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Abstract

This thesis describes a series of empirical and simulation experiments, all in the broad
area of probabilistic inference and learning. The first three experiments, described in
Chapters 4 and 5, focus on a specific theoretical framework, predictive coding. We
identified some critical issues (discussed in more detail in Chapter 1) and tackled
them with a combination of techniques including pupillometry, electroencephalography
(EEG) and computational modelling. In particular, we present an augmented version of
classical predictive coding models incorporating dynamic precision estimation (Chapter
4) and show how human participants can successfully learn multimodal distributions,
violating classical predictive coding (Chapter 5). In Chapter 6 we took a more theo-
retically agnostic approach (although we firmly remained within the Bayesian brain
framework) to study structure learning. If in Chapter 5 we verified that humans
could learn multimodal distributions, in Chapter 6 we asked how they do it without
having any knowledge about the structure of the probabilistic model generating their
observations. We also introduce a working memory component, with our simulations
showing how revisiting past stimuli can benefit structure learning.
Overall, we contribute to the Bayesian brain framework both with empirical findings
coming from both simulations and lab experiments. We augment current computa-
tional models increasing their flexibility, and thus their scope to be used in more
diverse experimental contexts. Finally, we make a contribution to the field of computa-
tional rationality, discussing the trade off between working memory load and learning
performance.
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Notes on mathematical notation

The mathematical notation was made to be coherent across the Result Chapters
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notation groups: one for the Result Chapters and one for the Introduction. The reader
should consider this when going through this thesis.



Chapter 1

Predictive coding: a mathematical
introduction

1.1 The Bayesian brain

Humans find themselves immersed in a complex and multifaceted world, from which
they only receive sparse and noisy sensory signals. The brain has the daunting task of
making sense of this world, navigating it, and acting upon it. It must therefore identify
the external and internal causes of the noisy input it receives, and, based on that, select
the optimal course of action. Determining the (hidden) causes of incoming signal is
often called the inverse problem, which, for most of the real-world scenarios the brain
encounters daily, has no single solution. In fact, incoming sensory signals might have
more than one (and possibly infinite) possible combinations of objects and situations
causing them. The sound of steps in the night might be caused by a burglar, but also by
your partner going to the bathroom. The brain must solve this ambiguity, as different
interpretations of the sensory data have different optimal behavioural responses (in
our example, calling the police or going back to sleep). According to probabilistic
accounts of brain function, known collectively as the Bayesian brain hypothesis, (Knill
and Pouget, 2004), the brain deals with this uncertainty by combining sensory input
coming from different sources with prior knowledge using the Bayes rule. The brain is
thus conceptualised as an inference machine which, given multidimensional sensory
observations o with a set of N possible hidden causes z (also called hidden states or
latent variables), infers the probability of a certain cause zn generating the observations
as given by

p(zn | o) = p(o | zn)p(zn)∑N
j=1 p(zj)p(o | zj)

(1.1)
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where p(zn | o) is the posterior (probability of a hidden state having value zn given
the observations o), p(o | zn) is the likelihood (probability of observing o given zn) and
p(zn) is the prior (probability of the hidden state having value zn regardless of the
sensory input). The denominator ∑N

j=1 p(zj)p(o | zj) = p(o), called model evidence,
represents the overall probability of observing o and will be discussed in later sections.

This process involves representing information probabilistically (i.e. in the form of
probability distributions). Going back to our footsteps example, the brain can solve
the ambiguity by integrating its auditory (hearing footsteps) and visual (seeing your
partner is not in bed) inputs with prior knowledge (regardless of footsteps, your partner
needing the bathroom is a more likely scenario than your house being robbed). It can
thus conclude that the footsteps are almost certainly caused by your partner and that
you can safely go back to sleep.

Although for clarity purposes this example involved a higher level, conscious
inference process, the same principles are valid for lower level unconscious inferences in
primary sensory areas. These involve receiving noisy signals from sensory receptors
and disambiguating them by integrating them with prior knowledge, giving rise to a
clean percept. This entails a fundamental concept of the Bayesian brain, namely that
perception is the result of unconscious inference (Knill and Pouget, 2004; Yuille and
Kersten, 2006). Furthermore, these principles can be extended to sensorimotor control
(Körding and Wolpert, 2004), with actions choice being the result of probabilistic
inference integrating several sensory channels (i.e. multisensory integration, Ernst and
Banks (2002)) with priors to estimate the outcomes of possible action sequences and
selecting the most rewarding.

The fact that the brain uses prior knowledge means that it has an internal model
of the environment. This model specifies (probabilistically) how the environment’s
hidden states generate sensory observations, and is thus called a generative model.
Mathematically, the generative model represents the product of the prior and the
likelihood (i.e. the numerator of the Bayes equation). As more evidence (in the form of
sensory signals) is gathered throughout an individual’s life, the generative model gets
updated in light of it. In other words, the individual learns from experience. Formally,
this means updating the parameters θ of the generative model. We can thus distinguish
between inference (estimating time-varying hidden states causing sensory observations)
and learning (updating time-invariant generative model parameters). As the generative
model predicts observations based on hidden states and model parameters, both
inference and learning involve Bayesian model inversion (i.e. estimating hidden states
and parameters from observations). If we include parameters update, we can rewrite



1.2 Approximate inference 4

the Bayes rule as

p(z,θ | o) = p(o | z,θ)p(z,θ)∑M
i=1

∑N
j=1 p(zj ,θi)p(o | zj ,θi)

(1.2)

with p(o,z,θ) = p(o | z,θ)p(z,θ) being the generative model and θi one of the M
possible set of values of the model’s parameters. Note that up to this point we have
only considered discrete-valued (i.e. with a finite number of possible values) hidden
states and parameters, but the equations can be modified to deal with continuous
variables by substituting the sum symbols with integrals.

This general approach has been extensively and successfully deployed to study a
variety of phenomena. For example, several studies (Knill, 1998; Otten et al., 2017)
point at the fact that visual perception is influenced by priors, a key prediction of the
Bayesian brain hypothesis, as the experienced percept (the posterior) is thought to
be the result of the combination of the sensory evidence (likelihood) and predictions
based on prior knowledge (priors). This is true for low-level perceptual priors (Knill,
1998) as well as higher order ones (e.g. social priors, Otten et al. (2017)). Other
fields of neuroscience that have been studied within this framework include 3D shape
perception (Erdogan and Jacobs, 2017), multisensory integration (Ernst and Banks,
2002; Jacobs, 1999; Parise and Ernst, 2017), sensorimotor control (Kim, 2021; Körding
and Wolpert, 2004; Todorov, 2004), and higher cognition (Baker et al., 2017; Steyvers
et al., 2006; Tenenbaum et al., 2006).

1.2 Approximate inference

The Bayes rule provides a straightforward way of performing model inversion for simple
problems where hidden states and model parameters can assume a manageable, discrete
number of possible values. However, in a real-world scenario, the brain has thousands
of separate, possibly continuously-valued stimulus features to make sense of at any
given time, which would make the model evidence (i.e. the denominator in the Bayes
rule) intractable. In fact, evaluating the model evidence would require the brain to
sum (or integrate) over all possible values of all hidden states and model parameters,
which is challenging (or impossible) even for fairly simple models (Gershman and Beck,
2017).

In statistics and machine learning, the problem of intractable exact Bayesian
inference is solved by finding an approximate, tractable approximation of the exact
solution. These methods take the name of approximate inference, and are broadly
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divided into two main algorithmic families: variatonal and sampling (or Monte Carlo)
methods, which have given rise to different probabilistic accounts of brain function
(Gershman and Beck, 2017).

Briefly, Monte Carlo methods are based on the general idea that the posterior
distribution over a latent variable can be approximated to an empirical point-mass
function by drawing a set of samples from it. There are a variety of algorithm one
can use to draw samples (Bishop, 2006), but all of them result in approximations of
the posterior whose accuracy depends on the number of samples drawn (the bigger
the sample size, the more accurate the approximation). As the number of samples
approaches infinity, the approximate posterior will asymptotically approach the true
posterior. One could thus say that Monte Carlo methods consist in performing
approximate inference on exact models (i.e. the inference process is approximate, but
the model is not altered or simplified in any way). These methods have inspired
several different probabilistic theories of brain function (Aitchison and Lengyel, 2016;
Gershman et al., 2012; Sanborn and Chater, 2016) and have been used to explain
several cognitive phenomena (Chater et al., 2020; Vul et al., 2014). These will not
be further discussed in this thesis as they are not the focus of the experimental work
described in the next chapters.

Variational inference, on the other hand, is based on approximating the posterior to
a distribution of a parametric family chosen a priori (Bishop, 2006). The parameters of
the approximate posterior are then fitted to maximise a lower bound on model evidence
(see next sections for more details). If the true and approximate posterior’s parametric
families are different, one will never end up performing exact inference. Nevertheless,
these approximations are often sufficiently accurate and computationally cheaper than
sampling (Gershman and Beck, 2017). These methods, contrary to Monte Carlo ones,
simplify the model to make its inversion tractable. One could thus say that variational
inference consists in performing exact inference on approximate models. Variational
inference is at the core of the theoretical framework we refer to in this thesis, and has
been used to build the computational models described in Chapters 4, 5 and 6. It will
thus be described in more detail in the next section.

1.2.1 Variational inference

As mentioned, most of the work presented in this thesis relies heavily on variational
approximations, so variational inference will be discussed in more detail (although for
a full demonstration see Bishop (2006)). We will consider a generative model with I
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continuous latent variables (we do not include parameter update for simplicity, but
from a mathematical standpoint the same rules apply).

1.2.1.1 Variational Free Energy

The real posterior p(z | o) is approximated with a distribution q(z) of some parametric
family chosen a priori, and parameters are optimised to make the approximation as close
as possible to the real posterior. Formally, this involves minimising the Kullback-Leibler
(KL) divergence between the two:

KL [q(z) || p(z | o)] =−
∫
q(z)ln

Å
p(z | o)
q(z)

ã
dz (1.3)

which can be reduced to 0 only when the true posterior belongs to the paramet-
ric family chosen for q(z). Note that the KL divergence is not symmetrical, so
KL [q(z) || p(z | o)] ≠ KL [p(z | o) || q(z)]. In this thesis we will focus solely on algo-
rithms minimising KL [q(z) || p(z | o)], but there are variational inference algorithms
based on KL [p(z | o) || q(z)] minimisation as well (i.e. expectation propagation, Bishop
(2006)).

Directly minimising the KL divergence between approximate and true posterior is
still not tractable, as it is a function of the (unknown) true posterior. The solution to
this is maximising a quantity known as Variational Free Energy (V FE):

V FE = lnp(o)−KL [q(z) || p(z | o)] (1.4)

As both lnp(o) and −KL [q(z) || p(z | o)] are always non-positive, maximising V FE
is equivalent to minimising KL [q(z) || p(z | o)]. Alternatively, V FE can be seen as
a lower bound on model evidence, and can take the name of evidence lower bound
(ELBO).

V FE is a tractable quantity as

V FE = lnp(o)−KL [q(z) || p(z | o)]

= lnp(o)+
∫
q(z)ln

Å
p(z | o)
q(z)

ã
dz

=
∫
q(z)ln

Å
p(z,o)
q(z)

ã
dz

(1.5)

is a function of the joint p(z,o) = p(o | z)p(z).
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1.2.1.2 Mean field approximation

To make V FE optimisation tractable, we assume the various latent variables to be
independent from each other, so that approximate posterior factorises as

q(z1, ..., zI) =
N∏

i=1
q(zi) (1.6)

This is often not the case for the true posterior, and therefore represents a further
approximation (mean field approximation).

We now re-write V FE as

V FE = Eq(z)

ï
ln

Å
p(z,o)
q(z)

ãò
(1.7)

where the notation Ef(x)[g(x)] indicates the expected value of g(x) under the distribu-
tion f(x) so that

Ef(x)[g(x)] =
∫
f(x)g(x)dx (1.8)

for a continuous variable x.
If we apply the mean field approximation, it can be shown (Bishop, 2006) that

lnq∗(zj) = Eq(zi ̸=j) [lnp(z,o)]+ const (1.9)

with q∗(·) representing the optimal approximate posterior and Eq(zi ̸=j) [lnp(z,o)] the
expected value of the log joint under all approximate posteriors except for q(zj) (which
would end up being a function of zj).

Variational inference is at the core of one the most popular probabilistic accounts
of brain function, predictive coding (PC). This is going to be the reference theoretical
framework for much of this thesis, and will therefore be discussed in more depth in the
next section.

1.3 Predictive Coding

1.3.1 Prediction error minimisation

The core idea of predictive coding (Rao and Ballard, 1999) is that the brain is
hierarchically organised (from low level sensory areas to high level associative areas),
and that its fundamental function is to minimise prediction errors at each level of the
hierarchy. Here prediction errors represent the discrepancy between predictions coming
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from the level above (feedback signal) and the signal coming from the level below
(feed-forward signal). In other words, at each level of the processing hierarchy the
brain is trying to formulate predictions to "explain away" the signal coming from the
level below, and only the portion of the signal predictions can’t account for is passed
on to the next level. In this context, perception is the result of short-term prediction
error minimisation in low level sensory areas, while learning is the result of longer-term
updating of predictions to better account for future incoming signal (i.e. stimuli).

This general idea was first proposed by Rao and Ballard (1999), who developed
a model of visual processing based on these principles and used it to explain the
extra-classical receptive field effects (Allman et al., 1985). In the following two decades
this framework has been further developed and expanded, and today is perhaps the
most influential and best worked-out (both in mathematical and neurobiological terms)
unified account of brain function.

1.3.2 Predictive Coding as variational inference

In its modern and most widespread version, PC is formalised as mean-field variational
inference with a generative model with Gaussian variables (Friston, 2005; Friston and
Kiebel, 2009). From this premises, one can derive inference and learning as the result
of prediction error minimisation.

To illustrate this, let’s consider a very simple case, in which an agent is exposed
to series of sequential (continuous) observations o = {o1, ...,oT} (which here we make
one-dimensional for simplicity), which are assumed to be caused by hidden states
z = {z1, ..., zT} so that

oi = f(zi)+ ϵ (1.10)

with ϵ being Gaussian noise. Thus

p(ot | zt) =N
Ä
ot | f(zt),σ(0)2

ä
(1.11)

where the notation N (x | µ,σ2) denotes a Gaussian distribution over x with mean µ

and variance σ2. The superscript in σ(0)2 indicates the hierarchical level.
The agent’s prior over zt is also Gaussian, so that

p(zt) =N
Ä
zt |m,σ(1)2

ä
(1.12)

where m and σ(1)2 represent the sufficient statistics of the prior distribution over z.
For simplicity, we assume hidden states (and thus observations) to be independent
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from one another, so that

p(z) =
T∏

t=1
p(zt) (1.13)

The agent is presented with the observations sequentially (as it would most likely be
the case in a real-world environment). It therefore has to infer online the values of each
hidden state zt and update its beliefs about m. To perform such update (i.e. learning),
we introduce a further Gaussian prior (hyperprior) over m, so that at time t

p(m) =N (m | µt,σ
(2)2
t ) (1.14)

The temporal indexing on µ and σ(2)2 is necessary as the agent’s priors change over
time as a result of experience. On the other hand, we do not place temporal indices on
σ(0)2 and σ(1)2, which here will be treated as fixed parameters and will be discussed in
more depth in the next section.

Thus, as it is exposed to any observation ot, it must infer the posterior distribution

p(zt,m | ot,σ
(0)2,σ(1)2,µt,σ

(2)2
t ) =

N (ot | zt,σ
(0)2)N

Ä
zt |m,σ(1)2

ä
N
Ä
m | µt,σ

(2)2
t

ä
∫
p(ot | zt,m)N

Ä
zt |m,σ(1)2

t

ä
N
Ä
m | µt,σ

(2)2
t

ä
dztdm

(1.15)

Note that here we are assuming the agent to be learning completely online, and therefore
have no memory of individual past observations (the limitations of this "memoryless"
approach are discussed in Chapter 6). The agent thus relies on constantly updating
the sufficient statistics of the prior distribution over the hidden states (here m).

As discussed earlier, the integral at the denominator (model evidence) is intractable,
and the agent must therefore resort to approximate inference. As mentioned, there
are several ways this could be done, and this diversity of methods is reflected by the
different probabilistic accounts of brain function. Here we focus on PC, which in its
most common form (Friston and Kiebel, 2009) is based on the optimisation of V FE
(although see Spratling (2017) for alternative algorithms).

Our agent thus needs to optimise

V FE = Eq(zt)

ï
ln
p(ot, zt,m)
q(zt,m)

ò
(1.16)

where both the hidden state zt and the parameter m receive the same mathematical
treatment. The optimal variational posteriors q∗(zt) and q∗(m) can be evaluated as in
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equation 1.11. Thus

lnq∗(zt) = Eq(m) [lnp(ot, zt)]+ const

= lnN
Ä
ot | f(zt),σ(0)2

ä
+Eq(m)

î
lnN
Ä
zt |m,σ(1)2

äó
+ const

(1.17)

which, after taking out terms that do not depend on zt, becomes

lnq∗(zt) =−(ot−f(zt))2

2σ(0)2 −
Eq(m) [(zt−m)]2

2σ(1)2 + const (1.18)

It is convenient to re-write this replacing variances with their inverse, precision, so

lnq∗(zt) =−λ
(0)(ot−f(zt))2

2 −
λ(1)
Ä
(zt− µ̆(2)

t )2 + λ̆
(2)−1
t

ä
2 + const (1.19)

where λ(0)−1 = σ(0)2, λ(1)−1 = σ(1)2 and µ̆
(2)
t and λ̆

(2)
t are mean and precision of the

variational posterior q∗(m) =N (m | µ̆(2)
t , λ̆

(2)−1
t ), respectively (see below). These values

are initially set to those of the priors (µt,λ
(2)
t ).

To get mean µ̆
(1)
t and precision λ̆

(1)
t of the optimal posterior q∗(zt) =N (zt | µ̆t, λ̆

−1
t ),

the agent makes use of the Laplace approximation, thus

µ̆
(1)
t = argmax(q∗(zt))

zt

(1.20)

and
λ̆

(1)
t =−∂

2q∗(zt)
∂z2

t

Å
argmax(q∗(zt))

zt

ã
(1.21)

To get µ̆t, the agent makes use of gradient ascent, so it iteratively evaluates

µ̆
(1)
t ←− µ̆

(1)
t +∆µ̆(1)

t (1.22)

until convergence, where

∆µ̆(1)
t ∝−

∂q∗(zt)
∂zt

= λ(0)f ′(µ̆(1)
t )(ot−f(µ̆(1)

t ))−λ(1)(µ̆(1)
t − µ̆

(2)
t )

(1.23)

which illustrates the core idea of PC, namely hierarchical prediction error minimisation.
In fact, this equation represents a trade-off between prediction errors at a lower
(ot−f(µ̆(1)

t )) and higher (µ̆(1)
t − µ̆

(2)
t ) levels of the hierarchy, weighted by their respective

precisions (λ(0) and λ(1)), the role of which we will further discuss in later sections.
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From a PC perspective, f(µ̆(1)
t ) and µ̆

(2)
t represent the top down signals attempting

to predict, or "explain away" (i.e. suppressing) the bottom up signals (ot and µ̆
(1)
t ,

respectively). Here f ′(µ̆(1)
t ) can be seen as a scaling term, which ensures the two

prediction errors are evaluated on the same scale.
As for the posterior’s precision,

λ̆
(1)
t = λ(0)(f ′′(zt)ot−f ′′(zt)f(zt)− (f ′(zt))2)+λ(1) (1.24)

where again the term (f ′′(zt)ot−f ′′(zt)f(zt)− (f ′(zt))2) ensures proper scaling.
Now the agent has inferred a value for the hidden state zt (µ̆(1)

t ) with a certain degree
of confidence (λ̆(1)

t ). Note that this entails a probabilistic (Gaussian) representation of
zt, in line with the general Bayesian brain hypothesis (Knill and Pouget, 2004). It can
now use this information to update its beliefs and make more accurate predictions in
the future. It does so by evaluating

q∗(m) = Eq(zt) [lnp(ot, zt,m)]+ const

=−
λ(1)Eq(zt)

[
(zt−m)2]

2 − λ
(2)
t (m−µt)2

2 + const
(1.25)

From here on the same principles outlined above apply, so

µ̆
(2)
t = argmax(q∗(m))

m
(1.26)

λ̆
(2)
t =−∂

2q∗(m)
∂m2

Å
argmax(q∗(m))

m

ã
(1.27)

and, to perform gradient ascent

µ̆
(2)
t ←− µ̆

(2)
t +∆µ̆(2)

t (1.28)

where

∆µ̆(2)
t ∝−

∂q∗(m)
∂m

= λ(1)(µ̆(1)
t − µ̆

(2)
t )−λ(2)

t (µ̆(2)
t −µt)

(1.29)

Again, we notice that this is another trade-off between precision-weighted prediction
errors. The posterior precision can then be calculated as

λ̆
(2)
t = λ(1) +λ

(2)
t (1.30)
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The evaluation of q∗(zt) and q∗(zt) can be carried out recursively, until the values of
the posterior parameters converge. The agent’s priors can then be updated, so that

N (m | µt+1,λ
(2)−1
t+1 ) =N (m | µ̆t, λ̆

(2)−1
t ) (1.31)

The last two equations nicely illustrate the intuitive concept of confidence about one’s
beliefs increasing with experience, as the prior’s updated precision is always the sum
of its old precision and the posterior’s precision (and precision is always positive).

The overall picture that emerges from this is that of a set of beliefs at various
hierarchical levels being optimised to better account for and suppress the incoming
sensory data. In the case of inference about hidden states this results in a flexible
process, allowing to keep track of changing environmental variables. On the other
end, learning relies on parameter update, which decreases in magnitude as evidence is
accumulated, as the prior’s precision always increases. Nevertheless, both processes
stem from the same algorithm (variational inference) and optimise the same quantity
(V FE), giving PC a unified and comprehensive mathematical framework. This has
provided an elegant explanation for a range of perceptual phenomena, as bistable
perception (Denison et al., 2011; Hohwy et al., 2008; Weilnhammer et al., 2017) and
motion illusions (Watanabe et al., 2018), as well as neural ones, such as classical and
extra-classical receptive field effects in the primary visual cortex(Rao and Ballard,
1999; Spratling, 2010), repetition suppression (Auksztulewicz and Friston, 2016), and
electrophysiolgical responses to violation of expectations (Garrido et al., 2008, 2009a,b).
Furthermore, theoretical work has also pointed to PC’s biological plausibility (Bastos
et al., 2012). PC has also been the object of theories of higher cognition, ranging from
consciousness (Seth et al., 2012) to theory of mind (Koster-Hale and Saxe, 2013) and
emotions (Seth, 2013).

It is worth mentioning that the core mathematical goal of V FE optimisation has
been extended to formulate a unifying theory of perception, cognition and behaviour,
the Free Energy Principle (Friston, 2010). This incorporates actions as well (Friston
et al., 2009), but for the purposes of this thesis we will limit further discussions to PC
only.

1.3.3 Precision

As illustrated in the previous section, precision acts as a learning rate, regulating the
trade-off in prediction errors minimisation. The higher the precision, the more the
associated prediction error will be weighted. Going back to the example discussed
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above, a very precise prior about the hidden state zt (high λ(1)) combined with a very
noisy input (low λ(0)) will cause the agent’s best guess about the value of the hidden
state (µ̆(1)

t ) to closely resemble the prediction (µ̆(2)
t ) rather than the observation itself

(f−1(ot)). The precisions are thus regulating the relative weight of sensory evidence
and prior beliefs.

Let’s now consider another situation, in which an agent must infer a single hidden
state z from two different sensory streams, o and u.

ot = f(zt)+ ϵ(o) (1.32)

ut = g(zt)+ ϵ(u) (1.33)

with ϵ(o) and ϵ(u) being the Gaussian noise associated with o and u respectively. For
brevity and clarity, let’s set both f(·) and g(·) to correspond to the identity function.
Thus

ot = zt + ϵ(o) (1.34)

ut = zt + ϵ(u) (1.35)

and
p(ot,ut | zt) =N (ot | zt,λ

(o)−1)N (ut | zt,λ
(u)−1) (1.36)

where λ(o) and λ(u) are the respective precisions associated with the two sensory
streams, replacing what was λ(0) in the previous section.

As before, the agent has a Gaussian prior over z

p(zt) =N (zt | µ,λ(1)) (1.37)

Here we will omit learning for compactness, and because it would result in a repetition
of what discussed in the previous section. Therefore we do not use the Roman notation
m for the hidden state’s prior mean and we place no further prior over it.
Applying variational inference as before, we get

∆µ̆(1) ∝ λ(o)(ot− µ̆(1))+λ(u)(ut− µ̆(1))−λ(1)(µ̆(1)−µ) (1.38)

where −λ(o) and −λ(u) control the relative weight of the two prediction errors, and
thus of the two sensory streams, while −λ(1) controls the relative weight of the prior
about the value of z.
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From a neuroscientific perspective, this illustrates how precision not only regulates
information integration between different cortical hierarchical levels, but also between
different channels converging on the same hierarchical level, multisensory integration
being the obvious example (Crucianelli et al., 2019).

At lower hierarchical levels (i.e. sensory cortices) precision associated with different
features of the environment (λ0, λo and λu in our examples) can be thought as attention,
or the amount of cognitive resources invested in them. If one focuses on a particular
feature, this will drive inference (e.g. object identification) more than unattended ones
(Feldman and Friston, 2010). At higher cognitive levels, precision can more simply
reflect how reliable or salient a source of information is thought to be (Macaluso et al.,
2016), or confidence about certain beliefs (Adams et al., 2014).

Of particular relevance for this thesis is the work carried out by Garrido et al. (2013),
who showed how identical signals could elicit different brain responses depending on
the precision of the participant’s predictions. More specifically, an outlier stimulus
has been shown to elicit a greater response if it violated a highly precise prediction,
reflecting the low probability associated with it, or, equivalently, surprise (see Chapter
2). This study was the central inspiration for the experiment described in Chapter 4,
where we replicate some of its findings.

Precision is thus a crucial quantity in predictive coding, and is the focus of several
PC-inspired theories of psychopathology. For example, Van de Cruys et al. (2014)
provided a PC account of autism spectrum disorders, suggesting that hyper-precise
priors prevent autistic individuals from effectively suppress prediction errors, as the
excessive precision prevents predictions to adjust to sensory evidence. This is thought
to be at the core of the lack of flexibility exhibited by individuals with autism, and has
been used to explain much of the autistic symptomatology (Van de Cruys et al., 2014).
Furthermore, (Adams et al., 2013) suggested that abnormal encoding of precision is
at the core of psychotic disorders, and offered a nerobiologically plausible account of
this. Finally, Kube et al. (2020) offered a PC view of depressive disorders, attributing
processing biases (i.e. giving more weight to information with negative valence) to
excessive precision attributed to beliefs about negative events.

Despite the role of precision in cognitive and perceptual processes has received
a lot of attention from academics, it tends to be modelled as a fixed quantity, as
in the examples above. However, although precision to some extent might be hard-
wired, biological agents often need to estimate it in order to let the most appropriate
information sources guide action. Experimental work aimed at investigating how
precision is estimated and tracked in real time would thus be of great importance to
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the field, but is notably absent from the literature. This is the main focus of Chapter
4, where we present such an experiment.

1.3.4 Why Gaussians? Backwards derivation

In section 1.3.2 we showed how inverting a Gaussian generative model leads naturally to
prediction error minimisation. To better clarify why PC needs Gaussian distributions,
we now derive this backwards, showing how prediction error minimisation implies a
Gaussian generative model.

Let’s consider the general case of an agent trying to maximise the log probability L
of some hidden variable z based on an observation o solely by minimising the prediction
error (o− z). As in the previous section we are setting f(z) = z for simplicity. This
corresponds to gradient ascent where

dL

dz
= w(o− z) (1.39)

where w is the learning rate, a constant governing the speed of gradient ascent.
Integrating gives

L=−w(z2−2oz)
2 + const (1.40)

where const is an arbitrary constant. Setting

const= wo2

2 −
ln
(
2πw−1)

2 (1.41)

gives

L=−
ln
(
2πw−1)

2 − w(o− z)2

2
= lnN

(
o | z,w−1) (1.42)

From here we note that the learning rate w corresponds to the precision of a Gaussian
distribution with mean z. Thus minimising prediction error always corresponds to
maximising the log probability of some Gaussian.

The same observation applies to the sorts of situation described in the previous
sections and typically considered in theories of PC (Bogacz, 2017; Friston, 2005), in
which the agent infers on z based on o and prior expectation µ by minimising the sum
of the first (o− z) and second level (z−µ) prediction errors, weighted by constants
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w(1) and w(2). In such case

dL

dz
= w(1)(o− z)−w(2)(z−µ) (1.43)

and
L=−w

(1)(z2−2oz)
2 − w

(2)(z2−2zµ)
2 + const (1.44)

Setting

const= w(1)o2

2 −
ln
Ä
2πw(1)−1

ä
2 + w(2)µ2

2 −
ln
Ä
2πw(2)−1

ä
2 (1.45)

gives

L=−
ln
Ä
2πw(1)−1

ä
2 − w

(1)(o− z)2

2 −
ln
Ä
2πw(2)−1

ä
2 − w

(2)(z−µ)2

2
= lnN

Ä
o | z,w(1)−1

ä
+ lnN

Ä
z | µ,w(2)−1

ä (1.46)

Thus trading off first and second level prediction errors corresponds to combining two
Gaussians based on their relative precisions.

In classical PC therefore all variables must be treated as having a Gaussian proba-
bility distribution (Friston, 2005; Friston and Kiebel, 2009). This constitutes a major
assumption, which, if violated, can lead to suboptimal inference and learning. We
discuss this in Chapter 5, where we consider a very evident violation of such assumption,
namely bimodal distributions.



Chapter 2

Physiological signals for tracking
human learning

2.1 Predictive coding in the brain

As anticipated in the previous chapter, with the seminal work from Rao and Ballard
(1999) predictive coding was presented as a theory of cortical function. The core idea,
which is shared with more modern accounts, was that of a hierarchically organised
cortex, with predictions travelling down the hierarchy and ultimately attempting
to suppress, or "explain away", the incoming sensory signals. The portion of signal
predictions failed to account for (i.e. prediction errors) would instead travel up the
hierarchy. At each hierarchical level feedback predictive signals would thus suppress
upcoming, feed-forward error signals.

This original formulation (Rao and Ballard, 1999) was an attempt to model the
functioning of the visual cortex only. Friston (2005) expanded the framework to the
whole cortex, and formulated predictive coding as Variational Free Energy (V FE)
maximisation, crucially introducing the concept of precision (or inverse variance).
Furthermore, the author discussed a possible neural implementation of predictive
coding as interplay between representation and error units at different hierarchical
levels. For illustrating this mathematically we are going to follow Bogacz (2017) instead
of the original paper (Friston, 2005), as the derivations and results are very similar, but
significantly easier to understand. There are minor differences, which will be discussed.
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2.1.1 Inference

Going back to the example discussed in the previous chapter, let’s consider the
generative model

p(o,z) =N
Ä
o | f(z,θ),σ(0)2

ä
N
Ä
z | µ,σ(1)2

ä
(2.1)

where θ = {θ1, ..., θI} are the parameters of the function f(·) that maps the the hidden
state z to the observation o. The variational free energy can thus be written as

V FE = Eq(z)

ï
ln
p(o,z)
q(z)

ò
= lnN

Ä
o | f(E[z],θ),σ(0)2

ä
N
Ä
E[z] | µ,σ(1)2

ä
=−1

2
(o−f(E[z],θ))2

σ(0)2 − 1
2

(E[z]−µ)2

σ(1)2 − 1
2 lnσ

(0)2− 1
2 lnσ

(1)2− ln(2π)

(2.2)

where q(z) is set to be a Delta function, and thus its entropy is

H
(
q(z)

)
=

∫
q(z)lnq(z)dz

= 0
(2.3)

and the expected value of z2 is

E [f(z,θ)] = f(E[z],θ) (2.4)

Let’s now set
ξ(0) = o−ϕ

σ(0)2 (2.5)

ξ(1) = ϕ−µ
σ(2)2 (2.6)

which are going to are going to represent our error neurons, and

ϕ= E[z] (2.7)

which is going to represent our representation neuron. Note that the error neurons
encode precision-weighted prediction errors (even though in this case we are using
the variance notation, for reasons that will become clear later). This is where Bogacz
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(2017) and Friston (2005) make different choices, as the latter formalised error units as

ξ(0) = o−ϕ
1+γ(0) (2.8)

ξ(1) = ϕ−µ
1+γ(1) (2.9)

with
γ(0) = σ(0)−1 (2.10)

and
γ(1) = σ(1)−1 (2.11)

therefore weighting prediction errors by standard deviation instead of variance. Further-
more, the use of the γ parameters puts a lower bound on variance, and thus an upper
bound on precision. This ensures the activity of ξ(0) and ξ(1) to converge reasonably
fast and prevents a situation in which the values of the variances (or equivalently of
the standard deviations) gets close to 0 (which would make the activity of the error
neuron infinitely high). The value of 1 is arbitrary, but it makes sense to assume an
irreducible amount of noise in any variable processed by the brain.

We can now write

V FE =−1
2ξ

(0)2σ(0)2− 1
2ξ

(1)2σ(1)2− 1
2 lnσ

(0)2− 1
2 lnσ

(1)2− ln(2π) (2.12)

Inference about the most likely value of ϕ can be performed maximising V FE by
gradient ascent with respect to ϕ, evaluating

ϕ̇= ∂V FE

∂ϕ

= ξ(0)f ′(ϕ,θ)− ξ(1)
(2.13)

which is equivalent to the precision-weighted prediction error trade-off discussed in the
previous chapter. If we think about it in neural terms, we can see that the dynamic
described by this differential equation is that of a representation neuron ϕ receiving
feed-forward excitatory input from a lower-level error neuron ξ(0) undergoing some
(possibly non-linear) transformation f ′(ϕ,θ), and feedback inhibitory input from a
higher level error neuron ξ(1) with synaptic strength 1.

As for the error units

ξ̇(0) = o−f(ϕ,θ)− ξ(0)2σ(0)2 (2.14)
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ξ̇(1) = ϕ−µ− ξ(1)2σ(1)2 (2.15)

which can be understood by inspecting them after convergence (i.e. setting ξ̇(0) and
ξ̇(1) to be equal to zero) and verifying that solving for ξ(0)2 and ξ(1)2 gives equations
2.5 and 2.6, respectively. Thus, after convergence these neurons represent variance-
weighted prediction errors, receiving feed-forward excitatory input from their associated
representation neurons (o and ϕ, respectively), feedback inhibitory input from the
representations neurons at the higher hierarchical level (ϕ and µ, respectively) and
recurrent inhibitory input from themselves with synaptic weight equal to their associated
variance. In the case presented here we are only considering two hierarchical levels, and
thus only feedback connections from ϕ undergo a (possibly nonlinear) transformation
as determined by f(ϕ,θ). However, this model can accommodate an arbitrary number
of levels, each with a different mapping function (Bogacz, 2017; Friston, 2005).

2.1.2 Learning

In addition to providing a possible biological implementation of inference about hidden
states (in this case z), this scheme can accommodate learning about the model’s
parameters through V FE maximisation.
It can be shown that

∂V FE

∂µ
= ξ(1) (2.16)

∂V FE

∂σ(0)2 = 1
2
Ä
ξ(0)2−σ(0)−2

ä
(2.17)

∂V FE

∂σ(1)2 = 1
2
Ä
ξ(1)2−σ(1)−2

ä
(2.18)

so one could set a learning rate ω and perform the following updates after the activity
of all representation and error neurons have converged:

µ←− µ+ωξ(1) (2.19)

σ(0)2←− σ(0)2 +ω
1
2
Ä
ξ(0)2−σ(0)−2

ä
(2.20)

σ(1)2←− σ(1)2 +ω
1
2
Ä
ξ(1)2−σ(1)−2

ä
(2.21)

These all make sense intuitively if one thinks about the case in which no update is
needed. For the mean µ, this happens when z = µ and thus the value of the hidden state
is estimated to exactly correspond to expectations (and thus the prediction error z−µ
is equal to zero). For variances σ(0)2 and σ(1)2, no update occurs when (o−z)2 = σ(0)2
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and (z−µ)2 = σ(1)2 respectively. The meaning of this becomes clear if one considers
that variance corresponds to the expected value of the squared error, so when the
actual squared error and estimated variance coincide no update is needed.

The update equations for θ would depend on the form of f(·), and some examples
are discussed in Bogacz (2017). Furthermore, the paper includes models incorporating
multiple features, and thus update rules for covariances. Here we omit all this for
brevity, but the same principles apply.

2.1.3 Neurobiological implementation

Figure 2.1 illustrates this proposed neurobiological implementation of predictive coding.
The values of hidden states and observations are encoded by the activity of neurons,
reflecting their variability, while the values of the model parameters are encoded by
the strength of the synapses, reflecting their consistency over time.

Importantly, this model exhibits several properties that point to its biological
plausibility. Inference is performed by the activity of interacting error and representation
neurons, with the latter converging to the peak of the posterior over hidden states.
The activity of all neurons is influenced only by the activity of afferent neurons and
the associated synaptic weight, a property that Bogacz (2017) calls local computation.
Learning, on the other hand, occurs by means of synaptic plasticity driven only by
the activity of the pre and post-synaptic neurons, thus exhibiting a property Bogacz
(2017) calls local plasticity. This means synaptic strength (and thus beliefs about model
parameters) changes only according to information the synapse itself has "access" to.
Furthermore the learning rules described here are Hebbian, as synaptic plasticity is
influenced by the product of the activity of the pre and post-synaptic neuron (Bogacz,
2017; Friston, 2005). The model discussed so far (Friston, 2005) only considers static
stimuli (i.e. observations are stable over time). A dynamic model was later developed by
Friston (2008) to expand this to hidden states associated with time-varying observations.
This situation does not apply to any of the experiments described in the next chapters,
so the model won’t be discussed in detail here. Furthermore, Bastos et al. (2012) in a
seminal paper considered several structural and functional properties of the canonical
cortical microcircuit, conciliating these with the dynamic model similar to the one
described in Friston (2008). This work will not be fully engaged with either, as the
focus of this thesis rests on mathematical aspects of probabilistic inference and learning,
rather than biological ones. It is nevertheless important to mention it to point out that
predictive coding is an extremely well worked-out framework from both mathematical
e neurobiological perspectives.
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Fig. 2.1 Graphical representation of the neural model discussed in this chapter. Circles
represent neurons, and lines represent synapses. Arrows represent excitatory synapses,
while circles represent inhibitory ones (both arrows and circles are placed on receiving
end of the synapse). Synaptic strength, when not specified, is equal to 1. Adapted
from Bogacz (2017)

2.1.4 Considerations on biologically plausible models

There are fundamental differences between the models described in Chapter 1 and
the ones described in this chapter. In the former, model parameters are treated as
probability distributions (like hidden states), and thus have priors and their most likely
value is updated to convergence. On the other hand, in the latter parameters are treated
as single values and updated with a single gradient ascent step. These models thus are
not strictly following variational inference where learning is concerned, as they reduce,
and not minimise V FE (which is formulated as an expectation with respect to hidden
states only). Therefore model parameters do not receive a fully probabilistic treatment,
and neither do hidden states as, despite having priors, their posterior is approximated
to be a delta distribution (i.e. only the maximum a posteriori value is estimated). This
means that these models do not account for any uncertainty associated with their best
guess about the value of hidden states, which is estimate with complete confidence (see
Aitchison and Lengyel (2016) for an alternative neurobiologically plausible inference
scheme where uncertainty is represented by neural oscillations).

In building the computational models described in Chapters 4, 5 and 6 we opted
to adhere more to classical mean-field variational inference (with a minor further
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approximation in Chapters 4), favouring a more fully probabilistic treatment of the
variables of interest. The models discussed in this chapter (Bogacz, 2017; Friston,
2005) are however very relevant for formulating hypothesis about possible physiological
markers of learning, as will become evident in the next sections.

2.2 Surprise

So far in this thesis predictive coding was presented as a family of algorithms aimed at
reducing the discrepancy between some input and its predicted value. In this framework
thus the fundamental goal of the brain is that of reduce (precision weighted) prediction
errors, which, as discussed in the previous section, are thought to be encoded by a
specific population of error neurons (Friston, 2005, 2008). Alternatively, one could say
that predictive coding is an inference scheme aimed at reducing surprise. In fact, if we
define surprise about a variable x as in Shannon (1948)

s(x) =−lnp(x) (2.22)

and we apply it to a normally-distributed variable, we get

s(x | µ,σ2) =−lnN (x | µ,σ2)

= 1
2 ln(2πσ2)+ (x−µ)2

2σ2

(2.23)

which can be minimised with respect to x by means of gradient descent, and thus
updating

x←− x−∆x (2.24)

until convergence, with
∆x= (x−µ)

σ2 (2.25)

which is the familiar variance-weighted prediction error. Note that as this very simple
model includes only one Gaussian (i.e. there is only one hierarchical level), it is possible
to reduce prediction error all the way down to zero, which would not be the case in
more complex situations.

Therefore with Gaussian generative models (which are assumed in predictive coding)
minimising prediction error is equivalent to minimising surprise. This makes sense,
as surprise is a measure of how unlikely an event is perceived to be, and according
to predictive coding the brain is constantly adjusting its predictions and the internal
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models of the world that generate them to better account for sensory stimuli (Clark,
2013). Inference (adjusting predictions) and learning (adjusting models) can thus be
seen as short and long-term surprise minimisation, respectively.

Another interesting observation about surprise in normally distributed variables
concerns its relationship with the Kullback-Leibler (KL) divergence. If we consider
two variables x1 and x2 with distributions N (x1 | µ1,σ2

1) and N (x2 | µ2,σ2
2) it can be

shown that

KL
[
N (x1 | µ1,σ

2
1) || N (x2 | µ2,σ

2
2)
]

= (µ1−µ2)2

2σ2
2

+ 1
2

Å
σ2

1
σ2

2
−1+ ln

σ2
1
σ2

2

ã
(2.26)

which, like surprise, depends on a squared error divided by a variance. Keeping in
mind that in probabilistic accounts of brain function variables are represented as
probability distributions (Knill and Pouget, 2004), which are Gaussians in the case of
predictive coding (Friston, 2005), one could see N (x1 | µ1,σ2

1) as a top-down prediction
and N (x2 | µ2,σ2

2) as a bottom-up sensory signal, and their KL divergence as the
information-theoretic discrepancy between the two. Surprise can then be seen in
predictive coding as a measure of how a prediction is different from the actual signal it
was trying to predict, and it can be easily shown in the example above that minimising
the KL divergence with respect to µ1 (i.e. the prediction) is equivalent to minimising
surprise, and thus to minimising prediction error.

In a predictive coding context, considering the KL divergence instead of surprise
allows a more fully probabilistic treatment of the problem at hand, as it allows to
formalise both upcoming signal and top-down predictions as Gaussian distributions.
However, for simplicity our models in the experiments presented in Chapters 4 and 5
do not include a low-level inference component (i.e. we are not modelling perception
probabilistically), and thus perceived stimuli are represented as single real values.
Therefore, in that work we opted for surprise as an inverse measure of how well a
stimulus is predicted by the brain. Note that some work has been done to disentangle
surprise and KL divergence in an experimental setting (Nour et al., 2018), but such
distinction does not apply to the experiments described in this thesis.

If one were to track trial-by-trial surprise in an experiment, they would be able
to estimate the probability participants associate to each individual stimulus. This
probability is based on prior expectations, and thus measuring surprise allows to
estimate the sufficient statistics of the priors, and track their changes over time.
Therefore measuring trial-by trial surprise allows to track trial-by-trial learning.
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Of course, surprise cannot be measured directly. However, if we consider the neuro-
biological implementation of predictive coding described above, one could reasonably
expect the activity of error neurons to provide some measurable index of surprise
(note that surprise and error neurons activity are monotonically related). In fact,
neuroimaging studies (Alink et al., 2010; Kok et al., 2012) seem to support the presence
of error signals in the brain, which can be suppressed where the stimuli are highly
predictable, in line with the model outlined above.

In the next two sections we discuss two indexes of surprise, namely the mismatch
negativity and pupil dilation. These are going to be the dependent variables in the
empirical studies described in Chapters 4 and 5.

Note that in this section we only considered univariate distributions for simplicity
and compactness, but the same principles can be extended to multivariate ones, even
with non-diagonal covariance matrices.

2.2.1 The mismatch negativity

In cognitive neuroscience, one of the most practical and widely used techniques to
capture brain signals during an experimental task is electroencephalography (EEG).
Measuring the electrical activity of neurons with a set of electrodes placed on the
participant’s scalp, EEG allows to detect brain activity related to task events of
particular scientific interest (e.g. the presentation of a stimulus or an action) with
an extremely high temporal resolution. These electrical responses take the name of
event-related potentials (ERP).

Decades of empirical work have allowed researchers to identify several different
types of ERP components. These are particular portions of the recorded electrical
signal that have been consistently linked with a specific cognitive phenomenon, like
semantic mismatch in case of the N400 (Kutas and Federmeier, 2011) or preparation
for a motor action in the case of the readiness potential (Libet et al., 1993). The
abundance of scientific research on these components allows researchers to safely make
relatively strong assumptions about their meaning when using them as the dependent
variable in their experimental designs.

Of particular relevance for this thesis is the most common of the ERP experimental
paradigms, the oddball paradigm. Typically this involve presenting participants with
a set of stimuli, with two possible stimulus types: a more frequent one (standard)
and a rarer one (oddball or deviant). The stimuli can be of various nature, but in
the most common version of this paradigm, the auditory oddball, these are auditory
tones varying in pitch. In this paradigm, researchers have consistently observed an
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increased negativity in electrical potential after stimulus onset in deviant compared to
standard stimuli (Lee et al., 2017; Schwartz et al., 2018). This ERP component takes
the name of mismatch negativity (MMN), it typically peaks between 100 and 200 ms
and is strongest in fronto-central electrodes (Wacongne et al., 2012). The MMN has
been widely studied in the auditory modality, with experiments manipulating stimulus
pitch (Bodatsch et al., 2011; Weber et al., 2020), but also duration (Bodatsch et al.,
2011; Näätänen et al., 1989) and inter-stimulus interval (Ford and Hillyard, 1981).
Furthermore, variants of the MMN have been found in the visual (Pazo-Alvarez et al.,
2003), olfactory (Pause and Krauel, 2000) and somatosensory modalities (Shinozaki
et al., 1998).

In sum, there is consistent empirical evidence showing that the MMN component
can be reliably detected when contrasting brain responses to unlikely compared to likely
events. For our purposes, a more useful way to frame the MMN is that of a response to
a surprising (i.e. less likely) event, or to a mismatch between expectations (predictions)
and actual stimulus (observations). This makes this component a promising candidate
to track trial-by-trial surprise, and thus learning (see previous section). In fact, the
MMN has been shown to scale proportionally with stimulus probability (Javitt et al.,
1998; Koelsch et al., 2016), which, as discussed earlier, in monotonically related to
surprise.

Another aspect that makes the MMN an attractive choice for tracking learning (for
the purpose of this thesis at least) is its tight theoretical links with predictive coding.
Earlier accounts (Sussman and Winkler, 2001; Winkler et al., 1996) suggested that the
MMN arises from a temporo-frontal error detection system that allows the brain to
adjust its internal model (model adjustment hypothesis). A competing theory was the
adaptation hypothesis (Jääskeläinen et al., 2004), according to which repeated exposure
to a standard auditory stimulus would cause feature-specific neurons in the auditory
cortex to adapt to it and, as a consequence, suppress the N1 component, which is
commonly associated with early auditory processing (Näätänen and Picton, 1987).
The MMN would thus reflect a failure to suppress the N1 component in early sensory
cortices, and not an internal model update in higher level brain areas. Coherently
with the former, Friston (2005) presented the first predictive coding account of the
MMN, suggesting that would be caused by a temporary failure to suppress prediction
error (i.e. the error neurons ξ described above) in the presence of an unexpected
stimulus. Later work (Garrido et al., 2009b) incorporated both the model adjustment
and adaptation hypotheses within the predictive coding formulation, arguing that
neither in itself was sufficient to account for the available empirical evidence. The
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authors pointed at an earlier study (Garrido et al., 2008), in which model comparison
on empirical data showed how a dynamical causal model (DCM) that combined the
two theories into a more general predictive coding framework gave the best account
for the MMN. Furthermore, Wacongne et al. (2012) built a detailed neuronal model
performing predictive coding, showing how it could account for the main properties
of the MMN. In this work the authors emphasised how the MMN is not driven by
passive synaptic habituation (as proposed by the adaptation hypothesis), but by active
predictions coming from higher cortical areas. Finally, Garrido et al. (2013) showed that
the amplitude of the MMN in response to a deviant stimulus depends on the precision
of the prior (i.e. the predictions), in line with the predictive coding formulation.

This body of work points at the suitability of the MMN to be used to investigate
human learning in a probabilistic context. However, the classical auditory oddball task
described above is almost always limited to a discrete number of stimulus types (most
commonly 2, although see Garrido et al. (2013)), constraining the complexity of the
applicable learning models. More specifically, discrete probability distributions make
it impossible to apply predictive coding models as described in this and the previous
Chapter, as they are all based on the inversion of Gaussian (which are continuous
distributions) generative models. In Chapters 4 and 5 we describe an augmented
version of this paradigm, where we make use of continuously-distributed auditory
stimuli (varying in pitch) to investigate precision tracking (Chapter 4) and to test
whether the brain can represent bimodal distributions (Chapter 5), contrary to what
predictive coding would predict (see Chapter 1). In particular, we made use of the
MMN in one of the experiments described in Chapter 5, using it as an index of surprise
to probe the probability assigned to the stimuli, which in turn allowed us to infer what
type of generative model participants were inverting throughout the experiment.

2.2.2 Pupil dilation

Another technique we made use of in the experiments discussed in this thesis is
pupillometry (i.e. the measurament of pupil diameter). It is well-known that pupil
size changes in response to luminance variations in the environment, optimising the
amount of light reaching the retina (Laughlin, 1992). However, it has been shown
that pupil size changes in condition of constant luminance can be related to a wide
range of cognitive processes, as mental effort (van der Wel and van Steenbergen, 2018),
attention (Kang et al., 2014; Wierda et al., 2012), decision-making (Cavanagh et al.,
2014; de Gee et al., 2014), arousal (Reimer et al., 2014) and volatility (Browning et al.,
2015), to mention a few.
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Of particular significance here is the well-established link between pupil dilation
in absence of luminance changes and surprise, which has been explored in several
experimental paradigms. For example, both Lavín et al. (2014) and Preuschoff et al.
(2011) measured pupil diameter in participants performing a gambling task in which
they had to learn the reward probabilities associated with particular choices. Both
studies found pupil dilation to be positively associated with surprise (or, equivalently,
negatively associated with outcome probability). Furthermore, Kuchinke et al. (2007)
investigated how pupil diameter varied in a lexical decision task, finding pupil dilation
to negatively scale with the probability of word stimuli. Similarly, Reinhard and Lachnit
(2002) found pupil dilation to be negatively associated with stimulus probability in
a Go/NoGo task. The link between pupil dilation and surprise has also been found
in auditory oddball experiments (Friedman et al., 1973; Hong et al., 2014; Korn and
Bach, 2016; Liao et al., 2016; Murphy et al., 2011; Qiyuan et al., 1985), similarly to
the MMN (see previous section).

In addition, Rajkowski (1993) showed a tight association between pupil dilation and
locus coeruleus (LC, a brain area that produces noradrenaline) activity on monkeys,
and later pharmacological manipulations in humans (Hou et al., 2005; Phillips et al.,
2000) confirmed this, finding LC-suppressing drugs to inhibit pupil responses and
LC-stimulating drugs to enhance them. LC activity has been in turn suggested to be
related to surprise (Dayan and Yu, 2006), a claim supported by electrophysiological
findings in monkeys (Rajkowski et al., 1994, 2004). This evidence led researchers to
hypothesize that surprise-related pupil dilation is caused by noradrenergic activity
in the LC (Lavín et al., 2014). Evidence for this was found in a study combining
pupillometry and functional magnetic resonance imaging (fMRI), Murphy et al. (2014),
in which LC activity and pupil diameter correlated in absence of any stimulation (i.e.
at resting state) and responded similarly to surprising stimuli.

It should be noted that Zénon (2019) suggested a unified account of pupil dilation
under constant luminance, relating the pupil response to all aforementioned cognitive
phenomena to information gain, formalised as KL divergence between prior and
posterior beliefs. As discussed in the previous section, the use of Gaussian distributions
in our experiments does not allow to disentangle "Shannon" surprise (negative log
probability, Schwartenbeck et al. (2016)) to "Bayesian" surprise (KL divergence, see
Baldi and Itti (2010)).

As mentioned in the previous section, in the experiments described in Chapters 4
and 5 we extended the standard auditory oddball paradigm (which typically involves a
Bernoulli distribution, i.e. a standard and a deviant stimulus type) to more complex
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continuous distributions. As it has been shown that pupil size responds proportionally
to probability density (Nassar et al., 2012; O’Reilly et al., 2013), we make use of
pupillometry to index surprise to track learning with online probabilistic models
(Chapter 4) aimed at testing and augmenting predictive coding, and the Bayesian brain
framework in general.

A potential drawback of using pupil dilation as an index of surprise is the relatively
slow time course of pupil responses. In fact, pupil size in response to a stimulus takes
about 2 seconds to return to baseline and peaks at around 930 ms from stimulus
onset (Hoeks and Levelt, 1993), making it difficult to disentangle responses to events
with high temporal proximity. In Chapters 4 and 5 we address this by making use
of a convolutional kernel, fitting a pupil response function (a gamma function) to
each participant’s pupil data to better account for individual variability (Denison
et al., 2020). This, combined with a auto-regressive component to account for slow
fluctuations in pupil diameter (Zénon, 2017), proved to be a very effective approach to
study trial-by-trial learning (this is discussed in more detail in Chapter 4).



Chapter 3

Structure learning

3.1 General overview

In probabilistic theories of brain function perception and cognition are viewed as the
result of Bayesian inference, which can take different forms (Aitchison and Lengyel,
2016; Friston and Kiebel, 2009; Gershman and Beck, 2017; Ma et al., 2006; Sanborn
and Chater, 2016). Regardless of specific inference algorithms, this is achieved by
inverting some generative model, and inferring the value of its parameters and latent
variables (or, equivalently, hidden states) as a result. For this to happen, the specific
form of the generative model must be known in advance, as in the predictive coding
example outlined above. In a real-world scenario this is not realistic, and the form (or
structure) of generative models must be acquired through experience. Learning (or
assuming) the wrong model structure is likely to lead to suboptimal inferences (Beck
et al., 2012), and thus non-adaptive behaviour. The process of learning such structure
takes the name of structure learning (Griffiths and Tenenbaum, 2005).

In general, structure learning is seen as serving the purpose of acquiring internal
models of the environment, thus simplifying and making sense of the wide variety
and volume of observations one can be exposed to and allowing useful generalisations
(Braun et al., 2010). However, internal models of the world can be very complex, which
makes studying structure learning as a whole very challenging. In practice, researchers
focus on a particular aspect of it. What follows is a brief overview (by no means
exhaustive) of some of these different aspects.

Representation learning Feature or representation learning (Austerweil and
Griffiths, 2008; Wu et al., 2021), consists in reducing highly dimensional observations to
limited number of useful and interpretable features. These features (or representations)
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can then be re-used in different contexts facilitating learning in different domains, a
phenomenon called transfer learning (Menghi et al., 2021) or learning to learn (Braun
et al., 2010).

Clustering To be able to generalise some knowledge acquired during a particular
experience, one must be able to correctly infer what other contexts that experience
is relevant to. To achieve this, humans spontaneously divide their observations into
categories, in a process called clustering (Dasgupta and Griffiths, 2021; Sanborn et al.,
2006), which is the main topic of Chapter 6 and will be discussed in greater detail in
later sections.

Concept Learning The idea of concept learning (Lake et al., 2015; Smith et al.,
2020) partially overlaps with clustering and representation learning, and can be seen
as the most abstract version of both (i.e. learning about abstract categories and
features). An interesting line of research in the field is concerned with studying how
humans organise concepts in cognitive maps (Constantinescu et al., 2016) and learn
their relational structure (Mark et al., 2020; Whittington et al., 2020).

Causal learning Finally, another form structure learning can take is causal
learning (Gershman et al., 2017; Griffiths and Tenenbaum, 2005; Tenenbaum and
Griffiths, 2001), consisting in learning the causal structure of a set of events (i.e. what
causes/influences what) and the strength of these causal relationships.

3.2 Model comparison vs incremental models

Let’s consider the simple case of an agent making T multivariate observations {o1, ...,oT}
and trying to infer the corresponding hidden states {z1, ...,zT}. As discussed, this
requires a generative model with parameters θ. In absence of prior knowledge about
the structure of this model, this too must be learned from the observations {o1, ...,oT}.

One way to achieve this is to generate a set of N hypotheses {G1, ...,GN} about
the form of the generative model, having thus a set of candidate models to compare
and choose from. This poses the problem of the potentially infinite number of possible
models. For a biological agent with limited cognitive resources, it would be necessary
to have a contained hypothesis space. This can be solved by relying on more abstract,
generalisable structural assumptions that constrain the process of hypothesis generation
(Tenenbaum et al., 2011). This has been formalised with hierarchical Bayesian models,



3.2 Model comparison vs incremental models 32

which use a finite set of qualitatively different "building blocks" to generate the a set of
hierarchically organised candidate models(Kemp et al., 2010, 2007; Kiebel et al., 2008;
Lucas and Griffiths, 2010; Tenenbaum et al., 2006). In humans, hypothesis generation
has been suggested to be influenced by the plausibility a certain model is believed to
have (i.e. its prior probability), which has been shown to explain a number of cognitive
biases (Dasgupta et al., 2017).

Once the agent has generate a set of models to evaluate (each with its own set of
parameters θn, the number of which can vary between models), it can simply perform
model comparison and select the winning model. There are several ways this can be
achieved mathematically (Ward, 2008), but all these methods involve fitting parameters
θn and hidden states z to the observations o for each candidate model Gn. Then a
model-specific score can be obtained, involving a fitness metric to reward accuracy
(e.g. log likelihood) and a complexity penalty to avoid overfitting (e.g. number of
parameters). Additionally, as mentioned above, one could have a prior over the model
space, so each candidate model is assigned a prior probability, which can be understood
as a measure of how plausible that model (or, equivalently, hypothesis) is thought to
be. This prior on models can influence both hypothesis generation (Dasgupta et al.,
2017) and model comparison (Tenenbaum et al., 2006).

Once model comparison has been performed, the agent can select the model with
the highest score and choose its policies accordingly.

Structure learning as model comparison has been the focus of interesting theoretical
work (Friston et al., 2021; Kemp and Tenenbaum, 2008; Tenenbaum et al., 2011),
and simulations have been shown to correctly predict human behaviour in structure
learning tasks (Gershman, 2017; Kemp et al., 2010).

Despite this, this approach presents some major limitations. In fact, most of the
aforementioned models assume structure learning to happen offline, meaning only
after a certain number of observations have taken place. This is not only suboptimal
in terms of immediate action selection in response to each observation (the agent is
not performing inference online), but it also requires the agent to remember each
individual observation (or at least a great number of them, especially for complex
models). This does not mean it would be impossible to build an online model based
on model comparison, but this would involve updating several models each time a new
stimulus is encountered. In addition, if the agent had to predict the consequences of a
particular policy in response to a stimulus, it would have to take the expected reward
value over the whole model space (Gershman, 2017). This might be feasible when
the hypothesis space is limited (Gershman, 2017; Tomov et al., 2018) (or when all
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observations are presented at the same time or are available to be somehow revisited
at will), but would put a biological agent living in complex and volatile environments
under considerable cognitive strain, requiring considerable computational resources
even for relatively simple problems.

Furthermore, the use of offline models does not allow to fit them to human behaviour
(or physiological/brain data) based on online learning. In other words, these models
cannot be used to study human structure learning on a trial-by-trial basis, and require
a training phase followed by a test phase to compare model and human outputs, as in
Kemp et al. (2010), Gershman (2017) and Orbán et al. (2008).

An alternative to generating different candidate models and comparing them after
a certain number of observations (or after each observation) is to start with a single,
very simple model, and augmenting it when necessary as new data are collected. In
other words, as a new observation comes along which is not properly accounted for,
the agent can increase the complexity of the generative model. This has the advantage
of being computationally parsimonious, as the model is kept as simple as possible. It
also happens online, making it more convenient where immediate responses to new
stimuli are required, and does not require the agent to hold in memory a great number
of observations. We call this type of models incremental models.

This type of approach has been deployed by Wu et al. (2021) to study representation
learning for sequence, image, video and language data. Their simulations showed
that learning a hierarchy of "chunks" (i.e. frequently occurring patterns) results in
interpretable representations of the stimuli that can be reused in future tasks (i.e.
they make transfer learning possible). Their model learned representations starting
from very simple sequences, combining them hierarchically as new information became
available. Similarly, (Gershman et al., 2010) used an incremental approach to give a
structure learning-based interpretation of classical conditioning, suggesting animals
infer latent causes behind the association between conditioned and unconditioned
stimuli. Crucially, the number of possible latent causes is unknown, so the animal’s
internal models are posited to start simple and grow according to the complexity of
the data. The same modelling framework was used also used to study transfer learning
and generalisation in humans by Collins and Frank (2013, 2016). Furthermore, the
idea that biological agents adopt (although not necessarily exclusively) incremental
models for structure learning supported by evidence from animal studies (Wang et al.,
2011), suggesting a link between increasingly complex internal models and structural
brain growth.
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On the other hand, it is worth considering the case of an agent mistakenly building
an overly complex model (or transitioning to a simpler environment), which has not
received as much attention from researchers. In such a situation it would be beneficial
for the agent to prune away the unnecessary components of its internal models. This
has been addressed by Smith et al. (2020), who built a model of concept learning
capable of both increasing and decreasing its complexity.

The family of models whose complexity adapts to that of the data are known as
Bayesian non-parametric models (Gershman and Blei, 2012), and will be discussed
more in detail in the next section. In this thesis we will limit further discussion of
structure learning to this modelling framework, as it is the one on which the simulation
work described in Chapter 6 is based.

3.3 Clustering and the Chinese restaurant process

In this thesis we focus on a specific form of structure learning, namely online clustering,
defined as unsupervised grouping of stimuli or events into useful categories. In other
words, we discuss how an agent can augment its generative model online, adding new
components (clusters) when necessary.

Let’s again consider an agent making a series of observations {o1, ...,oT}. With no
structural knowledge about their probability distribution, the agent has two "model-
free" options: consider each observation as a completely separate entity, unrelated
to any other, or consider all observations part of a common category, generalising
whatever it can learn from one to all others. Both of these are clearly suboptimal in
most situations. The former does not allow any generalisation whatsoever (e.g. learning
that an individual lion is dangerous tells me nothing about other lions), and the latter
leads to an over-generalisation (e.g. learning that an individual lion is dangerous tells
me that all animals are). Obviously a more flexible, model-based solution is required.

The agent can assume that observations can be grouped into M clusters, so that
knowledge about a member of a cluster can be generalised to all members of that
cluster (e.g. learning that an individual lion is dangerous tells me that all lions are
dangerous). If the value of M is known (and the shape of each individual cluster is
assumed, e.g. Gaussian), clustering is a fairly straightforward problem and can be
solved with Bayesian model inversion, similarly to what discussed in previous Chapters.
In such a case, the structure of the generative model is known in advance (or assumed),
and does not need to be learned. Conversely, if the number of clusters M is unknown, so
is the structure of the generative model. In this case, the agent must learn the number
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of clusters to build an effective model of its environment and generalise information
about individual observations appropriately.

The most popular way to do this is using a method called the Chinese restaurant
process (CRP), which belongs to the family of Bayesian non-parametric models (Gersh-
man and Blei, 2012). Here for each new observation ot the agent must infer its cluster
assignment ct (which us not directly observable, and is thus treated as an hidden state).
It thus has to evaluate

p(ct | ot)∝ p(ot | ct)p(ct) (3.1)

where

p(ct = n) =

 vn
t−1+α if n≤N

α
t−1+α if n > N

(3.2)

Here vn is the number of observations previously assigned to cluster n, N is the number
of clusters for which vn > 0 and α is a concentration parameter regulating the agent’s
tendency to form new clusters.

Put more simply, the agent has popularity-based priors on cluster assignment, with
popular clusters (i.e. clusters to which many previous observations were assigned)
being considered a priori more likely. This implies that, as more stimuli are observed,
the chances of them belonging to a previously unseen cluster decreases. This property
makes psychological sense: after many years doing bird-watching, it will become less
and less likely for me to spot a new species of bird (unless I travel to an unknown
environment). Of particular importance is the concentration parameter α, which
regulates how "conservative" the agent is. For high values of α the agent is going to be
more likely to create a lot of clusters, whilst for low values it going to prefer a simpler
model. At the two extremes, the agent is going to form a separate cluster for each
observation (extremely high α) or assign all observations to a single cluster (extremely
low α), reverting to the "model-free" approaches described above.

Therefore, one could see α as an index of how complex an agent is allowing its
internal models to be, or, equivalently, of the cognitive resources the agent is willing
to allocate to structure learning. This aspect has been tackled by Dasgupta and
Griffiths (2021), who showed that placing a prior on cluster mappings penalising model
complexity is equivalent to using CRP priors. Model complexity was formalised as
the entropy H[p(c)] = ∑N

n=1 p(cn)lnp(cn) of the cluster mappings, a measure of the
representational cost of the distribution p(c) (Shannon, 1948).

The CRP has been deployed in some form in the study of structure learning (and,
in particular, clustering) in a variety of contexts. For example, Gershman et al. (2017)
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applied it to study social influence, and found that it was based on a cluster-like
representation of individual preferences. The CRP was also used to build a latent
cause theory of Pavlovian conditioning (Gershman et al., 2010; Gershman and Niv,
2012; Gershman et al., 2015b), , suggesting that animals assume their experiences to
be influenced by hidden causes. Animals would thus cluster their experiences into a
discrete set of hidden causes, and, as a new event comes along, inferring which hidden
cause was behind it would determine which cluster needs to be updated. The authors
managed to replicate a range of experimental findings on classical conditioning (e.g.
conditioned response acquisition,extinction, renewal) with simulations based on this
principle (Gershman et al., 2010; Gershman and Niv, 2012; Gershman et al., 2015b).

Collins and Frank (2013) built a CRP-based model of the interaction between
executive functions and learning, and used to show that human participants spon-
taneously learn and generalise latent task rules (which can be seen as latent causes
regulating the relationship between actions and outcomes), even when not cued to do
so. They later used a similar models and replicated their findings, backing them up
with electrophysiological eveidence (Collins and Frank, 2016).

Despite this relatively well-established modelling framework, and the aforementioned
benefits of incremental models (namely being online) for studying human cognition, very
little work has been done to apply these to investigate trial-by-trial structure learning.
In fact, similarly to the model comparison framework discussed above, work with
incremental models in the cognitive sciences have largely been limited to simulations
(Dasgupta and Griffiths, 2021; Franklin and Frank, 2018) and comparing their outputs
with existing (Gershman et al., 2010; Gershman and Niv, 2012; Gershman et al., 2015b)
or new (Gershman et al., 2017) experimental data. There have only been a handful of
empirical studies fitting these models to trial-by trial participants data (Collins and
Frank, 2013, 2016; Davis et al., 2012), leaving this avenue largely unexplored.

Unfortunately, the pandemic did not allow us to directly tackle this with an empirical
study. We did however put the basis for future experimental work by building a novel
clustering task loosely based on Davis et al. (2012), as well as a novel clustering model
with a strong focus on intelligent use of computational resources (in this case working
memory), or computational rationality (Gershman et al., 2015a). Our model can be
fit to predict online human behaviour, and provides a series of trial-by-trial metrics
that could prove instrumental for future neuroimaging studies. Finally, our simulations
provide a proof of concept for the importance of revisiting and re-interpreting past
events stored working memory (i.e. making inferences about the past) for building
optimal internal models.



Chapter 4

Pupil dilation indexes automatic
and dynamic inference about the
precision of stimuli distributions

4.1 Abstract

Learning about the statistics of one’s environment is a fundamental requirement of
adaptive behaviour. In this experiment we probe whether pupil dilation in response
to brief auditory stimuli reflects automatic statistical learning about the underlying
stimulus distributions. Specifically, we consider whether pupil dilation reflects automatic
(task-irrelevant) learning about the precision of Gaussian distributions of pitch in
a sequence of tones. We provide clear evidence, both by comparing responses to
perceptually identical probe tones in low and high precision blocks, and using a novel
model-based analysis, that subjects did indeed track the precision of the stimulus
distribution. This extends previous work looking at electrophysiological effects of
precision (or, equivalently, variance) learning, and provides new evidence that the
putatively noradrenergic processes underlying pupil dilation reflect rapidly updated
information about distributions of sensory stimuli. In addition, our study represents
a validation of our model-based approach to analysing pupillometry data, which we
believe has considerable promise for future studies.
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4.2 Introduction

Sensitivity to the statistics of one’s environment is a key requirement for adaptive
behaviour. Correspondingly, statistical learning has been a fertile area of research
(Kirkham et al., 2002; Saffran et al., 1996, 1999), often in conjunction with probabilistic
theories of cognition (Fiser et al., 2010; Tenenbaum et al., 2011; Turk-Browne et al.,
2010). Here, we consider statistical learning to solve the specific problem of forming
beliefs about the precision (or, equivalently its inverse, the variance) of the underlying
probability distributions that govern incoming sensory stimuli. From a normative
perspective, accurately estimating precision is extremely important, as it governs key
features of learning and inference, such as how quickly to update one’s beliefs (Behrens
et al., 2007; Mathys et al., 2011) and how to weight incoming sensory information
against prior beliefs (Friston, 2008), and aberrant precision estimation is widely believed
to play a key role in psychopathology (Adams et al., 2013; Fletcher and Frith, 2009;
Friston et al., 2014; Lawson et al., 2014).

To explore learning about precision, we make use of the widely replicated finding
that non-luminance related pupil dilation indexes the surprise associated with incoming
sensory stimuli (Alamia et al., 2019; Damsma and van Rijn, 2017; De Berker et al.,
2016; Friedman et al., 1973; Kloosterman et al., 2015; Lavín et al., 2014; Nassar et al.,
2012; O’Reilly et al., 2013; Preuschoff et al., 2011; Qiyuan et al., 1985; Raisig et al.,
2010; Reinhard and Lachnit, 2002). Note that here we define surprise as the negative
log probability of an event occurring, though see Baldi and Itti (2010); Schwartenbeck
et al. (2016); Zénon (2019) for an important alternative. This permits one to make
inferences about participants’ implicit beliefs about the statistics of their environment,
without the necessity for an explicit probe or decision, and thus provides a mean to
characterise statistical learning processes (Alamia et al., 2019; Vincent et al., 2019).
Specifically, where predictions are more precise, subjects should be more surprised by
objectively identical stimuli, leading to a greater dilation response.

Learning about precision has previously been tested using reaction time and mag-
netoencephalography (MEG) data by Garrido et al. (2013). Here, subjects performed
a modified version of the auditory oddball task, where on separate blocks tones were
drawn from either high or low precision Gaussian distributions in log frequency space
(Fig. 4.1). The present work seeks to extend this approach, using pupillometry data.
This is important, given the tight link between pupil dilation and noradrenergic activity
in the locus coeruleus (Murphy et al., 2011), since it provides the opportunity to
better understand the function of the noradrenergic system (Dayan and Yu, 2006).
Pupillometry data is also much cheaper and easier to acquire than neuroimaging data,
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and its use to characterise statistical learning in different groups (Browning et al., 2015;
Montague et al., 2012) is thus attractive from a practical perspective.

We thus collected pupillometry data whilst subjects performed a slightly modified
version of the paradigm used by Garrido et al. (2013). We used the data to perform
two types of analysis. The first was closely modelled on that used in previous work
(Garrido et al., 2013), and directly compared responses to probe tones during high and
low precision blocks. Our main hypothesis was that a deviant sound (probe tones at
2000 Hz) would be more surprising, and therefore elicit a bigger pupil dilation, in high
precision compared to low precision blocks, as the associated probability density would
be lower (Fig. 4.1). In the second we combined agent-based modelling (O’Doherty
et al., 2007) with a novel convolution-based approach to analysing pupillometry data
(Denison et al., 2020), which we believe has considerable promise for exploring automatic
statistical learning in humans. We hypothesised that pupil dilation responses would
reflect dynamic updating of beliefs about the precision of the stimulus distribution.

4.3 Methods

4.3.1 Participants

16 participants (12 females), aged 18 to 34 (mean = 21.1) took part in the study and
they all gave informed consent.

4.3.2 Stimuli and Procedure

Participants were asked to look at a fixation cross in the centre of a computer screen
while listening to a series of tones through headphones. Their task consisted only in
pressing the space bar when the sound came only from one of the two headphones’
speakers (i.e. when they heard it coming only from one side). Importantly, the pitch
of the tones was entirely task irrelevant, deconfounding outlier and target (unilateral)
tones, which is a concern with several previous studies (Hong et al., 2014; Liao et al.,
2016), as well as indexing automatic, rather than task dependent statistical learning
processes. Furthermore, the absence of a visual target avoided luminance changes that
could alter pupil diameter.

The experiment was divided into 4 sessions, during each of which subjects were
presented with 800 pure tones, each lasting 50 ms, with an interstimulus interval of
one second. 4 blocks (2 high precision blocks and 2 low precision blocks) were present
in each session, with 200 tones each and no breaks between blocks. The order of the
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Fig. 4.1 Illustration of the experimental paradigm (a). Participants were exposed to
a series of tones (800 per session, 3200 in total) and were asked to press the space
bar when they heard the sound coming only from one speaker (i.e. only from one
side). The pitch of the tones was sampled from two different probability distributions
(b), alternating between high and low precision blocks. In line with previous work
(Garrido et al., 2013) probes were added at 500 Hz and 2000 Hz, slightly distorting the
distribution.

blocks was counterbalanced and participants were not aware of the presence of different
blocks within each session. Stimuli were selected to be similar to those used in a prior
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Fig. 4.2 Graphical representation of 50 trials (corresponding to 50 tones) in a high
(a) and low (b) precision block. Deviant probes (2000 Hz) are highlighted in green to
evidence how they stand out more in high compared to low precision blocks. These
and standard probes (500 Hz) slightly distorted the stimuli distribution, as shown
in binned distributions (1 bin = 2/7 of an octave) of a sample high (c) and low (d)
precision block (200 trials per block).

study (Garrido et al., 2013). Specifically, for each session the frequency of 688 out of
800 tones was sampled from a Gaussian distribution in log-frequency space, with mean
µ = 500 Hz and standard deviation σh = 0.5 octaves for high precision blocks and σl

=1.5 octaves for low precision blocks. (These values correspond to precisions of 4 and
0.4444 respectively). Out of the 112 remaining tones, 56 were standard probes (500
Hz, corresponding to the mean of the distribution) and 56 were deviant probes (2000
Hz, two octaves above the mean), which slightly distorted the probability distribution,
adding two point-masses of 7% probability each. The number of unilateral, target
tones varied across sessions (82, 80, 75, and 78 respectively). Both probes and targets
were pseudo-randomly inserted in the stream, and targets were made to never coincide
with a probe, or occur immediately after it. This was done because targets are very
likely to elicit a strong, long lasting pupil response, which would confound the effect of
surprise.

See Fig. 4.2 for a graphical representation of the tone sequence in low and high
precision blocks, and of how probe tones distorted the distributions.
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4.3.3 Pupillometry data recording and preprocessing

Pupillometry data were recorded at 500 Hz using an EyeLink 1000 eye-tracking device
whilst subjects sat in a moderately lit room (Fig. 4.3 shows 4 seconds of raw pupil size
data). As we were interested in learning effects rather than precise psychophysics, we did
not directly measure the luminance of the screen or the fixation cross. Similarly, tones
were presented at a constant volume, at a level that was comfortable but clearly audible
for subjects, but these levels were not recorded. Critically, because these quantities
were held constant for each subject throughout the duration of the experiment, purely
physical properties of the stimuli or environment cannot explain the results we describe
below.

Linear interpolation was used to remove artefacts relating to eyeblinks and saccades,
and the data were low pass filtered at 20 Hz. Data were recorded from both eyes
simultaneously, and averaged prior to further analysis. Additionally, for the model-
based analysis, time series were downsampled to 50 Hz, and were then mean-corrected
and normalised to unit variance, to standardise responses across subjects.

Fig. 4.3 4 seconds of raw pupil size data from both eyes from a single participant (subject
2). This is a representative sample of how the data looked before any preprocessing
took place. Most noticeably, this time window includes an eye blink (with pupil size
values briefly falling to zero).

4.3.4 Probe tones analysis

We first analysed our data using a classical model-free approach, where we averaged
the responses to the probe tones in each precision condition for each subject. We then
averaged all data-points from 900 ms to 1000 ms after stimulus onset and performed
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a two-way repeated measures ANOVA with precision (high vs low) and probe type
(deviant vs standard) as within-subjects factors. The 900-1000 ms time window was
averaged to avoid multiple comparisons while trying to capture the peak of the pupil
response, which typically occurs around 930 ms from stimulus onset (Hoeks and Levelt,
1993).

4.3.5 Model-based analysis

4.3.5.1 Time series analysis

Building on previous work analysing fMRI time series (Penny et al., 2003), we developed
a model for analysing pupillometry data combining a General Linear Model (GLM)
incorporating a convolution kernel, and an autoregression (AR) component, in order
to model fluctuations not captured by the convolution model (which could come from
a variety of sources) (Zénon, 2017). For simplicity, we only consider a first order AR
model, but this approach can naturally be extended to include higher orders (Penny
et al., 2003). For related approaches, see Korn and Bach (2016); Vincent et al. (2019);
Zénon (2017).

In this GLM-AR model, data z = {z1, ..., zT} is modelled in terms of a [T ×K]
design matrix X, a [K×1] vector of regressor coefficients w and a [T ×1] vector of
errors e:

z = Xw +e (4.1)

with

et =

a(zt−1−xt−1w)+ ιt if t > 1
r if t= 1

(4.2)

Here et is modelled as a combination of the "prediction error" at the previous time
point, weighted by the AR coefficient a, and ιt which is drawn from ι, a [T ×1] vector of
Independent Identically Distributed (IID) errors. The model also includes an additional
session-specific parameter r to model the error at t= 1.

The design matrix X is generated by convolving a [T ×K] input matrix U with a
gamma kernel to model the slow time course of pupil responses (Denison et al., 2020;
Hoeks and Levelt, 1993; Korn and Bach, 2016). The kernel is parameterised using
three parameters: shape (h) and scale (l) parameters governing the properties of the
Gamma distribution, and a delay parameter (d) introducing a temporal delay. Thus:

xk = uk ∗g (4.3)
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with
g = Γ(t−d | h, l) (4.4)

where Γ indicates the probability density function of the gamma distribution. Our
approach thus naturally accounts for between-subject variability in the time course
of pupil responses, since the shape of the gamma distribution is fitted to individual
responses (Denison et al., 2020). Note that in our experiment there were no luminance
changes, and we thus needed only to model pupil dilation responses. The GLM-AR
approach is equally applicable to data involving pupil constriction (Korn and Bach,
2016), and we will consider this in future work.

4.3.5.2 Cognitive modelling

To model cognitive processes during the task, we devised a simple agent where at
each trial i, trial-specific mean (mi) and log-precision (ki) estimates were generated
using a predictive coding algorithm (Friston and Kiebel, 2009; Rao and Ballard, 1999;
Shipp, 2016; Spratling, 2017), augmented to allow for dynamic estimation of precision.
This does not imply any strong claim about the actual neuronal inference mechanisms
employed by subjects on the task, since other schemes could undoubtedly provide similar
predictions (Aitchison and Lengyel, 2016; Friston et al., 2017; Ma et al., 2006). It does,
however, provide a simple and parsimonious method for modelling task performance,
which is grounded in computational modelling of cortical function.

In this model, the agent infers on the log joint probability of current hidden states
and observations, given all current and previous observations y1:i = {y1, ...,yi}, prior
beliefs about the initial hidden states (m0 and k0) and two fixed parameters which
govern how quickly the mean (η(m)) and log precision (η(k)) are expected to change,
often known as their volatility (Behrens et al., 2007; Mathys et al., 2011). Note that
these parameters were fitted to individual subjects’ data, meaning that we can capture
a broad spectrum of beliefs about volatility.

Assuming the Markov property, we can write

lnp(mi,ki | y1:i,m0,k0,η
(m),η(k)) = Elnp(mi−1,ki−1)

î
p(mi,ki | yi,mi−1,ki−1,η

(m),η(k))
ó

(4.5)
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and estimated recursively, which represents standard Bayesian filtering. HereEh(θ) [f(x | θ)]
represent the expected value of f(x | θ) under h(θ), so that

Eh(θ) [f(x | θ)] =
∫
f(x | θ)h(θ)dθ

= f(x)
(4.6)

The model has the conditional independence properties that

p(yi | y1:i−1,m1:i,k1:i,m0,k0,η
(m),η(k)) = p(yi |mi,ki) (4.7)

and

p(mi,ki | y1:i−1,m1:i−1,k1:i−1,m0,k0,η
(m),η(k)) = p(mi |mi−1,η

(m))p(ki | ki−1,η
(k))
(4.8)

meaning that observations depend only on the current hidden states, and each sequence
of hidden states is a separate Markov chain.

More specifically, each continuous-valued observation yi is sampled from a normal
distribution with mean mi and log-precision ki

p(yi |mi,ki) =N (yi |mi, e
−ki) (4.9)

where N (µ,σ2) denotes a normal distribution with mean µ and variance σ2.
Similarly, the mean and log-precision of the distribution are treated as independent,

zero-mean, Gaussian random walks, with fixed precisions (volatilities), given by

p(mi |mi−1,η
(m)) =N (mi |mi−1,η

(m)−1) (4.10)

p(ki | ki−1,η
(k)) =N (ki | ki−1,η

(k)−1) (4.11)

The log joint distribution can now be written as:

lnp(yi,mi,ki | y1:i−1,m0,k0,η
(m),η(k)) =lnp(yi |mi,ki)+ lnEp(mi−1)

î
p(mi |mi−1,η

(m))
ó

+ lnEp(ki−1)
î
p(ki | ki−1,η

(k))
ó

(4.12)

To avoid the need to estimate joint probability distributions, the agent performs
variational inference (Beal, 2003), and approximates the log joint with a distribution
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q(mi,ki) which factorises such that:

q(mi,ki) = q(mi)q(ki) (4.13)

This gives a variational lower bound on the log model evidence

V FE = Eq(mi,ki)

ñ
ln

Ç
p(yi,mi,ki | y1:i−1,m0,k0,η(m),η(k))

q(mi,ki)

åô
(4.14)

To generate a predictive distribution over mi, the agent uses the variational posterior
q(mi−1) generated on the previous trial. Thus

p(mi | y1:i−1,m0,η
(m))≈ Eq(mi−1)p(mi |mi−1,η

(m))
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where µ̆(m)
i−1 and τ̆

(m)
i−1 are the sufficient statistics (mean and precision) of q(mi−1), and
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(m)
i and τ̃

(m)
i are the sufficient statistics of the predictive distribution. (At i = 1,
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Similarly, the predictive distribution over ki used by the agent is given by
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(at i= 1, µ̃(k)
1 = k0 and τ̃

(k)
1 = η(k)).

Thus for the agent

V FE =Eq(mi,ki)
î
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where H(·) denotes the entropy of a probability distribution.
The optimal solution q∗(·) for variable mi can now be derived simply using the

properties of the Gaussian distribution and standard properties of the variational
inference (see Bishop, 2006 for a fuller exposition), and is given by
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Here we use the fact that for any linear function EN (µ,σ2) [θx] = µ. We also make use
of Jensen’s inequality, according to which in convex functions

E [f(x)]> f (E[x]) (4.23)

Thus, as the non-linear function we take expectations of (e−ki) is convex, we can use
this result as a lower bound for the optimal solution. We applied this approximation
for the sake of cleaner and more interpretable update equations, which can be more
easily related with our reference theoretical framework (Predictive Coding), with very
marginal influence on the end result.

Similarly
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where once again we use Jensen’s inequality as the non-linear function we take the
expectation of (m2

i ) is convex.
Typically, in variational inference one makes use of conjugate prior distributions,

which ensure that prior and posterior distributions are of the same type, and furnish
straightforward update equations that can be iteratively evaluated (Bishop, 2006; Blei
et al., 2017). This is not possible here, due to the use of a (non-conjugate) Gaussian
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prior for the log precision, and the agent thus makes use of gradient ascent, combined
with the Laplace approximation, to derive estimates of the posterior mean and variance
for each variable (Bishop, 2006; Friston et al., 2007). The use of gradient ascent is
particularly attractive here, as it is employed in classical formulations of predictive
coding (Friston and Kiebel, 2009). Thus
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i = argmax(q∗(mi))

mi

(4.25)
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Differentiating q∗(mi) twice with respect to mi gives:

∂q∗(mi)
∂mi

= eµ̆
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i (yi−mi)− τ̃ (m)

i (mi− µ̃(m)
i ) (4.29)
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i − τ̃ (m)
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The first equation is the familiar core of predictive coding, which trades off prediction
errors at the first (yi−mi) and second (mi− µ̃(m)

i ) levels, weighted by their precisions.
Similarly, for the log precision ki
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Gradient ascent is performed using Newton’s method of optimisation, in which, for
function f at iteration n, variable x is updated such that

∆x=− f
′(x)

f ′′(x) (4.33)
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This yields the following coupled equations, which the agent iteratively evaluates:
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For reasons of computational expedience, in the analyses presented here, we fixed the
number of iterations to sixteen, rather than explicitly evaluating convergence.

4.3.5.3 Design matrix specification

The vectors of trial-by-trial mean and log precision estimates m̂ = µ̆(m) and k̂ = µ̆(k)

were used to estimate a trial-specific surprise regressor s as follows:

si =−lnN (yi | m̂i−1, e
−k̂i−1) (4.36)

We modelled behaviour using four versions of this agent. In the first (M1: ‘full’)
model, both the mean and precision of the distribution were dynamically estimated
as described above, using the priors given in Table 1. In the second (M2: ‘precision
only’) model, belief updating about the mean was effectively prevented by fixing its
prior variance to be 10−6. In the third (M3: ‘mean only’) model by contrast, belief
updating about precision was effectively prevented by fixing its prior variance to be
10−6. In the fourth (M4: ‘fixed’) model, both sorts of belief updating were prevented
in a similar fashion. (Note that, where belief updating is prevented, between-subject
variability in fixed estimates of the mean or precision is still allowed, since m0 and k0

are still fitted as free parameters).
All four GLM-AR models included binary regressors to model tone and target

presentation, a regressor encoding stimulus number (to model linear drifts in the
pupil responses across a session), and one encoding y (frequency in log space). For
completeness, we also tested models that included a "response" regressor indicating
which stimuli subjects responded to, rather than one indicating target presentation.
However, these models provided markedly inferior fits, so we do not discuss them
further. In addition, we included a regressor encoding the absolute difference in
frequency between each tone and the one immediately preceding it |yi− yi−1|, to
account for simple adaptation effects.
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Finally, models M1 and M2 additionally included a regressor encoding ek̂ (the
trial-by-trial precision estimate). Identical weak (zero mean) priors were set for each
regressor, as specified in Table 2.

In addition to these four inference-based models, we included a null (M0) model
which included only the AR component of our scheme. This allows us to assess whether
any of our models do better than a simple AR process.

4.3.5.4 Model fitting and comparison

Model-fitting was performed using variational Laplace (VL) (Daunizeau, 2017; Friston
et al., 2007), with prior distributions as specified in Table 2.1. This is a fast and
powerful approach to model-fitting, which furnishes an estimate of the model evidence
that is typically more accurate than measures such as the AIC and BIC (Penny, 2012)
but requires that model parameters be treated as Gaussian. We thus transformed
our model parameters where necessary, as specified in Table 2.1. In addition to the
model-specific parameters described above, VL also estimates a noise log-precision
parameter ν for each subject, which we also report in Table 2.1. Model comparison
was based on the negative variational free energy for each model and subject derived
during model fitting.

4.3.5.5 Model checking and visualisation

In order to visually compare the accuracy of our model predictions for key task
events against observed responses, we preprocessed each subject’s pupillometry data
by regressing out the AR component of our model, epoching (between −0.2 s and 2.5
s) and baseline correcting (for the interval −0.2 s to 0 s). We then performed identical
preprocessing on the predicted time series for each subject, and plotted responses to
probe and target tones.

To directly visualise the nature of pupil responses to surprise, and allow comparison
with the responses predicted by our modelling, we performed a time-point by time-
point regression analysis on the epoched data described above. The regression model
contained a constant term, the surprise estimated for each trial from the full model
for that subject, and a regressor encoding target trials. This was used to compare
predicted and observed responses with each other, as well as with the gamma kernels
produced by the GLM-AR modelling.
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4.4 Results

4.4.1 Behavioural data

Behavioural data were not relevant to our hypothesis, and therefore were only analysed
to ensure participants were paying attention to the tones they were exposed to and
to check for unexpected effects of block type. Participants had an average hit rate
(number of responses to targets over total number of targets) of 0.84 (range 0.56-0.98)
and an average false alarm rate (number of responses to non-targets over total number
of non-targets) of 0.008 (range 0.001-0.023). These data suggest that all participants
paid attention to the tones, as, despite sometimes missing them, they almost exclusively
responded to targets.

We also carried out three paired samples t-tests to investigate whether the type
of block (high vs. low precision) influenced the hit rate, the false alarm rate and the
reaction times. We found no significant difference in hit rate between high (µ= 0.85,
σ2 = 0.015) and low (µ= 0.83, σ2 = 0.031) precision blocks (t(15) = 0.80, p= 0.437),
nor in false alarm rate (µ= 0.008, σ2 = 0.00004 for high precision blocks and µ= 0.009,
σ2 = 0.00009 for low precision blocks, t(15) =−0.76, p= 0.460). Likewise, we did not
find a significant difference in reaction times between high (µ= 559ms, σ2 = 8391) and
low (µ = 574ms, σ2 = 9701) precision blocks, though there was some evidence of a
trend (t(15) =−2.01, p= 0.063). In sum, we found no clear evidence for differences in
behaviour on the task between blocks.

4.4.2 Probe tones analysis

We first analysed responses to the standard and deviant probe tones, using a classical
model-free analysis. A two-way repeated measures ANOVA revealed no main effect of
precision (F(1,15) = 3.35,p= 0.087), nor of probe type (F(1,15) = 3.74,p= 0.072). On
the other hand, the interaction was significant (F(1,15) = 24.71,p < 0.001), with the
difference in pupil response between deviant probe and standard probe trials being
bigger in high precision blocks than in low precision ones (Fig. 4.4). This clearly
suggests that subjects learnt about the precision of stimulus distributions, even though
these were task irrelevant.

Post-hoc analyses revealed no significant difference between the standard probe trials
in high (µ=−2.7×10−3, σ2 = 0.05×10−3) and low (µ=−0.9×10−3, σ2 = 0.03×10−3)
precision blocks (t(15) =−0.81, p= 0.423), nor between standard (µ=−0.9×10−3,
σ2 = 0.03×10−3) and deviant (µ= 2.0×10−3, σ2 = 0.021×10−3) probe trials in low
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Fig. 4.4 Results of the model-free analysis, illustrating the change in pupil diameter
in response to standard (500 Hz) and deviant (2000 Hz) probe tones in the high and
low-precision conditions. Greater pupil dilation was observed for deviant compared with
standard probes in the high precision condition (t(15) = 3.24, p = 0.022, Bonferroni-
corrected), but not in the low precision condition (t(15) = -0.665, p = 0.516). This
demonstrates that subjects tracked the current precision of the distribution of tones.
(Data points between 900ms and 1000ms from stimulus onset were averaged for this
analysis. Data are displayed using a Tukey boxplot, with points outside the whisker
ranges additionally plotted).

precision blocks (t(15) =−0.67, p= 0.516). On the other hand, deviant probe tones
elicited significantly bigger pupil dilation in high (µ = 5.7× 10−3, σ2 = 0.05× 10−3)
compared to low (µ=−2.0×10−3, σ2 = 0.021×10−3) precision blocks (t(15) = 4.97, p<
0.001, Bonferroni-corrected). Finally, deviant probes (µ= 5.7×10−3, σ2 = 0.05×10−3)
resulted in a larger pupil response compared to standard ones (µ = −2.7× 10−3,
σ2 = 0.05×10−3) in high precision blocks, (t(15) = 3.24, p= 0.022, Bonferroni-corrected).
These results are illustrated in Fig. 4.4. This model-free analysis suggests that
larger responses were associated with deviant probes when embedded in a narrower
distribution, in keeping with the prediction that these events are more surprising,
and consistent with previous work considering electrophysiological and behavioural
responses (Garrido et al., 2013).

Our model-free approach, like those in many previous studies of the oddball
paradigm, is restricted to consideration of carefully specified probe tones. This is
inefficient, because it only considers a small subset of all experimental stimuli, and
introduces restrictions that may preclude consideration of more subtle or complex statis-
tical learning effects using pupillometry. Consequently, we performed a complementary
model-based analysis, which forms the principle focus of this paper.
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4.4.3 GLM-AR modelling

Model comparison was performed using model-space averaging (FitzGerald et al., 2019),
a refinement of random-effects Bayesian model selection (Stephan et al., 2009) which
automatically (and optimally) mitigates the dilutionary effect of including inferior
models in the model-space. This analysis strongly favoured M1 and M2 (the "dual
estimation" and "precision only" models, Table 2.2) as compared to the other models, but
did not clearly distinguish between them. These were assigned posterior probabilities
of 0.403 and 0.427, and protected exceedance probabilities (FitzGerald et al., 2019;
Rigoux et al., 2014) of 0.441 and 0.533. This provides clear evidence that subjects
tracked the precision of the tone distribution, even though it was task-irrelevant, but
does not settle the issue of whether they also tracked the mean of the distribution.
This is perhaps unsurprising, given that the mean actually remained constant across
the experiment, and could usefully be investigated in future work. We thus selected
M2 for use when performing analyses of model performance as described below, on the
basis that this seemed the "conservative" option.

One possible alternative explanation for our precision-tracking results is that
responses might reflect a similarity effect of recent stimuli, which might be expected
to differ between conditions (in the high precision condition recent stimuli tend to be
more similar in frequency to the current stimulus than in the low precision condition).
We control for this in our main analysis through the use of an adaptation regressor
encoding the absolute difference between the current and previous stimulus, but, as
pointed out by a reviewer of the journal article reporting this work (Silvestrin et al.,
2021), this might not be sufficient if the similarity effect involved multiple recent stimuli.
To rule this out, we carried out an extra check analysis in which we included separate
regressors encoding the absolute difference between the current stimulus and each of
the seven preceding ones. We used this augmented approach to compare the "dual
estimation" and "mean only" models, to see if there was evidence in favour of precision
tracking even when this fuller stimulus history was accounted for. Reassuringly, this
also provided strong evidence in favour of the full model, which had an exceedance
probability of 0.994.

Quality of model fits, as estimated using simple percentage variance explained, was
excellent (µ= 0.999, range: 0.997-1.000). However, this includes the effects of the AR
process, which is not of interest here, so it is also useful to assess how much variance
is explained by the GLM itself. To assess this, we regressed out the predictions of
the AR component from each subject’s time series, and then calculated percentage
variance explained solely by the GLM. This also showed a good fit with the data
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Parameter Prior mean
(variance)

Group-level posterior
(variance)

p-value
(corrected)

ln(h) ln(3)(2) 1.61(0.271) -

ln(l) ln(3)(2) 1.59(0.536) -

ln(d) ln(0.2)(2) −3.09(3.390) -

a 1(2) 1.00(< 0.001) -

wevent 0(4) 0.10(0.114) 1.000

wprecision 0(4) 0.06(0.027) 1.000

wsurprise 0(4) 0.04(0.002) 0.004

wpitch 0(4) 0.00(< 0.001) 1.000

wtarget 0(4) 0.54(0.111) < 0.001

wdrift 0(4) −0.15(0.044) 0.027

wadapt 0(4) 0.00(< 0.001) 1.000

ln(η(m)) ln(100)(2) 5.72(13.49) -

ln(η(k)) ln(100)(2) 1.31(2.93) -

m0 ln(500)(2) 9.12(18.15) -

k0 ln(1)(2) 5.95(3.39) -

ν 4(4) 6.82(0.475) -

Table 4.1 Summary statistics of the prior and group-level posterior distributions over
each parameter. (Posterior distributions are based on weighted average single-subject
parameter estimates). Parameters were transformed where appropriate to enable use
of a Gaussian prior distribution, as required by the VL algorithm (ln indicates the
natural logarithm). Non-parametric p-values calculated using permutation testing,
Bonferroni-corrected for seven comparisons. These provide clear evidence that both
surprise and target presentation were consistently associated with pupil dilation, and
for a progressive decrease ("drift") in dilation responses over the session.

(µ= 0.848, range: 0.154-0.990), as illustrated by Figs. 4.5 and 4.6. Inspection of the
convolution kernels derived from our modelling suggested that these provided plausible
pupil dilation responses both when compared with existing literature (Denison et al.,
2020; Hong et al., 2014; Knapen et al., 2016; Korn and Bach, 2016), and when compared
with the waveform generated when regressing estimated beliefs about surprise onto
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Model ∑
V FE

∑
V FE−∑

V FEnull
Posterior

probability

Protected
exceedance
probability

M1
("Dual estimation") 5358538 49684 0.403 0.441

M2
("Precision only") 5358392 49538 0.427 0.533

M3
("Mean only") 5357825 48971 0.153 0.019

M4
("Fixed") 5357787 48933 0.011 0.004

M0
("Null") 5308854 0 0.007 0.003

Table 4.2 Model comparison strongly favoured the models in which subjects dynamically
updated their beliefs about the precision of the stimulus distribution (M1 and M2), but
do not clearly distinguish these two, thus providing no clear evidence about whether
subjects also inferred on the mean of the distribution. Model comparison was performed
using model-space averaging, as described in FitzGerald et al. (2019).

epoched data (Fig. 4.6). This suggests that our GLM-AR modelling approach was
appropriate for analysing these data, and supports its use in future studies.

In addition, we explored how closely the predictions made by the fitted models
tracked the true precision of the stimulus distributions (Fig. 4.7). Analysis using
Spearman’s rank correlation coefficient showed a strong positive correlation between
trial-by-trial precision estimated and the true task contingencies (ρ= 0.77, σ2 = 0.01),
suggesting that our cognitive model performed adequately on the task.

To test for group-level effects of the factors in the GLM, we calculated an average
of the maximum a posteriori (MAP) parameter estimates for each subject, weighted
by the posterior probability assigned to each model in that subject during the model
comparison. Inference was then performed using a permutation test in which we flipped
the signs of the parameters in a randomly selected subset of subjects 100,000 times
and used the resultant surrogate data to provide surrogate two-tailed p-values for each
variable. These were corrected for seven comparisons using a Bonferroni correction.
Clear evidence of positive dilation responses to surprise (w = 0.040, p = 0.004) and
target presentation (w = 0.538, p < 0.001) were found, as well as a negative effect of
trial order (w = −0.154, p = 0.026), suggesting a progressive decrease in the size of
dilation responses across the course of the experiment (Fig. 4.8). No statistically
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Fig. 4.5 Illustration of the accuracy of GLM-derived predictions for a single representa-
tive subject (subject two, percentage variance explained = 0.87, similar to the group
mean). Each plot shows epoched, baseline corrected and averaged waveforms for the
predicted (blue/orange) and observed (black) responses to key task conditions. (The
predictions of the AR component of the model were regressed out prior to epoching,
and these thus solely reflect how well the GLM predicts the data). The top plot (a)
illustrates probe tones in the low precision condition, the middle plot (b) illustrates
probe tones in the high precision condition, and the bottom plot (c) illustrates target
and non-target tones (across both conditions). For all waveforms there is a close
correspondence between predicted and observed data, reflecting the accuracy of the
model fits.

significant effects were observed for precision itself, log frequency, tone presentation,
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Fig. 4.6 (a) Surprise waveform estimated from our regression analysis (see Methods
for more details). Observed dilation responses to surprise (blue) peak at roughly one
second and then return to baseline. Predicted responses to surprise derived from
our GLM-AR modelling (orange) show a close correspondence to observed responses
(dashed lines indicate bootstrapped 95% confidence intervals). (b) Gamma kernels
modelling pupil dilation derived from the GLM-AR model. (Single subject responses
in grey, and the mean in black). These strongly resemble both the surprise waveform
derived in our regression analysis and averaged responses from tasks using slower
designs (for example Hong et al., 2014).

or the frequency separation between successive tones. (See Table 2 for full results).
Additionally, we tested for between-subject correlations in the regression coefficients,
using a partial correlation approach to control for non-specific differences in coefficient
magnitude. These might be caused, for example, by quality of model fit, or the
subject-specific shape of the gamma kernel. This showed no evidence for statistically
significant correlations between coefficients, and since we have no clear hypotheses
about such relationships, we do not discuss them further.



4.5 Discussion 58

Fig. 4.7 Illustration of how trial-by-trial estimates of precision (blue) track the true
precision of the distribution used to generate the non-probe tones (orange). Data is
plotted from the first 1200 trials in a single representative subject (subject two). The
tendency to underestimate precision in the high-precision blocks most likely reflects the
distorted (and lower precision) probability distributions induced by the use of probe
tones.

In line with previous work (Garrido et al., 2013), the stimulus distributions that we
used in this experiment are distorted to introduce probe tones that can be compared
across conditions (Fig. 4.2). This introduces the possibility that these tones are treated
differently by subjects, and might be responsible for driving our results. To rule this out,
we repeated the model comparison described above, using models that ignored probe
trials. Reassuringly, these results were very similar, with M1 and M2 assigned posterior
probabilities of 0.382 and 0.443 respectively, and protected exceedance probabilities of
0.370 and 0.604. This suggests that our key results were not driven by responses to
the probe tones.

4.5 Discussion

The results obtained in this study provide clear evidence that pupil dilation reflects
automatic and dynamically updated beliefs about the precision of stimulus distributions,
in keeping with theories of probabilistic cognition (Aitchison and Lengyel, 2016; Friston,
2010; Ma et al., 2006; Tenenbaum et al., 2006). This extends previous work showing
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Fig. 4.8 Ordered parameter estimates of single subject regression weights for the
Surprise regressor (wsurprise, a), Target regressor (wtarget, b), and linear drift (wdrift,
c) derived using weighted averaging (see Methods for further details). Positive pupil
dilation responses to both surprise and target presentation were highly consistent across
subjects, as was a progressive decrease in the size of responses over time.

evidence for an effect of the precision of stimulus distributions on reaction times
and MEG responses (Garrido et al., 2013), and suggests that pupillometry can be a
useful tool for examining statistical learning about higher order properties of stimulus
distributions (Alamia et al., 2019), something we will consider further in future work.
In addition, we use these data to demonstrate the potential for analysing pupillometry
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data using a GLM-AR approach, which allowed highly accurate prediction of observed
responses in our data (Figs 4.5, 4.6).

Our study complements an existing body of work using pupillometry to explore
learning and related processes (Denison et al., 2020; Ebitz and Moore, 2019; Mathôt,
2018). Perhaps the simplest manifestation of this is in the literature on pupil dilation
in response to perceptual oddballs (Friedman et al., 1973; Hong et al., 2014; Korn and
Bach, 2016; Liao et al., 2016; Murphy et al., 2011; Qiyuan et al., 1985; Steinhauer
and Zubin, 1982), but a similar approach has been adopted to explore response during
gambling and learning tasks (Hämmerer et al., 2019; Lavín et al., 2014; Preuschoff et al.,
2011), change-point detection (Nassar et al., 2012), the role of risk and learning about
transition probabilities between discrete states (Alamia et al., 2019), and responses
to volatility (Browning et al., 2015; Vincent et al., 2019), as well as surprise in other
contexts (Kloosterman et al., 2015; Knapen et al., 2016; O’Reilly et al., 2013). As such,
the principle contribution of our findings is to provide new information about the sort
of cognitive processes that are reflected in pupil dilation responses, and contribute to
the growing literature linking them specifically to statistical learning (Alamia et al.,
2019).

A key limitation of many previous studies using oddball paradigms is the conflation
of deviant and target stimuli (Hong et al., 2014; Liao et al., 2016; Murphy et al., 2014,
2011; Rajkowski et al., 1994, 2004; Steinhauer and Zubin, 1982), though see Wetzel
et al. (2016) for studies which avoid this. This conflation makes it difficult to attribute
pupil/LC effects unequivocally to surprise rather than other task-related processes. We
obviated this by making pitch irrelevant to the task, so that evoked pupil dilation could
be directly associated with stimulus probability (and, therefore, surprise). Importantly,
having pitch be task-irrelevant allowed us to explore automatic, and possibly implicit,
learning processes. This provides a complement to paradigms in which learning is
directly relevant for behaviour, and indexes what is likely to be an important form of
learning for behaviour in ecological settings.

It should be noted that a recent review (Zénon, 2019), in an attempt to give a unified
explanation to the pupil effects of a wide range of cognitive processes (e.g. mental effort,
attention, exploration/exploitation trade-off, decision making, surprise), related pupil
dilation to information gain. This is formalised as the Kullback–Leibler divergence
between prior and posterior distributions often called "Bayesian surprise" (Baldi and
Itti, 2010; Schwartenbeck et al., 2016; Zénon, 2019), as opposed to information-theoretic
("Shannon") surprise (negative log probability). Bayesian surprise has the advantage
that it quantifies the meaningful information present in a stimulus, as opposed to
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simply how unexpected it is, and it is thus a plausible candidate to play a role here.
However, our paradigm is not designed to separate these two quantities, and thus
evaluating them as competing explanations for pupil dilation responses goes beyond
the scope of our study. Similarly, given the close relationship between surprise and
dynamic beliefs about volatility (Silvetti et al., 2013), it is conceivable that the dilation
responses we observe more directly index beliefs about volatility, but this falls outside
the scope of our study to test.

A diverse set of evidence points to a tight link between pupil diameter and nora-
drenergic activity in locus coeruleus (LC). This was first observed in monkeys, with
an electrophysiological study showing that pupil diameter tracked LC tonic activity
(Rajkowski, 1993). Pharmacological evidence confirmed this finding in humans, with
LC-suppressing drugs decreasing pupil diameter and LC-stimulating drugs enhancing
it (Hou et al., 2005; Phillips et al., 2000). In addition, theoretical work (Dayan and Yu,
2006) has linked LC activity with surprise, as electrophysiological data on monkeys
seem to suggest (Rajkowski et al., 1994, 2004). Murphy and colleagues carried out an
experiment linking everything together, showing how LC BOLD activity correlates
with pupil diameter in resting state and how they respond similarly to deviant stimuli
in an oddball task (Murphy et al., 2014), supporting the already popular idea (Lavín
et al., 2014; Preuschoff et al., 2011) that surprise-related pupil dilation occurs as an
effect of phasic noradrenergic activity. Assuming that this link holds here, our study
thus makes the novel contribution that noradrenergic function, and thus the cognitive
processes it subserves (Dayan and Yu, 2006), are sensitive to dynamically updated
beliefs about stimulus precision, and may even play a role in this process.

Use of auditory oddball paradigms to index automatic statistical learning has
considerable practical attractions, not least the fact that it requires minimal subject
compliance (Boly et al., 2011). Combining this with pupillometric data collection is
attractive, as such data is relatively simple and cheap to collect, particularly when
compared with neuroimaging modalities such as MEG and fMRI. The general approach
here thus has potential for exploring cognitive changes related to statistical learning in
patient groups (Browning et al., 2015), as well as during healthy ageing (Hämmerer
et al., 2019).

The GLM-AR approach that we adopt here, though originally motivated by the
strong similarities between pupillometry and fMRI data (Penny et al., 2003), relates
closely to a number of existing approaches. The use of a convolution kernel for
analysing pupillometric data was first proposed by (Hoeks and Levelt, 1993), and
similar approaches have been adopted by various authors subsequently (de Gee et al.,
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2014; Denison et al., 2020; Knapen et al., 2016; Korn and Bach, 2016; Vincent et al.,
2019; Wierda et al., 2012). We note though that many of these studies make use of
a canonical pupil response, which is likely to be suboptimal, given the evidence for
individual variability (Denison et al., 2020). However, such approaches do not account
for the strong slow fluctuations in pupil diameter (Zénon, 2017). Typically, the effects
of these fluctuations are mitigated via epoching, baseline-correction, and averaging,
but this requires many repetitions of a particular trial type, which makes it difficult to
capture phenomena such as learning (as we do here). We address this issue through
use of an AR model, as has been proposed recently (Alamia et al., 2019; Zénon, 2017).
However, to our knowledge the GLM-AR approach we propose is the first to combine
the advantages of both individually tailored convolution kernels and AR modelling. A
rigorous assessment of the significance of this is beyond the scope of this study, but we
will explore it in future work.

A further, (and critical for our purposes), aspect of the GLM-AR approach that we
use is that it allows us to fit the parameters of behavioural models to pupillometric
responses, an approach more typically confined to analysis of behavioural data (Daw
et al., 2011; O’Doherty et al., 2007; Schwartenbeck et al., 2015; Smittenaar et al., 2013).
This "doubly model-based" aspect is important, as it allows us to use model comparison
to establish which behavioural models best account for pupillometric data (for example,
one might use it to compare different models of learning). In addition, it permits,
in principle, the characterisation of between-subject variability in processes such as
learning and inference, which may be of particular interest for understanding pathology
(Browning et al., 2015; Huys et al., 2016; Krystal et al., 2017; Montague et al., 2012).
However, the extent to which applying the GLM-AR approach to pupillometric data
in practice permits such inferences is unclear, and future work will be necessary to
establish this.

In sum, at a cognitive level, our work represents a contribution both to under-
standing task-irrelevant human statistical learning processes, and to characterising the
computational mechanisms underlying pupil dilation responses to surprising stimuli.
In addition, we believe that the GLM-AR approach that we propose has considerable
potential for increasing the accuracy and flexibility of pupillometry data analysis,
something we will explore in future work.



Chapter 5

Physiological responses to
surprising stimuli violate classical
predictive coding

5.1 Abstract

Predictive coding is perhaps the most-widely held account of probabilistic inference
in the brain, and provides a powerful and elegant framework for explaining a range
of experimental data. A core and obligatory feature of predictive coding is the use
of Gaussian probability distributions, which makes the strong (if counterintuitive)
prediction that the brain will encode all variables using Gaussians, even when the true
distributions are radically non-Gaussian. We explored this prediction using a variant of
the classic auditory oddball task, in which tones were drawn from a bimodal probability
distribution. Strikingly, we found clear evidence that subjects treated the distribution
of tones as being bimodal, in violation of classical predictive coding theories. Our
findings thus suggest a need to augment existing predictive coding models, or else
replace them with a more flexible scheme.

5.2 Introduction

In the rich landscape of probabilistic theories of brain function, predictive coding (PC)
is perhaps the most popular, and has provided an elegant framework for explaining a
range of perceptual (Denison et al., 2011; Hohwy et al., 2008; Watanabe et al., 2018),
cognitive (Seth, 2013; Seth et al., 2012) and neural (Auksztulewicz and Friston, 2016;
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Garrido et al., 2008; Kok et al., 2012) phenomena. According to this framework (Clark,
2013; Friston, 2005), the brain is constantly trying to anticipate the incoming bottom-up
sensory signal via top-down predictions, effectively "explaining away" incoming sensory
information. The discrepancy between top-down predictions and bottom-up inputs,
called prediction error, is the only portion of the sensory signal that gets retained for
further processing. This implies a hierarchical organisation of information processing in
the brain, with each level of the hierarchy receiving bottom-up prediction errors from
the level below and top-down predictions from the level above. The general purpose of
the brain in this context is that of making top-down predictions and incoming sensory
signals match, or, in other words, minimising prediction error (Friston, 2005).

In practice, to generate predictions the brain must have a model of its environment
which specifies how sensory observations are generated. This takes the name of
generative model. It can be shown (see Chapter 1, Friston (2005); Mathys et al. (2011))
that Bayesian model inversion through variational inference (Bishop, 2006) does result
in prediction error minimisation if the generative model is Gaussian. Here we call
inference the estimation of time-varying hidden states (i.e. latent variables causing
sensory observations) through model inversion, and learning the update of model
parameters, which in a PC setting are limited to the mean of the Gaussian priors over
hidden states (updating beliefs about precision through prediction error minimisation
is trickier, see Chapter 4).

One could thus see inference as reducing prediction error in the short term by
optimising beliefs about hidden states and learning as reducing it in the long term, by
putting oneself in the condition of making better predictions in the future.

This Gaussian formulation constitutes a foundational principle of PC, providing
an elegant mathematical framework which can be used to build neurobiologically
plausible models of cortical function (Bastos et al., 2012). However, it also constitute
a significant constraint, as it predicts the brain to encode any continuous variable as a
Gaussian distribution, even when that’s not the case (see Chapter 1 for a mathematical
demonstration of this).

In this work we test this somewhat counterintuitive prediction with two experiments.
Experiment 1 builds on our previous work (see Chapter 4 and Silvestrin et al. (2021)),
using pupil dilation as an index of surprise (as discussed more in depth in Chapter 4)
in a modified version of the classic auditory oddball paradigm (Bodatsch et al., 2011;
Weber et al., 2020). Here participants were presented with a series of tones whose
log frequency was drawn from a bimodal probability distribution (a mixture of two
Gaussians). We chose a bimodal distribution so that a Gaussian encoding would yield
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very contrasting predictions, as a unimodal approximation would "miss" both peaks of
the real distribution (see Fig. 5.1). In Experiment 2 we repeated Experiment 1 with
exactly the same procedure and stimuli, but using EEG instead of pupillometry. Our
component of interest here was Mismatch Negativity (MMN), a largely documented
event-related potential (ERP) with higher negativity for surprising events compared to
unsurprising ones (Garrido et al., 2008, 2009b; Lee et al., 2017; Schwartz et al., 2018).
As pupil dilation, MMN amplitude was used as an index of surprise.

In both experiments the distributions were slightly distorted (see Fig. 5.2 for an
illustration of such distortion) by the addition of probe tones (which we call Probe
1, 2 3 and 4), which we used for a model-free analysis, as in Garrido et al. (2013)
and Silvestrin et al. (2021) (i.e. the experiment described in Chapter 4). The probe
tones were chosen so that unimodal and bimodal encoding of the stimuli would result
in opposite predictions, with two (Probe 1 and 3) at the peaks of the (real) bimodal
distribution (which we call standard probes, one (Probe 2) in between the two peaks
and one (Probe 4) in a low-probability area higher than the second peak deviant probes.
With this setup, classical PC would predict Probe 2 to be the least surprising, as
it would be at the peak of a unimodal (mis)representation. We predicted that both
pupillometry and EEG would violate classical PC, with deviant probes (Probe 2 and 4)
eleciting bigger surprise (indexed by pupil dilation and MMN) than standard probes
(Probe 1 and 3).

In addition to this model-free analysis we also carried out a model-based one,
directly comparing comparing competing generative models (i.e. unimodal Gaussian
vs multimodal mixture of Gaussians).

5.3 Methods

5.3.1 Participants

20 participants (15 females) aged 18 to 29 (mean = 20.9) took part in Experiment 1
and 25 participants (19 females) aged 18 to 44 (mean = 22.0) took part in Experiment
2. They had all normal or corrected-to-normal vision, with no history of neurological
or psychiatric disorder (including substance abuse) nor hearing problems. Written
informed consent was obtained from all participants.
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Fig. 5.1 (a) Illustration of the experimental paradigm. Participants were exposed to a
series of tones (800 per session, 3200 in total) and were asked to press the space bar
when they heard the sound coming only from one speaker (i.e. only from one side). (b)
The pitch of the tones was sampled from a bimodal distribution (red), which, according
to predictive coding, the brain would misrepresent as a unimodal Gaussian. In line
with previous work (Garrido et al., 2013; Silvestrin et al., 2021) 4 probe tones were
added. The two distributions illustrate the different probabilities associated with each
probe under the assumption of a unimodal or bimodal generative distribution, yielding
very different predictions. If participants represented the distribution as unimodal,
Probe 2 would be the least surprising, as it is exactly at the peak of the distribution.
Conversely, a bimodal encoding of the stimuli would cause Probe 2 to be much more
surprising than Probes 1 and 3.
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5.3.2 Materials

Both experiments were programmed with the MatLab package Psychophysics Toolbox
(Brainard and Vision, 1997). Pupillometry data for Experiment 1 were collected with
an EyeLink 1000 eye-tracking device, whilst EEG data for Experiment 2 were collected
with a 64 electrodes BrainProduct actiCAP EEG device.

Fig. 5.2 Binning the distributions reveals the slight distortion caused by the addition
of the probe tones. The binning was made so that all probe tones would fall exactly in
the centre of a bin.

5.3.3 Task

The task and stimuli were identical in Experiments 1 and 2. Participants were asked
to listen to a series of tones through headphones while looking at a fixation cross in
the centre of a computer screen. The only thing required of them was to press the
space bar whenever a tone was presented unilaterally (i.e. from only one of the two
speakers, see Fig. 5.1).

Both experiments were divided into 4 sessions, with participants being allowed to a
short break in between. During each session participants were presented with 800 pure
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tones, each lasting 50 ms and with one second between tones, for a total duration of
14 minutes per session. Both experiments lasted approximately one hour.

In all sessions, the log frequency of the tones was sampled from a mixture of
Gaussians with two modes (i.e.bimodal distribution). Therefore for each of the 4
sessions, 400 tones were sampled from one of two Gaussian distributions and then
randomly shuffled together. The first Gaussian had mean µ1 = 4.99 (equivalent to 147
Hz) and the second had mean µ2 = 7.44 (equivalent to 1703 Hz). Both had standard
deviations of σ = 0.3 (equivalent to 0.3 octaves). 112 of these tones were then pseudo-
randomly replaced with the 4 types of probe tones (Probe 1, 2 3 and 4; 147 Hz, 500
Hz, 1703 Hz and 5797 Hz respectively, each 1.225 octaves apart from the next). Each
session therefore contained 688 tones sampled from the bimodal distribution and 28
probe tones for each probe type, for a total of 800. The distribution was thus slightly
distorted by 4 point-masses of 3.5% probability each.

The number of unilateral, target tones varied across sessions (78, 79, 79, and 77
respectively). These were pseudo-randomly inserted in the stream, and were made
to never coincide with a probe, or occur immediately after it This was done because
targets are very likely to elicit a strong, long lasting pupil response, which would
confound the effect of surprise in Experiment 1.

5.3.4 Data acquisition and preprocessing

5.3.4.1 Experiment 1

Pupil data from both eyes were recorded at 500 Hz while participants performed the
task in a moderately lit room.

Saccades and eyeblinks artifacts were removed by linear interpolation and a low
pass filter of 20 Hz was applied to eliminate high frequency noise. The average pupil
size between the two eyes was considered for all subsequent analyses. For the model-
based analysis (but not for the probe tones analysis) data were additionally detrended,
downsampled to 50 Hz, mean-corrected and normalised to unit variance, to have more
comparable responses across subjects.

5.3.4.2 Experiment 2

EEG electrodes organised according to standard 64-channel-Arrangement, with FT9
used as a horizontal electro-oculogram (hEOG) to monitor eye movement and eyeblinks
and FT10 as Iz. EEG signal was recorded with a sampling rate og 1000 Hz after
ensuring all electrode impedances were under 25 kΩ.
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EEG data were preprocessed with the Fieldtrip MatLab toolbox (Oostenveld et al.,
2011). A 0.1 Hz high-pass filter was applied, and and data were re-referenced to
the overall average. Data were then epoched from 50 ms before to 1050 ms after
stimulus onset, and these epochs were visually inspected to identify bad channels,
which (where present) were interpolated, and bad trials, which were discarded. After
this, fast Independent Component Analysis (fastICA) was performed, and the resulting
components were inspected to discard eyeblinks, eye movement, mechanical noise and
high-frequency noise. Finally, data were downsampled to 256 Hz, baseline corrected
(using a 50 ms pre-stimulus window) and 30 Hz low-pass filter was applied.

5.3.5 Data analysis

5.3.5.1 Experiment 1

Probe tones analysis As in the previous chapter, we first adopted a model-free
approach to analyse pupil response to probe tones only. All data points between 900
and 1000 ms were averaged to capture the evoked response’s peak (Hoeks and Levelt,
1993) and a one-way repeated measures ANOVA was carried out with probe type as
the only 4-level within-subjects factor.

Model-based analysis To compare the competing generative models (underlying
unimodal and multimodal representations) we deployed the same methods described in
the previous chapter, with a General Linear Model incorporating a convolution kernel
and an autoregression (AR) component. This GLM-AR model is described in detail in
Chapter 4 and in Silvestrin et al. (2021).

However, unlike in Chapter 4, here we make use of static distributions. This means
our models do not incorporate learning (i.e. generative model update), but rather
assume that the distributions’ statistics are known in advance. We thus treated such
statistics as model parameters and we fitted them to individual data. We reasoned that,
as stimuli are drawn from the same distribution for all 3200 trials, significant belief
update would arguably occur only at the beginning. Therefore, there would be very
little to be gained from incorporating learning into our models, and considerable added
complexity. We thus deemed a simple comparison of competing (static) generative
models sufficient to test our main hypothesis, namely that human participants are
capable of representing multimodal distributions, in contrast with classical PC.

As in Chapter 4 (where this is explained in more detail), we fitted these models
using Variational Laplace (Daunizeau, 2017; Friston et al., 2007), and used the resulting
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variational free energy to perform model comparison through model-space averaging
(FitzGerald et al., 2019).

Cognitive Modelling To model both unimodal and multimodal distributions,
we use a Gaussian mixture model (GMM, for a fuller discussion see Bishop (2006)).
To do so, we introduce a set of latent variables C = {c1,c2, ...,cI} where each ci is a
1-of-I binary vector indicating which Gaussian observation yi is drawn from. Thus the
number of modes of the distribution corresponds to I, giving a unimodal distribution,
which we take to correspond to PC, when I = 1. Assuming (in this case accurately)
that there is no temporal structure to C, the conditional distribution over ci is given
by

p(ci | π) =
N∏

n=1
π

ci,n
n (5.1)

where π denotes the mixing coefficients (how likely it is for a randomly-selected sample
to be drawn from each Gaussian).

The conditional distribution of observations is given by:

p(yi | ci,m,λ) =
N∏

n=1
N (yi |mn,λ

−1
n )ci,n (5.2)

Note that here the estimated sufficient statistics of the stimuli distribution (m, λ and
π), contrary to the previous chapter, are not trial-specific (the distribution is assumed
to be static), and therefore have no temporal index.

For our analysis we considered 4 different Gaussian mixture models, differing only
in the number of components (1, 2, 3 and 4, which we call M1, M2, M3 and M4).

5.3.5.2 Experiment 2

Probe tones analysis As for pupillometry data, we analysed electrophysiological
responses to probe tones with a repeated-measures ANOVA with a single 4-level within
subjects factor (probe type). To deal with multiple comparisons, we adopted a cluster-
based non-parametric approach, as described in Maris and Oostenveld (2007). The
evoked response of interest here was the mismatch negativity (MMN), which in similar
auditory oddball paradigms (Garrido et al., 2013; Näätänen et al., 2004) has been
shown to peak at around 150 ms from stimulus onset. We therefore restricted our
analysis to electrophysiological activity ranging from 100 ms to 200 ms from stimulus
onset.
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5.4 Results

5.4.1 Pupillometry

5.4.1.1 Probe tones analysis

Fig. 5.3 Boxplot summarising the results of the model-free analysis. Greater pupil
dilation was observed for deviant compared with standard probes, with Probe 2 eliciting
more dilation than both Probe 1 (t(19) = 2.56, p= 0.010) and 3(t(19) = 2.01, p= 0.029)
and Probe 4 similarly eliciting more dilation than Probe 1 (t(19) = 2.23, p = 0.019)
and 3 (t(19) = 1.89, p= 0.037). These results suggest participants did learn that the
frequencies of the tones were bimodally distributed.
Data points between 900ms and 1000ms from stimulus onset were averaged for this
analysis. Data are displayed using a Tukey boxplot, with points outside the whisker
ranges additionally plotted.

The one-way repeated measures ANOVA we carried out on the data averaged from
900 to 1000 ms after stimulus onset revealed a significant main effect of probe type
(F(3,57) = 3.54, p = 0.020). As we were specifically predicting the deviant probes
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(Probe 2 and 4) to elicit a bigger pupil dilation than the standard ones (Probe 1 and
3) we carried out additional one-tailed paired-samples t tests, which revealed Probe
2 (µ = 7.9× 10−3, σ2 = 0.08× 10−3) to elicit a bigger pupil response than Probe 1
(µ = −2.7× 10−3, σ2 = 0.22× 10−3, t(19) = 2.56, p = 0.010) and 3 (µ = 1.3× 10−3,
σ2 = 0.20× 10−3, t(19) = 2.01, p = 0.029). Similarly, Probe 4 (µ = 9.7× 10−3, σ2 =
0.36×10−3) elicited a stronger response when compared with Probe 1 (µ=−2.7×10−3,
σ2 = 0.22× 10−3, t(19) = 2.23, p = 0.019) and 3 (µ = 1.3× 10−3, σ2 = 0.20× 10−3,
t(19) = 1.89, p= 0.037), just as predicted. We further contrasted all the deviant probes
(Probe 2 and Probe 4, µ= 8.8×10−3, σ2 = 0.11×10−3) with all the standard probes
(Probe 1 and Probe 3, µ=−0.7×10−3, σ2 = 0.14×10−3), and found a significantly
greater pupil dilation in the former (t(19) = 2.87, p = 0.005). These results are
illustrated in Fig. 5.3.

5.4.1.2 Model-based analysis

Model comparison was performed using model-space averaging (FitzGerald et al., 2019),
which strongly favoured M4 (i.e. the mixture of Gaussian with 4 components, see Table
5.1). This suggests that the distribution distortion caused by the probe tones (see Fig.
5.2) ended up leading participants to estimate two extra components, corresponding
to Probe 2 and Probe 4. Nevertheless, this results clearly indicate that participants
managed to form multimodal probabilistic representations of the stimuli, in contrast
with classical PC’s predictions.

As in Chapter 4, we tested for group-level effects of the GLM predictors with a
permutation test by flipping the signs of the maximum a posteriori parameter estimates
in a random subset of participants 100000 times and using the resultant surrogate
data to provide surrogate two-tailed p-values for each variable (on which we applied
a Bonferroni correction for multiple comparisons). We found a significant effect of
surprise, drift (i.e. progressive decrease in dilation over time) and target (i.e. the
stimulus being a target), replicating the findings described in Chapter 4 (see table 5.2
for details).
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Model ∑
V FE

∑
V FE−∑

V FEM1
Posterior

probability

Protected
exceedance
probability

M1
(Unimodal
Gaussian)

6857610 0 0.0515 0.0118

M2
(GMM with

2 components)
6858000 390 0.1939 0.0254

M3
(GMM with

3 components)
6858191 581 0.1956 0.0261

M4
(GMM with

4 components)
6858296 686 0.5589 0.9368

Table 5.1 In Experiment 1, model comparison strongly favoured the Gaussian mixture
model (GMM) with 4 components, suggesting participants represented a distributions
with 4 modes, violating classical PC. Model comparison was performed using model-
space averaging, as described in FitzGerald et al. (2019).

5.4.2 EEG

5.4.2.1 Probe tones analysis

For this analysis we specified a design matrix as such

X =


1 −1 0 0
0 −1 1 0
1 0 0 −1
0 0 1 −1

 (5.3)

with the four columns representing Probe 1, Probe 2, Probe 3 and Probe 4 respectively.
We were thus contrasting all standard probes to all deviant probes. As we had a
clear hypothesis (i.e. observing greater negativity in odd probes compared to standard
probes, in accordance with the MMN and auditory oddball literature) all our tests
were one-tailed.

The cluster permutation analysis testing for a MMN in the interval between 100 ms
and 200 ms from stimulus onset revealed a positive effect (p= 0.002), particularly on
fronto-central electrodes, as expected. We then investigated the single contrasts with
the same cluster-based permutation approach, which revealed a greater negativity in
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response to Probe 2 than Probe 1 (p= 0.018) and in response to Probe 4 than Probe 1
(p= 0.012) and Probe 3 (p= 0.017), suggesting that participants found Probe 2 to be
more surprising than Probes 1 and 3, in line with our hypothesis and in contrast with
classical PC. On the other end, contrary to our hypothesis, no significant difference
was found between Probe 2 and Probe 3, although a nonsignificant negative cluster
was identified by the analysis (p = 0.177). We also tested for a difference between
all standard (Probe 1 and Probe 3) and all deviant probes (Probe 2 and Probe 4)
and found greater negativity in deviant probes compared to standard (p = 0.002),
suggesting, as expected, that deviant probes elicited greater surprise compared to
standard ones. All these differences (both significant and non-significant) were stronger
at fronto-central electrodes at around 150 ms from stimulus onset (see Fig. 5.4 for
a scalp topography representation and Fig. 5.5 for a time-series representation), in
accordance with the MMN literature (Garrido et al., 2009b; Näätänen et al., 2004).

5.5 Discussion

Taken together, the results of our model-free analyses suggest that participants were
more surprised by (and thus assigned a lower probability to) deviant probes, which
in turn suggests they managed to learn the real (bimodal) distribution of the stimuli,
violating classical PC. This was clearer in Experiment 1, in which all the contrasts
of interest resulted significant, then in Experiment 2, where the contrast between
Probe 3 and Probe 2 did not reach significance. However, the analysis still revealed a
nonsignificant MMN effect, which, taken together with the other (significant) contrasts,
still supports the hypothesis of a bimodal stimulus encoding over a unimodal one.
Taken together, the model-free analyses support our hypothesis, but the evidence
is not terribly robust, as evidence by borderline (Experiment 1) or non-significant
(Experiment 2) p-values.

Our model-based analysis provides an explanation for this. Model comparison
strongly favoured a mixture of Gaussians over a unimodal Gaussian, but, somewhat
surprisingly, the winning model was not the Gaussian mixture model with 2 components,
as we expected, but the one with 4. This is almost certainly a result of the addition of
the probe tones, which distorted the distribution by adding four point-masses, which
participants represented as two additional components. This likely contributed to
weaken the result of the model-free analysis in both experiments, as Probe 2 and Probe
4 were probably represented as the peak of two (smaller) Gaussian components. Despite
this unexpected turn of events, our model-based analysis provides strong evidence of
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the fact that our participants were capable of representing multimodal distributions,
in violation with classical PC.

Whilst discussions about the precise neuronal inference scheme (or schemes) used
in the brain may seem arcane, they have profound implications for understanding
both human cognitive capacities and neurobiology. PC is perhaps the best worked-out
probabilistic framework in neurobiological terms, and several aspects of these proposals
have been highly influential.

Firstly, PC models based on prediction error minimisation have been applied to
cortical computation (Bastos et al., 2012), providing an interpretation of cortical layers
dynamics within and between cortical columns. These models do not account for non-
normally distributed variables, which are inevitably misrepresented as Gaussians. Our
results provide preliminary evidence that this is not the case in practice, suggesting these
models should be augmented to better capture more complex (in our case multimodal)
feature distributions.

Second, a core feature of theories based on PC is the central role placed on the
encoding of precision (or inverse variance), and its putative signalling by the classical
neuromodulators (Lawson et al., 2014; Moran et al., 2013) and other mechanisms (Bastos
et al., 2012; Hovsepyan et al., 2020; van Pelt et al., 2016). In particular, abnormalities in
precision have been used to provide elegant explanations for a range of psychopathology
(Adams et al., 2013; Kube et al., 2020; Van de Cruys et al., 2014). From the perspective
of classical PC this emphasis on precision makes a great deal of sense. Precision, and in
particular the relative precision of different quantities within a model, is of fundamental
importance within predictive coding, and is encoded multiplicatively (the role one
would expect to be played by a neuromodulator). In addition, for Gaussian probability
distributions, precision and entropy are monotonically related to one another, making
precision encoding an ideal way of quantifying uncertainty. However, if the elegant
structures placed upon neuronal function by classical PC are removed, it is less clear
that precision signalling will play a key role in explaining cognitive processes and their
dysfunction. In the first place, depending upon how neuronal inference is believed to
occur, direct encoding of precision may play little or no role in the brain’s inferential
machinery (Aitchison and Lengyel, 2016). Moreover, for multimodal distributions
like those considered here, precision and entropy are no longer monotonically related,
and precision itself is much less useful as a way of quantifying uncertainty (to see
this, compare the distributions in Fig. 5.1). This second observation leads to a clear
experimental prediction – that where entropy and precision can be clearly dissociated,
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neural encoding of uncertainty will largely reflect the former quantity. We intend to
test this prediction in future work.
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Parameter Prior mean
(variance)

Group-level posterior
(variance)

p-value
(corrected)

ln(h) 1.6(0.5) 1.51(0.080) -

ln(l) 1.6(0.5) 1.54(0.210) -

ln(d) −3(4) −3.87(4.064) -

a 1(0.1) 1.00(< 0.001) -

wevent 0(2) 0.22(0.111) 0.004

wsurprise 0(2) 0.02(0.004) 0.006

wpitch 0(2) 0.01(< 0.001) 0.961

wtarget 0(2) 0.47(0.134) < 0.001

wdrift 0(2) −0.22(0.046) < 0.001

m1 ln(500)(4) 4.76(0.054) -

m2 ln(500)(4) 5.74(0.274) -

m3 ln(500)(4) 6.89(0.209) -

m4 ln(500)(4) 8.05(0.237) -

ln(λ1) ln(5)(4) 2.35(1.100) -

ln(λ2) ln(5)(4) 2.42(1.453) -

ln(λ3) ln(5)(4) 2.68(0.678) -

ln(λ4) ln(5)(4) 1.63(1.030) -

ln(π2)− ln(π1) 0(4) −0.16(0.886) -

ln(π3)− ln(π1) 0(4) 0.09(0.677) -

ln(π4)− ln(π1) 0(4) −0.11(0.291) -

Table 5.2 Summary statistics of the prior and group-level posterior distributions over
each parameter (Experiment 1). Parameters were transformed where appropriate to
enable use of a Gaussian prior distribution, as required by the Variational Laplace
algorithm (ln indicates the natural logarithm). Non-parametric p-values calculated
using permutation testing, Bonferroni-corrected for five comparisons. These provide
clear evidence that both surprise and target presentation were consistently associated
with pupil dilation, and for a progressive decrease ("drift") in dilation responses over
the session.
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Fig. 5.4 This figure illustrates the scalp topography in various contrasts with the
colour indicating the average electric potential difference (in µV) within the time
window considered. Asterisks indicate electrodes that were in a significant cluster
for at least half of the timepoints included within that particular time window (time
windows including such electrodes are highlighted with a red rectangle). The significant
negativities in fronto-central electrodes suggest a MMN effect.
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Fig. 5.5 This figure represents the ERP as a time series, contrasting responses from
standard and deviant probes on the left and all 4 individual probes on the right. These
are average responses across all relevant trials and across all the electrodes that were
part of the cluster that reached statistical significance in the cluster-based permutation
analysis contrasting the standard and deviant probe trials (see Fig. 5.4).



Chapter 6

Effects of retrospective inference on
structure learning: a simulation
study

6.1 Abstract

The ability to flexibly learn the structure of one’s surroundings (structure learning) is
crucial for adaptive behaviour. Use of an inaccurate model of the environment can
lead to incorrect inferences, and thus maladaptive actions. Despite this, relatively
little is understood about how structure learning occurs in human cognition. As a
first step towards addressing this, we built on existing approaches to create an online
clustering algorithm, in which we included a working memory component, allowing
belief update about past stimuli (retrospective inference) in contrast with the more
widespread fully online approach. We used this model to simulate behaviour on a novel
structure learning task, where optimal performance required estimating the number
and properties of discrete clusters of continuous stimuli. In this work we show how our
algorithm outperforms a parametric one (i.e. with fixed number of clusters). We further
demonstrate how retrospective inference benefits structure learning, with performance
increasing with working memory capacity. We finally discuss trial-by trial measures
that can be derived from our model, which provide testable predictions for future
empirical studies.
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6.2 Introduction

6.2.1 Structure Learning

Animals and humans live in diverse and complex environments, which they must
navigate and act upon in order to survive. Certain behaviours might be advantageous
in some situations and dangerous in others, making internal models of one’s surrounding
crucial for action selection. As more experience is gathered these models are updated
(i.e. the individual learns) and action selection gets closer to optimal.

This idea has been formalised in probabilistic accounts of brain functions (Gershman
and Beck, 2017; Knill and Pouget, 2004), according to which the brain does not
have direct access to the states of the environment, but must infer them from the
perturbations they cause in its activity. The brain is thus seen as an inference machine,
combining prior knowledge with (noisy) sensory evidence to estimate the environment’s
(hidden) states. Formally, prior knowledge takes the form of a generative model, which
specifies how the world’s hidden states generate sensory observations. To infer the value
of (time-varying) hidden states and update the generative model’s (time-invariant)
parameters the brain must use sensory evidence to perform Bayesian model inversion,
which takes different forms depending on the specific theoretical framework.

There is a growing body of work investigating inference and learning as Bayesian
model inversion in humans (De Berker et al., 2016; Diaconescu et al., 2017; FitzGerald
et al., 2017; Mathys et al., 2011; Silvestrin et al., 2021). However, in all this work
strong assumptions are made about the generative model. In particular, while the
computational models allow parameters to be updated, the mathematical form (or
structure) of these models is assumed to be known by the participants. This is unlikely
to always be the case for human agents in real-world situations, where the underlying
structure of the task at hand might need to be learned from scratch. We call the
acquisition of such structure as a result of experience structure learning (Braun et al.,
2010; Tenenbaum et al., 2011).

Structure learning is a general term that can be applied to many, more specific
cognitive processes. One of these is representation or feature learning, consisting in
reducing highly dimensional observations to a more contained number of useful and
meaningful features (Austerweil and Griffiths, 2008; Wu et al., 2021). Another is
causal learning, consisting in learning about the causal structure of a set of events and
the strength of causal relationships (Gershman et al., 2017; Griffiths and Tenenbaum,
2005; Tenenbaum and Griffiths, 2001). Related to these is concept learning, or the
acquisition of abstract categories and features (Lake et al., 2015; Smith et al., 2020)
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and the relationship between these (Constantinescu et al., 2016; Mark et al., 2020;
Whittington et al., 2020).

In this Chapter we focus on clustering, defined as unsupervised (i.e. in absence of
feedback) categorisation of observations or events. For this to be a structure learning
problem, the number of categories (clusters) is not known in advance, and the individual
must therefore not only learn the characteristics of the clusters (i.e. its parameters),
but also their number. In other words, the range of possible (discrete) values hidden
states (which here represent cluster membership) can take must be learned. Therefore
the number of components of the generative model, and thus its structure, is unknown,
and when encountering a stimulus an agent must always consider the possibility of it
belonging to a completely new cluster, effectively growing (i.e. adding a component)
the generative model.

In a naturalistic setting this can happen in a variety of situations. For instance, in
an unexplored environment an individual might encounter new species of animals or
plants, and clustering them would be crucial to make generalisations about their most
salient characteristics.

Past work on clustering focused mostly on giving new interpretations to known
empirical phenomena (Gershman et al., 2010; Gershman and Niv, 2012; Gershman
et al., 2017) and for investigating transfer learning (Collins and Frank, 2013, 2016;
Franklin and Frank, 2018), mostly using stimuli with a discrete number of possible
values. Apart from some notable exceptions (Collins and Frank, 2013, 2016; Davis
et al., 2012), these studies were not concerned with fitting trial-by-trial participant
data to online models, limiting the investigation of the learning process itself.

Here we build a modelling and experimental framework aimed at studying trial-by
trial structure learning (in the form of clustering). Specifically we present a clustering
task and a clustering model to simulate the behaviour of an artificial agent. The
model contains a working memory component which we use to illustrate the benefits
of retrospective inference fro structure learning (see next section). The model provides
trial-by-trial behavioural outputs, so it could be fit to behavioural data of participants
performing the task.

Specifically, we use mushrooms as an example, as when picking which ones to eat a
certain knowledge of the different species is essential to select the edible ones and avoid
the poisonous ones. One must thus group similar mushrooms into clusters in order to
be able to generalise information about a single mushroom to all other mushrooms of
the same species. If a porcino is delicious, all porcini will be.
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The fact that the total number of clusters (mushroom species) is not known makes
the task considerably more challenging. On one extreme, one might form a separate
cluster for each individual mushroom they encounter (overfitting), leading to a loss
of generalisation (the fact that one mushroom is tasty/poisonous says nothing about
other individual mushrooms). On the other, one might cluster together all mushrooms
(underfitting), leading to over-generalisation (if one mushroom is tasty/poisonous, then
all mushrooms are tasty/poisonous). It is therefore crucial for embodied agents to be
equipped with a cognitive apparatus that allows them to learn the most convenient
model structure.

6.2.2 Retrospective Inference

In absence of feedback, one will never be completely certain of having assigned an item
to the right cluster. In our mushrooms example, this is especially true for inexperienced
individuals, who do not have a clear idea of how many mushrooms species they might
encounter nor of the characteristics of the various species. Some mushrooms might
very easily be misclassified, which would result in distorted representations, as cluster
parameters would be updated with irrelevant data. Too many clusters might be formed,
resulting in overfitting, or too few, resulting in underfitting. A memoryless approach
(i.e. updating the generative model and forgetting individual stimuli) might therefore
come at a cost for structure learning. At the other extreme, holding in memory every
single mushroom one has ever seen allows to continuously rethink cluster membership,
resulting in optimal inference and learning, but it quickly becomes cognitively infeasible
as the number of encountered mushrooms increases.

As a reasonable compromise, one might hold in working memory a finite amount of
stimuli, and re-evaluate them in light of new information, making cluster assignment
and, as a consequence, structure learning, more accurate. This has been formalised
(FitzGerald et al., 2020) as Finite Retrospective Inference (FRI), an online modelling
approach which allows agents a certain working memory capacity, which they use to
re-perform inference on the most recent hidden states (cluster membership in our case)
using new evidence. This can be thought of as a sliding cognitive window containing
the last a encountered mushrooms (with a being the maximum amount of stimuli one
can or is willing to hold in working memory), with only the oldest item yi−a+1 being
used for updating the model’s parameters at each trial. After the update, this item
is "forgotten", disappearing from memory and effectively "making room" for a new
stimulus. The clear advantage of this approach is that hidden states of a stimulus yi

(in our case cluster responsibilities ri) are evaluated for the last and definitive time
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at trial i+a−1, thus having more information at one’s disposal (see Fig. 6.1) and
subsequently making inference and learning more accurate (FitzGerald et al., 2020).

Fig. 6.1 Schematic representation of filtering, fixed-lag smoothing and fixed-interval
smoothing. In the filtering model (top) cluster responsibilities for a stimulus yi are
evaluated using only information coming from y1:i. In fixed-lag smoothing (middle)
the algorithm keeps updating cluster responsibilities of stimulus yi until it slides out of
its cognitive window, meaning final responsibilities are evaluated taking into account
y1:i+a−1. Finally, in fixed-interval smoothing the algorithm remembers all data points
individually, and updates their cluster responsibilities (including e.g. for yi) until it
sees the last stimulus yI , therefore using the whole dataset y1:I .

In this paper we describe a novel computational model of clustering which we hope
to deploy in empirical settings in the future. We utilise a non-parametric approach
(Gershman and Blei, 2012) for priors about cluster membership and incorporate FRI.
We then perform simulations on a novel task to illustrate the importance of learning
the generative model’s structure, as well as the benefits of FRI. We finally describe
a few useful trial-by-trial metrics that can be derived from our model, which provide
testable predictions for empirical investigations. What follows is a formal description
of our algorithm.
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6.3 Methods

6.3.1 Modelling

The algorithm we describe here is an online non-parametric adaptation of the mean-
field Variational Mixture of Gaussians describerd in Bishop (2006) incorporating
retrospective inference on a fixed-length window. We compare its behaviour to a simpler
filtering model (i.e. fully online, without retrospective inference) and a parametric
equivalent (i.e. with a fixed number of clusters).

Note that the choice of mean-field Variational Inference is not intended to imply
a claim about the specific computations the brain would perform in an analogous
situation. We used a variational algorithm for the sake of continuity with the rest of
the work presented in this thesis, but similar results could be obtained with different
approaches, such as sampling methods (Mackay, 1998) or expectation propagation
(Minka, 2013).

6.3.1.1 Generative model

Our model assumes each stimulus is sampled from one of several clusters with Gaussian
form, but remains agnostic about the number of possible clusters. In other words, the
generative model is a mixture of Gaussians with an unknown number of components.
In our simulation the stimuli are univariate, but here we describe the multivariate
generalization of our algorithm.

In Gaussian mixture models (GMM) the likelihood function of any stimulus y is

p(y) =
N∑

n=1
πnN (y |mn,Λ−1

n ) (6.1)

with N being the (unknown) total number of clusters, π the mixture components, m
the means and Λ the precision matrices.

We now introduce a new set of binary variables C = {c1, ...,cI}. These represent
the time-varying hidden state (cluster membership) that must be inferred. Its value
must satisfy ci,n ∈ {0,1} and ∑N

n=1 ci,n = 1 and its probability distribution is specified
as:

p(c | π) =
I∏

i=1

N∏
n=1

π
ci,n
n (6.2)

with I being the total number of trials.
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We can now write the conditional distribution of y as

p(y | c,m,Λ) =
I∏

i=1

N∏
n=1
N (yi,n |mn,Λ−1

n )ci,n (6.3)

In a Variational Inference setting it is convenient to make use of conjugate prior
distributions, ensuring that prior and posterior have the same form. Thus the prior
probability over the mixture components π is given by a Dirichlet distribution

p(π) =Dir(π |α) (6.4)

with α being a vector of parameters with N elements.
Similarly, the prior over m and Λ is given by a Gaussian-Wishart distribution (see

Bishop, 2006 for details)

p(m,Λ) =
N∏

n=1
N
(
mn | µn,(βnΛn)−1)W(Λn |Wn,vn) (6.5)

Thus the full joint can be written as

p(y,c,π,m,Λ) =p(y | c,m,Λ)p(c | π)p(π)p(m |Λ)p(Λ)

=Dir(π |α)
N∏

n=1

ß
N
(
mn | µn,(βnΛn)−1)W(Λn |Wn,vn)

I∏
i=1

π
ci,n
n N (yi,n |mn,Λ−1

n )ci,n

™ (6.6)

A graphical representation of the generative model can be found in Fig. 6.2 (which
includes the models inverted by both filtering and retrospective inference agents, see
below).

6.3.1.2 Filtering

Using equation 6 for inference and learning requires holding in memory all individual
stimuli up to the current one (i.e. fixed-interval smoothing). This entails optimising
trial-by trial Variational Free Energy (VFE) formulated as

V FE = Eq(c1:i,π,m,Λ)

ï
ln

Å
p(y1:i,c1:i,π,m,Λ)
q(c1:i,π,m,Λ)

ãò
(6.7)
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Fig. 6.2 Graphs representing causal dependencies in the generative model. Specifically,
(a) represents the generative model to be inverted by agents performing simple filtering
(see Section 6.3.1.2), while (b) represent the generative model to be inverted by agents
performing retrospective inference with a working memory of size a (see Section 6.3.1.3).
The only difference between the two is the number of data points simultaneously
considered during inference (1 for the former and a for the latter). Arrow direction
specifies the directionality of the causal relationship.

with q(·) being the approximate posteriors. The algorithm would thus need to revisit
all the previous stimuli at each trial, which is in practice infeasible in a naturalistic
setting.

A common solution to this is modelling learning as an online update of the priors,
with the posterior at trial t becoming the prior at trial t+ 1. The quantity to optimise
then becomes

V FE = Eq(ci,π,m,Λ)

ï
ln

Å
p(yi,ct,π,m,Λ)
q(ci,π,m,Λ)

ãò
(6.8)

This approach is known as filtering, and does not require the agent to have any memory
of previous individual stimuli, which are all encapsulated in the priors.

In our model VFE is maximised with an EM (expectation maximization) algorithm,
based on recursive approximate posteriors update until convergence. In a setting
where the number of clusters is known, the algorithm would simply evaluate q∗(ci)
(E step) to obtain cluster responsibilities ri, which would in turn be used to evaluate
q∗(π,m,Λ)(M step). Note that here q∗(·) represents the optimal solution for the
approximate posteriors. The algorithm would then go back to the E step and update
responsibilities, and use those for a new M step, and repeat the cycle until VFE
converges. As in our case the agent does not know the number of clusters, we added
two additional steps to the algorithm: one before the EM cycle (Cluster formation)
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and one inside of it (Cluster pruning), between the E and M steps ( see Fig. 6.5 for a
graphical overview).

Cluster formation As a new stimulus yi is presented, the model forms a new
candidate cluster with index N . Here N always represents the index of the most
recently formed cluster.

N ←−N +1 (6.9)

Its posterior parameters θ̆i,N are initialised as:

µ̆i,N = yi (6.10)

β̆i,N = β0 (6.11)

W̆i,N = W0 (6.12)

v̆i,N = v0 (6.13)

ᾰN = α0 (6.14)

Before any stimulus is presented N = 0, therefore the first cluster will be centred around
the first stimulus.

E step In the E step the algorithm evaluates

lnq∗(ci) = Eq(π,m,Λ)

ï
ln

Å
p(yi,ci,π,m,Λ)
q(ci,π,m,Λ)

ãò
+ const (6.15)

From here it can be shown (Bishop, 2006) that

r̆i,n = ρ̆i,n∑N
j=1 ρ̆i,j

= Eq(πn,mn,Λn)[ci,n]
(6.16)

where

lnρ̆i,n =ψ(ᾰi,n)−ψ
(

N∑
j=1

ᾰi,j

)
+

D∑
d=1

ψ

Å
v̆i,n +1−d

2

ã
+Dln2+ ln|W̆i,n|−

D

2β̆i,n

− v̆i,n

2 (yi− µ̆i,n)T W̆i,n(yt− µ̆i,n)
(6.17)
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Here ψ(·) is the digamma function, D is the dimensionality of the stimulus yi and θ̆i

are the posterior cluster parameters evaluated at trial i, which are set to the prior
values θ̃i in the first iteration of the E step. By r̆ we denote the cluster responsibilities
which are going to be used to evaluate θ̆ (this will become relevant once retrospective
inference is introduced, see section 6.3.1.3 below).

Cluster pruning At every iteration, between the E step and the M step, the
algorithm goes through a pruning function, cutting any cluster n for which

ᾰi,n∑N
j=1 ᾰi,j

< ε (6.18)

or
r̆l,n ̸=max

(
rl

)
∀l ∈ {1, ..., i} (6.19)

with ε being a threshold probability which we set at .02.
Put more simply, the algorithm eliminates all clusters with a very low mixing

component or clusters which no encountered stimulus would be assigned to with the
highest probability. Note that in a filtering model all the latter condition does is taking
care of the cluster formed at trial i (i.e. cluster N +1) whenever it is unnecessary, and
does not need to revisit responsibilities of previous trials, as they are never re-evaluated.
This is not the case for retrospective inference models (see below).

M step In the M step the algorithm updates the parameters of the surviving
clusters. It thus evaluates

lnq∗(π) = Eq(ci,m,Λ)

ï
ln

Å
p(yi,ci,π,m,Λ)
q(ci,π,m,Λ)

ãò
+ const (6.20)

lnq∗(m |Λ) = Eq(ci,π,Λ)

ï
ln

Å
p(yi,ci,π,m,Λ)
q(ci,π,m,Λ)

ãò
+ const (6.21)

and
lnq∗(Λ) = Eq(ci,π,m)

ï
ln

Å
p(yi,ci,π,m,Λ)
q(ci,π,m,Λ)

ãò
+ const (6.22)

from which the following update equations can be derived (Bishop, 2006)

ᾰi,n = α̃i,n + r̆i,n (6.23)

β̆i,n = β̃i,n + r̆i,n (6.24)
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µ̆i,n =
β̃i,nµ̃i,n + r̆i,nyi

β̆i,n

(6.25)

W̆−1
i,n = W̃−1

i,n + β̃i,nr̆i,n

β̃i,n + r̆i,n
(yi− µ̃i,n)(yi− µ̃i,n)T (6.26)

v̆i,n = ṽi,n + r̆i,n (6.27)

These updated parameters will then be used in the next iteration of the E step for
evaluating responsibilities.

Update The algorithm iteratively carries out the E step, Cluster pruning and
M step until the value of V FE (rounded to the 6th decimal place) converges. The
updated cluster parameters obtained at the end of this process will then become the
priors for trial i+1.

α̃i+1,n = ᾰi,n (6.28)

β̃i+1,n = β̆i,n (6.29)

µ̃i+1,n = µ̆i,n (6.30)

W̃i+1,n = W̆i,n (6.31)

ṽi+1,n = v̆i,n (6.32)

6.3.1.3 Retrospective Inference

Compared to fixed-interval smoothing, filtering decreases the computational burden,
but it comes with a cost in inference and learning accuracy.

A mid-way alternative has been proposed (FitzGerald et al., 2020), called fixed-lag
smoothing (Särkkä, 2013). Here the algorithm has a fixed working memory capacity a,
and at each trial initially optimises the following quantity

V FE = Eq(ci−a+1:i,π,m,Λ)

ï
ln

Å
p(yi−a+1:i,ci−a+1:i,π,m,Λ)

q(ci−a+1:i,π,m,Λ)

ãò
(6.33)

As in the filtering model outlined above, the algorithm first forms a new cluster centred
around yi before iteratively evaluating the optimal solutions for approximate posteriors
q∗(·) until convergence.

Similarly, the E step is carried out as described above for all the stimuli yi−a+1:i in
the cognitive window, evaluating responsibilities separately.
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As for Cluster pruning, retrospective inference has the only effect of increasing to
a the number of stimuli for which responsibilities need to be checked so that newly
formed clusters can be readily pruned if not necessary.

Conversely, the update equations in the M step are adapted to multiple stimuli as
follows: Ûαi,n = α̃i,n +ϕi,n (6.34)Ûβi,n = β̃i,n +ϕi,n (6.35)Ûµi,n =

β̃i,nµ̃i,n +ϕi,nȳi,nÛβn

(6.36)ıW−1
i,n = W̃−1

i,n + β̃i,nϕi,n

β̃i,n +ϕi,n
(ȳi,n− µ̃i,n)(ȳi,n− µ̃i,n)T +ϕi,nSi,n (6.37)

ṽn = vn +ϕi,n (6.38)

with
ϕi,n =

i∑
l=i−a+1

Ûrl,n (6.39)

ȳi,n = 1
ϕi,n

i∑
l=i−a+1

Ûrl,nyl (6.40)

and
Si,n = 1

ϕi,n

i∑
l=i−a+1

r̃l,n(yl− ȳi,n)(yl− ȳi,n)T (6.41)

Here Ûθi denote the sufficient statistics of the temporary variational posteriors evaluated
by updating the prior parameters θ̃i with yi−m+1:i. Similarly Ûri−a+1:i represent the
temporary cluster responsibilities used to then estimate Ûθi, which, in turn, will be
used to estimate Ûri−a+1:i in the subsequent iteration of the E step (note that as in the
filtering model in the first iteration of the E step Ûθi are initialised as θ̃i).

After convergence, the algorithm discards all the temporary parameters Ûθi and
responsibilities Ûri−a+2:i, only keeping Ûri−a+1, which is then used to optimise

V FE = Eq(π,m,Λ)

ï
ln

Å
p(yi−a+1,π,m,Λ | r̆i−a+1)

q(π,m,Λ)

ãò
(6.42)

where it sets
r̆i−a+1 = Ûri−a+1 (6.43)
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At this point, as responsibilities r̆i−a+1 have already been inferred optimally, the only
thing left to do for the algorithm is to carry out the M step once, using yi−a+1 and
r̆i−a+1 as described in the Filtering paragraph.

The model thus infers cluster parameters with only the oldest element in the
cognitive window yi−a+1, which is going to slide out of it in the next trial. This
means that to definitely estimate cluster responsibilities for a stimulus yi, the agent
uses information coming from y1:i+a−1, making inference about cluster membership
and cluster parameters estimation (which depend on estimated responsibilities) more
accurate, as new stimuli can inform inference about old ones.

Note that both filtering and fixed-interval smoothing are special cases of fixed-lag
smoothing, in which a= 1 and a= I respectively.

6.3.2 Simulation experiment

6.3.2.1 Task and stimuli

We developed a variant of the rule-plus-exception task (Davis et al., 2012) with
continuously-varying stimuli. Each trial the simulated agent was presented with a
stimulus (a mushroom) and had to determine whether it was edible (good) or poisonous
(bad). After the decision was made, the agent received feedback.

Unknown to the agent, there were two different species of good mushrooms and two
different species of bad mushrooms, which varied only on one continuous dimension
(size), sampled from a species-specific Gaussian distribution. The resulting probability
distributions of good and bad mushrooms sizes thus were two mixtures of Gaussians
(see Fig. 6.3 and Table 6.1). We chose our stimuli to vary on only one dimension
to make visualisation clearer on one hand, and to maximise ambiguity of unimodal
approximations of the stimuli distribution, on the other. These distributions were
chosen so that a unimodal representation would result in very high overlap, hurting
the agent’s performance and punishing underfitting.

The agent carried out 30 trials, during which it was presented with 15 good
mushrooms (10 from Species 1 and 5 from Species 2) and 15 bad mushrooms (10 from
Species 3 and 5 from Species 4) in random order. The simulation was carried out 1000
times, and each time the stimuli were re-sampled from the true distributions.

Due to the nature of our task, our algorithm is organised in two steps: a decision-
making step and a learning step (see Fig. 6.5). Both use VFE maximisation as described
above to infer the value of model parameters, but only the latter step is used for belief
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Fig. 6.3 Real probability distributions from which the stimuli were sampled (top) and
unimodal approximations (bottom). These distributions were chosen to maximise the
overlapping of unimodal approximation and punish underfitting agents.

update (as it can use the information provided by the feedback). In the next sections
we outline these steps, incorporating retrospective inference.

6.3.2.2 Decision-making

As specified above, at each stimulus presentation the agent forms a new cluster
centred around it. After this, the agent iteratively evaluates pre-feedback approximate
posteriors through the EM loop. Importantly, at this stage there is no Cluster pruning.

During the E step the agent estimates the pre-feedback cluster responsibilities
r̂i as in equations 4.16-17 for the current stimulus yi. Crucially this is not the
case for r̂i−a+1:i−1, as feedback about yi−a+1:i−1 has already been provided in trials
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Parameter Bad mushrooms Good mushrooms

Species 1 Species 2 Species 3 Species 4
π 0.1667 0.3333 0.1667 0.3333
m 20 60 40 80
σ2 81 81 81 81

Table 6.1 True sufficient statistics of the Gaussians (clusters) from which the stimuli
were sampled

Fig. 6.4 Schematic representation of the task. First the agent is presented with a
stimulus (a mushroom), and it has to infer whether it is edible (good) or poisonous
(bad). After making a decision, it receives feedback and updates its beliefs.

i−a+ 1 : i− 1, and therefore the agent remembers whether those mushrooms were
good or bad. To deal with this, we introduce the index vector of clusters previously
labelled (see Learning paragraph) as "bad" b̃i and that of clusters previously labelled
as "good" g̃i i.e. (mushroom species known to be bad or good at the beginning of
trial i). Similarly, we introduce index vectors z̃i and k̃i, with the former including
the indices of bad mushrooms and the latter those of good mushrooms in working
memory at trial i. The current trial i is not included in either z̃i or k̃i, the agent has
not received feedback on it yet.
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Then we have

r̂l,n =



ρ̂l,n

ρ̂l,N +
∑

j∈bi

ρ̂l,j
if l ∈ z and

(
n ∈ bi or n=N

)
ρ̂l,n

ρ̂l,N +
∑

j∈gi

ρ̂l,j
if l ∈ k and

(
n ∈ gi or n=N

)
0 if

(
l ∈ z and n ∈ gi

)
or

(
l ∈ k and n ∈ bi

)
(6.44)

Note that the new cluster N +1 is considered for both good and bad mushrooms, as it
does not have a label yet. The M step is then carried out as described in equations
6.23-27.

Once the pre-feedback Variational Free Energy converges (rounded to 6 decimal
places), the agent evaluates the probabilities of yi being either bad or good as such:

p(ζi = 0) = 1
2 r̂i,N+1 +

∑
j∈bi

r̂i,j (6.45)

p(ζi = 1) = 1
2 r̂i,N+1 +

∑
j∈gi

r̂i,j (6.46)

where

ζi =

0 if yi is bad
1 if yi is good

(6.47)

Again, as the new cluster N +1 has not jet been labelled, the agent remains agnostic
on whether it is good or bad (assigning these possibilities a probability of 0.5 each),
hence the first term of equations 6.45 and 6.46. Put it more simply, the probability of
a mushroom being good is the sum of the probabilities of that mushroom belonging to
the known edible species, plus the probability of it belonging to an unknown, edible
species. Whilst the former is a straightforward sum (second term of equation 6.46),
the latter is the joint probability of the mushroom belonging to a new species and the
new species being edible (first term of the equation).

6.3.2.3 Learning

After feedback the true value of ζi becomes known, so the agent assigns a label to the
new cluster and the new stimulus based on whether yi was a bad or good mushroom.
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Thus:

b̆i =


 b̃i

N +1

 if ζi = 0

b̃i if ζi = 1

(6.48)

z̆i =


z̃i

i

 if ζi = 0

z̃i if ζi = 1

(6.49)

ği =


 g̃i

N +1

 if ζi = 1

g̃i if ζi = 0

(6.50)

k̆i =


k̃i

i

 if ζi = 1

k̃i if ζi = 0

(6.51)

with
b̃i+1 = b̆i (6.52)

z̃i+1 = z̆i (6.53)

g̃i+1 = ği (6.54)

k̃i+1 = k̆i (6.55)

The agent then goes through the EM loop again as outlined above. Crucially, this
time it uses b̆i, z̆i, ği and k̆i instead of b̃i, z̃i, g̃i and k̃i to estimate temporary cluster
responsibilities Ûri−a+1:i, taking advantage of the new information provided by the
feedback.

Importantly, after feedback the EM loop includes Cluster pruning, so unnecessary
clusters will be eliminated at this stage. For any pruned cluster n, N is updated:

N ←−N −1 (6.56)

This is also true for b̆i and ği, so that cluster n is eliminated (either from b̆i or ği

depending on its label) and, for any element b̆w,i and ğf,i

b̆w,i←− b̆w,i−1 if b̆w,i > n (6.57)
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ğf,i←− ğf,i−1 if ğf,i > n (6.58)

This is done for index consistency.
After convergence, the agent sets r̆i−a+1 = Ûri−a+1, and performs the final M step

to evaluate the the posteriors’ parameters θ̆i, after which it finally updates its priors
by setting θ̃i+1θ̆i, as outline above.

If i < a, the agent does not update its model parameters, waiting for further
information. Conversely, if i = I, the agent updates its priors with the parameters
estimates θ̂I , as there are no more stimuli to learn from. This would not occur in a
naturalistic setting (no mushroom is guaranteed to be your last) but it was necessary
here for proper model comparison.

6.3.2.4 Parameter settings

In this simulation, we set
α0 = 0.5

β0 = 1

W0 = 0.002I

v0 =D+2

where D is the number of features of the stimuli (in our case D = 1) and I is a D×D
identity matrix. This means that every cluster is formed with an initial precision of
0.002 (equivalent to a variance of 2000).

The only parameter we manipulated was a, which ranged between 1 and 7.

6.3.2.5 Metrics

As a measure of performance, we used

P =
I∑

i=1
logγi (6.59)

where

γi =

p(ζi = 0) if ζi = 0
p(ζi = 1) if ζi = 1

(6.60)

Therefore, the more the agent was likely to get the right answers throughout the
simulation, the better its performance.
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We also took a measure of sensory surprise

si =−lnp
Ä
yi | Ûθi−1

ä
=−ln

N∑
n=1

® Ûαi−1,n∑N
j=1 Ûαi−1,j

N
(

yi | Ûµi−1,n,
Ä
(Ûvi−1−D−1)ıWi−1,n

ä−1)´ (6.61)

at the very beginning of each trial, after stimulus presentation and before cluster
formation. This is a measure of how surprising a stimulus is before any update takes
place, and it can be seen as an inverse index of how well the generative model predicts
new data. Note that here we use Ûθi−1 rather than θ̃i, so that the agent takes into
account trials i−a+ 1 : i−1 if a > 1. Here we use the mode of each distribution to
get a "best guess" of cluster parameters π, m and Λ. We did not take this measure
at i= 1, as the model had zero components at that stage. This measure is somewhat
equivalent to the Recognition metric in (Davis et al., 2012), where the authors simply
used the log-likelihood (instead of the negative log-likelihood) to measure how much a
stimulus was expected given the model parameters.

As in Davis et al. (2012) we calculated the entropy of the decision (as an inverse
measure of confidence) pre-feedback and cluster assignment post-feedback.

Hpre =−p(ζi = 0)lnp(ζi = 0)−p(ζi = 1)lnp(ζi = 1) (6.62)

Hpost =−
N∑

n=1
Ûri,nln(Ûri,n) (6.63)

Finally, we calculated the Kullback-Leibler divergence (KL) between prior and posterior
distribution at the end of each trial

KL=
∫
p(yi | θ̃i)ln

p(yi | θ̃i)
p(yi | θ̆i)

dyt (6.64)

to have a measure of how much the generative model was updated.

6.4 Results

6.4.1 Parametric vs non-parametric models

We first compared performance P between our non-parametric filtering model (a= 1)
with a parametric version of it, with random prior location of clusters and symmetrical
priors about cluster assignment (αn = α0 = 0.5 ∀n ∈N).
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As expected, the non-parametric model (µ=−23.26, σ2 = 9.52) performed signif-
icantly better than a parametric one with one cluster for good mushrooms and one
for bad ones (µ = −29.85, σ2 = 7.73, t(1998) = 50.14, p < .001). Interestingly, the
non-parametric model still outperformed the parametric one when the correct number
of clusters was set (2 for good mushrooms and 2 for bad ones, µ=−27.60, σ2 = 4.79,
t(1998) = 36.31, p < .001). Fig. 6.6 summarises these findings, with the orange bar
representing the performance of the non-parametric model and green bars that of
parametric ones.

6.4.2 Retrospective inference

We carried out a one-way ANOVA with working memory capacity as a 7-level factor
(i.e. with value of a ranging from 1 to 7), which revealed a significant main effect
(F (6,6993) = 40.49, p < 0.01). We then further investigated this effect with post-
hoc comparisons (Tukey test), which are summarised in Fig. 6.7. This bar plot
represents the average performance (as indexed by P ) of the 7 models, displaying a
clear trend of performance improving with memory capacity, and therefore with amount
of computational resources invested in the task, in take with our initial hypothesis. We
also observe that the biggest performance improvement occurs in the switch from a
cognitive window of length 1 to one of length 2, and that this improvement diminishes
progressively with all subsequent increases, to the point of becoming statistically
insignificant (at least in our simulation).

Interestingly, an unexpected pattern (see Fig. 6.8) emerged with regards to the
number of clusters found by the agent. With a= 1, the agent tends to estimate the
correct number of clusters, with increasing overfitting (i.e. finding more clusters than
necessary) peaking at a = 3. As a further increases, a slow decrease in estimated
number of clusters is observed. Furthermore, we can observe an effect of a not only on
the average number of estimated clusters, but in the variance too. In fact, Fig. 6.8
shows how changes in the mean of the number of estimated clusters are accompanied by
changes in its variance (with error bars representing standard deviations to highlight this
effect), which starts low, sharply increases peaking at a= 3 and then gently decreases
(just like the mean). We did not perform statistical tests on this, as it was not the object
of our work and a proper investigation would have required further manipulations to
verify its consistency with varying experimental conditions. Nevertheless, we believe
it is worth mentioning and speculating about (which we briefly do in the Discussion
section).
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KL-s correlation
a 1 2 3 4 5 6 7

Spearman’s r 0.62 0.19 0.18 0.15 0.15 0.13 0.11

Table 6.2 Correlations between the KL divergence (indexing belief update) and sensory
surprise for cognitive window sizes from 1 to 7.

6.4.3 Surprise and update metrics

We calculated the average correlation between s and KL across the different simulations
(Table 6.2). Despite being fairly strong in the filtering model (r = 0.62), the r value
decreases sharply as retrospective inference is introduced. This means that initial
sensory surprise and magnitude of belief update are differently associated with each
other based on the presence of a working memory component.

6.5 Discussion

In this work we built a non-parametric clustering model incorporating a working memory
component, and tested it against classical parametric and fully online approaches in
a simulated task. Our results highlight the importance of structure learning, with
algorithms with the ability to flexibly update the structure of their generative model
clearly outperforming parametric models that simply updated cluster parameters (i.e.
that did not perform structure learning). Strikingly, in this task our non-parametric
agent outperformed a parametric one even when the latter’s generative model had the
correct structure and random priors about cluster means, showing how a completely
agnostic model is better than one with correct structure and random (and thus often
incorrect) cluster centroids initialisation.

We further probed the advantages of FRI by adding a working memory component
to our algorithm based on the work described in FitzGerald et al. (2020). Other models
of decision-making involving a working memory component have been put out in the
past (Collins and Frank, 2012; Viejo et al., 2015), but the deterministic associations
between stimuli, actions and rewards made it unnecessary to perform retrospective
inference on stored items. They did however include progressive memory decay (as
opposed to a fixed cognitive window as the one we used), which could be an interesting
addition to our model in future work.
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FRI proved to significantly improve performance, showing how updating one’s
beliefs about past events is instrumental for developing a better understanding of
current events, and making more adaptive choices as a consequence. Our results show
that the bigger the cognitive window (i.e. working memory capacity), the better the
performance. From a psychological perspective, cognitive window size can be thought
of as amount of cognitive resources invested in the task, as keeping in working memory
and updating beliefs about several (past) stimuli is clearly more cognitive demanding
than doing the same with just the present one. In an experimental context this could
be indirectly manipulated with reward size, with higher potential rewards motivating
human participants to invest more cognitive resource on the task and thus perform
retrospective inference on a bigger cognitive window. Alternatively, manipulating the
distributions complexity and amount of overlap would change the difficulty of the task,
and thus the amount of cognitive resources necessary to achieve a satisfactory perfor-
mance. Using retrospective inference models to study cognitive resources allocation
would add to the broader field of computational rationality (Gershman et al., 2015a),
which deals with the trade-off between rewards and cognitive costs.

Applying these models to empirical studies would also allow to test the somewhat
counterintuitive prediction of our model about the number of identified clusters. In
fact, our results show that intermediate cognitive window sizes on average lead to the
formation of more complex models of the environment, with the average number of
identified clusters peaking at a = 3 and then slowly decreasing as working memory
capacity increases. This can be explained by old stimuli in working memory being
sometimes (partially) assigned to unnecessary newly formed clusters, which would
as a consequence have a slightly higher chance of surviving pruning. In this case a
big cognitive window would give the algorithm more time to correct this "mistake",
as the unnecessary cluster’s mixing component πn would keep decreasing as all other
αj ̸=n increase with time, bringing rl,n < max(rl) ∀l ∈ {i− a+ 1, ..., i}, which would
in turn cause the cluster to be pruned. Encouraging different levels of cognitive
resources investment through experimental manipulations could allow to test our
model’s somewhat odd prediction, and provide an insight on how and when generative
model augmentation happens in the brain.

In addition to this, our model provides update metrics that can be used for
neuroimaging investigations. In fact, it allows to calculate separate quantities for
sensory surprise and belief update (i.e. KL divergence between priors and posteriors),
which in our simulation were only partially correlated. In addition, in our task they occur
at different times (the former at stimulus presentation and the latter after feedback)
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and could thus be associated with dissociable EEG or fMRI responses. Our results
also show that the correlation between the two becomes much weaker as retrospective
inference is introduced. This is unsurprising, as in this case sensory surprise would be
in response to the current stimulus yi and update would be performed using the oldest
stimulus in the cognitive window yi−a+1. Therefore it should be possible to separately
locate brain signal associated with these two metrics, investigating the relationship
between information-theoretic surprise (i.e. negative log probability) and "Bayesian"
surprise (i.e. KL divergence between priors and posteriors, see Baldi and Itti (2010);
Nour et al. (2018)).

In addition our entropy measures (Hpre and Hpost) can be instrumental for investi-
gating decision making under uncertainty (Davis et al., 2012).

In conclusion, we believe our work, in addition to being informative in itself, can
provide a solid theoretical foundation for empirical investigations on structure learning
in human participants, which we plan to carry out in the future.
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Fig. 6.5 Graphical representation of the algorithm pipelines. In the parametric filtering
model (a) the agent evaluates the probabilities of the current stimulus being good
or bad by inverting a GMM with fixed number of clusters, recursively evaluating
responsibilities (E step) and cluster parameters (M step). After it receives feedback,
it carries out the EM loop again to update cluster parameters in light of the new
information. The non-parametric filtering model (b) is similar, but it involves two
additional steps: cluster formation at the beginning of the trial, to take into account
the possibility of having just encountered a new species of mushroom; and a pruning
function embedded in the post-feedback EM loop, eliminating unnecessary clusters
and keeping the generative model as simple as it can be. Finally, the non-parametric
fixed-lag smoothing model (c) carries out all the steps described in (b), but it evaluates
several stimuli at the same time, based on all trials in working memory. After VFE
convergence in the post-feedback EM loop, it discards all the inferred parameters except
for the cluster responsibilities of the oldest element in its cognitive window, which are
used for a last M step (i.e. cluster parameters estimation) before belief update.
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Fig. 6.6 Performance comparison between the non-parametric model and parametric
versions with 2 (1 good and 1 bad) and 4 (2 good and 2 bad) clusters. Error bars
represent standard errors.
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Fig. 6.7 Performance of the retrospective inference non-parametric model with different
working memory capacities (1 to 7). Error bars represent standard errors.
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Fig. 6.8 Number of clusters estimated as a function of working memory capacity. Note
that here error bars represent standard deviations, not standard errors. This was done
to highlight the increase of variability, not only average, of estimated number of clusters
for models with a∼ 3.



Chapter 7

General Discussion

In Chapters 4, 5 and 6 we presented three separate pieces of work, two of which are
experiments with human participants and one is simulation-based. In all three we
strongly drew from the Bayesian brain hypothesis (Knill and Pouget, 2004), framing
inference and learning as machine learning problems and studying them with machine
learning techniques (i.e. variational inference, clustering, Bayesian non-parametric
methods). We considered situations mostly neglected by the literature, namely precision
estimation and multimodal distributions, and showed how one of the most popular
probabilistic accounts of brain function (i.e. predictive coding, Friston and Kiebel
(2009)) fails to account for these. We then developed and described models that
overcome these limitations.

In this Chapter we briefly review the findings presented in Chapters 4, 5 and 6,
discussing their implications for the broader field. We also analyse the limitations of
our studies, and suggest how could these could be overcome in future work. We finally
discuss how our work can be used as a starting point for future research.

7.1 Summary of findings

7.1.1 Chapter 4

In Chapter 4 we tackled the problem of dynamic precision estimation. As discussed
in Chapter 1, precision (i.e. inverse variance) is a fundamental quantity in predictive
coding, as well as any probabilistic account of cognition involving Gaussian distributions.
We built a predictive coding model that could accommodate trial-by-trial estimation
of precision using a Gaussian prior over the log precision k, thus allowing to use the
volatility parameter η(k) (the precision of a Gaussian random walk) to account for
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possible objective variations in precision over time. Our model was thus able to account
for situations in which the precision was non-stationary.

In fact, our experiment (a variant of the classic auditory oddball task, as described
in Garrido et al. (2013)) involved presenting participants with a series of auditory
stimuli whose pitch was sampled from a Gaussian distribution with non-stationary
precision. We recorded our participant’s pupil diameter while they were performing
the task, using pupil dilation as an index of surprise to track learning (see Chapter 2).
Our model-free analysis revealed that pupil responses to the same deviant stimulus
differed according to the precision of the probability distribution it came from (deviant
tones elicited greater surprise if the distribution was narrow), replicating the findings of
Garrido et al. (2013). These results suggest participants kept track of that distribution’s
precision. Furthermore, we fitted pupillometry data to a range of competing models,
and found that those including dynamic precision estimation vastly outperformed
the others. There was little difference between the model which included both (log)
precision and mean estimation and the one that included (log) precision estimation
only, but this is easily explained by the fact that the mean of the distributions was
kept constant, and thus mean estimation was largely unnecessary for the task (as one
would likely correctly estimate it in a few trials). Therefore, our findings clearly show
that human participants (even if this had no relevance to the task they were asked to
perform) dynamically estimated precision over time.

Furthermore, our model-based analysis allowed to fit individual pupil response func-
tions to pupil data, capture individual differences in pupil response. The combination
of an individually-tailored convolutional kernel and the auto-regressive component
resulted in our model gaining considerable explanatory power. Furthermore, this
approach allowed to directly fit pupil data to cognitive models, contrary to the more
common approaches of fitting them to behavioural data instead (Daw et al., 2011;
O’Doherty et al., 2007; Schwartenbeck et al., 2015; Smittenaar et al., 2013), and use
parameters estimates as regressors for some other physiological data analysis (Collins
and Frank, 2016; Diaconescu et al., 2017).

7.1.2 Chapter 5

In Chapter 5 we tested a somewhat counter-intuitive prediction of predictive coding,
namely that all sensory observations are assigned a unimodal Gaussian prior (i.e.
variables are encoded as Gaussian distributions). We thus performed two experiments
with identical task and stimuli, one with pupillometry and one with EEG. These
were very similar to that described in Chapter 4, except for the fact that we kept
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the probability distribution from which the stimuli were sampled constant. Crucially,
this distribution was bimodal (a mixture of two Gaussians), meaning a prediction
error-minimising agent (i.e. a predictive coding agent) would fail to identify the two
modes and misrepresent the distribution as a unimodal Gaussian (for a mathematical
demonstration of this see Chapter 1).

As in Chapter 4 we introduced probe tones, allowing for more straightforward
model-free analyses at the expense of slightly distorting the distribution. In the two
experiments described in Chapter 5 this didn’t pay off as much as it did in the one
described in Chapter 4. The model free analysis of both EEG and pupillometry data
did suggest participants represented the stimuli distribution as bimodal, but the effects
were considerably weaker than those reported in Chapter 4. This was true for both
experiments, and especially for the EEG one, where only three out of the four contrasts
of interest resulted significant, revealing a mismatch negativity effect (MMN, see
Chapter 2). Overall, the results of our model-free analyses confirmed our hypothesis
that participants would learn bimodal distribution, violating classical predictive coding.
However, they did not so as convincingly as we would have hoped.

Our model-based analyses, on the other hand, left considerably less doubts about
the ability of participants to form multimodal priors. In fact, model comparison
favoured a Gaussian mixture model with 4 components over classical predictive coding
(here represented as a unimodal Gaussian).

7.1.3 Chapter 6

Finally, in Chapter 6 we discussed structure learning and presented a simulation
experiment. We introduced a novel structure learning task and had a series of simulated
agents perform it. We found that an agent performing structure learning (in this case
clustering with a Chinese restaurant process prior, see Chapter 3) vastly outperformed
all agents with a fixed generative model, even if that model had the right structure
(but its parameters were initialised at random). We thus showed that, in our task, an
agnostic agent who grows its internal model of the environment as required by the
data learns better than one who is already given the number of clusters observations
can come from (i.e. who already knows the structure of the distribution generating
the data), but has (more often than not) wrong priors about its parameters. This is
important, as it shows that the best solution is also the most parsimonious, since the
structure learning agent starts simple and increases the complexity of its model only if
necessary.
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Furthermore, we investigated the effect of finite retrospective inference (i.e. per-
forming inferences about past observations, see FitzGerald et al. (2020)) on structure
learning. We presented an online learning model incorporating a working memory
component in the form of a "sliding cognitive window" of fixed length. At each trial, the
agent not only performed inference on the current stimulus, but revisited past events
in its cognitive window, reinterpreting them (i.e. re-performing cluster assignment)
in light of the new information it gathered. This led its performance to drastically
improve, growing with working memory capacity (i.e. the size of the cognitive window).

Finally, we presented a few useful metrics that can be extracted from our model,
which we believe will be useful for empirical investigations. Our task naturally separates
in time sensory surprise (at stimulus presentation) and belief update formalised as
KL divergence between prior and posterior (at feedback), which is convenient for
neuroimaging investigations looking for the brain correlates of both. Furthermore,
in retrospective inference models these two metrics are only weakly correlated, as
surprise is caused by the current stimulus and update is performed with a past one.
Furthermore, we found that this correlation decreases as the cognitive window grows
in size. This was most likely due to the fact that beliefs actually started to be updated
later on for large cognitive windows, and the first updates are naturally the biggest
in terms of KL divergence. Therefore, a simple filtering model would have its biggest
updates in the first few trials, while a retrospective inference model with memory
capacity a would have its biggest updates from trial a. This entails a strong prediction
for studies trying to identify brain signals associated with surprise and belief update,
namely that as participants invest more cognitive resources in the task (i.e. keep in
working memory more stimuli) the two will be less and less correlated. We further
showed how two uncertainty metrics can be derived from our model, which take the
form of entropies over discrete distributions in line with previous work (Davis et al.,
2012). Our last and perhaps most surprising finding was that the number of clusters
estimated by the model peaked for cognitive windows of length 3.

7.2 Implications for the broader field

7.2.1 Predictive coding and the Bayesian brain

In all the work presented in this thesis we approached cognition from a probabilistic
perspective, in line with the Bayesian brain hypothesis (see Chapter 1). In particular,
Chapters 4 and 5 are closely related to a more specific framework, predictive coding.
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We highlighted some of the limitations of this framework, and used it as a starting
point to develop augmented models addressing them.

In Chapter 4 we introduce a predictive coding model with dynamic precision
estimation, showing how this feature improved the fit to pupil data. As discussed at
various points throughout this thesis, precision is a key quantity in predictive coding,
regulating the relative influence of different information streams (Crucianelli et al.,
2019) and of priors against sensory evidence (Friston, 2008) during inference, as well as
how quickly to update one’s beliefs (Behrens et al., 2007; Mathys et al., 2011). Precision
is also at the core of many theories of psychopathology (Adams et al., 2013; Fletcher
and Frith, 2009; Lawson et al., 2014), with hyper-precise priors thought to play a role in
autism (Van de Cruys et al., 2014), depression (Kube et al., 2020) and anxiety (Paulus
et al., 2019). What lacks in these theories is a formal Bayesian account of how precision
is estimated and updated. There are models that include precision estimation (Bogacz,
2017; Friston, 2005), but, as discussed in Chapter 2, these don’t give precision a fully
probabilistic treatment, estimating only its most likely value and not its full posterior
distribution. This might seem unimportant, but uncertainty associated with parameter
estimation (i.e. precision hyperparameters, which we denoted as τ in Chapters 4) is
crucial to understand plasticity (Auksztulewicz and Friston, 2016; Van de Cruys et al.,
2014), and thus learning. To have such quantity in a model one must include priors
over model parameters, which, in a predictive coding context, should be Gaussian (see
Chapter 1).

As the conjugate prior of the precision of a Gaussian is a Gamma distribution
(Bishop, 2006), we had to introduce a further approximation in our model, placing a
Gaussian prior over the log precision k. This achieved two things. First, it allowed
for k to be non-stationary, as we could use a Gaussian random walk to capture the
parameter’s volatility. Second, it allowed to formalise precision estimation as a trade-off
between prediction error minimisation at different hierarchical levels, a key feature of
predictive coding (see Chapter 1). This might not seem evident from equation 4.31,
but if we were to re-write it as

∂q∗(ki)
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where the first term is the difference between actual (eki(yi− µ̆(m)
i )2) and expected

(1) product between estimated precision and squared error (i.e. deviation from the
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prior’s mean). This product is expected to be because the variance of any distribution
corresponds to the expected squared error, which in our case means

e−ki = E
î
(yi− µ̆(m)

i )2
ó

(7.2)

As the second term of equation 7.1 is itself a precision weighted prediction error, it
is clear how bringing the value of this derivative to zero (i.e. finding the maximum
of q∗(ki)) involves the aforementioned trade-off between prediction error, with the
first having a fixed weight of 0.5 and the second having a weight determined by the
precision of the prior on k.

In general, the importance of precision can be extended to any probabilistic theory
of cognition, but it’s of particular relevance for predictive coding for its strong Gaussian
assumptions (see Chapter 1).

Even more so than Chapter 4, Chapter 5 deals with a problem which is specific of
predictive coding, namely its prediction about the inability of the brain to represent
non-Gaussian distributions. We offered empirical evidence that this is not the case,
highlighting the need to improve the flexibility of predictive coding models, which can
be done by adopting a Gaussian mixture model. This has profound implications for
neurobiology, as the simple prediction error minimisation models described in Chapter
2 (Bogacz, 2017; Friston, 2005) cannot account for our finding and would need to be
somewhat modified.

Finally, one last aspect worth mentioning is that, with bimodal distributions,
precision ceases to be a suitable measure of uncertainty. We suggest future studies
investigating uncertainty should focus on distribution entropy instead, as it is a more
flexible measure, applicable to any distribution (both continuous and discrete).

7.2.2 Structure learning

In Chapter 6 we did not present a lab experiment, but we provided an experimental
framework which we believe to be promising for studying structure learning (and,
specifically, clustering) in humans. We devised a novel structure learning task, requiring
participants (be them human or artificial agents) to cluster a set of mushrooms into
species. We designed the real distributions to punish underfitting (i.e. not creating
enough clusters), which unsurprisingly let agents unable to grow their generative models
to perform poorly. The task is particularly attractive because it solves a fundamental
problem of online unsupervised learning, namely the need to get behavioural responses
at every trial without providing feedback about cluster membership. We get around this
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by requiring our participants to cluster within categories (i.e. good and bad mushrooms)
and to make decisions based on category, and not cluster membership. We can thus
obtain trial-by-trial responses that are informative of the cluster assignment of each
observation without explicitly asking participants about what species of mushrooms
they just saw. This resembles the task used by (Davis et al., 2012), but we make use of
a probabilistic setting (i.e. our stimuli are samples from a probability distribution) with
continuous stimulus features, providing a task more similar to a real-world scenario.
As presented in Chapter 6, the stimuli have only one feature. This choice was made
to maximise the ambiguity about species membership, as the reduced feature space
forces more overlapping between distributions. However, one could easily deploy the
task with different (and possibly multivariate) stimuli distributions.

We believe this groundwork will allow us (and other research groups) to grow the
scientific literature about online investigations of structure learning, which is at the
moment quite limited in size (although see Collins and Frank (2013, 2016)).

In addition to designing a task, we developed a set of online learning models to
simulate an agent carrying it out. We did this firstly to illustrate the importance of
structure learning for this type of task, which a biological agent is likely to encounter
in a naturalistic environment (e.g. learning which plants or mushrooms are edible,
which animals are dangerous, etc.). Structure learning agents (i.e. non-parametric
models) significantly outperformed agents with a fixed-structure generative model (i.e.
parametric models). As one would expect this was very evident when the fixed model
had the wrong number of components (i.e. 2 instead of 4), but, strikingly, it was
the case also when the fixed model had the right structure, but its parameters were
initialised at random. In other words, an agent growing its generative model from
scratch outperformed one that only had to tune its model parameters. The latter
had random, but very relaxed priors, so that they would not have a great weight
against sensory evidence during model update. Both models in the long run are bound
to find a nearly optimal solution, tuning both structure (for non-parametric models)
and parameters (for all models) to the stimuli distributions. We could thus see the
non-parametric models outperforming a parametric one with the right structure as
building a structure from scratch being more efficient (i.e. faster) than adjusting model
parameters. This finding, however, could be specific to the particular distributions
we used in our simulation. Further investigations are required to verify how well this
generalises to different structure learning problems.

The second objective of our simulation was to investigate the effect of retrospective
inference on structure learning. We developed non-parametric models incorporating a
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working memory component, and verified that performance increased with working
memory capacity. This is particularly relevant for the field of computational rationality
(Gershman et al., 2015a), as retrospective inference does improve performance, but a
computational cost, namely storing observations in working memory and processing
several (as many as there are in working memory) stimuli at once. We observed that
the biggest improvement in performance when increasing the cognitive window size a
from 1 (simple filtering model) to 2, with improvements decreasing in magnitude as
a further increased. A biological agent would therefore have to evaluate the optimal
compromise between computational efficiency and accuracy, avoiding overloading its
working memory for little returns in terms of performance. Intelligent use of cognitive
resources in a clustering task has already been investigated in a simulation study
(Dasgupta and Griffiths, 2021), but this was limited to the concentration parameter θ
(which we called α in Chapter 3) regulating the agent’s propensity to form new clusters.
With the work described in Chapter 6 we add a layer of complexity to the problem,
paving the way for future empirical investigations to study the relationship between θ
and a.

Finally, somewhat unexpectedly, we found a curious pattern in the relationship
between working memory capacity and number of estimated clusters, with the maximum
number reached at a = 3. In our case, this caused the model to overfit at a 3, but
if we were to decrease the value of θ me might very well have observed the increase
of estimated clusters to bring this number closer to the correct one. It is not clear
how this effect would change with different distributions and values of θ, so we do not
discuss this effect further in this section (we briefly do in Chapter 6). It is nevertheless
worth investigating this further in future simulation work.

7.3 Limitations and future directions

Our studies had of course some limitations, which we will discuss in this section. In the
experiments described in Chapters 4 and 5 participants were presented with a series
of auditory stimuli varying in pitch, and we aimed at investigating how participants
learned their probability distributions. For the sake of more understandable analysis
we slightly distorted the distributions with probe tones as in Garrido et al. (2013),
preventing our model to fully capture these distorted distributions. This was not a
significant issue for the experiment presented in Chapter 4, where the probe tone
model-free analysis resulted in a clean replication of the results of Garrido et al. (2013).
On the other end, the model-free results of the two experiments described in Chapter
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5 are not nearly as clean, and this might very well be for the distortion caused by the
probe tones, which effectively increased the probability of stimuli that would otherwise
have been in a low probability area (Probes 2 and 4, see Figures 5.1 and 5.2). We
still found evidence supporting our hypothesis, but it would be worth repeating the
experiment excluding the probe tones and relying solely on a model-based analysis.

The work presented in Chapter 6 has several limitations as well. First, it is a
simulation experiment, and therefore how much it can tell us about human cognition
is debatable. Unfortunately the pandemic prevented us from investigating structure
learning in human subjects, but we are planning to remedy this as soon as we have
the chance. Furthermore, our simulation experiment is not sufficient to investigate
in depth the two unexpected effects we observed, namely the overfitting for windows
size 3 and the non-parametric models outperforming a parametric one with the right
structure and random parameter initialisation. Exploring these would involve several
simulations, manipulating the values of θ and a, as well as the stimuli distributions.
This would require a simulation study in itself, so we did not explore it in Chapter 6,
but it could be the object of future simulation work.

Further limitations concern the computational modelling. In fact, contrary to
Chapter 4, in Chapter 5 and 6 we did not focus on keeping our models biologically
plausible or to align them with specific theories of brain function. Furthermore, in
Chapter 4 we used univariate distributions, which made the problem of precision
estimation easier to address. This becomes harder when non-diagonal covariance
matrices are involved, which is likely to happen with multivariate naturalistic stimuli.
In Chapter 6, despite using univariate stimuli, we built our model to be able to deal with
multi-dimensional observations. Following Bishop (2006) we placed a Gaussian-Wishart
prior on the joint distribution over the mean vector m and the precision matrix (i.e.
the inverse of the variance matrix) Λ, which resulted in very complicated and inelegant
update equations. This worked nicely for testing our hypotheses, but we cannot make
claims about the specific computations the brain would undergo when performing such
a task, as there is no straightforward way to picture a neural implementation of the
algorithm. Unfortunately, where Gamma priors over precision can be approximated to
Gaussian priors over log precision (see Chapter 4), there is no such an easy solution for
covariances that we are aware of, even when applying the mean-field approximation
and factorising the distributions over means m (which results in a Gaussian prior) and
over the precision matrix Λ (which results in a Wishart prior). There are models of
online covariance estimation (Bogacz, 2017), but, as mentioned above and in Chapter 2,
these do not give a fully probabilistic treatment to means and covariances, estimating
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only their maximum a posteriori value. A possible avenue to explore in this sense
would be that of abandoning variational inference altogether and focusing on sampling
approaches (Aitchison and Lengyel, 2016; Bishop, 2006; Gershman and Beck, 2017).

In past sections we have already discussed some future research that could be
done based on our work. Specifically, based on our findings decribed in Chapter 5,
we suggested that future neuroimaging studies aimed investigating neural markers of
uncertainty should focus on entropy rather than precision (or, equivalently, variance).
This distinction is irrelevant for Gaussian distributions, as entropy and variance are
monotonically related, but becomes crucial when the stimuli distributions are radically
non-Gaussian, as it is the case for the bimodal one we made use of. Furthermore, in
Chapter 6 we presented a series of metrics that can be derived from our model and
used as predictors in neuroimaging studies. As discussed, these would allow to look for
brain correlates of sensory surprise and belief update separately, allowing to disentangle
them.

We identified two further possible directions our research could take using the
work presented in this thesis as a starting point. The first consists in applying our
models and tasks (and developing new ones) to understand psychopathology. This
would fall into the emerging field of computational psychiatry (Huys et al., 2016). As
discussed in Chapter 1 and in previous sections, precision is at the centre of many
probabilistic accounts of psychopathology (Kube et al., 2020; Lawson et al., 2014;
Paulus et al., 2019; Van de Cruys et al., 2014), which makes the model we developed
for Chapter 4 a valuable tool to investigate when and how individual suffering from
different psychiatric conditions might perform aberrant precision estimation, causing
them to form non-adaptive models of the environment.

Second, as anticipated above, the retrospective inference clustering model presented
in Chapter 6 is particularly suitable for investigating rational cognitive resources
allocation (i.e. computational rationality, Gershman et al. (2015a)). It would be
interesting to probe how a and θ can adapt to task complexity and potential reward
in human participants, investigating how they tune cognitive resources investment to
the contingencies of the task. Furthermore, one could explore alternatives to finite
retrospective inference (or fixed lag smoothing). We have already developed a variant
of our clustering algorithm which, instead of performing retrospective inference on
a sliding cognitive window of fixed length, can choose whether to retain a stimulus
in working memory based on the uncertainty (formalised as entropy) associated with
its cluster assignment. Going back to the mushroom example, if the algorithm is not
very sure what species a certain mushroom belongs to, it will just retain it in working
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memory until further evidence makes cluster assignment less ambiguous. On the other
hand, if a certain mushroom clearly belongs to a certain species, the algorithm will
avoid wasting cognitive resources to hold it in working memory and revisit it in the
future. Such an algorithm would be considerably more parsimonious than the one
described in Chapter 6, as it would perform retrospective inference only on ambiguous
stimuli. We have not tested this systematically yet, but this augmented version of our
algorithm should maximise the benefits of retrospective inference while keeping its
costs as contained as possible. This would open yet another avenue to investigate how
human participants manage their cognitive resources.

Finally, it is worth pointing out that, although we discussed computational psy-
chiatry and computational rationality separately, but this does not need to be the
case for empirical investigations. One could, for example, investigate rumination
(Nolen-Hoeksema et al., 2008) in depressed individuals as a non-adaptive version of
retrospective inference. Also, it has been observed that individuals with depression
tend to rely on cognitive inexpensive cognitive strategies (Huys et al., 2012), often
leading to over-generalisation (Huys et al., 2015), which can be seen as a failure in
structure learning (not generating enough clusters, on more generally not forming a
complex enough model). All this is worth exploring, and our models can be a powerful
tool to do so.

7.4 Conclusions

The work discussed in this thesis tackled some important topics within the wider
framework of the Bayesian brain hypothesis. Some studies (i.e. Chapters 4 and 5) were
more grounded on a specific theoretical framework (predictive coding), and explored
its limitations, providing augmented versions of its traditional models and testing them
on empirical data. Chapter 6 was more theoretically agnostic, but it expanded the
findings of Chapter 5 (i.e. humans can learn multimodal distributions), increasing
the complexity of the computational models deployed (i.e. adopting a non-parametric
approach and introducing retrospective inference) to study structure learning. Overall,
we believe this work represents a solid contribution to the the specific fields of predictive
coding and structure learning, as well as to the Bayesian brain framework as a whole.
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