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Abstract 

Wheat is the second most widely cultivated crop, and it is a staple food across the globe. The 
hexaploid form has the largest, polyploid, complex, and highly repetitive genome. Due to this 

complexity and size, wheat lagged in genomic studies. With advances in NGS genomics progress 
substantially in daily basis for many crops, including bread wheat. We now face the challenge on 
how to better exploit these resources for breeding to benefit food security. The main objective of 
this work was to develop a method to define haplotypes and a database in wheat to explore the 

genetic diversity in landraces and modern cultivars and link genome information with phenotypes. 
We embraced the challenge of using whole genome sequencing at ~12-fold coverage of more than 
>1,000 WGS genomes. 

We developed IBSpy, a method to detect genetic variations using raw reads by k-mers. We 
benchmarked this method with previous genome alignments to detect regions which are identical 
by state (>99.99% sequence identity). We characterized parameters that impact in the results and 

provide further guidance to implement at specific situations. Our method detects variations at the 
resolution as with fully genome assemblies and condenses multiple types of sequences and types 
of variations into a single form. 

Using these variations, we defined haplotypes at 1 Mbp resolution by a multi-genome approach 

and built a haplotype database using the >1,000 genotypes. We tracked haplotypes from landraces 
into modern cultivars and found that large haplotype blocks were brought into modern cultivars 
from landraces and are maintained through >80 years of breeding. Using these haplotypes, we 

conducted a haplotype GWAS, and detected genome regions associated to disease (wheat blast 
and yellow rust) and spike related traits. Novel unexploited haplotypes were identified in landraces 
absent in modern cultivars. This method integrates pangenome informed haplotypes to capture 
genome regions private to each assembly and can handle large WGS data. 

We proved IBSpy to efficiently detect known and novel hybridisations/introgressions in the wheat 
pangenome and landraces at 50 Kbp resolution. We characterized a collection of Triticum 
monococcum, Aegilops tauschii, and large introgressions from multiple wild relatives and propose 

candidate genotypes to be the closest donors of those hybridisations/introgressions. Using these 
haplotypes, we identified novel hybridisations of Ae. tauschii in the D subgenome of wheat absents 
in the pangenome references. These results demonstrated the utility of our haplotype calls using 

an alternative approach to the conventional aliments methods. We created a flexible and wide 
haplotype database based on k-mers to which novel 12-fold WGS genotypes can be added and 
easily integrated in the context to this haplotype database. 
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1. General introduction 

1.1. Wheat germplasm resources 

1.1.1. Wheat as a major crop 

Wheat is the second most widely cultivated crop with over 220M hectares harvested worldwide 
in 2021. The largest wheat producers are China, India, Russian Federation, USA, and France 
(FAOSTAT, 2022, https://www.fao.org/faostat/en/#data). The global wheat production in 2021 
was 770M tonnes, with productions above 700M tonnes over the past decade. The main use of 

wheat is for human consumption and is divided mainly in pasta (Triticum durum; about 5% of 
global consumption) and bread (Triticum aestivum; roughly 95% of global consumption) wheat 
and it is used for feeding in some regions, such as the United Kingdom (UK). 

Yields of wheat production has been affected by biotic and abiotic stresses since its domestication 
and these factors have been intensified in recent years. Important pathogens affecting wheat 
production include yellow rust, stem rust, leaf rust (Puccinia ssp.), wheat blast (Magnaporthe 

oryzae Triticum), and fusarium head blight (Fusarium ssp). It is estimated that these diseases 
generate between 10-28% loses on yield production (Savary et al., 2019). The immediate strategy 
used by farmers is to employ chemical fungicides and pesticides to fight back those threats. 
However, breeding efforts to develop resistant varieties and managing fields rotating crops are 

increasingly becoming more important with recent bans on the use of chemical inputs. In addition 
to the biotic threats, wheat production its threatened by abiotic stresses such as droughts, heat, 
and extreme colds in spring wheat growing regions. It is predicted that those threats will continue 

with the unpredictable changes in climate. Alongside, wheat production faces a new challenge 
with the recent conflict between countries, such as the Russian invasion of Ukraine (third and sixth 
worldwide wheat producers, respectively). As a result, several developing countries are suffering 
the lack of this basic staple food for their daily basis (Bentley et al., 2022). 

 

1.1.2. The origin of hexaploid wheat 

Bread hexaploid wheat consist of three sub genomes originated from two main interspecific 

hybridizations (Triticum aestivum L. AABBDD, 2n = 6x = 42). The first hybridization originated 
between Triticum urartu (AA), the main donor of the A subgenome, and a closely wild relative of 
Ae. speltoides (BB), the B subgenome donor (Daud & Gustafson, 1996; Miki et al., 2019). This event 

gave rise to the wild tetraploid Triticum turgidum (AABB) (Huang et al., 2002). A second 
hybridization event from a cultivated tetraploid wheat T. turgidum ssp. dicoccum with the Ae. 
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tauschii (DD) genome gave rise to the hexaploid bread wheat T. aestivum (Miki et al., 2019). Thus, 
the D subgenome was originated from the diploid Ae. tauschii. 

Subgenomes A and B diverged from a common ancestor ~7 million years ago while the D genome 
was originated from a hybridisation and subsequent speciation event between the A and B 
genome donors ~5 million years ago (Fig. 1.1)(Li & Gill, 2006; Marcussen et al., 2014). Historical 
records and the absence of wild hexaploid wheats suggest that modern T. aestivum originated 

after the first wheat domestication ~8-10 thousand years ago (Salamini et al., 2002). This 
hypothesis is supported by historical and archaeological records of hexaploid wheat cultivation in 
the region of the Fertile Crescent in the North of Iran. It is hypothesized that the hexaploidy wheat 

expanded from this place to several other regions worldwide including Europe and Asia as a result 
of its wide adaptation from its polyploid genome nature (Dubcovsky & Dvorak, 2007). 

 

 

Fig. 1. 1 From (Li & Gill, 2006). Evolutionary relationships among different wheats and their domestication. 

“The vertical dashed line separates the wild species (left) from the domesticated forms (right). The species and 
subspecies marked with grey background are free threshing. The genome formula follows the species”. 
 

1.1.3. The Watkins Landraces Collection 

A landrace is a locally grown cultivar of a crop commonly cultivated by farmers who keep and 
propagate their “best seeds” after each generation of cultivation. These landraces are usually well 
adapted to small regions and due to the nature of being open pollinated, maintain a relatively high 

level of heterogeneity depending on the species and type of cultivation compared to developed 
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elite modern varieties. Large collections of landraces for different important crops or “orphan 
crops” are maintained in seedbanks as a germplasm reservoir. In several cases those accessions 

remain unexploited by breeders or geneticist due to the difficulty and time consuming to “clean-
off” undesirable traits. It has been demonstrated, however, that landrace collections maintain 
unvaluable agronomically important alleles particularly against pathogens and for nutritional value 
(Sansaloni et al., 2020; Würschum et al., 2022). 

Historically, landrace collections were developed by individual researchers or geneticists for 
different crops. Later those collections were created systematically by institutions or universities 
in attempts to capture the widest genetic diversity of a species (Langridge & Waugh, 2019; 

Mascher et al., 2019; Schulthess et al., 2022).  Wheat is not the exception, and large collections of 
landraces and cultivars have been maintained and are available worldwide. For example, 
important landrace collections of wheat are maintained at CIMMYT (Sansaloni et al., 2020; Vikram 

et al., 2016), INRA (Balfourier et al., 2019), IPK (Schulthess et al., 2022), Central Europe (Cseh et 
al., 2021), GediFlux (Aradottir et al., 2017), and in JIC to mention some. The former maintains and 
curate the Watkins (Wingen et al., 2017) collection. 

In this work, we employed the Watkins collection created in the UK. The Watkins collection initially 

consisted of more that 7,000 bread and durum wheat accessions collected by A.E. Watkins in the 
1930s at the School of Agriculture in Cambridge. It includes cultivars collected from local markets 
from 32 countries covering Asia, Europe, Africa, and the American continent (Wingen et al., 2014). 

Thousands of accessions from the collection were lost and 1,291 accession remain accessible at 
the John Innes Centre. From this set of lines, a process of selection and stabilization by Single Seed 
Descent (SSD) to remove some of the mixture and heterogenicity was applied by the Griffith’s 
group (Dr. Simon Griffiths) and 827 remain as the “Watkins Stabilised Collection of Hexaploid 

Landrace Wheats”. Although this process of stabilization removed most of the heterogenicity, 
after a century of regeneration and seed propagation, some pollen cross contamination may have 
occurred among them. In our study having homozygous genotypes is of importance since our 

method to detect genetic variations is affected by heterogenicity since it cannot differentiate 
between a heterozygous or homozygous loci in a genotype. Instead, our method will detect a locus 
as present regardless of its level of heterogenicity which could impact on the results and 

conclusions. This topic will be discussed in Chapter 2. 

Analysis between the SSD sister lines revealed on average 35% alleles differing among them when 
using 41 simple sequence repeat (SSR) markers (Wingen et al., 2014). Out of 827 accessions, 86% 
are spring and 14% are winter habit. Initially were grouped into nine ancestral geographical groups 

by using reduced genotypic data but were condensed later to seven when using whole genome 
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re-sequencing data (unpublished data). Analysis of the 41 SSR markers revealed on average 22.4 
alleles per loci with a minimum of 3 and a maximum of 61 in the entire 827 Watkins accessions. 

The collection was also characterised with single nucleotide polymorphism (SNP) arrays by 
(Wingen et al., 2017) and (Przewieslik-Allen et al., 2021) who identified a series of wild wheat 
introgressions, chromosome rearrangements, and deletions which we will further explore in 
Chapter 4. From this collection, a core set sub-collection of 119 accessions that captures ~97% of 

the total genetic diversity was subcategorized. This genetic diversity has been consistently 
reflected on the phenotypes observed among the accessions for different traits (Wingen et al., 
2014). This core set it is included in the WatSeq initiative and in this thesis. 

Although, it is difficult to predict the year of origin from landraces and its cultivation, several 
accessions from the WatSeq collection may have acted as founders for important breeding 
programs as documented in history books of breeding. Therefore, it is likely that many intact 

genome regions made their way through into modern cultivars and it won’t be unexpected to find 
large intact genome regions being selected by breeders into modern cultivars. There may be, 
however, an invaluable set of novel alleles still unexploited in the collection that could help to 
improve novel modern varieties for yield and other agronomically important traits. 

 

1.1.4. Wheat breeding and current modern cultivars   

Breeding is defined as the act of selecting genotypes with desirable traits to directly or indirectly 

satisfy human needs (Adams, 1962). Plant breeding has had great impact on food production by 
the release of new cultivars worldwide for different crops with better yields, disease resistance, 
nutritional value, and several other important traits (Borlaug, 1983). Early plant improvements 
were made directly by farmers and these “early breeders” selected traits empirically observing 

and keeping the best plants for subsequent generations. As described in section 1.1.3., these early 
and locally adapted groups of plants selected by farmers are known as landraces. For example, 
historical evidence suggests that the free-threshing spikes on cereals was one of the first trait 

selected during domestication (Peng et al., 2011). Selecting and keeping this trait facilitated 
manual work to separate grains from the lemma, palea, and glumes during the post-harvest 
process. 

Later, with the progress in science and new discoveries in genetics with the work of Mendel and 
other geneticists (e.g., Biffen, Saunders, Bateson), selection followed by hybridization in wheat 
improvement was initiated in the late 19th century simultaneously in France, Germany, Canada, 
US, and Australia. Early breeding methods evolved from bulking and pure line selection to directed 
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hybridizations controlling the process of pollination. By region, these early wheat breeding 
schemes were dominated by the private sectors in Europe and mainly by the government in 

Canada, US, and Australia. The progress was constant and for the middle of the 20th century the 
release of pure lines was increasingly common in both, public and private sector (Baenziger & 
Principal, 2009). 

The Watkins landrace collection described in section 1.1.3 is a representation of the genetic 

diversity in wheat before modern cultivars and elite breeding lines. After landraces, early cultivars 
dominated the acreage of agronomically important regions worldwide. One example from the 
Northern Europe is the GediFlux collection which stands for “Genetic Diversity in Agriculture: 

Temporal Flux, Sustainable Productivity and Food Security”. These early modern cultivars are 
composed of two main datasets: 1) The Euro-Recommended List cultivated from 1945 to the 
2000s including 282 accessions, and 2), the UK National List (NL) which comprises 197 accessions 

from the 1990s. The complete collection contains winter wheat accessions from Austria, Belgium, 
Germany, Denmark, France, Great Britain England, Netherland, and Sweden. Consistently, genetic 
analysis and population structure of this collection differentiates two main groups, the EU 
recommended list and the UK national list groups (Wingen et al., 2014). 

In parallel with these early breeding cultivars in Europe, wheat breeding experienced a substantial 
change between the 1960-1970s just after a series of new methods for breeding took place with 
the shuttle breeding implemented at CIMMYT (Spanish acronym for International Centre for 

Wheat and Maize Improvement) by Norman Borlaug. This was the “Green Revolution” period 
when a consecutive set of semi-dwarf wheat varieties were released in Mexico and in the US. First, 
a variety named Gaines was released in Washington State US by O.A. Vogel and colleagues in 1961. 
Pitic 62 and Penjamo 62 were released in CIMMYT Mexico in 1962. Sonora 64, Lerma Rojo 64, 

Super X, and Siete Cerros in 1964. All of these contained one or two genes conferring the dwarfism 
trait from the Japanese winter variety Norin 10. 

The advantage of these new varieties was a 100% increase on yield over previous varieties 

positively impacting on food production (Borlaug, 1983). The physiological benefit of these 
genotypes was an increase in tiller number, high grain-filled spikes, and short stems, providing 
lodging resistance. This “new” plant architecture had a direct impact on the “harvest index”, a 

transformation and allocation of dry matter into the grain, which was facilitated by the assimilation 
and transformation of the high nitrogen and other fertilizations schemes recently introduced in 
those periods. Immediately after the release of those early short stem varieties, several wheat 
breeding programs worldwide introgressed these alleles into their germplasm. At that time Norin 

10 was the only source of the dwarf genes which would bring a novel problem of genetic diversity 
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bottleneck since several other genome regions would be fixed reducing the number of alleles in 
the region if some genes were linked to the dwarfism genes. 

In this context of genetic diversity, breeding for high yield cultivars and fixing favourable alleles 
has impacted on the genetic diversity of wheat as demonstrated with the use of dwarf genes 
across different breeding programs. Although this trend of plant improvement is similar to other 
crops, quantifying the breeding impact on genetic diversity may differ depending on the breeding 

program, geographic region, and the method employed to evaluate the diversity. For example, 
cultivars released from 1800 to 2000 in Europe, were documented to have less genetic diversity 
compared to landraces when using 609 microsatellites markers (Roussel et al., 2004). Considering 

both types of germplasm the average number of alleles per locus was 14.5. Comparing landraces 
vs cultivars, the effect was 25% fewer alleles in cultivars compared to landraces. This decrease on 
genetic diversity was remarkable in varieties released in the 1960s (Roussel et al., 2004). 

Contemplating a relatively wide geographically collection of cultivars from Europe released from 
1840 to 2000, Roussel et al., (Roussel et al., 2005) found an average of 16.4 alleles per locus. This 
number of alleles was stable until 1960 followed by a decrease in allele number when including 
varieties released in the 2000s. Controversial results in other programs indicate that breeding has 

impacted negatively on genetic diversity at specific periods of time followed by a subsequent 
period of restoration by an increase on diversity  (Reif et al., 2005). A possible explanation may be 
due to the reintroduction and use of wild relatives or landraces in recent breeding programs to 

select for disease resistance in elite cultivars. 

In summary, most of the early and modern breeding cultivars can be tracked back from landrace 
accessions. These early cultivars were subsequently improved further during the Green Revolution 
with the extensive use of semi-dwarfing alleles which further impacted on the genetic diversity of 

modern cultivars. Most modern cultivars are the result of inter-crossing mainly among elite 
cultivars. However, with advances in genomics resources which facilitates genome 
characterization and selection, modern global breeding programs are in constant use of landraces 

and alien introgressions from wild relatives to select resistant genes and increase genetic diversity. 

 

1.1.5. The WatSeq initiative 

The WatSeq stands for the Watkins Sequencing, a project initiative originated between the John 
Innes Centre, UK led by Dr. Simon Griffiths and the Agricultural Genomics Institute at Shenzhen 
(AGIS) in China led by Shifeng Sheng in an effort to sequence the entire Watkins landrace 
collection. The objective was to explore the genetic diversity of the collection and link genotypes 
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with field phenotypes to exploit and facilitate their use by the wheat community and breeders. 
The sequenced accessions include 827 landraces from the collection described in section 1.1.3 

including the Watkins stabilized group, which is a highly homozygous group. It also includes 218 
modern cultivars from the GediFlux collection as described in 1.1.4. 

The entire collection has been phenotyped for several agronomically important traits including 
yield, nutritional value, and disease resistance related traits. Phenotypes of the collection has been 

collected over >10 years by different research groups across collaborative institutions globally. 
Seeds of the collection have been distributed across several other institutions worldwide to be 
characterized for specialized traits including nutritional value of the grain, root morphology, biotic 

and abiotic stresses, and disease related. Importantly, the phenotypic information collected by JIC 
is publicly available and it is maintained in the website 
https://wisplandracepillar.jic.ac.uk/results_resources.htm as part of the BBSRC Designing Future 

Wheat (DFW) initiative. Users can access to this information for the trait of interest and request 
the germplasm freely available. Importantly, after publication of the main manuscript of the 
WatSeq, the WGS information will also be publicly available for the wheat community expanding 
the genome information repertoire for wheat genomics. This provides an invaluable phenotypic 

and germplasm information with additional sequencing material for further characterization and 
exploration of the collection. 

In previous studies a series of genotyping analysis of the entire or partial collection were done 

using SNPs arrays, exome capture, or microsatellites. However, the WatSeq initiative is the first 
project that involves the complete collection sequencing the whole genome at 12-fold coverage. 
The objective of the project was to create a whole genome haplotype map including a highly 
diverse collection of landraces and important modern cultivars. The target sequence coverage was 

stablished to be of 12-fold short reads (150 bp) using the DNBSEQ technology. The main approach 
of the project was to follow the routine variant calling pipeline using a genome reference (Chinese 
Spring reference) followed by variant calling to define haplotypes. 

Alongside this haplotype map by conventional methods, the research objective of this thesis is to 
develop an alternative method identify longe-range haplotypes which will be described step by 
step in the following chapters. Both methods are importantly complementary identifying unique 

and overlapping results and advantages and disadvantages that will be discussed across this thesis. 
Using phenotypes collected by different collaborative groups, genotype-phenotype associations 
have been identified with both methods, the routine variant calling and our method using GWAS 
associations studies. Result of this analysis will be discussed in Chapter 3. 

 

https://wisplandracepillar.jic.ac.uk/results_resources.htm
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1.2. Sequencing and genotyping technologies 

1.2.1. Sequencing technologies 

Sequencing technologies have evolved considerably in the last two decades (van Dijk et al., 2018). 
As a result, many tools have been developed to exploit genomic information for crop 
improvement. SNP arrays, Genotyping by Sequencing (GBS), targeted capture probes, and Whole 
Genome Sequencing (WGS) are common examples (e.g., Sansaloni et al., 2020; Mascher et al., 

2021). Novel chemistry methods for sequencing have been developed impacting positively on 
sequencing costs thanks to the novelty in chemistry reactions, equipment scale, computer power, 
and commercial competitions among emerging sequencing companies. For example, after the 

SANGER sequencing technology, Illumina, a second-generation platform for sequencing short 
reads (~150 to 250 bp), predominated the market with its high throughput, low cost, and high 
accuracy sequencing approach compared to other platforms. Analogously, recently, the Beijing 

Genomics Institute (BGI) developed a chemistry termed DNA nanoball sequencing (DNBSeq) which 
has a very high throughput for short reads. The drawback or commercial strategy of this 
technology is that it is only accessible through BGI labs limiting its extended use by users 
worldwide. 

In the market of long reads sequencing, PacBio and Oxford Nanopore have led the market. While 
Nanopore technology offers much longer sequencing reads (>1 Mbp) than its competitors, it has 
the disadvantage of having high error rate base calls and lower throughput. Similarly, PacBio offers 

long reads sequencing and offers higher accuracy than its competitor Nanopore. PacBio recently 
developed the high-fidelity consensus sequencing technology (HiFi), a breakthrough that has 
gained popularity in genomics by offering long reads (~10 kb) at very high accuracy (99.9%). As a 
result, HiFi sequencing is becoming the gold standard particularly for genome assemblies. 

Furthermore, to increase the long reads sequencing throughput, in 2023 PacBio deployed the 
Revio system which can generate large amounts of data per unit of time (Baker, 2010; Mardis, 
2017; Shendure et al., 2017; van Heyningen, 2019). Across this thesis we employed sequencing 

data mainly from short read sequencing from BGI (DNBSeq) and Illumina, but we benchmarked 
results with PacBio long reads HiFi data. 

At the time of writing this thesis the progress on sequencing technologies advances considerably 

and it is possible that our method developed in this research would need to be updated or become 
obsolete since sequencing and genome assembly would be the routine standard in genomics. 
Alternatively, it could be that the sequencing of short reads, in which this project is mainly based, 
will be more affordable in costs and sequencing at 12-fold for other wheat collections will be 

added to our database increasing the power of our approach to differentiate genome regions 
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among thousands of individuals from worldwide collections including other crops species or wheat 
wild relatives. 

 

1.2.2. SNPs, KASP, and MAS 

SNPs arrays, initially designed from expressed sequenced tags (ESTs) and complementary DNA 
(cDNA) are routinely used in some breeding programs for marker assisted selection (MAS) or 

genome selection (GS). Initial SNPs arrays called variations within the gene coding/UTR regions 
(Allen et al., 2017; Sun et al., 2020; Wang et al., 2014) and were restricted to variants present in 
the discovery panel, which used to be a reduced representation of individuals of a crop or species. 

More recent SNPs arrays have incorporated genome information outside gene regions from WGS 
data and integrate genomic information from larger collections including wild relatives and 
landraces for different crops (Sun et al., 2020; Winfield et al., 2016). Using these novel SNPs arrays, 

breeders and geneticists are able to precisely conduct genetic analysis including population 
structure analysis and phylogenetic studies for evolution or detect introgressions in modern 
cultivars. The disadvantage, however, is that still the variations queried are restricted to the SNPs 
included in the panel array and novel alleles are missed. 

An alternative approach to identify novel variants not present in SNP panel arrays at relatively low 
costs is Genotyping By Sequencing (GBS), which is a particularly useful approach for complex 
genomes by sequencing a reduced representation of the complete genome (Elshire et al., 2011). 

The sequencing data, however, is bias towards certain regions in the genome, and does not always 
capture consistent regions among different samples which complicates their analysis as some real 
information is cleaned-off during pre-step filter analysis (Lachance & Tishkoff, 2013). Some of 
these limitations can partially be addressed using different methods of imputation or by combining 

with other genomic data like the SNPs arrays (Negro et al., 2019). This approach can significantly 
reduce the genotyping cost and may be affordable for some large-scale breeding programs that 
need to genotype thousands of samples reducing the cost per sample at large scale. Small to 

medium genotyping projects breeding programs, however, may not be able to afford these 
genotyping methods in hundreds of samples yet. 

The Kompetitive Allele-Specific PCR (KASP) genotyping method developed by LGC genomics is an 

approach that relies on SNP variations flexible to genotype a single, a few SNPs, or thousands of 
variants at low cost. The versatility of this genotyping method is employed by small projects and 
breeding programs and can be fine-tuned by selecting customized SNPs by the user. This is 
beneficial when a breeder desires to incorporate a few SNPs associated to major QTLs detected in 
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their germplasm into the KASP panel for MAS or GS. Furthermore, the method is flexible enough 
that if a new QTL or gene is cloned, a new KASP assay can be quickly designed and incorporated 

into the panel. The flexibility of this approach has generated that several previous SSR markers be 
transformed into KASP markers and are routinely used across multiple breeding programs. 
Additionally, KASP markers can be easily set it up to run into low throughput labs with basic lab 
equipment similar to the facilities used for SSRs markers. The difference is that KASP markers are 

straightforward to use and can differentiate between a single SNP and easily genotype hundreds 
of samples depending on the lab capacity. A minor disadvantage, however, is that this technology 
is based mainly on SNPs, which are bi-allelic. A partial solution is that users can design two or more 

KASP markers in a region inherited together and call multi allelic haplotypes by the combination 
of two or more SNPs. 

 

1.2.3. Targeting sequencing (capture probes) 

Analogous to GBS, captured-based sequencing (exome-promoter capture followed by sequencing) 
is a genome reduction and sequencing approach that target regions of a genome allowing costs 
optimization. It is an alternative for genetic variations discovery and enables sequencing of large 

number of samples at high coverage. The advantage over GBS is its consistency to often capture 
similar genome regions across multiple genotypes (Gardiner et al., 2019; F. He et al., 2019; 
Krasileva et al., 2017). First-generation capture probes were designed based on ESTs/cDNA and 

did not capture non-coding sequences, which are known to be important for agronomic traits (Cao 
et al., 2021; Chen et al., 2020). More recent probes design integrates outside regions such as 
promoter sequences (Gardiner et al., 2019; Hammond-Kosack et al., 2021; Zhang et al.). The 
difficulty of this approach is that it requires previous steps for capture probe design which can be 

more expensive and laborious than GBS or SNPs arrays. Additionally, if a new genome reference 
annotation integrates further gene information absent in the capture panel, this would require to 
be updated each time. Finally, capture probes overlook large portion of the genome and the 

genetic variants called are bias towards genome references used in their design. Recent advances 
in pangenome projects of several crops have demonstrated that multiple individuals of a species 
are required to capture a comprehensive genome information from the species core genes (Bayer 

et al., 2020; Ebler et al., 2022). Therefore, further capture probes design will be required to be 
considered using a pangenome reference instead of individual references. 

Although the genotypes methods here briefly described are powerful tools in the routine 
genotyping projects when screening hundreds to thousands of breeding samples, they do not 

capture the complete genome information to de novo investigate large structural variations or 
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large haplotypes and are bias toward genome regions and genome references. Therefore, to gain 
a compressive understanding of the genome information of a species, whole genome sequencing 

would be required (Ahmed et al., 2023; Gaurav et al., 2022). As sequencing costs decrease with 
the progress on novel technologies, full genome re-sequencing projects are becoming an 
additional alternative for genotyping large germplasm collections in several important crops 
including wheat. 

 

1.2.4. Whole Genome Sequencing (WGS) 

WGS is a method where the full genome of a sample is sequenced at a specific coverage depth 

and reads length. Initial WGS projects were restricted mostly for genome assemblies, and they 
were expensive for large collections of genotypes (Jiao & Schneeberger, 2017; Sohn & Nam, 2016). 
Whit the progress on NGS technology WGS for genotyping was initially possible for some model 

crops (Cao et al., 2011) with relatively small genome species (Bukowski et al., 2017; Yano et al., 
2016). Applying WGS to large genome crops such as the hexaploid wheat or to thousands of 
samples, was still expensive ten years ago. In recent years, the number of WGS projects have 
increased tremendously as a result of technological developments on sequencing platforms, 

progress on computational power, and novel algorithms and software to efficiently analyse large 
datasets (Hu et al., 2021; Wenger et al., 2019). 

WGS for genotyping projects commonly uses lower coverage than genome-capture sequencing 

methods (~5 - 15x) and have been on demand for many crops (Alonge et al., 2020; Bayer et al., 
2020; Lozano et al., 2021; Wei et al., 2021). This coverage, however, is still expensive for large 
genome crops such as wheat. To leverage full genome information, some projects have employed 
WGS at shallow coverage at <1x for costs optimization in sequencing capturing the whole genome 

information when combined with variants imputation (Adhikari et al., 2022; Franco et al., 2020). 
This approach can alleviate to capture whole genome information, but it is still expensive to 
applying WGS to thousands of samples in large populations in routine breeding programs. If the 

progress on NGS and computational developments progress at similar rates as in recent years, 
WGS might be the routine method to employ in the near future since it does not require extra 
steps and it is straightforward to adapt to common variant calling pipelines. It is also possible that 

WGS in a routine basis will allow for further de novo genome assemblies in multiple samples using 
recent advances in long read sequencing platforms (Wenger et al., 2019). 
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1.2.5. Whole Genome Assemblies 

In the last ten-years, genome assemblies have become common for many organisms including 

orphan crops, something that was unthinkable 20 year ago. Breakthroughs in sequencing 
technologies and chemistry in the last five years has brought genome assemblies even further to 
the level where is its common to generate genome assemblies in a relatively short period of time 
and for multiple samples of the same specie (pangenomes). These capabilities bring novel 

opportunities for easily and cheaply generate chromosome-scale assemblies allowing to answer 
novel questions in genome structure and to have a broad genome reference representation of an 
organism. In this context, examples in cereals are the pangenome assemblies of 15 hexaploid 

wheat genomes (Walkowiak et al., 2020), 20 barley cultivars (Jayakodi et al., 2020), and 26 Maize 
elite lines (Hufford et al., 2021). More recently, as discussed in section 1.2.1, long read sequencing 
HiFi with high accuracy has allowed to deploy even further genome assemblies a lower cost and 

time (Amarasinghe et al., 2020; Cheng et al., 2021) than short reads. It is predicted that in the 
coming years there will be a surge in the number of assemblies generated for genotypes of 
multiple species (Rhie et al., 2021) and including large genomes such as wheat. 

These new capabilities, however, brings novel challenges on data manipulation or comparisons 

among different studies. For example, it was a routine approach to compare genetic variants using 
a common single genome reference across different projects. Now with multiple references, users 
can run genome alignments against multiple references for comparison (Armstrong et al., 2020), 

or to select a single reference that would suit for their analysis. Although this may not be a big 
problem in small-genome reference species, running alignments for hundreds or thousands of 
samples to multiple references, individually, using current aligners algorithms for large genome 
references (e.g., 16 GB genome in hexaploid wheat), represents a challenge for computing 

resources and time. Additionally, to take advantage of multiple genomes assemblies information, 
users will need to align to each of the references or identify variations using a genome reference 
that represents better their genotypes since most genome aligners use a single reference.  

Alternative ways to analyse the growing number of public sequence databases such as the 
constant addition of genome assemblies, is the use of novel algorithms employing multiple 
references to directly identify variations in a genome of the size of wheat. Proposals to approach 

this challenge are to call variants from a unified genome graph, which condenses pangenome 
information from multiple genome individuals in a graph-based genome (Bradbury et al., 2022; Liu 
et al., 2023; Wang et al., 2022). Depending on the project objective, is also possible to directly 
compare genome assembly vs genome assembly in a pairwise manner (Brinton et al., 2020), but 

this is more expensive and represent bias towards the quality of the assemblies since some 
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information may be lost during assembly steps. An alternative method to detect genetic variations 
with or without genome references among individuals is the use of k-mers, a sub-sequence of a 

sequence of the n size in bp (Gaurav et al., 2022; Voichek & Weigel, 2020). 

 

1.2.6. k-mer methods 

Routinely, genetic variants are identified after sequence alignment of raw reads to a genome 

reference. However, variant calling by aligning to a single reference can be problematic for many 
reasons; (i) when a genome reference is large, polyploid, repetitive, or incomplete, important 
regions can be missed, (ii) highly divergent individuals to the reference can produce poor 

alignments, (iii) accurate variant calling requires sequencing depth ~>5x to distinguish between 
sequencing errors and real variants, and finally (iv), large structural variants (SV) are difficult to 
detect, particularly with short sequencing reads (Saxena et al., 2014). 

Alternatively, variants between two genotypes can be detected by reference-free alignment 
methods. For example, a direct raw reads sequence comparison has been developed to identify 
genetic variations that can detect SV based on sequence breakpoint patterns between samples 
(Shimmura et al., 2020).  A second strategy is the use of k-mers (Zielezinski et al., 2019). k-mers 

are sub-sequences of a sequence of k length. k-mers can be represented as a presence/absence 
or numerically to identify natural genetic variants or mutations for association mapping. For 
example, the NIKS (needle in the k-stack) algorithm compares WGS k-mers between mutated and 

non-mutated bulked samples to identify variants (Nordström et al., 2013). Kestrel, quantifies the 
k-mer distribution to characterize highly polymorphic regions and structural variations (Audano et 
al., 2017). HAWK; hitting associations with k-mers (Rahman et al., 2018) and AgRenSeq; 
association genetics (Arora et al., 2019) conduct GWAS analysis by presence-absence of k-mers 

followed by mapping or local assembly of the associated k-mers to identify functional sequence 
regions. LNISKS (longer needle in a scanter k-stack) developed based on NIKS (Suchecki et al., 
2019) was implemented to identify EMS mutants in the wheat genome. And finally, GWAS using 

k-mers from WGS data for large genomes have been implemented (Gaurav et al., 2022; Voichek 
& Weigel, 2020). One of the limitations of working with k-mers, WGS, and large genomes, is 
computational burden, but improvements in this area has been one of the main focus of 

researchers (Denti et al., 2019; Mehrab et al., 2021; Pajuste et al., 2017; Standage et al., 2019). 

Regardless of the genotyping approach, in many cases, the goal of variants calling and genotyping, 
is to associate genotype with phenotypes, understand genome dynamics of an organisms, or 
genome population studies. In recent years genotype-phenotype association studies are common 
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using haplotypes instead of individual SNPs. To our knowledge, at the time of writing this thesis 
there is not a method to define whole genome haplotypes using k-mers. 

 

1.3. Haplotype-based selection for breeding 

1.3.1. Defining Haplotypes 

The use of SNP markers is the most common genotyping approach coupled with phenotypic 

information for QTL detection, GWAS, or GS (Sansaloni et al., 2020). Regardless of the genotyping 
technology, most of the current methods employ individual SNP markers for genotype-phenotype 
associations studies. One disadvantage is that individual SNP markers are bi-allelic but having 

thousands of SNPs allows to combine two or more into a haplotype. A haplotype is defined as two 
or more genetic polymorphisms clustered as a locus under linkage disequilibrium (LD) inherited 
together with limited chances of recombination (Patil et al., 2001). A haplotype can be set 

arbitrarily allocating all the SNPs that present within a defined fixed genome region, sliding 
window, (Guo et al., 2009), number of continuous SNPs, or based on LD (Gabriel et al., 2002; Kim 
et al., 2018; Pook et al., 2019).  

Depending on the method employed to build haplotypes some advantages or disadvantages might 

be encountered. The most common approach is the use of LD after SNP calls. This method is 
reasonable straightforward and can handle large number of genotypes in small to medium size 
genomes or with low density SNP arrays. It represents a challenge however, for large genomes, 

dense SNPs markers, and large number of genotypes in a population (Bhat et al., 2021). A 
disadvantage if the genotyping information is not uniform across the genome can result in 
misclassified and extended haplotypes. For example, haplotypes in the D wheat sub genome based 
on SNPs usually detect longer haplotype blocks than in chromosome A and B (Brinton et al., 2020). 

Similarly, haplotypes in centromere regions tend to be larger than in telomere regions (Balfourier 
et al., 2019). Although, these haplotypes reflect the real low recombination rates and real 
haplotype blocks, the lack of SNPs representing centromere regions in SNPs arrays or in capture 

probes designed based on gene content, have an impact on the size and number of haplotypes 
identified (Brinton et al., 2020). 

A second method commonly used is the arbitrarily fixed genome window size. In this case a specific 

range size in bp is defined and the number of markers within the window are counted as a 
haplotype (Brinton et al., 2020; Huang et al., 2007). Using this approach uniform haplotypes are 
defined across the genome including centromere regions. This approach is straightforward for 
computing load and feasible for large genome and high number of samples. The difficulty, 
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however, is that additional work for window size optimization needs to be validated in previous 
steps. Additionally, using this approach real haplotypes can be split resulting in the loss of 

resolution in haplotype-phenotype associations analysis, particularly in telomere regions where 
haplotypes are often shorter than in centromere regions caused by high recombination rates. A 
partial solution for the former at the expenses of time and computer resources, is the use of sliding 
window sizes (Bhat et al., 2021; Huang et al., 2007). 

A similar approach to the arbitrarily defined window size, is the arbitrary use continuous number 
of SNPs. This approach can be more straight forward to implement but like the LD approach, can 
result in large haplotype blocks if not uniform SNP information is captured across the genome. 

Similar to the defined window size approach, counting a defined number of SNPs for haplotypes 
can result in the split of real haplotypes on telomere regions (Meuwissen et al., 2014). 

Novel methods to define haplotypes have been developed with advances in technological 

improvements at genome-wide scale (Cheng et al., 2021; Garg et al., 2021; Sinha et al., 2020), and 
with RNA-seq data (Berger et al., 2020). Recent methods employing multiple references or 
multiple genotypes as “reference graphs” to define haplotypes from consensus genomes instead 
of individual assemblies have been developed (Rakocevic et al., 2019; Shang et al., 2022).  This has 

been possible with the release of multiple genome assemblies in many important crops (Bayer et 
al., 2020). 

Despite its size (~16 Gb), wheat has not been the exception, and in 2020 the wheat pangenome 

project made it possible to develop whole genome haplotypes from 15 important cultivars 
(Brinton et al., 2020; Walkowiak et al., 2020). Haplotypes were defined by using whole genome 
assemblies and pairwise alignments among cultivars. To define haplotypes a set of parameters 
were adjusted including the window size and multiple pre-filtering steps. The median sequence 

identity above 99.99% in a 5 Mbp window based on genome alignments was considered as 
identical-by-state (IBS) region or haplotype between two cultivars. This stringency was flexible 
enough to account for single nucleotides gaps (Ns’) and sequence errors in the assemblies. Near-

IBS regions were detected as having sequence similarity of ~99.95% (1 SNP in 10 Kbp) while 
sequence similarity < 99.5 % were predicted to be introgressions from wild or close wheat 
relatives. 

An important discovery of the Brinton et al., 2020 study found that gene based genomic 
information was not sufficient to differentiate between IBS and near-IBS regions among cultivars. 
Adding flanking (2 Kbp flanking sequence) regions information to the coding sequences (CDS) 
improved the detection of real haplotypes. Using 5 Mbp window size the median haplotype size 

for those 15 wheat cultivars was 9.34 Mbp and 196 genes per block. Haplotypes were 15.43 Mbp 
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on average in centromere regions and these extended blocks contained hundreds of genes. This 
information is of important for breeding since centromeres usually may remain fixed in breeding 

populations due to low recombination in these regions. 

Analysis of this multi-reference project revealed that worldwide wheat cultivars share >60% of 
their genomes with at least one of the pangenome genotypes (Brinton et al., 2020). In the same 
study, large “haploblocks” stretching thousands of bp between pairwise comparison were 

detected in genotypes that were both related and not directly related by pedigree (Fig. 1.2) 
reflecting the limited genetic diversity exploited in modern global germplasm for breeding. 
Furthermore, Brinton et al., 2020., in a case study, demonstrated that haplotype informed analysis 

identified novel haplotypes which were unable to be detected from previous SNPs arrays and 
capture-probes approaches. A set of novel haplotypes present exclusively in the Watkins landrace 
collection evidenced the importance of including outside gene information and haplotypes instead 

of individual SNPs for breeding information. This is of importance since usually genotype-
phenotype associations are commonly carried out using individual SNPs. However, as mentioned 
before, in recent years there is a recent interest to develop haplotype-based associations in 
genomics studies instead of individual SNPs (Bevan et al., 2017; Bhat et al., 2021; Brinton et al., 

2020; Jordan et al., 2021; Mayer et al., 2020). 
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Fig. 1. 2. From Brinton et al., 2020. Haplotypes across the “highly conserved” region of chromosome 6A. 

“a Physical position of productivity-related QTL (rectangles) and GWAS hits (triangles) mapped to the highly conserved 
region on chromosome 6A (see “Methods”). *; grain-size mapping interval based on UK cultivars Spark and Rialto. b 
Diagrammatic representation of all haplotype blocks on chromosome 6A in the 15 sequenced cultivars (based on 5-
Mbp bin haplotypes; scaled to the longest chromosome 6A). Regions with the same colour at the same position share 
common haplotypes (except for white regions which are not contained within haplotype blocks). Vertical grey line 
indicates the position of TaGW2-A (237 Mbp). Labels H1–H7 indicate haplotype groups based on the minimum 
haplotype block (beige bar; 187–445 Mbp)”. 

1.3.2. Genotype-phenotype associations by haplotypes 

Linking genomes with phenotypes is one of the main objectives in genome studies. Followed by 
variant calling, a common step is to associate genotypes with phenotypes and in some cases 

determine alleles functions. This can be achieved by QTL mapping, GS, GWAS, or Isogenic Lines 
(IL) with natural or induced variations (Adamski et al., 2020; Aglawe et al., 2021; Arora et al., 2019). 
A constrain in genotype-phenotype associations analysis is that molecular markers rarely are the 

causative of a phenotypic change or explain low phenotypic variation of the trait under study. 
Instead, those markers are in LD in proximity with the functional variant. The low marker-
phenotype effect can be attributed to the low LD between the causal polymorphism and the SNP 
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used in the genetic analysis, epistatic interactions, multiple genes with minor effect, or 
environmental interactions (Bevan et al., 2017; N’Diaye et al., 2018; Sallam et al., 2020). Therefore, 

a single SNP often do not capture the complete phenotypic effect (Kearsey & Farquhar, 1998; 
Kumar et al., 2017). On the contrary, haplotypes combine multiple variants in a genome region 
which can help to capture the causal polymorphism as multiple SNP combinations in a locus can 
be tested for phenotype associations. This can result in greater trait variation effect explained by 

haplotypes compared to the single marker approach (Bevan et al., 2017; N’Diaye et al., 2018; 
Sallam et al., 2020). 

An additional advantage of haplotypes over individual SNPs is on MAS in breeding programs. For 

example, a single marker during MAS can be no longer informative if a breeder incorporates new 
germplasm having a SNP in the same locus position of a trait informative marker but this novel 
SNP source is not associated with the beneficial allele effect. On the contrary, a combination of 

two or more SNPs into a haplotype have a better probability to capture the true beneficial allele 
since multiple combinations of SNPs are less likely to occur by chance in new germplasm sources 
not associated with the beneficial allele (Hasan et al., 2021). Similarly, using haplotype would help 
to capture epistatic interactions between loci resulting in better genome trait association 

predictions in GS (Bevan et al., 2017; Meuwissen et al., 2014; Sehgal et al., 2020; Voss-Fels et al., 
2019). 

 

1.4. Wheat introgressions and haplotypes phenotypic value  

Wild wheat relatives are invaluable reservoirs of genetic diversity for agronomically important 
traits, particularly for disease resistant genes (Leigh et al., 2022). Genetic material from more than 
fifty species have been successfully introgressed into wheat and several wild wheat relatives 

hybridize well with tetraploid and hexaploid genomes (Wulff & Moscou, 2014). Tetraploid wheat 
is considered as the primary gene pool for hexaploid wheat since crosses between these two 
species are easily carried out. On the other hand, secondary and tertiary gene pools infrequently 

hybridize naturally with modern hexaploidy wheat and are more commonly used by breeders and 
geneticist to transfer genetic diversity into cultivated elite varieties by specialized methods (Hao 
et al., 2020). Despite these barriers rare hybridizations between tertiary gene pools and hexaploid 

wheat naturally exist and contribute to its genetic diversity. 

Historically, wild wheat relatives have been used in different breeding programs worldwide since 
the 1900’s (Doussinault et al., 1983) to introduce genetic diversity. With the advent of novel 
genome technologies, the use of these wild relatives can be employed more efficiently by tracking 
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introgression into chromosome physical regions in the wheat genome precisely. As a result, there 
is an increase interest to exploit and integrate novel genetic diversity from introgressions  and 

large collections of novel synthetic wheats between wild relatives and modern wheats across 
breeding programs (Devi et al., 2019). 

Large number of hexaploid wheats have been shown to harbour introgressions from tetraploid 
wheats (Przewieslik-Allen et al., 2021) particularly T. timopheevii and Ae. ventricosa. It has been 

hypothesized that the tetraploid wheat T. timopheevii (AAGG) was originated from a second 
independent hybridization event from the same progenitors of T. turgidum and T. aestivum, T. 
urartu (AA) and Ae. speltoides (Feldman, 1966). Cytological and genomic studies have 

demonstrated that the A genome of T. timopheevii recombines more frequently with the wheat A 
subgenome than the G genome with the B subgenome (King et al., 2022). Therefore, the gene 
pool of T. timopheevii has served as a donor for several agronomically important traits into wheat 

such as disease resistance. As a result, hybrids between T. timopheevii and T. aestivum are 
frequently used to introgress novel genetic variation via homoeologous recombination but natural 
hybridizations also occur (Brown-Guedira et al., 2003; Chemayek et al., 2017; Järve et al., 2000). 

A second important and frequently wild relative used in wide crosses against wheat is the 

tetraploid Ae. ventricosa (2n = 4x = 28, NNDD). Early breeding programs have employed Ae. 
ventricosa to introduce segments into wheat cultivars to exploit mainly disease resistant traits. An 
example is the famous cultivar named VPM1 (Doussinault et al., 1983). A widely exploited 

introgression from this cultivar, is the 2AS/2NvS translocation on chr2A of wheat involved in 
several disease resistant and yield related traits (Xue et al., 2018). A second example from Ae. 
ventricosa is the α-amylase gene introgressed into chr7D conferring resistance to eyespot 
(Oculimacula acuformis and O. yallundae) (Gale et al., 1984). These introgressions have been 

widely exploited in modern breeding and it is hypothesized to be present in several other 
important cultivars worldwide still not documented (Cruz et al., 2016; Przewieslik-Allen et al., 
2021) and probably involved in other agronomically important traits (D. Singh et al., 2019). 

In Chapter 4 of this thesis, we extended the analysis of the contribution into the wheat genome 
of these two important wild wheat relative species and demonstrated that there are still hidden 
introgressions present in several important modern cultivars and germplasm bank collections 

unexploited. 
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1.5. General Aim 

The main objective of this project was to define haplotypes to build a haplotype database of wheat 

to elucidate the diversity between cultivars and landraces. We focused on 1) developing a method 
to build a haplotype database, 2) explore the diversity between landraces, early cultivars (1900’s) 
and modern varieties (after 2000’s), and 3) detect genome-wide wild wheat 
introgressions/hybridizations and their impact on shaping the genomes of landraces and modern 

cultivars. We hope that the resources here generated will contribute to the wheat community for 
a more targeted and genome-based breeding approach. 
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2. Alignment and k-mer methods to identify variations. 

In this chapter we describe our bioinformatic approach named Identity by State in python (IBSpy). 
We thank Dr. Kumar Gaurav for his contribution on how to employ k-mers to detect variations in 

genome assembly comparisons. Initial scrips of IBSpy were done based on this method following 
his algorithm to capture variations between genome assemblies. We also thank Dr. Brande Wulff 
for his contribution and feedback on initial results during early stages of IBSpy participating as 
thesis second supervisor. 

After adjusting different parameters of the pilot scripts, the final version of IBSpy was written by 
Dr. Ricardo Ramirez-Gonzales and was uploaded in the public repository of the Uauy Lab with 
additional scores: “observed_kmers” and “kmer_distance”. Contributors of IBSpy are Luca 

Venturini and Luis Yanes as described in  https://github.com/Uauy-Lab/IBSpy. Cong Feng from 
Shifeng Cheng’s group wrote the IBScpp version in the C++ language. https://github.com/Uauy-
Lab/IBSpy/tree/main/IBScpp. We thank Dr. Simon Griffiths and Shifeng Cheng for providing us 

early access to the WatSeq dataset raw sequences. This data was pivotal for the pilot tests to 
validate IBSpy at a large-scale using genotypes with different levels of relatedness apart of the 
publicly available pangenome cultivars. The main manuscript entitled “Harnessing Landrace 

Diversity Empowers Wheat Breeding for Climate Resilience” for the WatSeq data has been 

submitted for publication (Cheng et al., under revision). A portal for this public dataset for further 
exploration is on https://wwwg2b.com/. 

Analysis to translate the percentage of sequence identity from whole genome assembly 

alignments to IBSpy variations for the B and D sub genome was analysed by Dr. Xiaoming Wang 
during his scientific visit to the Uauy’s Lab in 2022-2023. 

 
2.1. Chapter summary 

IBSpy is a method to directly detect whole genome variations between a genome reference and 

raw reads from a query sample using k-mers. We demonstrate that this approach benchmarks 
well against previously established methods using whole genome alignments of eleven genome 
assemblies of the wheat pangenome. Using IBSpy, we detected regions which are identical by state 
(>99.99% similarity based on sequence alignment) as having approximately <10 IBSpy variations 

in consecutive 50 Kbp windows. We validated our method to combine different sequencing 
platform, scaffolds, or genome level assemblies, using raw reads of >150 bp length. The optimal 
k-mer size was defined to range between k=25-mer to k=51-mer, and we decided to use k=31-mer 

to leverage the already available k-mer databases and to account for computational load. We 

https://github.com/Uauy-Lab/IBSpy
https://github.com/Uauy-Lab/IBSpy/tree/main/IBScpp
https://github.com/Uauy-Lab/IBSpy/tree/main/IBScpp
https://wwwg2b.com/
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established an optimal sequencing coverage of raw data to be ~12-fold for 150-bp reads in wheat 
when using 31-mers and when removing unique k-mers. Above this coverage, minor 

improvements are obtained, however, if enough coverage is provided, our method can detect 
variations at the same resolution as with full genome assemblies and detect genome 
misassemblies. We demonstrated that with long read sequencing, less coverage is needed as seen 
in genome assembly methods. IBSpy condenses multiple types of sequences and structural 

variations into a single type allowing them to be integrated in downstream analyses. We 
acknowledge that our approach does not discriminates a few or a single SNP in 50 Kbp windows 
and we provide key points for further improvements in resolution. The overlooking of these few 

SNPs in a window can be used as a feature to detect long-range haplotypes and fine tune variations 
among samples sharing the long-range haplotypes having different phenotypes to narrow down 
causal variations within a haplotype (we provide a case study in Chapter 3). 

 

2.2. Introduction 

2.2.1. Alignment methods and variant calling 

In the past five years, chromosome-scale genome assemblies of multiple representative 

accessions of important crops have been made available (Hufford et al., 2021; Jayakodi et al., 
2020; Walkowiak et al., 2020). Studies on whole genome sequencing (WGS) from collections (i.e., 
not assembled) with multiple accessions in different crops and wild relatives are also becoming 

increasingly common (Gaurav et al., 2022; W. Wang et al., 2018; Zhou et al., 2015). These 
collections include species with complex genomes such as wheat (T. aestivum), its wild relatives, 
and other complex crop genomes (Peng et al., 2022; Zhao et al., 2022; Zhou et al., 2020). 
Generating this volume of data, it is having great impact in genomic analyses and genetic studies 

in different areas, however, the amount of data and how to analyse it represent new challenges 
for computing resources and software development.  

Having high quality chromosome-level assemblies is of importance particularly for allopolyploid 

species such as wheat, which has the ABD subgenomes sharing ~98% of sequence similarity among 
them within the coding sequence (Ramírez-González et al., 2018). High quality assemblies can 
alleviate some of the pitfalls of alignments methods to call variations in these repetitive and 

complex genomes. However, the main limitations to detect variations using alignment-based 
calling are: 1) many genome regions can be missed if the genome reference is not representative 
of the species, 2) if the genotype being tested diverged from the reference genome it can lead to 
poor alignments, 3) structural variations (insertion and deletions (InDels), copy number variation, 
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and genome inversions) are commonly not identified with the alignment based methods, and 4) 
aligning reads against a genome reference to identify variations is computing demanding for large 

and complex genomes such as the hexaploid wheat (16 Gb). 

In the multiple genome-reference era, researchers can now decide to select a specific genome 
assembly to use as a reference, or to align reads against multiple references. However, aligning 
samples to multiple references can be challenging in species with large genomes such as wheat. 

Furthermore, comparisons and reproducibility among multiple studies will become complicated 
as researchers will need to align to different references. To face these challenges, novel methods 
have been developed that involve aligning raw reads to a haplotype graph genome representation 

to call and identify variations (Bradbury et al., 2022; Shang et al., 2022). These haplotype graphs 
require the availability of multiple genome assemblies of a species.  

Methods to call variation without genome references using k-mers are also becoming more 

common (Arora et al., 2019; Gaurav et al., 2022; Rahman et al., 2018; Voichek & Weigel, 2020). In 
addition to not relying on a single genome reference, k-mers can detect multiple types of 
variations and compare individuals from highly divergent samples. The disadvantage, however, is 
that some k-mer pipelines are still not well adapted into the routine variant calling software. 

Instead, analysis is performed by implementing in-house scripts requiring large computational 
infrastructure. More developed k-mer based software are less straightforward to use than 
alignment-based methods or output files are usually not compatible with the routine bioinformatic 

tools. 

Additionally, variation discovery can be challenging if the species to study is polyploid, highly 
repetitive, or heterozygous since sequencing similarities can be a confounding factor since reads 
often align to more than one region. In genomic studies, a k-mer analysis can be used to detect 

the repetitiveness of the genome assembly, estimate the genome size, sequencing coverage, raw 
reads heterogenicity and quality (Pflug et al., 2020). In genome assemblies, most genome 
assemblers use a pre step to define the optimal k-mer size to use before generating the assembly. 

This because the repetitiveness of a genome affects the uniqueness k-mers at specific size. Longer 
k-mers are required if a genome is highly repetitive as they have less chances to occur across the 
genome than short k-mers. There is a trade-off, however, since longer k-mers require more 

computing load. Furthermore, longer k-mers are prone to capture sequencing errors at reads 
edges affecting the quality of the final assembly. 

Most of these methods to call variations or to generate genome assemblies are influenced by the 
type of sequencing used to genotype, or in cases of reference-dependent variant calling, by the 

quality of the assemblies, read lengths, and depth coverage. Fine tuning of these variables to 
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define the optimal combinations will be dependent on the organisms being studied and the 
objective of the project. For example, read length for alignments and variant calling are less 

influenced by the read length and are more dependent on reads quality depth. On the other hand, 
long (>10 Kbp) reads with lower sequence depth than short reads (~150 bp) are suitable to extend 
the contiguity in genome assembly projects (De Coster et al., 2021). 

A common procedure in alignments methods is to perform a pre-step to verify the reads quality, 

measure the coverage, and to clean reads-off with high sequencing error rate. In genome 
assemblies and k-mer analysis a critical pre-filtering step is to remove unique k-mers as they 
commonly originate from sequencing errors. However, sequencing data often yields non-uniform 

coverage of the genome with k-mers displaying a Poisson distribution. Therefore, if the sequencing 
coverage is relatively low, removing unique k-mers can be detrimental since some real genome 
information is still represented as unique k-mers (Lee et al., 2020). 

In this chapter we implemented a novel approach to call variations and used it to build a variations 
database of >1,000 genotypes based on k-mers from raw reads based on multiple chromosome-
scale references. Our approach allowed us to integrate genome information from wild wheat 
relatives, landraces, and modern wheat varieties into the databases and unify multiple types of 

genome variations.  

The general workflow of this chapter is depicted in Fig. 2.1. In brief, we first evaluated the k-mer 
profiles of the 15 wheat pangenome assemblies (both chromosome and scaffold assemblies) and 

from raw reads of the Watkins Sequencing (WatSeq) dataset which includes >1,000 accessions. 
Across the analysis we integrated different types of sequencing data. We next developed IBSpy 
(Identity by state in python) which uses the k-mer databases described and a genome reference 
to generate three types of scores based on k-mer presence/absence. Using IBSpy we ran pairwise 

comparisons among chromosome-scale assemblies and among the wheat subgenomes (A, B, and 
D). Using the Brinton et al., 2020 chromosome-scale alignments, we translated sequence similarity 
to IBSpy scores. We next validated IBSpy to use raw reads to detect variations and studied the 

effect of different raw read types, depth, and k-mer sizes on the variations count. 
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Fig. 2. 1 Chapter 2 workflow. 

In an initial step a) the query k-mer databases are created either from genome assemblies or from raw reads using 
KMC or Jellyfish software. These k-mers are used to characterize the pangenome genome profiles, raw reads, and the 
different types of raw reads used in this study. These k-mer database are also the input of IBSpy as a query. b) 
characterization of IBSpy scores using either genome assemblies or raw reads of different types. 
 

2.3. Methods 

In all cases, the scripts used are in the following link with the scrip name of the analysis within 
the folder “scripts”: https://github.com/quirozcj/PhD_thesis_JQCH_2022. 
 
2.3.1. Germplasm & Sequencing data 

In this analysis we included 11 chromosome and 5 scaffold level assemblies from (Walkowiak et 
al., 2020). During the PhD project, additional chromosome assemblies with different qualities have 
been released. In total, across this project we employed 20 assemblies for different analysis (Table 

2.1). This research relies mainly on the Watkins Sequencing (WatSeq) project composed of 218 

Pangenome k-mer profile
• multiple k-mer size

Raw reads k-mer profile
• at selected k-mer size

Type of sequence
• at selected k-mer size

query vs 
reference 

(IBSpy)

raw k-mers:
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• jellyfish

variationsobserved k-mers k-mer distance

IBSpy raw reads:
• sequencing depth
• unique k-mers
• sequence length
• sequence platform

IBSpy to mummer:
• pairwise references
• among sub genomes
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• variations length
• by window
• variations to VCF

IBSpy

• pairwise pangenome
• among sub genomes

• pairwise pangenome
• among sub genomes

• pairwise pangenome
• among sub genomes

a

b

https://github.com/quirozcj/PhD_thesis_JQCH_2022
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modern cultivars and 827 landraces from the Watkins collection (Wingen et al., 2014). The 
sequencing coverage ranged from 12 to 15-fold DNBSeq 150 bp reads (Supplemental Table S2.1). 

 

Table 2. 1. Genome assemblies used in this study. 

 

ID* indicates names used for each reference in this study. The “Use” indicates if the genotype was used as a reference, 
query, or both. The ‘Analysis” column indicates a specific analysis for specific assemblies. 

 

In addition to wheat genotypes, in in this thesis we leveraged the publicly available data of 265 Ae. 

tauschii (D genome progenitor of hexaploid wheat) accessions (Gaurav et al., 2022) (Supplemental 
Table S2.2) to explore the D genome diversity. During the development of this project, we 
integrated 218 additional accessions to detect introgressions from T. monococcum (AmAm 

genome) into wheat and two chromosome scale assemblies of one domesticated and one wild T. 
monoccocum accession (Ahmed et al., 2023) (Supplemental Table S2.3). In-depth analysis of wild 
wheat relatives will be addressed in Chapter 4. 

We also included publicly available datasets of wild relatives from different publications 

(Walkowiak et al., 2020), including one rye (Secale cereale) accession Lo7 (Rabanus-Wallace et al., 
2021) (Supplemental Table S2.4). The quality of the raw read sequences was determined using 
fastqc (v.0.11.8). Samples of the WatSeq project were processed by collaborators AGIS. (Scripts: 

https://github.com/quirozcj/PhD_thesis_JQCH_2022). 

 

ID* Line Assembly Type Growth Habit Origin Use Analysis Publication
mace Mace chromosome-scale Spring Australia reference and query Synteny windows https://doi.org/10.1038/s41586-020-2961-x
lancer LongReach Lancer chromosome-scale Spring Australia reference and query Synteny windows https://doi.org/10.1038/s41586-020-2961-x
stanley CDC Stanley chromosome-scale Spring Canada reference and query Synteny windows https://doi.org/10.1038/s41586-020-2961-x
landmark CDC Landmark chromosome-scale Spring Canada reference and query Synteny windows https://doi.org/10.1038/s41586-020-2961-x
julius Julius chromosome-scale Winter Germany reference and query Synteny windows https://doi.org/10.1038/s41586-020-2961-x
norin61 Norin 61 chromosome-scale Facultative Spring Japan reference and query Synteny windows https://doi.org/10.1038/s41586-020-2961-x
arinaLrFor ArinaLrFor chromosome-scale Winter Switzerland reference and query Synteny windows https://doi.org/10.1038/s41586-020-2961-x
spelta PI190962 (spelt wheat) chromosome-scale Winter Central Europe reference and query Synteny windows https://doi.org/10.1038/s41586-020-2961-x
jagger Jagger chromosome-scale Winter USA reference and query Synteny windows https://doi.org/10.1038/s41586-020-2961-x
sy_mattis SY Mattis chromosome-scale Winter France reference and query Synteny windows https://doi.org/10.1038/s41586-020-2961-x
chinese Chinese Spring chromosome-scale Spring IWGSC reference and query Synteny windows DOI: 10.1126/science.aar7191
cadenza Cadenza Scaffold Facultative Spring UK query query https://doi.org/10.1038/s41586-020-2961-x
paragon Paragon Scaffold Spring UK query query https://doi.org/10.1038/s41586-020-2961-x
robigus Robigus Scaffold Winter UK query query https://doi.org/10.1038/s41586-020-2961-x
claire Claire Scaffold Winter UK query query https://doi.org/10.1038/s41586-020-2961-x
weebil Weebill 1 Scaffold Spring CIMMYT query query https://doi.org/10.1038/s41586-020-2961-x
tibetan Zang1817 chromosome-scale Spring Tibetan query introgressions https://doi.org/10.1038/s41467-020-18738-5
renan renan chromosome-scale Winter France reference and query introgressions https://doi.org/10.1093/gigascience/giac034
borlaug borlaug chromosome-scale Spring CIMMYT reference and query introgressions
kariega kariega chromosome-scale Spring reference and query reads length https://doi.org/10.1038/s41588-022-01022-1

https://github.com/quirozcj/PhD_thesis_JQCH_2022
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2.3.2. k-mer variant calling pipeline. 

We used jellyfish v.2.2.6 (Marçais & Kingsford, 2011) or KMC v3.0.1 (Kokot et al., 2017) to create 

the k-mer databases from individual samples. For genome assemblies, we kept unique k-mers and 
screened for differences on k-mer sizes (Supplemental Table S2.5). For the WatSeq raw reads 
samples, we removed unique k-mers to reduce computational burden and leverage on the already 
available datasets of 31-mers. Only when the sequence depth was <10-fold with read length 150 

bp, we kept unique k-mers to compensate for the lack of coverage. We used Python3 scripts to 
plot histograms for the k-mer counts to verify samples coverage and sequences quality profiles 
(Supplemental Table S2.6). Scripts: https://github.com/quirozcj/PhD_thesis_JQCH_2022. 

 

2.3.3. Code for Identity by State in python (IBSpy) 

The code for IBSpy is publicly available in GitHub (https://github.com/Uauy-Lab/IBSpy) and was 
co-developed with Dr. Ricardo Ramirez-Gonzalez.  

 

2.3.4. Alignments to IBSpy variations 

To translate the IBSpy variations equivalence to alignments sequence similarity, we compared the 
published (Brinton et al., 2020) pairwise MUMmer alignments among ten chromosome-scale 
pangenome cultivars (ArinaLrFor, Chinese Spring (CS), Jagger, Julius, Lancer, Landmark, Mace, 
Norin61, Stanley, Mattis) with the corresponding variations counts from IBSpy outputs. In total, 

there were 90 pairwise alignments analysed across the A, B, and D genomes. We analysed the data 
in 500 Kbp windows and kept those windows with at least 60% breadth of alignment in the 
MUMmer output (77.8%). For each 500 Kbp window, we had the average sequence identity 

between the pangenome reference and the other nine pangenome query samples (if over 60% 
breadth of alignment) alongside the IBSpy variations for the equivalent comparisons using the 
pangenome reference assembly and the k-mer database. The over 60% bread alignment was 
selected since eventually we had alignments that did not cover significant region of the 500 Kbp 

window. For example, we had 500 Kbp windows that had alignments covering only 10% of the 
window and those would not be informative since all the other 90% would be highly different in 
sequence identity and therefore no alignments were possible. In addition to the 500 Kbp window, 

we tested 100 Kbp which tended to include overlapping alignments longer than 100 Kbp. We also 
tested 1,000 kbp windows, however, in this case alignments were often too short and most of the 
window was often not covered. Therefore, we decide to use 500 Kbp which were overall well 

covered with mummer alignments lengths. 

https://github.com/quirozcj/PhD_thesis_JQCH_2022
https://github.com/Uauy-Lab/IBSpy


 39 

 

2.4. Results 

2.4.1. The wheat k-mer landscape 

2.4.1.1. Pangenome k-mer distribution by size 

When working with k-mers, the genome size, complexity and ploidy of the species, the quality of 
the assembly (pseudomolecules or scaffold length), and the error rate of the reads can all impact 

and determine the optimal k-mer size. An optimal k-mer size also depends on the type of analysis 
or question to address. In this analysis we investigated the k-mer profiles of the wheat assemblies 
using different k-mer size with the aim to efficiently detect variations and differentiate among 

multiple genomes and raw reads data. For our purposes, the optimal size would be a high 
percentage of unique k-mers in the genome, across multiple genome references considering a 
trade-off with computer burden. We used the eleven chromosome-scale assemblies to find the k-
mer distribution by size using a range of k-mers from k=15 to k=101-mer. Historically, the genome 

reference of Chinese Spring (CS) was the first high-quality assembly (and annotation) at 
chromosome-scale level, therefore we explored its k-mer profiles first. 

We observed that for the CS reference at 21-mer size, 25% of the genome is represented as a 

unique k-mers. Five and ten cumulative k-mers capture 43% and 50%, respectively, of the genome 
content. With 31-mers ~37% of the genome is represented as a unique k-mers. 101-mers captured 
~80% of the genome as a unique k-mers and ~90% at five or ten cumulative (Fig. 2.2). k-mer 
abundance of the remaining chromosome-scale pangenome assemblies demonstrated that 

overall, independently of the genotype, they have similar k-mer abundance profiles (Fig. 2.3). This 
similarity on k-mer profiles may be because a similar pipeline or similar sequencing method were 
used to assemble them. Comparisons with genome assemblies using different procedures and 

sequencing reads (e.g., PacBio HiFi or Nanopore long reads) would be required to confirm this. 
Regarding the k-mer size, as expected, 101-mers have the highest unique k-mers representation 
in all genomes with ~80%. 
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Fig. 2. 2. Genome representation at different k-mer size in Chinese Spring(RefSeq.v1.0) reference. 

The graph represents the percentage (%) of the genome of CS that is represented as a unique (blue) k-mer. For 
example, ~35% of the CS genome is represented in 31-mers as a unique k-mer (no other sequence in the genome has 
those k-mers). The orange line indicates the cumulative five which means that a particular percentage in y-axis of the 
genome of CS that is represented in five or less k-mers at given k-mer size. For example, using 31-mers ~55% of the 
genome is represented five times or less. Similarly for the ten cumulative (green line). 

 
Fig. 2. 3. k-mer frequency distribution of the eleven chromosome-scale assemblies. 

y-axis, k-mer count (Log) of the k-mer depth (frequency) in x-axis. High proportion of the k-mers is represented as 
unique as indicated with the highest values at the position 1 of x-axis (green line). After the first 5 (blue vertical line) 
occurrences (depth) the counts drops and stabilizes. Note that all genotypes are shown in the figure, but the curves 
overlap completely giving the impression of a single curve for each k-mer size. 

 

The number of unique k-mers in all pangenomes increases considerably after ~19 k-mer size and 
continue a smoothly up to 101 k-mer size (Fig. 2.4a). Although, very similar among pangenomes, 
k-mer profiles indicates slightly different levels of genome assemblies quality or real genome 

compositions among the wheat references. As expected, scaffold-level assemblies had overall 
more unique k-mers, which may reflect that scaffold level assemblies most likely do not assemble 
more complex repetitive regions and hence have a higher proportion of non-repetitive genome 
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regions than chromosome-scale assemblies. It may also indicate a high number of misassembled 
regions in the scaffold level assemblies giving rise to a high proportion if unique k-mers (Fig. 2.4b). 

 

 

Fig. 2. 4. Unique k-mer frequency distribution in the wheat pangenome.  

a) proportion of unique k-mers in the entire genome at different k-mer sizes. b) x-axis, percentage of unique k-mers 
in each of the references at different k-mer lengths. Solid lines are chromosome-level and dashed lines are scaffold-
level assemblies. 

 

In summary, our analysis revealed that the wheat chromosome-scale assemblies have a 

considerable representation of unique k-mers above >20-mers. Other studies have used this k-
mer size as a default. The length of the k-mer determines the total fraction of unique k-mers found 
in the entire genome. Ideally, longer k-mer sizes are preferred as they capture the uniqueness of 

a DNA sequence in a genome which is of importance to differentiate within genome regions (e.g., 
for genome assemblies) and to differentiate among genotypes (e.g., to find variations by k-mers). 
However, longer k-mers is high computing demanding and there is a limitation due to sequencing 
read lengths. Increasing the k-mer size escalates the probability of capturing sequencing errors 

from reads edges inside k-mer sequences. Therefore, there is a limit and trade-off with computer 
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burden, genome size, and read length to select for an optimal k-mer size. As described in our 
methods, we will leverage the already available 31-mers from the WatSeq project. In this analysis 

we confirmed that 31-mers are in the range of optimal k-mer size found which is >20-mers and a 
reasonable computer burden for hexaploid wheat. In addition, considering that the WatSeq 
samples available are DNBSeq short reads of 150 bp, k-mers larger than 51 bp would be a limitation 
since longer k-mer size in short reads has the risk to extend regions prone to errors at read edges. 

This would result in less resolution to detect variations since real information will be lost. 
Therefore, in this analysis we will employ 31-mers as our default for downstream analyses. 

In addition, our results also demonstrate a very high similarity on the k-mer profiles of the 11 

chromosome scale assemblies. This might be due to the use of the same pipeline to create all the 
assemblies and therefore prone to similar errors (Walkowiak et al., 2020). A second explanation 
would be that the wheat pangenome assemblies have overall similar genome identity since most 

of them are important cultivars selected, a part of Norin61 and CS. This hypothesis would be 
possible to test as other genome assemblies are released particularly from landraces and from 
wild relatives. Although not explored in this thesis, a more in depth analysis comparing k-mer 
profiles per chromosome and/or per genome region would reveal if genome differences among 

cultivars are masked by the highly repetitive regions nature of the wheat genome (e.g., 
transposons content) (Appels et al., 2018). 

 

2.4.1.2. k-mer distribution of raw reads 

In addition to the genome complexity described above, other aspects impact on the k-mer profiles 
results when working with raw reads instead of genome assemblies. For example, analysing k-mer 
profiles using raw reads is influenced by the sequencing platforms used to generate the reads, 

sequencing quality, and read length and depth. In our previous analysis we screened the wheat 
pangenome for k-mer profiles and overall, all the chromosome level assemblies had a similar k-
mer frequency. In this analysis we investigated the k-mer differences from raw reads. We aimed 

to detect sequencing differences in quality in our datasets to apply normalization/filtering criteria 
based on this information in downstream analysis. 

From the WatSeq panel, we explored the k-mer (31-mer) profiles of 375 randomly selected 
genotypes which have on average ~12-fold depth coverage based on the number of reads (Fig. 

2.5). Our results indicate that overall, most of the genotypes have similar coverage and k-mer 
profiles with few exceptions ranging from 9-fold to 14-fold. A few accessions had high multiple 
repetitive k-mers, which may be indicative of low-quality reads with a high error rate and low 



 43 

coverage (Table S2.6). Across these 375 samples we found that the peak of the k-mer distribution 
was between 9 and 11-fold depth. This slightly lower than the 12-fold coverage based on read 

counts is expected since a pre-filtering step to the initial raw reads was applied to remove low 
quality reads to reduce the computer burden for k-mer and mapping analysis (Cheng et al., under 
revision). 

 

 

Fig. 2. 5. 31-mers distribution of raw reads. 
The data is from 375 random WatSeq raw reads samples at ~10-15-fold coverage (average 12-fold) plus 23 
pangenome subsampled raw reads at approximately equivalent coverage (12-fold). Unique k-mers were removed 
from this dataset. A peak is reflected at ~9 to 11x depth indicating the approximately coverage of the reads after pre-
filtering step of cleaning and removing low quality reads from the initial raw reads. 
 

2.4.2. Implementation of Identity By State in python (IBSpy) to detect variations. 

2.4.2.1. Types of variations captured by k-mers. 

There are different k-mer based methods to identify and quantify genetic variations between 
genome sequences. Here, we describe a new algorithm using presence/absence of k-mers in 
genomic intervals. This approach registers three types of scores using a genome reference: 

“observed_kmers”, “variations”, and “kmer_distance”.  In all cases, the scores are measured in 50 
Kbp windows using a genome reference chromosome physical position. 

The rationale of using 50 Kbp window as our base starting point was the work demonstrated in 

(Brinton et al., 2020) using pairwise chromosome alignments. In their analysis, they found that 
when examining windows <50 Kbp, it was not possible to differentiate between identical-by-state 
(IBS) and near-IBS regions in wheat due to lack of sufficient variation in small windows (50 Kbp). 
For example, to define an IBS region between two genotypes (Brinton et al., 2020) set a cut-off of 

1 SNP in 10,000 bp which accounts for 99.99% sequence similarity. A one SNP in 10,000 bp allowed 
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flexibility for misassembles and sequencing errors. Using this criterion, they explored different 
window sizes (1 Mbp, 2.5 Mbp, and 5 Mbp) and selected 5 Mbp as optimal to detect IBS regions. 

Therefore, as starting we decided to initiate to explore 50 Kbp and expand larger windows as 
needed to define IBS regions by combining multiple 50 Kbp sub windows and will be described in 
Chapter 3. 

IBSpy uses two types of input data, a genome assembly and a k-mer database. The database can 

be generated from raw reads of any type, quality, or from genome assemblies (scaffold or 
chromosome scale). The algorithm parses the genome assembly on the go and splits 
chromosomes into 50 Kbp windows to record all possible k-mers ignoring unassembled regions 

with “Ns”. Based on these two sets of information, the three types of scores are calculated. We 
explain each in turn: 

 

2.4.2.2. Observed k-mers 

Based on the genome assembly and k-mer database, IBSpy counts the number of k-mers in the 50 
Kbp window from the reference also present in the k-mer database of a query sample. If all the 
31-mers are present, the score for the observed_kmers is equal to all possible k-mers in the 50 

Kbp window. An example of how observed_kmers are calculated is shown in Fig. 2.6. 
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Fig. 2. 6. IBSpy “observed_kmers” in window. 

Using 50 Kbp windows of the genome reference (grey), IBSpy compares all possible k-mers in a window reference 
sequence to the k-mers of a query sample (blue) (from raw reads, scaffold-level, or chromosome-scale assemblies) 
and count the number of observed k-mers within each window. The example shows a SNP (in red) between the 
reference (grey) and a query (blue) and how only the observed k-mers present in both, the reference, and the query, 
are counted. Next, the counts and the chromosome position are recorded, IBSpy moves to the next 50 Kbp window 
and the process is repeated until reaching the end of the chromosome and subsequently to the whole genome. 

 

2.4.2.3. Variations 

Similarly, as with the observed_kmers, to register the variations score, IBSpy parses 50 Kbp window 
of the reference assembly, but this time it reads each k-mer in the 50 Kbp from the start comparing 
one k-mer sequence at a time against the k-mer database of the query sample. If one or a set of 

“contiguous overlapping k-mers” from the reference are not present in the query sample, this is 
registered as a single variation. This would be equivalent to a ‘short-phased sequence’ captured. 
However, for simplicity, we will refer to them as a “variation”. This score includes the count and 
the window position from the reference to which they were mapped (Fig. 2.7). To differentiate 

between genetic variations as a more general term and IBSpy variations, we will refer as IBSpy 
variations in italics. 

query
CCTCGCCTCCGCGACCTGGAGCGATTGCTGGACGTCGGCTATGTGCCCGCGCAGCGCCGTGCC 
CCTCGCCTCCGCGACCTGGAGCGATTGCTGGGCGTCGGCTATGTGCCCGCGCAGCGCCGTGCC 
CCTCGCCTCCGCGACCTGGAGCGATTGCTGG 
 CTCGCCTCCGCGACCTGGAGCGATTGCTGGG 
  TCGCCTCCGCGACCTGGAGCGATTGCTGGGC 
   CGCCTCCGCGACCTGGAGCGATTGCTGGGCG 
    GCCTCCGCGACCTGGAGCGATTGCTGGGCGT 
     CCTCCGCGACCTGGAGCGATTGCTGGGCGTC 
      CTCCGCGACCTGGAGCGATTGCTGGGCGTCG 
       TCCGCGACCTGGAGCGATTGCTGGGCGTCGG 
        CCGCGACCTGGAGCGATTGCTGGGCGTCGGC 
         CGCGACCTGGAGCGATTGCTGGGCGTCGGCT 
          GCGACCTGGAGCGATTGCTGGGCGTCGGCTA 
           CGACCTGGAGCGATTGCTGGGCGTCGGCTAT 
            GACCTGGAGCGATTGCTGGGCGTCGGCTATG 
             ACCTGGAGCGATTGCTGGGCGTCGGCTATGT 
              CCTGGAGCGATTGCTGGGCGTCGGCTATGTG 
               CTGGAGCGATTGCTGGGCGTCGGCTATGTGC 
                TGGAGCGATTGCTGGGCGTCGGCTATGTGCC 
                 GGAGCGATTGCTGGGCGTCGGCTATGTGCCC 
                  GAGCGATTGCTGGGCGTCGGCTATGTGCCCG 
                   AGCGATTGCTGGGCGTCGGCTATGTGCCCGC 
                    GCGATTGCTGGGCGTCGGCTATGTGCCCGCG 
                     CGATTGCTGGGCGTCGGCTATGTGCCCGCGC 
                      GATTGCTGGGCGTCGGCTATGTGCCCGCGCA 
                       ATTGCTGGGCGTCGGCTATGTGCCCGCGCAG 
                        TTGCTGGGCGTCGGCTATGTGCCCGCGCAGC 
                         TGCTGGGCGTCGGCTATGTGCCCGCGCAGCG 
                          GCTGGGCGTCGGCTATGTGCCCGCGCAGCGC 
                           CTGGGCGTCGGCTATGTGCCCGCGCAGCGCC 
                            TGGGCGTCGGCTATGTGCCCGCGCAGCGCCG 
                             GGGCGTCGGCTATGTGCCCGCGCAGCGCCGT 
                              GGCGTCGGCTATGTGCCCGCGCAGCGCCGTG 
                               GCGTCGGCTATGTGCCCGCGCAGCGCCGTGC 
                                CGTCGGCTATGTGCCCGCGCAGCGCCGTGCC 
 

k-mers
from raw reads

(~12-fold)

Genome 
reference

IBSpy

k-mers in 50 kbp window 
(k=31)

[ window size – k-mer size ] - Ns

Query 
sample

reference
TCGCCTCCGCGACCTGGAGCGATTGCTGGGC

CTCGCCTCCGCGACCTGGAGCGATTGCTGGG

GCCTCCGCGACCTGGAGCGATTGCTGGGCGT

CCTCCGCGACCTGGAGCGATTGCTGGGCGTC

CTCCGCGACCTGGAGCGATTGCTGGGCGTCG

TCCGCGACCTGGAGCGATTGCTGGGCGTCGG

CCGCGACCTGGAGCGATTGCTGGGCGTCGGC

CGCGACCTGGAGCGATTGCTGGGCGTCGGCT

GCGACCTGGAGCGATTGCTGGGCGTCGGCTA

CGACCTGGAGCGATTGCTGGGCGTCGGCTAT

GACCTGGAGCGATTGCTGGGCGTCGGCTATG

CGCCTCCGCGACCTGGAGCGATTGCTGGGCG

CCTCGCCTCCGCGACCTGGAGCGATTGCTGG

CGTCGGCTATGTGCCCGCGCAGCGCCGTGCC
GCGTCGGCTATGTGCCCGCGCAGCGCCGTGC

GGCGTCGGCTATGTGCCCGCGCAGCGCCGTG

GGGCGTCGGCTATGTGCCCGCGCAGCGCCGT

*

*

Observed k-mers in 
window

+1

+1
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A variation can have different sequence lengths falling into three possible categories. 

a) A single SNP yields a variation = 2n-k. For example, when using 31-mers, a single SNP will 

generate a variation of 61 bp (Fig.2.7).  
b) A deletion in the query sample will generate a variation size = 2n-k + deletion size (Fig. 

2.8). 
c) An insertion in the query sample (deletion in the reference) will not be detected.  

d) Two SNPs whose distance is less than the k-mer size used (in this example SNPs closer than 
31 bp) will generate a variation size of 2n-k + the distance from the first to the last SNP 
found. This will be similar to the “kmer_distance” score illustrated in Fig. 2.9. In all cases 

the variations score will record a single variation for all these types of polymorphisms 
described. 

 

 
Fig. 2. 7. IBSpy variations score. 

Using 50 Kbp windows and 31-mers, IBSpy compares k-mers in a reference sequence to the k-mers of any query 
sample and count the number of variations within each 50 Kbp window. A variation is defined as a set of continuous 
overlapping k-mers from the reference completely absent in the query (square box). In this example, a single variation 
of 61 bp length is shown (at the bottom), which is the condensed score of all 31-mers having the A nucleotide (in 
yellow) not present in the k-mers of the query sample from raw reads (blue sequence). After recording this variation, 

CCTCGCCTCCGCGACCTGGAGCGATTGCTGGGCGTCGGCTATGTGCCCGCGCAGCGCCGTGCC 
CCTCGCCTCCGCGACCTGGAGCGATTGCTGGACGTCGGCTATGTGCCCGCGCAGCGCCGTGCC 
CCTCGCCTCCGCGACCTGGAGCGATTGCTGG 
 CTCGCCTCCGCGACCTGGAGCGATTGCTGGA 
  TCGCCTCCGCGACCTGGAGCGATTGCTGGAC 
   CGCCTCCGCGACCTGGAGCGATTGCTGGACG 
    GCCTCCGCGACCTGGAGCGATTGCTGGACGT 
     CCTCCGCGACCTGGAGCGATTGCTGGACGTC 
      CTCCGCGACCTGGAGCGATTGCTGGACGTCG 
       TCCGCGACCTGGAGCGATTGCTGGACGTCGG 
        CCGCGACCTGGAGCGATTGCTGGACGTCGGC 
         CGCGACCTGGAGCGATTGCTGGACGTCGGCT 
          GCGACCTGGAGCGATTGCTGGACGTCGGCTA 
           CGACCTGGAGCGATTGCTGGACGTCGGCTAT 
            GACCTGGAGCGATTGCTGGACGTCGGCTATG 
             ACCTGGAGCGATTGCTGGACGTCGGCTATGT 
              CCTGGAGCGATTGCTGGACGTCGGCTATGTG 
               CTGGAGCGATTGCTGGACGTCGGCTATGTGC 
                TGGAGCGATTGCTGGACGTCGGCTATGTGCC 
                 GGAGCGATTGCTGGACGTCGGCTATGTGCCC 
                  GAGCGATTGCTGGACGTCGGCTATGTGCCCG 
                   AGCGATTGCTGGACGTCGGCTATGTGCCCGC 
                    GCGATTGCTGGACGTCGGCTATGTGCCCGCG 
                     CGATTGCTGGACGTCGGCTATGTGCCCGCGC 
                      GATTGCTGGACGTCGGCTATGTGCCCGCGCA 
                       ATTGCTGGACGTCGGCTATGTGCCCGCGCAG 
                        TTGCTGGACGTCGGCTATGTGCCCGCGCAGC 
                         TGCTGGACGTCGGCTATGTGCCCGCGCAGCG 
                          GCTGGACGTCGGCTATGTGCCCGCGCAGCGC 
                           CTGGACGTCGGCTATGTGCCCGCGCAGCGCC 
                            TGGACGTCGGCTATGTGCCCGCGCAGCGCCG 
                             GGACGTCGGCTATGTGCCCGCGCAGCGCCGT 
                              GACGTCGGCTATGTGCCCGCGCAGCGCCGTG 
                               ACGTCGGCTATGTGCCCGCGCAGCGCCGTGC 
                                CGTCGGCTATGTGCCCGCGCAGCGCCGTGCC 
 

CTCGCCTCCGCGACCTGGAGCGATTGCTGGACGTCGGCTATGTGCCCGCGCAGCGCCGTGC

k-mers
from raw reads

(~13-fold)

Genome 
reference

IBSpy

k-mers in 50 kbp window (k=3)
[ window size – k-mer size ] - Ns

Query 
sample

reference
query

Set of continuous 
overlapping k-mers
(variation) 

TCGCCTCCGCGACCTGGAGCGATTGCTGGGC

CTCGCCTCCGCGACCTGGAGCGATTGCTGGG

GCCTCCGCGACCTGGAGCGATTGCTGGGCGT

CCTCCGCGACCTGGAGCGATTGCTGGGCGTC

CTCCGCGACCTGGAGCGATTGCTGGGCGTCG

TCCGCGACCTGGAGCGATTGCTGGGCGTCGG

CCGCGACCTGGAGCGATTGCTGGGCGTCGGC

CGCGACCTGGAGCGATTGCTGGGCGTCGGCT

GCGACCTGGAGCGATTGCTGGGCGTCGGCTA

CGACCTGGAGCGATTGCTGGGCGTCGGCTAT

GACCTGGAGCGATTGCTGGGCGTCGGCTATG

CGCCTCCGCGACCTGGAGCGATTGCTGGGCG

CCTCGCCTCCGCGACCTGGAGCGATTGCTGG

CGTCGGCTATGTGCCCGCGCAGCGCCGTGCC
GCGTCGGCTATGTGCCCGCGCAGCGCCGTGC

GGCGTCGGCTATGTGCCCGCGCAGCGCCGTG

GGGCGTCGGCTATGTGCCCGCGCAGCGCCGT

*

*
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IBSpy continues to scan the sequence of the reference across the 50 Kbp window until a new set of continuous 
overlapping k-mers are absent in the query sample. At the end of the 50 Kbp window, the reference chromosome 
position and the total number of variations are recorded before moving to the next 50 Kbp window and the process 
is repeated. Low variations count indicates high similarity between the 50 Kbp reference window in the assembly and 
the query sample, whereas high variation count indicates low sequence similarities. 
 

 

 

Fig. 2. 8. A 2 bp deletion counts as a single variation but has two kmer_distance counts. 
Example of a 2 bp deletion in the query sample (blue). The observed_kmers will score minus two from the total window 
size (as in Fig. 2.6), variations will be counted as one, and the k-mer distance will capture two counts. In all cases, 
these scores will be added to the other counts in the 50 Kbp window. 

 

2.4.2.4. k-mer distance 

When a two or more SNPs are closer than the k-mer size they are registered as a single variation. 
However, kmer_distance will be longer as all the k-mers between the SNPs are missing in the query 
sample. Therefore, the kmer_distance is calculated by the distance between the first and the last 

SNP within a variation. If there are additional SNPs in between the flanking SNPs, the distance will 
be the same (Fig. 2.9).  

CCTCGCCTCCGCGACCTGGAGCGATTGCTGG--GTCGGCTATGTGCCCGCGCAGCGCCGTGCCA 
CCTCGCCTCCGCGACCTGGAGCGATTGCTGGACGTCGGCTATGTGCCCGCGCAGCGCCGTGCCA 
CCTCGCCTCCGCGACCTGGAGCGATTGCTGG 
 CTCGCCTCCGCGACCTGGAGCGATTGCTGGA 
  TCGCCTCCGCGACCTGGAGCGATTGCTGGAC 
   CGCCTCCGCGACCTGGAGCGATTGCTGGACG 
    GCCTCCGCGACCTGGAGCGATTGCTGGACGT 
     CCTCCGCGACCTGGAGCGATTGCTGGACGTC 
      CTCCGCGACCTGGAGCGATTGCTGGACGTCG 
       TCCGCGACCTGGAGCGATTGCTGGACGTCGG 
        CCGCGACCTGGAGCGATTGCTGGACGTCGGC 
         CGCGACCTGGAGCGATTGCTGGACGTCGGCT 
          GCGACCTGGAGCGATTGCTGGACGTCGGCTA 
           CGACCTGGAGCGATTGCTGGACGTCGGCTAT 
            GACCTGGAGCGATTGCTGGACGTCGGCTATG 
             ACCTGGAGCGATTGCTGGACGTCGGCTATGT 
              CCTGGAGCGATTGCTGGACGTCGGCTATGTG 
               CTGGAGCGATTGCTGGACGTCGGCTATGTGC 
                TGGAGCGATTGCTGGACGTCGGCTATGTGCC 
                 GGAGCGATTGCTGGACGTCGGCTATGTGCCC 
                  GAGCGATTGCTGGACGTCGGCTATGTGCCCG 
                   AGCGATTGCTGGACGTCGGCTATGTGCCCGC 
                    GCGATTGCTGGACGTCGGCTATGTGCCCGCG 
                     CGATTGCTGGACGTCGGCTATGTGCCCGCGC 
                      GATTGCTGGACGTCGGCTATGTGCCCGCGCA 
                       ATTGCTGGACGTCGGCTATGTGCCCGCGCAG 
                        TTGCTGGACGTCGGCTATGTGCCCGCGCAGC 
                         TGCTGGACGTCGGCTATGTGCCCGCGCAGCG 
                          GCTGGACGTCGGCTATGTGCCCGCGCAGCGC 
                           CTGGACGTCGGCTATGTGCCCGCGCAGCGCC 
                            TGGACGTCGGCTATGTGCCCGCGCAGCGCCG 
                             GGACGTCGGCTATGTGCCCGCGCAGCGCCGT 
                              GACGTCGGCTATGTGCCCGCGCAGCGCCGTG 
                               ACGTCGGCTATGTGCCCGCGCAGCGCCGTGC 
                                CGTCGGCTATGTGCCCGCGCAGCGCCGTGCC 
                                 GTCGGCTATGTGCCCGCGCAGCGCCGTGCCA 
 

CTCGCCTCCGCGACCTGGAGCGATTGCTGGACGTCGGCTATGTGCCCGCGCAGCGCCGTGC

k-mers
from raw reads

(~12-fold)

Genome 
reference

IBSpy

k-mers in 50 kbp window (k=31)
[ window size – k-mer size ] - Ns

Query 
sample

reference
query

Set of continuous 
overlapping k-mers
(variation) 

TCGCCTCCGCGACCTGGAGCGATTGCTGGGC

CTCGCCTCCGCGACCTGGAGCGATTGCTGGG

GCCTCCGCGACCTGGAGCGATTGCTGGGCGT

CCTCCGCGACCTGGAGCGATTGCTGGGCGTC

CTCCGCGACCTGGAGCGATTGCTGGGCGTCG

TCCGCGACCTGGAGCGATTGCTGGGCGTCGG

CCGCGACCTGGAGCGATTGCTGGGCGTCGGC

CGCGACCTGGAGCGATTGCTGGGCGTCGGCT

GCGACCTGGAGCGATTGCTGGGCGTCGGCTA

CGACCTGGAGCGATTGCTGGGCGTCGGCTAT

GACCTGGAGCGATTGCTGGGCGTCGGCTATG

CGCCTCCGCGACCTGGAGCGATTGCTGGGCG

CCTCGCCTCCGCGACCTGGAGCGATTGCTGG

CGTCGGCTATGTGCCCGCGCAGCGCCGTGCC
GCGTCGGCTATGTGCCCGCGCAGCGCCGTGC

GGCGTCGGCTATGTGCCCGCGCAGCGCCGTG

GGGCGTCGGCTATGTGCCCGCGCAGCGCCGT

*

*



 48 

 

Fig. 2. 9. IBSpy kmer_distance score. Example of two SNPs closer than the k-mer size (31-mers). 

The two SNPs are 10 bp away of each other (pink bar) and therefore, kmer_distance will count 10. observed_kmers 
will count two and variations will count one. 

 

In summary, we stablished a method called IBSpy which captures three scores in a 50 Kbp window 
based on a genome assembly and a k-mer database: observed_kmers, variations, and 
kmer_distance. Each of the scores register similar, albeit slightly different features based on the 

type and number of variations between two samples. The output file from IBSpy is a plain tab 
separated file with seven columns. In the following analysis, we will explore differences captured 
by each of the scores and document each of them for their purposes. An example of an output file 

is shown in Table S2.9 with further descriptions https://github.com/Uauy-Lab/IBSpy. 

 

IBSpy variations: a fingerprint for the wheat genome and among subgenome homeologs. 

As an entry point to this analysis, we first explored the variations score. Using their chromosome 

positions and 50 Kbp window, we analysed the variations count distributions between two 
samples across the whole genome. We hypothesized that if there were differences between two 
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samples at the sequence level (SNPs or InDels), these will be captured by the number of 
presence/absence k-mers in a genome region (e.g., genome window size) by the appropriate k-

mers size and yield a genome wide fingerprint of variations from the different genome regions. 

To test this hypothesis, we used a single reference genome (Mattis) and compared it to two 
chromosome-scale assemblies, one of them known to be highly related to the reference (Julius) 
and the second known to be a more distant genotype Chinese Spring (CS) based on (Brinton et al., 

2020). We focused on the homeologs chromosome 6 (chr6) since chr6A is well characterized in 
our group. Julius and Mattis share two IBS blocks in telomeric regions of chr6A, two large IBS blocks 
on chr6B, and one main large block on chr6D. On the other hand, CS, does not share those blocks 

with Mattis. 

First, using the variations distribution in 50 Kbp window, we observed that chr6A had several 
windows with high variations across the chromosome physical positions, often with values higher 

than 100 variations. These windows with high variations counts were adjacent among them until 
a count drop was observed from high to low variations as we moved through the chromosome. 
Interestingly, telomere regions had more shifts in high and low variations counts (and vice versa) 
than centromere regions (Fig. 2.10a top). This could be indicative of recombination breakpoints 

and consistent with literature which shows higher recombination in telomeric regions of wheat 
chromosomes (Choulet et al., 2014). When exploring chr6B, in addition to the patterns of high and 
low variations detected on chr6A, we observed several adjacent 50 Kbp windows with low 

variations count close to “0” matching the IBS regions defined by (Brinton et al., 2020) and 
(http://www.crop-haplotypes.com/Wheat/haplotype/6B) from 50 to 255 Mbp and from 480 to 
665 Mbp (Fig. 2.10a middle). These patterns gave our first insight to detect IBS by counting IBSpy 
variations in windows. Exploring chr6D, we observed fewer windows with high variations (e.g., >30 

count) than in chr6A or chr6B, and these were mostly located at the end of the chromosome. The 
variations count between Mattis, and Julius were mostly low and tended to be lower than 30 
variations (Fig. 2.10a bottom). 

Overall, considering the three homeologs chromosomes we spotted four main levels of variations 
on wheat which were consistent across multiple 50 Kbp windows (Table 2.2). 

a) low and close to 0 variations in a continuous set of windows which often had values <10 

(e.g., chr6A below purple line, Fig. 2.10a top), 
b) below <30 with median at ~15 and which did not have windows with zero values (e.g., 

chr6A between yellow and purple lines, Fig. 10a top), 
c) high above >30 and median at 120; this category was relatively rare (e.g., chr6A between 

green and yellow lines, Fig. 10a top), and  

http://www.crop-haplotypes.com/Wheat/haplotype/6B
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d) very high >120 with median at ~350 variations (e.g., chr6A between blue and green lines, 
Fig. 10a top). An additional, and more distant category was detected at >350 with median 

500 when comparing variations among homeolog chromosomes (data not shown). The 
histogram of the distribution by chromosome clearly distinguished those levels of 
variations with peaks at “0”, at ~15 and <30, and at median 120. The 350 median level of 
variations is hardly noticeable since there were a few regions having this level of variation 

(Fig. 2.10b, x-axis Log scale). Comparing the histogram distribution of CS as a query, we 
observed that there were no peaks distributions with “0” counts and this comparisons had 
the highest peak with median of ~15 and <30 variations count category (Fig. 2.10c). 

 

Table 2. 2. Different levels of variations detected in 50 Kbp windows among genome 
assemblies and the hypothetical relatedness. 

Level Cut-off Proposed relatedness 

1 <10 Pairwise IBS 

2 <30 Immediate gene pool 

3 ~120 Intermediate gene pool 

4 ~350 Distant wild relatives 

5 >350 Homeologs A B D and deletions 

 

To validate the levels of variations detected and obtain a clearer picture of the variations, we 
tested the variations profile across the whole genome. Overall, we detected similar patterns with 

roughly higher variations in the B sub genome than in A and D subgenomes. At the same time, we 
detected more variations in subgenome A than in D (Fig. S2.1). 

In summary, our results show that the variations score by k-mers can detect genome differences 
between two genotypes and across the whole genome. Regardless of the relatedness of the 

genotypes employed, those differences could be detected. In general, five main levels of variations 
are distinguishable, one of them with variation values close to “0” in adjacent windows matching 
IBS regions defined in (Brinton et al., 2020). Consistent with previous (Akhunov et al., 2010; 

Balfourier et al., 2019; Cseh et al., 2021) results, IBSpy variations agrees that A and B subgenomes 
to have more diversity than D subgenome in terms of genetic variations detected by the common 
alignments methods. 
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Fig. 2. 10. IBSpy variations detects four main levels of genetic diversity in wheat. 

In all plots are the variations data from chr6A, chr6B, and chr6D using Mattis as a reference. a) y-axis variations count 
(Log) across chromosome physical positions (x-axis), b) histogram distribution of the variations in Julius query sample 
and in c) Chinese Spring. x-axis in a and b is Log scaled. Straight lines indicate different levels of variations as described 
in Table 2.2, pink = <10, yellow <30, green ~120, and blue ~350. Above 350 variations count are differences among 
A, B, and D subgenomes and large deletions. Note that Mattis (reference) shares higher sequence similarity to Julius 
b) than to Chinese Spring c) in agreement with (Brinton et al., 2020). 

 

Relatedness among IBSpy scores 

We next explored if observed_kmers and kmer_distance produced similar results to variations 
scores and how are they related among them. Plotting the distributions along chromosome 

physical positions, we detected that observed_kmers detected similar block patterns in the IBS 
regions on chr6B as with the variations score (Fig. 2.11ab, yellow boxes). The observed_kmer in a 
50 Kbp window was >99.95% with adjacent windows as seen with the variations. In (Brinton et al., 
2020), these two IBS blocks had >99.99% sequence identity similarity. 

Comparing kmer_distance score, we observed a similar block pattern, but the blocks were less 
defined and had several 50 Kbp window with high values mixing with the second level of variations 
(Fig. 2.11c, yellow boxes). One of the reasons that kmer_distance does not properly differentiate 

between categories may be the missing reads due to misassembles in the query or the reference 
and accumulation of counts. In comparison the variations score compensates for those errors and 
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“buffers” by combining continuous overlapping variations into one type. Therefore, from this 
analysis onwards, we will discard the use of kmer_distance in downstream analysis. 

 

 

Fig. 2. 11. IBSpy scores comparison using Mattis reference, Julius as query sample, and chromosome 6B example. 

In the three plots, each dot represents a 50 Kbp window and their corresponding score between Mattis reference 
physical positions (x-axis) and Julius query sample. a), observed_kmers score transformed to similarity percentage (y-
axis) and zoomed in from 98-100% between the two samples. b), Variations count score count (y-axis Log), and c) k-
mer distance score. Yellow boxes represent the two regions on chr6B that were identified as IBS by (Brinton et al., 
2020) and have low variations count and low k-mer distance. 

 

2.4.3. IBSpy variations with raw reads 

In the previous analysis we used the IBSpy output based on the chromosome-scale assemblies 
both as a reference and as a query samples. We next wanted to characterize IBSpy variations 
derived from raw reads. The aim was to validate IBSpy to detect variations using raw reads and 

characterize which factors impact on the results. Across these analyses we made use of IBS regions 
and sequence similarity among genome references defined in (Brinton et al., 2020) as positive 
controls. We investigated several parameters including: (1) sequence depth coverage, (2) 
removing or keeping unique k-mers, (3) k-mer lengths under different read lengths to detect 

variations, (4) different sequencing platforms and a combination of reads and, (5) using scaffold 
level assemblies as a query. In the end we selected a set of parameters for downstream analyses 
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based on the data available in this project and propose key points for further improvements in 
future developments. 

 

2.4.3.1. Sequence coverage (depth) 

Alignments methods and SNP calling are affected by sequencing depth. Genome assemblies and 
k-mer based algorithms are usually affected by read length where less coverage is needed with 
longer reads. In previous analysis, we explored k-mer profiles and characterized IBSpy variations 

equivalence to alignments sequence identity using chromosome-scale assemblies. In this analysis 
we tested and validated IBSpy to detect variations using raw reads with different sequence depths 
and defined an optimal sequence coverage by comparing known IBS regions. When working with 
k-mers and raw reads, it’s common to remove unique k-mers to avoid computational burden since 

unique k-mers are mostly originated from sequencing errors. As an entry point into this analysis, 
we made initial tests on IBSpy by removing unique k-mers, and we discuss further down the effect 
of including them. 

We first determined whether our approach was able to detect variations in a similar way as using 
chromosome-scale assemblies. We used a set of subsampling reads from 1 to 20-fold, a range of 
sequence depth commonly used in alignments and SNP calling pipelines. To account for similar 
dataset as in our genome assembly analysis, we subsampled raw reads that were previously used 

to generate the 11 pangenome assemblies (Walkowiak et al., 2020). For consistency, as an 
example, we will show the analysis between Mattis as a reference and Julius raw reads as a query 
genotype. 

We first plotted the variations count in 50 Kbp window across the chromosome physical position. 
We observed that above >4-fold coverage, a separation between two levels of variations were 
detected. The separation of these levels of variations were similar to the observed in 

chromosome-scale assemblies at ~10 – 12-fold coverage (Fig. 2.12). Similarly, the regions defined 
as IBS by Brinton et al., 2020 and available in http://www.crop-haplotypes.com, started to be 
detected as having several adjacent 50 Kpb window close to <10 variations count (Fig. 2.12, yellow 
boxes). 

Analysis of the same region but using the observed_kmers score detected a block with high 
percentage of observed_kmers in the same regions defined as IBS on chromosome 2B detecting 
two main blocks as seen in the variations count score (Fig. 2.13a). A detailed analysis 

demonstrated that the observed_kmers were above >99.98% in the IBS region when using 10 to 
12-fold coverage (Fig. 2.13b). 

http://www.crop-haplotypes.com/
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We next counted the variations distributions of the three six homoelogues (A B D) chromosomes 
(with unique k-mers removed). We noticed that with low coverage, a single distribution of the 

data was formed with a peak at ~350 variations count in all. Above ~10-fold we started to see a 
separation of the data and two distributions of the data were formed in some comparisons. One 
of the main peaks was located at ~30 and the second at <10 variations. Those distributions were 
clearly separated at ~12x. Above the 12-fold coverage few improvements to separate these 

distributions was gained (Fig. 2.17). Although these distributions were similar to the observed in 
the chromosome-scale assemblies analysis, we noticed that at 20-fold raw read coverage we 
obtained better resolution than with chromosome-scale assemblies. This would indicate that the 

chromosome scale assemblies had some misassembles or had missing data. 
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Fig. 2. 12. IBSpy variations score at different sequencing depths (removing unique k-mers). 
Illumina short reads (250 bp) of Julius (query) against Mattis (reference). a) x-axis (Log), IBSpy variations count in 50 
Kbp window at defined fold coverage from 1-fold to 20-fold. Y-axis chromosome physical position. The blue bars and 
the yellow boxes indicate the IBS regions depicted in (Brinton et al., 2020). 
 

 

Fig. 2. 13. IBSpy observed k-mers score at different sequencing depths (removing unique k-mers). 

Illumina short reads (250 bp) of Julius (query) against Mattis (reference). a) x-axis, IBSpy variations count in 50 Kbp 
window at defined fold coverage from 1-fold to 20-fold. Y-axis chromosome physical position. In yellow two IBS 
regions depicted in (Brinton et al., 2020) on chr6B. b), a zoom from a) in the 98 to 100 % region and from 0 to 300 
Mbp chromosome physical position as depicted by the pinks bars. 1-fold and 2-fold were omitted in b) since thy had 
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zero datapoints in the zoom in region at > 98% observed k-mers. The same analysis but keeping unique k-mers is 
shown in Fig. S2.2. 

 

We next compared the variations count of raw reads of Julius against the chromosome-scale of 

Mattis (Fig. 2.14) and scaffold level assemblies (Fig. 2.19). We observed that the variations 
detected using raw reads at 12-fold matched the variations counts by chromosome-scale 
assemblies (Fig. 2.14). In our previous analysis we explored know IBS regions among pangenomes 

(based on alignments in Brinton et al., 2020), and did a comparison with chromosome-scale IBSpy 
variations to determine that values of <10 in adjacent 50 Kbp windows were indicative of IBS 
regions. Those regions were from 50 Mbp to 250 Mbp and from 450 to 635 Mbp in chr6B between 

Mattis and Julius. These two genotypes share 23.1% IBS regions on the entire genome and 53.6% 
on chr6B. When we compared the IBS variations from raw reads, we observed consistent results 
as with chromosome scale to have variations count <10. 

When plotting the IBSpy variations from raw reads across chromosome positions, we observed 

similar profiles to the IBS variations regions from chromosome-scale assemblies. These variations 
matched the IBS regions defined in Brinton et al., 2020 to have variations <10 counts and 
continuous zero variations in 50 Kbp windows. These results were consistent in all the pangenome 

comparisons and across the whole genome. Our results suggest that IBSpy detects variations with 
raw reads to a similar extent as with chromosome level assemblies and that an optimal coverage 
for raw reads would be ~12-fold for wheat removing unique k-mers. 
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Fig. 2. 14. Raw reads at 12-fold vs chromosome-scale. 
Comparison of raw reads vs chromosome-scale assembly Julius vs Mattis reference. a) variations count in 50 Kbp 
window across chromosome 6B of Mattis physical positions. k-mers from the genome reference of Julius against the 
Mattis genome assembly. b) k-mers from 12-fold raw reads of Julius against Mattis genome reference. c) and d) similar 
to a and b but plotting the observed_kmers score in 50 Kbp window from 99 to 100% interval.  
 

We then tested if using the same genotype as a reference and querying raw reads from its own 
genotypes would detect variations. Our results demonstrated that there were mostly low 

variations across the whole genome. However, the variations were not zero and levels of 
variations were slightly higher at telomeric regions. These levels of variations were slightly higher 
with ~10-fold raw data coverage than with 20-fold. The histogram distribution indicates that most 

of the variations fall in the range of <10 variations, which is similar to the level of variations 
detected for IBS regions in our previous analysis. This provides an empirical value to determine 
our threshold for detecting IBS regions for downstream analysis (Fig. 2.15). These results suggest 
that our improvements in resolution detected by 20-fold compared to the chromosome-scale 

assemblies described above, may be due to misassembles in the reference or by high coverage 
reads having more probabilities to match a k-mer in the reference by chance. 
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Fig. 2. 15. Julius raw reads against Julius reference at different sequencing depths keeping unique k-mers as a 

quality control for IBSpy. 
a) Observed k-mers score of Julius at 2, 10, and 12-fold raw reads. As expected, at 10 and 12-fold most close to 100% 
of the observed k-mer score. b). Variations count of Julius at 2, 10, and 12-fold raw reads. Similarly, variations count 
<10 is present across the chromosome as indication of our background noise. This is most likely due to sequencing 
coverage, error, and reference misassembles. The variations <10 is consistent as the expected IBS regions found in 
other comparisons between two different genotypes.  
 

2.4.3.2. Removing or keeping unique k-mers 
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Reports have demonstrated that removing unique k-mers in k-mer analysis when low coverage 
raw reads are employed can lead to real sequence information being lost (Lee et al., 2020). This 

occurs because sequencing is not uniform across the genome and unique k-mers resulting from 
non-overlapping reads can be lost. In this analysis we compared the effect of keeping unique k-
mers using 12-fold coverage. 

We focused specifically on the distribution of data in the <10 and the <30 categories as this is 

where we hypothesised the removal of unique k-mers could have the biggest impact. As expected, 
when comparing raw data where unique k-mers were maintained vs removed, we observed that 
the distributions of the <10 and <30 data were more clearly separated with unique k-mers at 12-

fold. We observed an increase in the number of variations uniformly across the genome (Fig. 2.16) 
when removing unique k-mers, demonstrating that by keeping unique k-mers the resolution to 
separate the two distributions was improved. Keeping unique k-mers at 12-fold had similar 

resolution as with a chromosome-scale genome reference (Fig. 2.16, 2.17). Keeping unique k-
mers and using 10-fold coverage had similar resolution as with 12-fold removing unique k-mers. 

Depending on the read quality, in general, removing unique k-mers decreases the resolution by 
the equivalence of ~3x sequence coverage when using the IBSpy variations data. These results 

suggest that for datasets with <12-fold coverage, it is recommended to keep unique k-mers to 
compensate for the lack of sequencing coverage. Keeping unique k-mers when coverage is low 
(<12-fold) is particularly important to discriminate between variations counts ~<10 from the <30 

which would impact int the ability to distinguish IBS and near-IBS regions. To deal with computer 
burden and keeping unique k-mers, smaller k-mers sizes may be required, but this topic was not 
explored in this thesis. Since there is a computer cost to storage data and there is also a cost to 
generate 3-fold more sequencing data, therefore, users may need to set a trade-off in each 

particular case. 
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Fig. 2. 16. Removing unique k-mers impacts on the variations count captured by IBSpy. 
Variations count at different sequencing coverage using Mattis as a reference vs Julius raw reads from 1 to 20-fold as 
a query. a) keeping unique k-mers and b) removing unique k-mers. The yellow boxes indicate the IBS regions between 
Mattis and Julius on chromosome 6B. Purple boxes in a) at 8-fold coverage including unique k-mers indicate the 
equivalence on level of variations detected in b) at 8 – 12-fold coverage removing unique k-mers as sign of loss of real 
sequence information in unique k-mers important to differentiate IBS regions. 
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Fig. 2. 17. Variations distributions of unique k-mers vs non-unique k-mers at different sequencing depth. 
a) histogram distribution of the variations counts in 50 Kbp window of the chromosome six triad. b) distribution 
removing unique k-mers. Purple lines indicate the <10 variations count threshold as IBS regions in pairwise 
comparison. Red line indicates the 30 variations count threshold. Purple asterisk in a) are equivalent to red asterisks 
at 8 and 10-fold keeping unique k-mers to 10 and 12-fold removing unique k-mers. 

 

2.4.3.3. Sequencing platform 

In our previous analysis we demonstrated that IBSpy detects variations using paired Illumina short 

reads of different sizes. We showed that the length of the reads impact on the k-mer size used, 
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and the coverage needed. In this analysis we tested different sequencing platforms and defined 
the coverage needed when long reads (~10 Kbp) are available. We employed, PacBio HiFi reads 

and Illumina 250 bp reads. As an example, we used Kariega, a hexaploid wheat assembly which 
has HiFi reads publicly available. We compared the results of using long reads versus using their 
genome assemblies. Our results demonstrated that IBSpy can efficiently differentiate variations 
levels employing different sequencing platforms. We demonstrated that with longer reads (e.g., 

10 Kbp) less coverage is needed than with short reads (e.g., 150 bp). 

In routine sequence assemblies, the sequence length impacts the quality of the assembly contigs 
generated (Athiyannan et al., 2022; Walkowiak et al., 2020). This is due to the overlapping k-mers 

among reads and the k-mer size used. In this analysis we tested and validated the effect of read 
length on the variations detected by IBSpy. In our previous analyses we tested IBSpy to detect 
variations at different k-mer lengths with chromosome assemblies. We also validated that our 

pipeline effectively detects variations with ~12x, ~250 bp raw reads. However, in a pilot test we 
observed an increase on the number of variations detected across the genome when using 150 
bp reads. Since the WatSeq data and many publicly available re-sequencing projects use ~150 bp 
DNBSeq reads, in this analysis we aimed to investigate if the read length and k-mer size had an 

impact on the number of variations detected by IBSpy. In this analysis, a higher number of 
variations is a negative feature as it reduces our ability to distinguish between the IBS and near-
IBS categories.  

For this analysis we employed the publicly available HiFi reads of Kariega genome assembly 
(Athiyannan et al., 2022). To compare with our previous analysis, we employed sequencing depth 
from 2 to 20-fold coverage using either unique k-mers and removing unique k-mers. Our results 
demonstrates that with HiFi reads we would be able to define IBS regions using sequencing from 

4 to 6-fold coverage when removing unique k-mers. This based on the level of variations count 
<10 in 50 Kbp continuous windows (Fig. 2.18). This would be equivalent to 2 to 4-fold coverage 
when keeping unique k-mers (Fig S2.2 - S2.6). A few improvements were detected after 8-folds 

with HiFi reads. At 20-fold HiFi reads showed almost better resolution than with chromosome-
scale assemblies.  

It’s important to mention that keeping unique k-mers with HiFi reads is less computational 

demanding since there is less coverage needed and the sequencing errors at the end of each read 
are reduced. On the contrary, shotgun short reads generate much higher number of individual 
reads thus accumulating the sequencing errors from this high number of reads which are common 
at reads edges. Additionally, HiFi reads have much les error sequencing than the previous version 

of PacBio sequencing. 
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Fig. 2. 18. Long reads sequencing requires less coverage to efficiently detect IBSpy variaitons. 
HiFi reads at different sequence coverage Mattis and Kariega (removing unique k-mer). For comparison with Illumina 
short reads, in this example we removed unique k-mers. Keeping the unique k-mers of this analysis is on Fig S2.2 - 

S2.6. 
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2.4.3.4. Scaffold level assembly as a query 

In our previous analysis we explored using scaffold level assemblies to be used as a reference to 
detect variations and capture novel genome information not seen in the chromosome-scale 
assemblies. In this analysis we compared the level of resolution of scaffold assemblies as a query 

sample. We tested k-mers derived from the scaffold level assemblies of cultivars Robigus, Cadenza, 
Paragon, Claire, and Weebill and compared them using raw reads of these genotypes. As a 
common reference we use Mattis which shares 22.6%, 17.6%, 14.2%, 35% and 5.7%  IBS 

haplotypes in 5 Mbp similarity with Robigus, Cadenza, Paragon, Claire and Weebill, respectively 
based on (Brinton et al., 2020). Our results showed that in all cases, using k-mers derived from raw 
reads outperformed the scaffold-level assemblies. In all cases the number of variations was higher 
in scaffold-level assemblies compared with raw reads. As a case study we will show the results of 

Claire vs Mattis (Fig. 2.19). The reason may be because scaffold assemblies include several 
misassembles or may lack many sequences lost during the assembly process from raw reads. 
These analyses suggest that it would be preferred to use raw reads than scaffold assemblies to 

detect IBSpy variations. Furthermore, as NGS and long-sequencing progress, scaffold level 
assemblies are becoming less common. 
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Fig. 2. 19. Raw reads overcome scaffold-scale assemblies to detect IBSpy variations. 
Raw reads had 12-fold coverage. a) variations count comparison of scaffold assembly of Claire vs Mattis reference 
and b) raw reads of Claire vs Mattis reference. In a) and b) y-axis variations count. c) observed_kmers of scaffold level 
assembly and d) observed_kmers of raw reads against Mattis reference. In c) and d) percentage of observed k-mers. 
In all cases x-axis chromosome physical positions. In this analysis we removed unique k-mers from raw reads. These 
were k-mers derived from scaffold assemblies and the comparisons in from k-mers from raw reads. 

 

2.4.4. Alignment to IBSpy variations comparison 

IBSpy to sequence identity: After validating IBSpy to detect variations across the whole genome 

and selecting the appropriated parameters we wanted to define its equivalence with sequence 
identity. Therefore, to extrapolate IBSpy results into a common alignments and sequence identity 
between genotypes, in this analysis we compared the output of sequence alignments between 
fully assembled references to the IBSpy variations data. We analysed the published (Brinton et al., 

2020) pairwise MUMmer alignments among the ten pangenome cultivars (ArinaLrFor, CS, Jagger, 
Julius, Reach Lancer, Landmark, Mace, Norin61, Stanley, Mattis) with the corresponding variations 
counts from IBSpy outputs to compare the sequence identity against variations counts. In total, 

there were 90 pairwise alignments analysed per subgenome. We analysed the data in 500 Kbp 
windows (a total of 890,793 windows for the A genome) and kept those windows with at least 
60% breadth (coverage_prc) of alignment in the MUMmer output (77.8%; 693,102 500 Kbp 
windows for the A genome). For the B subgenome we analysed 1,197,901 windows in total and 

kept 814,519.0 (68%). For the D subgenome we analysed 854,385 in total and kept 751,509 87 
(96%). The tables with the conversions for the A genome are in: 

 https://opendata.earlham.ac.uk/wheat/under_license/toronto/Uauy_2022-09-

24_IBSpy_Triticum_monococcum_introgressions/data/nucmer_to_IBSpy_variations/. 

Tables for the B and D subgenomes were generated later in the project and are available in our 
group upon request freely available. 

For each 500 Kbp window, we had the average sequence identity between the pangenome 
reference and the other nine pangenome query samples (if over 60% breadth of alignment), 
alongside the IBSpy variations for the equivalent comparisons using the pangenome reference 
assembly and the k-mer database. We grouped the data based on the number of variations in 

increments of 10 variations per bin and determined the distribution of the sequence identity in 
each bin (Fig. 2.20). 

https://opendata.earlham.ac.uk/wheat/under_license/toronto/Uauy_2022-09-24_IBSpy_Triticum_monococcum_introgressions/data/nucmer_to_IBSpy_variations/
https://opendata.earlham.ac.uk/wheat/under_license/toronto/Uauy_2022-09-24_IBSpy_Triticum_monococcum_introgressions/data/nucmer_to_IBSpy_variations/
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Fig. 2. 20. IBSpy variations to sequence similarity. 

Relationship between IBSpy variations in bins of 10 and the percentage sequence identity of pairwise alignments in 
the A a), B b), and D c) genomes of hexaploid wheat. The data is filtered for alignments with at least 97.5% sequence 
identity across 60% of the 500 Kbp window and less than 250 variations per 50 Kbp. Percentage sequence identity ≥ 
99.99% was considered as IBS in pairwise whole genome comparison in Brinton et al., 2020. This sequence similarity 
it is equivalent to have 0-10 variations in 50 Kbp windows in our approach (yellow box) and therefore our hypothetical 
IBS regions. 
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Whole genome vs whole genome:  To compare multiple levels of variations among references we 
used the IBS regions defined in Brinton et al., 2020. These regions are IBS to have median > 99.99% 

sequence similarity in a pairwise comparisons. Sequences <99.99% but >99.95% would be 
considered as a near-IBS or sequences in the immediate wheat gene pool. Sequences <99.5% were 
considered as a more distant sequence similarity commonly found from wild relatives. 

Using these criteria, we identified the following variations patterns: 

a) IBSpy variations ≤ 10: Windows with ≤ 10 variations had median sequence similarity of ≥ 
99.99% based on the pairwise alignment values (1 SNP every 5,000 bp). This would be 
equivalent to IBS in Brinton et al., 2020.  

b) IBSpy variations between 10 and 30: This would be equivalent to two assemblies 
alignments of ≥ 99.95% (1 SNP per 1000 bp) and we would consider them related within 
the immediate gene pool (variations between cultivars and accessions). This would be 

equivalent to near-IBS regions in Brinton et al., 2020.  
c) IBSpy variations between 30 and 120: Windows under this criterion would be equivalent 

of sequence alignments > 99.55%, or roughly 1 SNP every 225 bp.  
d) IBSpy variations > 120: This would be equivalent to alignments with less than 99.55% 

sequence identity and are most likely reflective of comparisons between wheat and 
sequences derived from wild relative hybridizations in one of the samples (reference or 
the query sample).  

For example, for the A subgenome using these classifications, we assigned 28.1%, 48.7%, 5.2% and 
18% to the four categories outlined above in the ten pangenome references, respectively.  

Subgenome IBSpy variations similarity: To quantify the sequence similarity among the wheat 
genome in terms of IBSpy variations, we split and ran IBSpy by subgenome using the corresponding 

reference. For example, subgenome A from Mattis reference vs subgenome B from Mattis 
reference. Multiple comparisons indicate that variations between the A vs B, A vs D, and B vs D 
genome comparisons have >350 variations in 50 Kbp window (Fig. 2.21). This is equivalent to 

sequence alignments of <98.4%, which is consistent with the comparison expectations between 
the homeologs (Ramírez-González et al., 2018). These results suggest that roughly the three 
subgenomes are equally distant to each other. Using these subgenome vs subgenome 

comparisons and using the A or B genomes as a reference, we detected a variation count drop 
roughly in chromosomes centres. We hypothesize that those drops in variation counts to be more 
highly conserved centromeric histone H3 variant (CENH3) sequences (Fig. 2.21, yellow bar). 
Surprisingly, we did not detect this low variation peak when using the D subgenome as a reference. 

A possible explanation for this could be that the D subgenome centromere regions were not 
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assembled as accurately as A and B sub-genomes and sequences of this regions went into the 
chromosome unanchored (chrUn) or lost during the assembly. Other explanation would be that 

the D centromeres are more distinct to the A and B subgenomes due to a more distant divergence. 

 

Fig. 2. 21. Variations fingerprint among wheat homeologs subgenomes count (using genome of Mattis as an 

example). 
From top to bottom and from left to right in all cases; a) representative of the A subgenome (query) variations count 
against chr6B and chr6D (reference) across the chromosome physical positions. (right) variations histogram 
distribution of A subgenome vs B subgenome and D subgenome. b) B subgenome against chr6A and chr6D. (right) B 
subgenome (query) vs A subgenome (reference). c), D subgenome against chr6A and chr6B. (right) D subgenome 
(reference) vs A subgenome and B subgenome. Yellow bars indicate low variations count hypothesized as being the 
centromere regions in the corresponding subgenome used as a reference. Yellow box in b) indicates a region with low 
variations count which could be an indication of conserved region between D subgenome and B subgenome. 
Alternatively, it could indicate a misassembles from B subgenome misplaced in chr6D. 
 

In summary, we detected variations at the same level as with chromosome-scale assemblies. This 

is crucial since genome assemblies requires much higher sequence coverage, cost, and are time 
consuming to generate. We defined 12-fold and 150 bp reads as an optimal coverage to 
differentiate among variations levels of sequence identity in 50 Kbp windows and differentiate IBS 
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regions among cultivars. No major improvements were seen after 12-fold to 20-fold coverage; 
however, 20-fold may be useful to differentiate more precisely between hypothetical IBS regions 

(<10 variations) and near-IBS (<30 variations) if the reads are available. We demonstrated that our 
method can be validated by comparing chromosome raw reads against the genome assembly of 
the same genotype. This quality control test demonstrated that variations <10 are most likely 
background noise across the genome using raw data without unique k-mers. Further validations 

of the ideal coverage can be tested in a telomere-to-telomere genome assemblies against their 
raw reads at high coverage. Coverage of 10-fold and 150 bp reads may also be used to detect IBS 
regions, although unique k-mers would need to be included in this case. Long reads (>10 Kbp) 

need less coverage (in the range of 4 to 8-fold) to differentiate among levels of variations and IBS 
regions. Keeping unique k-mers is less computing demanding in long reads HiFi data because the 
low base call error rate and low number of reads compared to shot gun short reads. 

 

2.5. Discussion 

2.5.1. The wheat k-mer landscape 

Genome assembly research in wheat has advanced considerably in the last ten years. First, with 

the assembly and annotation of a chromosome-scale reference in 2018 (Appels et al., 2018) and 
two years later in 2020 with the pangenome project assembling 15 high quality genomes of 
important cultivars (Walkowiak et al., 2020). These projects have generated invaluable resources 

to the wheat community allowing to rapidly clone functional genes and use alternative genomes 
for QTL mapping and GWAS analysis based on modern cultivars instead of landraces (Walkowiak 
et al., 2020). Additionally, comparisons of the genome content among assemblies validated the 
repetitiveness of the wheat genome and the conservation of large haplotype blocks and near-IBS 

regions (Brinton et la 2020). This repetitiveness of a genome can be problematic for genome 
assemblies or alignments using short reads since they usually map to more than one position in 
the genome. 

In this project we employed these 15 genomes to differentiate between genomic variations based 
on k-mers rather than the more common alignment-based SNP calling. As an entry point, we first 
explored the k-mer distributions of these 15 genomes when using different k-mer sizes. We 

demonstrated that 40% of the wheat genome in the 11 chromosome-level assemblies is 
represented as unique k-mers when using 31-mers. Similarly, (Chapman et al., 2015) in an early 
genome assembly of a hexaploid wheat found that 45% of the genome is represented in unique 
k-mers when using 51-mers. In our study, when using 51-mers of the 11 chromosome-scale 
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assemblies, we found that almost 60% of the genome is represented as unique k-mers as 
demonstrated in Fig. 2.4. Comparisons with the maize (Zea mays) and barley (Hordeum vulgare) 

genome assemblies in other studies indicates similar profiles (Hufford et al., 2021; Jayakodi et al., 
2020; Liu et al., 2017). This may reflect the higher accuracy of modern algorithms and higher 
sequencing quality of the later assemblies compared to those ten years ago. Future assemblies 
may improve this accuracy as more genomes are becoming routinely assembles with long high-

quality sequencing reads. 

(Chapman et al., 2015) suggested that the three hexaploid wheat subgenomes are largely 
differentiated by 51-mers. In our analysis, we demonstrated that with 31-mers the three 

subgenomes are largely differentiated, and they show high differences on variations fingerprints 
using IBSpy as depicted in Fig. 2.21. We hypothesize that we can discriminate among subgenomes 
most likely because the conservation of the three genome copies is within genes and which out of 

those ~55-50 % are in triads. Outside these regions there is a high level of genome diversity 
accumulated during the wheat genome evolution and gene flow by natural and induced 
hybridizations from closely related wild relatives as previously suggested by (Dubcovsky & Dvorak, 
2007). 

 

2.5.2. Variations and methods to detect them. 

Genomes maintain a large repertoire of genetic variations among individuals of a specie. After the 
NGS revolution, SNPs became the most prevalent and therefore the most common type of 
polymorphism employed in population genomics and phenotype-genotype associations studies in 

plants (Tibbs Cortes et al., 2021) and other organisms (Uffelmann et al., 2021). In wheat this is not 
the exception. For example, recent studies using a collection of 3,990 wheat accessions from 106 
countries characterized genome wide SNPs using “exome capture” (F. He et al., 2019), “DArTseq” 

technology (Sansaloni et al., 2020), and SNPs arrays (Shorinola et al., 2022; Soleimani et al., 2022). 
In a different study using a collection of 298 bread Iranian wheat varieties and landraces and 
employing GBS, detected 46,862 SNPs (Rahimi et al., 2019). In their study they found that Iranian 

landraces harbours more genetic variation than elite varieties where the B and A genomes had 
more SNPs than the D subgenome in agreement with other studies. Using these set of variations, 
Rahimi et al., 2019 grouped all the accessions in three main groups. Group 1 having mainly modern 
varieties meanwhile group 2 and 3 containing mostly landraces. Similarly, using an array of 20K 

SNPs Cseh et al., 2021 defined six ancestral groups in a collection of winter wheat landraces from 
central Europe and identified that the European winter cultivars originated mainly from four 
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ancestral groups (Cseh et al., 2021). Although informative, SNPs often does not capture large 
structural variations and are bias towards gene content regions in the genome. 

There are different approaches to detect genome variations (De Coster & Van Broeckhoven, 2019; 
Hwang et al., 2015; McKenna et al., 2010). At the time of writing this thesis, SNPs arrays, GBS, and 
capture probe sequencing are the most common and affordable platforms to detect variations 
between genotypes. However, in recent years WGS started to emerge in several important crops 

as the top choice for genotyping. As a result of the later, there is a vast amount of publicly available 
sequencing data which has generated a new challenge and opportunity on how to exploit these 
resources. When sequencing, either by genome reduction (GBS or capture-probes sequencing) or 

WGS, the most common pipeline is to align raw reads to a reference assembly with a subsequent 
step for variant calling. However, alignments-based methods introduce bias towards the reference 
used, intergenic regions with high polymorphisms often produce poor alignments (Armstrong et 

al., 2019), and represent a computer burden challenge in large genome sizes such as in wheat. In 
the SNP calling approach, a popular software to call variations after genome alignments is 
Freebayes (Garrison & Marth, 2012). 

In this research we propose an alternative approach to the alignment methods based on k-mers 

called IBSpy. It is useful for large datasets to detect variations, condenses multiple types of 
variations from the whole genome (including intergenic regions) into one, and can be employed 
among genetically distant individuals such as landraces and wild relatives. Under the right 

parameters, and enough sequencing coverage, this method can differentiate between IBS and 
near-IBS regions with almost half of the computer burden compared to WGS alignments. Another 
advantage of IBSpy, is to easily combine and compare genome variations using multiple genome 
references. Something that was envisioned for alignment methods but again, constrained by 

computer burden in large genomes. 

A method to align short reads simultaneously against multiple references was proposed by 
(Schneeberger et al., 2009). Later, variations calling based on multiple references as a graph 

representation started to emerge with the progress and low cost of NGS and recent advances on 
long-read sequencing technologies (Ebert et al., 2021; Garg et al., 2021). For example, PanGenie, 
is an algorithm that uses haplotype-resolved assemblies to detect variations by inference. This 

approach is based on k-mer and short reads sequences and it has the advantage to detect a wide 
type of genetic variations (Ebler et al., 2022). 

Alternative methods to detect variations purely using k-mer started to emerge and those methods 
either involved a genome reference or directly comparing k-mer in within raw reads (Gaurav et 

al., 2022; Rahman et al., 2018; Voichek & Weigel, 2020). The disadvantage however is that the 
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context of the genome information is unknown and to define the region or the sequence there is 
an extra step to map k-mers back to a reference or by locally assembling raw reads, which is again, 

computing demanding and bias to genome assemblies. Similarly, a novel method called 
BayesTyper  (Sibbesen et al., 2018) combines graph representation and k-mers. It uses a graph 
representation of a reference in conjunction to the pre-defined variations to genotype and capture 
structural variations by k-mers. 

Apart of SNP variations, a few studies integrate structural variations (SV) into genomic analyses. 
This because most software are based on SNPs scores and the difficulties to detect these SV in the 
genome accurately (Jakubosky, Smith, et al., 2020). Consequently, several important functional 

variations other than SNPs, are overlooked during genomic analyses (Jakubosky, D’Antonio, et al., 
2020; Voichek & Weigel, 2020). SVs are important drivers of crop domestications since they are 
associated in key agronomically important traits. However, SVs present a challenge to detect and 

integrate into genome analysis. To embrace this challenge alternative methods to the common 
SNP calling were developed to call SVs. For example, (Eggertsson et al., 2019) developed 
GrapTyper2, a method to detect structural variations in humans using a genome graph. This 
approach can detect either large or small SVs in large populations of individuals. With IBSpy we 

unify all types of variations into a single type including SVs. This can be beneficial for downstream 
analysis such as GWAS analysis since large SV are often linked to important phenotypes 
(Jakubosky, D’Antonio, et al., 2020). 

In our study, we integrate different types of genome variations into a single score called variations 
or observed k-mers using presence/absence of k-mers. Using these variations calls, we translated 
the equivalence of our variations to sequence similarity of alignment methods. This was 99.99%, 
a SNP in 5 Kbp, in (Brinton et al., 2020) sequence identity to the equivalence of ~<10 variations in 

50 Kbp windows in our study using IBSpy. These results are of importance because in our method 
we employed raw reads instead of genome assemblies. These variations encompass SNPs and 
InDels mainly. Copy number, duplications, and chromosome rearrangements are integrated as a 

single variation count and do not reflect the actual size or chromosome position of these large SV. 
Therefore, the large chromosome re-arrangements or duplications will not be detected intact as 
they are from raw reads. This because the presence/absence of the k-mer signal will be detected 

regardless of the chromosome physical position in the query sample.  

(Brinton et al., 2020) suggested that near-IBS regions to have >99.95% and <99.99% sequence 
identity in a pairwise whole genome alignment comparison which is the expected diversity after 
10,000 years of evolution and the mutation rate divergence which is 99.968%. They also suggested 

that <99.5% sequence identity may come from mor distant gene pools from wild wheat relatives. 
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In our analysis we found that variations <30 in 50 Kbp window, is the genetic variation expected 
after 10,000 years of genetic divergence. We detected two more levels of variations above >120 

and 350 count that we hypothesize come from distant gene pools from wild relatives. A more in 
depth on this topic will be addressed in Chapter 4. 

In the present thesis we mainly explored the IBSpy variations score. The observed_kmers and 
kmer_distance were added later to the IBSpy software and were compared against IBSpy 

variatons. In a pilot study, we noticed that observed_kmers gave similar result to the variations 
score allowing to differentiate between IBS and near-IBS regions. Similarly, these two scores 
allowed to compare introgressed regions and detect the hypothetical haplotype blocks similar to 

the observed in Brinton et al., 2020. The observed_kmers score measured similarity in percentage 
similar to the sequence identity score Brinton et al., 2020 as shown in figures 2.11, 2.13-14, and 
2.19. 

Due to time constrains, in the present study we decided to explore in dept the variations score. 
However, observed_kmers will be analysed further in a follow up project. On the other hand, the 
kmer_distance score resulted in a low resolution to differentiate among genome regions (IBS, 
near-IBS, and introgressions), therefore, we discarded its use early in the project. An additional 

pilot analysis was done combining two or two of the three scores to call haplotypes. However, we 
obtained similar haplotype calls with the constrain of an increase in computer burden. Haplotype 
calls will be addressed in Chapter 3. 

 

2.5.3. Effect of raw reads on genome studies 

Innovation in sequencing chemistry has revolutionised the analysis of genomes. Different 
sequencing platforms use specific chemistry reactions to read or predict nucleic acids and report 
specific genome sequence reads. Those differences are reflected in the sequence read length and 

base call quality prone to different error rates. Depending on the study objective and budget, users 
may decide to select a particular sequencing platform to use or to combine two or more methods. 
For example, long reads are preferred for genome assemblies (Athiyannan et al., 2022; Aury et al., 

2022) meanwhile short reads are common in population genetics or GWAS studies (Zhao et al., 
2022; Zhou et al., 2021; Zhou et al., 2020). 

When detecting variations from raw reads, the type of reads, sequencing platform, read length, 
and depth can impact on genome variation types identified, number, and accuracy. Additionally, 

conditional to the organism, the sequencing coverage needed to call variations differs. For 
example, to call SNP variants in the wheat genome usually ~10-fold is required. Less than 10-fold 
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it is also employed with constrains in SNP calling accuracy. Alternatively, methods to detect SNPs 
variations with ~<1-fold and imputations are also becoming popular to reduce costs to genotype 

large populations (Adhikari et al., 2022; Bradbury et al., 2022). 

In this thesis chapter, we evaluated the IBSpy software under different parameters and types of 
sequencing and described the main features to fine tune accordingly to the objective of the 
analysis which was to differentiate IBS vs near-IBS and introgression regions. These parameters 

were evaluated for hexaploid wheat, but a similar road map can be followed to determine the best 
parameters in other organisms. We measured different parameters of raw reads and described 
some of the most important factors influencing IBSpy results. As shown in other studies, there is 

a trade-off among read depth coverage, sequence length, computing resources, and costs. In our 
analysis we defined that with sequencing length of 150 bp reads the optimal coverage ranges from 
12 to 15-fold depending on the quality of the reads and removing unique k-mers. This coverage is 

similar to studies calling SNP variations with the routine alignment methods with the advantage of 
a reduced computer burden in our method. 

Similarly, depending on the objective of the project and species, a specific sequencing depth may 
be required. For example, to assembly a wheat genome a coverage of ~30-fold using PacBio HiFi 

reads is usually required which has on average read length of 15.7 Kbp (Athiyannan et al., 2022). 
On the other hand, using Illumina short reads at 250 bp, >150x is commonly used (Walkowiak et 
al., 2020). These requirements are similar in other cereals such as maize with ~22-fold and 15.6 

Kbp average length using PacBio HiFi reads (Hon et al., 2020). Similar sequencing coverage and 
length were required for barley (Jayakodi et al., 2020) and in cucurbitaceous like watermelon 
(Deng et al., 2022). 

Another parameter to consider in genome studies is the quality of the raw reads. This is of 

particular importance in genome assemblies. A pre-step to reduce the sequencing error in raw 
reads is to remove unique k-mers to avoid assembly errors. In our approach, IBSpy parses the 
presence/absence of the k-mers in the query sample from raw reads and compare it with the 

presence of those k-mer in a genome assembly. Therefore, unique k-mers from sequenceing 
errors in raw reads are mostly unnoticeable and have minor impact on variations detection. In this 
analysis we tested the impact on IBSpy by keeping or removing unique k-mers. We demonstrated 

that unique k-mers are informative in our analysis and therefore, the optimal coverage when 
keeping unique k-mers ranged from 10 to 12-fold for 150 bp read length. 

Similar to genome assemblies, the length of the reads impact on IBSpy to detected variations. For 
example, we demonstrated that an optimal coverage for 150 bp reads is in the range of 10 to 12-

fold as mentioned before. However, for 250 bp reads the optimal coverage ranges from 8 to 10-
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fold keeping unique k-mers. Using HiFi reads, which have on average ~10 Kbp read length, the 
optimal coverage ranges from 4 to 6-fold keeping unique k-mer while removing unique k-mers 

range from 6 to 8-fold. Altogether these analysis revealed information to consider when using 
IBSpy to detect variations based on and raw reads. Depending on the aim of the project, computer 
infrastructure, and budget, users may select a trade-of on storage and sequencing costs. 

In this analysis we provide a new approach to count variations across the genome comparing any 
genotype having 12-fold coverage and short 150 bp raw reads length. This method focuses on a 
new score to count variations in 50 Kbp windows. Comparisons with other methods are feasible 
providing a sensitivity and specificity benchmarking against the routine SNP calling approach for 
example. In our analysis we provided an example of the equivalence of our variations scores 
against the sequence identity comparing whole genome mummer alignments as described in 
section 2.4.4. Our results demonstrates that we can differentiate genome regions among cultivars 
and that IBS regions detected by whole genome sequence identity analysis are equivalent to have 
≤ 10 variations in 50 Kbp consecutive windows as shown in Fig. 2.11. Further evaluations would 
compare the number of SNP detected in 50 Kbp by the routine mapping analysis. However, since 
our method integrates InDels into the count as a variation this would need to be considered when 
analysing. A sensitivity and specificity metric would consider those SNPs as a ground truth and 
IBSpy variations count as a test to detect an equivalent level of variation. By the time of writing 
this thesis a VCF file integrating those SNPs are in progress to be publicly available and will allow 
further benchmarking including the haplotype calls described in Chapter 3.  
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3. IBSpy: a multi-genome approach to call haplotypes in wheat. 

In this chapter Dr. Ricardo Ramirez-Gonzalez generated the files of the syntenic windows among 
the 11 chromosome-scale pangenome assemblies using the mummer alignments and gene 
projections generated by Dr. Jemima Brinton described in Brinton et al., 2020 and in this chapter 
in Fig. 3. 14. 
 
We thank members of the Uauy Lab by generating and providing the spike morphology data for 
haplotype GWAS analysis in section 3.4.2.1 and 3.4.2.2. In particular, we thank Anna Backhaus, 

Andy Chen, and James Simmons who led the project for sowing and collecting the Watkins 
phenotypic data within our group. 

We thank Simon Berry from Limagrain for providing the rust phenotypic data as part of the 

collaboration with the WatSeq project for the haplotype GWAS analysis described in 3.4.2.3. 

In section “3.4.2.4, Wheat Blast” of this chapter, Dr. Paul Nicholson and Tom O’Hara generated 
the phenotype scores as part of a collaboration. At the time of writing this thesis, the results of 

this collaboration are in progress for publication using the IBSpy variations and haplotype based 
GWAS from a subset of the Watkins collection for wheat blast resistance: “The wheat powdery 

mildew resistance gene Pm4 also confers resistance to wheat blast”. (O’Hara et al.). 

 
3.1. Chapter summary 

In this chapter, we defined a method to call haplotypes using the variations detected by k-mers 
described in Chapter 2. We tested different algorithms to predict haplotypes and describe the 

advantages and disadvantages of each. We built a database using collection of more than >1,000 
genotypes including wild wheat relatives, landraces, and modern wheat cultivars. We used this 
database to track haplotypes from landraces into modern cultivars. The method has been 

validated to call haplotypes at 1 Mbp resolution using multi-genome assemblies information. This 
parameter can be adjusted for different windows size and/or sliding windows, however, care must 
be had to avoid losing accuracy. Our results suggest that large haplotype blocks were brought into 
modern cultivars from landraces and those blocks have been maintained in modern elite cultivars 

through >80 years of breeding. We tracked haplotype blocks inherited from parents and relatives 
from three generations and these haplotypes are consistent with publicly available pedigree 
information. We successfully validated the haplotypes calls using the analysis of the ten 

pangenome assemblies in previous reports in wheat and a collection of Ae. tauschii accessions. 
Novel unexploited haplotypes were identified in landraces. As expected, we identified a higher 
number of haplotypes in telomeric regions than in centromeric regions where haplotypes blocks 
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were extended in physical size. Using phenotypic information, we conducted a haplotype GWAS 
analysis and detected genome regions with associations to disease (wheat blast, yellow rust) and 

quantitative traits (spikelet number, max floret number) at 1 Mbp resolution. Using wheat blast as 
a case study, we identified significant associations using reference genomes which did not carry 
the resistance haplotype. Together, these results demonstrated the utility of our haplotype calls 
using an alternative approach to the conventional methods using k-mers instead of alignments 

and SNPs methods. This method complements with the already stablished approaches and has 
the advantages to integrate a pangenome informed haplotype calls which are useful in genome-
phenotype associations studies to capture genome regions private to each assembly and can 

handle large genome information from WGS data and large genomes. 

  



 79 

3.2. Introduction 

3.2.1. Methods for Haplotype building 

With advances in sequencing technology, high density genotyping markers are now available for 
several important crops at low cost which allows to genotype thousands of individuals  (Rasheed 
et al., 2017). These high-density markers are becoming common to build haplotype maps in crops 
and there are different methods to define them and vary depending on the data available and the 

purpose of the study. Haplotypes can be as short as two adjacent SNPs, large chromosome blocks 
regions (Brinton et al., 2020), or include the whole chromosome (Garg, 2021). 

Common approaches to define haplotypes involve using SNPs and by LD in population studies 

(Pritchard & Przeworski, 2001). Historically, SNPs arrays were predominantly used to reconstruct 
haplotypes based on a population basis from multiple individuals and these methods relied mainly 
on LD (Balfourier et al., 2019; Cseh et al., 2021). With the relatively cheap sequencing, modern 

methods to reconstruct haplotypes based on raw reads are now possible. Short reads capture 
limited information of haplotypes compared to long read sequencing (Kronenberg et al., 2021). 
Therefore, using short reads, it is common to map to a genome reference followed by SNP calling 
and haplotype reconstruction (Garrison & Marth, 2012). However, with sufficient sequencing 

depth of short reads, haplotypes can also be reconstructed by local assembling (Gaurav et al., 
2022; Voichek & Weigel, 2020). More recently, with advances in third generation sequencing such 
as Oxford Nanopore Technologies (Wenger et al., 2019) and PacBio long-read sequencing (Y. Wang 

et al., 2021), chromosome-scale haplotypes are now possible.  For example, the HiFi technology 
generate sequences of 10-20 Kbp with accuracy >99% at great scale with the recent technological 
improvements (e.g., https://www.pacb.com/revio/). These advances are particular of importance 
and useful to define haplotypes in heterozygous organisms or polyploids and will become 

prevalent in the coming years. 

While a maximum of two haplotypes would be present in a child from two homozygous parents, 
multiple haplotypes will be present at the population level at a given chromosome region. Thus, 

depending on the type of reads and objective of the study, different methods are preferred. 
Selecting linked SNP based on LD has been one of the most widely employed method to define 
haplotypes in plants (Al Bkhetan et al., 2019; Caldwell et al., 2006; Hyten et al., 2007; Kim et al., 

2007). 

 

https://www.pacb.com/revio/
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3.2.2. Crop haplotype maps 

Haplotype maps can be defined as the characterization of common genetic variations in an 

organism or a population in the context of genome recombination hotspots and linkage 
disequilibrium (Altshuler et al., 2005). The first haplotype map in plants was reported in 2007 
(Clark et al., 2007) in the model plant Ae. thaliana. With novel methods to generate high-density 
markers, variation characterization of thousands of individuals rapidly expanded and the 

availability of haplotype maps of several crops have been released with pivotal information for 
genetic studies (Bukowski et al., 2017; Gore et al., 2009). 

For example, the maize haplotype map revealed that high genetic diversity exists among important 

maize cultivars. These highly divergent haplotypes and heterozygosity has been mainly influenced 
by the high recombination rate of this crop (Gore et al., 2009). The rice haplotype study identified 
regions in the genome most likely driving its domestication and demonstrated high level of 

diversity in wild populations (Huang et al., 2012). The tomato haplotype map revealed LD 
differences between wild tomatoes and domesticated tomatoes suggesting that modern varieties 
specialization derived from market preferences lead to the genetic differences in this crop 
(Robbins et al., 2010). Similarly, the characterization of the genetic variations in the barley genome 

and the pangenome assemblies from multiple accessions identified polymorphisms that suggest 
the geographic expansion and breeding drivers of specific structural variations (Jayakodi et al., 
2020). 

 

3.2.3. Wheat haplotype map 

Despite its importance for global food production, until recently, wheat has lagged on genomic 
studies due to the size and complexity of its genome (e.g., polyploidy, high percentage of repeats). 

The wheat haplotype map from a reduced representation of its genome using exome capture, was 
made available in 2015 (Jordan et al., 2015). In the same year a consensus map of wheat using RIL 
populations was made available by GBS (Li et al., 2015). Later, with the release of the first complete 

chromosome-level assembly and annotation in 2018, an extensive haplotype map using targeted 
re-sequencing of 890 worldwide hexaploid, tetraploid wheats, and wild relatives, was release (F. 
He et al., 2019). In addition, WGS projects with high density markers are becoming prevalent and 

high-density maps are now possible also for this crop. With the release of ten additional whole 
chromosome assemblies in 2020 (usually referred as the wheat pangenome), a further 
characterization of large structural variations in wheat have been unravelled (Walkowiak et al., 
2020). Together, all these events will help to further explore the wheat genome impacting on 
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genetic population studies and breeding allowing to characterize large germplasm collections, 
which remained until recently, unexplored in germplasm banks (Vikram et al., 2016; Wingen et al., 

2014). 

  

3.2.4. The Watkins haplotype diversity 

As briefly introduced in Chapter 1, the wheat Watkins collection is a reservoir of genetic diversity 

for wheat in the UK and worldwide. Until recently this collection has remained mostly unexplored 
at the genome level due to the complexity and size of the wheat genome. An initial genetic 
diversity characterization was carried out using a reduced number of microsatellite markers 

(Wingen et al., 2014). Using this genetic information, 119 accession representing most of the 
diversity of the collection was defined as a core set. Employing this core set, a nested association 
mapping (NAM) population of 60 biparental populations was developed using the spring cultivar 

“Paragon” as the common parent. These populations were genotypes with ~200 SNP markers and 
were used to create a consensus map for wheat. Characterization of these maps corroborated 
wheat as having high collinearity, but translocations events were also common in the multiple bi-
parental populations (Wingen et al., 2017). After this analysis, no further characterization has been 

done at the whole genome level of the collection. 

Recently, in a case study to validate the use of the already available genotyping SNP array data, 
Brinton et al., 2020 (Brinton et al., 2020) used this data to assign haplotypes to the Watkins 

collection in a specific QTL region across chromosome 6A. Although informative, the array was not 
able to differentiate several haplotypes in the panel (which were known to be different based on 
the pangenome assemblies). To increase the resolution to differentiate among haplotypes, 
Brinton et al., 2020 designed 17 haplotype-informed markers based on the pangenome 

assemblies. These markers identified common haplotypes to the Watkins and modern wheats and 
a wide array of Watkins specific haplotypes which were absent in modern cultivars. Importantly, 
private Watkins haplotypes were associated with positive effects for agronomically important 

traits. In conjunctions, these studies revealed the potential of landrace collections and the 
limitations of current genotyping platforms to capture novel variations. Therefore, a whole 
genome haplotype analysis of the collection would be valuable to identify novel variations and 

facilitate the integration into modern varieties. 

In summary, in this chapter we addressed the challenge to define IBS regions and build a novel 
method to call haplotypes using IBSpy variations count based on k-mers from WGS raw reads at 
~12-fold coverage. We explored different methods to define IBS across the whole genome, 



 82 

multiple genome references, and more than >1,000 landraces and modern wheat accessions. We 
characterized the wheat genome based on these haplotypes and propose a global haplotype 

database along with the “variations fingerprint” defined in Chapter 2 for each of the accessions 
that can be used to put in context of any new genotype including hexaploid, tetraploid, or wild 
wheat relatives. We give case study examples of the haplotype-phenotype analysis for qualitative 
and quantitative traits and highlight the usefulness of the Watkins collections to deliver 

unexploited genomic regions into modern wheats and to track historically used haplotypes into 
modern wheats. 

 

3.3. Methods 

3.3.1. Germplasm 

To evaluate the haplotypes, we created different groups of sub samples. Each group is summarized 

in Supplemental Table S3.1. Sub-grouping was made to answers different questions regarding 
the pipeline and how it was influenced by the number of genotypes, types of samples, and reads 
used in each case. 

 

3.3.2. Gaussian Mixture Models (GMM) 

We employed the GMM which implements the Expectation Maximization algorithm from the API 
sklearn.mixture.GaussianMixture package in Python. We tested the model using IBSpy raw 
variations counts and the Log transformation of the data. The code to automatically call IBS and 
non-IBS using the GMM model is under the IBSpy software, and it is described in 

https://github.com/Uauy-Lab/IBSpy section IBSplot. 

 

3.3.3. Precision and Recall 

We used the IBS and non-IBS regions defined in (Brinton et al., 2020) as our positive control and 
compared against the IBS regions defined by IBSpy. As output, we had four categories: 

a) True Positive (TP) when the two methods agree in an IBS region,  

b) False Positive (FP) when only IBSpy calls a region as IBS, but not Brinton et al., 2020. 
c) True Negative (TN) when the two methods agree in non-IBS regions, and  
d) False Negative (FN) when IBSpy calls a region non-IBS but Brinton et al., 2020 called this 

region as IBS (Fig. 3.1). 

https://github.com/Uauy-Lab/IBSpy
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Fig. 3. 1. Precision-Recall expected outputs comparing IBSpy vs Brinton et al., 2020 IBS regions. 

 

3.3.4. Clustering algorithms 

For the hierarchically-clustering heatmap we used the API described in: 

https://seaborn.pydata.org/generated/seaborn.clustermap.html. We used the default 
parameters, which employs the ‘Euclidean’ distance metric to calculate the spatial distance among 
query samples. The linkage method to calculate cluster uses the ‘average’ method also called 

UPGMA (unweighted pair group method with arithmetic mean) (Sokal, 1958). 

To calculate the Affinity Propagation (AP) haplotypes, we used the API described: https://scikit-
learn.org/stable/modules/generated/sklearn.cluster.AffinityPropagation.html 

We used the default parameter and under different “damping factors” (dmp) as follow: 

a) high_dmp: 0.5, 0.6, 0.7, 0.8, 0.9, 0.91, 0.92, 0.93, 0.94, 0.95, 0.96, 0.97 
b) inter_dmp: 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9 
c) low_dmp: 0.5, 0.52, 0.54, 0.56, 0.58, 0.6, 0.65, 0.7 

To calculate the Silhouette Coefficient score (SC) we used the API in: https://scikit-
learn.org/stable/modules/generated/sklearn.metrics.silhouette_score.html. The algorithm was 
described in (Rousseeuw, 1987). The implementation of the complete pipeline is in the final 

version of IBSpy (v.0.4.6) in https://github.com/Uauy-Lab/IBSpy. 

 

3.3.5. Phenotypic data 

We used phenotypic data collected from 2020 and 2021 in Norwich UK for spike morphology. 

Briefly, 1 m rows of the Watkin collection were grown at the Church Farm Experimental Station in 
Bawburgh, Norfolk. At harvest, 10 spikes from each accession were harvested and total spikelets 
and grains per spikelet (termed maximum number of florets) were counted. Rust phenotypic data 

True Positive (TP):
Brinton == Our method

False Positive (FP):
Our method only

IBS non-IBS

True Negative (TN):
Brinton == Our method

False Negative (FN):
Brinton only

https://seaborn.pydata.org/generated/seaborn.clustermap.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.AffinityPropagation.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.AffinityPropagation.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.silhouette_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.silhouette_score.html
https://github.com/Uauy-Lab/IBSpy
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was provided by Limagrain based on pathology assays using Puccinia striiformis fsp. triticeae 
isolates defined as Pink and Red as described in (Hubbard et al., 2015). Wheat blast data was 

provided by Tom O’Hara (JIC) and was from leaf inoculation assays using a Magnaporthe oryzae 
Triticum Super Race Avirulence (SRA) isolates. 

 

3.3.6. hapGWAS 

We adjusted the AP numerical haplotype calls by window to presence/absence and assigned 
unique names. E.g., if we had 10 haplotypes in a chromosome physical position from 0 to 1 Mbp 
windows (1 Mbp window), we transformed those haplotype calls to presence “1” or absence “0” 

of all genotypes in the WatSeq collection to have it (1) or not have it (0). These ten haplotypes had 
a unique name and had the same chromosome physical position from 0 to 1 Mbp. The next 
window had the position 1 to 2 Mbp and so forth. Then, we adjusted the kGWAS 

(https://github.com/wheatgenetics/owwc/tree/master/kGWAS) described in (Gaurav et al., 2022) 
to run associations with our haplotypes using a presence/absence matrix which uses a Generalized 
Linear Model (GLM). PCA dimensions to account for population structure was constructed by using 
a VCF file generated by our collaborators using the same set of samples (Cheng et al., under 

revision) by mapping Illumina raw reads against CS reference (RefSeq v1.0). We ran hapGWAS with 
the default parameters as defined in (Gaurav et al., 2022). 

 

3.4. Results 

3.4.1. Calling haplotypes 

In this section we determined a model to categorize IBS regions and comment on the pros and 

cons of the different methods tested. To evaluate each approach, we did benchmark across the 
models and chromosome positions under different parameters and evaluated their performance 
by comparing to the haplotypes called by (Brinton et al., 2020). In this section we aimed to identify 
regions across the genome where our pipeline confidentially calls haplotypes or where errors may 

occur and select the parameters to build a final haplotype database. 

 

3.4.1.1. Binary category; IBS and non-IBS 

In our previous analysis when counting variations in 50 Kbp we observed genome regions with low 
variations counts <10 that matched the IBS (haplotypes) regions defined in (Brinton et al., 2020) 

https://github.com/wheatgenetics/owwc/tree/master/kGWAS
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in multiple genome assemblies. These variations count data had two or three differentiable 
mixture distribution shapes on histogram plots of the data. We hypothesised that the low variation 

counts distribution is an indication of IBS regions in the genome between a query sample and a 
reference for IBSpy data. 

Exploring the data using a scatter plot across chromosome physical positions, four levels of 
variations categories were detected: <10, <30, <120, and >350 variation counts. We hypothesize 

that the category <30 is the diversity between elite hexaploid wheat vs elite or vs elite and 
landraces (1 SNP in 2,000 bp) variations. Windows with variations values >120 threshold are likely 
wheat hybridizations with distant relatives including tetraploid and diploid ancestors. Based on 

previous observations we also hypothesize that <10 variations are IBS regions. To validate this 
hypothesis, we classified IBS and non-IBS regions in pairwise comparisons using the pangenome 
assemblies and compared them to IBS regions defined by chromosome alignments in (Brinton et 

al., 2020). 

To automatically define IBS regions, we used the Gaussian Mixture Models (GMM) for data 
categorization into IBS or non-IBS against the genome references. We explored window size of 50 
Kbp and ranging from 100 to 1000 Kbp. We found that using this model (GMM) we could 

differentiate with the least error using 500 Kbp in pairwise comparisons. As an example, we show 
the histogram distribution of the variations count in 500 Kbp window in (Fig. 3.2a). In this example 
we could differentiate two main distributions of the data. The variations count in 500 Kbp window 

was similar to when using 50 Kbp window. With 500 Kbp windows, we observed a clearer 
separation of the data with the constrain of losing resolution. In these resultis, the low variations 
count matched precisely the IBS regions defined in (Brinton et al., 2020) between Mattis and Claire 
chr6A as a case study (Fig. 3.2b).  

The histogram distribution of the data defined by the GMM model as an IBS grouped <50 
variations count in 500 Kbp window as an IBS region. This is equivalent to have <10 variations 
count in 50 Kbp window (Fig. 3.3a). When plotting the IBS windows defined by the GMM model 

across the chromosome physical position we detected that they matched with the IBS block 
defined by Brinton et al., 2020 (Fig. 3.3b). Using these windows defined by the GMM model we 
reconstructed the entire haplotype block as depicted in (Fig. 3.3c). 
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Fig. 3. 2. Low variations intervals match previous defined IBS regions (Brinton et al., 2020). 
Mattis (reference) vs Claire (query) variations count in 500 Kbp window. a) histogram distribution in 500 Kbp window. 
b). Variations count across chromosome 6A physical positions. The arrows indicate the IBS regions defined in Brinton 
et al., 2020 as depicted in green bar in b (bottom). 
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Fig. 3. 3. Haplotype blocks generated by the GMM model using the variations count score. 
In this example we show IBS and non-IBS regions on chromosome 6A of Mattis as a reference and Claire as a query. 
a) histogram distribution in 500 Kbp window coloured as IBS (cyan) regions and non-IBS regions (yellow) defined by 
the GMM model. b). Variations count across chromosome 6A physical positions by colour in each category. c) final 
reconstruction of the haplotype blocks defined by the GMM model. 

 

3.4.1.2. Benchmarking (Precision and Recall) 

To validate the defined IBS regions based on GMM, we used the Precision-Recall metric (Saito & 
Rehmsmeier, 2015). In (Brinton et al., 2020), IBS regions were called based on 5 Mbp windows. In 
our method we selected 500 Kbp. Regions where the two methods called an IBS block were 
defined as True Positives (TP), regions where only IBSpy called IBS were defined as False Positives 

(FP), regions called as non-IBS by the two methods were True Negative (TN) and regions called IBS 
only by alignment-based method were defined as False Negative (FN). Using these categories, 
overall, we recall ~80% of haplotypes defined by alignments at ~80% accuracy. Using those 

categories, we plotted each of the categories across the chromosome physical positions (Fig. 3.4). 
Using the whole genome of Mattis vs Claire, we observed that most of the FP were located at 
haplotype block edges. Considering that Brinton et al., 2020 used 5 Mbp to define IBS regions and 
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the GMM model uses 500 Kbp, ten times more resolution, this is consistent. In addition to the 
haplotype edges differences, we detected FP regions in the middle of extended large blocks. These 

FP blocks are most likely because Brinton et al., 2020 used the gene content of the scaffold 
assemblies in Claire as a criterion to assign IBS blocks, therefore, it could be that the FP regions 
found within blocks does not contain genes and were not included in the Brinton et al., 2020 
analysis (Fig. 3.4).   

 

Fig. 3. 4. Precision-Recall outputs chromosome physical positions. 
Here we are exemplifying two chromosomes: chr6A (top) and chr3B (bottom) of raw reads (12-fold) 250 bp of Claire 
(query) against Mattis reference assembly. Using haplotype regions from Brinton et al., 2020 as a positive control to 
test our GMM model we expected four outputs. For IBS: TP when the two methods call and IBS region. FP when only 
IBSpy call an IBS region. Similarly, non-IBS generates TN and FN when the two methods and only IBSpy call a non-IBS 
region, respectively.  Variations counts (y-axis) within 500 kbp across chromosomes physical position (x-axis in Mbp). 
Blue dots indicate IBS regions captured by our approach only. Red dots indicate regions called as IBS in Brinton et al., 
2020 not captured by IBSpy. The cyan dots where the two methods agree to call IBS region, and the yellow dots where 
the two methods agree to call non-IBS region. 
 

3.4.1.3. Tracking haplotypes in modern wheat 

Using the IBS regions defined by the GMM model, we next wanted to evaluate if we could track 
back genome regions in pedigree related cultivars. In our dataset we had three modern cultivars: 

Flame and Wasp which are the direct parents of Claire, an important UK variety (Fig 3.5). Using 
this pedigree as a case study, we called IBS regions using the GMM model and compared regions 
shared to a common reference (Mattis). Our hypothesis was that if Claire shared an IBS region 

with Mattis, at least one of the parents (Flame or Wasp) should also share this IBS region with 
Mattis. 
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Fig. 3. 5. Claire (UK variety) pedigree. 
A simplified pedigree of Claire based on information from http://wheatpedigree.net and Helium software (Shaw et 
al., 2014) to construct the hierarchical pedigree. Flame and Wasp are the direct parents of Clare. Flame and Wasp 
have a common parent, Hobbit, which is one generation above. In this project we have WGS (~12-fold) of Hobbit, 
Wasp, Flame and Claire. Furthermore, we have the genome scaffold assembly of Claire from the plus 10 pangenome 
project.  

 

Using chr6A as an example, we observed that Claire shares a block from 100 to 440 Mbp with 
Mattis and this region was also shared by Flame and Mattis but not by Wasp and Mattis (Fig 3.6a, 

cyan colours and black dashed box). These results suggest that Flame was the donor of chr6A into 

Claire in the 100 to 440 Mbp region. In addition to the common IBS region to Mattis, we detected 
a “variations fingerprint” that extended outside the IBS region from 440 to 580 Mbp in Claire and 
Flame with high similar level of variation. Therefore, we hypothesize that the region inherited to 

Clare from Flame must be larger (Fig. 3.6a, grey box). 

To further validate our hypothesis, we anchored the scaffold level assembly of Claire to CS 
(RefSeq.v.1.0) as a high-quality chromosome reference to obtain the coordinates positions of the 
scaffolds in Claire. Using these projections, we ran Claire as a reference and compared the IBS 

regions to Flame and Wasp. As predicted, the IBS region between Flame and Claire extended from 
60 to 580 Mbp (Fig. 3.6b, blue dashed box). In addition, we detected that Wasp shares the region 
with Claire from 0 to 60 Mbp and from 560 Mbp to the end of the chromosome (Fig. 3.6b, red 

boxes). These results support our hypothesis and indicates that two main recombinations took 
place on chr6A between Flame and Wasp that gave rise to the chr6A of Claire: one at 60 Mbp and 

Claire

Hobbit

Flame Wasp

http://wheatpedigree.net/
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the second between 560 to 580 Mbp. Our results also detected a region shared by both parents 
(560 to 580 Mbp) and hence we cannot assign to a unique parental source (Fig. 3.6b, between 

dashed lines).  

To further investigate the fixed regions in Clare at 560 to 580, we analysed the IBS calls from Hobbit 
into Claire. Hobbit is a common parent of Flame and Wasp. As expected, we found that Hobbit 
shares the IBS block at 560 to 580 Mbp with Claire which further supports that this region was 

brought intact from Hobbit to Claire either through Flame or Wasp (Fig 6b, blue bar). We propose 
that those blocks are inherited to Claire either from Flame, Wasp, or both in Fig. 6c, where some 
regions are fixed as depicted by asterisks. 
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Fig. 3. 6. Large IBS blocks are maintained through generations. 

GMM prediction of IBS regions (cyan) and non-IBS (yellow) using a 500 Kbp window variations count. a), Variations 
across chr6A of Flame, Wasp, and Hobbit against Mattis reference. Note, Mattis is not directly involved in the Claire 
pedigree, but it is used as a common reference to detect IBS regions. b), IBS regions using scaffold of Claire reference 
projected into CS reference chromosome positions. c) proposed haplotypes passed intact from Flame (green) and 
Wasp (grey) into Claire, and from Hobbit (blue) into Claire through Flame and Wasp. Dotted lines and asterisk indicate 
regions that are IBS in the parents and hence fixed in the progeny of Claire. 

 

In summary, with this analysis we detected IBS regions in pairwise chromosome-scale references 

at high Precision and Recall rate using the GMM model similarly to the regions in Brinton et al., 
2020. Importantly, we also detected IBS regions using raw reads at ~12-fold coverage. Using this 
IBS calls we tracked back a fixed IBS region which indicates that large blocks are kept intact 

intentionally or unintentionally by breeding selection. This is of significance because if a gene or a 
group of genes involved in agronomically important traits are located at the fixed region, the 
chances to improve a new cultivar will be restrained. On the other hand, if a breeder wants to 
maintain this region intact and only recombine and select outside the region, this information will 

be of pivotal interest for a breeding decision. 

Equally important, we indirectly detected a variations fingerprint in Claire and Flame using Mattis 
as common referent parent and validated this “fingerprint” between the two cultivars (Flame and 

Clare) to be IBS. These results are of importance because, in theory, we could determine IBS 
regions or haplotypes in any pairwise comparisons using raw reads not only against the reference, 
but among raw reads samples without the need of a direct genome assembly of each accession.    

 

3.4.1.4. One reference; multiple queries 

In our previous tests, we classified IBS and non-IBS regions based on a reference assembly. 
Importantly, we realized that some genotypes had a similar variations fingerprint across defined 
chromosome regions when using a common genome reference. This profile was maintained 
between two query samples regardless of being IBS or non-IBS to the reference genome. 

Furthermore, such variations fingerprints were maintained between the two query samples 
irrespectively of the genome reference tested (Fig 3.6a, black and grey dashed squares). We 
realised that two genotypes that share the same variations fingerprint against the same reference 

would be most likely IBS between them. We hypothesized that these differences and similarities 
among samples could be measured by similarity distances metrics which are common in clustering 
algorithms and can handle data from multiple individuals at once instead of pairwise comparisons. 
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To address this hypothesis, we tested the hierarchical clustering algorithm which is common in 
data analysis clustering (Bar-Joseph et al., 2001; Müllner, 2011; Murtagh & Contreras, 2012). 

Hierarchical clustering builds clusters by merging or splitting samples successively using different 
metrics of measure defined by the user. To test this clustering as a case study to our data, we 
focused on genomic regions surrounding known QTLs of haplotypes reported previously in the 
literature, the YR7 yellow rust resistance loci (Marchal et al., 2018) which represents a highly 

diverse region, and the RHT-B1 locus which is highly conserved by breeding selection in several 
WatSeq genotypes.  

The yellow rust disease resistance YR7 locus: The YR7 locus is located on chr2B and has been 

characterised previously by (Marchal et al., 2020; Marchal et al., 2018). This region harbours 
several NLR genes, including Yr7 and Yr5a/Yr5b, and it is considered as highly diverse region from 
a sequence conservation viewpoint. In CS (RefSeq v.1.0) the boundary of the region is between 

the TraesCS2B02G486000 (683,034,442 bp) and TraesCS2B02G490200 (687,635,975 bp) genes. 
As a case study and controls, we used the defined haplotypes (Marchal et al., 2020; Marchal et al., 
2018) and pedigree information where, Cadenza, Paragon, Thatcher, Grafton, Skyfall, and Remy 
share the same Yr7 haplotype (C G A). The original source of Yr7 comes from a tetraploid wheat 

cultivar Iumillo introduced into Thatcher (hexaploid). 

Our clustering results confirmed that these genotypes share the same haplotype as they were 
clustered together across the region (Cadenza, Paragon, Thatcher, Grafton, Skyfall, and Remy). 

Watkins WATDE0052, WATDE0050, and WATDE0067 corresponding to the ID names W397, 
W387, and W496, respectively, in Marchal et al., 2018, are also reported to carry the Yr7 haplotype 
(C G A) and were identical to Cadenza. Consistently, in our analysis WATDE0052, WATDE0050 and 
WATDE0067 are identical among them in the exact Yr7 region (Fig. 3.7, blue bar group), but they 

are slightly different to Cadenza when adding ± 3 Mbp flanking region (Fig. 3.8, blue and red boxes 
groups). Marchal et al., 2018 defined WATDE0033 (W246) to have the “G A G” non-Yr7 haplotype. 
However, in our analysis using both the exact Yr7 regions and the ± 3 Mbp flanking region we 

observed that WATDE0033 is identical to WATDE0052 which has the C G A Yr7 haplotype (Fig. 3.8, 

red group). 

The Mace and Wyalkatchen genotypes clustered in the same group as with Cadenza Yr7 group of 

lines when using the exact Yr7 region. However, using the ± 3 Mbp flanking region, they formed a 
separated cluster group. (Marchal et al., 2020) found a 99.98% sequence similarity in the Yr7 
region between Landmark, Stanley, and Mace against Cadenza, therefore a near-IBS region. It 
could be that our clustering analysis cannot differentiate a few SNPs within the exact Yr7 region 

and genome flanking information is needed to differentiate these “long-range blocks”. These 
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blocks could be informative to further investigate similar and more distant haplotype blocks to the 
Yr7 locus for phenotypic characterization against the yellow rust disease. 

Most of the other samples are also consistently clustered together in agreement with our previous 
results when using the GMM model and pedigree information described in our previous section. 
For example, the cluster of Claire includes Flame, Wasp, Hobbit, and Revelation, which are known 
to be related by pedigree among them are in the same group either using the exact Yr7 region and 

with the flanking region. These results support our hypothesis that clustering algorithms can be 
used to identify genotypes sharing sequence identity similarities or identical haplotypes using a 
common reference as a “template”. Importantly, these sequence similarities can be corroborated 

if the same set of samples are compared against to other genome references when available as 
with pangenome assemblies that can have different genome information in their syntenic regions.  

 

Fig. 3. 7. YR7 locus exact region using CS reference. 
In blue Yr7 carriers detected in (Marchal et al., 2018) In green and yellow, non-Yr7 carriers. Three main clusters are 
formed using the exact gene boundaries of the YR7 locus from TraesCS2B02G486000 (683,034,442 bp) to 
TraesCS2B02G490200 (687,635,975 bp) based on CS (RefSeq v1.0). IBSpy variations were transformed to sqrt for the 
clustering. 
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Fig. 3. 8. YR7 locus ± 3 Mbp flanking region using CS reference. 
In blue Yr7 carriers detected in Marchal et al., 2018. In green and yellow, non-Yr7 carriers. Seven main clusters are 
formed using 3 Mbp flanking region of the gene boundaries from the YR7 locus from TraesCS2B02G486000 
(683,034,442 bp) to TraesCS2B02G490200 (687,635,975 bp) based on CS (RefSeq v1.0). The blue bar indicates the 
exact YR7 locus region. IBSpy variations were transformed to sqrt for the clustering. 

 

In summary, we validated that clustering algorithms can group similar genotypes sharing a genome 

region by using IBSpy variations counts from a comparison against a common reference (CS in this 
example). Changing the flanking region size, some of the samples clustered in a different group, 
as it would be expected if recombination had occurred on the edges of the Yr7 haplotype interval. 

Overall, we observed a consistency with previously predicted haplotypes (Marchal et al., 2020; 
Marchal et al., 2018) and found that clusters were often related by pedigree. Genotypes having 
known Yr7 haplotypes clustered together. 

 

3.4.1.5. Multiple reference clustering (hierarchical clustering) 

To combine multiple references in our analysis we used the gene projections based on CS 
reference (RefSeq v1.0) to anchor syntenic regions from each of the other pangenome genotypes. 
To find the syntenic regions among references we used a common reference as a “template”, and 
we named it “assembly” to differentiate among the other references. For example, when using CS 
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as a template assembly, we use the gene annotations in CS to find the syntenic regions in other 
pangenome references by searching the projected gene location. We only integrated reference 

regions if the corresponding gene was present and located in the same chromosome as in the 
assembly. Using this additional information, we hypothesized that it would help us to discriminate 
among the tested genotypes samples more precisely. For example, in our previous analysis when 
using the individual genome reference of CS, we could not differentiate Mace, Landmark, Stanley, 

and Wyalkatchen from the Cadenza Yr7 group of lines when using the exact Yr7 region (Fig. 3.7). 
On the other hand, using the syntenic windows from multiple reference of the Yr7, although still 
very similar clusters, they are clearly different to the Cadenza group (Fig. 3.9). Marchal et al., 2020 

found a 99.98% sequence similarity (a near-IBS region) in the Yr7 locus between Landmark, 
Stanley, and Mace vs Cadenza. Our results with the multiple reference analysis support these 
differences as they are located in a separated cluster from Cadenza. These differences are 

evidenced by the Landmark, Stanley, Mace, and Mattis references where H1 have a block with 
high level of variations are shown in orange-clear colour (Fig. 3.9). 

Using this multi-genome reference approach clustering, in addition to the Yr7 locus, we could 
differentiate five clusters which we hypothesize belong to different haplotypes. Therefore, we 

manually classified as being H1 - H5 haplotypes in the region where H1 is the Yr7 haplotype which 
includes Thatcher, Grafton, Cadenza, Paragon, Remy, and Talent (Fig. 3.9, coloured boxes). These 
haplotype carriers are consistent with the haplotypes defined in (Marchal et al., 2020; Marchal et 

al., 2018) and are pedigree related. 

In summary, our results were consistent when testing multiple genome references individually or 
combined depending on the genome information included (exact locus region or adding flanking 
regions). However, using the multi-reference approach and the exact boundaries of the region we 

could differentiate the Yr7 carriers precisely. This analysis supports that using multiple pangenome 
references in a single clustering analysis allows to differentiate highly similar samples, e.g., the 
Mace from the Cadenza Yr7 haplotype. Furthermore, using multi-references we identified 

additional cluster groups suggesting that there are multiple haplotypes in the YR7 locus. It is 
important to mention that in this analysis we used a reduced number of samples to validate our 
method using known haplotypes. However, in our WatSeq dataset, we have > 1000 genotypes. It 

is likely that out of the haplotypes identified in this pilot analysis, there will be multiple additional 
and private haplotypes either from landraces or modern cultivars still unexploited just in this locus.  
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Fig. 3. 9. Clustermap using syntenic regions from multi-references of the YR7 locus exact region. 
IBSpy variations count were sqrt transformed before clustering. The exact region ranges from the 
TraesCS2B02G486000 (683,034,442 bp) to TraesCS2B02G490200 (687,635,975 bp) gene position in CS (equivalent 
region as in Fig. 3.7). y-axis, clustered groups of different cultivars and our hypothetical haplotype groups. In blue, 
haplotype H1, Yr7 carriers detected in (Marchal et al., 2018). The other Haplotypes depicted in colours (H2 – H5) are 
non Yr7 carriers. x-axis, each of the references having a syntenic region of the YR7 locus. Different sizes of the colour 
bars indicate physical genome differences in length. Yellow boxes indicate our quality control of references used both 
as a query and as a reference. E.g., k-mers created from the genome assembly of CS was used as a query against the 
CS (green bar) genome reference and therefore no variations are expected (black colour in heatmap). 
 

3.4.1.6. The REDUCED HEIGHT-1 (RHT1) loci 

In our previous example we explored the YR7 locus, a rust resistance region which is highly diverse. 

Here we validated our approach to discriminate known RHT alleles from a region that has been 
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intensively selected by wheat breeders. There are two RHT1 genes that have been strongly 
selected in wheat; RHT-B1 which correspond to TraesCS4B02G043100 in CS, and RHT-D1 that 

correspond to the gene TraesCS4D02G040400. For this analysis we will focus in the RHT-B1 only 
(Fig. 3.10). Brinton et al., 2020 defined different RHT-B1 alleles for the 15 pangenome genotypes 
by alignment comparison of the 300 Kbp flanking region of each gene. In this analysis the wild type 
allele (e.g., tall phenotypes) is described as the “a” allele, whereas the reduced height phenotype 

allele is described by the “b” allele, as follows (Table 3.1.). 

 

Table 3. 1 Analysis of RHT-B1 sequences from (Brinton et al., 2020). 

 

“Comparison between ~300 Kbp sequence surrounding RHT-B1 in sequenced cultivars. Table shows the comparison 
between different RHT-B1a alleles (representative cultivar in bold) and RHT-B1b (Jagger). The table indicates the 
sequences used for BLASTn alignments, number of Ns in each sequence and the maximum sequence (total minus Ns). 
Total matches and SNPs/indels are indicated and the percentage sequence identity is calculated alongside the breadth 
of the BLASTn alignment with respect to the maximum. Total sequenced aligned from the tabulated NUCmer output 
(NUCmer aligned) alongside the breadth of the NUCmer alignment, is shown. Where relevant, indels that break the 
alignment are indicated. These are not included in the calculation of sequence identity.” 
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Fig. 3. 10. Analysis of RHT-B1 pedigree and haplotypes from (Brinton et al., 2020) (Supplementary Fig. 2.). 
a, “Pedigree of Lancer (RHT-B1b, Australia), Weebill (RHT-B1b, Mexico), Claire (RHT-D1b, UK) and Mace (RHT-D1b, 
Australia) tracing back to the common accession, Daruma (Japan), which is the donor of RHT-B1b/RHT-D1b (Wilhelm 
et al., 2013). Lines which are derived from Daruma are indicated in yellow, whereas lines with the wild-type RHT-B1a 
and RHT-D1a alleles are indicated in teal. Unknown genotypes are in grey. Important accessions in CIMMYT breeding 
which are shared in the pedigree of the four sequenced cultivars included in the tree are indicated with numbers. 
Pedigree generated with the Helium software. b, Shared haplotype block on chromosome 4B in six of the 15 
sequenced cultivars which carry RHT-B1b (Jagger, Lancer, Landmark, Robigus, SY-Mattis and Weebill). Diagram shows 
the relative size of the shared haplotype among cultivars, with RHT-B1b indicated by the vertical black line. Due to the 
difference in scale, detailed breakpoints are indicated diagrammatically, whereas the middle panel shows at actual 

a

b
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scale. Haplotype blocks identified in this study are shown in the bottom panel as visualised in www.crop-
haplotypes.com.” 

 

Using these known RHT-B1 haplotypes as a case study, we further explored the region by adding 

0.5 Mbp flanking genome region to run a multi-genome reference clustering. When combining the 
multiple genome references, we observed that the Rht-B1b haplotype group of lines (Jagger, 
Lancer, Mattis, Landmark, and Weebill), based on (Brinton et al., 2020), clustered together (Fig. 

3.11, blue box, H1). An additional set of lines including Santiago (Rht-B1b carrier) clustered in the 
same group as Robigus. Santiago shares the Robigus Rht-B1b allele (Würschum et al., 2017) based 
on molecular marker analysis, and it has a common pedigree three generations below Robigus. 

Other groups that clustered together, e.g., Claire, Fame, Revelation, and Boxer (Fig. 3.11, H3), 
could be expected based on pedigree information. Wasp, Hobbit, and Galahad formed a different 
group supporting that they come from the same pedigree (H2) meanwhile Wyalkatchen and 
Stanley form a unique group (Fig. 3.11, H5). 

http://www.crop-haplotypes.com/
http://www.crop-haplotypes.com/
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Fig. 3. 11. RHT-1B locus clustermap using multiple references. 
We use the TraesCS4B02G043100 gene in CS to locate the projected corresponding genes in the other genomes. In 
the x-axis are the genome regions in each reference. The values in Mbp are the corresponding Rht-B1 position in each 
reference. Colours indicate the similarity of query samples in the y-axis to the corresponding reference. Purple-dark 
colours are more similar and orange-light colours are more different (have more variations) to each of the references 
synteny regions. Each of the colours in the y-axis indicates the hypothetical haplotypes corresponding to each cluster. 
H1 has the Rht-1Bb haplotype allele. H6* form a closely related cluster with the H1 Rht-1Bb carriers, but they do not 
have the Rht-1Bb allele. The yellow squares correspond to the references included in the analysis as quality control, 
and as expected they have no variations against themselves.  
 

3.4.1.7. Clustering metrics 

Based on the analysis above, we determined that multiple genome references allowed to cluster 

the known RHT1 and Yr7 carriers. Using hierarchical clustering we identified clusters of genotypes 
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in agreement to the hypothesized relationship based on pedigree and literature. The challenge, 
however, is to define a specific threshold to estimate a cut-off where a cluster should be separated 

and considered as a different group. 

To define if we could use alternative method to separate haplotype groups in an unbiased manner, 
we analysed different metrics for similarity distances including: 'braycurtis', 'canberra', 
'chebyshev', 'correltion', 'cosine', 'euclidean', 'minkowski', 'seuclidean' 'cityblock','sqeuclidean'. 

For correlation metrics we tested the 'pearson', 'kendall', and 'spearman' using the entire locus 
and multiple samples. 

Looking into the analysis and using Jagger as a known Rht-B1b allele, we detected four distance 

metrics (euclidean, cosine, seuclidean, sqeuclidean) giving similar results and grouped the known 
genotypes carrying the Rht-B1b allele. Surprisingly, in this group a Watkins genotype also seemed 
to carry the Rht-B1b allele (data not shown).  We knew that the source of Rht-B1b came from an 

old Japanese variety Norin 10 (from landrace Daruma) (Fig. 3.10), therefore, it’s unlikely that a 
Watkins line would have the same haplotype. However, this may be the case where a similar or 
near-identical haplotype has been maintained in this variety which was not identified before. Also, 
we cannot rule it out that a cross contamination could have happened during seed handling since 

its collection in the 1900s. 

In the correlation analysis we observed better results than with the distance metrics. With 
spearman and kendall, the clustering of the known Rht-B1b genotypes is consistent and the 

separation between samples groups is better compared with the other metrics. We hypothesize 
that a threshold using spearman would range between the ~0.90, or Kendall = ~0.70 (Fig. 3.12). 
However, we noticed that when comparing each sample against each other, the threshold or 
correlation was slightly different (data not shown here). These results suggested that we would 

need to adjust a global threshold for each region. 

In summary, the spearman correlation metric is the best to group the targeted alleles with a 
threshold close to~0.9. In the distance metric analysis, overall euclidean, cosine, seuclidean, 

sqeuclidean clustered most of the know samples alleles and perform similarly. In addition, these 
case studies suggest that a bespoke threshold would need to be defined for each locus. 
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Fig. 3. 12. Spearman correlation of the “variations fingerprint” among multiple genotypes of known RHT-B1b 

allele carriers. 

In blue Rht-B1b carriers showing high correlation on the variations count from the multiple-reference syntenic regions 
against a particular genotype in y-axis as a “target comparison” vs variations count profiles genotypes in x-axis. For 
example, in the first comparison the “jagger-pg” genotype variations counts against all other genotypes in the x-axis 
were measured for their correlation using the “variation fingerprint” within the RHT-B1 syntenic region from multiple 
references. Gray = 0.96, Red = 0.90, Green = 0.80, and Blue = 0.70 Spearman correlations thresholds. 
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3.4.1.8. Syntenic genome regions 

As shown before, using the IBSpy “variations fingerprint” from multiple references can help to 
predict clusters and correlations among genotypes. This is because when two samples are IBS 

between them, they will always have the same level of variations to any reference used 
irrespectively of how similar or dissimilar they are to a reference. For example, if two genotypes 
are non-IBS in a defined genome region, both can be equally different to a x genome reference 
(Fig. 3.13a, left), but they will not be equally distant to a second reference w (Fig. 3.13a, right).  
In an example where genotype y and z are IBS in a specific genomic interval; if genotype y has a 
low variation count to a reference d, and high variations count to reference w for the syntenic 
genomic interval, then genotype y and z should have similar level of low variations to reference d 

and equivalent high variations count to genotype w. If the two genotypes are further compared 
to a x reference, they should be equally different (or similar) to x (Fig. 3.13b). 

 

Fig. 3. 13. Distance similarities among samples. 
a) non-IBS example of a pairwise comparison between y and z using x and w references as a common reference to 
indirectly measure the distance between them (y and x). Left, y (query) and z (query) genotypes comparison similarity 
distance based on variations count against x (reference). Right, the same query comparisons against a w reference 
depicting different distance similarities between y and z. b), IBS example of y and z genotypes comparisons against 
three references; x, w, d where against the three references y and z have similar distance indicating that they (y and 
z) are truly IBS in a defined genome region. 
 

To perform multiple-genome IBSpy “variations fingerprint” analysis, we used the syntenic genome 
regions described in Supplementary Fig. 9 of (Brinton et al., 2020) (Fig. 3.14a) based on RefSeq 
v1.0 and the RefSeq v1.1 annotations as a common factor among all references. In brief, first the 

genes in a region from the RefSeq v1.0 and the RefSeq v1.1 annotations are projected into a block 
of a “target reference”, which can be any other pangenome reference . If one gene is missing in 
the target block, it doesn’t break the block. Gaps of maximum of 20 genes are allowed among 
adjacent blocks, but the adjacent blocks must have at least 10 projected genes to be integrated in 
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the adjacent blocks. If there are no adjacent blocks in the region, blocks with more than 10 
projected genes are kept (Fig. 3.14a). 

Using the projected gene regions, we then built blocks of syntenic windows. For example, IBSpy 
variations are run on 50 Kbp windows. For clustering and calling haplotypes in 1 Mbp windows, 
the algorithm uses 20 windows of a reference (20 x 50 Kbp = 1 Mbp) and finds all the possible 
syntenic windows in all other pangenome references. Depending on the assembly used as the 

template reference, and the region of the genome, some regions may not be found in the 
corresponding references or the number of sub-windows of 50 Kbp will be low (Fig. 3.14b). Hence 
the number of windows used for the syntenic blocks can range from 20 (i.e., using only the 20 

windows of the reference) to 220 (where all the ten references also have the maximum of 20 
syntenic windows).  
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Fig. 3. 14. Pangenome syntenic regions. 

a) from (Brinton et al., 2020). “The genes in region R1 are projected in Regions T1’1, T1’2 and T1’3. T1’1 has a gene 
(A) not from the haplotype block, but a single extra gene doesn’t break the projection. There is a stretch of over 20 
genes (B) between T1’1 and T1’2 which breaks the block R1. Likewise, region T1’3 is shorter than the minimum 10 
genes to consider a block and there are other projected blocks from R1, hence T1’3 is removed. R2 is projected to 
T2’1, which contains less than the minimum 20 genes required to keep a projection. However, T2’1 is kept as it is the 
only possible projection for R2”. b) Blocks of syntenic windows are assembled based on the combination of the twenty 
50 Kbp windows from the reference being used (here Mattis), and all syntenic 50 Kbp windows from the ten additional 
chromosome scale assemblies. At the bottom, the compiled hypothetical windows found in synteny based on the 1 
Mbp of Mattis. Variations of the compiled syntenic windows are used to cluster the multiple query samples. 

 

To analyse the distribution of the syntenic windows we used Chinese Spring (RefSeq v.1.0) genome 
reference as a “template” to capture all possible corresponding windows in the ten genome 
assemblies of wheat pangenome using 1 Mbp block. We identified a tendency of fewer windows 

not being in synteny at telomere regions compared to centromere regions in the three sub 
genomes (Fig. 3.15, left). This is in consistency as centromere regions are more conserved than 
telomeres due to high recombination rates at chromosome edges. The B genome had overall less 
syntenic windows than the A and D genomes. This is consistently as the B genome being the most 

diverse. As expected, the D genome had slightly more syntenic windows captured than the A and 
the B genomes (Fig. 3.15, right). This agrees to be the D genome of wheat the most recent 
hybridization that took place from a few wild progenitors of Ae. tauschii donors and no major 

introgressions have taken place. 

Exploring the Lancer genome assembly as a template, we found low syntenic windows in regions 
where introgressions have been reported. For example, we found low syntenic windows almost 
exclusively to Lancer in Chr2B from ~95 to 600 Mbp where the previous introgression from T. 

timophevii was reported in (Walkowiak et al., 2020). Although, in low proportion, the syntenic 
windows found from this region in other cultivars could be from conserved genomic regions or 
misassemblies (Fig. 15b, green bar). Similarly, when using Mattis as a reference, we found low 

number of syntenic windows (~60 windows) on chr2A where the Ae. ventricosa introgression is 
located (Fig. 15c, green bar). This is in consistency with three genome references (Stanley, Mattis, 
and Jagger) having the introgressed block (Keilwagen et al., 2022; Walkowiak et al., 2020). These 

results suggest that other uniquely syntenic windows in the genome reference might be unknown 
introgressions or translocations blocks not reported before. This is of importance since often small 
genome regions were uniquely detected or present only in a few references suggesting that those 
small blocks could be additional introgressions (1 Mbp) and that IBSpy syntenic blocks could help 

to systematically identify them which are difficult to track by other methods. These syntenic 
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windows with introgression are also variable depending on the subgenome and reference used as 
a “template”. 

The average number of syntenic windows was on average ~125 for the A and the B, and ~160 for 
the D genomes when using Chinese Spring as a reference. However, when using Spelta reference 
as a “template” we found the fewest syntenic windows across the genome (~60 on average) 
compared to all the other genome references (Fig 15d). This is expected as Spelta is a more distant 

genotype compared to modern cultivars. Adding more genome assemblies from landraces and 
wild relatives would reveal which of those genome regions are the most shared and reveal the 
possible introgressions donors. 

 

Fig. 3. 15. Syntenic windows genomic distribution. 

In left are the number of 50 Kbp syntenic windows (y-axis) plotted across chromosome physical position in 1 Mbp 
blocks (x-axis). We expect to have a minimum of 20 windows of 50 Kbp per genome reference in 1 Mbp when there 
is not a syntenic window in any of the other references. We expect a maximum of 220 windows when a genome 
region is present in all references. a), an example of syntenic windows on chromosome one triad using Chinese Spring 
as a reference template.  b), chr2B of Lancer showing the low syntenic (almost null) in the T. timopheevii introgression 
(green bar). c), chr2A of Stanley depicting the 60 syntenic window captured at the beginning of the chromosome 
where the Ae. ventricosa 2AS/2NvS is located reflecting the other two references (Jagger and Mattis) in the 
pangenome having the introgressed block (green bar). d), the most distant genotype in the pangenome, Spelta, having 
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low number of syntenic windows across the whole genome (~60 on average) but chr1A is shown as an example. In 
the right side, the syntenic windows histograms of the corresponding chromosomes in the left are depicted. 

 

3.4.1.9. Affinity Propagation (AP) 

In a pilot analysis, we first evaluated different clustering algorithms such as self-organizing maps 
(SOM) and K-means, however the disadvantage was that they needed a predefined arbitrary 

number of clusters. We did not include the analyses here, but overall, we were unsatisfied by their 
performance and the requirement of inputting a predefined number of clusters. Therefore, we 
moved on to explore alternative algorithms that could automatically predict number of haplotypes 
per genome region. 

A promising algorithm with this feature is the Affinity Propagation (AP). AP was implemented to 
detect patterns in different datasets (Frey & Dueck, 2007) and it is an algorithm that does not 
requires an arbitrary number of clusters as an input. Instead, it predicts the number of clusters 

based on observations from a dataset and uses a similarity distance metric between pairs of data 
samples to create clusters. Since our aim is to predict haplotypes by windows using variations 
counts among multiple samples, we implemented AP to automatically detect haplotypes across 
the genome, using either, a single reference or multiple references and using IBSpy variations 

count as an input information to build clusters. 

An additional feature of AP it is that it requires a few parameters to select before its use. This can 
be an advantage or disadvantage. For example, users do not need to extensively explore multiple 

parameter combinations which can reduce the time during algorithm optimization. However, 
having a few parameters can lead to a few options to adjust with reduced chances to find the 
optimal combination for a defined dataset.  One of the features of AP is the use of different metric 

distance, however as described in section 1.4.1.6, we selected the Euclidean distance as our 
default which uses the negative squared Euclidean distance between vectors. We did not test 
other metrics in combination with the AP algorithm in our analysis due to time, but this is 
something that may be a point for optimization in further developments of IBSpy. Another 

parameter that can be tuned in AP, is the “preference”; however, we used the median of the input 
similarity as a default since we have a range of different values for each window in our dataset. 

 

A third parameter to adjust on AP is the “damping” factor (dmp). As a default AP uses dmp = 0.5 
and the range can be selected from 0.5 to 1.0. As described in (Frey & Dueck, 2007), “the dmp 
parameter is the extent to which current values are maintained relative to incoming values to 
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avoid numerical oscillations and overfitting the data with new values”. Therefore, the new values 
are “damped” down to avoid this. The optimal dmp value depends on the type of data and needs 

to be fine tunned accordingly to a case study. In our analysis we aimed to identify cluster groups 
among the WatSeq samples by using IBSpy variations and a defined window size. Therefore to 
select the optimal dmp, after calling IBSpy haplotypes in 1 Mbp windows intervals, we evaluated 
the quality of the clusters predicted by a range of dmps values from 0.5 to 0.97 and select the best 

dmp based on the Silhouette Coefficient (SC; see below) score metric (Rousseeuw, 1987). This 
process is repeated each 1 Mbp window across the whole genome always using the same > 1,000 
genotypes and same parameters. 

The SC score is a measure for the quality of the clusters based on the density and separation using 
the distance among other clusters and the distance among members within the cluster itself. High 
SC values indicates a well separated and condensed cluster. This evaluation is done for the clusters 

(haplotypes) called by each of the dmp values described above and on a 1 Mbp window. Then, 
based on the SC score, IBSpy selects the “best” dmp (with the highest SC score) and discard the 
others. Large dmps integrates members (genotypes) in the same cluster (haplotype) in a more 
relaxed manner incorporating members that are highly similar but probably may be not identical 

(e.g., may be near-IBS). On the contrary, low dmp values allocate similar (or near-IBS) genotypes 
into different clusters (different haplotypes) calling more haplotypes per window but impacting 
only those windows where the genotypes are very similar or windows with low diversity. Windows 

that are well separated due to high level of variations will remain as the original. We integrate AP 
into IBSpy-0.4.0 to automatically call haplotypes by a group of samples and flexible number of 
references. 

 

AP Precision and Recall 

For the precision/recall analysis we focused on the pangenome lines with whole genome 
assemblies to allow for comparisons between the IBS blocks identified in (Brinton et al., 2020) and 

the AP haplotypes. In our previous analysis on genome regions across multiple windows, we 
detected that the number of clusters changed based on the dmp parameter of AP. In a pilot study, 
running precision and recall, we detected that the “optimal” dmp value was different across 

individual windows. This is expected since each window may be independent in the absence of LD 
among genotypes and multiple samples variation counts changed in their distribution from 
window to window due to recombination, introgressions, deletions, and lack of genetic variation. 
To adjust for the “optimal” dmp in this analysis we tested multiple dmp per window and selected 

the dmp with the highest SC score clustering metric per 1 Mbp as described above. Testing several 
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windows across the genome, our results suggest that selecting the dmp with the highest SC score 
per window yields high and stable fscore across multiple Precision and Recall comparisons (Fig. 

3.16). 

In our example in Fig. 3.16 we selected three chromosomes as an example for comparisons that 
shared high (52.2%), intermedium (10.8%), and low IBS regions based on 5 Mbp haplotypes 
described in (Brinton et al., 2020). Overall, these results were similar for the A and the B genomes 

which have higher genome diversity than the D genome. As shown in (Fig. 3.16) the scores 
precision, recall, and F1 scores changed among chromosomes selected and among different dmps. 
This is expected since the two genotypes Mattis vs Julius selected for the test varies in their 

sequence identity and IBS regions shared among chromosomes. However, selecting the “SC” as 
our default haplotype calls, we obtain relatively similar and high scores among chromosomes. 
Regardless of the genotypes tested our method usually fails to detect high score metrics for the D 

genome. This is because the low diversity of this genome as a result from the recent hybridization 
into hexaploid wheat from a few Ae. tauschii donors. Thus, most of the wheat genotypes will have 
a similar level of variations in 50 Kbp windows which impacts to the AP clustering algorithm to 
discriminate among haplotypes. To correct for the lack of genome diversity, we integrated an Ae. 

tauschii panel into the analysis as a query as shown in Fig. 3.19. 
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Fig. 3. 16. Precision and Recall based on alignments from (Brinton et al., 2020) vs IBSpy haplotypes. 
For illustration we used the comparison from Mattis vs Julius. SC is the score selecting the dmp by window with the 
highest Silhouette Coefficient (SC) score. Mattis vs Julius share 52.2% IBS from chr4A, 10.8% in chr2D, and 3.9% in 
chr1B based on 5 Mbp haplotypes described in Brinton et al., 2020. 

 

3.4.1.10. Redundancy test (Ae. tauschii) 

To further validate the AP haplotype calls, we tested a highly diverse wild Ae. tauschii collection to 
determine if we could detect redundant genotypes which were previously identified by (Gaurav 
et al., 2022). In their study they reported several genotypes to be redundant based on KASP 

markers and 100,000 randomly selected SNPs. We used 265 accessions including 150 genotypes 
from lineage 2 and 115 genotypes from lineage 1 from their study and called IBSpy haplotypes to 
test for their redundancy. Lineage 2 genotypes were reported in (Gaurav et al., 2022) to be the 

closest donors of the D wheat genome. For this analysis, we included the unique k-mers when 
creating the k-mer databases from raw reads since several accessions had ~10-fold depth (Chapter 

2, Supplemental Table S2.3). To call haplotypes we used the D genome syntenic regions of the 11 
chromosomes-scale wheat assemblies (Chapter 2, Supplemental Table S2.1). 

We tested the haplotype calls using different groups of lines to identify the effect on the number 
of lines used. We ran 45 comparisons across the whole genome using 1 Mbp window against the 
11 genome references. These 45 comparisons included 42 comparisons between accessions which 

were identified as redundant in (Gaurav et al., 2022) (35 were from lineage 2 and six from lineage 
1), and we randomly selected three comparisons not reported as redundant as controls 
(Supplemental Table S3.2). 

Using the haplotype calls in 1 Mbp across the genome, in the comparison of lineage 2 samples we 

detected only two genotypes that had ≤ 99.4% haplotype calls similarity. All the other genotypes 
had ≥ 99.4% haplotype calls similarity. Two comparisons, comparison C7 (BW_01084 vs 
BW_01141) and C9 (BW_01141 vs BW_01189) had 61.8% and 61.9% haplotype calls similarity, 

respectively. These two comparisons had 98.93% and 98.02% similarity respectively when using 
KASP markers in (Gaurav et al., 2022), but it had no 100,000 random SNP data. In our analysis this 
similarity score was low across each of the chromosomes with chr6D having the least similarity 

(36.7%) in both comparisons (174 1 Mbp blocks out of 474 based on CS reference). Investigating 
the regions where these comparisons are different, we detected that different haplotype calls 
extended several windows in a block. As an example, we showed the region from 1 to 7 Mbp of 
chr6A (Fig. 3.17a). We also observed that these two comparisons called different haplotypes in 

the two comparisons exactly in the same windows. Since these two comparisons have a common 
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genotype (BW_01141), we could predict that BW_01084 and BW_01189 are redundant between 
them. This was confirmed in the C8 (BW_01084 vs BW_01189) having 99.7% similarity. 

Comparisons in lineage 1 resulted in lower similarity scores compared to lineage 2 analysis with 
an average of 99.1% haplotype similarity among the six comparisons. By chromosome, chr3D had 
the average lowest similarity score with 98.6% where comparison C4 (BW_23932 vs BW_23934) 
had the lowest score with 98.0%. Investigating the genome regions, we detected a region from 

291 to 352 Mbp common in all the similarity comparisons where AP called them differently. As an 
example, we showed the region from 289 to 358 Mbp of chr6A (Fig 3.17b). In (Gaurav et al., 2022) 
these set of comparisons had no KASP similarity analysis and the 100,000 random SNPs test had 

on average 99.95 %. This percentage was lower than the observed in Lineage 2 average 
comparison, which is 99.99% using the same 100,000 random SNPs. The three randomly 
comparisons (C43-C45) had on average 1.2% similarity (Supplemental Table S3.2). 

Overall, our results suggest that AP efficiently detects redundant genotypes and the error call rate 
between redundant genotypes comparisons is relatively low. An explanation for this is that the 
genetic differences among Ae. tauschii accessions are high due to natural genetic variation 
accumulation and recombination over time. In the future, it would be valuable to incorporate the 

Ae. tauschii genome assemblies to capture more variations and structural variations absent in the 
current D wheat genome. This will impact breeding in the future since several research programs 
worldwide are increasing the use of synthetic hexaploid wheat lines derived from Ae. tauschii and 

other wheat wild relatives. 
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Fig. 3. 17. The AP haplotypes efficiently identify redundant genotypes. 
a) Chromosome 6D haplotype calls from 0 to 7 Mbp. Comparison number ID (c), Q_1 (query_1) vs Q_2 (query_2) 
genotype comparisons. In blue with number “1” indicates that the two genotypes have the same haplotype in a 
specific window. “0s” in red indicate they are different and do not share the haplotype. C1 - C10 are L2 genotypes as 
described in (Gaurav et al., 2022). C37-C42 are L1 genotypes and C43 - C45 are randomly selected genotypes. b) 
Chromosome 3D haplotype calls from 289 to 358 Mbp. 

 

3.4.1.11. Parent-child test (quality control). 

The objective of this analysis was to complement and validate our quality control test of the 
haplotypes called by AP across the genome. This analysis involves the use of closely related 
modern wheat genotypes based on pedigree information. For this analysis, we identified 

genotypes for which we had raw data, and we could establish a clear parent-child relationship 
among them. For example, we could evaluate if the “child” accession was always similar or IBS to 
at least one of the two parents based on the AP haplotype calls. The aim was to detect the 

percentage and position of genome regions where at least one of the parents could be assigned 
as the donor or regions where the two parents were the donors (fixed regions among the parents). 
We also expected a percentage of regions defined as “orphan regions”, where none of the parents 
were the donors. The later was our error index since all regions from the child must come from at 

least one parent. We tested the same datasets and parameters as with precision and recall window 
and we used dmps with the highest SC score by window. We used three comparisons (Table 3.2). 

 

C1 BW_01100 BW_01140 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
C2 BW_01001 BW_01002 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
C3 BW_01003 BW_01097 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
C4 BW_01003 BW_01143 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
C5 BW_01097 BW_01143 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
C6 BW_01004 BW_01085 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
C7 BW_01084 BW_01141 0 0 0 0 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 0 0 0 0 0 1
C8 BW_01084 BW_01189 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
C9 BW_01141 BW_01189 0 0 0 0 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 0 0 0 0 0 1
C10 BW_01006 BW_01151 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

C37 BW_23885 BW_23900 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
C38 BW_23888 BW_01034 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
C39 BW_23932 BW_23933 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
C40 BW_23932 BW_23934 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
C41 BW_23933 BW_23934 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
C42 BW_23988 BW_23989 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
C43 BW_01146 BW_23988 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
C44 BW_23892 BW_01130 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
C45 BW_23923 BW_01125 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Chromosome 6D

C37 BW_23885 BW_23900 1 1 1 1 1 0 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 0 0 0 0 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
C38 BW_23888 BW_01034 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1
C39 BW_23932 BW_23933 1 1 1 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 0 0 1 0 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
C40 BW_23932 BW_23934 1 1 1 1 1 0 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 0 0 1 1 0 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
C41 BW_23933 BW_23934 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
C42 BW_23988 BW_23989 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
C43 BW_01146 BW_23988 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
C44 BW_23892 BW_01130 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
C45 BW_23923 BW_01125 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 Mbp 7 Mbp

Chromosome 3D289 Mbp 358 Mbpb

a
C Q_1 Q_2

C Q_1 Q_2
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Table 3. 2 Parent-child genotypes group comparisons. 

 

 

For multiple comparisons we employed different group datasets for haplotype calling. In this initial 
test we summarize the results with the “WatSeq_Pangenome_RAGT_ABD” group. This group of 
samples includes 1,123 genotypes (Table S3.1). Our analysis was done by chromosome and by 

subgenome. In our G1 comparison (using Chinese Spring coordinates as our assembly template) 
we observed that Cadenza uniquely shares many more regions to its child Xi19 in most of the 
chromosomes with 6,241 windows (1 Mbp window size) in total. Only chr2A, chr2B, chr3B, and 

chr7A, Rialto uniquely shares more than >140 1 Mbp windows to Xi19. In total Rialto shares 892 
windows (1 Mbp) across the whole genome. This was expected since the pedigree of Xi19 is 
Cadenza//Rialto/Cadenza (i.e., the Rialto * Cadenza F1 is backcrossed to Cadenza). The total 
number and average of 1 Mbp windows across the genome shared by the two parents were 2,598, 

and 123 respectively. The total number of windows detected as “orphans” was 4,344 which was 
30% of the whole genome of Chinese Spring. Most of this percentage was from the D subgenome 
with more than half (58.6 %) being in this category compared to the regions shared by Rialto (2.6 

%), Cadenza (33.7 %), and both parents (fixed regions) with 5.0 % (Supplemental Table S3.3). 

In G2, Cappelle_Dezprez and Holdfast uniquely shared 20.5 % and 15.2 % of the whole genome 
with Maris Widgeon (child) respectively. Both parents shared 46.8 % of a common region while 
17.3 % of the genome was in the “orphans” category. Overall, these two parents shared equal 

genome regions to their child.  Again, the D subgenome had many more “orphans” windows than 
the A and B sub genomes. An example of the chromosome 2B of G2 comparison is depicted in 
(Fig. 3.18). In this comparison 56% of the chromosome is shared by both parents to the child which 

is equivalent to 376 Mbp in genome regions. 4.93% is shared uniquely by Holdfast (33 Mbp), and 
34.54% is shared uniquely by Cappelle D. (231 Mbp). 4.44% was categorized in the “orphan 
category”. These shared percentages are reflected in in the “variations fingerprint” heatmap 

comparisons and the hypothecia shared blocks based on similarity (Fig. 3.18b). 

Group Parents Child
Rialto Xi19
Cadenza Xi19
Holdfast Maris_Widgeon

Cappelle_desprez Maris_Widgeon
Flame Claire
Wasp Claire

G1

G2

G3
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Fig. 3. 18. The parent-child test of Maris Widgeon pedigree sharing haplotypes across Chr1B. 
Example of shared haplotype blocks on chromosome 1B from Cappelle Desprez (Parent_1) and Holdfast (Parent_2) 
to Maris Widgeon (Child). a) Maris W. pedigree. b) heatmaps of the three genotypes against CS reference depicting 
genome similarity based on variations count and the hypothetical blocks uniquely inherited by Cappelle D. to Maris 
W. (green bars) and from Holdfast to Maris W. (orange bars). Blue bars indicate hypothetical regions shared by the 
two parents (fixed regions). c) The percentage of the haplotypes called from each of the parents as being identical to 
the child based on the AP haplotypes. The “orphan” category indicates the regions not assigned by any of the parents 
(error calls). 

 

In the G3, the category of two parents sharing the region to Claire (the child) was the highest with 
63.5 % of the whole genome. Flame and Wasp uniquely share 14.8 % and 8.8 % respectively. The 

“orphan category” had 12.6 %, this being the group with the lowest error rate (orphan) of the 
three comparisons. The A, B, and D sub genomes had 9.2, 9.4, and 21% in the orphan category 
(Supplemental Table S3.3). The high rate seen in the two parents sharing regions agrees on both 

Flame and Wasp sharing a common parent one generation above (Hobbit) as described in section 
3.4.1.3. 

To further investigate the genome regions with error rates, we then investigated the variations 

count basic statistics in 1 Mbp window used to call haplotypes. We noticed that the number of 
haplotypes per window (dmp_num_avr_total) in the orphan category had higher number of 
haplotypes compared to the other three categories (parent_1, parent_2, or shared). This was true 
for the three comparisons (G1, G2, and G3). Within this category, the D subgenome had the 

highest average number of haplotypes per 1 Mbp window with 46, 41, 42.8 in the G1, G2, and G3 
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respectively. The average standard deviation (std_avr_total), mean (mean_avr_total), and 
median (median_avr_total), were much smaller in the orphan than in the individual parents or 

both parent category in all subgenomes. However, it was much smaller in the D subgenome than 
in the A, and B subgenomes in all three groups comparisons (G1, G2, and G3). Finally, we 
investigated the skewedness average (skew_avr_total) of the variations in the 1 Mbp window 
blocks and detected that the orphan category and the D subgenome had overall higher skewness 

of the variations count data compared to the uniquely parent category, both parents category, 
and the A and B subgenomes (Supplemental Table S3.3).  

In summary, our results suggest that the parent-child test can efficiently detect genome regions 

with haplotype calls defined erroneously by the AP analysis in the orphan category. Our results 
show that the D subgenome has the most problems to correctly call haplotypes as this is where 
most of the errors (i.e., orphan windows) are located. Investigating into the variations statistic by 

blocks of windows, we detected data features specific for the erroneous windows. These features 
are mostly related to the low diversity of the D subgenome and skewedness of the data and 
therefore low variations count in the 1 Mbp window. 

 

Adding diversity to the Parent-child test with Ae. tauschii 

Based on our previous results on haplotypes error call rates, we hypothesised that error calls were 
due to low diversity and skewedness in the distribution of the variations data within the 1 Mbp 
window. To address this hypothesis, we incorporated the 265 Ae. tauschii genotypes (which have 

on average ~10-fold coverage) from (Gaurav et al., 2022) into the haplotype calls analysis. Wild 
relatives harbour high genetic diversity and therefore we predicted that this would alleviate the 
low diversity of our wheat D genome dataset. For this analysis we used the group 
“WatSeq_Pangenome_RAGT_AeTau_D” which includes the same set of genotypes as used in our 

previous example plus the Ae. tauschii collection. This analysis was done only for the D subgenome 
since it was the genome with the highest error rate calls. 

After adding the Ae. tauschii genotypes and calling haplotypes, we evaluate different features of 

the 1 Mbp window. We found that overall, there is no change in the number of windows assigned 
to each of the parent category before and after adding the Ae. tauschii. For example, out of the 
total number of 1 Mbp windows assigned to Cappelle D. as being the donor of Maris W., after 
adding the Ae. tauschii data, this value did not change and the number of windows in the 1 Mbp 

was similar to the orphan category (errors). Therefore, we discarded the number of windows used 
in the haplotype call to have a high impact on the erroneous haplotypes called (Fig. 3.19a). A 
second variable explored was the number of haplotypes per 1 Mbp window. Our results indicate 
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that the number of haplotypes per 1 Mbp was similar in all categories (Cappelle. D. Holdfast, 
all_ibs, and orphans) before adding the Ae. tauschii data, and the number increased slightly after 

across all four categories (Fig. 3.19b). This was expected since there will more haplotypes coming 
from the Ae. tauschii accessions absent in hexaploid wheat. The standard deviation (STD) and the 
mean for the variations count in the 1 Mbp windows increased after adding the Ae. tauschii data 
(Fig. 3.19c, d). Conversely, the skewness was reduced (Fig. 3.19e, Supplemental Table S3.3). 
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Fig. 3. 19. D subgenome parent-child analysis before and after adding 265 Ae. tauschii accessions. 

As an example, we show data from three chromosomes (chr1D, chr2D, and chr3D). In the categories box, names 
having the suffix “_tau” is the data after adding the Ae. tauschii samples to the analysis. The category “all_ibs” includes 
windows where both parents had the same haplotype as the child (Maris W.). a) number of syntenic windows window 
per category. b) number of haplotypes in 1 Mbp window across chromosome. c) and d) standard deviation (STD) and 
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Mean of the variations count in the 1 Mbp window respectively. e) skewness of the variations count data in the 1 
Mbp window. 

 

3.4.1.12. Tracking pedigree haplotypes 

Before, in section 3.4.1.3 we tracked back IBS regions into Claire from Flame, Wasp, and Hobbit. 
However, the analysis was limited to a small number of samples against a single reference in a 
pairwise comparisons. Despite this limitation, we still were able to detect large IBS regions in 

agreement with (Brinton et al., 2020) haplotypes based on mummer alignments. Later in our 
analysis we demonstrated that we could detect haplotypes in 1 Mbp windows from multiple 
genotypes by clustering AP. Using these haplotypes calls, in this analysis we tracked back 
haplotypes from landraces into modern wheats. As an example, we investigated the conformation 

of chromosome 6A of the reference Mattis. We aimed to identify regions from landraces that are 
maintained in modern cultivars. As a common reference we use CS to call haplotypes and we 
focused on the landraces queries only. 

We found that out of 827 Watkins landraces, 15 make up the chr6A of Mattis and share large 
intact haplotypes blocks. A relatively small block at the start of the chromosome was shared 
entirely with WATDE0306 with a total of 20 consecutive 1 Mbp haplotype blocks (Fig. 3.20a). 
WATDE0950 and WATDE0786 shared the largest blocks where WATDE0950 shares a 357 Mbp 

intact block (Fig. 3.20b, c, teal bar) and WATDE0786 shares two main blocks of 34 Mbp and 74 
Mbp (light blue bars) on either side of the WATDE0950 segment respectively. The remaining 
landraces share relatively short and fractionated blocks across the chromosome. 
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Fig. 3. 20. Large haplotype blocks are maintained into modern wheats from landraces. 
a) AP haplotype calls comparison of a landrace (WATDE0306) vs the cultivar Mattis (raw reads) in 1 Mbp window on 
chr6A using CS as a reference. Twenty consecutive IBS windows shared between the two genotypes are shown as 
indicated by having the same “haplotype number” in each of the window. b) haplotype calls of the 15 landraces having 
the same haplotypes as Mattis across the chromosome were transformed and coloured in green. In total, 15 landraces 
make up the chr6A of Mattis (black boxes). WATDE0306 shares the start of the chromosome as depicted in a). 
WATDE0950 and WATDE0786 (boxes in yellow) shares the largest blocks. WATDE0950 shares 357 Mbp with Mattis c) 
teal bar, and WATDE0786 shares two main blocks of 34 Mbp and 71 Mbp (light blue bars). The remaining landraces 
share smaller blocks across the chromosome. 

 

3.4.2. Haplotype based GWAS 

In our previous analysis we de novo called haplotypes using IBSpy and the WatSeq dataset. We 
detected major haplotype blocks that have been maintained intact from landraces into modern 
elite cultivars. In this analysis, we aimed to determine if IBSpy haplotypes could be employed to 

run haplotype-based genome wide associations (hapGWAS). 

For phenotypic data, we used field data collected in our group in 2020 and 2021 for several 
agronomically important traits (Supplemental Table S3.4) (Backhaus A. & Chen A., unpublished 

data) and used the 1 Mbp window IBSpy haplotypes. This phenotypic dataset was previously used 
in our lab to identify several GWAS associations genome regions (unpublish data) using SNP 
variants generated from the alignments of the WatSeq raw reads to the CS reference (RefSeq 
v.1.0) genome and publicly available software. To run hapGWAS, we adjusted the numeric 

haplotypes by window to presence/absence and unique names (See methods and scripts). We also 
adjusted the kGWAS (https://github.com/wheatgenetics/owwc/tree/master/kGWAS) described in 
(Gaurav et al., 2022) to run associations with IBSpy haplotypes using a presence/absence matrix. 

Since our pipeline uses the pangenome assemblies, we ran hapGWAS using each of the eleven 
references in turn. This feature of hapGWAS haplotypes is of importance since it can run multiple 
tests capturing genome information that might be private to a specific genome reference. On the 
other hand, alignment methods would require running and call SNPs to each of the references 

before a common GWAS which is computing demanding for a genome of the size of hexaploid 
wheat.  

 

3.4.2.1. Spikelet number 

Multiple publications have reported strong genome associations between the WAPO gene and 
spikelet number in wheat (Kuzay et al., 2022; Zhang et al., 2018). In our lab, this trait has been 
detected consistently in two years of phenotypic data using SNP based GWAS and different 

https://github.com/wheatgenetics/owwc/tree/master/kGWAS
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software (Backhaus A. & Chen A., unpublished data). Therefore, we used this trait as our positive 
control.  

Our results with hapGWAS detected a major hit at the end of chr7A, consistent with the previous 
analyses (Fig. 3.21a phenotype scores Supplemental Table S3.4). This hit was present in the 11 
references used. In previous studies, the gene responsible for the trait (TraesCS7A02G481600, 
WAPO-A1) was detected at 674,081,462 – 674,082,918 bp (RefSeq v1.0). In the hapGWAS analysis, 

the haplotype with the strongest association (chr7A__chi_673000005) was haplotype 5 located at 
672 - 673 Mbp. However, this haplotype was negatively associated with the trait. Haplotypes 
chr7A__chi_675000010 and chr7A__chi_675000006 were negatively and positively associated 

with the trait, respectively, and were in the 674 – 675 Mbp window (Fig. 3.21a). These results 
suggest that the region harbours several variations surrounding the responsible gene and 
therefore, multiple alleles that might have different effects on spikelet number. 

 

3.4.2.2. Max floret number 

A second strong and stable association hit was detected for maximum number of florets (Fig. 
3.21b, phenotype scores Supplemental Table S3.5). This hit was equally strong in Jagger, Julius, 
and Landmark located at 645 - 646 Mbp in Jagger and Julius and at 652 – 653 Mbp in Landmark. 

The hit in CS (RefSeq v1.0) was located at 648 - 649 Mbp. We investigated if the WAPO-B1 gene 
was located in each of the corresponding window in the other pangenomes. We found that WAPO-
B1 gene in Jagger is located at 651 Mbp and at 651 Mbp in Julius which is different to 645-646 
Mbp hapGWAS hits. The gene in Landmark is at 658 Mbp and in Chinese at 649 Mbp. Therefore, 

the hapGWAS hit only overlaps with WAPO-1B in the CS reference. The corresponding region 
appears to be translocated in reference ArinaLrFor at position 104 – 105 Mbp and the WAPO-B1 
in ArinaLrFor coincides to be close to the region at 103 Mbp. The gene content of ArinaLrFor is 

similar to CS in the candidate region. The set of accession having the favourable haplotype are 
similar and consistent in each of the references. The favourable allele in Jagger is 
chr7B__jag_646000011 and in CS is chr7B__chi_649000011. Overall, although the exact position 
with the WAPO-B1 did not coincide in all the references, in all cases the proximity with the 

strongest hit was close.  
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Fig. 3. 21. Validation of hapGWAS using known spike related traits hits. 
a) Spikelet number hapGWAS located at 673 Mbp on chr7A based in CS (RefSeq v1.0) genome reference. b) Max floret 
number. Spikelet number hapGWAS based in Jagger reference chr7B. The hit in CS for Max floret number was located 
at 649 Mbp matching the WAPO-B1 location. x-axis indicates the (-log10(p)) association. The horizontal line indicates 
the Bonferroni-adjusted –log P value threshold between 9.1 and 9.3 as described in (Gaurav et al., 2022) for k-mer 
comparisons. At the time of writing this thesis we haven’t adjusted the threshold for the multiple testing for the 
number of haplotypes. This will be a follow up analysis for a continuation of the project. 

 

3.4.2.3. Yellow rust GWAS QTLs 

Several publications have reported genome associations for rust resistance genes in wheat 

(Marchal et al., 2018). Those analysis have mainly employed single SNPs. In this analysis we aimed 
to evaluate the hapGWAS pipeline using phenotypic data for rust resistance (Supplemental Table 
S3.6). This dataset was previously used by our collaborators and detected GWAS hits across the 
genome using SNPs (Cheng et al., under revision) using the CS reference (RefSeq v1.0). The 

phenotypes were scored against two yellow rust isolates here referred from the ancestral lineages 
groups Pink and Red defined using field phenotypic data from the UK described in (Hubbard et al., 
2015). 

 

Rust Pink PST lineage 

Using IBSpy haplotypes and hapGWAS for the rust Pink lineage, we detected consistent and strong 

-log10(p) hits on chr7A of Jagger, Landmark, Norin61, Spelta, and Stanley. The haplotype with the 
strongest association was chr7A__jag_101000022 located at 100 – 101 Mbp window. Within this 
window there are two NLR genes; TraesJAG7A03G03834120 (NLR) and TraesJAG7A03G03834160 

a

b
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(NLR). NLR genes are well known to be involved in disease resistance traits. These two genes are 
also present in the other references with the associations mentioned above and therefore, 

conserved. Previous reports have detected two genes on chr7A involved in rust resistance (Lr20 
and Lr47) (Kumar et al., 2022). However, those genes are located at the end of the chromosome 
and provide resistance to leaf rust; hence they are very unlikely to be the same gene or locus. 

In our hapGWAS analysis, a second association was detected on chr4A from 739 – 740 Mbp of 

Jagger. 12 genotypes had the favourable haplotype for the resistance in the 739 Mbp window. 
Interestingly, WATDE0088 has the haplotype but it is a susceptible phenotype. This would be a 
candidate to explore further since it could be that a few mutations in the resistant haplotype would 

have led to the loss of the resistance. Svevo has a similar haplotype to the resistant (H16) which 
could indicate that the origin of the haplotype conferring the resistance phenotype is a tetraploid 
wheat (Fig. 3.22a, b, c) 

An additional GWAS hit was detected in Julius at 751 - 752 Mbp. Haplotype chr4A__jul_752000016 
had the strongest association and with the favourable affect (Fig. 3.22d). Within this genome 
interval there are several disease-related genes: TraesJUL4A03G02241820 (NLR), 
TraesJUL4A03G02241900 (NLR), TraesJUL4A03G02241950 (Kinase), TraesJUL4A03G02241990 

(NLR), TraesJUL4A03G02242000 (NB-ARC), TraesJUL4A03G02242030 (Kinase), 
TraesJUL4A03G02242110 (NLR), TraesJUL4A03G02242130 (NRL). This hit was also detected in 
ArinaLrFor, CS, and Lancer references. Further investigation will be required to validate if some of 

these genes are the causal of the rust resistance in wheat against the Pink PST. 

A third haplotype association was detected on chr4D of CS, Julius, Lancer, Mace, Norin61, Spelta, 
Stanley, and Mattis references. However, no canonical disease resistant genes were detected or 
characterized in the windows with the strongest association. It could be that the gene(s) or 

polymorphism responsible is not present or assembled in the pangenome references but 
hapGWAS still detects the signal based on the surrounding genome information and the variations 
profiles of the samples with the positive alleles are captured as a novel haplotype. We will show a 

case study on this topic in section 3.4.2.4 related to this hypothesis. 

 

Rust Red PST lineage 

A second lineage called “Red” was used to phenotype the same set of Watkins accessions and 
score the disease effect. Our results running using these phenotypes and hapGWAS, detected 
three main hits in all comparisons. A very consistent hit was detected on chr7B long arm in 
ArinaLrFor, Chinese Spring, Jagger, Julius, Lancer, Landmark, Mace, Norin61, Stanley, and Mattis. 
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The hit on Julius was located at 539 – 540 Mbp window. The haplotype with the strongest 
association was chr7B__jul_540000005 (Fig. 3.22e). In this window there were several disease-

resistant related genes including: TraesJUL7B03G04227170 (NLR), TraesJUL7B03G04227520 
(Kinase), TraesJUL7B03G04227680 (kinase), TraesJUL7B03G04227720 (Kinase). A strong hit was 
also detected in ArinaLrFor at 217 – 218 Mbp where only the TraesARI7B03G04104640 (Kinase) 
gene related to disease is located. For this association hit, haplotype chr7B__ari_218000019 was 

identified as having the favourable effect. 

A second and consistent hit was on chr3B of ArinaLrFor, CS, Jagger, Julius, Lancer, Landmark, Mace, 
Norin61, Spelta, Stanley, and Mattis. Window 106 - 107 Mbp and 107 – 108 Mbp had the strongest 

associations based on Julius reference where the haplotypes chr3B__jul_107000018 and 
chr3B__jul_108000023 had the strongest association. 

The last hit was detected on chr4D in CS, Jagger, Julius, Lancer, Mace, Norin61, Spelta, and Mattis. 

The hit was located in the same window described before with the rust Pink lineage. This suggest 
that a QTL in this chromosome may confer resistance to both lineages. The hit in Julius reference 
was located at 465 – 466 Mbp with haplotype chr4D__jul_466000015 having the favourable 
effect. 
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Fig. 3. 22. A novel rust resistant associations detected by hapGWAS at 1 Mbp resolution. 
a) Jagger reference hapGWAS hit at 100 Mbp of chr7A (red box) and 739 – 740 of chr4A (black box). b) Pink rust 
lineage PST score and haplotypes. Resistant score (R, green), susceptible score (S, red). Haplotype H16 have n=12 
resistant genotypes (purple box) and one susceptible. c) Genotypes having the favourable haplotype for the resistance 
in the 739 Mbp window. Svevo has the same haplotype for the resistance (H16). WATDE0088 has the haplotype for 
the resistance but it has a susceptible phenotype. d) hapGWAS hit in the Julius reference at the similar positions as in 
Jagger. e), hapGWAS association hit at 539 Mbp on chr7B of Julius reference using the Red rust PST lineage. 
 

3.4.2.4. Wheat Blast 

Wheat blast is caused by Magnaporthe oryzae Triticum (MoT) and affects wheat spikes resulting 
in bleached spikes and grains. It was first detected in Brazil from where it has been propagated to 

other wheat producing countries. There are a few wheat blast resistant QTLs at seedling stage on 
chromosomes 2B, 4B, 5A and 6A (Goddard et al., 2020; Juliana et al., 2020). (Juliana et al., 2020) 
identified QTLs on chromosome arms 2AS, 3BL, 4AL, and 7BL using two isolates (Bolivia and 

Bangladesh). Several of the markers associated are located at ch2A which is known to be the site 
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of the 2NS translocation from Ae. ventricosa (Cruz et al., 2016). Historically five resistance genes 
have been identified: Rmg2, Rmg3, Rmg7 (Tagle et al., 2015), Rmg8 (Anh et al., 2015), and 

RmgGR119 (S. Wang et al., 2018), but the underlying identity of the genes remains unknown. 

In a pilot analysis, our collaborators Dr. Paul Nicholson and Tom O’Hara previously identified a 
strong association using k-mers and GWAS on chr2A and blast resistance to the Super Race 
Avirulence (SRA) MoT isolate (Supplemental Table S3.7). Based on phenotypic evaluations, they 

hypothesised that Mattis (one of the pangenome cultivars) carried the resistance haplotype 
against the SRA isolate. In their pilot analysis using RenSeq data from a subset of Watkins landraces 
(O'Hara et al., under revision), they detected WATDE0056, WATDE0527, WATDE0568, 

WATDE0592, WATDE0720, and WATDE0786 to be susceptible SRA isolated and having a k-mer 
signal when running a k-mer GWAS equivalent to the resistant haplotype on chr2A QTL using 
Mattis as a reference. Therefore, the hypothesis was that if those susceptible lines had the positive 

k-mer signal, these genotypes may have a single or a few SNPs in the regions that cannot be detect 
with the raw k-mer analysis. 

We therefore evaluated the region using the Mattis reference genome and the IBSpy variations 
count data, which has the resistant phenotype to SRA and should have the favourable allele in the 

region. In our initial haplotype analysis, we observed (in a cluster map and by visualization analysis 
on haplotype calls) that a set of lines had two main blocks (we called them: region 1 and region 2) 
at the end of chr2A consistently present in the resistant lines using Mattis as a reference. A 

recombination between these two main blocks was present is several Watkins lines but it was kept 
intact in several modern cultivars based on Mattis (Fig.3.23a). 

A third group of modern cultivars and three Watkins had the block region 1 but lacked the region 
2 block. We observed that Stanley, an additional chromosome-level assembly also had the positive 

block. In our set of samples, we also included publicly available data of wild wheat relatives, and 
we noticed that T. timopeevii accession 33255 had a similar block in this region (Fig. 3.23a, top 
genotype R1 and R2 regions). Therefore, we hypothesised that the resistance haplotype may have 

originated from a tetraploid genotype. 

Alignment analysis and results: In a follow up analysis to further explore the QTL region, we aimed 
to identify SNPs by aligning raw reads of a set of accessions of both resistant and susceptible 

genotypes against the Mattis genome. We aligned and detected that three of the susceptible lines 
having the haplotype block at region 788 - 789 position had a SNP in one of the candidate genes 
TraesSYM2A03G00828360, a kinase ATP binding protein. This suggested and supported the 
hypothesis that this gene had a mutation that could lead to the loss of resistance in the susceptible 

genotypes which otherwise have the favourable k-mer signal and IBSpy haplotype block. 
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Additional lines resistant to SRA: In addition to the Watkins accessions, we noticed that this block 
was also present in several other modern cultivars not included in the initial GWAS analysis with 

raw k-mers, these lines were mainly from the UK. To assess if those modern cultivars were also 
resistant, we tested 26 additional genotypes against the SRA isolated in a detached leaf blast assay 
(O'Hara et al., under revision). The results from this analysis demonstrated that all genotypes 
tested having the haplotype block in the region are resistant to SRA at 6 days post inoculation (6 

DPI) which further supports the hypothesis of the candidate region (Supplemental Table S3.8). 
Interestingly, one modern cultivar, Epson, also displayed a very high resistance against SRA. Epson 
is a recent (2014) variety of Syngenta breeding company which could be an indication of a similar 

pedigree to Mattis (also from Syngenta). 

Mattis reference: Using the haplotypes by 1 Mbp window obtained from IBSpy, we ran hapGWAS 
using the phenotypic data from the blast SRA isolated including only Watkins lines to further 

validate the genome region association with the phenotype. In the initial test, we used Mattis as 
a reference since it has the positive allele for the resistance. As expected, we obtained four major 
hits at the end of chr2A. The highest hit was located at 794 – 794.2 Mbp and the haplotype with 
the strongest association was chr2A__sym_794250005 (Fig.3.23b). The presence/absence 

correlation of having this haplotype and the resistant phenotype was -0.7. This indicates that 
having this haplotype the disease score is low (resistant). In this window, there was a gene named 
TraesSYM2A03G00830550, an NLR, at position 2A:794,036,223 - 794,041,272. This window 

corresponds to the initial candidate “region 2” that we detected by looking at the variations cluster 
map at the end of the chromosome. 

A second candidate window with strong association that matched our initial candidate “region 1” 
was at 788 - 789 Mbp (Fig.3.23b) and the haplotypes with the favourable alleles were 

chr2A__sym_789000015 and chr2A__sym_789000019. In total, 26 genotypes had one of those 
haplotypes and four of them were susceptible. This 1 Mbp window has the 
TraesSYM2A03G00828360 gene, a kinase ATP binding protein. This gene is of interest because we 

previously detected SNPs in three susceptible genotypes which have the same haplotype block 
(WATDE0592, WATDE0568, and WATDE0527). This region also falls within the QTL interval from 
the initial k-mer based analysis. 

In total, there were 27 haplotypes in the associated window and three of them had the positive 
effect: chr2A__sym_794250003 (H3), chr2A__sym_789000015 (H15), and 
chr2A__sym_789000019 (H19). 28 modern elites had H3 (Fig.3.23c, purple) and are SRA resistant. 
H15 and H19 contained only Watkins genotypes which are predominately resistant (Fig.3.23c). 

We included 348 Watkins genotypes with scores in the hapGWAS analysis. The 24 elites were not 
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included in the hapGWAS, but they had the positive haplotype (H3). Finally, we observed in our 
previous analysis (cluster map in Mattis) that the entire block region where the GWAS hits were 

identified, is maintained in multiple accessions but not in all, suggesting that a recombination took 
place between these two GWAS hits and there may be two independent QTLs. This would be 
supported by the significant haplotype associations in region 1 and region 2.  
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Fig. 3. 23. Detection of wheat blast resistant (SRA isolated) associations by hapGWAS. 

a) chromosome physical position of a QTL candidate to wheat blast resistance (788 - 794.2 Mbp) in Mattis reference. 
A cluster map within the region groups three main clusters (green, blue, and purple). The cluster in blue have the 
entire region similar to Mattis (low variations) including Stanley reference. Mattis and Stanley are known to be blast 
resistant to the SRA isolates. Most of the initial evaluated resistant genotypes are clustered in the green group, which 
are Watkins. These groups have two separated blocks similar to Mattis here defied as Region 1 (R1) and Region 2 (R2) 
(blue bars). The third group shares a similar region to Mattis only in R1. In this group there are 30 modern elite cultivars 
which were shown to be resistant to SRA after we discovered them to have the R1 region. In the zoom in block of R1 
in a), there are three genotypes that have portion of R1 only.  Two of them marked with asterisks in blue are 
susceptible to SRA. At the top of the cluster map a tetraploid wheat previously reported as T. timophevii in (Walkowiak 
et al., 2020) but we hypothesize to be T. carthlicum and hence is labelled as Tetraploid ssp. b) hapGWAS hit on chr2A 
that overlaps with the QTL region in a) in both R1 and R2. c) R1 hapGWAS haplotypes by genotypes. There were 27 
haplotypes in the window and three of them have the positive effect: chr2A__sym_794250003 (H3), 
chr2A__sym_789000015 (H15), and chr2A__sym_789000019 (H19). 28 modern elites have H3 (purple) and are SRA 
resistant. H15 and H19 contain only Watkins genotypes which are predominately resistant. We include 348 genotypes 
with scores in the analysis, 324 Watkins and 24 elites. In (b), blue dots are positive correlated to have a high score 
(susceptible). Purple dots indicate that the phenotype has low score (resistant), in other words, it has the resistant 
haplotype. NOTE: the horizontal line was our initial threshold to consider the association to be true based on raw k-
mers. Work is in progress to adjust the threshold to the number of haplotypes used for hapGWAS. 
 

Beyond the chr2A hits in the Mattis reference, additional strong associations were identified in 
chr2B at 798 – 799 Mbp which has the TraesSYM2B03G01095480, a protein kinase ATP binding. 
We ran a pairwise alignment between the nucleotide sequence of the two genes 
(TraesSYM2A03G00828360 and TraesSYM2B03G01095480) and found 82.48% nucleotide 

sequence similarity. The protein sequence similarity alignment of the two genes was 71.88 % 
(Supplemental Fig. S3.2), suggesting that these are not homeologs genes but probably a 
conserved gene with similar function. 

Pangenome hapGWAS: We next wanted to test if it was possible to detect the chr2A associations 
using the additional pangenome references to get an insight of gene conservation. Our result 
demonstrated that out of eleven comparisons, the chr2A hit was detected above the 9 -log10(P) 

threshold using ArinaLrFor, Mattis, CS, and Stanley as references only. These results suggest that 
the gene (s) might present a low conservation although a more comprehensive analysis with 
additional genome references or RNAseq data would validate this hypothesis. Or analysis also 
demonstrates that despite ArinaLrFor and Chinese Spring not having the favourable haplotype to 

SRA in chr2A, the hapGWAS pipeline was able to detect the signal by indirectly using the variations 
counts of the surrounding regions and the syntenic regions of the other genome references. 
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Additionally, we noticed that the reference ArinaLrFor, Julius, and Mace captured the hit on chr2B 

(Fig. 3.24). The haplotypes with the positive alleles in Julius for this hit were in two contiguous 1 
Mbp windows. The first is chr2B__jul_783000030 located at 782 – 783 Mbp and the second is 
chr2B__jul_782000004 at 781 -782 Mbp. Looking into the gene content of the strongest candidate 
window, we noticed that again, this is a hotspot of NLRs genes; TraesJUL2B03G01084260, 

TraesJUL2B03G01084320, TraesJUL2B03G01084350, TraesJUL2B03G01084380, 
TraesJUL2B03G01084390. Interestingly, no hit was detected on chr2A of Julius. These results 
suggest that additional resistant gene is conserved in Julius, ArinaLrFor, and Mace, and that they 

may have the susceptible haplotype while some of the Watkins might have the resistant 
haplotype. This haplotype may not be present in the Mattis reference and some of the resistant 
Watkins may have one or the two functional alleles in the chr2A and chr2B homeologs genes. 

Further analysis on the SNPs within the candidate genes of Julius, ArinaLrFor, and Mace, by 
alignments would support this hypothesis (not addressed here). 

Results with the Mace Reference also detected a very similar hit to the one in Julius. This appears 
to be the syntenic corresponding window of Julius because it has the same hotspot of several 

NLRs. The genes in the window with the strongest association are TraesMAC2B03G01076480 
TraesMAC2B03G01076690, TraesMAC2B03G01076750, TraesMAC2B03G01076780, 
TraesMAC2B03G01076810, TraesMAC2B03G01076820, TraesMAC2B03G01076980. The 

remaining references had a hit on chr2B but less strong than in chr2A and the gene content was 
different. 
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Fig. 3. 24. Pangenome GWAS detects unique hapGWAS associations for SRA blast resistance. 
From top to bottom GWAS results from the SRA scores using the references a) ArinaLrFor, b) CS, c) Stanley, d) Julius, 
and e) Mace. 
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3.5. Discussion 

3.5.1. Methods to define Haplotypes. 

NGS technologies provide the tools to generate large genomic data for high density genotyping at 
relatively low cost. This allows users to combine multiple types of genetic variations to help to 
define haplotypes which can be more powerful to detect genotype-phenotype associations than 
traditional individual SNPs (Bhat et al., 2021). There are different methods to define haplotypes 

but until now, there is not a global protocol. Most recent methods employ NGS-based or array-
based approaches (Rasheed et al., 2017). For example, using SNP array data, Balfourier et al., 
(Balfourier et al., 2019) built haplotypes employing the HaploView algorithm, a method  based on 

LD and population statistics (Barrett et al., 2004). Similarly, using the same software, (Cseh et al., 
2021) called haplotypes individually by chromosome using a confidence interval algorithm (Gabriel 
et al., 2002) which measures the LD among markers in a arbitrarily defined blocks. 

Most of these methods still rely on SNP calling approaches and therefore identify variations in the 
same way. In the present study, we developed an alternative approach to build haplotypes based 
on presence/absence k-mers instead of alignments and SNP calling methods. To our knowledge, 
there are no reports on directly using k-mers to define haplotype blocks, but instead they employ 

raw k-mers to directly run GWAS or population analysis (Gaurav et al., 2022; Voichek & Weigel, 
2020). Our approach uses a clustering algorithm based on “variations fingerprint” counts that 
automatically call haplotypes using split or sliding window size defined by the user. 

A recent study in our group defined haplotypes of the wheat pangenome (15 assemblies). They 
have shown that large haplotypes in wheat are maintained intact regardless of the origin of the 
country and the growth habit of the genotype (Brinton et al., 2020). Most of these genotypes are 
extensively being used in several breeding programs globally which indicates that breeding 

programs are exchanging similar germplasm and haplotypes. Although the Brinton et al., 2020 
results were informative, their approach still relied on whole genome assemblies and alignments, 
which at the time of writing this thesis are still expensive and time consuming for large germplasm 

collections and large genomes. 

One of the aims of this thesis was to identify those haplotypes using raw reads at relatively low 
coverage (~12-fold). Our haplotypes defined in this chapter coincided with the results of (Brinton 

et al., 2020) on the large haplotype blocks being maintained in the pangenome cultivars. 
Furthermore, our analysis revealed that these blocks are prevalent in several other important 
cultivars from Northern Europe, CIMMYT, and in landraces collected from multiple countries. 
Similar observations were detected in (Brinton et al., 2020) using haplotype guided KASP markers 
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in a specific chromosome 6A QTL region comparing modern cultivar and the Watkin landraces 
collection. 

Additionally, until recently, most haplotypes were built based on a single reference (Bhat et al., 
2021). However, genome regions are missed if the genome reference does not represent the full 
genome diversity of a species. Based on this limitation, on the single reference problem, recently 
multiple genome references of different important crops have been developed. The use of 

multiple references to build haplotypes graphs are undergoing in humans and some important 
crops which have relatively small genomes (Bradbury et al., 2022; Rakocevic et al., 2019). 
However, the genome of wheat is polyploid and has three highly similar subgenomes, with a total 

size of ~16 Gbp. Therefore, using genome graphs is still challenging to incorporate WGS of a high 
number of genotypes for hexaploid wheat. An initial analysis to embrace this challenge was made 
using exome-capture of 65 genotypes in (Jordan et al., 2021) but it has the limitation to only call 

haplotypes based on the gene content regions. 

In our analysis we leveraged the wheat pangenome to build haplotypes using multiple references 
and WGS data of >1,000 wheat accessions. Our approach is flexible to incorporate novel genotypes 
and evaluated them in the context of our current collection. As the sequencing cost continues to 

decrease, wheat accessions can be added which will allow to detect a comprehensive wheat 
genome as a species in a single haplotype database. This will facilitate comparisons among 
different studies and enable better reuse of publicly available data. 

Although not presented in this thesis dues to time, during our fine tuning of parameters to 
determine haplotypes calls thresholds, we conducted a resampling pilot test to determine the 
effect of sample size using sub-groups genotypes. We also tested if including sequences of wild 
relatives had an impact on the number of haplotype calls. We divided this analysis into 22 sub-

groups (Supplemental Table S3.1). As our default in most of the analysis we employed the 
“WatSeq_Pangenome_RAGT_ABD” group since we observed the most consistent results as it 
contains the greatest number of genotypes including only wheat accessions (1,123 accessions). To 

analyse the D sub genome, however, we included 265 additional Ae. tauschii accessions to 
improve the haplotype calls precision and recall as described in section 3.4.1.11 when adding 
diversity to the D genome. This was required since the hexaploid wheat D subgenome lacks 

genome diversity as it was hybridized between a reduced gene pool of Ae. tauschii genotypes with 
ancestral tetraploids (Marcussen et al., 2014). This low diversity in the D genome is persistent in 
landraces and modern cultivars as naturally hybridizations between hexaploids and Ae. tauschii 
rarely occur (Akhunov et al., 2010; Wang et al., 2013). 
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As described in section 3.4.1.9, Affinity Propagation automatically calls haplotypes based on the 
“dmp” parameter. The number of haplotypes per genome region relies on the number of 

genotypes included, as expected. In our IBSpy pipeline we automatically adjusted this parameter 
by testing the Silhouette Coefficient (SC) score for each haplotype per window selecting the best 
dmp. In this manner, our approach set an optimal “dmp” per genome region to call haplotypes. 
For example, in genome regions where there is a high level of diversity, high values of dmp would 

not impact drastically the results. However, in a low diversity genome region, low values of dmp 
would be preferred, as it will separate near-IBS regions better. 

Depending on the purpose of the analysis, the practicality of adjusting these parameters can 

beneficial. For example, if the objective is to detect similar (but not identical) fragments of DNA 
such as old introgressions from wild ancestors, the dmp parameter can be set to include high 
values only. In this manner, similar genotypes will be grouped as having similar long-range 

haplotypes (near-IBS) and introgressions can be detected. We will show a case study in Chapter 

4, section 4.4.2 on this topic. 

In general, we observed that the number of haplotypes agreed with the number of samples 
included in each analysis. Haplotypes calls with the AP method is possible with low number of 

samples as long as it can generate well defined clusters allowing the algorithm to converge. In our 
case, the minimum of samples tested was 114 including only modern cultivars. However, using 
this low number of samples we noticed an increase in error calls, based on the parent-child tests 

(orphan category) and redundant test. Furthermore, in this study we included a maximum of 11 
genome assemblies information using syntenic regions. We noticed that using fewer genome 
assemblies we were not able to discriminate different genotypes in specific genome regions as 
described in section 3.4.1.4. It might be possible that haplotype calls with <100 query samples will 

be possible as more genome references are added into the databases since more genome 
information will help to discriminate and create condensed and well separated clusters during the 
AP calls. 

The precision-recall and F1 scores varied by genome region and chromosome depending on the 
dmp used per each 1 Mbp block during the AP clustering. As described in 3.4.1.9, IBSpy selects the 
best dmp based on the SC score. As the wheat genetic diversity varies among and within 

chromosomes due to natural variations and introgressions, each genome region had their 
“optimal” dmp value. In Fig. 3.16 we showed an example of three chromosomes, but we observed 
a similar trend in other chromosomes and other genome references tested. Overall, similar to the 
parent-child test discussed above, we had lower precision and recall in the genome D compared 

to A and B genomes due to the low diversity of the D genome. This problem was partially solved 
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by adding diversity with the 265 additional Ae. tauschii accessions as a query during the AP 
haplotype calls. Adding further Ae. tauschii genome assemblies as a reference by capturing 

syntenic windows as described in section 3.4.1.8 was not tested in the present study. However, 
we hypothesize that this may help to increase the scores in the precision and recall metric as more 
genome information with high variation is present in wild Ae. tauschii than in the current D 
hexaploid wheat allowing to discriminate better among wheat cultivars D genomes. 

Going forward, if researchers are aiming to define haplotypes across QTL or GWAS regions and 
put them in the context of a wider haplotype database, it will allow others elsewhere to determine 
if they also have these haplotypes within their locally adapted germplasm. This should help better 

define which haplotypes would be worthwhile introducing into their germplasm pool, and which 
haplotypes are already present (Wimalanathan & Lawrence-Dill, 2021). Likewise, it would facilitate 
better understanding of G*E interactions since often studies in one location define a “positive 

effect” QTL, but this does not necessarily translate into a beneficial effect in other locations 
(Sukumaran et al., 2018). These haplotype-based G*E analysis would be of even greater value for 
large datasets within breeding programs which operate genomic selection models across multiple 
environments. 

In addition to the genome information, huge advances on gene annotation pipelines and 
predictions based on gene networks have been developed (Hummel et al., 2023; Kotera et al., 
2012; Theodoris et al., 2023). Our variations and haplotype calls here described can be used to 

investigate gene regulations based on haplotype blocks. For example, using IBSpy haploblocks 
users can investigate what is the gene content on the different haplotype blocks present in 
different cultivars. Those genes could also be interrogated for their gene expression changes to 
shed light if having similar haplotypes with different genome context affect the expression and 

therefore the gene effect. The impact on gene expression based on different haplotype lengths 
could also be interrogated. It could also be possible to test previous identified gene functions 
extending different haplotype blocks. This information could help to update and improve 

predictions on gene networks and genotype-phenotype associations.  

 

3.5.2. Haplotype diversity in wheat 

During the wheat evolution from diploid species to hexaploid, bread wheat has experienced at 
least two genome polyploidization events, the first from two diploid species; T. urartu and the 
extinct species related to T. speltoides and the second with the D-donor Ae. tauschii. Following 
these events of polyploidization during domestication, the genetic diversity of cultivated 
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accessions was reduced, and a percentage of this diversity was maintained in landraces. Later with 
the development of cultivars and the release of varieties by public and private institutions a further 

reduction of this diversity impacted in modern varieties through intense selection in breeding 
programs (Cseh et al., 2021; Haudry et al., 2007; Vikram et al., 2016). 

Despite this loss of diversity, rich natural genetic diversity is still available in germplasm banks from 
collections and are valuable for wheat researchers (Schulthess et al., 2022). This genetic diversity 

can be indirectly studied measuring phenotypes in a population but phenotypes are influenced by 
environmental factors, therefore, prone to human errors and bias (Plekhanova et al., 2017). To 
partially alleviate this problem, researchers commonly use molecular markers in place to better 

study genetic diversity and to re-classify organisms and species (Kesawat & Das Kumar, 2009). 
Relatively cheap array-based genotyping and WGS are the predominant platforms used in these 
studies and depending on the objective, these molecular markers can be used individually or in 

haplotypes by combining two or more polymorphisms. 

Haplotypes are DNA recombination blocks inherited together in subsequent generations instead 
of individual nucleotides (Bhat et al., 2021). In 2015 Jordan et al.,  (Jordan et al., 2015), studied the 
haplotype diversity in a collection of 62 accessions using exome capture genotyping technology. 

They demonstrated that the B genome has on average a higher number of haplotypes than the A 
and D genomes, consistently with the hypothesis that the A and B genomes being more genetically 
diverse than the D genome (Akhunov et al., 2010). These number of haplotypes were concentrated 

mostly at telomere regions with a reduced number in centromeres. 

In 2020 Brinton et al., demonstrated that current genotyping platforms (35K SNP array) do not 
properly allow to discriminate between haplotypes in modern UK accessions or landraces, and can 
be bias towards certain chromosome regions (Brinton et al., 2020). A study comparing landraces 

(n=199) vs modern cultivars (n=67), Cseh et al., (Cseh et al., 2021) found that overall, landraces 
harbours more haplotypes and genetic diversity than modern cultivars. In this study, a collection 
of European and landrace accessions genotyped with a 20K SNP array containing 17,267 SNPs was 

employed. In their study they found 94.48 haplotype blocks per chromosome, ranging from 5 (on 
chr4D) to 178 (on chr5B) and the haplotype diversity (Hd) was 0.46 based on the method defined 
in (Nei & Tajima, 1981). The number of SNP per haplotype block was 297.52 ranging from 24 to 

585 and the total number of haplotypes in the genome was 1,984. 

In a broader analysis, (Balfourier et al., 2019) studied the haplotype diversity of a bread wheat 
collection of 4,506 accessions from the Institut National de la Recherche Agronomique (INRA) 
including worldwide (105 different countries) landraces (n=632), traditional cultivars (n= 965), and 

modern cultivars. Using a SNP array containing 280,226 SNPs, they found that 85% of the 
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haplotype blocks were shorter than 1 Mb having on average 4 haplotypes (alleles) per block and 
ranging from 2 to 20.  

In 2014 Wingen et al., (Wingen et al., 2014) measured the genetic diversity of 826 Watkins 
landraces using 41 microsatellite markers. They found a high level of genotypic diversity compared 
to modern wheat varieties released from 1945 to 2000 in Europe. This study revealed nine 
ancestral groups in the entire collection, information that was used to build a core collection of 

116 accessions representing most of the genetic diversity from the initial dataset.  

Later with the advent of NGS a high-density molecular marker in SNP-arrays (Winfield et al., 2016) 
was designed to genotype and characterize elite genotypes, landraces, and multiple species from 

the second and tertiary gene pool of wheat. Using a pairwise similarity matrix, different groups 
were detected by grouping among Ae. tauschii, T. aestivum, T. turgidum and wild relatives.  Using 
this array, it was possible to differentiate among winter and spring wheats and landraces. Later, a 

more practical version of this SNP-array was developed focusing only in the most informative 
markers to reduce costs and genotype large number samples and it was named the “Wheat 
Breeders’ Array” (Allen et al., 2017).  

In our study using the WatSeq dataset which includes 827 Watkins landraces and 218 modern 

cultivars from the North of Europe, we defined haplotypes in 1 Mbp window. This window size is 
not static and can be easily modified by users adjusting optional parameters in IBSpy. The genomic 
information in our study was WGS and therefore incorporate the full genomic information 

compared to Exome or SNP based arrays genotyping. On average we found ~20 haplotypes per 1 
Mbp window. In agreement with (Balfourier et al., 2019) and other studies, we found a higher 
number of haplotypes in telomere regions than in centromeres. Our method can also be more 
stringent or relaxed when using similarity scores among genotypes based on “variations count 

profiles” by k-mers to explore near-IBS regions. Fine tuning this parameter and modifying the 
number or type of genotypes while calling haplotypes, as expected, the number of haplotypes per 
1 Mbp window varies accordingly. 

 

3.5.3. Haplotype-phenotype associations 

Regardless of the method to define haplotypes, they can be used to study genetic diversity, 

investigate the impact of breeding, or phenotype-genotype associations using GWAS or genomic 
selection (GS). In recent years, haplotype-based studies instead of single markers associations 
studies, became prevalent for different crops and traits (Bhat et al., 2021; Contreras-Soto et al., 
2017; S. He et al., 2019; Jensen et al., 2020; N’Diaye et al., 2018). However, there is still a debate 
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if using haplotypes versus single markers is more efficient to detect marker-trait associations or if 
they can explain the phenotypic variation better. 

For example, the use of haplotypes was reported to increase the prediction accuracy on GS (Matias 
et al., 2017; Won et al., 2020) and improved the detection of genomic loci in GWAS studies 
(Hamazaki & Iwata, 2020). An explanation for this is attributed to SNPs in array-based haplotypes 
to be filtered for minor allele frequency (MAF) in early steps of the analysis. Also, haplotypes are 

multi-allelic and can capture the “true” combination of variations which gives better associations 
to QTLs than individual SNPs. This is in agreement with single SNPs in GWAS analysis as they often 
do not represent the causal molecular variant of the phenotype (Korte & Farlow, 2013) and 

because haplotypes could benefit from local epistatic among QTLs within the haplotype. 

In our analysis we used the AP haplotypes defined using IBSpy variations to run hapGWAS and 
found strong associations for spike related traits and disease resistant. We showed that our 

haplGWAS for spikelet number phenotype coincided with the WAPO-A1 (TraesCS7A02G481600) 
gene position on chr7AL (Kuzay et al., 2022; Zhang et al., 2018), the orthologous gene ABERRANT 
PANICLE ORGANIZATION1 (APO1) detected in Oryza sativa (Ikeda et al., 2007). In our analysis using 
1 Mbp windows haplotypes, we found two haplotypes strongly associated with the trait at 674 – 

675 Mbp in CS (RefSeq v1.0) which coincides with the chromosome physical position of WAPO-A1. 
The association was detected consistently in all the 11 chromosome-scale assemblies which 
suggest a strong conservation of the locus. 

Interestingly, (Kuzay et al., 2022) found three main haplotypes in wheat (H1, H2, and H3) to be 
associated with spikelet number. H1 has a 115-bp deletion in the promoter affecting the 
expression of the gene in developing spikelets and this polymorphism is associated with reduced 
spikelet number. Conversely, H2, predominantly in modern hexaploid wheat, has a positive effect 

on spikelet number and has a stronger effect than H3. In our analysis when using hapGWAS, we 
detected two haplotypes, chr7A__chi_675000010 and chr7A__chi_675000006, negatively and 
positively associated with the trait respectively. We hypothesize that chr7A__chi_675000010 is 

linked to H1 having the 115-bp deletion detected by (Kuzay et al., 2022) and 
chr7A__chi_675000006 is related to H2 in the same study. We did not identify any hit for the 
WAPO1 loci in the homeologs genes of wheat on subgenomes A or B. However, we found a hit for 

Max floret number in CS (RefSeq v1.0) located at 648 - 649 Mbp on chr7B. This position overlaps 
with the WAPO-B1 locus. Analysis of WAPO1 mutants in (Kuzay et al., 2022) found a wide range of 
floral abnormalities which suggest that WAPO1 may be involved in other floral related traits. 
Therefore, we hypothesize that the Max floret number detected in WAPO-B1 locus in our analysis 

having a positive allele affect to the trait, could be related. 
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For the disease resistant GWAS hits, we found that most of the hits contained multiple disease-
related genes such as NLRs and Kinase related genes. It is well documented that NLRs are more 

dynamic and evolve more rapidly that other functional genes (Marchal et al., 2020; Marchal et al., 
2018). In this analysis we did not expand to validate any of the regions with hits, but it will be a 
starting point and continuation for a follow up project for validation. 

The current version of hapGWAS in this study validated the usefulness of the haplotypes called. 

As a starting point we made use of the already available software and adapted to our haplotype 
calls formats when needed. However, to correct for population structure in our hapGWAS study 
we employed a PCA matrix generated from a SNP information which were called based on CS 

(RefSeq.v1.0). It was highlighted in (Bhat et al., 2021)  and (Meuwissen et al., 2014) that genomic 
predictions may benefit from a relationship matrix by haplotypes instead of single SNPs. This may 
also improve the results in our hapGWAS analysis. 

Our method here described to define haplotype relies on multiple genome references. Therefore, 
hapGWAS is a reference-based approach. Our method differs with common SNPs methods 
because it uses genome information from multiple genome assemblies at once and is based on k-
mers information. This can be a disadvantage for crops or orphan crops where there is no genome 

reference available. However, as discussed in section 1.2.1, sequencing technologies has had a 
huge progress, and it is predicted that genome assemblies for orphan crops and pangenomes for 
other important crops will be released in the following years since genome assemblies are 

becoming the new routine approach in genomics. The challenge will be if users using the routine 
SNP based calling genotyping approach wants to perform GWAS analysis using individually each of 
the genome references, particularly for large genomes such as hexaploid wheat (~16 Gb).  

On the contrary, our method here developed benefit of having multiple genome references to call 

haplotypes by multiple comparisons from genome information extracted from each of the 
references. Therefore, the advantage of hapGWAS analysis is to integrate genome regions private 
to one or some references. For instance, the large deletions or chromosome introgressions from 

wild relatives assembled uniquely in some genome references as described in the wheat 
pangenome project (Walkowiak et al., 2020). Although, our method includes information from 
multiple references, a single reference is used as a “genome template” to give chromosome 

physical position to the haplotype calls and to find the syntenic regions from other genomes. 
Depending on the “template genome” used, our method can detect differences on associations 
using hapGWAS as exemplified in section 3.3.6. Furthermore, running hapGWAS using each of the 
references as a “template genome” is straightforward and multiple comparisons can be easily run 

as exemplified in section 3.4.2.4, Fig. 3.24 using hexaploid wheat. 
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4. Wheat alien introgressions 

In this chapter we collaborated with Simon Krattinger and Hanin Ahmed from the King Abdullah 
University of Science and Technology (KASUT). Simon Krattinger and Hanin Ahmed generated the 

sequencing data for the 218 accessions of T. monococcum. Hanin Ahmed assembled the 
chromosome scale references of the two T. monococcum accessions; TA299 and TA10622. 

Part of this analysis was published in (Ahmed et al., 2023) “Einkorn genomics sheds light on 

history of the oldest domesticated wheat”. 

 

4.1. Chapter summary 

In this chapter we describe a pipeline to detect and characterize hybridisations/introgressions into 

the ten pangenome assemblies using IBSpy. Our approach includes an initial step to set a threshold 
using alignments of chromosome level assemblies from hexaploid wheats and wild relatives. 
Sequence similarity cut-offs of >99.99% (one SNP per 10 Kbp) between two wheat genotypes 

corresponds to identical by state (IBS) regions, whereas similarity of 99.95% (five SNPs per 10 Kbp) 
corresponds to a typical level of variation observed among wheat cultivars or landraces. In our 
IBSpy-based analysis, we set a threshold to call hybridisations/introgressions regions as having 
>120 variations in a 50 Kbp window. This threshold is equivalent to < 99.90% sequence similarity 

between two accessions (ten SNPs per 10 Kbp). Using this criterion, we characterized a collection 
of T. monococcum accessions, a publicly available set of Ae. tauschii accessions and known large 
alien introgressions from wild wheat relatives. Our results detected known and novel 

hybridisation/introgression regions in elite wheat cultivars, with evidence that breeders have been 
selecting fragments from the initial introgression. Furthermore, we detected the presence of wild 
wheat relatives genome regions in landraces not reported before. We speculate that some of 
these hybridisations have been guided with purpose (i.e., introgressions in modern wheats), but 

many may have occurred from natural hybridisations in landraces. We propose candidate 
genotypes to be the closest donors of these introgressions and natural hybridisations. For the 
known Ae. ventricosa 2AS/2NvS translocation, we detected the actual donor in four of the 

pangenome cultivars. Importantly, using the IBSpy haplotype calls, we identified novel 
hybridisations from Ae. tauschii in the D sub genome of wheat which are not present in the ten 
pangenome references.  
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4.2. Introduction 

Hexaploid wheat (Triticum aestivum, 2n = 6x = 42 chromosomes) consists of three subgenomes 

(A, B, and D) and it is highly repetitive having >80% TEs and the gene coding regions representing 
only <2% of its genome (Appels et al., 2018). The A and B genome diverged from a common 
ancestor ~7 million years ago while the D genome originated from a hybridisation, and subsequent 
speciation event, between the A and B genome donors ~5 million years ago (Marcussen et al., 

2014). Modern hexaploid wheat originated by different hybridisations events, first between T. 
urartu (AA) and a close relative of Ae. speltoides (BB) giving rise to wild emmer wheat (T. turgidum 
ssp. dicoccoides; AABB) approx. 400 thousand years ago (Huang et al., 2002). A later hybridisation 

arose between this species (or its domesticated form T. turgidum ssp. dicoccum) and the D 
genome donor Ae. tauschii approximately 10,000 years ago that coincided with the rise of modern 
agriculture (Marcussen et al., 2014). This is supported by multiple archaeological records and the 

absence of hexaploid wheats in wild populations (Salamini et al., 2002). Although the allopolyploid 
genome of hexaploid wheat contains three homoeologous subgenomes, they do not recombine 
among them due to the presence of the PAIRING HOMOEOLOGOUS 1 (Ph1) gene which prevents 
chromosome homoeologs pairing (Martinez-Perez et al., 2001). It therefore behaves as a diploid 

organism during meiosis which allows for genome stability in the polyploid state. 

 

4.2.1. The contribution of T. monococcum to the modern A wheat genome 

Archaeological evidence indicates that T. monoccocum (2n = 2x = 14x), or einkorn wheat, was also 
domesticated ~10,000 years ago in the Fertile Crescent (Heun et al., 1997; Lev-Yadun et al., 2000) 
and it is closely related to T. urartu, the A genome donor of T. durum (Ling et al., 2018) and 
hexaploid wheat. Individuals of T. monococcum exist both in wild and domesticated forms and the 

wild forms are mainly classified in three morphologically and genetically distinct races termed 
alpha (α), beta (β), and gamma (γ) races. From these races, β was the origin of domesticated 
einkorn (Kilian et al., 2007) and is proposed to have contributed to the genome of modern wheat 

via gene flow by natural hybridisations. 

T. monococcum provides an important reservoir of genetic diversity for hexaploid wheat, 
especially since genes discovered in this species often function in the polyploid wheat context.  

Natural hybridisations from T. monococcum into polyploid wheat have played an important role 
for agronomically important traits. Despite the evidence on the usefulness of T. monococcum to 
accelerate wheat research, until recently there was no high-quality genome assembly of this 
specie. As part of this thesis, we collaborated with international partners to use IBSpy to detect T. 
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monococcum genome regions present in modern wheat cultivars. This analysis was based on the 
sequencing of two chromosome-scale assemblies from T. monococcum, one from a wild accession 

and one from domesticated einkorn, and the whole genome sequencing (WGS) of 218 diverse 
accessions. 

 

4.2.2. Aegilops tauschii: the wheat D genome donor 

It its well-recognised that the diploid Ae. tauschii is the main donor of hexaploid wheat D 
subgenome. Natural populations of Ae. tauschii have been characterized into two major lineages: 
members of Ae. tauschii spp. tauschii into Lineage 1 (L1) and members of Ae. tauschii ssp. 

strangulata into the Lineage 2 (L2). More recently Gaurav et al., in 2022 identified a third Lineage 
L3 (Gaurav et al., 2022) from the same Ae. tauschii ssp. strangulata classification. A study by (Zhou 
et al., 2021) categorized a different Ae. tauschii collection into five subgroups and created 

chromosome-scale genome assemblies of their genome references named AY17, XJ02, T093, and 
AY61 to represent each of their lineages described: L1W, L1EX, L1EY, and L2E, respectively. A fifth 
subgroup categorized as L2W was represented by the AL878 genotype which already has a full 
genome assembly (Luo et al., 2017). Using these references and the re-sequencing of a panel of 

278 accessions, they assigned each of the accessions of the panel to the groups mentioned above.  

Population studies suggest that more than one event of natural hybridisation between a tetraploid 
durum wheat and individuals of Ae. tauschii lineages gave rise to modern hexaploid wheat. The 

main donors are thought to be members with origin in the Southern Caspian region and 
distributed from Transcaucasia (Armenia and Azerbaijan) to eastern Caspian Iran. On the other 
hand, L1 members have been reported to contribute only a small portion of its genome from 0.8% 
to 2.7% (N. Singh et al., 2019; Wang et al., 2013). 

After the initial hybridisations of 4x and 2x that gave rise to the hexaploid wheat (6x), there was a 
reproductive barrier between 6x and 2x Ae. tauschii which limited the extent to which the wild D 
genome could contribute into the 6x D genome pool. Hence there is a reduced diversity in the D 

genome of modern-day wheat when compared to the A and B genome diversity which has been 
recovered through natural hybridisations between tetraploid and hexaploid wheat. To 
compensate for the lack of diversity, wheat geneticists frequently employ Ae. tauschii to bring 

genetic diversity into the D genome of hexaploid wheat. This is achieved by crossing a tetraploid 
wheat with Ae. tauschii followed by a chromosome doubling step (Li et al., 2018) or by a direct 
cross between a hexaploid wheat and Ae. tauschii (Gill & Raupp, 1987) resulting in a synthetic 
hexaploid wheat. Currently and historically breeding programs releasing new synthetics wheats 
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and bringing these genetic materials into modern cultivars have been successfully accomplished 
(Dreisigacker et al., 2008). For these materials, however, there is still uncertainty regarding the 

genome location and the size of the Ae. tauschii fragments integrated into wheat (when crossing 
hexaploid wheat directly with Ae. tauschii) and how to best select them in a precise manner to 
avoid genetic drag of undesirable traits. 

NGS and genome sequencing resources provide a route to address this challenge of defining 

introgression blocks boundaries into wheat more precisely.  For example, in 2013 a 10K Illumina 
Infinium SNP array was created based on Ae. tauschii accession AS75 from L1 collected in central 
China (Wang et al., 2013). In 2017 the first chromosome-scale assembly of Ae. tauschii accession 

AL8/78 from Armenia (L2) was published by (Luo et al., 2017) and in 2021 an improved assembly 
and annotation was achieved for the same genotype by (L. Wang et al., 2021). Using these genomic 
resources, breeders, and geneticists can design molecular markers to tag genome regions and 

follow in introgressions into wheat. 

Despite these efforts, there is still a debate if these accessions with genome information are truly 
representative of the donor gene pool of the D subgenome of wheat. In this analysis we employed 
IBSpy to explore the genetic diversity of a panel of 265 accessions of Ae. tauschii and the 

contribution of members into modern wheat D genome pool. We suggest the closest gene pool 
that may have given origin to the D genome of wheat and validated that the previous genome 
assembly from AL8/78 is not the closest donor. Therefore, generating novel genome information 

of a wide representatives of Ae. tauschii would be of value. Furthermore, using IBSpy haplotype 
calls in combination with the WatSeq genotypes, we uncover two novel additional hybridisations 
events that may have contributed to the D genome gene flow, one from L3 and one from L2 
members. 

 

4.2.3. Tracking introgressions in heaxploid wheat 

Wheat lost genetic diversity, first during domestication from wild relatives into landraces and then 

from landraces into modern elite varieties (Reif et al., 2005). On the contrary, wheat wild relatives 
maintain a high level of genetic diversity unexplored for agronomically important traits in wild 
populations (Leigh et al., 2022). During early breeding, wheat geneticists realized this potential of 

wild populations and started to make use of them incorporating traits into their breeding programs 
(Doussinault et al., 1983). From the early 1960s, crosses between wheat and wild relatives were 
successfully achieved and cultivars having those alien introgressions were dispersed worldwide in 
different breeding programs, both public and commercially (Gao et al., 2021). Initially, these large 



 144 

induced introgressions were tracked using cytological techniques such as FISH (Badaeva et al., 
2008) and more recently by molecular markers (Allen et al., 2017; Grewal et al., 2020). Different 

studies have detected and reported these large introgressions to be present in modern wheat 
cultivars populations either intact or fragmented selected by breeders to reduce their size and 
genetic drag (Keilwagen et al., 2022). 

Large introgressions usually encompass several functional genes with different benefits and are 

particularly common for disease resistant traits or grain quality traits (Helguera et al., 2003). 
Evidence of this is that some large introgressions are actively selected and maintained in breeding 
programs (Gao et al., 2021). In addition to selection, large introgressions are prevalent within the 

wheat genome due to the lack or limited recombination between wheat and wild relatives. Ph1 
mutants, however, can be used to circumvent this issue (Rey et al., 2017). Although these alien 
introgressions have proven to be of pivotal value in modern varieties, still some breeding programs 

are reluctant to incorporate them due to the lack of recombination with the wheat genome and 
the time-consuming task for eliminating undesirable traits. There is an expectation that these 
challenges will be partially overcome with recent sequencing and novel molecular biology 
technologies (Hao et al., 2020). As a result, efforts to develop a wide repertoire of induced 

introgressions on wheat by different breeding programs are in progress (Devi et al., 2019; Gaurav 
et al., 2022; Zhou et al., 2021). Furthermore, methods to detect them in a precise manner using 
novel sequencing technologies are also becoming more prevalent (Grewal et al., 2020). 

In this study, we demonstrated the potential of WGS combined with IBSpy to detect large 
introgressions at 50 Kbp resolution and provide some case studies where they are associated with 
beneficial haplotypes and traits. We hypothesize that, despite the large number of samples 
explored in this analysis (>1,000 wheat genotypes), as WGS becomes more affordable for other 

wheat germplasms banks, novel unexploited large introgressions already present within the wheat 
genome will be revealed. This will be easily accomplished by putting those novel sequences into 
the context of the current IBSpy variations database being built in this project. 

The aim of this chapter is to validate IBSpy to detect large introgressions and elucidate historical 
hybridisations from wheat wild relatives into landraces and modern wheat. We aimed to translate 
the level of variations in IBSpy to the sequence similarity from alignment methods to set a cut-off 

between the immediate gene pool among wheat cultivars and landraces and compared with the 
level of variations in wheat wild relatives. Using this criterion, we investigated the contribution of 
T. monococcum, one of the closest A subgenomes donors, into hexaploid wheat.  We used the 
same criteria to investigate the controversial historical number of hybridisations events that gave 

rise to the D subgenome from Ae. tauschii. Finally, we validated IBSpy to detect large 
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introgressions and large deletions and compare the level of variations of deletions vs a wild relative 
introgression region. 

 

4.3. Methods 

4.3.1. Sequence data 

We used the collection of 265 publicly available Ae. tauschii accessions described in (Gaurav et al., 

2022) to compare against the D subgenome of wheat (Chapter 2, Table 3). For the analysis of the 
A subgenome, we included 218 accessions of T. monococcum generated by Ahmed et al., 2023 
(Chapter 2, Table S2.3). For large introgressions, we used the public available reads of T. 

timopheevii and Ae. ventricosa described in (Walkowiak et al., 2020). For the Ae. ventricosa 
genotype ventricosaCGB116981 we use raw reads from (Aury et al., 2022) (Table 5). The wheat 
samples were described in Chapter 2 WatSeq dataset. 

 

4.3.2. IBSpy and methods to detect introgressions 

We used two methods; the first is a k-mer mapping based approach, and the second method is 
based in IBSpy variations. The detailed steps are described in https://github.com/Uauy-
Lab/monococcum_introgressions.  

The k-mer mapping approach was developed by Hanin Ahmed. From the Methods of Ahmed et 
al., 2023. “For generating k-mer datasets, we used the whole-genome sequencing data from all 
domesticated einkorn accessions in the panel and T. urartu accessions (Zhou et al., 2020). k-mers 
(k = 51) were counted from the Illumina raw data per accession using jellyfish (v2.2.10) (Marçais & 

Kingsford, 2011). We extracted the k-mer nucleotide sequences from each accession of T. 
monococcum and T. urartu. We concatenated all k-mers sequences from all T. monococcum 
accessions and T. urartu accessions into two separate files per species and kept one representative 

per k-mer. We removed common k-mers between T. monococcum and T. urartu and obtained a 
list of specific einkorn and T. urartu k-mers sequences, respectively. The lists of specific k-mers 
were later converted into fasta files. Each fasta file (T. monococcum and T. urartu) was mapped 

against the bread wheat genomes (Walkowiak et al., 2020) using BWA mem (v0.7.17) (Li & Durbin, 
2010) requiring mapping of only full length of k-mers with no mismatches. Mapped k-mers in each 
bam file (T. monococcum and T. urartu) were analysed for the coverage in genomic windows of 1 
Mbp using mosdepth (Pedersen & Quinlan, 2018) and visualized in R (v4.0.4) with ggplot2. Putative 

introgressions were identified as an increased coverage of mapped k-mers from T. monococcum 

https://github.com/Uauy-Lab/monococcum_introgressions
https://github.com/Uauy-Lab/monococcum_introgressions
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(with average coverage ≥ 5), but depleted mapping of T. urartu specific k-mers. Two or more 
regions were grouped into one if they were no more than 1 Mbp apart.” 

For IBspy we first created the k-mer databases (k = 31), we used jellyfish v.2.2.6 (Marçais & 
Kingsford, 2011) or KMC v3.0.1 (Kokot et al., 2017). We used IBSpy as described previously in the 
thesis and in https://github.com/Uauy-Lab/IBSpy. To estimate the IBSpy variations cut-off to 
define T. monococcum introgressions into the hexaploid pan-genome cultivars, we compared the 

output of sequence alignments between fully assembled references (Brinton et al., 2020) to the 
IBSpy variations data. We used variations ≤ 30 as a cut-off to detect putative introgressions. For 
each introgression block, we determined the number of T. monococcum accessions belonging to 

each of the six STRUCTURE groups described in Fig. S4.1 from Hamed et al., 2023 (publication 
accepted), (Fig. 4.1b, Table 4.1). An accession was assigned as having an introgression block if it 
had at least 20 % of the 50 Kbp windows within the block with variations values ≤ 30. For example, 

if an introgression block had 60 windows, an accession would be classified as having the 
introgression if 12 or more 50 Kbp windows (60 × 20 % = 12 windows) had variations values of 30 
or less. 

We also performed a similar analysis as in (Brinton et al., 2020) by generating pairwise MUMmer 

(v4.0.0.2) (parameters: --mum --delta and delta-filter -l 20000 for filtering, i.e., retain only 
alignments ≥ 20 Kbp in length) alignments per chromosome between the assemblies from the ten 
pan-genome cultivars and the two T. monococcum assemblies generated by our collaborators 

(accessions TA299 and TA10622). For the large introgression detection of T. timopheevii and Ae. 
ventricosa, we used IBSpy variations count only since they do not have genome assemblies 
available at the time of writing this thesis. 

 

4.4. Results 

4.4.1. The contribution of T. monococcum to the wheat gene pool 

We used IBSpy to identify T. monococcum introgressions in the ten hexaploid wheat pangenome 
cultivars (note that we describe these as introgressions although they can be considered as 

hybridisations more likely). We built k-mer databases from multiple genotypes, including the 
Illumina raw data of 218 T. monococcum accessions, two T. monococcum chromosome-scale 
assemblies, and ten genome assemblies of wheat (Walkowiak et al., 2020). Using 50 Kbp windows, 
we compared the k-mers in the reference sequence to the k-mers of each query genotype 

database and counted the number of variations within each window. As described previously in 
Chapter 2, a variation is defined as a set of continuous k-mers (k=31) from the reference 

https://github.com/Uauy-Lab/IBSpy
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completely absent in the query. Low variations count indicates high similarity between the 50 Kbp 
reference assembly and the query sequence (hence can be used to identify introgressions), 

whereas high variation counts indicate lower sequence similarity. 

To estimate the variations cut-off to detect T. monococcum introgressions into the hexaploid 
pangenome cultivars, we compared the output of sequence alignments between fully assembled 
references to the IBSpy variations data. We compared the published (Brinton et al., 2020) pairwise 

MUMmer alignments among the ten pan-genome cultivars (ArinaLrFor, CS, Jagger, Julius, Lancer, 
Landmark, Mace, Norin61, Stanley, Mattis) with the corresponding variations counts from IBSpy 
outputs to compare the sequence identity with the variations count. In total, there were 90 

pairwise alignments analysed, and we focused on the seven A subgenome chromosomes. We 
analysed the data in 500 Kbp windows (a total of 890,793 windows) and kept those windows with 
at least 60% breadth of alignment in the MUMmer output (77.8%; 693,102 500 Kbp windows). We 

grouped IBSpy data into a window size of 500 Kbp to have more information to compare with the 
alignments, but we will describe the cut-off values as variations per 50 Kbp to be consistent across 
the thesis. 

For each 500 Kbp window, we had the average sequence identity between the pangenome 

reference and the other nine pangenome query samples (if over 60% breadth of alignment), 
alongside the IBSpy variations for the equivalent comparisons using the pangenome reference 
assembly and the k-mer database. We grouped the data base on the number of variations (in 

increments of 10 variations per bin) and determined the distribution of the sequence identity in 
each bin (Chapter 2 Fig. 2.20). We identified that most of the 500 Kbp windows (532,248; 76.8%) 
had 30 or less variations per 50 Kbp. On average, these windows with 30 or less variations 
determined by the IBSpy method had sequence identity of >99.95% when their full genome 

assemblies were compared. The data distribution was such that a 500 Kbp window with ≤ 30 IBSpy 
variations per 50 Kbp has a 0.926 probability that the alignment of this window will have at least 
99.9% sequence identity; and a 0.997 probability that the sequence identity will be at least 99.8%. 

We performed a similar analysis by generating pairwise MUMmer (v4.0.0.2) alignments between 
the assemblies from the ten pangenome cultivars and the two T. monococcum assemblies 
generated as part of this collaboration (TA299 and TA10622). As expected, across the two pairwise 

alignments, a few 500 Kbp windows had alignments which covered at least 60% of the window (n= 
238 windows; 0.3% of a total of 197,954 windows). In parallel, we used the raw reads of these two 
T. monococcum accessions to run IBSpy and compare the results with the MUMmer alignments. 
Using the ≤ 30 cut-off, we identified 201 windows that had on average 99.91% sequence identity; 

and a 0.970 probability that the sequence identity between pairwise alignments will be at least 
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99.8%. As such, we consider pairwise comparisons with IBSpy values of ≤ 30 variations per 50 Kbp 
as being identical or near identical by state, both in hexaploid wheat and between hexaploid and 

T. monococcum comparisons. 

Next, we used the variations count ≤ 30 criteria to identify continuous windows that belong to an 
introgression block across the A genome of the ten wheat genome assemblies. For each 50 Kbp 
window, we determined the minimum number of variations in the raw data of the 218 accessions 

and the two assemblies of T. monococcum. Based on this “Einkorn_min” value, we identified 50 
Kbp windows in which this value was equal to or lower than the 30 variations cut-off. These 
windows were considered as T. monococcum introgressions into the corresponding reference 

sequence. We next called introgressions blocks (Table. 4.1, Supplemental Table. S4.1) by 
stitching together 50 Kbp windows with variations ≤ 30 that were separated by less than ten non-
introgression windows (i.e., with variations > 30). This was done as these “non-introgression” 

windows often had values just above the 30 variations cut-off. Two or more regions were grouped 
into one if they were <500 Kbp apart. 

Among the ten wheat cultivars, ArinaLrFor showed the highest quantity of einkorn introgression 
with cumulative size of ~77 and 95 Mb based on the IBSpy k-mer variations and k-mer mapping, 

respectively (Fig. 4.1a; Table 2). The number of T. monococcum introgressions (identified by 
IBSpy) into the ten wheat cultivars ranged from 13 (Stanley) to 25 in ArinaLrFor. Their size also 
varied between 32.8 Mbp (Landmark) to 76.6 Mbp (ArinaLrFor). In total we found 1,714 genes 

across the introgressions blocks of ArinaLrFor genome. The longest block was block_20 located in 
chr6A at the end of the chromosome at 608.8 Mbp with 11.34 Mbp length and this block contains 
714 genes with different gene functions. The introgression block with the most genes per 
sequence length was block_14 in chr6A at 1.5 Mbp in the short arm and had length of 0.65 Mbp. 

This block contained 33 genes with different gene functions including NLRs genes which are known 
to be involved in defence against pathogens. Per chromosome, chr6A had the most gene content 
per introgression blocks with 714 in chr 6A and had the most gene-dense block. In total across the 

introgression blocks we found 165 transposable elements genes which correspond to 9.63% of 
the gene content in the block (Supplemental S4.1.1, S4.1.2). 

The fact that we detected T. monococcum introgressions in all ten pangenome wheat cultivars 

suggests that this is a widespread phenomenon. Considering a genome size of 15.4 Gbp (Appels 
et al., 2018) this means that between 0.21 and 0.50% of the wheat genome comes from T. 
monococcum. 

 

Table 4. 1.  T. monococcum introgressions identified in the ten wheat genomes using IBSpy. 
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 T. monococcum 

introgressions Cultivar N Cumulative size (bp) 
ArinaLrFor 25 76,615,321 
Chinese Spring 14 38,698,556 
Jagger 14 37,300,000 
Julius 21 53,233,765 
Lancer 18 49,751,962 
Landmark 14 32,800,000 
Mace 19 52,087,782 
Norin61 15 36,350,000 
Stanley 13 56,309,189 
SY_Mattis 20 42,756,208 

 

Overall, both IBSpy k-mer variations and k-mer mapping methods detected the same introgression 

blocks, with few exceptions being identified by only one method. The different results between 
the two methods are likely due to the genomic window size. With IBSpy, we looked at 50 Kbp 
resolution windows, whereas with the k-mer mapping approach we used 1 Mbp windows. 

Furthermore, for IBSpy we used all the accessions in the panel (n=218) whereas only the 
domesticated accessions (n=61) were used for k-mer mapping due to differences in the 
approaches. With IBSpy we identify specific regions from different groups and individual 
accessions and assigned the genetic gene pool into the ten genome references with the “dom_g1” 

group as the main donors (Fig. 4.1bc). IBSpy analysis across the ten wheat cultivars revealed 
regions on chromosome 5A with evidence of hybridisations with wild einkorn race γ being the 
putative donor (Supplemental Table 4.1). Because some domesticated einkorn accessions 

contain portions of γ race on chromosome 5A (Fig. S4.1), the γ introgressions in bread wheat could 
thus have been introduced through domesticated einkorn. 
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Fig. 4. 1. Einkorn introgressions into bread wheat. 

a, Einkorn introgression (highlighted in orange) into ArinaLrFor identified by the k-mer variations approach (IBSpy). 
The red square at 1AS corresponds to the region shown in detail in (b). b, IBSpy variations between ArinaLrFor 
(chromosome 1A, position 0-25 Mb) and einkorn along chromosome arm 1AS. Regions with ≤30 variations are 
indicated in orange, corresponding to einkorn introgressions. Einkorn_min is the minimum number of variants across 
all re-sequenced einkorn accessions. The remaining plots illustrate the variations between ArinaLrFor and eight 
einkorn accessions. Accession names highlighted in green, and grey belong to domesticated groups 1 (dom_g1) and 
β, respectively. c, Number of introgression segments that could be assigned to a particular einkorn group (total =132 
out of 171 segments) into the ten wheat genome references. 
 

4.4.2. The origin of the D wheat genome 

In this analysis we investigated the origin of the wheat D genome from the diploid genome of Ae. 
tauschii using a panel of 265 (242 non-redundant) accessions published in (Gaurav et al., 2022) 

and the variations detected by IBSpy. We aimed to determine the closest Ae. tauschii accessions 
or gene pool to the original donors of the wheat D genome using the 11 chromosome-scale 
assemblies (Walkowiak et al., 2020). We investigated the possibility of different pangenomes to 

share a specific set of IBS or near-IBS blocks with accessions in the panel and determine the 
similarity of the haplotype blocks to each wheat reference. 

We used the lineage (L2) classes define by (Gaurav et al., 2022; Zhou et al., 2021) described in 

section 4.2.2 of this Introduction (Table 4.2). We carried out a detailed analysis to compared with 
our IBSpy variations focusing on the D sub genome of wheat. First, we defined the regions on the 
eleven wheat references that share similarity with any of the accessions of Ae. tauschii in the 
panel. Combining all the accessions we counted and filtered genome regions in the eleven 
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references that have ≤30 or ≤120 variations and name it “Aet_min_30” and “Aet_min_120” 
respectively. This criterion was stablished in our previous analysis with T. monococcum (section 
4.4.1). Variations counts ≥120 would be considered as non-Ae. tauschii sequence in the hexaploid 
pangenome cultivars.  

 

Table 4. 2. Lineage representative accessions and corresponding class group in each study. 

Accession This study Gaurav et al., 2022 Zhou et al., 2021 
BW_01158 L2-SA  L2 AY61 (L2E) 
BW_01096 L2-SB L2 AL878 (L2W)  
BW_01028 L3 L3 None 
BW_23898 L1 L1 AY17 (L1W) 
None None None XJ02 (L1EX) 
None None None T093 (L1EY) 

 

According to (Gaurav et al., 2022) regions in the D genome of wheat can have an origin from L1, 

L2, or L3, with L2 being the main donor. After defining the regions to be ≤30 of the entire panel, 
we next defined regions to be similar only to L3 and L1 in the eleven references by counting the 
regions that have ≤30 or 120 variations counts. For example, if a defined region in the D genome 
has variations counts ≤30 when comparing to a L3 genotype but has ≥120 variations count when 

comparing with all L2 genotypes, then we assigned the region as having an L3 origin.  As a positive 
control we used the introgressed blocks into the D sub genome of the eleven chromosome-scale 
wheat assemblies from (Gaurav et al., 2022) which were assigned by using 100 Kbp non-

overlapping window and lineage-specific k-mers.  

In agreement with (Gaurav et al., 2022), we identified most of the regions to be from L2 accessions. 
Our results validated that a few regions are shared from L3 to the D wheat subgenome 
(Supplemental Table. S4.2). In addition, we also detected regions shared specifically with L3 on 

six genome assemblies on chr1D (Fig. 4.2). Unfortunately, in our dataset we only had sequence 
data from a single L3 genotype. Therefore, adding L3 genotypes to the collection might reveal 
novel L3 regions into wheat. 

We next investigated if we could detect a genotype or group of accessions from the panel sharing 
significant larger blocks and high similarity to the eleven pangenome assemblies. Using 
hierarchical cluster maps on the variations count, we observed that L2 accessions formed two 

main subgroups of genotypes, suggesting that there is a subdivision within L2 accessions (Fig. 4.2 
in blue and green).  The first subgroup of L2 accessions shared large blocks with a large proportion 
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of variations ≤30 and high similarity across multiple chromosomes of all D genome on the eleven 
chromosome references. We propose those genotypes to be the closest to the D wheat donor (s) 

and we called this group Lineage 2 subgroup A (L2-SA, Fig. 4.2 in blue). The lineage specific 
genotypes clearly clustered separated among them. We propose four main groups as L2, L2-SA, 
L2-SB, and L3. The group L2-SA sharing the most similarity with the wheat D sub genome of the 
pangenome assemblies (PG). In Fig. 4.2 we show ten representatives Ae. tauschii accession from 

each group and only one representative of L3 with publicly available data. 

 

 

Fig. 4. 2. Lineage specific cluster map. 
Ten representative genotypes of the proposed lineages and sub lineages clustered using IBSpy variations on 
chromosome 1D of reference Stanley. L1 in purple, L2-SA (blue), L2-SB (green), L3 (yellow) and the pangenome wheat 
assemblies (PG). In the dataset we have one L3 accession available. Darker colours indicate low variations against the 
chr1D of Lancer while orange-clear colours indicate high variations count across the chromosome physical position. 
 

We next plot the variations count distribution of the whole genome in 50 Kbp windows of one 
representative of the L2-SA group (BW_01158). The distribution showed three main peaks, one at 
~ ≤30 variations count (Fig. 4.3a., blue panel) and a second at ≥120 (Fig. 4.3a., purple panel) with 
a few datapoints between 30 and 120 variations count category (Fig. 4.3a., green panel). The third 

peak was at > ~400 variations count corresponding to the data against the A and B wheat 
subgenomes (yellow panel). Removing the A and B comparisons left the two main peaks (Fig. 

4.3b). Plotting the variations distribution by chromosomes detect slightly differences where some 

of them have more data in the ~≤30 variations count category (Fig. 4.3c). The variations count 
across the chromosome physical position of Staley showed similar blocks-like as when comparing 
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wheat vs wheat where variations count ≤30 extended several 50 Kbp windows across the 
chromosome (Fig. 4.3d). 

 

 

Fig. 4. 3. The IBSpy variations landscape of Ae. tauschii vs Stanley reference from a L2-SA group representative. 
a) Variations distribution of BW_01158 genotype, one of the closest D-donors belonging to the L2-SA sub lineage vs 
one of the pangenome assemblies (Stanley). Different colours show the hypothetical subdivisions based on variations 
levels. Variations ≤30 correspond to the predicted D-donors (blue), in green >30 and <120 variations (transitions 
variations). In purple >120, <500, and median ~350 D non-donors and distant genotypes. In yellow variations between 
D and A and D vs B genome variations >500. b) Showing the variations count from D genome only and c) distributions 
by chromosome. d) Shows the variations count across chromosome 1D of Stanley. Each dot corresponds to the 
variations in 50 Kbp window. The blue line indicates the ≤30 cut-off of the hypothetical variations counts of the wheat 
D subgenome donors while the red (>120) and purple (~350) lines are a more distant region. In the (Gaurav et al., 
2022) dataset we identified 62 genotypes to belong to this group (L2-SA). 
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The second subgroup shared only small portion of variations ≤30 and have most of its windows in 
the range of >30 and <300, with a median of ~120 variations. We called this group Lineage 2 

subgroup B (L2-SB) (Fig. 4.2, in green). This group shared a few large blocks with ≤30 variations. 

 

 

Fig. 4. 4. Example of L2-SB (BW_01182) representative. 
This is an example where a genotype from the L2 (L2-SB in our study) described in Gaurav et al., 2022 has a variations 
distribution predominantly > 30 variations count, and we hypothesize is not the D subgenome wheat donor. In this 
case the peak distribution is at ~120 variations which is not the ≤30 variations cut-off of the D subgenome wheat 
donor. A few regions across the chromosome have variations ≤30 as shown in the scatter plot in d. In the Gaurav et 
al., 2022 dataset we identified 87 genotypes belonging to this group (Supplementary table: 
https://github.com/quirozcj/PhD_thesis_JQCH_2022/tree/main/chapter_4/Ae_tauschii). 
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On the other hand, genotypes from lineages L3 and L1 clustered in an independent group in the 
cluster map having high number of variations compared against the D genome of Stanley as 

depicted in Fig. 4.2 (in yellow and purple respectively). The L3 genotypes shared few ≤30 
variations block, and the variations distributions ranged from >120 to ~500 with a median of ~350 
(Fig. 4.5). L1 rarely shared blocks ≤30 with any chromosome and the median variations was also 
similar to L3 at ~350 variations having the similar variations distribution (Fig. 4.6). The A and B sub 

genomes had a third distribution shape with variations >500 to 1,000 and median at ~700. A 
comparison of the variations distribution of representative genotypes for each subgroup is shown 
in Fig. 4.7. 

 

Fig. 4. 5. A representative of L3 (BW_01028) vs Stanley D genome of wheat. 
In a) and b) the high proportion of variations count located in the purple panel which is the category of D subgenome 
non-donors. c), In blue, chromosome 1D, which has a region with low variations frequency ≤30 introgressed from L3 
and is indicated by the yellow rectangle in d) chromosome physical position. 
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Fig. 4. 6. A representative of L1 (BW_23898) vs Stanley D genome of wheat. 
a) Variations profile including the A and B sub genomes of wheat for comparison. Similar to L3, in this case a L1 
genotype shows a peak with mean at ~350 variations in b and c, indicating that this is also a D non-donor. The position 
of the peak suggests that L3 and L1 are equally distant to the D wheat genome. This L1 accession has almost no 
windows with ≤30 variations. d), The variations count in the scatterplot suggests there are no segments of L1 on 
Stanley chr1D. 
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Fig. 4. 7. Variations similarity among Ae. tauschii sub lineages vs the D wheat genome (Stanley). 
Variations distributions of representative genotypes belonging to each of the lineage using Stanley as a reference. a) 
L2-SA (BW_01158), the closest donor to the D subgenome of wheat, b) L2-SB (BW_01096) similar to the D donor, but 
not the closest wheat. c) L3 (BW_01028) and d) L1 (BW_23898) have equally level of variations against the D 
subgenome but L3 (c) having some regions with variations in the ≤ 30 category (blue) indicating introgressions into 
the D wheat genome by natural hybridisations. 
 

To validate our results of differences in lineages, we used the Ae. tauschii references reported in 
Zhou et al., 2021 (described in the Introduction). In their study Zhou et al., assembled and assigned 

genome references to represent each of the Ae. tauschii lineages: AY61 (L2E), AY17 (L1W), XJ02 
(L1EX), and T093 (L1EY). In our study, we first used the AY61 reference (which is the closest related 
to wheat D genome) to visualize the variations distributions. Although the variations distribution 

indicated that these two genotypes, L2-SA (BW_01158) and L2E, belong to the same lineage (large 
blocks of ≤30 variations), the variation distributions across the chromosome position indicates a 
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poor-quality of the assembly (Fig. 4.8a). Using a genotype from the group L2-SB (BW_01182) we 
obtained a distribution with variations peak at ~120 (Fig. 4.8b). On the contrary, when comparing 

a genotype from group L3 (BW_01028) against the AY61 reference, we observed that the 
distribution with the highest peak had a median at ~350 variations (Fig. 4.8c). Similar profile was 
detected when using a genotype from the L1 (BW_23898) with variations at ~350 (Fig. 4.8d). 
These data are consistent with (Zhou et al., 2021) showing that L2E group corresponds to the L2-

SA group presented in our analysis.  

 

  
Fig. 4. 8. Comparison of variations profile using reference AY61 (L2E) and representatives of each lineage class. 
a) L2-SA (BW_01158) vs genome reference AY61 (L2E class in Zhou et al., 2021) corresponds to the closest D wheat 
donor class. b) L2-SB (BW_01096) which correspond to the AL878 (L2W) group in Zhou et al., 2021. c) L3 (BW_01028) 
for which there is no representative accessions in Zhou et al., 2021. d) L1 (BW_23898) corresponds to the AY17 (L1W) 
in Zhou et al., 2021 group. c and d are equally distant to AY61 (L2E) group and there are no regions of shared 
hybridisations between those two groups against AY61 (L2E). 

 

Different studies have proposed AL878 as one of the genetically closest Ae. tauschii accession to 
the hexaploid wheat D genome. On this basis was chosen as the accession to develop the Ae. 

tauschii reference genome (Luo et al., 2017). However, using previous observations in a pilot study 
with IBSpy, we hypothesize that AL878 assembly is part of the L2-SB sub lineage, which is not the 
closest donor of D wheat. To confirm this, we queried a L2-SB genotypes (BW_01182) against the 

AL878 reference. As predicted, we observed that the mean variations were ~<30 (Fig. 4.9b). On 
the contrary, using a L2-SA genotype (BW_01158), the median variations were at ~120 (Fig. 4.9a). 
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Comparing AL878 against L3 (BW_01028) or L1 (BW_23898) confirmed that they are highly 
different (distant) with median variation at ~350 (Fig. 4.9cd). 

 

   

Fig. 4. 9. AL878 reference belongs to the L2-SB lineage class. 
a) L2-SA (BW_01158) vs genome reference AL878 (L2W group in Zhou et al., 2021). b) L2-SB (BW_01096) which 
corresponds to the AL878 (L2W) group in Zhou et al., 2021. c) L3 (BW_01028) and for which there is no representative 
accessions in Zhou et al., 2021. d) L1 (BW_23898) correspond to the AY17 (L1W) in Zhou et al., 2021 group. c and d 
are equally distant to AY61 (L2E) group and there is no evidence of shared hybridisations between those two groups 
against AY61 (L2E). 

 

Analysis using the AY17 (L1W), XJ02 (L1EX), and T093 (L1EY) references indicates that the L1 
accessions in our dataset correspond mainly to the L1W group (Fig. 4.10d). However, it also 
suggests that the accessions in the L1 group is a mixture of L1s with different levels of variations 

and that a subgroup within this group may also exist sharing near-IBS like regions as shown in 
chr7D of AY17 in (Fig. 4.11, yellow rectangle). 
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Fig. 4. 10. AY17 (L1W, in Zhou et al., 2021) reference corresponds to L1 in Gaurav et al., 2022 and in this study. 
a) L2-SA (BW_01158) vs genome reference AY17 (L1W, in Zhou et al., 2021). b) L2-SB (BW_01096) which correspond 
to the AL878 (L2W) group in Zhou et al., 2021. c) L3 (BW_01028) and for which there is no representative accessions 
in Zhou et al., 2021. d) L1 (BW_23898) corresponds to the AY17 (L1W) in Zhou et al., 2021 group. a, b and c are equally 
distant to the AY17 (L1W) group and there is no evidence of shared hybridisations among those two groups against 
AY17. 

 

 

Fig. 4. 11. AY17 (L1W) vs BW_23933, a L1 genotype. 
a) a L1 genotype showing high similarity to the reference AY17 (L1W) on different chromosomes having the <30 
variations count cut-off (blue box). b) Chromosome 7D example of a region highly similar to the reference AY17 
(yellow rectangle) which is indicative of a near-IBS region between two wild Ae. tauschii accessions. 
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Comparing L3 genotypes against the five Ae. tauschii genome assemblies available in this study 
and against the Stanley reference, we observed that the median variation was ~ 350 count 

indicating that the L3 is a completely different lineage on sequencing similarity to L1 or L2 (Fig 

4.12). Given that L3 is equally distant to L1 and L2, this might suggest that L3 first diverged from a 
common L1 and L2 ancestor. 

 

Fig. 4. 12. L3 (BW_01028) is equally distant to the five genome assemblies of Ae. tauschii and the wheat D 

subgenome. 

In all cases the common query L3 genotype BW_01028 was used against the other five genome assemblies. a) from 
top to bottom as indicated in b) corresponding reference, BW_01028 accession vs Stanley, AL878 (L2-SB in this study, 
L2 in (Gaurav et al., 2022), and L2W in (Zhou et al., 2021), XJ02 (L1EX), T093 (L1EY), AY61 (L2E), and AY17 (L1W). 

 

Zhou et al., 2021 reported that the AY61 reference to be part of the closest donor gene pool to D 
genome due to a high proportion of shared orthologous gene pairs (density of orthologous gene 
pairs). Analysis of the synonymous mutation rate (Ks) between ortholog genes (subspecies 

divergence) showed the highest peak with Ks=~0.0009. i.e., a few Ks changes. In the same analysis 
AL878 had Ks=~0.0073, and T093 and XJ02 vs CS had Ks=~0.0077. In our IBSpy variations count 
analysis, we propose that Ks=~0.0009 is equivalent to having <30 IBSpy variations in 50 Kbp 

window, Ks=~0.0073 to have >30 and <300 but having median of ~120, and Ks=~0.0077 would be 
equivalent to have median of ~350 variations (Fig. 4.13). As a point of reference for comparisons 
with other important crops, B73, a maize elite line compared to the elite Mo17 has Ks=~0.025 
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(Zhou et al., 2021). These two maize genotypes belong to two distinct heterotic groups that were 
bred independently and combine well to form hybrids. In the future, it would be interesting to test 

if two highly distant genotypes of wheat or wild relatives results in some form of heterosis by 
testing highly diverse wheat genotypes developed in synthetics from crosses with wild distant 
relatives. 

  

Fig. 4. 13. Ks to IBSpy. Zhou et al., 2021 subspecies divergence mutation rate (Ks) analysis to IBSpy variations. 
Data in a) was taken from Zhou et al., 2021. b) is our proposed equivalence of a) with IBSpy variations of Ae. tauschii 
lineage relationship to the D-wheat genome. 

 

To further investigate if the set of lines on L2-SA and L2-SB have different geographic distributions, 

we compared their collected regions. We found that accessions belonging to the L2-SA have their 
origin mainly in the North of Iran at ~ 36.695300 (latitude) - 53.536500 (longitude). On the other 
hand, accessions of the L2-SB were mainly collected from a region in Azerbaijan at 40.631900 
(latitude) - 48.636400 (longitude) with a few exceptions in each subgroup. This information 

suggests that these two subgroups have been hybridizing separately in nature and a few genotypes 
might have had some crosspollinations over the years by seed dispersal naturally or by humans. 
Another explanation of the presence of mixtures in the two groups would be the misclassification 

during seed propagation and labelling. These results open new questions regarding the Ae. tauschii 
evolution and the D wheat closest donor (s) whiting subgroups. 

In summary, our results validate IBSpy to differentiate among the D wheat subgenome progenitors 
and lineages. We found lineage specific donors into the wheat pangenome assemblies in 

agreement with (Gaurav et al., 2022). Our results suggest accessions from the L2-SA group from 
the North of Iran to be the closest donors of the D wheat genome. Variation analysis supports our 
previous findings that <30 IBSpy variations count in 50 Kbp window between two genotypes to 

belong to the same immediate gene pool. For example, genetic variation or sequence identity 
normally found between two wheat cultivars or a landrace with variations accumulated <10,000 

30 120 300 500 1000201050

D-donor (L2-SA)
[ Ks=~0.0009 ]

non-D donor (L2-SB)
[ Ks=~0.0073 ]

non-D donor (L1, L3)
[ Ks=~0.0077 ]

IBSpy variaitons

Fr
eq

ue
nc
y

a b



 163 

years ago. Variations >30 would indicate mutations accumulated >10,000 year ago, hence most 
likely from hybridizations from wild relatives accumulated before the hexaploid polyploidization 

in tetraploids or diploids ancestors. These results also provide information to propose members 
of L3 as candidates for further genome assemblies projects to maximise the discovery and 
exploitation of D progenitors genome diversity. 

 

4.4.3. Genetic diversity of the D genome in the WatSeq dataset 

In our example above (4.4.3.), we detected unique blocks from L2 and L3 into six pangenome 
references similarly to (Gaurav et al., 2022). Due to the reduced number of genome assemblies 

compared to the vast number of modern and landraces accession in germplasm collections, we 
hypothesize that these lineage specific blocks, in addition to novel undetected genome regions, 
may be present in other wheat genotypes with similar or extended block sizes and recombination 

positions. 

Gaurav et al., 2022 (Gaurav et al., 2022) identified regions in the wheat genome originated 
exclusively from L3, suggesting that at least two hybridisation events gave rise to the D wheat 
genome. To extend the analysis on the diversity of the D subgenome of wheat and determine if 

there are additional regions not detected in the pangenome assemblies, we explored the D 
genome regions unique to modern or landraces absent in the wheat pangenomes. We compared 
the variations fingerprint of the WatSeq panel along the Ae. tauschii accessions and explored the 

level of similarity among the Ae. tauschii, landraces, and modern wheat cultivars. 

In this example, we used the chromosome 1D of Stanley reference as our case study since it has 
lineage specific regions from L2 and L3 reported in (Gaurav et al., 2022). More specifically in this 
analysis, we use the High molecular weight glutenin (Glu-D1) locus Glu-D1 haplotype block gene 

region inherited exclusively from L3 (BW_01028) reported in (Delorean et al., 2021). The Glu-D1 
locus is involved in the quality of dough for bread and there are mainly two Glu-D1 haplotypes in 
wheat, the 2 + 12 with origin from L2, and the 5 + 10 allele from L3. In total, there are 43 haplotypes 

described in a collection of 273 Ae. tauschii accessions reported by (Delorean et al., 2021). The 
5 + 10 allele is preferred for superior dough quality in the process of bread making, and it is present 
in Stanley, Landmark and Jagger. The other eight pangenome references carry the 2 + 12 allele. 

In this analysis, we first explored the prevalence of each of the haplotypes in the WatSeq dataset 
using IBSpy variations count. The Glu-D1 is located at ~411 Mbp in Stanley reference, but we 
considered the entire block from L3 (BW_01028) in Stanley to be from 407 to 415 Mbp based on 
the IBSpy variations fingerprint (Fig. 4.14a, blue bar). This is shown in the L3 accession, BW_01028, 
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having low variation count (i.e., purple-dark colour) across the 407 to 415 Mbp interval when 
compared to Stanley as a reference. To simplify the analysis, we considered genotypes having the 

5 + 10 allele if they were similar to Stanley reference otherwise having the 2 + 12 or unknown 
category (which could have another origin than L2 or being a deletion in the region). Our results 
of the > 1,000 hexaploid genotypes demonstrates that there is a high proportion of accessions 
having the 5 + 10 allele both in landraces and modern cultivars. 

In agreement with (Delorean et al., 2021), we detected the entire 5 + 10 allele haplotype block on 
chr1D of Stanley, Landmark, Jagger, and additional lines, Paragon, Cadenza, Weebill and Borlaug. 
In addition to the modern genotypes, we identified several landraces having the entire or 

fragments of the block (Fig. 4.14b, blue bar); for example, genotypes WATDE0498, WATDE0669 
and WATDE0047 (Fig. 4.14b, bottom). This indicates that the 5 + 10 haplotype has been selected 
in landraces probably by local farmers in specific regions for its bread-making qualities. 

Furthermore, the distinct block sizes detected in the genome region, suggest that multiple 
recombinations have taken place after the initial hybridisations before commercial breeding 
started. It is important to remark that in this pilot analysis, we considered only two haplotype 
alleles (5 + 10 and 2 + 12) but these results on recombined blocks indicates that additional 

haplotypes in the region may have risen in the region with novel functional Glu-D1 haplotypes 
untapped in landraces. In future analysis it would be worth to explore individual SNPs in the region 
and associate for distinct phenotypes in bread-making qualities in those landraces and other 

modern wheats cultivars. 

Exploring outside the genome region, we detected additional blocks in the Stanley GLU-D1 
downstream and upstream regions which are similar to L3 (BW_01028) (Fig 4.14b, pink bars on 
top; dark colour in the BW_01028 row). In addition to the similar blocks to the L3 blocks and 

Stanley, we noticed that several landrace accessions and other modern cultivars had high 
variations counts (> 120) outside of the blocks defined in (Delorean et al., 2021) or (Gaurav et al., 
2022). We hypothesize that those high variations count are the result of recombined blocks missed 

in the genome references with origin, either from non L2 genotypes or from deletions, but remain 
in landraces and other cultivars. This because often those genotypes had an L3 block in the region 
described in (Gaurav et al., 2022) (Fig. 4.14ab green and pink bars). 
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Fig. 4. 14. Lineage specific haplotype blocks in chromosome 1D in the WatSeq collection (Stanley as a reference). 
The heatmaps colours indicate similar to Stanley reference (dark purple) and very different to Stanley in orange clear. 
a) Variations count profile of the complete chromosome 1D in Stanley vs a subset of Watkins and modern from the 
WatSeq dataset. The blue bar indicates the Glu-D1 gene identified in (Delorean et al., 2021), a L3 region. The yellow 
bar indicates the L3 region identified in Gaurav et al., 2022 in some of the pangenome references, including Stanley. 
The green bar indicates hypothetical L3 blocks into the Watkin WATDE0047. b), a zoom in into the Glu-D1 locus. 
Similar to a), the green bar indicates hypothetical non-L2 region in some of the Watkins as they are different to Stanley. 
L2 regions are the most common in wheat, and anything different to L2 regions would be candidates to come from 
other lineages, introgressions, or deletions. Pink bars indicate additional L3 blocks in Stanley as they are very similar 
to BW_01028 (L3 genotype, green arrow). 
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To validate our previous hypothesis and explore lineage specific regions absent in the pangenome 
assemblies, we used the affinity propagation (AP) haplotype calls described in Chapter 3 including 

the Ae. tauschii accessions along the WatSeq samples. To account for the differences due to 
accumulated mutations over the last ~10,000 years, we focused on the haplotypes with 
“high_dmp” only. This parameter will group near-IBS samples in the same cluster and therefore 
the same haplotype. If a WatSeq genotype has similar variations pattern (but not identical IBS) to 

one of the Ae. tauschii accessions, we would be able to detect them with the “high_dmp” AP 
haplotype calls. Therefore, in this analysis we focused on the group of accessions highly similar 
(albeit not identical) to L3 accession BW_01028. 

For this part we analysed the flanking region of the L3 block reported in (Gaurav et al., 2022) (Fig. 

4.15a, yellow bar) since we observed that some Watkins accessions had high variations across a 
much wider region from 0 to ~200 Mbp on chr1D. Our results on this analysis, as predicted, the 

AP haplotype calls grouped 12 Watkins genotypes to have the same haplotypes as BW_01028 
genotype (L3) from 104 to 202 Mbp based on the Stanley genome assembly (Fig 4.15b, accessions 
in green). In ten of these Watkins accessions, out of 99 1-Mbp windows in the predicted region, 
only a few windows were not assigned to the same haplotypes as BW_01028. An explanation for 

those missing windows may be due to the accumulation of variations after ~10,000 years of the 
initial hybridisation or because the actual L3 donor is not BW_01028, but rather a very closely 
related individual from the L3 population not present in this analysis. Two Watkins (WATDE1031 

and WATDE1032) had different haplotypes to BW_01028 from 104 to 113 Mbp but after that 
region, they were grouped with BW_01028 until the end of the block (Fig 4.15b, black rectangle). 
This was consistent with the variations fingerprint observed in Fig. 4.15a, grey and green bar. 

For comparison in this analysis, we included the BW_23898, which is a Lineage 1 (L1) genotype on 

the haplotype calls and as expected, this genotype is different to all other Watkins included in the 
analysis (Fig 4.15b, pink genotype). Therefore, these results support our hypothesis that 
BW_01028 is a close donor of this novel uncovered 99 Mbp block (Fig 4.15a, green rectangle) in 

landrace accessions. The variations fingerprint in the cluster map highlighted with the green bar, 
indicates that the introgressed haplotype may extend further, but the AP haplotype calls did not 
include it in the same group. The reason for this could be that the donor is a L3 genotype different 

to BW_01028 and a recombination between these two genotypes may have taken place before 
the hybridization with the D what genome. This would not be unexpected as we only have a single 
L3 genotype (BW_01028) and the original L3 donor of the wider interval could be more similar to 
BW_01028 in the more peri-centromeric interval and then recombined with another L3 individual 

distant to BW_01028. It could also be that the Watkins are more different in that region, and we 
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cannot detect it because none of the genome references have the entire block. Further genome 
assemblies from one of the Watkins carrying this L3 block or an Ae. tauschii L3 assemblies will 

resolve our hypothesis.  

Finally, in in the same region, we detected a third block in a few Watkin (Fig 4.15a, green arrows) 
accessions, WATDE0900 and WATDE0549, which have slightly intermediate variations values over 
>30 count, not from the L3 but from a Lineage (L2-SA) genotype similar to BW_01055. This 

haplotype is very rare in the whole WatSeq dataset but due to the variations profile level, we 
hypothesize that this may come from a third hybridisation event and not from the most common 
L2-SA into D hexaploid wheat. The most common variations fingerprint into wheat comes from 

Ae. tauschii genotypes similar to the BW_01027 (L2-SA) and is the prevalent haplotype in all the 
pangenomes assemblies. The AP calls, however, did not cluster the entire block of the Watkins 
with the BW_01055 L2-SA genotype, only six consecutive 1 Mbp windows had the same group at 

131 to 136 Mbp (Fig 4.15b, black rectangle). This may be because these Watkins are not close 
enough to BW_01055. The rationale of this third hybridization hypothesis is based on our previous 
observations that suggest that two genotypes from the same immediate gene pool in wheat after 
10,000 years of hybridization would have <30 IBSpy variations count. 



 168 

 

Fig. 4. 15. Landraces maintain extended L3 hybridisations blocks (Stanley as a reference). 

The heatmaps colour indicates similar to Stanley reference (dark purple) and very different to Stanley in orange clear 
colours. a) the complete chromosome 1D in Stanley. The blue bar indicates the Glu-D1 locus identified in (Delorean 
et al., 2021), a L3 region. The yellow bar indicates the L3 region identified in Gaurav et al., 2022 on Stanley. The green 
bar indicates hypothetical L3 blocks into some Watkins (green box). The green arrows indicate the boundaries of a 
third hypothetical hybridization having >30 variations count and similar to the BW_01055 genotype from the L2-SA 
lineage group. b), a zoom into the hypothetical L3 region indicated by the green bar. The table are the haplotype calls 
by AP. In yellow the L3 genotype (BW_01028) and its haplotypes across the chromosome physical positions in 1 Mbp 
window. The table is a portion of 115 Mbp representation of a larger region. In green the Watkins genotypes having 
several haplotypes calls identical to the L3 genotype in the hypothetical region. In blue, three Watkins genotypes 
having a reduced block size of the region similar to L3. In pink, a L1 genotype (BW_23898). 
 

In summary, we validated that the wheat D genome donors and close related accessions of the 
hexaploid wheat have <30 IBSpy variations count. This variation threshold is similar to the 

observed in the T. monococcum panel comparison. These results support our hypothesis that close 
relatives of the wheat D and A genomes which hybridized <10,000 years ago share this level of 
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BW_01028 27 24 20 29 18 34 34 26 23 29 28 5 21 15 23 20 17 14 21 24 14 8 2 14 27 24 28 26 27 23 14 23 24 20 25
WATDE0026 25 25 20 29 18 30 31 23 23 30 28 5 21 15 23 20 17 14 21 24 14 8 2 14 27 24 28 26 27 23 14 23 24 20 25
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variations (<30). IBSpy variations blocks over >30 are older than 10k years ago in the wheat and 
wild relatives genomes and have a distant gene pool origin. We identified a set of genotypes, here 

named L2-SB, having >30 variations but having a mean of ~120 variations. We hypothesize that 
this level of variations diverged from the Ae. tauschii donors at > 10,000 years ago but are still 
genetically close related to lineage LS-SA, the closest D wheat donor. Future work would explore 
to categorize the level of variations of a wide set of the wild wheat relatives and their 

subpopulations to gain insight into the evolution of wheat from a broader perspective to improve 
our understanding for future breeding and wheat evolution. 

Importantly, we demonstrated that our method detects introgressions using AP haplotype calls 

without the introgressions being present in the reference assembly. Using this method, we 
detected novel large L3 introgressions blocks into the D genome which are only present in the 
Watkins landraces. Although our findings of extended blocks from L3 are promising, intriguingly, 

it is still not understood why it is uncommon to find L3 blocks in hexaploid wheat outside of 
chromosome 1D. An open question remains to explore if L3 introgressed blocks into hexaploid 
wheat originated through an initial hybridisation with a L2-SA accessions (yet to be sequenced) or 
if a separate hybridisation between a tetraploid and L3 occurred. Hence, why does L3 blocks are 

only found in chr1D? Regardless of the explanation, there are expectations that advances in 
sequencing projects will help to uncover those unexploited natural hybridisations for breeding and 
to elucidate the hexaploid wheat origin.  

  

4.4.4. Large wild wheat introgressions and deletions 

Several introgressions from wild relatives have been reported in wheat and many of them are well 
known. Most of those studies to detect the introgressions have been carried out using individual 

SNPs or by cytological analysis (Badaeva et al., 2008; Przewieslik-Allen et al., 2021). Here, we 
validated some of the historically important introgressions for wheat breeding using IBSpy. Across 
this analysis we compared regions detected by IBSpy against other methods and describe novel 

introgressions detected in the WatSeq dataset. Additionally, we investigated a diverse set of wild 
ancestors and their contribution into the wheat genome (pangenome, modern wheats, and 
landraces). We interrogated the a) T. timopheevii, and b) Ae. ventricosa introgressions, and c) large 

deletions reported in (Przewieslik-Allen et al., 2021; Winfield et al., 2018). 

 

4.4.4.1. T. timopheevii introgressions  
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A large 427 Mbp size introgression was reported in cultivar LongReach Lancer in (Walkowiak et al., 
2020) (cultivar Lancer hereafter). This introgression carries the stem rust resistance gene Sr36 

from T. timopheevii. Lancer also carries the 60 Mbp Lr24 (leaf rust) and Sr24 (stem rust) 
introgression derived from Thinopyrum ponticum on chr3D. Since these two introgressions are 
historically important for wheat breeding to provide a wide resistance against the Ug99, in this 
analysis we extended the analysis to identify additional carriers of those fragments from the 

WatSeq dataset. In our results, we identified genotypes having different blocks sizes that would 
suggest that breeders are actively selecting for it. Our results with IBSpy detected the boundaries 
at 50 Kbp resolution in different modern genotypes. This will allow a more efficient use of the 

current available germplasm in future line development. We used the publicly available data of T. 
timophevii accession from (Walkowiak et al., 2020) 

In our analysis, we first examined the chr2B introgression of T. timopheevii present in the Lancer 

pangenome reference using IBSpy variations count. We first compared the variations counts of T. 
timopheevii against Lancer and found values >120 for both distal ends of chr2B (Fig 4.16, >120 in 
grey). However, between ~93 Mbp to 626 Mbp we found that T. timopheevii had variation counts 
below <30, which is consistent with the presence of a T. timopheevii introgression in Lancer (Fig 

4.16, orange) reported in Walkowiak et al., 2020. To further support the introgression site, we 
compared additional modern cultivars which do not carry the T. timopheevii segment 
introgression. As expected, these accessions had variation count overs >120 within the ~93 Mbp 

to 626 Mbp interval. With these results we validated the boundaries of the T. timopheevii 
introgression in Lancer. Then, we searched for additional genotypes in the WatSeq dataset to have 
the fragment and found lines having variations <30 count in the introgression interval. One of the 
accessions named Diablo had the largest introgressed block having variations count <30 from 403 

to 608 Mbp. A second cultivar was Stava, which had the introgression from 509 to 608 Mbp. These 
two genotypes had the largest T. timopheevii introgression after the reference Lancer not reported 
before. Other cultivars had smaller introgressed blocks. One of them was Moisson which had the 

shortest introgression (Fig. 4.16a, purple box). Interestingly, we identified several UK cultivars 
which had identical fragments of T. timopheevii (e.g., Riband, Malacca, Cordiale and Crusoe) (Fig. 

4.16a, blue box). When verifying their relatedness, consistently, we found that they share a 

common pedigree (Fig. 4.16b). Grafton, which is also within this pedigree, had a recombination 
event which removed part of the T. timopheevii introgression, as indicated by the shorter orange 
segment with respect to its parent Cordiale and sibling Crusoe (Fig. 4.16a, green box). This block 
was also present in Julius, a result which was previously unreported. We demonstrated with these 

cultivars that IBSpy can detect introgressions at 50 Kbp resolution (Fig. 4.16c). Our results also 
suggest that breeders are actively selecting for this fragment. 
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Table 4. 3. T. timophevii accessions used in this analysis from (Walkowiak et al., 2020). 

Accession Number Reads Publication 

Triticum timopheevii 33255 SRR13484808 Walkowiak et al., 2020 

Triticum timopheevii 15832 SRR13484807 Walkowiak et al., 2020 

Triticum timopheevii 10728 SRR13484803 Walkowiak et al., 2020 

Triticum timopheevii 10558 SRR13484817 Walkowiak et al., 2020 

Triticum timopheevii 22438 SRR13484809 Walkowiak et al., 2020 

Triticum timopheevii 14352 SRR13484806 Walkowiak et al., 2020 

Triticum timopheevii 3708 SRR13484804 Walkowiak et al., 2020 

Triticum timopheevii 10827 SRR13484805 Walkowiak et al., 2020 

Triticum timopheevii 17024 SRR13484818 Walkowiak et al., 2020 

 

 

 

Fig. 4. 16. T. timopheevii introgression into wheat and WatSeq genotypes. 
a) In orange IBSpy variations count <120 using Lancer as a reference indicating the introgression a region of chr2B. 
The square box indicates the introgression boundaries chr2B (~93 Mbp to 626 Mbp). Eight modern wheat cultivars 
are shown as having different introgression block sizes. b) Pedigree relationship of five genotypes with the 
introgression and showing Grafton with a reduced version of the block. c) Zoom in of the variations count depicting 
the exact 50 Kbp windows where the introgression starts in Crusoe as it becomes <120 variations count to the 
reference Lancer. The horizontal blue line indicates 120 variations count. In this fragment of the reference Lancer in 
chr2B (~93 Mbp to 626 Mbp), the Sr36 gene is located as introgressed from the T. timopheevii. Orange colours outside 
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the introgression boundaries suggest old hybridizations from other wild wheat relatives either, in the reference Lancer 
or in the modern cultivars depicted. 

 

4.4.4.2. The Ae. ventricosa 2AS/2NVS translocation into the WatSeq 

The 2AS/2NvS translocation from Ae. ventricosa was introduced originally by (Doussinault et al., 
1983) into the French cultivar VPM1. It has been documented that the 2AS/2NvS  introgression is 
beneficial for yield in CIMMYT and Kansas State (US) breeding programs (Gao et al., 2021) and it 

is present in several European modern cultivars. In this analysis we report further characterisation 
on the presence and frequency of the Ae. ventricosa introgression in the WatSeq modern GediFlux 
germplasm collection. We investigate the different translocations sizes reported in previous 
studies in the eleven pangenome assemblies and provide detailed introgression boundaries and 

discuss the absence of different blocks sizes present in the germplasm here used. Furthermore, 
we reported additional chromosome blocks with putative Ae. ventricosa introgressions 
hypothesized to be originally from VPM1 and that have been maintained in multiple modern 

cultivars. Some of these additional translocations have been reported before but the actual donor 
or 50 Kbp resolution region was unknown. 

In our dataset we incorporated six Ae. ventricosa accessions which includes the 
ventricosaCGB116981 genotype, which we hypothesize is the actual donor of the VPM1 cross 

(Table 4.4). For this analysis we used Mattis as our reference for the IBSpy analysis as it is well 
known to carry the Ae. ventricosa 2AS/2NvS introgression on chr2A. Using a similar criterion, we 
confirmed that, Ae. ventricosa has variations count <120 against the Mattis reference from 0 to 

32.6 Mp on chr2A. This same introgression was additionally confirmed in Mace, Stanley, and 
Jagger references. Using these four references with the detected Ae. ventricosa introgression and 
IBSpy, we identified in total 34 genotypes in the WatSeq dataset to have the 2AS/2NvS 

introgression. Interestingly, all samples with the presence of the 2AS/2NvS block had the complete 
region without apparently recombination from 0 - 32.6, 0 -33, 0 - 33.6, 0 - 31.8 Mbp based on 
Jagger, Mace, Stanley and Mattis, respectively. Four genotypes with CIMMYT origin 
(Becard_Kachu, Borlaug, Cimcog26, Cimcog49) had the introgression.  

 

Table 4. 4. Ae. ventricosa accessions used in this analysis. 

Accession Number Reads  Publication 

Aegilops ventricosa 2067 SRR13484802 Walkowiak et al., 2020 

Aegilops ventricosa 2181 SRR13484816 Walkowiak et al., 2020 

Aegilops ventricosa 2210 SRR13484813 Walkowiak et al., 2020 
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Aegilops ventricosa 2211 SRR13484815 Walkowiak et al., 2020 

Aegilops ventricosa 2234 SRR13484814 Walkowiak et al., 2020 

Aegilops ventricosa CGB116981 ERR7747980 Aury et al., 2022 

 

Consistently, most of the genotypes with the Ae. ventricosa 2AS/2NvS introgression were related 
by pedigree and can be classified as descendants of VPM1 (http://wheatpedigree.net). Analysis in 
the recent modern cultivars from private breeding companies from the UK and Europe, we 

detected the 2AS/2NvS introgression on the cultivars Extase, Wolverine, Piko, Rubisko, 
Sacramento, Saki, Skyscraper, Siskin, Santiago, and Revelation which reveals its extensive current 
use on modern European breeding. Consistent with our previous observations, the 2AS/2NvS in 

these modern cultivars had the same introgressions size regardless of the reference used (Table. 

4.5). These results suggest that there is a single introgression that has been maintained in all the 
cultivars and that the slightly different sizes seen in the genome references may be due to 

misassembles. This is supported by the additional fragments detected on the chrUn in Borlaug and 
Jagger similar to ventricosaCGB116981 (not shown). Therefore, the precise introgression size may 
be determined once an Ae. ventricosa assembly is released. All this analysis, suggest that there is 
a low (or null) recombination in this region or that breeders are actively selecting for the complete 

segment for its multiple agronomic benefits. Unexpectedly, two Watkins accessions (WATDE0786 
and WATDE0791) also carried this introgression. These may be due to an unintended cross 
pollination during seed propagation, DNA contamination, or mislabelling of samples. This because 

seeds of the Watkins collection have been propagated during almost ~100 years in close contact 
with other modern wheats. 

Additional to the 2AS/2NvS introgression, we identified seven genotypes to have an Ae. ventricosa 
fragment on chr7D from 616.0 - 618.6 Mbp (based on Jagger genome coordinates) and from 631.1 

– 635 Mbp (based on Mattis coordinates). This region corresponds to the well-known eyespot 
Pch1 gene region (Pasquariello et al., 2017). Although recombination in the region can rarely occur 
(Pasquariello et al., 2020), breeders have maintained the region intact in multiple cultivars 

including Jagger, Holster, Piko, Rendezvous, Revelation, and Renan (Table. 4.5, Fig 4.17b). 

Other additional block was detected on chr2B from 7.1 - 8.8 Mbp based on the Jagger reference 
in the same set of six genotypes. These two blocks detected in two different chromosomes in the 

same set of samples may be an indication of linkage disequilibrium between the two blocks. 
Alternatively, it could be that the region on chr2B belongs to chr7D in Jagger or vice versa and is 
therefore a misassemble.  

http://wheatpedigree.net/
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Previous studies detected a putative introgression on the telomeric region of the short arm on 
chr3D in the Mattis reference, but its origin was unclear. In this analysis, we detected this 

introgression and could assign it to Ae. ventricosa based on the raw data of Ae. ventricosa having 
IBSpy variations values below <10 in the 0 Mbp to 47.8 Mbp interval which suggest that 
ventricosaCGB116981 is the actual donor (or a closely related) accession of the introgression. 
(Table 4.5, Fig 4.17f). Using Mattis as the reference, we also detected a small block of this 

introgression from 42.5 to 47.8 Mbp in modern cultivar Extase (Table 4.5, Fig. 4.17c). 

 

Table 4.5 Introgressions from Ae. ventricosa (ventricosaCGB116981) into the wheat 
pangenome and the WatSeq modern lines. 

 

 

 

Reference Mace Stanley 
Chromosome chr2A chr2B chr7D chr2A chr2A chr2A chr3D chr7D
Genotype
Alert  0 - 32.6 Mbp 0 - 33.0 Mbp 0 - 33.6 Mbp 0 - 31.8 Mbp
Becard_Kachu  0 - 32.6 Mbp 0 - 33.0 Mbp 0 - 33.6 Mbp 0 - 31.8 Mbp
borlaug-pg  0 - 32.6 Mbp 0 - 33.0 Mbp 0 - 33.6 Mbp 0 - 31.8 Mbp
Cimcog26  0 - 32.6 Mbp 0 - 33.0 Mbp 0 - 33.6 Mbp 0 - 31.8 Mbp
Cimcog49  0 - 32.6 Mbp 0 - 33.0 Mbp 0 - 33.6 Mbp 0 - 31.8 Mbp
Cordiale  0 - 32.6 Mbp 0 - 33.0 Mbp 0 - 33.6 Mbp 0 - 31.8 Mbp
Crusoe  0 - 32.6 Mbp 0 - 33.0 Mbp 0 - 33.6 Mbp 0 - 31.8 Mbp
Drake  0 - 32.6 Mbp 0 - 33.0 Mbp 0 - 33.6 Mbp 0 - 31.8 Mbp
Equinox  0 - 32.6 Mbp 0 - 33.0 Mbp 0 - 33.6 Mbp 0 - 31.8 Mbp
Extase  0 - 32.6 Mbp 0 - 33.0 Mbp 0 - 33.6 Mbp 0 - 31.8 Mbp 42.5 - 47.8 Mbp
Fiorello  0 - 32.6 Mbp 0 - 33.0 Mbp 0 - 33.6 Mbp 0 - 31.8 Mbp
holster  0 - 32.6 Mbp  7.1 - 8.8 Mbp  616.0 - 618.6 Mbp 0 - 33.0 Mbp 0 - 33.6 Mbp 0 - 31.8 Mbp  631.1 - 635 Mbp
jagger-pg  0 - 32.6 Mbp  7.1 - 8.8 Mbp  616.0 - 618.6 Mbp 0 - 33.0 Mbp 0 - 33.6 Mbp 0 - 31.8 Mbp
KWS_Santiago  0 - 32.6 Mbp 0 - 33.0 Mbp 0 - 33.6 Mbp 0 - 31.8 Mbp
mace-pg  0 - 32.6 Mbp 0 - 33.0 Mbp 0 - 33.6 Mbp 0 - 31.8 Mbp
mattis-pg  0 - 32.6 Mbp 0 - 33.0 Mbp 0 - 33.6 Mbp 0 - 31.8 Mbp 0 - 47.8 Mbp  631.1 - 635 Mbp
Piko  0 - 32.6 Mbp  7.1 - 8.8 Mbp  616.0 - 618.6 Mbp 0 - 33.0 Mbp 0 - 33.6 Mbp 0 - 31.8 Mbp  631.1 - 635 Mbp
Prophet  0 - 32.6 Mbp 0 - 33.0 Mbp 0 - 33.6 Mbp 0 - 31.8 Mbp
Reedling  0 - 32.6 Mbp 0 - 33.0 Mbp 0 - 33.6 Mbp 0 - 31.8 Mbp
Reform  0 - 32.6 Mbp 0 - 33.0 Mbp 0 - 33.6 Mbp 0 - 31.8 Mbp
Renan  0 - 32.6 Mbp  7.1 - 8.8 Mbp  616.0 - 618.6 Mbp 0 - 33.0 Mbp 0 - 33.6 Mbp 0 - 31.8 Mbp  631.1 - 635 Mbp
Rendezvous  0 - 32.6 Mbp  7.1 - 8.8 Mbp  616.0 - 618.6 Mbp 0 - 33.0 Mbp 0 - 33.6 Mbp 0 - 31.8 Mbp  631.1 - 635 Mbp
Revelation  0 - 32.6 Mbp  7.1 - 8.8 Mbp  616.0 - 618.6 Mbp 0 - 33.0 Mbp 0 - 33.6 Mbp 0 - 31.8 Mbp  631.1 - 635 Mbp
Rubisko  0 - 32.6 Mbp 0 - 33.0 Mbp 0 - 33.6 Mbp 0 - 31.8 Mbp
Sacramento  0 - 32.6 Mbp 0 - 33.0 Mbp 0 - 33.6 Mbp 0 - 31.8 Mbp
Saki  0 - 32.6 Mbp 0 - 33.0 Mbp 0 - 33.6 Mbp 0 - 31.8 Mbp
Savannah  0 - 32.6 Mbp 0 - 33.0 Mbp 0 - 33.6 Mbp 0 - 31.8 Mbp
Siskin  0 - 32.6 Mbp 0 - 33.0 Mbp 0 - 33.6 Mbp 0 - 31.8 Mbp
Skyscraper  0 - 32.6 Mbp 0 - 33.0 Mbp 0 - 33.6 Mbp 0 - 31.8 Mbp
Spitfire  0 - 32.6 Mbp 0 - 33.0 Mbp 0 - 33.6 Mbp 0 - 31.8 Mbp
stanley-pg  0 - 32.6 Mbp 0 - 33.0 Mbp 0 - 33.6 Mbp 0 - 31.8 Mbp
Torfrida  0 - 32.6 Mbp 0 - 33.0 Mbp 0 - 33.6 Mbp 0 - 31.8 Mbp
Turpin  0 - 32.6 Mbp 0 - 33.0 Mbp 0 - 33.6 Mbp 0 - 31.8 Mbp
ventricosa-10x_nuq 0 - 32.6 Mbp 0 - 33.0 Mbp 0 - 33.6 Mbp 0 - 31.8 Mbp
WATDE0786  0 - 32.6 Mbp 0 - 33.0 Mbp 0 - 33.6 Mbp 0 - 31.8 Mbp
WATDE0791  0 - 32.6 Mbp 0 - 33.0 Mbp 0 - 33.6 Mbp 0 - 31.8 Mbp
Wolverine  0 - 32.6 Mbp 0 - 33.0 Mbp 0 - 33.6 Mbp 0 - 31.8 Mbp

Jagger Mattis 
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Fig. 4. 17. Ae. ventricosa, the donor of the 2AS/2NvS introgression into wheat. 
The reference Mattis has the introgression 2AS/2NvS from 0 to 31.9 Mbp. The orange colours indicate <120 variations 
count of any other query sample against Mattis reference, which is an indication of having the introgression (DNA 
sequence similar to Mattis). a) 34 elite genotypes from the WatSeq dataset have the complete introgression block, 
including the references Jagger, Mace, and Stanley. b) A set of six genotypes have an additional introgression block 
on chr7D of Mattis (from 631.1 to 635 Mbp). c) Additional large introgression from Ae. ventricosa was detected in 
Mattis on ch3D from 0 to 47.8 Mbp and Extase (modern elite cultivar) having small portion of this introgression from 
42.5 to 47.8 Mbp. d) The Pch1 interval from Jagger on chr7D was also detected in six additional cultivars. These six 
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cultivars also have the fragment on chr7D of Mattis from 631.1 to 635 which indicates that these they may have the 
complete block and that was split in Mattis and Jagger.  e) variations histogram distribution of Ae. ventricosa as a 
query against Mattis reference per sub genome indicating that only A and D sub genomes have introgression depicted 
by the variations count at ~<10 consistently with a, b, c. And f) variations count in 50 Kbp windows of reference Mattis 
vs Ae. ventricosa depicting very low variations (<10) indicative to be IBS region and therefore the donor accession of 
the introgression. 

 

4.4.4.3. IBSpy on WatSeq large deletions 

We next wanted to investigate how the known deletions previously identified in modern lines 
would emerge and differentiate from introgression with IBSpy. For this analysis we focused on the 
deletions reported by (Allen et al., 2017; Przewieslik-Allen et al., 2021; Winfield et al., 2018) and 
using the cultivars reported in literature to carry such deletions. In this analysis we queried the 

candidates for large deletions against the eleven pangenomes. However, as a case study we 
describe the results using the Julius reference as it shows remarkable IBS region against 
WATDE0117 discussed. 

In our result using IBSpy we identified that Watkins_816 (in previous reports), here WATDE0117, 
has very high variations count against Julius across chr2D (Fig. 4.18c, b, d). Based on the work of 
(Allen et al., 2017) and (Winfield et al., 2018), we interpret this as a whole chromosome deletion 
of chr2D in WATDE0117. However, we detected a small block at ~515 Mbp similar to Julius, which 

suggests that a remanent of the chromosome is present (Fig. 4.18c, green arrow). This could be 
due to a misassembly in Julius, a translocation in WATDE0117 (i.e., this chr2D region translocated 
elsewhere in WATDE0117 before the chromosome was lost) or it could be indicative of a highly 

repetitive region. The latter is unlikely since the region spans several 50 Kbp windows. 
Interestingly, we noticed that WATDE0117 is very different (high variations counts) across the 
whole genome compared to all pangenome cultivars except for chr2A (Fig. 4.18a), which is 

hypothesized to be a whole chromosome duplication according to Winfield et al., 2018. 

Additional results on the eleven pangenome assemblies suggest that chr2A of WATDE0117 is the 
only chromosome that shares IBS regions. Julius reference shares the largest with more than >50% 
IBS regions, a large block from ~160 to 535 Mbp, and from ~590 to 627 Mbp of chr2A (Fig. 4.18a, 

yellow bars). Norin61 and CS share mainly telomere regions, which was not seen in other 
pangenomes. This analysis reveals that only chr2A has been used in modern breeding based on 
the pangenome references. In future work, it would be worth it to explore additional Watkins to 

have the same haplotype on chr2A and therefore, a candidate duplication to extend the analysis 
in the phenotypic effect. In Winfield et al., 2018 there was an additional indication that 
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WATDE0117 may have other translocation in chr2B, however, our results with IBSpy do not show 
any evidence of a translocation in this chromosome (Fig. 4.18b). 

An additional cultivar named CIMCOG29 was reported in Allen et al., 2021 to have chromosome 
number variations detected by GISH. In our dataset we did not have this genotype, however, we 
identified CIMCOG32 to have a large deletion on chromosome arm chr7DL (Fig. 4.18e). This was 
the interpretation we gave to the region after 340 Mbp where variation counts are higher than 

>500 in most of the 50 Kbp windows (Fig. 4.18f) matching the deletion variations distributions 
detected in Fig. 4.18d.  This genotype shares several large chromosome blocks with Mace, a 
cultivar from Australia, in other chromosomes. This is not unexpected since Australian germplasm 

has been influenced by CIMMYT lines. Those large blocks and similarity to Mace were seen in 
CIMMYT lines CIMCOG47 and CIMCOG56 (data not shown). 

 

 

Fig. 4. 18. IBSpy detects large deletions. 
a) chromosome 2A variations fingerprint of WATDE0117 vs Julius reference and b) the histogram distributions of the 
chr2 triad. c), chr2D of WATDE0117 vs Julius which has the entire block deleted with a remanent (green arrow). d), 
histogram distributions of chr2D deleted which has variations peak at ~500 count. e), chr7D of CIMCOG32, a cultivar 
from CIMMYT vs Julius. CIMCOG32 has a deletion of half chromosome from ~350 Mbp to the end of the chromosome. 
f), histogram distribution of chr7D of CIMCOG32 and a zoom in of the distribution filtering > 120 variations count. d 
and f variations peak are indicated by the yellow dashed line which falls at similar variations count. The red line 
indicates the threshold for the IBS hypothetical regions shared with WATDE0117 and Julius on chr2A (which was 
predicted to have a duplication in Allen et al., 2020). The blue square is the threshold defined for wheat cultivars not 
having an introgression. 
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4.5. Discussion 

4.5.1. Methods to detect introgressions 

Crop wild relatives are a valuable source of alleles still unexploited in many crops and breeding 
programs (Kilian et al., 2021). Interspecific or wide crosses have been used to transfer these alleles 
for desirable traits into crops mainly for disease or abiotic resistant phenotypes (Hao et al., 2020). 
Traditionally, these induced introgressions or natural hybridisations have been detected by 

cytological methods (Friebe et al., 1996) or C-banding patterns (Badaeva et al., 2008). Although 
valuable, cytological methods to detect introgressions are low throughput to screen large number 
of samples. Furthermore, the resolution and chromosome physical position of the introgressed 

blocks are low. They were employed mainly to detect presence absence at the scale of 
chromosome breakpoints blocks (Friebe et al., 1996). With progress on NGS,  recent methods have 
been developed based on  retrotransposon genome content analysis (Walkowiak et al., 2020) or 

by SNP-based methods (Przewieslik-Allen et al., 2021; Scholten et al., 2016).  

Additionally, with the availability of high-quality assemblies of wheat and wild relatives, methods 
to detect introgressions without the need of cytological analysis have been developed. For 
example, Keilwagen et al., 2022 (Keilwagen et al., 2022) used mapping by alignments of 

sequencing reads to detect introgressions and predict the putative donors into descendant 
individuals. Similarly, (Keilwagen et al., 2019) used GBS and read coverage mapping to detect 
introgressions in barley and wheat. These methods rely on reference assemblies and the computer 

burden of alignments methods which represent a challenge for large genomes such as the 
hexaploid wheat (~16GB). An additional constrain with alignment-based approaches is the level of 
resolution that can be accomplished since the exact boundaries of the introgressions is mainly in 
magnitudes of Mbp in wheat. In our study, we used a k-mer based variations approach to detect 

introgressions at 50 Kbp resolution that does not rely on the alignments of sequencing reads. 
Instead, we used presence absence of k-mers which have been proven to be advantageous to 
detect variations on highly diverse genotypes because do not rely on read mapping to a genome 

reference and integrate genome structural variations information to the analysis (Gaurav et al., 
2022; Rahman et al., 2018; Voichek & Weigel, 2020). 

Furthermore, with our method, we could detect the actual donor, as we demonstrated with an 

example of the Ae. ventricosa in four of the pangenome references by detecting an IBS region with 
>99.99% sequence similarity (Fig. 4.17f). Using the chromosome-scale assemblies as an indirect 
scaffold, we detected 34 WatSeq genotypes having this exact introgression. Surprisingly, none of 
the genotypes having the introgression had a difference on the size of the introgressed fragment. 

Traditionally, this would be explained by the lack of recombination between wheat and Ae. 
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ventricosa. However, studies of the Ae. ventricosa Pch1 region have shown categorically that 
recombination is possible between these genomes, albeit it is rare (Pasquariello et al., 2020). The 

fact that recombination is possible, and that the Ae. ventricosa introgression is located in the 
telomere region, a highly recombinogenic distal region of the chromosome, suggests that 
breeders are selecting the entire block, possibly, for multiple beneficial QTLs in the region. This is 
consistently with the analysis of the 2AS/2NvS translocation present in multiple germplasms 

reported by (Gao et al., 2021) and shown to be beneficial for yield. 

A different approach using low sequencing coverage was implemented by (Zhou et al., 2021) 
detecting introgressions by k-mers presence/absence of the parents inherited to the progeny with 

a subsequent step of mapping back to a genome reference to define the introgressed region. 
Interestingly, this method could detect introgressions at 0.1-fold coverage, but it relies on having 
the information of the actual donor parents of the progeny. Similarly, using k-mers 

presence/absence, (Gaurav et al., 2022) identified specific lineage regions into the D sub genome. 
With the current version of our approach, we can efficiently detect introgression at 50 Kbp 
resolution. However, if the actual donor(s) of the introgression is unknown, we still rely on ~10-
fold coverage to detect it. With coverage of ~5-fold with Illumina 150 bp short reads we can detect 

the signal of an introgression with the constrain of not being able to detect the actual donor. 

An importantly feature in our approach is that we can identify introgressions without the need of 
the assembly either from the donor or the accession having the introgression. Instead, we 

accomplish this by using a clustering approach and haplotype calls as demonstrated with an 
example from the Ae. tauschii into wheat in section 4.2.3. This is an important step forward as all 
previous methods required to have a reference assembly with the putative introgression to be 
able to identify it. The haplotype-based approach outlined here will allow us to systematically 

identify regions where wheat accessions with only raw-reads cluster together with wild wheat 
relatives, and therefore candidate introgressions. The current resolution is 1 Mbp, but as outlined 
in Chapter 3, the AP pipeline can be adapted for smaller intervals. 

The identification of novel Ae. tauschii segments in Watkins accessions also provides a roadmap 
for future crosses to incorporate this genetic variation into modern cultivars. We identified ten 
Watkins accession with a novel 99 Mbp from Lineage L3 region which is absent in modern cultivars. 

This region was maintained in the landraces but perhaps did not participate in the initial crosses 
performed by breeders in the early 1900s which were the founders of important modern cultivars. 
Likewise, we identified two Watkins accessions which carry putative novel lineage L2-SA regions 
which are absent from modern wheat. The ability to detect this novel variation in the absence of 



 180 

a genome reference is an important step towards the targeted use of variation in breeding 
programmes.  

 

4.5.2. The evolution of the D genome of hexaploid wheat 

Historical and archaeological evidence suggest that wheat was domesticated in the Fertile 
Crescent (Brown et al., 2009; Tanno & Willcox, 2006). Most studies point to Ae. tauschii as the 

donor of the D sub genome of hexaploid wheat by a few events of independent of 
allopolyploidization 8,000 to ~10,000 years ago coinciding with the period of wheat domestication 
(Gaurav et al., 2022; Huang et al., 2002; MCFADDEN & SEARS, 1946; Pont et al., 2019) and the 

absence of historical records of wild hexaploid wheat accessions. 

Studies suggest that only a few accessions contributed to the D genome of wheat from a specific 
Ae. tauschii lineage from the North of Iran (Lineage 2). In 2021, (Zhou et al., 2021), suggested that 

a reduced number of accessions from a L2 sub-group contributed the most to the D genome of 
wheat based on genetic similarity analysis. In our analysis we found similar results where 
accessions from a subgroup of L2, here named L2-SA, had the most similarity with the D genome 
of wheat. Other studies suggested that lineage L3 also contributed to the modern D wheat genome 

(Gaurav et al., 2021).  Although to date there is no report of the actual donor and the number of 
hybridisations that took place, based on our results on novel introgressions blocks detected, we 
concluded that a single event may not explain the whole D sub genome variation observed. This is 

supported by the evidence of large L3 blocks on chr1D and other L2 introgressed blocks with 
different levels of variations in some Watkins landraces. 

A particular observation from the analysis and level of variations among L1, L2, and L3 Ae. tauschii 
in this analysis detected with IBSpy suggest that the tree lineages are genetically equally distant 

among them. Interestingly, this similarity distance of the variations was similar to the observed in 
two heterotic groups in Maize. In future analysis it would be worth to test if controlled crosses 
among those L1, L2, and L3 lineages provides some level of hybrid vigour for agronomically 

important traits. Most importantly, the synthetics hexaploid already available (Gaurav et al., 2022) 
for the three lineages lines are good candidates to test the proposed hypothesis and detect the 
benefit (if some) in a very close to a breeding line in wheat. For example, we could test the above 

hypothesis using the following groups focusing on a hybrid vigour for yield or other traits: 

a) cross a synthetic (L1) x synthetic (L2) and test for hybrid vigour. 
b) cross a synthetic (L1) x synthetic (L3) and test for hybrid vigour. 
c) cross a synthetic (L2) x synthetic (L3) and test for hybrid vigour. 
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4.5.3. The contribution of T. monococcum to the wheat A genome 

T. urartu is the A sub genome donor of tetraploid and hexaploid wheat (Huang et al., 2002). The 
second closest relative of T. urartu and the A sub genome of wheat is T. monococcum, also known 

as einkorn. There is evidence that einkorn has contributed to the genome of wheat genome by 
natural or induced hybridisations (Kolmer et al., 2010; Zhang et al., 2010). However, until today, 
there is a lack of an extensive study at the whole genome or population level that demonstrates 

the extent to which the genome regions and gene flow were incorporated into modern wheat. 
Furthermore, there is a limitation on defining the exact boundaries of the hybridization regions in 
the physical chromosome positions that could help to design molecular markers for beneficial 

alleles for breeding. 

In 2021, with the availability of the wheat pangenome, (Chen et al., 2021) found introgressions 
from different accessions of T. monoccocum to be present in the ArinaLrFor and Mattis genome 
assemblies on chr5AL with both genomes having a 9.5 Mbp fragment. The regions detected were 

from 700.7 Mbp to the end of the chromosome in ArinaLrFor and from 693.1 Mbp to the end of 
the chromosome in Mattis. In our analysis we demonstrated that a more precise genome region 
size would be of 10,124,532 bp in ArinaLrFor, and 9,606,209 bp in Mattis. 

In agreement with this study of different fragments lengths of T. monoccocum being present in 
wheat, we suggest that an initial hybridisation took place with a T. monococcum donor that is now 
absent from the natural population or was not included in the collection here studied. Hence, 
cross-pollination followed by recombination among different T. monococcum accessions with the 

original donor took place and we detect those fragmented blocks in our study, but without the 
actual donor sharing the entire region. This is in consistency with the fact that (i) single donors 
could be detected in a few cases where the T. monococcum introgressions were relatively small, 

and (ii) the T. monococcum introgressions where concentrated in the telomeric regions which have 
higher recombination rates in Triticeae genomes (Choulet et al., 2014). Furthermore, the lack of 
fragments in centromere regions in most of the pangenome here explored suggest that a few 

hybridisations took place, and those genome regions may have been selected against due to 
undesirable traits in modern breeding or by natural selection affecting the fitness of those 
genotypes.  

The domestication of einkorn was from wild members from a specific race named beta in Kilian et 

al., 2007 (Kilian et al., 2007). In our study, we propose that the gene pool from T. monococcum 
into wheat was brought from wild accessions into domesticated einkorn and from cocultivation of 
domesticated einkorn and wheat into the A wheat sub genome. This is supported by the number 
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of accessions sharing large proportions of blocks coinciding with the domestication region and 
cultivation of wheat (Balfourier et al., 2019; Brown et al., 2009; Marcussen et al., 2014) where 

early farmers may have selected for superior agronomically traits. 

In our analysis, we identified ~0.2 to 0.5% of the wheat genome as T. monococcum. Then say that 
using the <120 cut-off about 30-35% of the genome are predicted to be introgressions. Some of 
these can now be attributed to T. monococcum (small 0.2 – 0.5%), and a few additional regions to 

T. timopheevii (chr2B) and Ae. ventricosa (Chr2A, chr3D, chr7D). As we showed in our section 
4.4.2, we now can identify introgression that are not present in the genome references with the 
AP method and assign additional regions that come from wild relatives into the wheat genome. 

Therefore, we can predict introgressions into the complete WaSeq panel or any wheat accession 
with ~12-fold coverage not included here. This will be of importance since we will not only rely on 
pangenome assemblies to have the introgression. 

In this analysis we explored the Yr34 gene (synonym Yr48), which confers resistance to the yellow 
rust pathogen and was identified in the “Mediterranean” landrace from T. monoccocum into 
chromosome 5AL. This T. monococcum segment is present in several European cultivars, including 
the pangenome cultivars ArinaLrFor and Mattis, and is hypothesised be originated from a single 

hybridisation event (Chen et al., 2021). T. monoccocum historically has been used for 
introgressions into wheat for agronomic traits. For example, an isogenic line of Thatcher 
(hexaploid wheat) named RL6137, received a translocation from T. monococcum into 

chromosome arm 3AS which confers leaf rust resistance (Lr63) (Kolmer et al., 2010). The relevance 
of T. monococcum is further exemplified by the identification of the stem rust resistance gene Sr35 
introgressed into wheat on chr3A which confers resistance against the Ug99 race of the stem rust 
pathogen (Zhang et al., 2010) (Saintenac et al., 2013). These examples document the relevance of 

T. monococcum natural genetic variation for modern wheat breeding.  

 

4.5.4. The contribution of large introgressions into wheat 

Modern wheat has a reduced genetic diversity compared to its wild relative ancestors. The 
hybridisation and exchange of genetic material of species that share highly similar genomes its 
possible (Badaeva et al., 2008). Wild relatives have been used in wheat since early breeding mainly 

to introduce disease resistant traits and several breeding programs have been benefited from 
these early induced and natural occurred introgressions. An example is the well-known Ae. 
ventricosa 2AS/2NvS translocation on chr2A and the large fragment from T. timopheevii on chr2B 
Lancer pangenome. 
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The D genome of the tetraploid species Ae. ventricosa Tausch (DvDvNvNv) and the D sub genome 
of wheat pairs successfully and recombination and exchange of genetic material is possible in 

hybrids of these species (Badaeva et al., 2008; Gao et al., 2021). On the contrary, hybridisation 
among the Nv genome of Ae. ventricosa and the A wheat genome is less frequent. Different genes 
from Aegilops species have been introduced in wheat background (Doussinault et al., 1983; Friebe 
et al., 1996; Gale et al., 1984). For example, the 2AS/2NvS was introduced in 1967 by Nicole Maìa 

and René Ecochard (Gao et al., 2021) from the Ae. ventricosa, accession Vent10 into a line named 
VPM-1. The genes Yr17, Lr37, and Sr38 were mapped in the 2N and were demonstrated to be 
derived from Ae. ventricosa into wheat (Bariana & McIntosh, 1994). 

In our analysis presented in this thesis we successfully detected and validated those large 
introgressions using IBSpy and discovered novel fragments not reported before. We detected the 
almost complete chromosome introgression from T. timopheevii into the pangenome Lancer 

chr2B reported by (Walkowiak et al., 2020). In addition, we detected the boundaries at 50 Kbp 
resolution of the introgression and detected large blocks present in Diablo an Stava cultivars. 
Several other modern cultivars had different fragment sizes of the introgression that suggest 
breeders are selecting for this block. Similarly, we detected the 2AS/2NvS in more than >30 

cultivars from the WatSeq panel and evidenced that the complete fragment has been passed 
intact in modern cultivars maybe by targeted selection. 

In summary, our analysis here presented revealed the prevalence of natural and induced 

introgressions into the wheat genome. We evidenced that the wheat genome harbours large 
portions of introgressions across its entire genome still unexplored and that novel sequenced 
cultivars outside the pangenome references will reveal those alien fragments extensively. With 
these series of analysis, we demonstrate the usefulness of IBSpy to detect difficult introgressions 

at 50 Kbp resolution in wheat from distant wild relatives. We hope that our approach would 
provide the tools to further explore the wheat genome and other important crops and impact on 
breeding decisions for trait selection. 

 
5. General discussion 

The main objective of this PhD was to develop a method to build a haplotype database for wheat 
and elucidate the genetic diversity between cultivars, modern varieties, landraces, and associate 
genotypes with phenotypes. We developed a novel method based on k-mers presence/absence 

to detect genetic variations represented in three scores: “observed_kmers”, “variations”, and 
“kmer_distance”. Since we use those scores to predict identical by state (IBS) genome regions 
among cultivars using mainly the python programming language, we named it IBSpy. Using the 
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variations score we extended IBSpy to define haplotypes using multi-genome references syntenic 
regions. Exploiting these haplotypes, we tracked back haplotypes in modern elite varieties from 

early cultivars and landraces. Using IBSpy haplotypes, we implemented hapGWAS to detect 
genome associations to qualitative and quantitative phenotypes. Finally, in Chapter 4, we 
exploited IBSpy variations fingerprint counts, and haplotype calls to detected whole genome 
introgressions at 50 Kbp resolution and define novel introgressions absent in the current genome 

reference assemblies available. 

Specifically, this research focused on the challenge of identifying IBS regions using whole genome 
sequencing raw reads data at relatively low coverage (~12-fold) and automate haplotype calling 

of genome regions among >1,000 wheat genotypes. Using this haplotype database, we addressed 
our initial question of how genetic diversity has been changed in modern elite cultivars to target 
and incorporate those novel alleles into breeding. We benchmarked our pipeline with commonly 

used single-reference alignment and variant calling methods. Our approach complements 
alignment methods already established to explore genome diversity in population genomics and 
for genotype-phenotype associations studies. Particularly, our approach provides an alternative 
to exploit large genome datasets which are computationally challenging and time demanding. Our 

method benefits of integrating multi-genome information and large collections datasets for large 
genome (~16 Gb).  

 

5.1. Challenges on variations discovery 

Before the 1980s molecular markers were private to protein polymorphisms detected mainly by 
gel electrophoresis (Gottlieb, 1981). In this same decade Jeffreys made it possible to detect 
polymorphisms at the genome level through the discovery of DNA fingerprints (Jeffreys et al., 

1985). Polymorphisms were distinguished mainly by the variation in DNA fragment lengths cut by 
restriction enzymes (restriction fragment length polymorphism; RFLP) (Botstein et al., 1980; 
Cooper & Schmidtke, 1984). Different versions of RFLPs were rapidly developed after its first 

discovery and although these methods are now considered low throughput genotyping, at that 
time, human fingerprint using those techniques had a huge impact for different applications on 
DNA-based discoveries. 

These methods to detect polymorphism rapidly reached their use in plants to fingerprint varietal 
identity of crop varieties (Smith & Smith, 1992). As the advent on DNA sequenced progressed, 
methods such as DNA-arrays and sequencing of short DNA fragments started to emerge (Kehoe 
et al., 1999). In the last two decades however, NGS has considerably impacted on the discovery of 
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DNA markers and genotyping technologies at high scale. This has led to accumulation of large 
amounts of sequencing data in publicly available databases and to the capacity of generate large 

volumes of data in a short period of time (Fan et al., 2014). 

As the amount of data continue to increase with NGS advances, novel algorithms are released to 
detect SNPs and structural variations. The software to use in each case depends on the data 
available, computer resources, and the objective of the study. The most common methods are 

based on alignments of short reads to a reference genome (Chiang et al., 2015; DePristo et al., 
2011) and more recently to a pangenome graphs (Jordan et al., 2021; Kim et al., 2019; Rakocevic 
et al., 2019). 

In this project we took advantage of NGS and publicly available data to explore genetic variations 
in wheat. The challenge of this study was on how to integrate and develop a method to call 
variations in a unified manner bearing in mind the wheat genome size (~16 Gbp) to avoid computer 

burden. Considering that at the moment of this study there were eleven chromosome-scale, and 
five scaffold scale assemblies generated by the pangenome project (Walkowiak et al., 2020) and 
additional five hexaploid wheat chromosome-scale at different quality assemblies generated by 
other groups (Athiyannan et al., 2022; Aury et al., 2022; Guo et al., 2020; Kale et al., 2022; Sato et 

al., 2021), the computational load to exploit and integrate all the information available was 
becoming prohibited. 

In several species including wheat, read alignments studies for SNP calling usually uses ~ >10-fold 

sequencing coverage. In this study, the WatSeq project data has on average ~12-fold coverage of 
150 bp DNBSeq reads, and more than > 1,000 genotypes were sequenced in the collection. To 
align a single sample to a single reference of hexaploid wheat (16 Gb) with this coverage roughly 
requires 96 CPU hours, ~120 Gb RAM, and 1 CPU using the most common aligners (Langmead et 

al., 2009; Li & Durbin, 2009) depending on the computing infrastructure. In our study, we 
implemented and used IBSpy to detect variations. This method calls variations by using k-mer 
presence/absence. It requires ~48 CPU hours, and 60 RAM, and 1 CPU to detect variations for a 

single sample against one genome reference for the hexaploid wheat genome (16 Gbp size). 

Our method is simplified into two steps, first creating a k-mer databases directly from raw reads 
using either KMC or Jellyfish with a following step for querying this k-mers databases to a reference 

through IBSpy. These variations are the input to call haplotypes in downstream analysis optional 
to the user as described in Chapter 3. Compared with alignment methods, our approach simplifies 
the pipeline avoiding pre filtering steps such as cleaning and removing low quality reads. In 
downstream analysis, it avoids processing large BAM files and calling variations followed by a 

filtering step commonly required in alignment methods (McKenna et al., 2010).  
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Although IBSpy can detect variations in 50 Kbp windows, we acknowledge that the current version 
of IBSpy does not allow to detect variations at single or a few base pairs between two samples. 

While this may not be a constrain to detect IBS regions and long-range haplotype blocks at >1 
Mbp, it will be a limitation if a user is interested in detecting a single SNPs or point mutations 
between highly similar genotypes. This limitation, however, can be used as a useful feature in 
haplotypes GWAS analysis as we described in Chapter 3. For example, building haplotypes can 

integrate a group of genotypes having the same long-range haplotype but contrasting phenotypes. 
This could be used to detect the putative polymorphism underlying the phenotype within the 
group of genotypes having the same haplotype. For example, if a set of ten lines having the same 

haplotype are associated with the resistant phenotypes, but out of ten, nine are resistant and one 
is susceptible it could provide us with clues of the mutation underling the trait as we would expect 
that the susceptible line should have a few SNPs different to the other nine resistant genotypes. 

It is well known that large scale structural variations are important for agronomically important 
traits (Yang et al., 2019)  and played essential roles during crop domestication (Gaut et al., 2018; 
Zhou et al., 2019). Although SNPs and small InDels are easily captured by common aligners, variant 
callers, and shotgun sequencing (Hwang et al., 2015), a constrain with alignment and variation 

calling methods is that they fail to efficiently capture genomic structural variations. One way to 
face this problem is using long read sequencing or specific aligners which capture better large 
structural and copy number variations (Eggertsson et al., 2019; Handsaker et al., 2015). On the 

other hand, large structural variations, duplications, and large inversions are detectable only by 
chromosome assemblies or optical maps (Mahmoud et al., 2019; Schiessl et al., 2019). 

With the advent of genome sequencing and pangenome assemblies, methods to detect structural 
variations are becoming common (Sibbesen et al., 2018). However, still most of them rely on 

alignments methods of short reads and were developed focused on other species rather than 
plants, which harbour a high repertoire of structural variations. An alternative to detect structural 
variation is to perform local alignments of shorth reads with a subsequent step of aligning them 

back to a reference. However, assembling raw reads is computational demanding, requires high 
sequencing depth, and is laborious when the number of samples is high such as those commonly 
used in plants studies. One option to capture and incorporate structural variations is by using k-

mers (Gaurav et al., 2022; Voichek & Weigel, 2020). 

With the deployment on sequencing at low cost, novel methods to detect variations based on k-
mers are in progress. For example, BayesTyper uses the exact match of alignments of k-mers using 
a graph representation of a variant to detect all types of variations (Sibbesen et al 2018). In our 

study, we developed a novel method based on k-mers to detect variations represented in three 
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scores: “observed_kmers”, “variations”, and “kmer_distance” and we called it IBSpy. Our method 
integrates all types of genetic variations into a single score. In this way, when calling haplotypes 

and performing hapGWAS, this information is incorporated to capture similar haplotypes and 
detect phenotypic associations. The disadvantage, however, is that the IBSpy “variations” score 
considers a deletion, insertion, or copy number, as a “single” variation regardless of the size of the 
InDel or the duplicated fragment. This limitation can be partially overcome if the 

“observed_kmers” score is used instead to call haplotypes. However, in this thesis we did not 
explore if there are differences when using hapGWAS based on the former score. Further analysis 
in this direction would be worth to test for further IBSpy optimization. 

 

5.2. IBSpy: a multi-genome approach to call haplotypes in wheat 

With the progress on genome sequencing technologies, it is affordable to generate large 

sequencing information at relatively low cost. This large genomic data available, now faces the 
challenge on how to analyse and exploit it in a meaningful approach. Novel methods to integrate 
this information are in progress including pipelines that incorporate multi-genome references into 
a graph representation of a species for alignments. In our study we leveraged the availability of 

the recent wheat pangenome (Walkowiak et al., 2020) and > 1,000 whole genome resequencing 
of landraces and modern cultivars at ~12-fold coverage (here named WatSeq). This dataset is of 
magnitude that aligning the whole dataset against the complete wheat pangenome would be 

prohibited for the current computing resources and time using common aligners. 

Furthermore, large portion of the WatSeq dataset are landrace genotypes which may diverge from 
the current genome references and deciding to use only one or a subset of the current genome 
references could impact in not capturing important genomic features in these landraces not 

present in modern cultivars. We hypothesized that these set of lines (landraces) harbour untapped 
genetic diversity and unique haplotypes that are worth to explore and incorporate in a 
compressive analysis. To embrace these challenges, we implemented a feature into IBSpy to 

define haplotypes integrating a multi-reference approach and using presence/absence k-mers 
instead of the routine alignment methods. 

Currently, there are different approaches to define haplotypes. For example, HaploBlocker uses 

linkage to infer haplotypes. In other words, it defines haplotypes as a sequence of markers at a 
predefined minimum frequency in the population. With this method, only haplotypes with similar 
consecutive sequence of markers are consider to belong to the same haplotype block (Pook et al., 
2019). MATILDE, a second approach uses LD for clustering contiguous SNPs  (Pattaro et al., 2008). 
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Similarly, (Kim et al., 2018) created Big-LD which cluster LD SNPs not necessarily physically 
consecutive. As a result, Big-LD create larger haplotype blocks than other methods. 

Depending on the species, genotyping data, computational resources, and the objective of a study, 
a specific method to define haplotypes may be preferred. For example, (Mayer et al., 2020) used 
fixed window size to define haplotypes. This would be advantageous to compare haplotypes across 
datasets that vary in their LD. The disadvantage, however, would be those haplotypes will be 

broken by the window size used and the complete haplotypes and its effect is not captured in 
haplotype-phenotype associations. In Chapter 2 we showed a method that uses variations count 
based on k-mers against multiple-genome references independently. In a followed-up step in 
Chapter 3, we use those variations counts and the syntenic regions from these multiple genome 
references and defined an arbitrary split window size to predict haplotypes based on clustering 
algorithms. These parameters are not fixed and can be modified accordingly user needs. 

As briefly introduced before, with multiple reference now available (pangenomes) for several 
important crops, we can decide which reference from multiple options to use as a template to 
compare our samples. Alternatively, methods to unify multiple genomes into the so-called 
genome graphs or haplotype databases are available (Rakocevic et al., 2019). With these unified 

genome references, alignments and variant callers can exploit genome regions uniquely present 
in only some references and alleviate the problem of independently align to a set of references 
which is computing demanding and time consuming. Although this type of analysis is advanced in 

human genomics, great progress in several important crops is undergoing. The challenge, 
however, is that plant genomes are complex and repetitive, which represent a problem to solve in 
species with large genomes such as wheat.  

In plants, the practical haplotype graph (PHG) uses haplotype representation of a pangenome 

(Bradbury et al., 2022). The PHG still relies on genome assemblies or WGS alignments reads to a 
reference to populate the initial haplotype database with a representation of enough samples. 
This is a constrain to align high number of samples against large genome sizes such as the wheat 

genome. Again, alignments to a single reference involves bias towards the reference. When using 
WGS data, the PGH only keeps sequences that aligns well to a single location on the reference and 
important information and large structural variations are missed and mostly gene content regions 

may be captured. Furthermore, to accomplish a good alignment, high coverage WGS is required. 
Once the PHG is generated skim sequence or SNPs can be used to impute haplotypes. In the 
haplotype database presented in our study, we have generated a haplotype database using k-mers 
with 12-fold raw reads for hexaploid wheat including landraces and modern cultivars against 

multiple genome assemblies. This step, would be the equivalent step in populating the PHG in the 
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(Bradbury et al., 2022) research with the difference, however, that the PHG uses a single genome 
reference. In our study, at the time of writing this thesis, we haven’t reached the point to impute 

haplotypes with coverage below <10x. Further developments to the current version of IBSpy will 
take place on this direction to investigate how to overcome this challenge. 

Additionally, to other crops, the PHG was applied to wheat using whole exome capture and a 
reduced number of 65 wheat accessions (Jordan et al., 2021). In this study of wheat, imputations 

of haplotypes using different datasets resulted in lower accuracy compared to sorghum (Jensen 
et al., 2020), maize (Franco et al., 2020), and cassava (Long et al., 2021). Given that the genome 
of wheat is much larger that these two species, polyploid, and highly repetitive future tests would 

be required using WGS or the wheat pangenome (Jordan et al., 2021) but this will be 
computational challenging. 

Furthermore, adding a new genotype to populate the PHG would require starting the process over. 

In our study we used >1,000 whole genome genotypes at 12-fold to create a comprehensive 
database including, landraces, early breeding cultivars, and modern elite varieties, both public and 
from the private sector. Conversely to the PHG, to add a new genotype as a query into our 
haplotype database is straightforward as this will require independently run IBSpy against the 

pangenome references and concatenate the output information as an additional column to the 
initial database. Adding a new reference will require to call run IBSpy and call variations of the 
>1000 genotypes only to this novel reference and concatenate the already present database. 

Therefore, this advantage of our approach is that as we add more data, there is no need to re-run 
and start over from scratch. We envision our haplotype database to continue expanding until 
reaching a robust representation of the most important haplotypes of wheat and novel still 
untapped haplotypes from landraces. Then, to prevent the haplotype database becoming too 

large, users will be able to select only sets of samples to filter and focusing only on a particular 
dataset. Our haplotype database will be better described as long-range haplotypes since it can 
capture large haplotype blocks at 1 Mbp scale to the entire chromosomes, but it does not 

discriminate a few SNPs in 50 Kbp window. 

In 2021 Jordan et al., (Jordan et al., 2021) reported low imputation accuracy when genotypes 
harbouring an introgression from Ae. ventricosa was tested. Our findings described in Chapter 4 

in this study and other reports (Keilwagen et al., 2022; Walkowiak et al., 2020) have found that 
the wheat pangenome, modern wheat cultivars, and landraces, harbour large induced and natural 
introgressions/hybridizations from wild relatives across the whole genome. Given that this type of 
wide crosses is becoming prevalent in wheat breeding programs to restore the genetic diversity 

and introgress disease resistant traits and better adaptation (Devi et al., 2019; Gaurav et al., 2022; 
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Grewal et al., 2020; King et al., 2022), we hypothesize that including those wild relatives in a 
haplotype database will be pivotal to exploit unexplored haplotypes from wheat ancestors. In our 

present study in addition to the wheat landraces and modern cultivars, we included publicly 
available accessions of wheat wild relatives, one accession of rye, known to be the donor of the 
chr1B introgression block (Rabanus-Wallace et al., 2021), a panel of 265 accession of Ae. tauschii 
(Gaurav et al., 2022), and 218 accessions of T. monoccocum (Ahmed et al., 2023). In an ongoing 

project, shortly we will incorporate WGS from 94 additional accessions from a wider collection of 
wild wheat relatives to expand the search of novel haplotypes for agronomic traits. 

In the era of pangenomes, we hypothesize that, one of the reasons of lower imputation accuracies 

in Jordan et al., 2022 when using wheat compared to other species, may be the use of a single 
reference, Chinese Spring (RefSeq v.1.0), which is a landrace cultivar (Appels et al., 2018). As 
shown in Chapter 2 in this analysis and in (Walkowiak et al., 2020), Chinese Spring, along with 

Norin61, is one of the references that shares the least sequence similarity with other modern 
cultivars. This was also demonstrated with the low number of haplotype blocks shared in pairwise 
comparisons among references reported in (Brinton et al., 2020). To anticipate for this type of 
difficulties and to take advantage of all the available genome sequences, in our analysis we 

incorporated the eleven chromosome scale assemblies to build our haplotype database. As 
described before, this may be prohibitive for other variant caller pipelines that rely on alignment 
and mapping due to computational burden and the wheat genome size and complexity. 

Furthermore, thanks to progress on sequencing technologies, during the development of this 
thesis, additional chromosome-scale assemblies have been released (Athiyannan et al., 2022; Aury 
et al., 2022). We have used these novel references assemblies for specific analysis during this 
thesis and they will be added to this database to integrate a compressive set of unexplored 

haplotypes and strengthen our haplotype predictions. 

With these advances in NGS, decline in sequencing cost, and genome assembly pipelines and 
improvements for long-read sequencing (Cheng et al., 2021; Hon et al., 2020; Wenger et al., 2019), 

the sequencing and assembly of wheat genomes is now relatively straightforward at low cost 
compared to five years ago. It is therefore predictable that in the forthcoming years it will be 
common to have access to highly accurate chromosome-scale assemblies including for wild wheat 

relatives. Adding ancestral wheat relatives to our haplotype database will be of importance to 
capture novel types of variations and genome structures coming from those unexploited 
genotypes with high genetic diversity. As exemplified in Chapter 4 with the detection of a novel 
set of landraces harbouring hybridizations from an outgroup of Ae. tauschii L3, adding wild 

relatives to the haplotype database as a reference will help to elucidate the wheat genome 
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evolution and domestication time and space. Importantly, at the time of writing this thesis a 
pangenome assembly of the Ae. tauschii is under progress. Efforts to assembly representative 

accessions from each of the lineages were recently released under Toronto agreement by the 
Open Wild Wheat consortium (https://openwildwheat.org). These novel genome assemblies wills 
help to elucidate our hypothetical introgressions from the L3 lineage detected in this thesis for 
further research and provide the foundation to test for the agronomical benefit and provide 

insights of the evolution and hybridizations of those novel haplotypes alleles introgressed into 
hexaploid wheat. 

Haplotypes can be used to detect regions under positive or negative selection (Sabeti et al., 2002), 

fine mapping on multi parent populations (Druet & Georges, 2010; Islam et al., 2016), genome 
associations (Jiang et al., 2018), and as a dimensionality reduction for population structure 
(Pattaro et al., 2008). In addition, haplotypes can be used to track inherited blocks from ancestral 

genotypes to modern wheat cultivars and determine how breeding is shaping the wheat genome 
that can help to guide future selection strategies. Brinton et al., 2020 demonstrated that large 
blocks of genome regions are maintained with low recombination in modern cultivars adapted to 
different environments. In their study, they evidenced how breeders have selected and 

maintained intact genome regions together in multiple breeding programs worldwide.  In our 
study we investigated the haplotype diversity of wheat and linked them to agronomically 
important phenotypes. In Chapter 3, we used the defined haplotypes to track IBS regions back 

from landraces into modern wheat and pedigree relatives. We detected almost intact 
chromosomes passed from landraces still present in elite commercial varieties. In addition, in 
Chapter 4, we use our haplotype calls to identify novel introgressions into wheat and validated 
the donor of the Ae. ventricosa 2AS/2NvS translocation and detected old hybridizations in 

landraces from Ae. tauschii L3 lineage not reported before. 

 

5.3. Further applications of IBSpy 

5.3.1. IBSpy to detect genome missassemblies 

Now genome assemblies are becoming routine for many important and orphan crops. In the last 
10 years sequencing technologies has had a huge leap in the chemistry and computing algorithms 

in novel sequencing methods, sequencing error corrections and high throughput impacting 
positively in sequencing costs (Armstrong et al., 2019; Athiyannan et al., 2022). With the release 
of novel genome assemblies in short periods of time, methods to detect miss assemblies quickly 
and reliable would be of importance. 
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To alleviate for this demand, methods to detect missassemblies are in the public. For example, 
one common method to asses and validate genome assemblies is the Optical Mapping  (Udall & 

Dawe, 2017). While running our quality control analysis on the redundant test in Chapter 3 and 
querying genotypes from raw reads against its own genome assembly using IBSpy, we realized that 
our approach can be employed to detect genome missassemblies. For example, in a genome 
assembly, we can subsample raw reads from the initial data used to assemble the corresponding 

genome and as discussed in Chapter 2, we can run IBSpy to detect variations against itself. If there 
are major misassembles in a particular region of the assembled genome, the variations fingerprint 
will be high because those erroneous assemblies will generate k-mers not present in the raw reads.  

Following this rationale, in a pilot test in this study we verified the quality of the two assemblies of 
T. monococcum generated as part of this collaboration discussed in Chapter 4. Consistently with 
our predictions, we found two main missassemblies in the two accessions assembled where the 

Bionano Optical map failed to validate (unpublished data). Although these results are not present 
in this thesis because of time, this will be a further development and documentation to integrate 
into upgraded versions of IBSpy. 

 

5.3.2. IBSpy in other species and crops 

One of the challenges that we embraced with the present study was the size and complexity of 
the wheat genome, which is 16 Gbp, polyploid, and highly repetitive. Although, IBSpy was 

developed and tested in hexaploidy wheat, across this study we used several others tetraploid and 
diploid species closely related. We observed similarities on the genome structure of these species 
such as high levels of variations at telomere region compared to centromeres and differentiable 
number of variations in 50 Kbp window among genotypes. During the development of this project 

several other pangenome projects for other important crops, wild relatives, and orphan crops 
were released. For example, the Barley pangenome was released along the wheat pangenome 
(Jayakodi et al., 2020), and the Mazie pangenome was released one year later (Hufford et al., 

2021). Those additional genome assemblies enriched the initial repertoire of the genome 
assemblies. Therefore, there is a constant grow in the number of assemblies available per species 
and it is predicted that this trend will only increase in the following years. 

In the present study, we did not show results on the functionality of IBSpy in other important crop 
species other than the wheat genome. However, we have run pilot tests using the barley 
pangenome (Jayakodi et al., 2020) and the maize pangenome (Hufford et al., 2021). The Barley 
pangenome showed a very similar haplotype-like structure across the genome as with wheat using 
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50 Kbp windows and 31-mers (data not shown). On the other hand, the maize genome showed 
much higher level of variations in pairwise comparisons than the wheat genome. The haplotype-

blocks like when plotting the variations count were shorter in maize than in wheat. Interestingly, 
in maize, the two main heterotic groups, Siff Stalk (SS) B73 and the Non-Stiff Stalk (NSS) Mo17 (Li 
et al., 2022), were grouped separately in two groups when using the hierarchical clustering across 
the whole genome by chromosomes (data not shown). We envision the possibility that IBSpy 

variations may be of utility to develop cheap molecular markers to detected heterotic groups in a 
high throughput manner, however this requires further developments. 

Although, we tested the potential of IBSpy to call variations in other important crops, we did not 

call haplotypes by our method of AP discussed in Chapter 3. Therefore, it could be, that the 
optimal window size will differ for other crops with smaller genomes than the wheat genome 
composition, repetitiveness, and quality of the assemblies as discussed in Chapter 2. For example, 

for the Barley genome we efficiently detected haplotypes blocks-like with IBSpy using 50 Kbp 
windows as in wheat, however for maize we observed better results based on blocks-like detected 
using 10 Kbp window. Similarly, we tested the Brassica genome assemblies and we failed to detect 
blocks-like consistently (data not shown). This could be due to the still not high-quality of the 

brassica genome assemblies, or because the small genome sizes (Rousseau-Gueutin et al., 2020). 
In a recent work, our collaborators embraced a pilot work using WGS of a lettuce collection to 
detect old introgressions in modern cultivars and obtained promising results using different 

windows sizes (unpublished data). These examples are encouraging to extend the utility of IBSpy 
and optimize parameters in different plant species. At the time of writing this thesis, we haven’t 
tested IBSpy in other than plant genomes. 

 

5.3.3. Future considerations and improvements 

One of the long-term goals of the present project is to create a global and stable haplotype 
database for wheat for breeding. Although, the information here generated can be of utility for 

the wheat community, we acknowledge that the current version of IBSpy requires ~12-fold 
coverage to efficiently call haplotypes. This coverage is still prohibited to genotype large 
populations commonly used in breeding programs genotyping for GS, QTL mapping, or MAS due 

to costs. Therefore, the next challenge to embrace is to test if we can use the current haplotype 
database to impute or predict haplotypes with much lower sequencing depth than <12-fold or 
directly call variations with a reduced sequencing depth.  
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In an initial pilot test to answer this question we attempted to call variations with skim sequencing 
at 0.2-fold. However, the analysis demonstrated that the current version of IBSpy does not allow 

to detect variations using this sequencing coverage. Similarly, as with skim sequencing, we failed 
to capture variation using exome-capture sequencing (data not shown) due to the large gaps in 
the sequencing data of the query samples. Further improvements to the pipeline will be required 
to address this challenge. In this project, we have not testes to impute or predict haplotypes 

directly from the haplotypes database generated in Chapter 3. Further modifications to the initial 
algorithm will be required to directly call variations from these split-sequencing data. 

Finally, at the time of writing this thesis, there is a boom in the progress of computing power and 

improvements and development of novel predicting algorithms (Jumper et al., 2021; Silver et al., 
2016). In the current version of IBSpy, because of time, we tested a limited number of algorithms 
and methods. However, as the data in genome sequencing is predicted to increase and keep 

growing, novel algorithms faster and more accurate than AP would be important to test for 
haplotype predictions of the current IBSpy version. 

Improvements in the accuracy of haplotypes may help to use smaller haplotype windows size than 
<1 Mbp which would benefit hapGWAS associations explored in Chapter 3. Additionally, in the 

present study we did not test GS with the AP haplotype calls. This would be additional research to 
explore either with the current AP calls or with a method to efficiently design markers across the 
genome leveraging the current haplotype database created in this thesis as a starting point to 

strategically select targeted genome regions to deploy. 

In summary, in this thesis, in Chapter 2, we provided a novel method namely IBSpy to detect 
genetic variations based on direct raw reads and k-mers instead of alignments. This method is 
advantageous to employ with large and complex genomes such as wheat. Using IBSpy, in Chapter 

3, we defined haplotypes and created a database based on multi-genome assemblies and ~12-fold 
coverage raw reads of a large collection of > 1,000 wheat genotypes from the WatSeq project. This 
database includes landraces, modern cultivars, and wild relatives haplotypes. As a case study, we 

used this database to run hapGWAS for agronomically important traits and identified candidate 
genes for cloning for disease resistance. In Chapter 4, we used IBSpy to detect and validate known 
introgressions and found novel large and relatively small introgressions/hybridizations across the 

wheat genome either with or without genome assemblies. Finally, in Chapter 5, we describe the 
challenges on detecting variations in large and complex genomes in the arose of genomic data era 
and describe the advantages of using a multi-genome-based haplotype database. We describe the 
opportunities to optimise and further deploy IBSpy in other important and orphan crops with 

contrasting genomic sizes and complexities. 
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7. Supplementals 

 

 

Supplemental Fig. S2. 1. Mattis vs Julius IBSpy variations fingerprint across the whole genome. 

https://doi.org/10.1186/s13059-019-1755-7
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Supplemental Fig. S2. 2. Observed k-mers keeping unique k-mers. 
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Supplemental Fig. S2. 3. Observed k-mers removing unique k-mers using HiFi reads at different sequencing 
coverage. 
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Supplemental Fig. S2. 4. HiFi reads at different sequence coverage Mattis and Kariega keeping unique k-mer. 
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Supplemental Fig. S2. 5. Observed k-mers of HiFi reads (keeping unique k-mers) at different sequence coverage. 

 

 
Supplemental Fig. S2. 6. IBSpy variations distributions from HiFi raw reads at different sequence coverage from 
Kariega vs Mattis reference comparison including or removing unique k-mers. 
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Supplemental Fig. S3. 1. Rht_B1 Multi-reference cluster map of the Rht-B1 locus ± 1 Mbp. 
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Supplemental Fig. S3. 2.  Protein pairwise alignment of TraesSYM2A03G00828360 vs TraesSYM2B03G01095480. 
The candidate genes for the SRA blast resistant phenotype in Mattis. 
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Supplemental Fig. S4. 1. Population analyses of an einkorn diversity panel. Fig. 3 from Hamed et al., 2022 (under 

revision). 

a, Principal component analysis (PCA) of 218 einkorn accessions using all (121,459,674) SNPs. b, Unrooted neighbor-
joining tree constructed using a randomly selected subset of SNPs (5,318,268). c, Population structure (from K = 3 to 
K = 6) using the same SNPs subset as in (b). The split into two domesticated einkorn groups appears at K = 4. Each 
vertical bar represents one accession, and the bars are filled with colors representing the proportion of each ancestry. 
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Einkorn groups were assigned considering K= 6 (K with the lowest cross-entropy value) based on the maximal local 
contribution of ancestry except for β (all β genetic groups were assigned as one group regardless of the contribution 
of an ancestry). The α group 1 (α_g1, n = 37) is in purple, α group 2 (α_g2, n = 87) is in yellow, γ (n = 24), β (n = 9), 
domesticated einkorn group 1 (dom_g1, n = 44) is in green, and domesticated einkorn group 2 (dom_g2, n = 17) is in 
blue. A list of accessions in each group is provided in Supplementary Table 11. d, Heat map showing the mean fixation 
index (FST) between the two domesticated einkorn groups calculated in 1 Mb sliding windows. Only accessions with 
80% ancestry threshold at K= 4 were considered. Centromere midpoints are indicated by red arrowheads. e, PCA using 
only variants present on the introgressed segment on chromosome 5A. Each point shows an individual accession, 
colored according to the structure analysis in panel (c). Circled accessions include wild γ accessions and some 
domesticated einkorn accessions. f, Geographic location of einkorn collection sites. Colors in pie charts correspond to 
the ancestry at K = 6. The Fertile Crescent is indicated by black lines. Only accessions with known collection sites are 
shown. g, Geographical projection of the first PCA axis for γ accessions based on the introgressed segment on 
chromosome 2A (this analysis was done excluding α and β accessions). Black dots represent the location of each γ 
accessions. Blue color represents the collection sites of γ accessions that were genetically the least diverged from the 
γ introgression found in domesticated einkorn. The letter K on the map refers to the Karacadağ mountains. 
 

7.1.1. Supplemental tables links 

Supplemental tables are in the following link and folder “Supplemental_tables”: 

https://github.com/quirozcj/PhD_thesis_JQCH_2022 
 
Supplemental Table S2. 1. Whole Genome Sequencing of the (WatSeq project). 

Supplemental Table S2. 2. Ae. tauschii collection (Gaurav et al., 2022). 

Supplemental Table S2. 3. T. monococcum from Hamed et al., 2022 (under revision). 

Supplemental Table S2. 4. Other wild relatives accessions publicly available. 

Supplemental Table S2. 5. Pangenome k-mer sizes. 

Supplemental Table S2. 6. k-mer histograms from WatSeq sequencing samples. 

Supplemental Table S3. 1. WatSeq metadata with IBSpy variations information.  

Supplemental Table S3. 2. Ae. tauschii redundancy test. 

Supplemental Table S3. 3. Parent-child test analysis. 

Supplemental Table S3. 4. Spikelet number phenotype. 

Supplemental Table S3. 5. Max floret number. 

Supplemental Table S3. 6. rust resistance phenotypes. 

Supplemental Table S3. 7. SRA blast resistant phenotypes. 

Supplemental Table S3. 8. Additional modern cultivars samples tested against SRA blast isolated. 

Supplemental Table S4. 1. Introgression blocks stitching 50 Kbp with < 30 variations separated less than 10 50 

kbp window. 

Supplemental Table S4. 2. Ae. tauschii lineage specific into the wheat D sub genome. 
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