
Time Series Classification of
Electroencephalography Data

Aiden Rushbrooke(B), Jordan Tsigarides, Saber Sami, and Anthony Bagnall

School of Computing Sciences and School of Medicine,
University of East Anglia, Norwich, UK

Aiden.Rushbrooke@uea.ac.uk

Abstract. Electroencephalography (EEG) is a non-invasive technique
used to record the electrical activity of the brain using electrodes placed
on the scalp. EEG data is commonly used for classification problems.
However, many of the current classification techniques are dataset spe-
cific and cannot be applied to EEG data problems as a whole. We propose
the use of multivariate time series classification (MTSC) algorithms as an
alternative. Our experiments show comparable accuracy to results from
standard approaches on EEG datasets on the UCR time series classifi-
cation archive without needing to perform any dataset-specific feature
selection. We also demonstrate MTSC on a new problem, classifying
those with the medical condition Fibromyalgia Syndrome (FMS) against
those without. We utilise a short-time Fast-Fourier transform method to
extract each individual EEG frequency band, finding that the theta and
alpha bands may contain discriminatory data between those with FMS
compared to those without.
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1 Introduction

The use of electroencephalography (EEG) for brain activity monitoring has 
become increasingly popular due to its high temporal resolution, non-invasive 
nature and low cost. With this has come an increased interest in the use of machine 
learning algorithms to assist in tasks involving EEG data, such as classification. 
However much of the focus has been on the processing and feature extraction steps, 
with standard classifiers being applied to derived features: a recent report found 
that 40% of studies use support vector machine or nearest-neighbour models [24]. 
Other popular methods include deep learning or linear models such as ridge classi-
fication. Whilst these models often perform well when applied to EEG tasks, they 
are often used without any adaption and require dataset specific features to be 
used. EEG datasets are multivariate time series recorded at fixed frequencies and 
often used in classification tasks. There has recently been a boom in publication 
of classification algorithms designed to be applied directly to time series from any 
problem domain [1,22]. Time series classification (TSC) aims to classify datasets 
consisting of instances of one or more dimensions containing evenly spaced time-
points, and can be applied to a wide variety of fields. For example, they have been
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successfully applied to human activity recognition, audio classification [12] and the
analysis of spectrographs [17].

TSC internalise and automate the process of feature extraction, and are based
on different types of discriminatory patterns such as repeating patterns or com-
mon segments. The most accurate approaches combine multiple representations
in an ensemble to avoid a weakness of any individual method. Our aim is to
investigate whether applying these time series specific algorithms can improve
EEG classification over standard approaches. Our contributions are to assess
a range of TSC algorithms on some archive EEG problems, identify the most
promising approaches then conduct a case study to demonstrate how TSC could
help differentiate individuals with a chronic pain medical diagnosis (Fibromyal-
gia Syndrome) based on their EEG characteristics.

The remainder of the paper is as follows. Section 2 provides background infor-
mation into EEG analysis and TSC. Section 3 describes nine EEG classification
datasets in the time series archive1 and Sect. 4 evaluates how TSC models per-
form compared to existing results on these datasets. Section 5 contains a case
study into a specific EEG dataset, looking at if TSC methods can find dis-
criminatory data between subject with and without the Fibromyalgia Syndrome
(FMS), a medical diagnosis characterised by chronic widespread pain. Finally,
Sect. 6 provides a summary of the results found and suggests some future areas
of research for further improvement.

1.1 List of Commonly Used Acronyms

EEG: Electroencephalography, a way to measure brain activity by recording
electrical signals produced by neurons.
MEG: Magnetoencephalography, similar to EEG but using magnetic fields
rather than electrical activity.
(M)TSC: (Multivariate) Time Series Classification, a form of classification
where the input data takes the form of a number of evenly spaced data points.
BCI: Brain Computer Interfacing, ways to map brain activity to an external
device, commonly using EEG.
FMS: Fibromyalgia Syndrome, a medical condition characterised by a general
feeling of generalised chronic pain.

2 Background

2.1 Electroencephalography

EEG is a technique used to measure the brain’s electrical activity. It uses elec-
trodes placed on the scalp to measure changes in voltage over time produced by
cells of the brain (neurons). EEG data is commonly used in medicine for diagno-
sis assistance, computer science for human-computer interaction and psychology
to further understand disorders such as Narcolepsy [28] or Insomnia [32].
1 https://tsc.com.

https://tsc.com
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Due to the relatively low cost of equipment, ease of use, non-invasive record-
ing method and speed, EEG has become one of the most popular and well used
brain imaging methods. Electrodes at different points on the scalp measure differ-
ent sections of the brain which are responsible for different areas of information
processing. EEG data is usually recorded at a high frequency with EEG devices
commonly recording at 1000 or more observations per second, allowing for good
temporal resolution.

EEG data can be broken down into distinct frequency bands, representing
clearly defined frequencies of neural oscillation. Usable information in EEG usu-
ally falls between the range of 1 and 50 Hz where 1 Hz represents one oscillation
per second, and can be broken up into each band using spectral analysis (includ-
ing use of Fourier Transforms). Each band related to different levels of brain
activity with the import important bands being context-specific for any given
study. The frequency ranges for these bands is provided in 1, and a example of
splitting an EEG signal into each band in 1.

Table 1. EEG band to frequency range

Band Delta Theta Alpha Beta Gamma

Frequency range(Hz) 0.5–4 4–8 8–12 12–30 30+

Fig. 1. An example of splitting an EEG signal from one channel into individual fre-
quency bands

Magnetoencephalography (MEG) is another method of measuring brain
activity similar to EEG, but measuring changes in magnetic fields rather than
the electrical current in the brain directly. MEG has better spatial resolution,
meaning it can localise more effectively, as the magnetic fields are less affected by
the skull [7]. However, MEG requires a considerable equipment infrastructure,
making it less mobile and more expensive. Therefore, EEG tends to be more
commonly used.

One of the main uses of EEG is within the clinical setting to support diag-
nosis of various neurological disorders including epilepsy. Within the context of
epilepsy diagnosis [23], EEG data is collected whilst a patient is exposed to spe-
cific sensory stimuli (such as flashing lights) or during an active seizure to look
for ‘epileptiform’ features that are indicative of abnormal electrical activity.
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Another use for EEG is to understand how the brain works and reacts to
different environments. For example, much of our current understanding on how
rapid eye movement (REM) sleep works has come from studies using EEG. EEG
is also used to further our understanding of human emotions and behaviours [27].

A growing area of use for EEG is within the brain-computer interface (BCI),
allowing the brain to communicate with an external device such as a prosthetic
limb or computer. EEG provides a simple, non-invasive method for measuring
brain activity in real-time, making it perfectly suited to mobile BCIs. One exam-
ple of an EEG-based BCI [15] demonstrated that EEG data could be used to
control a robotic quad copter in a 3D environment.

2.2 Time Series Classification

Time series classification (TSC) is a special case of traditional classification
where each instance is a time series target variable pair [1]. For multivariate
TSC (MTSC), each observation of the time series is a vector. For EEG data, an
observation at a given time point represents a vector of values for each channel.
Alternatively, a multivariate time series can be considered as a set of two or
more time series aligned in time, one for each channel. A number of different
approaches have been proposed for the MTSC task.

Distance based methods utilise distance functions to calculate similarity
between two time series, then use a classification method such as nearest neigh-
bour. One of the more popular distance calculations is Dynamic Time Warping
(DTW), which allows for a level of warping to occur between the two series
to adapt to any offset. Multivariate DTW can either be dependent (distance
calculation is pointwise over channels) or independent (distance found for each
channel then summed).

Convolution based approaches utilise convolutional kernels to create features
to be used for classification. The most popular is ROCKET [8], which uses a large
number of randomly generated kernels to find many different feature represen-
tations before applying a ridge regression classifier. ROCKET’s strength comes
from its speed, achieving high accuracy at a significantly reduced computation
time. There have also been extensions to ROCKET, such as multi-ROCKET
[30], which adds three additional features per kernel, mini-ROCKET [9], which
optimises the convolutions used, and the Arsenal [22], an ensemble of ROCKET
classifiers.

Deep learning based methods are ever increasing in popularity, and are
becoming more viable for TSC. InceptionTime [11] is generally considered the
best performing deep learning algorithm. The original InceptionTime uses an
ensemble of five Inception networks, an adaption of a residual neural network
(ResNet), although this number can be changed.

Feature based classifiers are simple pipeline approaches that extract global
summary features then apply a standard classifier. The FreshPRINCE classi-
fier [20], which combines the TSFresh transform [6] with a rotation forest [25],
was found to be the most effective combination of transform and classifier.
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Dictionary based methods, such as the Temporal Dictionary Ensemble (TDE)
[19], adapt bag-of-words approaches used in computer vision. Histograms are
formed based on the number of occurrences of discretised sub-sequences, or
words.

Shapelet based methods are based on the presence or absence of a pattern,
or shapelet. For the Shapelet Transform Classifier [4], large numbers of short
subseries are selected from the training data and their discriminatory power is
estimated. The best shapelets are retained and used to transform the data from
the time domain to vector based distance to shapelet features.

Interval based classifiers are ensemble approaches that combine summary fea-
tures from random intervals. DrCIF [21] derives Catch22 features [18] over dif-
ferent random intervals for each base classifier.

Hybrid approaches combine classifiers built on different representations. The
HIVE-COTEv2 (HC2) [22] classifier combines classifiers from the shapelet, dic-
tionary, interval and convolution domain in a heterogenious meta ensemble. HC2
is currently state of the art for MTSC.

3 Existing EEG Datasets

3.1 MTSC Archive EEG Classification Problems

There are currently nine EEG datasets in the TSML archive of TSC datasets2.
Five of the nine datasets were used in BCI competitions, while the other four
were collected from published research. A breakdown of the data characteristics
of the nine datasets is shown in Table 2.

Eyes Open Shut [26] problem is a 2 class dataset on detecting whether a subject
has open or shut eyes. One subject was recorded with both open and shut eyes
for 117 s at 128 Hz, using 14 channels. In the original paper each time point was
treated as a separate instance, equalling 128*117, or 14976 instances with 14
attributes. Their experiments found the best classification accuracy came from
instance-based methods such as kstar, with a best accuracy of around 98%.
However, their experiments contained biases through their use of k-fold cross
validation without considering the temporal ordering of the data, so results may
not be directly comparable. In the archive this dataset has been transformed
into a time series format by first removing any outliers (x> 5000 or x< 3000),
then segmenting the data into 1 s intervals of 128 observations each. 19 cases
were also removed for containing both open and shut eyes. Finally a test train
split was created, with test containing the last 21 observations.

Face Detection3 involved 16 subjects being shown either a face or a scrambled
face, with EEG data recorded. Each trial was recorded for 1.5 s from 306 chan-
nels, then down-sampled to 250 Hz and high-pass filtered at 1 Hz. Subjects 1 to
10 were used to form the training data, while 11 to 16 formed the test dataset.
2 https://www.timeseriesclassification.com.
3 https://www.kaggle.com/c/decoding-the-human-brain/data.

https://www.timeseriesclassification.com
https://www.kaggle.com/c/decoding-the-human-brain/data
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Finger Movements [3] dataset was collected by getting one subject to sit in
a standard typing position, then press keys in a self chosen order. The goal is
to predict if the next key pressed was with the subjects left or right hand. The
data was recorded in three 6 min sessions on the same day with breaks. The
data was initially recorded at 1000 Hz on 28 channels for 0.5 s, using a band pass
filter at 0.05 and 200 Hz to remove outliers. The data was then downsampled to
100 Hz, so each instance contains 50 observations. In a classification competition
using this dataset, an error rate of 16% was achieved by extracting features
using common spatial subspace decomposition and Fisher discriminant before
classifying using a neural network.

Hand Movement Direction4 dataset was gathered by having 2 subjects move
a joystick either up, down, left or right of their choosing. From this a 4 class
problem was created. For each trial the subject was given 0.75 s to move the
joystick and reach a target, then hold in position for 1 s. The data was recorded
with 10 channels at 625 Hz and band pass filtered at 0.5 and 100 Hz, then re-
sampled at 400 Hz. In a competition, the highest accuracy found was 46.9%
by first extracting various features, using a genetic algorithm to select relevant
features, then classifying using a linear SVM and LDA.

Motor Imagery [16] dataset is from an electrocorticography (ECoG) experi-
ment where a single patient was tasked with imagining moving either their left
small finger or tongue. An ECoG is placed directly on the brain rather than
externally. Each recording lasted 3 s, starting 0.5 s after a visual cue has ended,
at 1000 HzHz, and with 64 dimensions recorded. The training data was recorded
on one day, then the test data a week later. The best classification result was
91% accuracy by combining various feature extraction methods such as CSSD
and Fisher discriminant analysis, before using a linear SVM classifier.

Self Regulation SCP 1 and 2 [2] datasets are a pair of EEG datasets based
on the use of EEG data to provide a method of communication for people paral-
ysed with Amyotrophic Lateral Sclerosis (ALS) The patients were trained to
voluntarily produce positive and negative changes in their Slow Cortical Poten-
tial (SCP), which was then used to move a cursor up and down on a screen,
whilst receiving feedback. SCP 1 was recorded with a healthy patient over 2 d.
Each trial was 6 s long and a total of 268 trials were performed. The data was
sampled at 256 Hz from 6 channels with 2 classes, either positive or negative.
SCP 2 performed the same experiment, but on a subject with ALS. For this
experiment, 380 trials, 200 train and 180 test, were performed in total on the
same day, each of length 8 s with 4.5 s used. Both of the datasets were used in a
BCI classification competition. For SCP 1 the lowest error rate found was 11.3%
by first extracting features using spectral analysis, then feeding into a linear
classifier. For SCP 2 the lowest error rate was 45.6% using continuous wavelet
transform and a linear discriminant analysis classifier. However, this dataset was
found to contain very little data relevant to the classification problem.

Blink[5] dataset was formed by getting multiple subjects to blink in two second
intervals, as either short or long blinks. The data as recorded at 255 Hz with
4 http://bbci.de/competition/iv/.

http://bbci.de/competition/iv/
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4 channels. In the original dataset the trials were formed into 20 sets of 50
instances, 10 for each class. For the version used in the archive these sets have
been joined together, then split into train and test portions.

MindReading [14] involves classifying 5 different visual stimulus shown to a
participant using MEG data. The data was originally recorded at 330 Hz with 306
channels before being down-sampled to 200 Hz. Other processing steps include
low-pass filtering at 50 Hz, removing noise caused by head movements and remov-
ing likely artefacts by applying trend removal. Finally, the data was segmented
into 1 s intervals. This dataset was then given to 9 different research groups
to partake in a competition to find the best accuracy, which was 68% using a
logistic regression with the LASSO regression method.

Table 2. Description of EEG datasets in the tsml archive

Dataset Classes Channels Series Length Train Size Test Size Sample rate (Hz)

Blink 2 4 510 500 450 255

EyesOpenShut 2 14 128 56 42 128

FingerMovements 2 28 400 316 100 100

HandMovementDirection 4 10 400 160 74 400

MindReading 5 204 200 727 653 200

MotorImagery 2 64 3000 278 100 1000

SelfRegulationSCP1 2 6 896 268 293 256

SelfRegulationSCP2 2 7 1152 200 180 256

4 Results

Our experimental goal is to assess how useful TSC algorithms are for EEG classi-
fication with no hand crafting of features and no preprocessing beyond that done
automatically by band pass filtering. We perform a series of experiments using
the TSML archive data using a range of different TSC models. Due to its high
number of channels and number of time-points the FaceDetection dataset was
excluded leaving 8 datasets. 11 of the most popular and high performing classi-
fiers were used in the experiments. In each experiment the model was trained on
a training portion of the dataset, then performance measured against an unseen
test set. Experiments were performed using the aeon time series machine learn-
ing toolkit5. This was repeated on 30 resamples of each experiment to get an
average accuracy. These average accuracy scored are shown in Table 3.

Overall, ROCKET based classifiers performed the best, being the best per-
forming classifiers for 5 of the 8 datasets used in the experiment. MiniROCKET
has the best average rank (4.25), and the top three ranked classifiers are all
ROCKET based. However, for the majority of the datasets there is not a large
difference between the best and worst classifiers in terms of accuracy. These
5 https://github.com/aeon-toolkit/aeon.

https://github.com/aeon-toolkit/aeon
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results can also be compared to results found in the competitions using these
datasets, or the papers they originated from. Whilst direct comparison is not
valid due to differences in experimental methodology, it does provide a good
indication as to how well time series classifiers can perform compared to conven-
tional approaches. These comparisons are shown in Table 4.

Table 3. Accuracy scores for 11 classifiers on 8 EEG/MEG datasets. The best result
for each dataset has been underlined.
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Blink 0.998 1.000 1.000 1.000 0.997 0.998 0.999 0.991 1.000 0.946 0.998

EyesOpenShut 0.570 0.514 0.512 0.496 0.540 0.551 0.528 0.695 0.489 0.664 0.490

FingerMovements 0.581 0.576 0.577 0.550 0.553 0.557 0.548 0.564 0.530 0.546 0.541

HandMovement 0.399 0.450 0.436 0.419 0.383 0.354 0.467 0.426 0.351 0.303 0.375

MindReading 0.737 0.675 0.678 0.685 0.697 0.726 0.571 0.211 0.332 0.606 0.538

MotorImagery 0.528 0.519 0.518 0.535 0.541 0.522 0.518 0.513 0.542 0.518 0.529

SelfRegulationSCP1 0.907 0.867 0.868 0.883 0.898 0.911 0.873 0.847 0.838 0.819 0.854

SelfRegulationSCP2 0.514 0.536 0.546 0.532 0.517 0.516 0.503 0.521 0.521 0.542 0.512

Average Rank 4.25 4.625 4.75 4.9375 5.25 5.375 6.5 6.875 7.5 7.8125 8.125

Table 4. Comparison between best existing accuracy and best from our experiments

Dataset Existing results Our best result Our worst result

Blink 0.980 1.00 0.991

EyesOpenShut 0.980 0.695 0.489

FingerMovements 0.840 0.581 0.541

HandMovementDirection 0.469 0.467 0.350

MindReading 0.680 0.737 0.212

MotorImagery 0.910 0.542 0.513

SelfRegulationSCP1 0.887 0.911 0.838

SelfRegulationSCP2 0.544 0.546 0.500

For 5 of the 8 datasets used, the results found from our experiments are
comparable to the best results found in competitions or papers, with time series
classifiers performing better for Blink, MindReading and both SelfRegulation
datasets. This is with no bespoke processing: we have simply given the EEG
to the classifiers in the format provided. This suggests that at the very least,
TSC can provide a useful benchmark for more bespoke, problem specific, clas-
sification approaches. They are no panacea though: TSC algorithms performed
worse on the datasets, EyesOpenShut, FingerMovements, and MotorImagery.
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For the EyesOpenShut dataset this difference could be explained by the biases
in experimental set up in generating the original results. Poor performance on the
other two is harder to explain. It is probable that the hand crafted approaches
for these problems are genuinely discovering discriminatory features the generic
approaches cannot automatically discover. In these situations, TSC algorithms
offer the opportunity of providing a strong lower bound for performance.

5 VIPA Dataset Case Study

The VIPA study is an EEG dataset from an experiment designed to investigate
EEG characteristics in patients with chronic pain. The investigation involved
looking at how chronic pain may influence EEG data, and if virtual reality
could be utilised in chronic pain treatment. Participants with the Fibromyal-
gia Syndrome (FMS) were asked to complete various tasks in a virtual reality
environment whilst recording EEG data, with their clinical and feasibility out-
come variables being recorded before and after each task. A secondary control
experiment was completed on subjects without FMS (healthy controls).

For subjects with and without FMS, eyes-closed resting state data was col-
lected at baseline (before any tasks were undertaken). The resulting dataset
consisted of 27 individuals with FMS and 14 healthy controls. The data con-
sisted of 64 EEG channels and 3 non-EEG channels (accelerometers), with 58091
time-points recorded at 500 Hz, representing slightly more than 116 s. As each
recording lasted slightly different amounts of time, each was truncated to the
shortest signal so that all 41 were of equal length.

We have defined a classification problem within this dataset related to the
diagnosis of FMS, but this is not the ultimate use case we envisage will be
important for classifiers built on FMS EEG data. We are interested in exploring
whether we can give insight into the best way to treat FMS using, for exam-
ple, emerging digital tools such as virtual reality. There is conflicting evidence
regarding EEG-based ’biomarkers’ in FMS with studies outlining the importance
of the theta [10], alpha [31] and beta [13] bands. These studies mainly focus on
the frequency domain alone and average data from across the entire electrode
array over the total recording time. There is a lack of research investigating
changes in EEG microstates and looking more carefully at changes in oscillatory
information over time. We hypothesise that achieving improved classification of
FMS patients based on alterations in particular frequency bands will support
the ability to more closely define these alterations, leading to biomarkers of the
future. Ultimately, our follow-on work will explore these potential biomarkers.

We construct classifiers on the full data, and for each individual band. Each
channel is transformed independently into a bandwidth using standard method-
ology. A short-time fast Fourier transform (STFT) [29] method was used to
extract individual bands. A one second overlapping sliding window was passed
over the raw EEG signal, applying a Fourier transform and extracting an approx-
imation of the absolute power for each band in each window using Simpson’s rule.
From this, five new multivariate time series can be extracted, each showing how
the band differs over time.
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Table 5. Accuracy comparing raw data to individual frequency bands

Experiment Mini-ROCKET ROCKET Arsenal

Raw data 0.512 0.584 0.584

Delta 0.512 0.61 0.756

Theta 0.707 0.634 0.634

Alpha 0.707 0.634 0.683

Beta 0.634 0.61 0.659

Gamma 0.61 0.683 0.634

Ensemble 0.610 0.634 0.683

Due to the small number of subjects for each class, and to avoid any bias,
a leave one subject out strategy was employed in each experiment. All but one
subject were used to train the model, then the remaining subject was used as a
test case. This was then repeated for each subject in the study, training a new
model in each cross validation. The predicted class is then compared against the
true class, and an overall accuracy calculated. This was done for the raw EEG
data, each band, and an ensemble of all five bands, where the predicted class
is the average prediction for each band. We have done no other pre-processing,
such as artefact removal or data validation.

Based on the results presented in Sect. 4 and the relatively large size of the
data set, the three top ranked ROCKET classifiers were selected for experiments.
The accuracy scores over all subjects are displayed in Table 5. Given the very
small sample size and the absence of any preprocessing, we believe these results
are promising. Firstly, higher accuracy is generally observed when using any
of the 5 frequency bands compared to the raw data. It can also been seen that,
aside from the likely outlier for Arsenal with the delta band, accuracy was highest
when using the theta and alpha bands. This suggests that important information
for EEG classification can be found within the frequency domain, and that time-
frequency analysis would likely be the best approach for EEG analysis. It offers
some supporting evidence to the importance of alpha [31] and theta [10] bands
being discriminatory for FMS. A contingency table for mini-ROCKET on the
theta and alpha bands are shown in Tables 6a and 6b. False negatives are more
common than false positives, and this could be due to the imbalance in the data
towards individuals with FMS.

Table 6. Contingency tables for two EEG bands

(a) mini-ROCKET theta band

True pos True negative

Predicted positive 23 8

Predicted negative 4 6

(b) mini-ROCKET alpha band

True pos True negative

Predicted positive 22 7

Predicted negative 5 7

We also formed a naive ensemble over all five bands. Whilst it still performed
better than classifiers built on the raw data, it was also notably worse than all



Time Series Classification of EEG 611

the individual bands except for mini-ROCKET with delta. This implies that
only a minority of bands contain useful information for FMS classification, and
so a weighting system would be required to find which bands are most useful.

6 Conclusion

The aim of this study was to show whether time series classification models can
usefully be applied to EEG problems. We have shown that not only can these
models work well for EEG data, but can do so without needing any dataset-
specific feature selection. The experiments on the datasets in the UCR time
series archive showed that for 5 of the 8 datasets used, TSC models matched
or exceeded results found in competitions involving these datasets. ROCKET
based classifiers performed particularly well on these datasets. However, for 2
datasets our results were significantly worse than other studies, indicating that a
generalised approach may still need some considerations before becoming viable
for all EEG problems. We have also demonstrated the use of TSC models on a
new EEG problem, discriminating individuals with a diagnosis of Fibromyalgia.
Our findings show that time-frequency analysis increases accuracy over the time
domain alone, with the alpha and theta bands the most discriminatory in FMS.

Whilst the results of the experiments performed do show that time series
classifiers have potential, more testing on a larger variety of EEG datasets would
need to be performed before any full conclusions can be drawn. This approach
also has a significant drawback from an increased training time due to the size
of raw EEG data. However, we believe that this could be avoided through the
use of channel selection algorithms and automated processing techniques.
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