistent declines in economic

activity when they do occur.

Both these studies used a Cholesky decomposition of the reduced form covariance matrix to

identify structural shocks. This imposes a recursive ordering between variables which is di�cult to

justify on theoretical grounds. Kilian et al. (2022) notes that the common practice of changing the

ordering of variables in the VAR and checking whether the IRFs di�er is not a valid check for of
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the correct ordering of variables. Stock & Watson (2012) and Mertens & Ravn (2013) developed an

approach to identifying one or more structural shocks based on instrumental variables. If a variable

can be found which is both correlated with the targeted structural shock and independent from the

other shocks in the model, then the relationships between the variables in the VAR and the shock

of interest can be recovered from data on this variable and the reduced-form covariance matrix.

Finding instruments which are only correlated with the variable of interest is a formidable task

given the endogeneity of macroeconomic variables over the business cycle (Ramey, 2016). Stock &

Watson (2012) also �nd that uncertainty shocks cause declines in economic activity, but they are

unable to separate uncertainty shocks from shocks to �nancial market liquidity or risk. However,

their instrument for uncertainty shocks is based on exogenous shocks to the VIX3, speci�cally, the

residuals from an AR(2) regression. Because their instrument comes from �nancial markets, it will

naturally pick up shocks to factors such as risk preferences which may a�ect volatility independently

of uncertainty. However, they also �nd correlation between the innovations in the uncertainty

measure of Baker et al. (2016) and the credit spread measure in Gilchrist & Zakraj²ek (2012).

Pi�er & Podstawski (2018) instead use the variation in gold prices around speci�c events which

should make the economic future harder to predict as a proxy for uncertainty shocks. They are

able to separate uncertainty shocks a�ecting uncertainty from news shocks a�ecting the level of the

S&P 500 using Mertens & Ravn's (2013) approach for identifying multiple shocks.

Gilchrist et al. (2014) distinguished shocks to uncertainty from shocks to the credit spread in a

recursively identi�ed SVAR model, �nding that uncertainty shocks a�ect the real economy primarily

through increases in the credit spread. In their view, uncertainty interferes with �rms' supply of

credit and causes delays in their planned investment expenditures which are already attenuated

through the real option e�ects of uncertainty (Bernanke, 1983; Dixit & Pindyck, 1994; Abel &

Eberly, 1996). Merton (1974) demonstrated that because limited liability provides equity holders

with limited downside risk, the payo� of levered equity is equivalent to holding a European call

option if the value of the �rm is modelled as a geometric Brownian motion. Likewise, holders of

risky debt like corporate bonds face a payo� structure identical to the writer of a put option, they

3The VIX is based on a the implied volatility of a hypothetical option on the S&P 500 with 30 days to maturity.
It thus has a broader market coverage compared to the VXO which is based on the S&P 100.
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have a limited upside gain but stand to lose all of their initial investment if the �rm defaults. Higher

volatility of the �rm's assets therefore bene�ts equity holders at the expense of bond holders, which

means the interest paid on debt has to rise to compensate the increase in investor risk. Hence, the

increase in uncertainty causes increases in the credit spread.

4.3 Instrumental Variable SVAR Models

4.3.1 SVAR Models

SVAR models estimate dynamic relationships between time series variables. By identifying the

structural shocks to the system, they also reveal the contemporaneous e�ects between the variables.

Consider a k× 1 vector yt which follows a VAR process with k variables and p lags. The structural

shocks are given by then k × 1 vector εt ∼ (0, Ik) and with E(εi,t, εj,t = 0) so that the various

shocks are uncorrelated. Then, equation 4.3.1 describes the dynamics of yt where the k× k matrix

A contains information about the contemporaneous relationships between the variables and Cp is

another k × k matrix containing information of relationships p periods ago.

Ayt = α+C1yt−1 + · · ·+Cpyt−p + εt (4.3.1)

The contemporaneous relationships in A creates a simultaneity problem meaning the e�ects of

innovations in the structural shocks on one of the variables cannot be identi�ed because all other

variables move in the same period. Pre-multiplying by A−1 = B and de�ning α∗ = Bα, C∗p =

BCp, and ut = Bεt gives the reduced form model for which a conventional linear estimator like

OLS can recover the parameters.

yt = α∗ +C∗1yt−1 + · · ·+C∗pyt−p + ut (4.3.2)

Because all information about the contemporaneous relationships between the variables is now

in B, the researcher needs to �nd a way to recover the elements of this matrix. A common method

is to perform a Cholesky decomposition of the covariance matrix Σ such that Σ = BB′ where B
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is a lower triangular matrix. Given E(utu
′
t) = Σ if the errors are homoskedastic and the covariance

matrix for εt is normalised to Ik then it follows that

B E(εtε
′
t)B

′ = BB′.

This is commonly referred to as imposing a recursive ordering among variables because all elements

of B above the lead diagonal are equal to zero, meaning shocks to variables ordered lower in the

yt vector do not contemporaneously a�ect variables placed higher in the ordering. Despite its

simplicity, Cholesky identi�cation is not appropriate in a macroeconomic model where it is not

reasonable to assume that the variables only in�uence each other after a lag, which is certainly the

case for fast-moving variables like uncertainty and SMV.

4.3.2 Identi�cation by External Proxy

Another possible way to recover the elements in B is to use instrumental variables contained in a

vector zt as a proxy for the structural shocks in εt (Stock & Watson, 2012; Mertens & Ravn, 2013).

This chapter examines the dynamic macroeconomic e�ects of shocks to economic uncertainty and

equity market volatility, hence, zt is a 2× 1 vector containing instruments for structural shocks to

uncertainty and SMV. Decomposing the residuals from equation 4.3.2 (ût) into

ût = B∗ε∗t + B̃ε̃t (4.3.3)

where ε∗t is a 2×1 vector of the structural shocks of interest (the ones which will be identi�ed using

external instruments), B∗ is a k × 2 matrix of the contemporaneous e�ects of those shocks, ε̃t is

a (k − 2) × 1 vector collecting all other structural shocks which will not be identi�ed, and B̃ is a

k × (k − 2) matrix of the contemporaneous e�ects of ε̃t.

If two instruments can be found for the structural shocks of interest which are both relevant

such that E (ε∗tz
′
t) = Φ, where Φ is a 2 × 2 non-zero and full column-rank matrix, and exogenous

such that E (ε̃tz
′
t) = 0, then the 2× 1 vector zt can be used to estimate the parameters in the two

columns of B∗. Although ε∗t is not observed, the reduced form errors ût provide a way of obtaining
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the parameters in B∗ up to the sign convention Φ because of the relation

E (ûtz
′
t) = B∗ E (ε∗tz

′
t) + B̃ E (ε̃tz

′
t) = B∗Φ. (4.3.4)

Now run 2× k linear regressions of the variables in ût on the variables in zt where i = 1, . . . , k

indexes the rows of a matrix, j = 1, 2 indexes the columns of a matrix, and γij is an element of the

k × 2 matrix Γ,

ûit = δij + γijzjt + ηij,t, (4.3.5)

where, if the instruments in zt are normalised to have unit variance

γij = E (ûitzjt) =
2∑

h=1

b∗ihφhj. (4.3.6)

The matrix Γ thus contains the contemporaneous e�ects of the structural shocks of interest up to

the constant matrix of unknown weights Φ. Some algebra (given in appendix 4.A.1) yields B∗ from

Γ, thus recovering two columns of the B matrix which can be used for impulse response analysis

and forecast error decompositions.

The caveat is that this method produces many candidate estimates for B∗ dependent on a draw

from a distribution of random orthogonal matrices (see the appendix for details). Drawing 1000

orthogonal matrices, Q, generates a sample of 1000 B∗ matrices from the identi�ed set. Note

that equations 4.3.4 and 4.3.6 imply that Γ = B∗Φ which in turn implies that (B∗)−1 Γ = Φ.

Remembering that Φ = E (ε∗tz
′
t), there are restrictions which can be placed on Φ to restrict the set

of B∗ to those which are economically intuitive. Pi�er & Podstawski (2018) let

 φ11 > 0 φ22 − φ12 > ψ

φ11 − φ21 > ψ φ22 > 0

 . (4.3.7)

These conditions imply that increases in the proxy for structural shocks to uncertainty must be

associated with increases in reduced-form shocks to uncertainty, increases in the risk aversion proxy

must be associated with increases in reduced-form shocks to SMV, and that the instruments must

both be more correlated with the shock they target compared to the other shock by a positive
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quantity ψ. A higher ψ demands the instruments are more correlated with the shocks they target

relative to the other shock, so will tend to decrease the size of the identi�ed set which passes the

restrictions. As in Pi�er & Podstawski (2018), the results presented in this paper are robust to

variations in ψ between 0 and 0.2. I use a baseline of ψ = 0.12.

4.3.3 Reporting IRFs and FEVD

The main tool for interpreting the results of SVAR models is the IRF. Impulse responses are the

di�erence between forecasts of yt produced from a model in which the system is a�ected by a shock

and one in which no shock occurs (Hamilton, 1994, pp.318-319). From (Lütkepohl, 2005, pp.46,

58), equation 4.3.2 can be written in moving average form

yt = µ+
∞∑
i=0

Λiut−i = µ+
∞∑
i=0

θiεt−i (4.3.8)

where, given Li is an operator producing the ith lag, Λ(L) =
∑∞

i=0 ΛiL
i such that Λ(L)C(L) = Ik,

µ = Λ(L)α∗, and θ(L) =
∑∞

i=0 ΛiB. Hence, the s step ahead response to a shock ε at time t is

E [yt+s | εt = ε]− E [yt+s | εt = 0] = θsε (4.3.9)

because ε is propagated through the system by the autoregressive coe�cients contained in Λs. I

calibrate the IRFs so that the shock of interest (uncertainty or volatility) causes a one standard

deviation increase in the variable it targets on impact. For example, if σyit is the standard deviation

of variable of interest yit, then the shock is calibrated to increase yit by σyit on impact.

If jl represents the jlth element of the matrix θi, then dividing
∑s−1

i=0 θ
2
jl,i by the total forecast

variance of variable l in the VAR system, which is the lth element on the leading diagonal of

s−1∑
i=0

ΛiΣΛ′i,

gives the s step-ahead forecast error decomposition of variable j. This is the total contribution of

the shock to the variance of variable l. A shock could cause a persistent increase or decrease in a
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variable, however, this response might only account for a small proportion of the total variation,

which implies the shock is less in�uential in explaining that variable's dynamics. This is why

forecast error decompositions are a useful tool to examine the relationships between macroeconomic

variables.

As discussed, the method outlined in section 4.3.2 will only recover two columns of the B

matrix. Furthermore, there will be as many estimates as there are B∗ satisfying the identi�cation

restrictions in equation 4.3.7. One way to summarise the IRFs generated from this method is to

take the median of all the estimates. However, Fry & Pagan (2011) point out that doing so mixes

information from di�erent B∗ matrices and renders forecast error decompositions meaningless as

they can take values greater than one. They develop a method of �nding a Median Target (MT)

θMT
i matrix which is as close as possible to median of the estimated θi. The elements of all the θi

are standardised by subtracting their median and dividing by their standard deviation and stacked

in a column vector ω. If there are s steps and k variables in the VAR, then with two identi�ed

shocks this vector will have dimensions 2ks × 1. The chosen θMT
i is whichever θi minimises the

value of ω′ω. The reported IRFs and the forecast error decomposition is based on θMT
i .

I use a Moving Block Bootstrap of Jentsch & Lunsford (2022) to generate the 68% con�dence

bands for the IRF estimates. The quantiles of the bootstrapped distribution are based on the

standard percentile intervals discussed in (Lütkepohl, 2005, p.710). Pi�er & Podstawski (2018) use

a form of Wild Bootstrap to generate their con�dence bands, which, unlike the MBB, does not

take into account heteroskedasticity such as GARCH e�ects in the residuals of the VAR and leads

to asymptotically invalid estimates of con�dence bands (Bruns & Lütkepohl, 2022). I compare

the bands from the MBB to those from the Proxy Residual Based Bootstrap (PRBB) of Bruns &

Lütkepohl (2022), which may attain higher accuracy in small samples. The method of constructing

the bootstrapped estimates is discussed in appendix 4.A.2.

Ludvigson et al. (2021), while also adopting a bootstrap procedure for statistical inference, note

that the lack of a consistent point estimate makes inference especially challenging in set-identi�ed

SVAR-IV models. Giacomini et al. (2022) and Braun & Brüggemann (2022) both use Bayesian infer-

ence. The former build on the robust Bayesian approach of Giacomini & Kitagawa (2021) allowing

the researcher to relax controversial point-identifying restrictions without introducing an unrevis-
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able prior into the model. In the latter, the in�uence of the prior does not vanish asymptotically but

the authors show how to calculate Bayes factors to test the validity of external instruments. The

moment-inequality framework of Granziera et al. (2018) and the delta method inference of Gafarov

et al. (2018) can only place restrictions on a single shock.

4.4 Data

4.4.1 Macroeconomic Data

I use the uncertainty index constructed by Jurado et al.'s (2015) as the measure of uncertainty; it

is based on the one-month-ahead forecast error produced from the principle component of over 130

macroeconomic series and is hereafter called the JLN measure. I deviate from Bloom (2009) and

Pi�er & Podstawski (2018) in not using the VIX as a measure of uncertainty because, as Jurado

et al. (2015) point out, it is constructed from options dependent on the performance of the S&P

500 and will therefore pick up changes in volatility which are not related to uncertainty. SMV is

measured by the monthly standard deviation of returns on the S&P 500 index, calculated as the

volatility of daily returns multiplied by the square root of the number of days in the month. As

in Bloom (2009), I examine the impact of volatility while holding the level of returns constant by

including the monthly returns of the S&P 500 in the model, the mean of daily returns multiplied

by the number of days in the month.

The macroeconomic variables are available from the Federal Reserve Bank of St. Louis website

and are selected and transformed based on the models of Bloom (2009) and Pi�er & Podstawski

(2018). Their monthly time series in the sample period between January 1969 and March 2022 are

given in �gure 4.4.1. Three of the variables are prices. The Federal Funds Rate (FFR) is the rate

at which the Federal Reserve loans to corporate banks, wage growth is the log-di�erence in average

hourly earnings for non-supervisory employees in the manufacturing sector, and in�ation is the

log-di�erence in the Consumer Price Index (CPI). The other three variables capture real activity.

Hours worked is the average weekly hours worked in the manufacturing sector, labour growth is the

log-di�erence in total number of employees in the manufacturing sector, and production growth is

159



measured by the log-di�erence in the Federal Reserve Board of Governors production index. The

very large falls in production and labour growth at the end of the sample are caused by the fallout

of the Coronavirus pandemic.

In light of the real options literature in Dixit & Pindyck (1994), it makes sense to include

both hours worked and the total number of employees because a negative uncertainty shock may

incentivise �rms to temporarily reduce the hours worked by their labour stock rather than making

the partially irreversible decision of �ring workers. The optimal lag length of 3 for the reduced-form

VAR was chosen by the Akaike information criterion. The conclusions of this paper do not change

if the lag order is increased to 5, which is the initial lag order Pi�er & Podstawski (2018) provide

in their codes available on Michele Pi�er's website.

Figure 4.4.1: Macroeconomic Variables
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4.4.2 Uncertainty Proxy Construction

Following Pi�er & Podstawski (2018), I use the intraday variation in the price of gold on the

London Bullion Market around historical events expected to cause an increase in uncertainty as a

proxy measure for uncertainty shocks. In theory, gold prices should be correlated with uncertainty

shocks because gold is considered a safe-haven asset whose demand rises following an increase in

uncertainty. By calculating the intraday variation around speci�c events, it is easier to justify that

these changes are truly caused by uncertainty shocks and not by changes in risk preferences, the

other structural shock identi�ed in the model, or indeed by the other structural shocks which are

not identi�ed. The o�cial price of gold is quoted on weekdays at 10:30 and 15:00 GMT.

I extend the events database used by Pi�er & Podstawski (2018) so that it covers a range

from January 1969 to March 2022. Pi�er & Podawski use the publication times of news articles

(primarily from Bloomberg) to determine the exact time when news of an uncertainty event reached

the market. Like them, I collect events which might change how easy it is for agents to forecast

economic variables and that are not the direct result of another economic shock, such as a change in

interest rates. Typical examples are wars, terrorist attacks, natural distastes, and election results.

The �nal list of the events added to the Pi�er & Podstawski (2018) database and used in the

construction of the proxy is given in appendix 4.A.8. For the sample period of 1969-2022, roughly

10% of months contain uncertainty shocks, which is comparable to the ratio used in Pi�er &

Podstawski (2018) and Mertens & Ravn (2013).

Figure 4.4.2 gives two examples of the variation of gold prices around an event; panel 4.4.2a

shows the spike after the result of the Brexit referendum was announced and panel 4.4.2b shows

the fall in gold prices after the election of President Clinton. The unexpected Brexit vote not only

caused short-term �uctuations in global asset markets but also created uncertainty about future

trade agreements and potential disruptions in the �ow of goods from the European Union's export

sector (Graziano et al., 2020). The announcement came in the evening of the 23rd of June, so

the jump in gold price came the morning after. In contrast, the poor state of the economy and

perception that it was being mismanaged under President George H.W. Bush gave Clinton an edge

in the 1992 election Doherty & Gimpel (1997), and the announcement of the result resolves some of
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the uncertainty about government policy in the coming four years, because many of the candidate's

plans will be revealed during the election campaign4. Again, the result was announced on the night

of the 3rd of November, so the gold price drops the morning after.

For the period before 1980, I mostly use the New York Times (NYT) to determine when the

news of an uncertainty event reached the market. Baker et al. (2016) also used the NYT as a trusted

news source to construct their Economic Policy Uncertainty Index. Events generally appear in the

NYT the morning after they occurred, for example, the OPEC siege on 21st of December 1975,

where armed terrorists held 60 hostages at the semi-annual meeting of OPEC leaders in Vienna,

is reported in the NYT the day after. Some events, such as the resignation of president Nixon

on August 8th 1974 were broadcast on television, so it is easy to pinpoint when they occurred. I

mostly use the times quoted on articles written by Reuters news agency for the period from 2015

(the end of Pi�er & Podawski's sample) to 2022. I label the uncertainty instrument based on the

exact times events occurred goldE, where the E subscript stands for 'exact'.

However, information on the exact time of events is often not available. This occurs in around

17% of cases in the original Pi�er & Podawski database, which rises to 35% in the �rst 10 years,

re�ecting that fact that it is harder to pinpoint the exact times events occur early in the sample. In

such cases, the exact time news of the event reached the market must be guessed. It is also harder

to guess whether news may have reached informed investors before newspapers were able to publish

the story in the early years of the sample.

To see how much guessing might impact results, I construct another proxy which identi�es when

news of the event reached the market through a simple search algorithm that chooses the largest

absolute change in the price of gold in each 24 period on the date the event occurred. Given the

spot price of gold is quoted twice every day, at 10:30 and 15:00, there are three possible intervals

in which the event can a�ect the quote in a 24 hour period. Consider an even occurring on the

2nd of January and let P date
time denote the price of gold at a speci�c time on the date given by the

superscript. If news of the event reached the market between 00:00 and 10:30, its e�ect on the gold

4Election results have quite an unpredictable e�ect on the gold price. On the one hand, they should give a
signal about what policy decisions will be made over the next four years. On the other hand, if the presidential
candidate displays erratic behaviour, or the election divides executive and legislature power, it also seems possible
that uncertainty will increase. In light of this, I have not attempted to assign an expected sign to these events in the
manner explained later in the text.
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(a) Increase in Gold Price after Brexit

(b) Fall in Gold Price after Clinton is Elected

Figure 4.4.2: Examples of Changes in Gold Price after Uncertainty Shocks

price will show up between P 2nd
10:30 − P 1st

15:00. Applying the same reasoning to other intervals between

the price quotes, the event could also a�ect the gold price between P 2nd
15:00−P 2nd

10:30 and P
3rd
10:30−P 2nd

15:00.

The algorithm chooses whichever of these changes is largest in absolute value.

It is possible that the candidate uncertainty shock actually had no e�ect on the gold price, so

contrary to the researcher's belief, markets did not believe the event made the future easier or harder
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to predict and justi�ed a rebalancing of portfolios. But the algorithm would incorrectly attribute

the largest jump in the gold price on that day to the candidate uncertainty shock. To mitigate

the risk of incorrectly identifying candidate uncertainty events which actually had no a�ect on gold

prices, I assign an expected sign to each event and demand that the sign of the largest absolute

change during the day matches the expected sign of the uncertainty shock. For example, on the

evening of the 17th of October 1973, Americans were made aware that Arab states were issuing an

oil embargo against countries supporting Israel. This event will disrupt supply chains and make the

economic future harder to predict, so the expected sign of the change in the gold price is positive.

However, the largest movement in gold prices that day was a −1.46% decline. The mismatch in

expected and actual signs of the gold price means the event is not selected by the algorithm, or

used in the instrument based on exact times. I label the gold instrument based on the algorithm

goldA.

As an additional check on the robustness of the instrument, I compare it to another which

calculates the mean gold price change across the 24-hour period when the shock occurred (labelled

goldM). Given the search algorithm always chooses the largest variation in the 24-hour period, it

will likely overestimate the response of gold prices to uncertainty shocks. The proxy based on the

24-hour mean will likely underestimate the response because the random variations in gold price will

mitigate the jump caused by the uncertainty event5. I expect the results generated by the proxy

based on exact times to fall between those generated by the search algorithm and the intraday

mean.

Once events and the corresponding changes in the gold price of are identi�ed, a value of zero

is assigned to days without a shock and the percentage change in the price of gold on that day is

used for those with a shock. These daily values are then summed every month to produce the proxy

of uncertainty shocks. Naturally, months with no shocks will have a value of zero. Like Pi�er &

Podstawski (2018), I winsorise the �nal instrument at the one percent level to mitigate the e�ect

of outliers. Figure 4.4.3 presents the instrument for uncertainty shocks based on exact times.

5It is worth noting that there is little evidence that the daily variation in the price of gold exhibits strong
autocorrelation, based on AR(3) models run for each year in the sample.
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4.4.3 Financial Market Shocks Proxy Construction

Some shocks are likely to be very closely related to uncertainty shocks and could be a potential

confounding in�uence. Pi�er & Podstawski (2018) note that their uncertainty measure might be

correlated with events that provide markets with information about future productivity. Barsky

& Sims (2011) note that these 'news shocks', are signi�cant predictors for the future dynamics of

consumption, hours worked, and output. To ensure their identi�ed uncertainty shocks are separated

from news shocks Pi�er & Podstawski use a set-identi�cation approach to estimate the e�ects of the

two structural shocks in the same model. They use the Principle Component from several measures

of news shocks in the literature as an instrument to identify shocks to the level of the S&P 5006.

Building on the literature surrounding the disconnect between uncertainty and volatility, I use

the same methodology to disentangle uncertainty shocks from shocks to credit and risk conditions

by creating an instrument for that latter from the exogenous shocks to the credit spread between

Baa-rated corporate bonds and the interest rate on a 10-year treasury bond. Using credit spreads to

proxy shocks in �nancial conditions has precedent in SVAR literature via Stock & Watson (2012)

who use the measure of credit spreads constructed by Gilchrist & Zakraj²ek (2011; 2012) from

corporate bond premiums. While Stock & Watson (2012) do not �nd evidence to suggest that

their uncertainty and �nancial tightness proxies identify di�erent shocks, this may be explained by

their use of the VIX as a proxy for uncertainty, which Jurado et al. (2015) points out also varies

independently of uncertainty due to changes in stock market volatility.

Although credit spreads show a strong association with economic uncertainty (Gilchrist et al.,

2014), they should also contain information relevant to SMV which is orthogonal to uncertainty. For

example, changes in risk appetite (Campbell & Cochrane, 1999; Brandt & Wang, 2003) or leverage

(Bollerslev et al., 2006) can a�ect stock market volatility even if there is no change in underlying

uncertainty. Credit spreads will certainly re�ect investors' risk appetite because the required in-

terest rate on corporate bonds will be higher when investors are more risk averse. Indeed, Tang

& Yan (2010) �nd that investor sentiment is the most important determinant of credit spreads at

6I do not identify news shocks explicitly in the model, so it is possible that the identi�ed uncertainty shocks are
contaminated by news shocks. However, looking at the list of events used in appendix 4.A.8, it is often di�cult to
see how they would give a clear signal about future productivity, and much clearer to see how they would make it
harder to accurately forecast the economic future.
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the aggregate level. As the value of debt will tend to increase as the risk premium on corporate

bonds increases, higher credit spreads will also lead to a stronger leverage e�ect under the inter-

pretation that a fall in share prices increases the debt-to-equity ratio, implying a greater default

risk. Hence, innovations in the credit spread can a�ect �nancial market volatility with no change

in macroeconomic uncertainty. For simplicity, I will refer to these as shocks to risk preferences.

Table 4.4.1 shows the credit spreads has a stronger relationship, both higher t-statistics and R2,

with the volatility of the S&P 500 index compared with JLN and EPU macroeconomic uncertainty

indicators.

JLN EPU S&P500
βcs 0.0608*** 34.4419*** 0.3193***

(13.7964) (9.6989) (16.3992)
β0 0.5241*** 41.6357*** 0.2382***

(54.5313) (4.8431) (5.8620)
R2 0.2048 0.1745 0.2456
T 741 447 828

Table 4.4.1: Correlation of Credit Spreads, Uncertainty, and Stock Market Volatility

To minimise the risk that the proxy for �nancial market shocks is tainted by other macroeconomic

shocks, I use the method of Stock & Watson (2012) and construct the proxy variable from the

residuals of the best-�tting autoregressive model according to the Akaike information criterion.

This is a good �rst step to extract the exogenous component of the series, however, it does not take

into account that other variables could cause changes in the credit spread. To deal with this issue,

I also include changes in the one-month treasury bill and the oil price in the regression to control

for other shocks identi�ed in Pi�er & Podstawski (2018) as potential sources of contamination.

Theoretically, this method leaves only the purely exogenous part of the series, which I label cs.

Phillips-Perron and Dicky-Fuller tests reject the presence of a unit root at the 1% signi�cance

level in the credit spread series. Oil prices and the T-bill rate enter the regression in �rst di�erences

because the same tests suggest these series are non-stationary. From table 4.4.2, the best �tting auto-

regressive model uses three lags of the credit spread. Increases in the oil price have a statistically

signi�cant negative e�ect on credit spreads, suggesting that higher oil prices decrease the required

premium on corporate bonds necessary to attract external funds. Jiang et al. (2021) �nd that oil
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Credit Spread
∆oil price -0.0012***

(-3.6364)
∆Tbill -0.6871

(-0.6883)
β0 2.0433***

(9.4179)
Lags
L1 1.2816***

(50.5768)
L2 -0.4598***

(-10.7128)
L3 0.1450***

(5.0658)
AIC -386
N 704

Table 4.4.2: Best-Fitting AR Model for Credit Spreads

demand shocks tend to decrease the credit spread and put the association down to higher economic

activity in the short run because of the shock. After controlling for oil prices and the lags of the

credit spread, changes in the short-term interest rate do not have a signi�cant impact. The proxy

for �nancial market shocks is constructed as the residuals from this regression and is presented in

�gure 4.4.3.

4.4.4 Tests of Instrument Suitability

Olea et al. (2021) argue that a strong instrument has a heteroskedasticity robust F-statistic greater

than 10 in the �rst stage regression (equation 4.3.5). The F-statistic from a comparison of a

restricted model including only a constant term and an unrestricted model including the variable

of interest is equivalent to the square of the variable of interest's t-statistic in the unrestricted

model. The row F in table 4.4.3 shows the F-statistic for the uncertainty and �nancial market

volatility instruments in the �rst stage regressions. The �rst two columns assume the error variance

is constant, which is what Pi�er & Podstawski (2018) report in their �rst stage regressions. The

last two columns show the results when heteroskedasticity-robust standard errors are used. All

of the instruments have been normalised so the magnitude of the coe�cients in each column are

comparable.
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Figure 4.4.3: Instruments for Uncertainty and Financial SMV Shocks

Both instruments are highly correlated with the reduced-form residuals of the variables they

target. Importantly, they are more correlated with the variables they target compared to the

one they do not. The F-statistics in the �rst two columns are very high which would suggest

the instruments are very strong. However, after controlling for heteroskedasticity the F-statistics

decline substantially, in the goldE and cs cases, they fall to just below 10. Thus, while there is

good evidence to suggest the instruments are relevant, they are close to the threshold of what Olea

et al. (2021) classify as a strong instrument when taking into account potential bias in the standard

errors. In contrast to the �ndings of Stock & Watson (2012), however, it appears that using the

variation of gold prices around events that change how easy it is for agents to predict the future

can separate uncertainty shocks from shocks to SMV.

Table 4.4.4 shows the relationships between the instruments and reduced-form shocks to the

other variables in the model. It reports the t-statistics from both a model which assumes the error
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Homoskedastic Standard Errors Robust Standard Errors
ûJLN ûvolatility ûJLN ûvolatility

goldE 0.0042*** 0.3979*** 0.0042*** 0.3979*
F 74.70 28.10 9.58 3.10
R2 0.1050 0.0423 0.1050 0.0423
goldA 0.0042*** 0.3347*** 0.0042*** 0.3347
F 74.82 19.62 10.17 2.31
R2 0.1051 0.0299 0.1051 0.0299
goldM 0.0040*** 0.2868*** 0.0040*** 0.2868
F 69.95 14.30 10.12 1.64
R2 0.0990 0.0220 0.0990 0.0220
cs 0.0012** 0.4884*** 0.0012 0.4884***
F 5.44 44.76 1.45 9.61
R2 0.0085 0.0657 0.0085 0.0657
N 639 639 639 639

Table 4.4.3: Relevance of Instruments

variance is constant (the �rst number in parentheses) and using heteroskedasticity-robust standard

errors (the second number in parentheses). The stars next to the coe�cients indicate statistical

signi�cance in the constant error variance case.

The uncertainty shock instrument is negatively correlated with the level of the S&P 500, and

there is weaker evidence to suggest it is correlated with wage and production growth (these coe�-

cients become insigni�cant when using robust standard errors). The credit spread instrument only

shows a statistically signi�cant correlation with shocks to wage growth at the 1% level, so there is

some evidence that shocks to the credit spread pick up these kinds of shocks. However, the asso-

ciated F-statistic is still only −2.82 = 7.84 when using heteroskedasticity-robust standard errors,

which is the largest robust F-statistic observed in the table. The lack of signi�cant relationship

between cs and ûS&P500 implies that when controlling for shocks to the monthly volatility of the

S&P 500, shocks to risk preferences do not signi�cantly correlate with shocks to the level of the

S&P 500. In general, the instruments are strongly correlated with the variables they target and

only weakly correlated with the other variables in the model, suggesting the instruments are only

predicting variation in the variables they target. There may be some concern that the uncertainty

proxy also picks up shocks to the level of the S&P 500 but the correlations are still much weaker

than they are for JLN uncertainty.
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ûS&P500 ûFFR ûWages ûInflation ûHours ûLabour ûProduction
goldE -0.6218*** 0.0005 -0.0227** 0.0039 0.0062 -0.0072 -0.0633**

(-3.7096) (0.0284) (-2.0271) (0.4440) (0.7037) (-0.3790) (-2.0015)
(-2.7479) (0.0204) (-1.8185) (0.4176) (0.9873) (-0.2786) (-1.5055)

R2 0.0211 0.0000 0.0064 0.0003 0.0008 0.0002 0.0062
goldA -0.5896*** 0.0051 -0.0218* 0.0074 0.0066 -0.0054 -0.0568*

(-3.5141) (0.2836) (-1.9442) (0.8374) (0.7526) (-0.2842) (-1.7966)
(-2.7149) (0.2113) (-1.7912) (0.8189) (1.0989) (-0.2146) (-1.4058)

R2 0.0190 0.0001 0.0059 0.0011 0.0009 0.0001 0.0050
goldM -0.4825*** 0.0051 -0.0274** 0.0050 0.0017 -0.0195 -0.0863***

(-2.8662) (0.2834) (-2.4557) (0.5651) (0.1907) (-1.0298) (-2.7352)
(-2.4532) (0.2235) (-1.9007) (0.6476) (0.3083) (-0.6090) (-2.1179)

R2 0.0127 0.0001 0.0094 0.0005 0.0001 0.0017 0.0116
cs -0.3136* -0.0329* -0.0322*** -0.0146* 0.0144* 0.0260 0.0128

(-1.8849) (-1.8544) (-2.9300) (-1.6796) (1.6739) (1.3956) (0.4093)
(-1.3276) (-1.1193) (-2.7960) (-1.3272) (1.4718) (0.9829) (0.2805)

R2 0.0055 0.0054 0.0133 0.0044 0.0044 0.0030 0.0003
N 639 639 639 639 639 639 639

Table 4.4.4: Correlation between Instruments and Shocks to Other Variables

4.5 Results

4.5.1 Cholesky-Identi�ed Impulse Responses

The shortcomings of using a Cholesky decomposition to identify structural shocks were discussed

in 4.3.1, however, it is used by Bloom (2009) and Jurado et al. (2015) as their main identi�cation

strategy and by Pi�er & Podstawski (2018) as a method of comparison. It thus o�ers a useful

reference case from which to discuss the results from the SVAR-IV model. Therefore, I �rst present

the IRFs generated by a structural shock causing a one standard deviation increase in the variables

of interest, identi�ed by a Cholesky decomposition of the covariance matrix. The black line in

4.5.1a and 4.5.1b show the median target estimate generated from the data and the red region

contains the 68% con�dence interval from a MBB. The ordering of the variables is the same as

the ordering in �gure 4.4.1, when read from left to right. It is motivated from Bloom (2009) and

Pi�er & Podstawski (2018) and implies that shocks to the level of the S&P 500 can a�ect all

variables contemporaneously while shocks to any variable lower in the order a�ects those above it

only after one month. As previously discussed, it is di�cult to justify ruling out contemporaneous

relationships among some of the variables.
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(a) Uncertainty Shock Increasing JLN by One Standard Deviation

(b) Financial Market Shock Increasing SMV by One Standard Deviation

Figure 4.5.1: Cholesky Identi�ed Impluse Responses
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Figure 4.5.1a shows that uncertainty shocks generate an immediate economic downturn; output

growth, the growth in employment, and the number of hours worked all fall and the hourly wage

declines. This is consistent with the real-options interpretation of uncertainty shocks; �rms cut back

on hiring, reduce the activity of their labour force, and cut production as they hold onto their options

to wait for more information before expanding their operations. There is also a contemporaneous

increase in in�ation, which subsequently falls after 3 months. Leduc & Liu (2016) predict that

uncertainty shocks will act as an aggregate demand shock and should therefore cause decreases in

in�ation. While their DSGE model allows for monopolistic competition in the market for the output

good, if �rms have su�ciently strong market power they could increase prices to compensate for the

decrease in pro�ts after the uncertainty shock. The FFR is cut to combat the stagnant economy

in accordance with the U.S. monetary rule, but it takes some time before the FED reacts. Notice

the uncertainty shock is persistent, which corroborates with the results in Jurado et al. (2015), and

that the uncertainty shock also causes a persistent increase in the volatility of the S&P 500 after

one month, while the level of the stock market is only brie�y a�ected.

In �gure 4.5.1b, shocks to SMV cause an immediate increase in the volatility of the S&P 500

but the e�ect is notably less persistent than was the case for uncertainty shocks. The e�ect of

the shock on the level of the JLN index is not much above zero and the change in the index only

remains positive for about 6 months, compared to over two years in response to the uncertainty

shock. There is also a period of decreasing uncertainty from about six months after the shock to

�nancial market volatility. Hence, according to the IRFs generated from a Cholesky decomposition,

the initial shock to SMV causes a modest increase in uncertainty but agents soon update their

forecasting models in response to the shock, so the increase in uncertainty is undone.

The macroeconomic e�ects are again indicative of an economic downturn, but there is much

lower con�dence in the IRFs as the bootstrapped con�dence intervals include zero for the three

real economic variables in the last row. The FFR is cut, wages decrease, but in contrast to the

e�ects of the uncertainty shock in�ation now also decreases. The shock triggering the increase in

SMV thus generates the type of downturn more consistent with the aggregate demand shocks in

Leduc & Liu (2016). Note that if uncertainty is ordered before SMV in the VAR, the SMV shock

produces no increase in the JLN uncertainty index which instead shows a minor but persistent
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decline (see the appendix 4.A.3). This �nding already suggests that increases in SMV are not

necessarily accompanied by increases in uncertainty but the strong restrictions which the Cholesky

identi�cation strategy puts on the data means these results should be interpreted with caution.

4.5.2 Estimated Structural Shocks

As explained in section 4.3.2, I set identify uncertainty and �nancial market volatility shocks by

imposing restrictions on the correlation structure between the structural shocks and the instruments

in the matrix Φ. As section 4.3.2 and appendix 4.A.1 explained, multiple matrices of contempora-

neous e�ects, B∗ are obtained from draws of random orthogonal matrices. Because Φ = (B∗)−1Γ,

there are many Φ (I generate 3000 to explore the identi�ed set but performing more draws would

have no e�ect on estimation accuracy). The restrictions in the matrix 4.3.7 reduces the set of Φ

to those for which increases in the gold price instrument are associated positive structural shocks

to uncertainty, shocks to risk preferences are associated with positive structural shocks to SMV,

and those for which the instruments are more correlated with the shocks they target by a constant

factor ψ.

Figure 4.5.2a shows a histogram of estimated correlations from the matrices Φ which satisfy the

restrictions in 4.3.7 from the original sample. The red star shows the correlations in Φ associated

with the B∗ matrix which was used to produce the median target IRFs in the next section. I

will call this matrix Φ∗. Figure 4.5.2b does the same for the correlations generated from the

bootstrapping. Bootstrapping produces many more observations because it repeats the process for

1000 newly generated samples. Regardless of the di�erences in observations, the results are the

same. The histograms on the lead diagonal show that the correlation between structural shocks

and the instruments that target them is positive. Furthermore, the o�-diagonal plots show that the

instruments are less correlated with the structural shocks which they do not target, as expected

from the reduced form regressions in table 4.4.3.

The structural shocks generated from the sample correlations in Φ∗ are presented in �gure 4.5.37.

Some of the largest spikes in the series coincide around the Great Recession and the Coronavirus

7The scale of the proxies on the vertical axis is slightly di�erent in the �gure compared to 4.4.3 because they have
been normalised.
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(a) Estimated Instrument and Structural Shock Correlation from Sample

(b) Estimated Instrument and Structural Shock Correlation from Bootstrapping

Figure 4.5.2: Estimated Correlation between Structural Shocks and Instruments
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pandemic, however, corroborating the results of (Aït-Sahalia et al., 2021), there are several events

which a�ected SMV independently on economic uncertainty and vice-versa. The most notable is the

Black Monday event in October 1987, which caused a very large shock in SMV but had a relatively

minor e�ect on economic uncertainty. In contrast, the 9/11 terrorist attacks caused a large shock

to economic uncertainty but had a relatively mild e�ect on SMV. Other major shocks to economic

uncertainty not accounted for in the database appear in September 2005 (perhaps the aftermath of

Hurricane Katrina) and January 1970.

There are 16 months during the 1970s which display a structural uncertainty shock greater than

one standard deviation from the mean (which is normalised to one). In contrast, only 6 months

feature a SMV shock greater than one standard deviation from the mean over the same period. This

highlights that some periods can display several large shocks to uncertainty without corresponding

shocks to SMV. Aït-Sahalia et al. (2021) and Jurado et al. (2015) previously gave cursory evidence

of this fact, and was a major motivation for constructing uncertainty measures not based solely on

stock markets. The notable di�erence in uncertainty shocks in the early 1970s compared with SMV

shocks possibly re�ects a more politically volatile period of American history due to the Cold War

and tensions with Middle Eastern oil-producing states. The decade with the highest frequency of

large (those greater than one standard deviation from the mean) uncertainty shocks occurred in the

2000s (24), while the 1980s saw the highest frequency of large SMV shocks (15).

4.5.3 Set Identi�ed SVAR-IV Impulse Responses

While the IRFs display some di�erences to the Cholesky case presented above, the essential results

from section 4.5.1 regarding the impact of an uncertainty shock hold for the set identi�ed SVAR-IV

model8. Uncertainty is persistently higher for 24 months after an uncertainty shock causing a one

standard-deviation increase in JLN uncertainty. SMV increases contemporaneously by around 5

percentage points, though the 68% con�dence interval for this relationship covers quite wide range

of values, while the level of returns on the stock market falls by around 10 percentage points. The

increase in SMV is less persistent than was suggested by the Cholesky decomposition. However, the

8When comparing the estimates and con�dence bands, it is important to note that the Cholesky decomposition
used point identi�cation while the SVAR-IV model used set-identi�cation, so they were estimated di�erently.
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(a) Estimated Structural Shocks to Uncertainty

(b) Estimated Structural Shocks to SMV

Figure 4.5.3: Estimated Structural Shocks
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contemporaneous e�ect of uncertainty on the real economy is more severe, suggesting recursively

identi�ed models of uncertainty like Bloom (2009) will underestimate the impact of uncertainty

shocks on the real economy. The recovery in industrial production is faster in the set-identi�ed

model, but growth in employment and hours worked remains depressed well over a year after the

original shock. As in the Cholesky decomposition, in�ation increases after the uncertainty shock,

which challenges the notion in Leduc & Liu (2016) that uncertainty shocks behave like aggregate

demand shocks.

One key result from �gure 4.5.4b is that shocks to risk appetite causing a one standard deviation

increase in SMV results in no signi�cant contemporaneous change in JLN uncertainty. Studies using

SMV as a measure of economic uncertainty will therefore capture variation from other sources (such

as shocks to risk preferences) and falsely attribute this to variation in uncertainty. Furthermore,

the macroeconomic e�ects of the two shocks are quite di�erent. Like in the Cholesky case, and still

in contrast to the uncertainty shock, the in�ation rate falls following the shock to risk preferences.

The other price variables in the model, the FFR and wages, also show persistent decreases, with

the Fed responding contemporaneously to the shock.

The contemporaneous e�ect of the identi�ed SMV shock on production, hours worked, and

labour growth is positive according to the median target IRF. Once a shock arrives, there is an initial

burst of activity before a period where the availability of credit is lower, as �nancial institutions and

governments act to mitigate the perceived risk in the market. Unlike uncertainty shocks, shocks

to �nancial market volatility do not trigger an option value of waiting for more information before

making economic decisions. If �rm's pro�ts are convex functions of their equity returns, an increase

in volatility will cause a short-run burst in pro�t and activity which is then eroded as tighter

borrowing constraints bite9. However, the con�dence bands are wide, so caution should be taken

when interpreting this result.

Figure 4.5.5 shows the forecast error variance decomposition of the variables in the model to an

uncertainty shock (red line) and a shock to SMV (blue line). The solid lines represent the estimates

from the set-identi�ed model while the dashed lines represent those from a recursively-identi�ed

9See the related discussion of the `volatility overshoot' in Bloom (2009) and the positive relationship between
volatility and activty in the model of capital accumulation by Abel (1983).

177



(a) Uncertainty Shock Increasing JLN by One Standard Deviation

(b) Financial Market Shock Increasing SMV by One Standard Deviation

Figure 4.5.4: Set Identi�ed IRFs Using Instrumental Variables
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model. The 68% con�dence bands for these estimates are shown in appendix 4.A.4. A greater

proportion of the variation in nominal variables can be explained through shocks to SMV rather

than uncertainty. Around 18% of the variation in in�ation and 8% of the variation in the FFR can

be explained by SMV shocks after one year. As shown by the IRFs, the Fed will cut the FFR to

a lower rate in response to a shock causing a one standard deviation increase in JLN uncertainty

in an attempt to stimulate activity, however, the contemporaneous response is small in magnitude,

explaining why SMV shocks make up a much higher proportion of the FFR's forecast error variance

for the �rst months. The Fed works faster in easing borrowing costs after a shock to SMV compared

to an uncertainty shock.

However, uncertainty shocks account for around 25% of the variation in production growth after

just three months, and after a year make up around 30% of the variation in hours worked and 22%

of the variation in employment growth. This backs up the evidence from the IRFs in 4.5.4 that

uncertainty shocks are a highly in�uential driver of real economic activity. Note also the very small

amount of the variation in JLN uncertainty that is caused by shocks to SMV. Uncertainty shocks

do make up a more substantial part of the variation in SMV, but again the evidence con�rms that

the two concepts are distinct and that a signi�cant part of the variation in SMV is driven by shocks

to risk preferences and the willingness to supply credit independently of uncertainty.

4.5.4 Extensions and Robustness

In appendix 4.A.5 I show that the 68% con�dence bands generated from the PRBB method of Bruns

& Lütkepohl (2022) are narrower than those generated by the MBB method. The improvement is

most obvious for the real variables; growth in employment and growth in production. However, the

bands remain quite wide for some variables when the shock �rst hits, indicating that it is di�cult

to predict the exact contemporaneous e�ect of the shocks. It is especially di�cult to predict the

exact response of the FFR to both uncertainty and SMV shocks, though the con�dence interval

does lie entirely below zero in the latter case.

Changing the method of calculating the uncertainty proxy does not have a signi�cant e�ect on

the results. Choosing the largest jump in gold price on the day of the uncertainty shock or using
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Figure 4.5.5: Forecast Error Variance Decomposition

the intra-day mean produces results that are virtually indistinguishable from using the exact time

in the day. This �nding is useful for future work because it is much easier to calculate the intra-day

mean around uncertainty shocks than it is to identify exactly when news of the shock reached the

market. The forecast error decompositions in all three models are also very similar.

It is possible that the unprecedented macroeconomic e�ects of the Coronavirus Pandemic are

distorting the IRFs. Removing the years after 2019 from the sample does reveal some di�erences.

In response to uncertainty shocks, JLN increases slightly less in the months after the shocks but

the real economic variables in the last row of �gure 4.A.7a show a larger contemporaneous decline.

In�ation still increases but uncertainty shocks still do not seem to create large �uctuations in prices.

Uncertainty shocks also cause a slightly smaller increase in SMV with the years after 2019 removed

from the sample, suggesting the uncertainty created by the pandemic transferred into higher SMV

more than would be expected given previous experience. The most notable changes to the esti-

mated impulse responses from SMV shocks in the pre-Coronavirus sample is that the estimated

contemporaneous e�ect on production growth and labour growth is now slightly negative, which is

more in line with expectations. This suggests the earlier positive contemporaneous relationships
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between SMV shocks and the real economic variables are chance �ndings.

It is interesting to see how the results of the previous analysis change when using a di�erent

measure of economic uncertainty. One of the most widely cited is the the EPU index of Baker et al.

(2016), which is based on the frequency of keywords related speci�cally to economic uncertainty

about future economic policy in newspapers (see references in Aït-Sahalia et al. (2021), Chuliá et al.

(2017), and Gulen & Ion (2016)). I reran the analysis but with this index used in place of JLN as

the measure of uncertainty10.

Homoskedastic Standard Errors Robust Standard Errors
ûEPU ûvolatility ûEPU ûvolatility

goldE 0.1350*** 0.8953*** 0.1350*** 0.8953**
F 79.98 67.73 18.66 6.41
R2 0.1532 0.1329 0.1532 0.1329
cs 0.0727*** 1.1057*** 0.0727** 1.1057***
F 16.5 86.73 4.60 13.23
R2 0.0360 0.1640 0.0360 0.1640
N 444 444 444 444

Table 4.5.1: Relevance of Instruments with EPU as the Uncertainty Measure

From table 4.5.1, the gold price instrument based on exact times is correlated with both shocks to

the reduced-form residuals of EPU uncertainty and SMV, however, as required for set-identi�cation,

the F-statistic is much larger for EPU uncertainty. Indeed, the F-statistic is now larger than 10

even after adjusting the covariance matrix to account for heteroskedasticity. Several of the events

in the uncertainty proxy are related to changes in the U.S. political landscape or emergency changes

in government policy (such as the response to the Coronavirus pandemic or the 2008 recession).

Hence, it makes sense that the instrument is able to proxy for shocks to this uncertainty measure

as well. Naturally, newspapers are also likely to make references to government policy changes and

uncertainty after the other shocks identi�ed in the proxy. With the EPU index included in the

model instead of the JLN, the robust F-statistic of the credit spread instrument is also above 10.

Overall, both instruments remain relevant after the change in uncertainty index.

Compared to the JLN case, table 4.5.2 reveals that using EPU as the uncertainty measure leads

to a greater concern that the instruments also pick up other kinds of shocks. Even after control-

10The Akaike information criterion again selected three months as the optimal lag length and the VAR was stable.
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ûS&P500 ûFFR ûWages ûInflation ûHours ûLabour ûProduction
goldE -1.1278*** -0.0341*** -0.0151 0.0046 -0.0094 -0.0323 -0.1582***

(-5.3648) (-4.3873) (-1.4312) (0.4312) (-0.9315) (-1.3151) (-3.6345)
(-4.6516) (-2.3050) (-1.8898) (0.3513) (-1.2345) (-2.7444) (-1.8658)

R2 0.0611 0.0417 0.0046 0.0004 0.0020 0.0039 0.0290
cs -1.3468*** -0.0428*** -0.0009 -0.0273** 0.0173 0.0930*** 0.0572

(-5.7925) (-4.9892) (-0.0797) (-2.3004) (1.5383) (3.4467) (1.1675)
(-3.9794) (-3.1282) (-0.0933) (-1.6568) (1.0872) (1.8893) (0.5574)

R2 0.0706 0.0533 0.0000 0.0118 0.0053 0.0262 0.0031
N 444 444 444 444 444 444 444

Table 4.5.2: Correlation between Instruments and Shocks to Other Variables with EPU as the
Measure of Uncertainty

ling for heteroskedasticity, as seen from the second t-statistic in parentheses below the estimated

coe�cient, both instruments are highly correlated with shocks to the level of stock market returns

and to the FFR. There is also weaker evidence of a correlation between the uncertainty proxy and

shocks to production growth (as was the case for the JLN measure of uncertainty) and between the

risk preference proxy and shocks to employment growth. These correlations are again much weaker

than those for the variable the instruments target, but the IRFs should be interpreted bearing in

mind the fact that the proxies are more likely to be picking up other types of shocks compared to

the JLN case.

An uncertainty shock causing a one standard deviation increase in the EPU index produces

qualitatively similar impulse responses to the JLN case, however, the magnitude and persistence

of the changes are generally lower and the con�dence bands (generated by the MBB) contain zero

even for the real economic variables in the last row. The Fed cuts the FFR to tackle the negative

economic shock and in�ation increases on impact. The uncertainty shock also causes a smaller and

less persistent increase in SMV compared to the JLN case, and the con�dence bands span zero so

there is only weak evidence for the relationship. Panel 4.5.6b shows that shocks to risk preferences

causing a one standard deviation increase in SMV do not lead to a large increase in EPU uncertainty

on impact. This further con�rms that shocks to SMV do not necessarily imply increases in economic

uncertainty. The median target IRF still suggests that there is a contemporaneous increase in real

activity following the shock to credit spreads but the evidence for this result is weak given the span

of the con�dence bands. Consistent with section 4.5.3, in�ation decreases in response to this shock.
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(a) Uncertainty Shock

(b) Financial Market Volatility Shock

Figure 4.5.6: Set-identi�ed IRFs with EPU Uncertainty
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However, the FFR now appears to be cut more aggressively in response to the uncertainty shock

rather than the risk preference shock.

Figure 4.5.7: Forecast Error Variance Decomposition Using EPU as the Measure of Uncertainty

There are some notable changes in the forecast error decomposition compared to the JLN case11.

First, it appears that credit spread shocks now make up a larger proportion of the variance in the

level of the S&P 500 and labour growth compared to uncertainty shocks. It is understandable why

uncertainty shocks would be a more important driver of the number of hours worked compared to

employment growth, because reducing the hours worked by the current labour force rather than

making the partially irreversible decision to �re workers is optimal when the economic climate is

more uncertain. Meanwhile, �rms facing credit supply issues may �nd labour stock adjustments

necessary to reduce operating costs. The uncertainty shock also makes up a much larger proportion

of the total variance in the FFR compared to �gure 4.5.5. Table 4.5.2 showed that the uncertainty

proxy was more correlated with shocks to the level of the S&P 500 and industrial production when

using EPU as the uncertainty measure. This could explain why the identi�ed uncertainty shocks

appear to capture more of the variation in U.S. monetary policy.

11Again, the con�dence bands for these forecast error decompositions are shown in appendix 4.A.4.
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4.6 Conclusion

This chapter con�rms the hypothesis that SMV can vary without any substantial change in economic

uncertainty. Using an instrumental variable SVAR model, the identi�ed uncertainty shocks cause

a persistent increase in SMV, but shocks to volatility coming from increases in the credit spread

do not lead to a corresponding increase in economic uncertainty. Some of the variation in SMV

comes from sources other than uncertainty and measures of economic uncertainty based solely on

stock markets may come to erroneous conclusions about the relationship between uncertainty and

the real economy. Shocks to uncertainty and the credit spread also cause di�erent IRFs for key

macroeconomic indicators. Using the JLN index as the measure of uncertainty, these shocks make

up a larger proportion of the variance in production and labour markets (especially the number of

hours worked), while shocks to the credit spread make up a larger proportion of the variation in

prices.

Aside from the implications for economists designing measures of economic uncertainty, this

chapter also suggests some avenues of future research. First, it would be interesting to examine

whether the volatility of portfolios from di�erent economic sectors are a�ected di�erently by uncer-

tainty shocks. It may be that some industries are more a�ected by changes in economic uncertainty

than others which may in turn be re�ected in the volatility of their stock returns. Second, this chap-

ter only considered one instrument to identify shocks to SMV, however, future studies could examine

other measures of time-varying risk or liquidity preferences. An instrument based on the variation

in risk or liquidity preferences around speci�c events would mitigate concerns that the instrument

may still contain some endogenous variation. Finally, there is currently no widely-available measure

of business �xed investment at the monthly frequency. This is unfortunate given the strength of

irreversibilities in capital stock adjustments and the importance of investment in short-run and

long-run economic growth. Introducing a monthly index of business investment would therefore be

valuable for the �eld.
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Appendix 4.A

4.A.1 Finding the Elements of the B Matrix

After obtaining the k× 2 matrix Γ from the regression of the reduced form residuals on the proxies

for the structural shocks, partition this matrix such that Γ11 is a 2 × 2 matrix collecting the

responses of the uncertainty and equity market volatility reduced form shocks to the proxies and

Γ21 is a (k − 2)× 2 matrix containing the responses of the other variables. Now perform the same

decomposition for the k × k matrices B and Σ such that, for example,

B =

B11 B12

B21 B22

with dimensions

 (2× 2) (2× (k − 2))

((k − 2)× 2) ((k − 2)× (k − 2))

 .
Pi�er & Podstawski (2018) show in their technical appendix that with G = Γ21Γ

−1
11 and the covari-

ance matrix Σ can be used to obtain

B̂∗ =

 B̂11

GB̂11

 (4.A.1)

which is a consistent estimator of the true relationship between the structural and reduced form

shocks. In 4.A.1, B̂11 = B̂c
11Q where Q is any random 2×2 orthogonal matrix and B̂c

11 is the lower

Cholesky decomposition of Σ11 − B̂12B′12 where

B̂12B′12 = (Σ21 −GΣ11)′Π (Σ21 −GΣ11)

and

Π = Σ22 +GΣ11G
′ −Σ21G

′ −GΣ′21.

4.A.2 Bootstrapped Con�dence Intervals

To implement the MBB, choose a block length ` by rounding 5.03T 0.25 to the next highest inte-

ger, as suggested by Jentsch & Lunsford (2022), and organise the reduced form residuals and the
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instruments in the following matrix



û1

z1


û2

z2

 · · ·

û`
z`


û2

z2


û3

z3

 · · ·

û`+1

z`+1


·

·

·

·

·

·ûT−`+1

zT−`+1


ûT−`+2

zT−`+2

 · · ·

ûT
zT





.

Select s = [T/`] random rows from this matrix, where [·] chooses the smallest integer such that

`s ≥ T , and concatenate them horizontally. Then, keep the �rst T observations, demean the

residuals and multiply them by
√
T/ (T − kp− 1) to ensure the bootstrapped sample of yboott is

generated using a mean-zero error as in equation 4.A.2. These residuals are used to generate a new

series 1, . . . , T using p random consecutive values from the original sample to initiate the series,

yboott = α̂∗ + Ĉ∗1y
boot
t−1 + · · ·+ Ĉ∗pyboott−p + ût.

For the PRBB, after obtaining the reduced form residuals and recovering the estimated structural

shocks, perform the regression

zt = µ+ βε̂t + υt

then for each t ∈ T draw a random column of data [ût υ̂t ε̂t]
′ with replacement, where υ̂t are the

residuals from the regression above. A new series of yt is then generated in much the same way as

for the MBB case but a new series of zt is also generated based on the previous regression equation

multiplied by Dt ∈ {0, 1}, which follows a Bernoulli distribution with the probability of Dt = 0

equal to the proportion of zeros the instrument displayed in the original sample. Instruments used

to estimate structural shocks frequently take a value of zero at a given date because there was no
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observed shock, see �gure 4.4.3 as an example.
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4.A.3 Cholesky Identi�cation with JLN ordered before SMV

(a) Uncertainty Shock Increasing JLN by One Standard Deviation

(b) Financial Market Shock Increasing SMV by One Standard Deviation

Figure 4.A.1: Cholesky Identi�ed Impluse Responses with JLN Ordered Before SMV

189



4.A.4 Con�dence Intervals for Forecast Error Decompositions

Months after the Shock

Variable 0 months 6 months 12 months 18 months 24 months

Cholesky Decomposition - Uncertainty Shock

S&P 500 0, 0 0.012, 0.047 0.013, 0.047 0.013, 0.047 0.013, 0.047

Volatility 0, 0 0.041, 0.172 0.048, 0.198 0.052, 0.204 0.052, 0.205

JLN 0.835, 0.973 0.875, 0.939 0.774, 0.898 0.681, 0.852 0.617, 0.826

FFR 0.001, 0.018 0.006, 0.032 0.006, 0.054 0.007, 0.07 0.008, 0.081

Wages 0.001, 0.017 0.007, 0.024 0.009, 0.03 0.011, 0.035 0.012, 0.038

In�ation 0.004, 0.026 0.013, 0.051 0.018, 0.055 0.021, 0.061 0.022, 0.063

Hours 0.003, 0.048 0.157, 0.308 0.197, 0.375 0.192, 0.377 0.173, 0.348

Labour 0, 0.015 0.073, 0.168 0.085, 0.187 0.086, 0.188 0.085, 0.188

Production 0.005, 0.044 0.085, 0.184 0.085, 0.186 0.084, 0.186 0.084, 0.186

Cholesky Decomposition - Volatility Shock

S&P 500 0, 0 0.008, 0.027 0.008, 0.028 0.008, 0.028 0.008, 0.028

Volatility 0.75, 0.857 0.51, 0.665 0.484, 0.647 0.473, 0.638 0.469, 0.634

JLN 0.015, 0.122 0.005, 0.028 0.008, 0.039 0.01, 0.051 0.013, 0.056

FFR 0.001, 0.023 0.003, 0.037 0.004, 0.039 0.004, 0.042 0.004, 0.043

Wages 0, 0.005 0.012, 0.039 0.012, 0.039 0.012, 0.04 0.012, 0.039

In�ation 0.008, 0.039 0.034, 0.113 0.034, 0.111 0.034, 0.109 0.034, 0.107

Hours 0, 0.005 0.005, 0.077 0.007, 0.07 0.01, 0.066 0.012, 0.063

Labour 0, 0.007 0.022, 0.216 0.023, 0.214 0.023, 0.213 0.024, 0.213

Production 0, 0.005 0.009, 0.153 0.01, 0.153 0.012, 0.153 0.012, 0.153

SVAR-IV - Uncertainty Shock (JLN)

S&P 500 0.043, 0.235 0.06, 0.226 0.06, 0.225 0.06, 0.225 0.06, 0.225

Volatility 0.029, 0.231 0.128, 0.405 0.138, 0.408 0.141, 0.403 0.141, 0.4

JLN 0.598, 0.869 0.583, 0.808 0.5, 0.721 0.433, 0.655 0.394, 0.619

FFR 0.001, 0.055 0.012, 0.07 0.013, 0.097 0.013, 0.105 0.013, 0.109
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Wages 0.001, 0.033 0.007, 0.039 0.008, 0.041 0.01, 0.044 0.01, 0.045

In�ation 0.001, 0.06 0.014, 0.068 0.018, 0.069 0.02, 0.07 0.02, 0.07

Hours 0, 0.018 0.136, 0.364 0.178, 0.397 0.172, 0.38 0.151, 0.344

Labour 0.001, 0.083 0.168, 0.301 0.181, 0.309 0.18, 0.306 0.177, 0.302

Production 0.016, 0.193 0.178, 0.314 0.178, 0.31 0.176, 0.307 0.176, 0.307

SVAR-IV - Volatility Shock (JLN)

S&P 500 0.005, 0.146 0.022, 0.149 0.023, 0.149 0.024, 0.149 0.024, 0.149

Volatility 0.402, 0.69 0.281, 0.511 0.272, 0.495 0.268, 0.488 0.267, 0.484

JLN 0.001, 0.03 0.008, 0.068 0.022, 0.132 0.036, 0.168 0.043, 0.186

FFR 0.007, 0.319 0.013, 0.332 0.014, 0.32 0.015, 0.313 0.016, 0.308

Wages 0.026, 0.254 0.055, 0.256 0.057, 0.256 0.059, 0.256 0.061, 0.255

In�ation 0.006, 0.15 0.066, 0.252 0.07, 0.251 0.07, 0.254 0.072, 0.257

Hours 0.003, 0.083 0.011, 0.05 0.017, 0.074 0.024, 0.112 0.029, 0.153

Labour 0.005, 0.112 0.042, 0.165 0.045, 0.165 0.051, 0.166 0.056, 0.166

Production 0.002, 0.059 0.023, 0.108 0.029, 0.11 0.032, 0.11 0.033, 0.111

SVAR-IV - Uncertainty Shock (EPU)

S&P 500 0.027, 0.167 0.046, 0.168 0.046, 0.169 0.046, 0.169 0.046, 0.169

Volatility 0.034, 0.343 0.041, 0.318 0.043, 0.314 0.044, 0.314 0.044, 0.314

EPU 0.497, 0.807 0.572, 0.749 0.561, 0.736 0.554, 0.726 0.548, 0.717

FFR 0.012, 0.178 0.119, 0.361 0.128, 0.386 0.125, 0.403 0.125, 0.41

Wages 0.003, 0.063 0.017, 0.073 0.018, 0.075 0.019, 0.075 0.019, 0.075

In�ation 0.002, 0.084 0.041, 0.131 0.041, 0.133 0.042, 0.133 0.043, 0.133

Hours 0.011, 0.094 0.074, 0.387 0.067, 0.362 0.062, 0.339 0.059, 0.331

Labour 0.013, 0.15 0.039, 0.282 0.037, 0.28 0.037, 0.281 0.038, 0.28

Production 0.075, 0.389 0.086, 0.371 0.086, 0.371 0.086, 0.371 0.086, 0.371

SVAR-IV - Volatility Shock (EPU)

S&P 500 0.125, 0.421 0.126, 0.382 0.126, 0.381 0.126, 0.381 0.126, 0.381

Volatility 0.418, 0.685 0.373, 0.597 0.369, 0.59 0.368, 0.587 0.366, 0.585
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EPU 0.003, 0.07 0.024, 0.12 0.027, 0.122 0.028, 0.123 0.029, 0.125

FFR 0.066, 0.24 0.125, 0.31 0.11, 0.299 0.097, 0.293 0.089, 0.294

Wages 0, 0.023 0.013, 0.073 0.014, 0.074 0.014, 0.074 0.014, 0.074

In�ation 0.007, 0.161 0.046, 0.251 0.046, 0.25 0.047, 0.25 0.047, 0.25

Hours 0.006, 0.165 0.033, 0.119 0.033, 0.135 0.033, 0.139 0.035, 0.139

Labour 0.017, 0.373 0.148, 0.362 0.158, 0.36 0.156, 0.359 0.157, 0.359

Production 0.005, 0.196 0.07, 0.262 0.072, 0.261 0.072, 0.261 0.073, 0.261

Table 4.A.1: Boostrapped 68% Con�dence Intervals for the Forecast Error Decompositions at
Six-Month Steps
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4.A.5 Proxy Residual Based Bootstrap

(a) Con�dence Bands for an Uncertainty Shock Generated by the PRBB Method

(b) Con�dence Bands for a Volatility Shock Generated by the PRBB Method

Figure 4.A.2: IRFs with PRBB
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4.A.6 Other Gold Instruments

(a) Estimated Instrument and Structural Shock Correlation from Sample Using gA as Proxy for

Uncertainty Shocks

(b) Estimated Instrument and Structural Shock Correlation from Sample Using gM as Proxy for

Uncertainty Shocks

Figure 4.A.3: Correlations between Estimated Structural Shocks and Alternative Gold Instruments
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(a) Responses to an Uncertainty Shock Using gA as Proxy for Uncertainty Shocks

(b) Responses to a Volatility Shock Using gA as Proxy for Uncertainty Shocks

Figure 4.A.4: IRFs when Using goldA as Instrument for Uncertainty Shocks
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(a) Responses to an Uncertainty Shock Using gM as Instrument for Uncertainty Shocks

(b) Responses to a Volatility Shock Using goldM as Proxy for Uncertainty Shocks

Figure 4.A.5: IRFs when Using goldM as Instrument for Uncertainty Shocks

196



(a) Forecast Error Variance Decomposition Using gA as Proxy for Uncertainty Shocks

(b) Forecast Error Variance Decomposition Using gM as Proxy for Uncertainty Shocks

Figure 4.A.6: FEVD for Alternative Gold Instruments
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4.A.7 Pre-Coronavirus Sample

(a) Responses to an Uncertainty Shock for a Sample Excluding the Years After the Coronavirus Pandemic

where Uncertainty in the Model is Measured by JLN

(b) Responses to a Volatility Shock for a Sample Excluding the Years After the Coronavirus Pandemic

where Uncertainty in the Model is Measured by JLN

Figure 4.A.7: IRFs for Sample Excluding the Years After the Coronavirus Pandemic
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Figure 4.A.8: Forecast Error Variance Decomposition for a Sample Excluding the Years After the
Coronavirus Pandemic

4.A.8 List of Events Used in the Proxy for Uncertainty Shocks

The following events are those which appear in conjunction with those in Pi�er & Podstawski (2018)

to create the proxy for uncertainty shocks. Their sample covers the period between 1979 and most

of 2015, so these events cover the years between 1969 and 1978 as well as between late 2015 and

2022. A star next to the digital time in the third column indicates the day before or after the date

given in the second column. Whether it refers to the day before or after is clear from the ordering of

the times. For example, for the �rst entry in the table, 10:30* means 10:30 on the 29th of January

1969. Likewise, for the eighth entry, 15:00* indicates the 3rd of May 1970. There is no gold quote

on the weekend, so if an event occurred on a Saturday or Sunday the e�ect in the gold price will

not show up until the succeeding Monday. Sources are provided in the last column, mostly from

the NYT before 1979 but also from Reuters (R), The Guardian (G), and the British Broadcasting

Company (BBC).

It is worth mentioning that the outbreak of the Yom-Kippur war on the 6th of October 1973

(a Saturday) is associated with a large spike on the gold price on the AM �x for October the 8th
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(3.81%). In hindsight, this event was important because it also triggered the �rst oil crisis of the

1970s. Much like the Russian invasion of Ukraine, including this event in the uncertainty proxy

actually leads to a lower correlation with the JLN uncertainty residuals, implying the residuals were

not particularly high in October 1973. Including this event does not change the results but does

weaken the robust F-statistic in the �rst stage regression. Likewise, taking the Russian invasion of

Ukraine out of the sample increases the robust F-statistic. Because these events are associated with

large increases in the gold price, if they are not correlated with the residuals then they will have a

large impact on the variance of the regression error, so it makes sense that the robust F-statistic

will be sensitive to their inclusion.

Event Date Time Gold Price Source

Santa Barbara Oil Spill. 28/01/1969 15:00-10:30* 0.71% (Clarke &

Hemphill,

2002)

Arthur Burns becomes head of

the Federal Reserve.

31/02/1970 15:00-10:30* -0.11% NYT

Attempted assassination of

Hussein-bin-Talal of Jordan and

threat of war from Iraq.

01/09/1970 15:00-10:30* 0.41% NYT

Quebec Liberation Front Kidnap

a British delegate.

05/10/1970 15:00-10:30* 0.52% NYT

Salvador Allende elected

president of Chile.

25/10/1970 15:00-10:30* 1.82% NYT

Democrats hold the House and

Senate during rising tensions

over Vietnam War.

04/11/1970 15:00-10:30* -1.65% NYT

500000 die in the Bhola cyclone. 12/11/1970 15:00-10:30* 0.11% NYT
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Dollar �oods European Markets

and trading is stopped in a

handful of European countries.

04/05/1970 15:00*-10:30 1.09% NYT

Chile nationalises copper mines. 11/07/1971 15:00-10:30* 0.27% (Gedicks,

1973)

India-Pakistan war. 05/06/1971 15:00-10:30* 0.22% NYT

Hurricane Anges. 23/06/1972 15:00*-10:30 3.64% NYT

Nixon Re-elected. 07/11/1972 15:00-10:30* -0.047% NYT

Nixon announces 60-day retail

price freeze to combat in�ation.

14/06/1973 15:00*-10:30 0.43% NYT

Cyprus coup d'etat. 15/07/1973 15:00-10:30* 1.43% NYT

Nixon announces resignation. 08/08/1974 15:00-10:30* 0.16% NYT

Turko-Cypriat relations break

down and �ghting resumes.

13/08/1974 15:00-10:30* 2.64% NYT

Democrats make large gains in

midterm elections.

05/11/1974 15:00-10:30* -0.047% NYT

OPEC siege. 21/12/1975 15:00-10:30* 2.08% NYT

Hurricane Belle. 10/08/1976 15:00*-10:30 0.62% NYT

Jimmy Carter wins U.S.

Presidential election.

02/11/1976 15:00-10:30* 1.22% NYT

Libyan-Egyptian war. 22/07/1977 15:00*-10:30 0.21% NYT

Democrats hold majority in

house and senate in midterm

elections.

08/11/1978 15:00-10:30* 2.5% NYT

France strikes on Syria after

multiple ISIL attacks in Paris.

13/11/2015 15:00*-10:30 1.20% R

Turkey shoot down Russian

plane.

24/11/2015 15:00*-10:30 0.23% BBC
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Result from the Brexit vote. 23/06/2016 15:00-10:30* 4.10% BBC

Donald Trump elected president. 08/11/2016 15:00-10:30* 1.37% R

America bombs air base in Syria. 06/04/2017 15:00-10:30* 0.94% NYT

Barcelona attacks. 17/08/2017 15:00-10:30* 0.79% R

American tari�s on Chinese

imports spark fears of a trade

war.

06/07/2016 15:00*-10:30 0.14% R

Democrats win control of the

house in U.S. midterms.

06/11/2018 15:00-10:30* 0.28% R

Pelosi announces the plan to

impeach Donald Trump.

24/09/2019 15:00-10:30* 0.67% G

Death of Qasem Soleimani. 02/01/2020 15:00-10:30* 1.33% R

WHO declares a global health

emergency.

30/01/2020 15:00-10:30* 0.16% G

Markets crash due to worsening

situation in China over weekend.

24/02/2020 15:00*-10:30 2.38% G

UK enters lock down. 23/03/2020 15:00-10:30* 4.86% BBC

P�zer-Biontech announce

COVID-19 Vaccine.

09/11/2020 10:30-15:00 -4.61% BBC

Russia invades Ukraine. 24/02/2022 15:00*-10:30 3.34% R

Table 4.A.2: List of Events Used in the Proxy for Uncertainty Shocks
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