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Abstract

The technical challenges for model updating of real marine engineering structures include the extraction of modal

parameters associated with incomplete measurement information and the correction of a large number of structural

parameters. As it is difficult to verify the effectiveness of model updating methods for engineering applications, the

representative models have to be adopted in finite element (FE) analysis or lab-scale tests, leading to the incomplete

reflection of actual structural performances. Based on these factors, a practical model updating method is developed

in this study to make full use of field measurement data from a 4MW offshore wind turbine for the accurate estimation

of structural parameters using the random balance designs-Fourier amplitude sensitivity test (RBD-FAST) strategy

and an improved particle swarm optimization (IPSO). Leveraging the measured acceleration signals from offshore

wind turbines under the conditions including operation, shutdown, collision and typhoon scenarios, the complex

exponential decomposition method is applied to accurately extract the time-varying acceleration components (TVAC)

for the construction of the frequency response function (FRF). Following that, RBD-FAST is implemented into IPSO

with adaptive inertia weights and asynchronously varying learning factors to enable efficient selection of numerous

updated physical parameters, thus improving time cost and computational accuracy. The correctness of the proposed

method is verified by a numerical jacket platform model. Furthermore, the 4MW offshore wind turbine benchmark is

developed to assess the feasibility of the proposed model updating method using field measured data from different

scenarios. Results show that the synergy of RBD-FAST and IPSO in the proposed method can accurately update

parameters and minimize a maximum discrepancy of 0.8970% for the first-three orders of natural frequencies between

the benchmark and the updated models in the collision scenario. Summarily, the present work provides a potential

technique and practical engineering references for model updating of offshore wind turbines subject to harsh marine

environments.
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Nomenclature pi Input parameters

ālr Amplitude of normalized TVAC P , Pg
Local and global optima

of the particles

Aj , Bj Coefficients of Fourier series sσr Random permutation vector

c1, c2 Learning factors SAC Signature assurance criterion

C0, C∗
Global damping matrices of

reference and benchmark models
Si First-order sensitivity index

D Total variance T Transpose of matrices

fc, favg , fmin
Current, mean and minimum

values of all particles
u Displacement vector

f Excitation vector v Velocity of the particles

Fc Cost function x Position of the particles

Gi Transformation function y Model output

Hpl
a∗ Acceleration FRF Y (sj) Amplitude of Fourier transform

I Identity matrices αr, βr, γr
Variation coefficients of mass,

stiffness and damping

J Imaginary unit Λj Mode of Fourier series

k Number of input parameters Cranking Ranked variation coefficients

K0, K∗
Global siffness matrices of

reference and benchmark models
φi Random phase-shift

M Interference factor φlr Mode shapes

M0, M∗
Global mass matrices of

reference and benchmark models
ωi Harmonic frequency

N Sample size ω̂ Inertia weight

Na Number of degrees of freedom ω̂max , ω̂min
Maximum and minimum values

of the inertia weight

Nm Number of sensors
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1. Introduction

Model updating of offshore structures is critically important to eliminate differences in physical parameters caused

by designs, constructions, corrosion, ageing and adhesions of sea life. In general, model updating methods for off-

shore structures have relied on numerical [1] or small-scale experimental models [2], which only provide the virtual

and simplified references. As compared to the above methods, the model updating approaches based on field mea-

sured data reflecting complex loads and structural prototypes have become the future trend, as the corrected results

have the ability to demonstrate the real physical characteristics well. However, the applications of field-based model

updating methods have rarely been investigated due to noise interference [3], unstable loads boundary conditions [4],

incomplete measurement information [5], and dynamically changing structures [6, 7] under complex marine environ-

ments. Although such challenges exist, the pursuit of high-fidelity model updating based on limited field data has still

received increasingly attention.

Model updating methods can be divided into matrix-type and parameter-type methods according to the target

object. The matrix-based method was first investigated by Berman [8, 9] and Baruch [10, 11], and the FE model was

updated with the stiffness and mass matrices of structures. In these approaches, the model was updated by weighting

the Euclidean sense, and direct and iterative computing forms were defined and discussed. However, original banding

and sparse characteristics of the mass and stiffness matrices were no longer maintained due to insufficient constraints.

As compared to the matrix-based method, updating parameters including material density, modulus of elasticity and

geometry of the structure, etc., in the parameter-type updating method have the clearer physical meaning owing to the

direct reflection of structural properties. Furthermore, the corrected parameters can also be the submatrices, which

described real subsystems and assembly of interface elements of subsystems [12]. Then the experimental model was

obtained by multiplying submatrices units of the mass and stiffness matrices with the correction factors.

The parameter-type method normally transforms the model updating into an optimization problem accompanied

by the selection of the objective function, the calculation of sensitivity and the iteration of the correction parameters.

In the optimization process, the objective function constructed from the modal parameters is extremely important

to ensure the accuracy of the results [13–15]. With the development of modal parameter identification technique,

the natural frequency [16], mode shape [17] and mode shape curvature [18, 19] of structures have been effectively

extracted based on the structural vibration signal. Naranjo-Perez et al. [20] improved the FE model updating for

civil engineering structures by collaborative machine learning-optimization algorithms based on established multiple

objective functions related to natural frequencies and vibration modes. Tiwary et al. [21] explored the effective

dimensionality of the model updating problem using Causal Bayesian Optimization. The obtained mode shapes

between experimental and predicted models were also compared using modal assurance criterion (MAC) percentages.

However, during the service life of offshore structures, the environmental loads are complex and varied, and vibration

monitoring data is insufficient and easily disturbed by noise, making the identification of modal parameters difficult.

Moreover, studies indicated that only limited low-order modal information could be extracted from the measured

vibration signals of structures, and the identification of high-order modal parameters was not accurate [22]. As

compared to the modal parameters, the FRF obtained by experimental testing was less sensitive to measurement errors

and more sensitive to variations of structural parameters [23]. Therefore, the FRF for model updating effectively
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reduced errors that caused by modal parameter identification and model reduction [24]. Moreover, multiple FRF

curves were constructed in use of a finite number of vibration monitoring locations and sufficient information was

provided due to their wide frequency ranges [25, 26]. Based on these advantages of FRFs, the pathological problem

of the matrix due to the number of equations constructed being smaller than that of the correction parameters was

also solved. Wang et al. [27] proposed a model updating method based on the acceleration FRF to improve the

computational efficiency by introducing the Kriging model as a metamodel in the optimization process. Prendergast

et al. [28] determined the mobilised soil stiffness and mass profiles by the iterative updating of two experimental piles.

In the developed approach, the FRF in objective functions were obtained from an impact test performed on a test pile.

Fathi et al. [5] investigated a new Bayesian model updating framework using incomplete FRF data. Authors claimed

that the incomplete measurements issue was addressed by using FRF at different excitation frequencies to increase

the number of data in the objective function.

Although great progress on the parameter-type updating methods has been made, there are still some limitations

to be addressed. For example, the sensitivity calculations are complicated and time-consuming to update numerous

parameters in the engineering applications using parameter-based methods. To improve the stability and efficiency

of the model updating process, the Sobol sensitivity analysis method was applied to determine the important modal

parameters [29]. Zhong and Chen [30] performed the Sobol global sensitivity analysis for the hybrid model updating in

order to obtain sensitivity indices of parameters that change with time. Similarly, sensitivity analysis techniques such

as Fourier amplitude sensitivity test (FAST) and Random balance designs (RBD)-FAST [31, 32] were used to identify

main influencing factors in the model. Furthermore, the assumptions and performance of the function-weighted FRF

sensitivities were investigated [33]. Zhu et al. [34] proposed a frequency-domain nonlinear model updating method

based on analytical sensitivity, which can significantly reduce the time for iterations in model updating process. These

advanced studies have shown that the parameter selection of model updating using the sensitivity analysis is crucial

to reduce the time costs of model updating.

In this paper, a novel hybrid approach to the synergy of RBD-FAST and intelligent IPSO has been proposed for

model updating with numerous parameters using the on-site measured data from the 4MW offshore wind turbine under

multiple service conditions. The completeness of the extracted modal features has been improved by the combination

of the TVAC and theoretical mode shapes. The paper has been organized as follows: Section 2 has provided a detailed

mathematical description of the underlying theory of FAST, along with a discussion of its limitations. In Section 3, the

theoretical derivation of the RBD-FAST based IPSO by incorporating the TVAC with theoretical mode shapes has been

carried out. In Section 4, the correctness of the proposed approach has been demonstrated by numerical examples of

the jacket platform model. In Section 5, the feasibility of the proposed model updating approach has been investigated

using the measured acceleration data from a 4MW offshore wind turbine benchmark. Finally, potential research on

model updating of marine engineering structures using the proposed method has been summarized in Section 6.

2. Preliminary of sensitivity analysis

As evaluating the effects of all input parameters on the high-dimensional parametric system is complicated and

time-consuming, it is necessary to identify the key input variables through sensitivity analysis. The Fourier amplitude

4



sensitivity test (FAST) has demonstrated the ability to determine the first-order sensitivity of different input parameters

for quantifying the respective importance of input factors. Suppose the number k of input parameters in the model

space are p1, p2, p3, · · · , pk and the output y can be defined in a form of Eq. (1) as follows:

y = f(p) = f (p1, p2, · · · , pk) (1)

Firstly, the transformation function Gi is introduced to parameterize pi: pi (sj) = Gi (sin (ωisj + φi)) , i = 1, 2, . . . , k

sj = −π + 2jπ
N , j = 1, 2, . . . , N

(2)

where ωi represents the harmonic frequency for the ith input parameter, φi means a random phase-shift andN denotes

the sample size.

First-order sensitivity index Si for the parameter pi based on the variance calculation can be defined as:
Si = Vi

V =
∑M

n=1 Λnωi∑N/2
n=1 Λn

Λn = 1
N2Y (sj)

2

({∑N
j=1 cos (nsj)

}2

+
{∑N

j=1 sin (nsj)
}2
) (3)

where Vi is the variance corresponding to the parameter pi and V denotes the total variance. M represents the

predefined integer called the interference factor, Λnωi
means the mode of Fourier series for the ith input parameter at

the harmonics of ωi, and Y (sj) is the corresponding amplitude of Fourier transform of the output signal y (sj).

As the maximum harmonic frequency is proportional to the number of input factors k shown in Eq. (2), the

computational cost of sensitivity analysis remains prohibitive for the complex structures, which limits the engineering

application of the FAST method.

3. The developed sensitivity-based optimization method

The dynamic behavior of the FE model for marine engineering structures with the Na degrees of freedom is

governed by a set of differential equations. The excitation vector f(t) and the corresponding displacement vector u(t)

in Eq. (4) are defined as the input and output of the dynamic system, respectively.

M∗ (αr) ü(t) + K∗ (βr)u(t) + C∗ (γr) u̇(t) = f(t) (4)

where M∗ (αr) , K∗ (βr) and C∗ (γr) ∈ RNa×Na represent the global mass, stiffness and damping matrices of the

benchmark model1, respectively.

Subsequently, the global matrices can be defined in the form of submatrices and variation coefficients αr, βr and

γr as follows:
M∗ (αr) = M0 +

∑Na

r=1 αrMr

K∗ (βr) = K0 +
∑Na

r=1 βrKr

C∗ (γr) = C0 +
∑Na

r=1 γrCr

(5)

1Actual marine engineering structures or actual objects for model updating
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where M0, K0 andC0 represent the global mass, stiffness and damping matrices of the reference model, respectively.

Mr ,Kr and Cr denote the rth mass, stiffness and damping submatrices of the element for the reference model,

respectively.

3.1. Optimized cost function based on TVAC

Model updating could essentially be translated into an optimization problem of the correction parameters by

minimizing the discrepancy between the measured and calculated data in the cost function. In practical engineering

applications, it is difficult to accurately obtain modal parameters of marine structures for the cost function due to the

severe marine environments and the limitation on the number of sensors. As the complex exponential method has the

ability to effectively eliminate the influence of factors, such as loads and noise, on structural vibration responses, the

TVAC corresponding to structural characteristics can be accurately extracted from the measured accelerations [35].

Furthermore, the TVAC is normalized to construct the acceleration FRF Hpl
a∗(ω) in Eq. (6), which representing the

relationship between the load point l and the response point p.

Hpl
a∗(ω) =

Na∑
r=1

−ω2ālrāpr
−Mr∗ω2 + JCr∗ω +Kr∗

(6)

where ālr and āpr are amplitudes of the lth and pth elements in the rth normalized TVAC, respectively. J means the

imaginary unit.

It is noted that incomplete measurements are unavoidable due to the difficulty in extracting higher order mode

shapes to construct the FRFs of marine structures. Therefore, a complete library of modal shapes has been established

to address the challenge of incompleteness of the measured FRFs in this study. More specifically, the lower order

modal features are extracted by normalizing the TVAC of the benchmark model, while the higher order modal shapes

are obtained from the theoretical analysis of the reference model. The acceleration FRFs of the benchmark model can

be rewritten as:

Ĥpl
a∗(ω) ∼=

Nm∑
r=1

−ω2ālrāpr
−Mr∗ω2 + jaCr∗ω +Kr∗

+

Na∑
r=Nm+1

−ω2φlrφpr
−Mr∗ω2 + jaCr∗ω +Kr∗

(7)

where Nm is the number of degrees of freedom for sensors mounted on the structure. φlr and φpr are the rth mode

shapes at the element l and element p, respectively.

Substituting Eq. (5) into Eq. (7) and ignoring the update of the damping property, one has:

Ĥpl
a∗ (αr, βr, ω) ∼=

Nm∑
r=1

−ω2ālrāpr
(M0 + αrMr)ω2 + (K0 + βrKr) + ja (C0)ω

+

Na∑
r=Nm+1

−ω2φlrφpr
− (M0 + αrMr)ω2 + (K0 + βrKr) + ja (C0)

(8)

To establish the correlation of the FRFs between the benchmark and reference models, the signature assurance

criterion (SAC) of Hpl
a (ω) for the offshore structures is defined by Eq. (9):

SACpl (αr, βr) =

(∣∣∣∣{Ĥpl
a∗ (αr, βr, ω)

}T {
Hpl
a (ω)

}∣∣∣∣)2

({
Ĥpl
a∗ (αr, βr, ω)

}T {
Ĥpl
a∗ (αr, βr, ω)

})({
Hpl
a (ω)

}T {
Hpl
a (ω)

}) (9)
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where the symbol T represents the transpose of the matrix.

Similarly, the SAC matrix of FRFs Ha(ω) for the marine structure can be expressed as follows:

SAC (αr,βr) =


SAC11 (αr, βr) SAC12 (αr, βr) · · · SAC1Na

(αr, βr)

SAC21 (αr, βr) SAC22 (αr, βr) · · · SAC2Na
(αr, βr)

. . . · · · · · · · · ·
SACNa1 (αr, βr) SACNa2 (αr, βr) · · · SACNaNa (αr, βr)

 (10)

Based on the SAC matrix and the natural frequencies, the cost function for evaluating the discrepancy between the

benchmark and reference models can be formulated by Eq. (11).

Fc =

{
Nm∑
r=1

(I− SAC (αr,βr))

}
+

{
Nm∑
r=1

|ωr (αr, βr)− ωr∗ |
ωr (αr, βr)

}
(11)

where ωr∗ and ωr (αr, βr) are natural frequencies of the benchmark and reference models, respectively. I ∈ RNa×Na

is the identity matrix.

3.2. Improved particle swarm optimization (IPSO)

Particle swarm optimization has the power to find the global optimal solution by simply adjusting the trajectory

of each individual to its own optimal position and the optimal particle of the entire swarm [36]. For a Na dimensional

search space, the position x and velocity v of the particle at t to t + 1 iterations can be determined by Eq. (12),

assuming no change in the damping coefficients.

x(t) v(t) x(t+ 1) v(t+ 1)
αx1(t)

αx2(t)
...

αxNa
(t)




αv1(t)

αv2(t)
...

αvNa
(t)

⇒


αx1(t+ 1)

αx2(t+ 1)
...

αxNa
(t+ 1)




αv1(t+ 1)

αv2(t+ 1)
...

αvNa
(t+ 1)




βx1 (t)

βx2 (t)
...

βxNa
(t)




βv1 (t)

βv2 (t)
...

βvNa
(t)

⇒


βx1 (t+ 1)

βx2 (t+ 1)
...

βxNa
(t+ 1)




βv1 (t+ 1)

βv2 (t+ 1)
...

βvNa
(t+ 1)



(12)

In the t+ 1th iteration, the update of the particle position and velocity can be defined as: x(t+ 1) = x(t) + v(t+ 1)

v(t+ 1) = ω̂v(t) + c1(P − x(t)) + c2 (Pg − x(t))
(13)

where ω̂ represents the inertia weight. c1 and c2 are the learning factors. P and Pg denote the local and global optima

of the particles in the tth iteration, respectively.

The local and global optimality of the particles are influenced by the inertia weight ω̂. The perturbation of the

particle trajectory by the empirical information between the particle itself and other particles depends on the learning
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factors c1 and c2, respectively. The balance between global and local search can be achieved by dynamically changing

inertia weights, which are defined as:

ω̂ =

 ω̂min − (ω̂max−ω̂min )∗(fc−fmin )
favg−fmin

, fc 6 favg

ω̂max , fc > favg

(14)

where ω̂max and ω̂min represent the maximum and minimum values of the inertia weight, respectively. fc, favg and

fmin represent the current, mean and minimum values of all particles, respectively.

To achieve dynamic learning capability, asynchronously varying learning factors have been introduced into the

PSO. Initially, the particles have been endowed with the values representing the great self-learning ability and weak

social learning ability, leading to the enhanced global search capacity. Then, the greater social learning ability and

weaker self-learning capacity that have facilitated the convergence to the global optimum, have been assigned to the

particles. The formulas for the asynchronously variation of learning factors have been defined as follows: c1 = c1,ini +
c1,fin−c1,ini

tmax
∗ t

c2 = c2,imi +
c2,fin−c2,imi

tmax
∗ t

(15)

where c1,ini and c2,ini represent the initial values of c1 and c2, respectively. c1,fin and c1,fin are the final values of

learning factors and tmax denotes the maximum number of iteration.

3.3. Parameter sensitivity analysis based on RBD-FAST

In IPSO method introduced in Section 3.2, the selection of updated parameters is critically important and influ-

ences the accuracy of optimal results. Therefore, the strategy for parameter sensitivity analysis using RBD-FAST has

been developed. Based on Eq. (11), the cost function, the cost function Fc can be defined as a function of variation

coefficients:

Fc = f (α1, α2, · · · , αNa
, β1, β2, · · · , βNa

) (16)

According to Eq. (2), the parameterized αr and βr are formulated by Eq. (17):

[αr (sj) , βr (sj)] = Gr (sin (ωrsj + φr)) , r = 1, 2, . . . , Na (17)

To reduce the computational cost in solving Eq. (2), ωr has been assigned the predefined value of ω and the input

variables have been distinguished by a random permutation of the sampling point coordinates by RBD. Thus, αr and

βr can be rewritten as:

[αr (sσr) , βr (sσr)] = Gr (sin (ωsσr)) , r = 1, 2, . . . , Na (18)

where sσr is the rth random permutation vector distributed over the vector spaces from−π to π with N equally distant

sampling points.
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Furthermore, the model output Fc(sσr) corresponding to the randomly permutated vector sσr has been calculate

and reordered such that the sampling points are in increasing order with respect to the initial variation coefficients.

Then, the reorder output Fc(sσr) can be expanded by Fourier series as follows:
Fc(sσr) =

∑j=N
j=−N {Aj cos jsσr +Bj sin jsσr}

Aj = 1
N

∑N
j=1 cos (jsσr)Fc(sσr)

Bj = 1
N

∑N
j=1 sin (jsσr)Fc(sσr)

(19)

where Aj and Bj denote coefficients determined by Fourier series.

Subsequently, the magnitude of Fourier series Λj at the jth sampling point can be expressed as:

Λj = 1/2
(
A2
j +B2

j

)
(20)

The variance Dr of the rth parameter and the total variance D can be formulated as: Dr =
∑M
n=1 Λnw

D =
∑N/2
n=1 Λn

(21)

Finally, the first-order sensitivity index Ŝr of variation coefficients can be calculated by Eq. (22).

Ŝr = Dr/D (22)

The detailed procedure to perform RFD-FAST for the calculation of the first-order sensitivity index of each varia-

tion coefficients has been described as follows:

Step 1: Random permutation vector sσr is selected in the vector space with N equally distant sampling points.

Step 2: To calculate the variation coefficients αr (sσr) and βr (sσr) using the same frequency ω.

Step 3: To shuffle the variation coefficients αr (sσr) and βr (sσr) , calculate and reorder the output Fc(sσr).

Step 4: To compute the first-order sensitivity index Ŝr using Eqs. (20 ∼ 22).

Summarily, a flowchart of model updating illustrating the proposed approach to the synergy of RFD-FAST and

IPSO is provided in Fig. 1.
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Reference model Benchmark  model

Designating variation 

coefficients α, β 

Sensitivity analysis 

based on RBD-FAST

Evaluation of  first-order 

sensitivity index

Acquiring acceleration signals

Extracting the TVAC and 

natural frequencies

 Complex exponential

 decomposition

Determination of key 

update parameters

Construction of the 

cost function

The synergy of RBD-

FAST and IPSO

 Updating of the 

 FEM model

Optimal variation 

coefficients

 Maximum Iteration

    IPSO   
 Adaptive inertia weights

 Asynchronously varying 

    learning factors

Yes

No

FEM analysis to achieve 

natural frequencies and FRFs

Determination of the 

updated FEM model

Validating the accuracy of 

the updated model

Fig. 1: Flowchart of model updating.

4. Numerical study of a jacket platform

To demonstrate the correctness and effectiveness of the synergy of RBD-FAST and intelligent IPSO in the pro-

posed method, the numerical example of a jacket platform has been developed for this study. The numerical model

established in MATLAB 2016a is composed of 48 elements, and the node of each element includes 3 translational

and 3 rotational degrees of freedom. The dimensions including the model height, the length and width of top and bot-

tom rectangular frames are 21.5m, 10.22m, 7.22m, 14.52m and 11.52m, respectively. The leg members of the jacket

platform at 6m below the sea level are fully fixed. The Young’s modulus, Poisson’s ratio and density of the structure

are 2.1 × 1011 Pa, 0.3 and 7850 kg/m3, respectively. To generate the damage model of the jacket platform, five bars

labeled as 29, 31, 42, 44 and 48 have been preset to represent the stiffness damage as shown in Fig. 2(b). Meanwhile,

three bars labeled as 17, 20 and 21 have been expected for the mass update. During the model updating, the intact

jacket platform as the reference model has been used to measure the degree of damage for the preset ’unhealthy’

model.
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(a) (b)

Fig. 2: The jacket platform model: (a) The intact jacket platform model, (b) The damaged jacket platform model.

4.1. Frequency selection strategy of FRFs

Based on the modal parameters of the developed jacket platform, the FRFs at different locations of the model

have been calculated. Also, a large number of frequency points with the FRF values can be used as reference data to

construct the cost function for model updating. However, Kwon et al. [37, 38] indicated that some of frequency ranges

were considered redundant for model updating. In the present study, the certain rules have been applied to constrain

the frequency range selection based on the existing rules: (i) The frequencies around the resonance were selected due

to the high sensitivity to the parameter variations of structures [26]. (ii) As the damping-induced FRFs amplitudes

were highly attenuated away from the resonant region [39], the frequencies sufficiently far from the resonance were

selected. (iii) To obtain a monotonic decrease of the response residual vector during the optimization process, the

frequencies outside the region between the theoretical and measured resonances were selected for model updating

[25]. The aforementioned observations have enabled an effective selection of the frequency range to guarantee the

convergence of the optimization algorithm. Fig. 3 has shown an example of the frequency range selection for the

calculations of acceleration FRF between the load at Point 12 and the response at Point 1 of the jacket platform model

under the consideration of the above rules.
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Fig. 3: Frequency range selection of the FRF.

4.2. Synergy of RBD-FAST and IPSO for model updating

Following the mathematical derivation in Section 3.3, sensitivity analysis of the variation coefficients using the

RBD-FAST method has been conducted to determine the key parameters for the updating. As shown in Fig. 4, the

remarkable difference of the first-order sensitivity between the stiffness and mass variation coefficients of the jacket

platform model has been observed. It has been noted that the highest sensitivity index of stiffness variation coefficients

is larger than that of mass variation coefficients by 39.04%. It has been also observed that the high sensitivity indices

of stiffness variation coefficients are clustered in the vicinity of the elements labelled as 31 and 48, which represents

the bars at the bottom of the jacket platform. Furthermore, results have demonstrated that the deteriorated stiffness

near the fixture has caused the noticeable variations of the cost function in Eq. (11), where the structural natural

frequencies and the SACs of FRFs have been formulated.
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Fig. 4: First-order sensitivity of variation coefficients for the jacket platform: (a) Stiffness variation coefficients, (b) Mass variation coefficients.

In order to achieve a well-balanced between the time cost and convergence of the global optimization process, the

variation coefficients of the elements have been ranked from lowest to highest according to the sensitivity index values

calculated by RBD-FAST, and the last twenty ranked variation coefficients have been selected as the key parameters

for the model updating. The remaining parameters have been ignored for the updating due to the assumption that no

12



damage has occurred. In the entire optimization process, the population size and number of iterations for the IPSO

algorithm have been set as 500 and 100, respectively. The other parameters configuration of the IPSO method has

been shown in Table. 1. The optimization results by the synergy of RBD-FAST and IPSO have been shown in Fig.

5. It can be observed that the proposed method has the capability to obtain the correct variation coefficients during

the updating process, as results have been in good agreement with the theoretical values of the preset damage in the

jacket platform. Therefore, the accuracy and effectiveness of the sensitivity-assisted IPSO for model updating have

been validated.

Table 1: Parameters configuration of the IPSO method.

Inertia weight

Maximum value

(ω̂max )

Minimum value

(ω̂min )

0.9 0.4

Learning factors

Initial values

(c1,ini and c2,ini)

Final values

(c1,fin and c2,fin)

0.5 and 0.6 2.5

0

0.2

0.4

0.6

α
r

Updated model
Damaged model

0 2 4 6 8 10 12 14 16 18 20
Element number

-0.5

0

β
r

Fig. 5: The updated variation coefficients for the jacket platform.

5. Model updating of the 4 MW offshore wind turbine benchmark

In this section, the field data from the 4MW offshore wind turbine benchmark under various working conditions

has been explored to extract the time-varying acceleration components (TVAC) for the construction of mode shapes.

Furthermore, the feasibility of the proposed method for model updating of the 4MW offshore wind turbine benchmark

has been validated. Finally, the remarkable advantages of the synergy of RBD-FAST and IPSO including the accuracy,

stability, and computational efficiency have been comprehensively discussed and concluded.
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5.1. Field testing of the 4MW offshore wind turbine benchmark

To verify the effectiveness of the proposed method in solving the practical engineering problems, the field test

has been conducted on the 4MW offshore wind turbine benchmark called 37#OWT (N32◦50′, E121◦31′), which has

been located approximately 44 km off the coast of Rudong, Jiangsu Province. Five 3-axis MEMS (Micro Electro

Mechanical Systems) acceleration sensors used for signal measurement have been mounted on the inner wall of the

tower in Fig. 6 at different heights of 13m (Level 1), 25m (Level 2), 58m (Level 3), 79m (Level 4) and 93m (Level

5), respectively. The vibration signals measured by acceleration sensors have been acquired using the CANSAS-SC8I

data acquisition instrument (IMC, Germany) with a sampling interval of 0.005s.

Level 1

Level 5

Level 4

Level 3

Level 2

Acceleration Sensor

Horizontal view

Level 5

32°50   N  

121°31 E

Farm Location

China 

Yellow Sea

Rudong, Jiangsu 

Province

China

Fig. 6: The layout of acceleration sensors for the 37#OWT in the field testing.

In order to better differentiate the acceleration signals obtained, it is necessary to classify the service conditions,

in which the 4MW offshore wind turbine benchmark has worked in the field test. Based on the supervisory control

data acquisition (SCADA) system that has the ability to accurately describe operating conditions of the rotor, four

types of scenarios have been clearly developed, including normal operating scenario (Scenario I), shutdown scenario

(Scenario II), ship collision scenario (Scenario III) and typhoon scenario (Scenario IV) in Fig. 7.
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Fig. 7: The classification of service scenarios for 37#OWT.

Taking the point at Level 1 as an example, the measured horizontal acceleration signals in the normal operating

and ship collision scenarios have been shown in Fig. 8.
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Fig. 8: Measured acceleration signals at Level 1: (a) Normal operating scenario in time domain , (b) Normal operating scenario in frequency

domain, (c) Ship collision scenario in time domain, (d) Ship collision scenario in frequency domain.

The acceleration amplitude extracted in the normal operating scenario has been averagely higher as compared

to that obtained in the ship collision scenario as shown in Fig. 8(a), indicating that the vibration response has been

stronger under the combined action from wind, waves and aerodynamic loads in the normal operating scenario. When

the collision has occurred, the acceleration response has reached the maximum amplitude of 0.0187g within the first

2s and then has decayed rapidly shown in Fig. 8(c). As the acceleration amplitude has reached its trough, it has noted

that aerodynamic loads acting on blades has been weakened by the downward pitch. Usually, the energy of a signal

in the frequency domain has been distributed with frequency, indicating the critical information of the system and

structural loads. By the comparison of results in Fig. 8(b), more prominent peaks have been observed in Fig. 8(d)

and more effective modal characteristics about the 37#OWT have been represented in the ship collision scenario. It

has been also noted that the energy of the acceleration response is more prone to be affected by noise due to the low

ratio of the signal to the interference plus noise in the normal operating scenario. As the shutdown has eliminated the

mechanical disturbance of the blades to the tower, the vibration signals containing little noise have been obtained in

the collision scenario in Fig. 8(d).

16



5.2. Model updating based on measured data

As discussed in Section 3.1, the TVAC that can be used to construct the acceleration FRFs have been the key step

in developing the mathematical formulation of the cost function. It is vital to accurately extract the TVAC, which

has been seen as the crucial indicators for evaluating the real state of structures. As shown in Fig. 9, the TVAC has

represented the variation of structural vibration characteristics with time, and the first-two orders normalized TVAC

of 37#OWT also has achieved a good agreement with the theoretical mode shapes. Furthermore, the discrepancy

of different normalized TVAC has been illustrated in Fig. 10. As the ambient load excitation is small, only the

first-order normalized TVAC of the structures in the shutdown scenario has been extracted. Under the collision and

typhoon working conditions, the first-three orders normalized TVAC of 37#OWT has been provided due to the intense

excitation forces.
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Fig. 9: The TVAC in the normal operating scenario: (a) 1-st TVAC, (b) 2-nd TVAC.
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Fig. 10: The number of normalized TVAC.

The comparison results of the obtained first-order normalized TVAC considering various rotor speeds and working

conditions have been shown in Fig. 11, demonstrating the time-varying performance of the 4MW offshore wind

turbine benchmark. It has been worthy of noting that the discrepancy of results on the first-order normalized TVAC
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has been increased in the different scenarios as compared with that obtained by different rotational speeds, indicating

the stronger sensitivity of structural variations to service working conditions over the rotor speeds. In summary, the

above results have demonstrated effectiveness and accuracy of the extracted the TVAC from acceleration signals for

model updating.
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Fig. 11: Comparison results of the first-order normalized TVAC: (a) Slightly varying rotational speeds, (b) Multiple scenarios.

To determine key parameters of the 4MW offshore wind turbine benchmark during the updating process, the RBD-

FAST method has been used to analyze the sensitivity of stiffness and mass variation coefficients. It has been worth

mentioning that in the reference model of 37#OWT, as 53 beam elements modelled by ABAQUS have been used, there

have been 106 variation coefficients for sensitivity analysis to be determined. In Fig. 12, the first-order sensitivity of

variation coefficients for different elements has been provided. The higher sensitivity index value of stiffness variation

coefficients has been observed than that of the mass variation coefficients. Meanwhile, the fluctuation trend of the

sensitivity index value for stiffness variation coefficients has shown the first-order index variation along with the

change in element positions from top to bottom along the 37#OWT in Fig. 12(a). The closer to the bottom element,

the first-order index increases greatly. More specifically, three sensitivity indices of stiffness variation coefficients for

elements near the restrained end of 37#OWT have been calculated with the values of 0.39, 0.19 and 0.08 respectively.

These indices are much higher than those of the other elements. It has been concluded that the amplitude of the

sensitivity index for the mass variation coefficients has been smaller in Fig. 12(b) as compared with those of the

stiffness variation coefficients, revealing that the mass is of less importance and concern in the model updating.
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Fig. 12: First-order sensitivity of variation coefficients for 37#OWT: (a) Stiffness variation coefficients, (b) Mass variation coefficients.

Taking into account the balance between the efficiency and accuracy of the proposed method for the model up-

dating, the variation coefficients Cranking ranked in the top twenty five sensitivity index values in Eq. (23) have been

selected as the critical parameters for the update of the 4MW offshore wind turbine benchmark. The convergence

results calculated by the sensitivity-assisted IPSO method have been shown in Fig. 13, demonstrating that the cost

function has been decreased rapidly at the 28th , 29th , 27th and 39th iteration in Scenarios I, II, III and IV, respective-

ly. As compared with results in the other scenarios, the proposed method has reached the best cost function of 1.721

in the collision scenario, demonstrating the potential benefit when considering the collision condition applicable to

model updating.

Cranking =



α18 β45 α36 α20 β44

α29 α12 α35 β43 α30

α34 α33 α13 β42 α31

α32 α49 α14 α17 α15

α50 α16 α51 α52 α53


(23)

I II III IV
0

10

20

30

40

C
os

t f
un

ct
io

n

Convergence speed
Convergence value

Scenarios:

Fig. 13: Convergence performance in different scenarios.

As the 4MW offshore wind turbine benchmark has exhibited dynamic under the various working conditions, the
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final updated results of stiffness and mass variation coefficients have shown variability for the four scenarios as shown

in Fig. 14. The high values of stiffness variation coefficients have been mainly clustered in the 10th (α30), 19th

(α17) and 22nd (α16) elements in Scenario IV, indicating the change in the location of the updated parameters in the

4MW offshore wind turbine benchmark. Moreover, the number of stiffness variation coefficients has far exceeded that

of mass variation coefficients, illustrating the greatest importance of updating the stiffness parameters in the model

updating process.
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Fig. 14: The updated variation coefficients in different scenarios: (a) Mass variation coefficients, (b) Stiffness variation coefficients.

To evaluate the correctness of the updated offshore wind turbine model, comparison results of natural frequencies

among the benchmark model, the reference model and updated model in the four scenarios have been shown in Table

2. It has been noted that relative errors of the first-order natural frequency between the benchmark and updated model

have been observed as 2.6127%, 0.2463%, 0.8970% and 1.1918% in Scenario I, II, III and IV, respectively. This has

demonstrated the validity and accuracy of the proposed method in solving real marine engineering structures. As only

the first-order TVAC has been extracted in the shutdown scenario, the relative errors of the second and third-order

natural frequencies between the updated model and 4MW offshore wind turbine benchmark have not been effectively

estimated. It has been worth noting that the relative errors of the first three natural frequencies between the updated

model and 37#OWT in the collision scenario have reached the minimum values of 0.8970%, 0.1071% and 0.2096%,

respectively. It could be reasonably interpreted by the result in Fig. 8(d), that is to say, the acceleration response used

to extract real modal parameters in the collision scenario has contained little noise components.
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Table 2: Comparison results of natural frequencies in different scenarios.

Scenarios
Natural

frequency (Hz)

Benchmark

model

Reference

model

Relative

error (%)

Updated

model

Relative

error (%)

Scenario I

1st

2nd

3rd

0.2794

1.7292

N/A

0.2948

1.9899

5.0597

5.5118%

15.0763%

N/A

0.2721

1.7272

4.5823

2.6127%

0.1157%

N/A

Scenario II

1st

2nd

3rd

0.2842

N/A

N/A

0.2948

1.9899

5.0597

3.7298%

N/A

N/A

0.2849

1.9529

4.7600

0.2463%

N/A

N/A

Scenario III

1st

2nd

3rd

0.2787

1.8667

4.6763

0.2948

1.9899

5.0597

5.7768%

6.5999%

8.1988%

0.2812

1.8687

4.6665

0.8970%

0.1071%

0.2096%

Scenario IV

1st

2nd

3rd

0.2769

1.7370

4.5222

0.2948

1.9899

5.0597

6.4644%

14.5596%

11.8858%

0.2802

1.8040

4.5619

1.1918%

3.8572%

0.8779%

Furthermore, the FRF (Ĥ31
a ) between the 37#OWT and the updated model has been shown in Fig. 15. It has been

noted that a number of resonances are closely spaced in the frequency regions where with the values of the FRFs,

exhibiting complex modal characteristics of the 4MW offshore wind turbine benchmark. Meanwhile, the excellent

agreement of FRF results between the updated model and the 37#OWT in the four scenarios has been observed. This

has demonstrated the accuracy of the proposed method applied to the model updating. More specifically, the FRFs

values between the benchmark and updated model have shown a slight difference when the frequency is within 1 Hz

in the collision and typhoon scenarios. As this discrepancy has become pronounced in the operation scenario, where

the relative error of the first-order natural frequency between the benchmark and updated model has been compared

in Table 2. Finally, the RMSE (Root Mean Square Errors) of the FRFs values has been calculated to indicate more

accurate results over the frequency interval achieved in the collision scenario as compare with that obtained in others

scenarios.
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Fig. 15: Comparison results of FRFs in different scenarios: (a) Normal operating scenario , (b) Shutdown scenario, (c) Ship collision scenario, (d)

Typhoon scenario.

5.3. Robustness analysis of sensitivity-based IPSO

To evaluate the robustness of the proposed method for model updating of the 4MW offshore wind turbine bench-

mark, the reference model has been updated under the consideration of conditions including the four scenarios and

rotor speeds varying in the range of 2.1 to 3.4 rpm. In the stability analysis, the results obtained by the sensitivity-

based IPSO have been computed 10 times in each service condition. The top 10 variation coefficients have been

selected in the statistical analysis.
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(a) (b)

Fig. 16: Robustness of updated variation coefficients: (a) Slightly varying rotational speeds , (b) Multiple scenarios.

As shown in Fig. 16, the updated parameters have shown a slight variation in four service conditions, demon-

strating the robustness of the synergy of RBD-FAST and intelligent IPSO in solving 4MW offshore wind turbine

benchmark. As compared with the magnitudes of variation coefficients obtained in the minor range of rotor speed-

s, the larger bounds of variation coefficients have been achieved in four scenarios, indicating the more remarkable

change of dynamic performances of offshore wind turbines across the multiple service conditions. In summary, the

obtained results have demonstrated the robustness of the proposed method applied to the model updating of marine

engineering structures.

5.4. Comparison results of model updating by different methods

In this section, the proposed method has been investigated for comparison of the typical methods including PSO

and IPSO approach to highlight the superior performance in the process of model updating. As shown in Table 3, the

sensitivity-based IPSO has efficiently reached the optimal solution at the 27th iteration as compared with the 42nd

and 33rd iterations by PSO and IPSO, respectively. It should be also noted that the cost function of the proposed

method has reached the minimum discrepancy of 1.721 between the updated model and the benchmark model. From

the viewpoint of the computational cost, the tremendous amount of time has been consumed by PSO and IPSO (9535s

and 9668s on a computer with the specifications of Intel I7 processor 3.60GHz and 32GB RAM, respectively) to find

the best solution, while the shorter time of 7545s has been achieved by the proposed method. Due to the few numbers

of variation coefficients in model updating, the synergy of RBD-FAST and IPSO has greatly reduced the time cost

throughout the optimization process.
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Table 3: Evaluation indicators of comparison results by different methods.

Evaluation indicators PSO [40] IPSO RBD-FAST assisted IPSO

The number of iteration 100 100 100

Speed of convergence 42 33 27

Total times (s) 9535 9668 7545

Value of convergence 3.328 2.913 1.721

Natural frequencies obtained by three methods in Table 4 have also been compared between the 4MW offshore

wind turbine benchmark and the updated model. The relative error of the first-order natural frequency calculated by

PSO between the benchmark model and the updated model has reduced from 3.5163% to 3.2652% by IPSO, owing

to the improved in weights and learning factors. It has been also noted that the smallest relative errors (0.8970%,

0.1071% and 0.2096%) of the first-three natural frequencies have been achieved in the proposed method as compared

with the result by PSO and IPSO. A reason for this finding can be explained by the fact that the critical parameters

selected by RBD-FAST for model updating have led to the fast convergence and high accuracy in the proposed method.

Summarily, comparison results have demonstrated the effectiveness and correctness of the proposed method for model

updating of offshore engineering structures subject to complex loads in various marine environments.

Table 4: Comparison results of natural frequencies by different methods.

Methods
Natural

frequency (Hz)

Benchmark

model

Updated

model

Relative

error (%)

PSO

1st

2nd

3rd

0.2787

1.8667

4.6763

0.2689

1.8696

4.4794

3.5163

0.1554

4.2106

IPSO

1st

2nd

3rd

0.2787

1.8667

4.6763

0.2696

1.8692

4.5676

3.2652

0.1339

2.3244

Synergy of RBD-

FAST and IPSO

1st

2nd

3rd

0.2787

1.8667

4.6763

0.2812

1.8687

4.6665

0.8970

0.1071

0.2096

6. Summary and conclusions

In this study, the synergy of random balance designs-assisted Fourier amplitude sensitivity test and IPSO has been

proposed to leverage the adaptive weights and dynamic learning factors for model updating of the 4MW offshore wind

turbine benchmark subject to the various service conditions. The prominent advantages of the proposed approach

have been demonstrated by the successfully capturing sensitive parameters from a large number of stiffness and

mass variation coefficients of the structure to increase the computational efficiency. Also, the issue of incomplete
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modal parameters has been addressed by the combination of the time-varying acceleration components (TVAC) and

theoretical mode shapes. Throughout the numerical example, the correctness of the sensitivity-based IPSO has been

validated. To further assess its effectiveness in solving practical marine engineering structures, the proposed approach

has demonstrated the good agreement of results by the updated model and 4MW offshore wind turbine benchmark

in terms of the natural frequencies and FRFs values under the consideration of complex service scenarios. As the

acceleration signal has contained less noise in the extraction of the high orders TVAC, the minimum relative error

(0.8970%) of the first natural frequency and the RMSE (0.3199) of FRF values between the benchmark and updated

models in the ship collision scenario have been achieved by the proposed approach. As compared with the typical

PSO and IPSO methods, the proposed method has been significantly improved in terms of fast convergence and

accuracy. Moreover, results under the consideration of rotor speeds and various service scenarios have demonstrated

the robustness of the proposed method applied to the model updating of 4MW offshore wind turbine benchmark.

Based on these observations, the synergistic approach of RBD-FAST and IPSO has the power to accurately identify

updating parameters of complex systems with the improved computational efficiency. Summarily, the updated results

related to the 4MW offshore wind turbine benchmark under the various service conditions have demonstrated the

feasibility and robustness of the proposed method, which has laid the foundation for the digital twinning realization

of marine engineering structures.
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