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Abstract: This paper presents an experimental realization of multiband 5G new radio (NR) optical
front haul (OFH) based radio over fiber (RoF) system using digital predistortion (DPD). A novel
magnitude-selective affine (MSA) based DPD method is proposed for the complexity reduction
and performance enhancement of RoF link followed by its comparison with the canonical piece
wise linearization (CPWL), decomposed vector rotation method (DVR) and generalized memory
polynomial (GMP) methods. Similarly, a detailed study is shown followed by the implementation
proposal of novel neural network (NN) for DPD followed by its comparison with MSA, CPWL, DVR
and GMP methods. In the experimental testbed, 5G NR standard at 20 GHz with 50 MHz bandwidth
and flexible-waveform signal at 3 GHz with 20 MHz bandwidth is used to cover enhanced mobile
broad band and small cells scenarios. A dual drive Mach Zehnder Modulator having two distinct
radio frequency signals modulates a 1310 nm optical carrier using distributed feedback laser for
22 km of standard single mode fiber. The experimental results are presented in terms of adjacent
channel power ratio (ACPR), error vector magnitude (EVM), number of estimated coefficients and
multiplications. The study aims to identify those novel methods such as MSA DPD are a good
candidate to deploy in real time scenarios for DPD in comparison to NN based DPD which have a
slightly better performance as compared to the proposed MSA method but has a higher complexity
levels. Both, proposed methods, MSA and NN are meeting the 3GPP Release 17 requirements.

Keywords: digital predistortion; magnitude selective affine; radio over fiber; neural network; error
vector magnitude; adjacent channel power ratio

1. Introduction

With recent advances in 5G and beyond, the accelerating growth in base stations (BS)
has led to centralization of radio access network (RAN) [1,2], which decreases the capital
expenditure as it leads to simplifications in network management [2]. To facilitate C-RAN, a
fronthaul (FH) connects base band units (BBU) to remote radio heads (RRH) (see Figure 1).
With 5G in roll out stage in most part of the developed world, the microwave photonics-
based solutions such as Radio over Fiber (RoF) have a higher significance connecting
the BBUs with RRUs [3–5] due to advantages such as cost effectiveness; immunity to
electromagnetic disturbance, broader bandwidth and increasing the wireless links reach
for all type of distances ranging from short to long.
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Figure 1. Block diagram of C-RAN based 5G application system comprising of Backhaul, Fronthaul and application sce-
narios such as stadiums, railways, transport, factories, etc. 

There have been various versions of RoF such as Analog Radio over Fiber (A-RoF) 
[6,7], Digital Radio over Fiber (D-RoF) [8,9], Sigma Delta Radio over Fiber (SD-RoF) [10–
12] and other variants that have been proposed recently (see Figure 2). Up to an extent, A-
RoF links are the simplest, uncomplicated and economical solution, however, they suffer 
from nonlinearities arising due to signal impairments and devices involved such as laser 
modules, fibers and photodiodes. The other solutions comprise of utilizing D-RoF or SD-
RoF. Considering D-RoF systems, the requirements of conversion from analog to digital 
(ADC) and digital to analog converters (DAC) makes the process very expensive. In ad-
dition, due to high data rate capacity and requirement of high bandwidth, common public 
radio interface (CPRI) restrictions are faced. CPRI bottleneck can be overcome by exploit-
ing the SD-RoF. Here, ADCs and DACs are not required as it is based on the sigma-delta 
modulation which utilizes one bit of ADC but the method is complex hence not preferred. 
Moreover, the quantization noise is high for 1 bit that requires an additional band pass 
filter (BPF) at the RRH. However, this additional complexity is not alone to be handled for 
S-DRoF implementation, the addition of BPF results in additional amplitude and phase 
noise that requires additional solution for removal of these additional nonlinearities [13]. 

From this it is evident that exploiting other schemes (D-RoF/SD-RoF) is cumbersome. 
Hence, comparatively, owing to the legacy, infrastructure, and cost effectiveness of the A-
RoF systems, they are the better choice for optical fronthaul (OFH). Now then, our best 
alternative is to counter the nonlinearities of the A-RoF system. Given that we can do this 
in a simple and practical manner, the RoF technique proves to be extremely advantageous. 

Figure 1. Block diagram of C-RAN based 5G application system comprising of Backhaul, Fronthaul and application
scenarios such as stadiums, railways, transport, factories, etc.

There have been various versions of RoF such as Analog Radio over Fiber (A-RoF) [6,7],
Digital Radio over Fiber (D-RoF) [8,9], Sigma Delta Radio over Fiber (SD-RoF) [10–12] and
other variants that have been proposed recently (see Figure 2). Up to an extent, A-RoF
links are the simplest, uncomplicated and economical solution, however, they suffer
from nonlinearities arising due to signal impairments and devices involved such as laser
modules, fibers and photodiodes. The other solutions comprise of utilizing D-RoF or
SD-RoF. Considering D-RoF systems, the requirements of conversion from analog to
digital (ADC) and digital to analog converters (DAC) makes the process very expensive.
In addition, due to high data rate capacity and requirement of high bandwidth, common
public radio interface (CPRI) restrictions are faced. CPRI bottleneck can be overcome
by exploiting the SD-RoF. Here, ADCs and DACs are not required as it is based on the
sigma-delta modulation which utilizes one bit of ADC but the method is complex hence not
preferred. Moreover, the quantization noise is high for 1 bit that requires an additional band
pass filter (BPF) at the RRH. However, this additional complexity is not alone to be handled
for S-DRoF implementation, the addition of BPF results in additional amplitude and phase
noise that requires additional solution for removal of these additional nonlinearities [13].

From this it is evident that exploiting other schemes (D-RoF/SD-RoF) is cumbersome.
Hence, comparatively, owing to the legacy, infrastructure, and cost effectiveness of the
A-RoF systems, they are the better choice for optical fronthaul (OFH). Now then, our best
alternative is to counter the nonlinearities of the A-RoF system. Given that we can do this
in a simple and practical manner, the RoF technique proves to be extremely advantageous.

Mitigating the nonlinearities of RoF transmission is essential to utilize the system to
its best potential and has become an important subject. Within all these different domains,
to counter the prevalent issues, a lot of techniques have been exploited. Amongst them, the
one that have been utilized extensively are discussed in Section 2 under literature review.

The contribution of nonlinearities from the laser and to some extent, the photodiode
part is important as transmission quality decreases and also, the interference with channels
nearby is triggered. However, while considering the long-range networks, the nonlin-
earities due to the combination of fiber chromatic dispersion and laser frequency chirp
are usually the main cause of signal impairment [7]. The Orthogonal Frequency Division
Modulated (OFDM) signals, such as the emphasized fifth generation (5G) signal, is also
liable to these distortions due to high peak-to average power ratio (PAPR).
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Figure 2. Block diagram of A-RoF, D-RoF and ΣΔ-RoF downlinks. Blocks active for A-RoF: 1-2-5-6-
7-8-11-12. Blocks active for D-RoF: 1-2-3-6-7-8-10-12. Blocks active for ΣΔ-RoF: 1-2-4-6-7-8-9-12 BB: 
Base Band, Freq. Upconv.: Frequency Upconverter, Optical Tx: Transmitter, ΣΔMOD: Sigma-Delta 
Modulator, Data Rec.: Data Recovery block. 
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nal impairment compensation for OFH based RoF systems utilizing 5G NR based RoF 
systems. Following a very detailed literature review on the nonlinearities mitigation in 
Section 2, the novelties of this article are manifold: 
1. Firstly, a multiband 5G NR signals are employed in the experimental testbed to cover 

enhanced mobile broad band (eMBB) scenarios and small cells for 3 GHz and 20 GHz, 
respectively. 

2. A robust DPD technique utilizing negative feedback iteration is shown. The pro-
posed DPD identification method has a relative lower computational complexity as 
compared toother learning architectures. In the proposed method of DPD identifica-
tion, firstly, a DPD signal will be identified followed by the estimation of the DPD 
parameters. 

3. The linearization performed is not limited to our previous proposed methods coming 
from volterra series but includes the “out of box” approach that includes CPWL and 
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6-7-8-11-12. Blocks active for D-RoF: 1-2-3-6-7-8-10-12. Blocks active for Σ∆-RoF: 1-2-4-6-7-8-9-12.
BB: Base Band, Freq. Upconv.: Frequency Upconverter, Optical Tx: Transmitter, Σ∆MOD: Sigma-
Delta Modulator, Data Rec.: Data Recovery block.

To the best of the authors knowledge, this paper introduces the nonlinearity and signal
impairment compensation for OFH based RoF systems utilizing 5G NR based RoF systems.
Following a very detailed literature review on the nonlinearities mitigation in Section 2,
the novelties of this article are manifold:

1. Firstly, a multiband 5G NR signals are employed in the experimental testbed to
cover enhanced mobile broad band (eMBB) scenarios and small cells for 3 GHz and
20 GHz, respectively.

2. A robust DPD technique utilizing negative feedback iteration is shown. The proposed
DPD identification method has a relative lower computational complexity as compared
toother learning architectures. In the proposed method of DPD identification, firstly, a
DPD signal will be identified followed by the estimation of the DPD parameters.

3. The linearization performed is not limited to our previous proposed methods coming
from volterra series but includes the “out of box” approach that includes CPWL
and DVR method. In addition, a novel magnitude selective affine (MSA) method is
proposed that reduces the overheads of complexity such as multiplications in CPWL
architecture, however achieving similar efficiency as of CPWL.

4. In addition, a simple optimized neural network (ONN) based DPD algorithm is
proposed that is an upgradation of our previously proposed DPD based method
utilizing deep learning to perform linearization of 50 MHz 5G New Radio (NR) based
RoF links. The NN DPD method is executed by a different type of training which
does not utilize Indirect Learning Architecture (ILA). Initially we emulate the generic
RoF link using a RoF NN and then train the proposed DPD ONN using this, by
backpropagating the errors.

For the first time, a comparative experimental study has been held where MP, GMP,
DVR, CPWL, MSA and ONN are compared for 5G NR multiband signal. The performance
is evaluated in terms of Adjacent Channel Power Ration (ACPR) Error Vector Magnitude
(EVM) and complexity in terms of multiplications and coefficients requirements. The
summary of this work is shown in the Figure 3 where overall summary of each respective
section is shown.
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2. Literature Review

In this section, the linearization methodologies that have been implied for the RoF
systems are discussed. The linearization methodologies consist of Electrical, Optical
and Machine Learning Methods. Electrical methods are subdivided in to analog and
digital methods. Digital methods are subdivided into predistortion and postdistortion
methods. Optical methods consist of largely dual wavelength, singular polarization, mixed
polarization, etc., while a newer avenue of linearization has been coined that belongs to
machine learning. The higher schematic of these methods is summarized in the Figure 4.
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A detailed literature review is enlisted for the mitigation of the impairments of RoF
system that are categorized in Table 1. The table summarizes the method employed,
type of linearization, category, parameters evaluated, advantages and disadvantages of
respective methods.
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Table 1. Methods exploited to mitigate nonlinearities.

No. Author Type Subcategory Parameter Linearization Pros Disadvantages

1
Draa et al.;
Chen et al.

[14,15]
Electrical Analog

Predistortion IMD3

Complete RoF
system (Laser,
photodiode,

LNA)

Phase maintenance for
IMD3 generated

components

Perplexing suppression of second
order nonlinear distortion for

large bandwidth

2 Hass et al. [16] Optical Mixed
Polarization

Second/third
order nonlinear

distortion
Complete RoF

system

Suppression of second
and third order
nonlinearities

RoF transmission must be
polarization dependent.
Compression of linear

components to some extent.

3 Zhu et al. [17] Optical

Dual
wavelength
linearization

(DWL)

Second/third
order nonlinear

distortion
Complete RoF

system

Suppression of second
and third order
nonlinearities

Wavelength dependent
transmission, i.e., suppression of

nonlinear components for
anti-phased wavelengths only.

4 Ghannouchi
et al. [18] Digital

Digital
Predistortion

(DPD)

Third order
nonlinearities

Power
Amplifier

Wideband
linearization
achievable

DSP required is complicated.
Consumption of power is huge.

5 Duan et al. [19] Digital DPD ACPR, EVM Laser Added accuracy with
less DSP requirements

High complexity and calculation
time for digital linearization for
higher nonlinearity order and

memory depth.

6 Pei et al. [20] Digital DPD ACPR Laser/RoF Higher suppression in
ACPR by 15 dB Feedback complexity.

7 Lam et al. [21] Digital Digital Post
Processing ACPR, BER RoF

All order nonlinear
distortion components

significantly
compressed.

High speed digitizer required.
Only applicable to uplinks.

Deployment of DPP at RRH side,
so prototype price passes to

customer side, adding
complexity to the RRH.

8 Hekkala
et al. [22] Digital DPD ACPR, EVM Laser only Less complexity and

over head

EVM improved by 0.3%.
Link length not considered.

Intermediate frequency
used for DPD.

RoF link was not composed of
laserfiber-photodiode only.

Attenuators and amplifiers were
used so perhaps the signal

impairments were corrected due
to these components.

Limited to sinusoid I/P signal.

9 Hadi et al. [23] Digital DPD C/HD2, IIP2,
IIP3

Combination of
fiber dispersion
and laser chirp

Linearizes links up to
tens of km

Limited to sinusoidal
(single/dual) I/P tones.
No ACPR, EVM shown.

10 Vieira et al. [24] Digital DPD EVM Laser
Utilization of OFDM
signal with 5 MHz

bandwidth

Only magnitude (AM/AM)
linearization shown.

RoF link is not generic, contains
10 dB attenuator.

11 Hekkala
et al. [25] Digital DPD ACPR, BER Laser

Utilization of OFDM
signal with 12.5 MHz

bandwidth

Joint compensation proposed for
PA and RoF hence reducing

improvement.

12 Mateo et al. [26] Digital DPD EVM, ACPR RoF system Utilization of LTE
20 MHz signal

RoF link is not generic; contains
signal amplification by LNA and

a PA.
Unrealistic feedback for 10 km

length; requires an uplink for the
linearization of downlink.

13 Mateo et al. [27] Digital DPD NMSE, ACPR RoF system
Utilization of LTE

20 MHz with 16 QAM
modulation

PSD of O/P with and without
DPD is different after

normalization, DPD reduced the
bandwidth of the signal.

DFB laser has not been pushed to
higher RF I/P powers to see the

efficacy of the predistorter.

14 Mateo et al. [28] Digital DPD ACPR, EVM RoF system
Linearization

considering ideal and
no feedback

Results are attenuation
dependent, i.e., results similar to
ideal case can be obtained with

proper attenuation using
different optimization

algorithms.

15 Roselli
et al. [29] Electrical Analog

Predistortion IMD3 Laser
Maintenance of phase
for generated IMD3

components

Large scale production difficult
as variant predistorter required

per RoF transmitter.
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Table 1. Cont.

No. Author Type Subcategory Parameter Linearization Pros Disadvantages

16 R. B. Childs
et al. [30] Electrical Analog

Predistortion IMD3 Laser Accurate correction

Tough synthesis of arbitrary
transfer functions in the time

domain; due to coupling between
different paths, simultaneous
correction of both, second and

third order is not possible.

17 Veiga et al. [31] Electrical Analog
Predistortion IMD3 Laser Phase maintenance is

easy

To compensate arbitrary
bandwidth limitation in the

frequency domain.

18 Hadi et al. [32] Digital Direct DPD EVM, ACPR,
IMD Laser

Only requires
transient chirp
coefficient, no

exhaustive training.

Limited to laser; works only for
kilometers of length; complex

behavior.

19 Hadi et al. [33] Digital DPD for short
link NMSE, ACPR Laser Feasible closed loop

DPD
Training is time consuming and

complex

20 Hadi et al. [34] Digital DFB based NMSE, ACPR,
EVM Laser Utilization of DVR,

GMP, MP
High complexity.
I/Q imbalance.

21 Hadi et al. [35] Digital ML-NN
based ACPR, EVM Laser

Learns nonlinearities
of model in contrast
with Volterra based

methods, avoids
requirement of explicit

designing of
distortion causes

Limited to LTE framework.
Upgradation to 5G ambiguous.

Along with the numerous techniques listed above, mitigation of the impairments of
RoF system have also been studied previously [24–35]. A feedforward scheme has also
been analyzed [26,27] but is complex and to counter these problems, optical methods such
as dual parallel modulation [28], mixed polarization [29,30], etc. have been presented.
In addition to the nonlinearities of optical fiber/modulators, RoF is liable to other issues
such as amplified emission noise and phase noise [32,33] that further limit performance of
RoF increasing proportionally with RF carrier frequency increase.

Moreover, Digital Signal Processing (DSP) methodologies have been exploited as well
owing to their adaptive flexibility. A lot of such techniques have been studied to counter the
phase noise issue [36–38], of optical modulator [39,40]. Digital pre-distortion is presented
for laser resonance, improving results in [41]. Apart from DSP approaches, Digitized RoF
(DRoF) has also been utilized for nonlinearity mitigation [42–45].

Another important concept proposed, Sigma Delta RoF (SD-RoF) is a method involv-
ing the plus points of the DRoF in addition to its own implementation [46,47]. This is
especially advantageous when utilizing optical transmitters having low linearity. On the
other hand, considering Machine Learning as a domain of nonlinearity compensation, a lot
of models and methodologies have been proposed such as the KNN/SVM [48]; SVM [49,50];
k-means [51]; Convolution Neural Network (CNN) and Binary-CNN (BCNN) [52,53] and
Fully-CNN (FCNN) [54–61].

3. Neural Network Based DPD Architecture

Neural Networks (NN) are sophisticated networks, similar to the suggested NN based
DPD model and they require extensive training data. This model is then cascaded with the
RoF link, but its output is not known. However, in the case of an RoF link, the output is
known hence, we form an RoF NN model and train it to mirror the original RoF link. Once
we have formulated this RoF NN, we can now backpropagate through it and update the
parameters in the suggested NN DPD model.

Supposing that the considered RoF link has a transfer function H(n) and an output
signal y(n); and a baseband signal x(n) must be sent through it, DPD aims to calculate
the inverse transfer function of this RoF link denoted by Î−1, whose output will then be
denoted by x̂(n).

This can be expressed by:
x̂(n) = Î−1(x(n)) (1)
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While,
y(n) = Gx(n) = I(x̂(n)) (2)

where G is the gain. The NN here calculates Î−1 utilized for predistortion. A direct training
cannot be implemented for construction of the NN for DPD as the ideal x̂(n) is not known.

The option analyzed for performance assessment is illustrated in Figure 5 [1].
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Figure 5. Block diagram of RoF system utilizing RoF NN model and NN based DPD system. The
RoF NN model Î is obtained upon transmission of I/P and O/P through the generic RoF link. Once
achieved, we train I−1 by backpropagating error through Î. Then, linearization is performed by
connecting this DPD-RoF model to generic RoF link. Predistortion is held in a digital baseband
eliminating DACs and ADCs.

Initially, the RoF link is emulated by the second NN. The generic RoF link has x̂(n) as
input and y(n)

G as output data, considering which, training is executed with the regression
based NN model for them. This results in learning of the NN and now an approximate
transfer function Î can be identified by it. Upon the formation of the RoF NN model, the
model weights are fixed after which we connect it with the NN DPD model. Now, we
use the original input, i.e., x(n) and output as training data to calculate error using a loss
function. We then backpropagate it via Î to train Î−1.

3.1. Features of the NN Model

This section will discuss all the features of the Neural networks that are essential to
be used in DPD based RoF system. The summary of the topics discussed in this section is
given as follows. Firstly, Section 3.1.1 discusses the loss functions while Section 3.1.2 talks
about optimizers. Section 3.1.3 talks about activation functions and Section 3.1.4 talks about
hyperparameters. Section 3.1.5 discusses the regularization methods and Section 3.1.6 talks
about are characteristics of NN.

The NN are layered structures that have been inspired from the human nervous
system and are an adequate choice due to their powerful accuracy at approximating any
nonlinear function and learning the relationship between their inputs and outputs. The
basic working involves an input signal provided at the input layer, processing which takes
place in the hidden layer/layers and the output is produced by the last (output layer). Each
layer represents a cluster of neurons which are not connected to one another within the
layer but are connected to the neurons of the next layer.

3.1.1. Loss Function

Prior to optimizing, it is essential that, the error is estimated for the current state of the
model. For this, selecting an error function, normally known as loss function is necessary
as it helps calculate the loss of the model. After this, the weights of the model are updated
which minimizes this loss function for further evaluations. Loss functions broadly classify
into:

i. Regression Loss.
ii. Classification Loss.



Appl. Sci. 2021, 11, 11624 8 of 29

Regression Loss Functions

Regression loss functions are divided into following:
Mean Squared Error (MSE)

MSE calculates the average of the squared differences between actual and predicted
value. Outcomes are always positive values irrespective of the sign of the actual and
predicted values. The minimum value it can result in is 0.0. Note that, larger differences
cause more error due to squaring of the value, penalizing the model for them.
Mean Squared Logarithmic Error (MSLE)

As the name suggests, here, the natural logarithm of each of the predicted values
is calculated and then the MSE is calculated. MSLE relaxes the punishing effect of large
differences in large, predicted values.
Mean Absolute Error (MAE)

The MAE is more powerful. It calculates the average of the absolute difference between
the predicted and actual values.

Classification Loss Functions:

Classification loss functions are divided into following:
Binary Cross-Entropy
This function is used when our target values belong to the set {0, 1}. A score which

summarizes the average difference between the predicted and actual probability distri-
butions is calculated and is then minimized. The least score that can be achieved by this
function is 0.

Hinge Loss
This function is used when our target values belong to the set {−1, 1}. This function

basically promotes correctness of the sign of values and will allot more error for differences
in signs between predicted values and actual values.

Squared Hinge Loss
This is a function obtained by modifications in the hinge loss function. It merely

calculates the square of the hinge loss score. This causes the error function to smoothen
making it easy to work with numerically. It smoothens the surface of the error function
and makes it easy to work with numerically. As stated in the case of hinge loss, values
must belong to the set {−1, 1}.

Multi-Class Cross-Entropy
Hinge loss is considered for binary classification similarly, multi-class cross entropy

loss is considered for multi-class classification. Every class is given a distinct integer value.
A score for all classes is summarized by calculating the average difference between the pre-
dicted and actual probability distributions. The minimum score that can be obtained is 0.

3.1.2. Optimizers

The process of optimizing loss functions improves the function of the model. The
procedure to minimize/maximize a mathematical function is called optimization and
utilizes optimizers. Optimizers work by changing the parameters of NNs such as the
learning rates or weights. The types of optimizers are:

Gradient Descent (GD)

The GD algorithm works on the principle that the direction opposite to that of the
calculated gradient will locate the lower point/surface of the considered function, i.e.,
the potential minima. It then repeatedly takes steps in that direction with every iteration.
In the case of GD, we require large memory as we calculate the gradient over the entire
dataset after which the updates are performed meaning that, for huge data, it may take
years to converge.
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Stochastic Gradient Descent (SGD)

To make up for the problem faced by the GD algorithm, SGD was developed. The
SGD algorithm works by computing derivatives by considering only one point at once.
This solves the large memory requirement problem; however, time is still an issue as one
epoch of SGD takes more time when compared to the GD algorithm.

Mini Batch Stochastic Gradient Descent (MB-SGD)

This algorithm was developed to overcome time complexity problems. MB-SGD as
the name suggests, works by considering a small batch of points or a small subset of the
whole data at once to compute the derivatives. It takes longer to converge than GD does
and additionally, its weight updates are noisy.

SGD with Momentum

SGD with momentum (momentum for short) calculates another parameter, momen-
tum in addition to the gradient in every step. This momentum is the cumulative movement
from all previous steps, overcoming the issue of noisy weight updates in MB-SGD by
denoising gradients. It moves faster owing to the accumulated momentum which helps it
prevent local minima and plateau regions. In addition, the algorithm Nesterov Accelerated
Gradient (NAG) is similar to momentum except, it is a future considering method. The
cost function is evaluated using future parameters rather than the current ones to prevent
the chance of skipping the minima in case of high momentum value.

Adaptive Gradient Descent (AdaGrad)

AdaGrad, works by accumulating the sum of gradient ‘squared’. As the name suggests
the learning rate is adaptive and doesn’t need to be tuned manually. The adaptive learning
rate property helps escape typical complexities of non-convex functions such as saddle
points as they take a straight path compared to methods such as GD, SGD, MB-SGD and
even momentum. There are chances that these methods become stuck at saddle points and
never converge to minima. Unfortunately, AdaGrad is very slow as the sum it accumulates
continues to grow resulting in the learning rate to become very small, this consequently
leads to vanishing of the gradient.

Adaptive Delta (AdaDelta)

As we know, AdaGrad is a slow converging method due to its large value of the accu-
mulated sum of gradient squared. AdaDelta was developed to resolve this by modifying
certain aspects of AdaGrad. Here, rather than storing all the past gradients inefficiently,
we recursively define the sum of gradients as a decaying average of all the past squared
gradients. This allows AdaDelta to continue learning even after multiple updates.

RMSprop (Root Mean Square Propagation)

RMSprop, similar to AdaDelta, was developed to counter AdaGrad’s problem of
vanishing learning rates. RMSProp fixes the issue by adding a decay factor which empha-
sizes on recent gradients neglecting the older ones. An exponentially decaying average
of squared gradients is used to divide the learning rate. AdaGrad might keep up with
RMSProp initially, but the sum of gradients squared for AdaGrad accumulate and become
huge, eventually AdaGrad practically stops moving, in contrast with RMSProp, smartly
stored the squares due to the decay rate. This makes it faster than AdaGrad and it impedes
search in direction of oscillations.

Adaptive Moment Estimation (ADAM)

The Adam algorithm combines the features of both Momentum and RMSProp mean-
ing that, along with accumulating the exponentially decaying average of the previous
squared gradients, it also holds exponentially decaying average of previous gradients as
well. Adam is an efficient optimizer due to the component of speed and the capability to
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adapt gradients acquired from momentum and RMSProp, respectively. This is also the
reason it is the most used optimizer.

Comparison of Optimizers

There are two metrics to determine the efficacy of an optimizer, speed of convergence
to the global minimum and generalization (the model’s performance on new data). Per-
formance of the optimizers and hence their choice is also dependent on the type of data
provided, based on that, two types of functions exist- convex and non-convex (Figure 4).
In case of the latter, optimizers must be carefully chosen as it has multiple hurdles where
our algorithm might become stuck, some of which we will discuss ahead. The performance
of mentioned optimizers on different obstacles faced on non-convex functions are discussed
below (see Table 2).

Table 2. Comparison of Optimizers.

Obstacle Type Brief Definition Convergence Speed (Descending
Order of Converging Speed)

Saddle point

Point on the surface of a function
which is not a local extremum of the

function but the slopes in
orthogonal directions are all zero.

ADAM, RMSprop, AdaDelta,
AdaGrad, Momentum.

Plateau region
Plateau of a function is a part of its

domain where the function has
constant value.

ADAM, Momentum

Local minima Minimum of a function other than
the global minimum (extremum).

ADAM, RMSprop,
Momentum, AdaGrad

From the table, we see that ADAM has performed comparatively better than others,
especially in terms of convergence speed which is why it is the most used and most efficient
optimizer.

3.1.3. Activation Functions

The activation or capability of response of a node is not pre-defined. This is deduced
with the help of an Activation. It does this by building a relationship between various
weights and biases affecting the node and applying the relationship to the node as a
function, hence determining responses. It also helps it learn the complex patterns of data.
They transform the incoming signals in the node into an output signal which will be used
in the next layer of the network or will be the output. The different types of activation
functions are summarized in the table below (Table 3).

Table 3. Activation Functions.

Activation Function Mathematical Representation Brief Description

Binary Step (x) =
{

0 ; f or x < 0
1 ; f or x ≥ 0

only has values 1 or 0 as output.

Linear y(x) = x Linear over entire range (−∞, ∞).
Sigmoid/Logistic y(x) = 1

1+e−x Range (0, 1)
ReLu (Rectified Linear

Unit) f (x) = max(0, x) Range [0 to ∞)

Leaky ReLu f (x) = max(0.01 ∗ x , x) Range (−∞, ∞).

Softmax so f tmax(zi) =
exp(zi)

Σj exp(zi)

Range (0, 1) and
sum of O/Ps = 1

tanh/Hyperbolic y(x) = sinhx
cosh x Range (−1, 1)

When considering ReLu, the possibility of a vanishing gradient is lower, in contrast with
the gradient of sigmoids, which grow smaller with an increase in the absolute value of x.
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ReLu has a constant gradient, helping it learn faster making it the better choice, provided
we can work in the positive range of input values.

3.1.4. Hyperparameters

The implementation of algorithms on data has certain pre-requisites. There are several
hyperparameters that must be defined for the functionality of our network. These are
overall functionality defining components and are not to be confused with the internal
model parameters. This section discusses the hyperparameters definitions in Table 4.

Table 4. Definition of Hyperparameters.

Hyperparameter Definition Explanation

Batch size
Number of samples processed

while updating the internal
parameters of a model.

GD = Size of Training Set; SGD = 1;
B-SGD = 1 < Batch Size < Size of

Training Set

Epoch
Number of complete passes

through the samples
being trained.

For MB-SGD if batch size = 25,
then number of complete passes

through these 25 samples is
number of epochs.

Regularization
Penalizes weight matrices

to resolve overfitting
and underfitting

Methods-L1, L2, Dropout.

Note that there are no pre-defined fixed values for these hyperparameters. There are some conventionally used
values, but they are not mandatory and attaining a value suitable to a function is a trial-and-error method.

3.1.5. Different Methods of Regularization

All datasets are divided into two sections, namely, the training data and the testing
data. Sometimes, we come upon conditions where models do not result in good perfor-
mance on testing data despite performing well on training data. These situations arise due
to underfitting and overfitting in Figure 6. Regularization is the procedure in which weight
matrices of nodes are penalized, hence overcoming these problems.
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L2 and L1 Regularization

L1 and L2 are simple and widely known types. A regularization term is considered
while updating the cost function in this method. This regularization term causes a reduction
in the value of the weight matrices as they result in a simpler model, significantly reducing
the problem of overfitting.

In L2, we have:

Loss = error + λ
N

∑
i=1

∣∣∣w2
i

∣∣∣ (3)

where λ is the regularization parameter (which is updated for more precise outcomes) and
w is weight. The L2 method is referred to as a weight decay procedure because it compels
the weights to decay towards zero although never exactly becoming zero.
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In L1, we have:

Loss = error + λ
N

∑
i=1
|wi| (4)

As observed in Equation (4) here, the absolute weight value is considered. Contrary
to the L2 method, the weights here can become zero which is beneficial for compression
of models.

Dropout

Dropout is the most used type of regularization due to its efficient results. It performs
several iterations on the NN and at every iteration, random nodes are selected and removed
along with all of their input and output signals/connections as seen in Figure 7. This results
in selection of distinct nodes and hence distinct outputs per iteration. More randomness is
expressed by splitting one network into its subsets leading to better performance when
compared to a single dense model. The method can be implemented on input as well as
hidden layers making it an adequate choice for large NNs.
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network upon selection and removal of random nodes, after any one iteration.

3.1.6. Characteristics of the NN Models

Based on the discussion made so far, we have built a foundation of all components of
a Neural Network and established that the two neural network models we require here
are, first, the DPD NN, used to predistort our original RoF link and second, the emulated
RoF NN, which is essential for training this DPD NN. The NN employed here contains
N hidden-layers, K neurons per hidden-layer and is a feedforward fully connected network.
The symbolic structure of the employed NN is shown below in Figure 8. The NN has two
inputs and two outputs, in view of the complex nature of baseband signals representing
both the real and imaginary parts of the signal. The ReLu activation function has been
utilized for at least one of the multiple hidden layers (owing to its lower complexity).
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We represent the O/P for the first hidden-layer as follows:

l1(n) = f
(

W1

[
R(x)
I(x)

]
+ b1

)
(5)

where, l1 expresses the first hidden O/P layer, f is the activation function (nonlinear) and
W1 is the weight and b1 is the bias for the first output layer in the network.

We represent the general output for the ith layer as:

li(n) = f (Wihi−1(n) + bi) (6)

where, i ε N : 2 ≤ i ≤ N.
Then, the final output after N hidden layers will be:

x̂(n) = WN+1hN + bN+1 (7)

Training Algorithm

The algorithm used to train the NN DPD model is given below. The algorithm utilizes
MSE as the loss function, the optimizer used is ADAM and backpropagation is used for
updating the weights. The process is repeated for a certain number of iterations (Z) to
refine performance.

As mentioned earlier, we train our emulated RoF NN model using the I/P and
O/P of the original RoF link and once this model is acquired, we connect the NN DPD
model to it. Then, upon convergence of this training, we connect the actual RoF link
with this DPD NN and proceed with its predistortion (see pseudocode in Algorithm 1).

Algorithm 1. DPD training

x̂(n)← x(n)
for i ≤ Z do
y(n)← I(x̂(n)): //RoF-Transmission
Î ← Train on x̂(n), y(n)

G //Updating RoF NN
//Freeze NN weights of Î
Î ← Train on x(n). //Use Î−1( Î(x(n)))
x̂(n)← Î−1(x(n)): //Predistort
end for

4. Comparison with Volterra Method

It will be interesting to see the comparison of NN DPD methodology with conventional
GMP method that has been validated in [1,6,34]. MP/GMP are the most viable solutions
that have been used for DPD.

Volterra series-based models are very commonly used. Upon conversion of signals
from electrical to optical domain and vice-versa, certain memory effects are introduced.
To take these effects into account, Volterra Series is considered.

We represent Volterra series as:

y̌(n) =
+∞

∑
k=1

+∞∫
0

. . .
+∞∫
0

hk(τ1, . . . , τk)
k

∏
r=1

x̌(t− τ1)dτ1 (8)

where y̌(n) represents RF out put, x̌(n) represents RF input signal and hm is the mth order
Volterra kernel. RF signal is down converted to baseband, and we obtain the envelope
through a low pass filter. Then, with input x̌(n) baseband image in discrete time is:

y(n) =
k

∑
k=0

Q−1

∑
q1=0

Q−1

∑
q2=l1

. . .
Q−1

∑
q2k+1

h2k+1(l1, . . . , l2k+1)
k+1

∏
r=1

x̌
(
t− lj

) 2k+1

∏
r=k+2

x∗
(
n− lj

)
(9)

where, K is the nonlinearity order and Q is the memory depth.
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4.1. Memory Polynomial Model (MP)

The Memory polynomial (MP) model is capable of resolving both memory effects and
nonlinearities simultaneously. It is also referred to as diagonal Volterra model as all its
diagonal terms are non-zero. It is the middle ground between a memoryless model and a
full Volterra model due to existence of diagonal memory (non-diagonal terms are zero).
The MP model is generally used as it is less complex compared to Volterra series. It can
also emulate the nonlinear behavior of Power Amplifiers to an extent which is why it has
been used to model Power Amplifiers previously. The equation is as follows [24–35]:

y(n) =
k−1

∑
k=0

Q−1

∑
q=0

Ckqx(n− l)|x(n− l)|k (10)

where K is non-linearity order, Q is the memory depth, y(n) is input sequence of the
predistorter, x(n) represents baseband input and ckq is the model coefficient.

4.2. Generalized Memory Polynomial (GMP)

GMP has been productively utilized for DPD linearization of Power Amplifiers. Here,
we will now use it to aid linearization of RoF links using the Digital predistortion method.
If we observe the equation below, we see that, the GMP model, in contrast with MP,
holds both, memory of diagonal terms along with crossing terms as well, which is why it
outperforms MP and in the coming sections, we will evaluate comparisons with GMP only
having established it is superior to MP [1,24–35]:

y(n) =
ka−1
∑

k=0

Qa−1
∑

q=0
ckqx(n− q)|x(n− q)|k

+
kb
∑

k=1

Qb−1
∑

q=0

Rb
∑

r=1
dkqr x(n− q)|x(n− q− r)|k

+
kc
∑

k=1

Qc−1
∑

q=0

Rc
∑

r=1
ekqr x(n− q)|x(n− q + r)|k

(11)

where x(n) is the DPD input and y(n) is the DPD output.
The complex coefficients ckq, dkqr and ekqr denote signal and the envelope; signal

and lagging envelope and signal and leading envelope, respectively. Ka, Kb, Kc are the
maximum nonlinearity orders, Qa, Qb, Qc are the memory depths. q, r represents the
indices of the memory k is nonlinearity index and Rc and Rb exhibit the leading and lagging
delay tap lengths, respectively. Since, in [62–71], it was established that GMP is better as
compared to MP, therefore for simplicity, evaluation with GMP is included in this paper.

5. Models Based on Canonical Piece Wise Linearization

The DPD linearization has been achieved with Volterra based methods as discussed
in Section 3. However, “out of the box” approach which can achieve better performance is
always interesting addition to the topic. Recently, it was shown in [26–28] that out of all
the possible architectures, CPWL method outperforms the other models such as memory
polynomial (MP) and generalized memory polynomial (GMP). CPWL is an obvious choice
due to the performance enhancement that it brings, however it has a lot of complexity and
overheads. The CPWL model can be expressed as [28]:

y(n) = ∑M
m=0 ∑K

k=0 ∑L
l=1 c(1)m,k,l

∣∣∣|x(n− k)|2 − βl

∣∣∣x(n−m− k)

+∑M
m=1 ∑K

k=0 ∑L
l=1 c(2)m,k,l

∣∣∣|x(n− k)|2 − βl

∣∣∣x2(n− k)x∗(n−m− k)

+∑M
m=1 ∑K

k=0 ∑L
l=1 c(3)m,k,l

∣∣∣|x(n− k)|2 − βl

∣∣∣x(n− k) |x(n−m− k)|2

+∑M
m=1 ∑K

k=0 ∑L
l=1 c(4)m,k,l

∣∣∣|x(n− k)|2 − βl

∣∣∣x∗(n− k) x2(n−m− k)

(12)
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Here, the baseband input is represented by x(n) and the output baseband signal is
represented by y(n), K is the FIR length filter, M is represented by memory depth, L is the
number of partitions in the CPWL, βl shows the threshold while c(1)m,k,l , c(2)m,k,l , c(3)m,k,l , c(4)m,k,l
presents the model coefficients.

In the Equation (1), there are many orders of multiplications and additions which
will add a lot of overhead in terms of complexity and utilization if hardware resources
during DPD implementation, the most important of them is dedicated hardware adders
and multipliers.

5.1. Decomposed Vector Rotation (DVR) Model

It is a derived from the canonical piecewise-linear (CPWL) function and is a modified
form of it. The model’s nonlinear function is constructed from piecewise vector decomposi-
tion and is entirely different to the one used in previously discussed Volterra series. The
model is more flexible and can perform better even with a comparatively small coefficient
number than the conventional models. DVR is expressed as:

y(n) =
QDVR

∑
i=0

ai|x(n− i)|+
KDVR

∑
k=1

QDVR
∑

i=0
aki,1 ||x(n− i)− βk|ejθ(n−1)

+
KDVR

∑
k=1

QDVR
∑

i=0
aki,21 ||x(n− i)− βk|ejθ(n−1).|x(n)|+

KDVR
∑

k=1

QDVR
∑

i=0
aki,22 ||x(n− i)− βk|.x(n)

+
KDVR

∑
k=1

QDVR
∑

i=0
aki,23 || x(n− i)|−βk |.x(n− i) +

KDVR
∑

k=1

QDVR
∑

i=0
aki,24 || x(n− i)|−βk |.x(n− i)

(13)

where x(n) is I/P and y(n) is O/P.
KDVR is elements in the partition and QDVR is the memory depth. βk represents

the breakpoint.

5.2. Magnitude Selective Affine (MSA) Based Linearization

Extending the previous work reported for DVR and CPWL, the objective of this work
is to further reduce the overheads and complexity of the CPWL method by proposing a
magnitude selective affine (MSA) function-based model. The advantage of this method
is that it requires only a single linear operation for the selected zone leading to a lower
complexity and simpler structure.

In order to optimize the operations, the coefficients in the zone that have similar
magnitude can be coupled together [72,73]. The comparison between threshold function
and magnitude of input samples can select which zone the samples will be falling and
which affine functions can be utilized. This simplification will result in the reduction of the
CPWL complex operation. Therefore, we can rewrite the first term of CPWL function in
Equation (13) in a simplified way in terms of MSA function that can be expressed as:

∑M
m=0 ∑K

k=0 ∑L
l=1 c(1)m,k,l

∣∣∣|x(n− k)|2 − βl

∣∣∣x(n−m− k)

= ∑M
m=0 ∑K

k=0 x(n−m− k)
(

∑L
l=1 c(1)m,k,l

∣∣∣|x(n− k)|2 − βl

∣∣∣)
= ∑M

m=0 ∑K
k=0 u(1)

m,k(n− k)x(n−m− k)

(14)

u(1)
m,k(n− k) = ∑L

l=1 c(1)m,k,l

∣∣∣|x(n− k)|2 − βl

∣∣∣
=


A(1)

m,k,1|x(n− k)|2 + B(1)
m,k,1, 0 ≤ |x(n− k)|2 < β1

...
A(1)

m,k,L|x(n− k)|2 + B(1)
m,k,L, βL−1 ≤ |x(n− k)|2 < βL

(15)



Appl. Sci. 2021, 11, 11624 16 of 29

Here in Equation (15), A(1)
m,k,l and B(1)

m,k,l are the linear model coefficients defined for

each zone of the MSA function u(1)
m,k(.). The example of hardware implementation is shown

in Figure 9. The simplification shown in Equation (15) leads to this realization that input
power terms without any magnitude are compared with the thresholds for the offset and
linear gain selection for the MSA function. This leads to removal of square root calculation
operation. The overall model of Equation (12) in terms of MSA function can be written as:

y(n) = ∑M
m=0 ∑K

k=0 u(1)
m,k(n− k)x(n−m− k)

+∑M
m=1 ∑K

k=0 u(2)
m,k(n− k)x2(n− k)x∗(n−m− k)

+∑M
m=1 ∑K

k=0 u(3)
m,k(n− k)x(n− k)|x(n−m− k)|2

+∑M
m=1 ∑K

k=0 u(4)
m,k(n− k)x∗(n− k)x2(n−m− k)

(16)

u(i)
m,k(n− k) = ∑L

l=1 c(i)m,k,l

∣∣∣|x(n− k)|2 − βl

∣∣∣
=


A(i)

m,k,1|x(n− k)|2 + B(i)
m,k,1, 0 ≤ |x(n− k)|2 < β1

...
A(i)

m,k,L|x(n− k)|2 + B(i)
m,k,L, βL−1 ≤ |x(n− k)|2 < βL

(17)
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5.3. Negative Feedback Iteration based Modelling Approach

For the computation of DPD model coefficients, as shown in the Figure 10 with
negative feedback iteration technique, the predistortion coefficients are calculated in the
training phase. z(n) is the input of the predistorter, coming through the output of the
RoF y(n) here, z(n) = y(n)

G and G is the link’s gain. There are two main steps in this
technique. The first step is to establish a negative feedback iteration to obtain an input
signal that can be regarded as a DPD signal followed by the second step which consists of
calculating the DPD model parameters. The shared feedback path is adopted to observe the
output information in both frequency bands. In this case, the negative feedback iteration is
performed on the lower band and upper band by turns.
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5.4. Estimation Algorithm

Estimation is initiated by the collection of coefficients ckq, dkqr and ekqr, into a R × 1
vector v. here, the total number of coefficients is represented by R and v is related with a
signal whose time is sampled over the same period. Coefficients c21 are associated to the
signal x(n− 1)|x(n− 1)|2. Z a N × R matrix represents the collection of all such vectors.
The predistorter training block output upon convergence will be zp(n) = x(n) hence,
z(n) = u(n).

For N number of samples, output is:

zp = Zv (18)

where Z = [Z(1), . . . , Z(N)]T and zp = [zp(1), . . . , zp(N)]T and v is as mentioned earlier,
a R × 1 vector containing set of coefficients ckq, dkqr and ekqr.

The LS solution is the solution for the equation represented by:

[ZHZ]v̂ = ZHx (19)

Solution minimizing the cost function is represented by:

C =
N

∑
n=1

∣∣zp(n)− x(n)
∣∣2 (20)
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6. Experimental Setup

For the validation of this technique, a multiband 5G NR scenario for out/in-door
environments working at 3 GHz (20 MHz bandwidth) and 20 GHz (50 MHz bandwidth),
which was discussed in our previous work [35], but no DPD was implemented. As an
upgradation of this architecture, the setup is integrated with a multiband DPD block to this
setup for enhancing the performance of this link. The setup shown in Figure 11 comprises
of a 1310 nm optical carrier is modulated by a MZM working with two distinct RF-driven
signals and a 1310 nm DFB laser. VSG1 provides RF1 which is a 5G NR waveform at
20 GHz while 5G transceiver provides RF2 which is a 3 GHz flexible (O/G/F-FDM) signal.
The process of DPD can be divided in to three main phases.
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functionalities: A: Selection between VSA 1 and 2. B: Selection between post processing block for performance or Synchro-
nization block. C: Connected to Synch. Block for performing synchronization followed by DPD training. D: DPD blocks
connection with training DPD block E: Required for time synchronization (TS) procedure. F: Required for performing
validation to launch DPD inputs to the VSGs. For DPD training phase, architectures can be selected that are requires such as
MSA, CPWL, ONN, etc.

In the first phase, we upconvert these signals at the respective carrier frequencies of
3 and 20 GHz, respectively, one after the other followed by the passing of these signals
through 22 km of Standard Single-Mode Fiber (SSMF) and photodetector (0.71 A/W and
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40 GHz bandwidth) receives the signal and converts the received signal back to electrical
domain. Since, the multiband needs to be isolated separately, an amplification stage is
added. Followed by a diplexer (DPX) that separates the 20 GHz and 3 GHz signals. The
signals then go to distinct vector signal analyzers (VSA). Here each VSA outputs is fed
to the post processing block for performance evaluation. This step is carried out without
DPD, this means that the output is evaluated without DPD process in this step.

In the second phase called as DPD training phase, the DPD operation depicted in the
Figure 10 is utilized in this section and training is employed unless the error converges.

In simple words, DPD ensures that the phase and amplitude responses are inverse
to that obtained at electrical amplifiers EA1 and EA2, respectively. The architectures
such as GMP, CPWL, MSA and ONN can be utilized as per the user requirement and
comparative requirements.

In order to achieve synchronization for the received input and the output wave-
form, we exploit PRS (Position reference signal) presented in the 5G NR framework. The
bandwidth for PRS is taken to be 20 MHz/106 resource blocks. The received and output
reference transmitted signal are correlated in time domain and the PDP (power delay
profile) is passed through the maximum block to find the strongest path of arrival.

Moving on to the third phase, the predistorted basebands signal are passed into the
DPD block upconverting the signals at their carrier frequency by their respective VSGs
after which they are fed into the optical link. Then, the signal that is received at photodiode
is passed through diplexer DPX to isolate the respective multi-bands ate the VSA passes to
the DPD training stage. In the phase where DPD validation is carried out, we move the
switches to the opposite direction. The evaluation for 5G NR frames is achieved which
involves predistortion followed by passing them to the VSG. The RoF link’s nonlinearities
slowly fluctuate owing to thermal effects and component ageing, from which we deduce
that real-time processing in the adaptation is inessential. The parameters utilized are
summarized in Table 5 that have been used previously in [35] and other state of the
art [20–28].

Table 5. Optical Link Parameters.

Parameters Values

5G NR Waveforms
fc = 3 and 20 GHz

Flexible G/F-OFDM
Constellation type = 256 QAM

Laser Wavelength = 1310 nm
Transmitter Type = Mach Zehnder Modulator

Optical Fiber

Type = SSMF
Fiber Dispersion = 16 ps

nmkm
Fiber Distance = 22 km
Attenuation = 0.42 dB

km

Photodiode Responsivity = 0.71 A/W
Bandwidth = 40 GHz

The parameters of different architectures that are utilized in this study for the experi-
mental setup are given in Tables 6–8, respectively. Table 6 enlists the parameters of the NN
that results in the optimized performance of NN. The parameters discussed previously in
Section 3.1 are utilized to define the structure of the proposed Optimized Neural Network
and their values are mentioned in the Table 6. The last section of the table evaluates the
complexity aspect of the NN by evaluating its expressions in terms of its coefficients. For
a comparative analysis, the parameters of GMP and DVR are also mentioned below in
Table 7. The proposed MSA-DPD technique and CPWL without modification is used with
M = 3 and K = L = 4. Similarly, for comparison, we have used GMP method previously
used in [34,65] with the parameters K = Q = R = 3. For NN, N = 10, K = 30 is utilized.
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Table 6. ONN parameters.

Architecture Parameters

Component Value/Specification
Optimizer ADAM

Activation function ReLu
O/P layer activation function Softmax

Loss- function Mean Square Error (MSE)
No. of Hidden-Layers N 10

No. of Neurons per layer K 30

Component Value/Specification
Regularization method Dropout
Regularization factor 0.001

Learning rate 0.01
Batch size 16, 32, 64, 128, 256, 512, 1024

Number of epochs 100
Validation split 0.4

Training
Component Value/Specification

Number of training samples 1,000,000
Number of testing samples 1,000,000

Complexity
Equation Value

(N − 1) K2 + (4 + N) K + 6 8526

Table 7. GMP and DVR parameters.

GMP Parameters

Component Value
Nonlinearity Order (K) 3

Memory depth (Q) 3
Delay taps length (R) 3

DVR
Component Value

Elements in partition (K) 3
Memory depth (Q) 3

Breakpoint (β) 1

Table 8. CPWL and MSA parameters.

CPWL Value

Memory Depth (M) 3
Number of partitions (L) 4

Length of the FIR filter (K) 4

MSA Value
Memory Depth (M) 3

Number of partitions (L) 4
Length of the FIR filter (K) 4

7. Experimental Results and Discussion

In this section, the results are discussed for the experimental setup discussed in the
earlier section. The Mean Square Error (MSE) is one of the ways to estimate the accuracy of
the estimation of coefficients for different architectures utilized. The MSE when No DPD is
applied is measured to be −27 dB, while for GMP it is −30 dB. The value reaches as low as
−35 dB for CPWL and MSA while NN has a MSE of −39 dB.
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In addition to MSE, the wellness of the proposed methods is compared and are
presented in form of Adjacent Channel Leakage or Power Ratio (ACLR/ACPR) and Error
Vector Magnitude (EVM).

7.1. Error Vector Magnitude

Error Vector Magnitude is the most common performance metrics that is utilized
for performance evaluation for this study item in 3GPP. EVM determines the difference
between the ‘expected’ value of the symbol in demodulated form to ‘actual’ value of the
demodulated received symbol. EVM can be mathematically written as [5]:

EVM (%) =

√√√√ 1
M ∑M

m=1|Sm − S0,m |2
1
M ∑M

m=1|Sm |2
(21)

where M is the quantity of constellation symbols, Sm is the real symbol of the constellation
associated with the symbol “m” and S0,m is the real symbol associated with Sm. The 3GPP
has set an EVM limit for 256 QAM to be 3.5% [74].

In Figure 12a, the Error Vector Magnitude EVM is represented by sweeping the RF
input power. It is evident that MSA-DPD results in EVM reduction to <3% as compared to
5% obtained with GMP. The MSA-DPD has a slight improvement as compared to CPWL,
but this is not the significant contribution, we expect to have similar improvement but with
smaller complexity. In addition to this, DPD NN has a better performance as compared
to MSA-DPD by 1%. It can be seen that DPD NN has a better performance as compared
to MSA technique between 0 and 5 dB, however, MSA has overall better performance
from −15 to 0 dB as compared to all other techniques. Similarly, In Figure 12b, EVM is
reported for all the comparative methodologies employed for different flexible waveforms
that has been used in 5G NR framework for 0 dBm RF input power. Clearly, MSA-DPD has
almost similar performance as compared to CPWL knowing MSA reduces the complexity
as compared to CPWL. It can be seen that MSA has a better reduction by 1% as compared
to CPWL. When compared to NN, the NN has better performance as compared to MSA.
It is clearly observable that NN has the best performance.

7.2. Adjacent Channel Leakage Ratio

ACLR also called as Adjacent Channel Power Ratio (ACPR) is a quantity that deter-
mines the distortion components outside the useful signal bandwidth. It is expressed as [5]:

ACLRdBc = 10 log10

∫ abu
abl

T( f ) d f∫ ubu
ubl

T( f )d f

 (22)

where T( f ) denotes Power Spectral Density (PSD) of the output signal while abu and
abl are the upper and lower frequency limits of the adjacent channel; ubl and ubu are the
frequency bounds of useful bands.

In addition to EVM, we look at the ACLR also called as MIA. In Figure 13a, ACLR
for given input power variations and for different methodologies is represented. We can
see that, at an RF I/P power of 0 dBm, the ACPR value for no DPD utilization is around
−28 dBc, for DPD-GMP the value is around−41 dBc, for DPD-CPWL, it is around−44 dBc,
for MSA-DPD, it is around −45 dBc and finally for DPD-NN, the value is around −48 dBc
keeping the ACPR below −45 dBc set by 3GPP [74]. With this it is obvious that DPD-NN
has achieved significantly 3 dBc lower ACPR value as compared to MSA-DPD which has
the best performance as compared to other Volterra series methods.

Similarly, in Figure 13b, the spectral density is shown. The power spectral density
(PSD) with and without DPD at 3 GHz is shown. It is observed that MSA technique
is achieving good performance as compared to CPWL while the NN DPD has a little
advantage over the MSA with spectral regrowth suppression in the 10 to 15 MHz zones.
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Similarly, in Figure 13c, the electrical spectra are shown, there are two main compo-
nents that show the carrier signals at 3 and 20 GHz, respectively. It represents that the aim
of the proposed MSA-DPD technique further reduces the complexity and implementation
of the DPD methodology and enhance the performance of the link as compared to CPWL,
GMP and when no DPD is applied. Therefore, it is observable that ACPR is reduced with
the proposed MSA-DPD methods as compared to CPWL and GMP method by a good
proportion keeping the ACPR below −45 dBc set by 3GPP [74]. It is important to observe
that MSA-DPD performs a little better than CPWL, however, the performance gain is not
the only benefit, but the complexity reduction is the most important benefit of the proposed
MSA-DPD technique (discussed in Section 7.3).
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7.3. Complexity Considerations

The complexity reduction that MSA-DPD brings with gaining similar performance
as compared to CPWL method is significant contribution. The complexity of the DPD
model construction of the models is shown in Table 9, which is mainly measured by the
required number of real multipliers, as the multipliers take up most of the hardware re-
sources. Table 9 signifies that MSA DPD (220 multiplications) has much lesser complexity
as compared to CPWL (880 multiplications). The advanced variations in Volterra series
can be obtained by changing memory depth and nonlinearity order to higher numbers.
However, the computational complexity has to be considered as shown in Equation (11).
This means that while selecting the DPD model and its complexity, a smart trade-off
between complexity and performance can be made accordingly. For a comparative eval-
uation of NN and GMP methods in terms of complexity and performance, we evaluate
expressions for each method in term of its complexity. The number of coefficients and mul-
tiplications in CPWL architecture are higher as compared to GMP, however, the complexity
in CPWL results in better performance as compared to GMP (as seen in results section
in Figures 11 and 12). The reduction in complexity is brought into the play as proposed
in MSA method. The performance of MSA achieves similar performance as compared to
CPWL, however, the complexity in terms of coefficients in MSA is reduced from 520 to 260
and multiplications are reduced from 880 to 220. Similarly, looking at NN architecture, the
performance (see Figures 11 and 12) is comparable to MSA which is in similar proportions
to NN, however, the number of coefficients rise to 8526 and number of multiplications
reached to 8224. NN complexity is a challenging issue, and this can be reduced as shown in
this work that a very limited number of hidden layers and neuron per layer are employed.
The multiplications and complexity of the NN increases exponentially with the increase in
number of hidden layers and neurons per layer, depending on the application, MSA with
much less complexity and similar based DPD can be employed as they achieve a similar
performance as compared to NN.

Table 9. Complexity Comparisons.

DPD Method Coefficients # Coefficients Multiplications

GMP Ka(Qa + 1) + Kb(Qb + 1)Rb + Kc(Qc + 1)Rc 84 244
CPWL (4M + 1) (K + 1) L 260 (14M + 2) (K + 1) L = 880
MSA 2(4M + 1) (K + 1) L 520 (14M + 2) (K + 1) = 220
NN (N − 1) K2 + (4 + N) K + 6 8526 (N − 1)K2 + 4K + 4 = 8224

7.4. Real Time Implementation

In a realistic NN scenario, linearization methodology is carried out at the Central
Office (CO) where the BBUs are placed and a periodical re-training of the DPD system is in
this case necessary, requiring however a negligible time with respect to the time of normal
operation of the RoF system. Recently, a Xilinx DPD kit has been developed that can be
used for this purpose [75].

Bringing feedback signal from the BS to RAU is one of the main challenging task
in the adaptive recompense of the RoF link. This is due to possible nonlinearity of the
feedback link; actually, it can be as nonlinear as the RoF link, which is being compensated
for. The present work is based on the fact that the predistorter sees only the non-idealities
that it needs to compensate. Since it is assumed that the nonlinear feedback connection
is uncompensated, therefore, it would destroy the performance of the compensation. In
simple words, it means that an approach is utilized where the RoF link is first compensated
for using a post distorter and known training signal from the RAU is used here. After that,
the already compensated for downlink RoF link can be used as a feedback connection for
the compensation [76]. However, as a possible feedback scenario, Figure 14 represents a
realistic implementation of an adaptive DPD that shifts complex processing of the signals
at the Central Office/Base Transmit Station (CO-BTS).
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It should be noted that DPD works as a black box, it counter acts the overall nonlin-
earities of the system including that of MZM (laser), fiber and photodiode. For tens of km,
the combined effect of laser chirp and fiber dispersion becomes a major nonlinearity issue
after tens of km [5]. Therefore, laser and possibly photodiode are the primary source of
nonlinearity which is mitigated in this proposed bench. In future, it will be interesting to
increase the length of fiber and linearize the link by mitigating the fiber nonlinearities such
as Kerr effect.

Indeed, with the higher modulation format and higher bandwidth similar to multiple
LTE carriers or 5G new radio (NR) waveforms as discussed, they would lead to higher
complexity of DPD operation due to stronger PAPR. Concomitantly, the elevation in
bandwidth will lead to overall increase in the base-band memory of the system model.
Nevertheless, the evaluated models are still valid. However, higher values of the Q and K
will be indispensable as compared to the considered case.

To summarize the discussion above, Table 10 lists the values of ACPR, MSE and EVM
for all the utilized methodologies.

Table 10. Results Summary for ACPR (0 dBm), EVM (5 dBm) and MSE.

Methodology ACPR (dBc) EVM (%) MSE (dB)

No-DPD −28 11 −27
DPD-GMP −41 5 −30

DPD-CPWL −44 4 −35
DPD-MSA −45 3.5 −35
DPD-ONN −48 2.7 −39

8. Conclusions

This work summarizes a successful realization of 5G NR multiband OFH with a novel
unprecedented DPD solutions for reducing RoF nonlinearities using the conventional
volterra based methods and further exploiting deep learning methods to further improve
results using Neural Networks. Firstly, a novel MSA DPD method has been proposed
which reduces the complexity of CPWL method and reaches similar performance with
reduction of complexity overheads and multiplications by 75%. The article also explains
the theoretical foundations and elements required for building a Neural Network. The
5G NR multiband signals at 3 GHz and 20 GHz are employed to 22 km fiber length. The
proposed MSA-DPD method results in reduction of ACPR from −28 dBc to −45 dBc while
NN results in ACPR reduction to −48 dBc. Similarly, 11% of EVM is reduced to 3.5% with
MSA method and NN leads to 2.7% at RF input power of 5 dBm. The results signify
that proposed MSA-DPD method reduces the signal impairments in better proportions



Appl. Sci. 2021, 11, 11624 26 of 29

as compared to GMP method and CPWL. The estimated multiplication operations from
CPWL to MSA are reduced from 880 to 220 leading to much less complexity and overheads
meeting the standardization requirements set by 3GPP Release 17. MSA with much less
complexity and similar performance to NN can be employed for DPD depending on the
application scenario.
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