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Abstract 

Pipe wall loss caused by corrosion is of growing interest in the petrochemical 

industry. A systematic tomography framework using helical guided waves is developed 

in this paper to conduct a thickness mapping. In this work, the thickness under 

investigation is reconstructed using an objective function derived from the acoustic 

Helmholtz equation. The main approach consists of two parts. Firstly, the parametric 

dictionary is designed to separate the overlapped guided waves travelling in helical 

paths. After that, the scattering field can be extracted as the input of the distorted born 

iteration method. The imaging result is exemplified numerically and experimentally, 

with the strengths and drawbacks explained thoroughly. Remarkably, the thickness 

error of the simple defect is still within 0.5 mm when the input data is poor. A clear 

qualitative description of complex defects can be achieved through iterations even in 

the absence of an initial objective function. The framework established in this paper 

contributes a comprehensive imaging algorithm and the corresponding signal 

processing approach, all of which are conducive to providing some reference for 

engineering applications in nondestructive testing and structural health monitoring. 

 

Keywords: pipe wall, helical guided waves, dictionary reconstruction, thickness 

mapping. 
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1. Introduction 

Corrosion of pipeline systems presents a notable challenge to the petrochemical 

industry. Since the long-distance and wide-range inspection feature of ultrasonic guided 

waves, torsional mode waves emerged as the main focus of non-destructive testing in 

pipes [1-3]. However, this detection tool is not very accurate. In recent years, research 

has been conducted on guided wave tomography methods that perform high-precision 

detection at short distances. This technique mainly employs Lamb wave propagating in 

helical paths along the pipe, which provides an accurate reconstruction of the wall 

thickness distribution of pipe sections within a certain range and holds a promising 

engineering application [4-7].  

The axisymmetric torsional mode guided wave T(0,1) [2], propagates parallel to 

the pipe cross-section, resulting in the simultaneous arrival of direct wave packets 

received by the array of receivers around the pipe circumference. Unlike this 

propagation style, infinite propagation paths exist in helical guided waves. The 

receiving transducer can obtain numerous overlapped wavepackets even with a single 

mode excitation, making it difficult to be discriminated [5,7]. In order to identify the 

source and features of the wave packets in the detected signal, much work has been 

carried out [8-11]. Most of them can only extract the travel time of the wavepacket and 

distinguish the travelling path. In this case, many tomography methods can not be 

implemented when precise wavefields are missing. Stylianos [12] separated the full 

signal with a sparse array arranged in the pipe, while this approach provides poor 
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imaging resolution. Therefore, a signal processing algorithm that can separate the wave 

packets is the basic issue that demands to be addressed when performing the 

tomography method in the pipe. To address it, Huswaite[7] presented a solution to 

helical path separation for guided wave tomography utilizing a backpropagation 

technique. Starting from another perspective, this paper utilizes the dictionary to 

reconstruct the acquired data, realizing the extraction of useful signals, which is a new 

attempt. 

Assuming that the helical guided wave of the single path was obtained, a large 

amount of previous work could be applied to pipe wall imaging. Among them, the 

majority of research [13,14] has been concentrated on the inspection of flat plates. 

Meanwhile, many works [4-7,15] have presented the expansion of the pipe into a plane 

when dealing with helical guided waves, which means that pipeline tomography can 

draw on the approach of plates. Several classical algorithms, such as Reconstruction 

Algorithm for Probabilistic Inspection of Damage (RAPID) [16,17] and Filtered back 

projection (FBP) [18,19], are highly proficient at calculations. However, they can only 

determine the locations of defects and exist some misjudgements occasionally. In this 

paper’s background, corrosion causes pipe wall loss. Accurately quantifying the 

minimum remaining wall thickness is vital to estimating the remaining service life of a 

pipe and determining whether it can continue to be used safely. The diffraction 

tomography method based on the Born approximation [20] was adopted early to 

reconstruct the thickness distribution and gave some experimental validations. 

Unfortunately, this method demands a reference case with a known depth of flaw. 
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Building on this work, Hybrid Algorithm for Robust Breast Ultrasound Tomography 

(HARBUT) [7,21-23] was developed under the same restriction despite significant 

improvements in imaging resolution. In short, establishing the thickness mapping 

directly without reference is undoubtedly meaningful. Other methods with great 

precision are Full Waveform Inversion (FWI) [24-26] and Recursive Extrapolation [27]. 

The inversion results of FWI are highly sensitive to the initial model, requiring a close 

approximation to the true medium. If the initial model deviates significantly from the 

true medium, it may lead to inversion failure or getting stuck in a local optimum. 

Inaccurate or low-quality data can result in distortion or blurring of the inversion results. 

The recursive extrapolation algorithm requires an accurate propagation model for 

image reconstruction. If the propagation model is inaccurate or the assumptions are not 

valid, the reconstructed results may contain errors. 

In our previous works, guided wave tomography based on the method of moment 

was attempted on the plate [28], and several algorithms have been developed to handle 

various array structures [29]. Furthermore, pipeline transducer arrays are even more 

limited in density. It is unknown whether tomographic methods earlier can be applied 

in practice to pipelines. Therefore, a systematic tomography framework containing 

signal separation and thickness imaging is proposed to escape the present dilemmas, 

which is the highlight of this paper. Compared to other signal processing methods, this 

research is capable of completely separating the signals from different paths, even when 

they overlap severely. After the separation, the scattering fields can be achieved from 

the measured signals as input to the imaging algorithm, and then the thickness 
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reconstruction will be realized without any defect reference using this paper’s approach. 

Firstly, the corresponding method and detailed operations are described in the next 

section Theory. The working performance is examined via the ABAQUS software. 

Afterwards, experimental measurements are conducted to further verify the 

tomography framework with the same setting as the simulation. In the discussion 

section, additional defective forms are simulated to demonstrate both the strengths and 

drawbacks of this approach. Additionally, comparisons with the former algorithm are 

presented here. The proposed framework is expected to offer valuable guidance for 

structural health monitoring in the pipe industry. 

2. Theory 

The main research of this paper is to achieve a quantitative description of surface 

defects on pipe walls using helical guided waves. The pipe, as a hollow cylindrical 

structure, is continuous in the circumferential direction. When the helical Lamb wave 

was generated at a certain point, it will cause an omnidirectional wave field propagating 

along the pipe wall, as is shown in Fig.1. A forward model describing the interaction 

between helical guided waves and defects has been developed in this paper based on 

the method of moments and the corresponding solution algorithm is provided to 

perform the inversion. The specific operation program can be seen as follows. 
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Fig.1. A schematic diagram of the helical Lamb wave propagation process in the pipe 

wall. It was drawn from the stress distribution at three moments using an Abaqus 

simulation. 

2.1 Forward model 

The excitation and reception arrays are necessary to arrange around the detection 

area when using tomographic techniques. The basic form is illustrated in Fig.2(a). The 

pipe wall can be approximated as a planar model if the pipe thickness is less than around 

10% of the radius [4-7,15,30-32], which is the case for the majority of pipes of interest. 

In this case, Lamb wave propagation satisfies the Rayleigh-Lamb secular equation [33]. 

Based on this, the relationship between phase velocity and wall thickness can be 

established. In contrast to the plane, there are infinite helical propagation paths between 

each source and receiver pair. Multiple replications of the surface    could be 

considered in Fig.2(b) ( ,..., 2, 1,0,1,2,...,      ). Correspondingly, the expanded 

wall can be called …,Order -2, Order -1, Order 0, Order 1, …, . 
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(a) 

 

(b) 

Fig.2. (a) The basic form of the pipe array structure and the wave propagation of partial 

helical guided waves. (b)The schematic diagram of pipe wall expansion. Take Order m 

as the list of wall planes after expansion. The probe number is named by n, and the 

number of probes for both excitation and reception arrays is N.  

 

Follow naming rules of the serial number in Fig.2(b). The helical Lamb wave 

emitted from the source will be received infinite times at the n-th probe. The serial 

number of the n-th receiving probe in the Order m plane is denoted as n+mN. Select the 

first excitation probe on the Order 0 plane as the zero point to establish the Cartesian 

coordinate system. The travelling path between the p-th excitation probe and the 

(n+mN)-th receiving probe is recorded as ( , )l p n mN , the length expression is: 

 2 2( , ) = ( ) +n mN pl p n mN x x D   (1) 

In which: n mNx    is the abscissa of the (n+mN)-th receiving probe, px   is the 

abscissa of the p-th excitation probe, and D represents the axial length of the pipe 

inspection. On the basis of plane expansion and straight ray assumption, the 
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propagation and scattering of the helical Lamb wave in pipes can be described through 

the inhomogeneous Helmholtz equation [34-35]: 

 2 2 2 2 2
0 0 0[ ( ) ] ( , ) ( ) [ ( ) / ( , ) 1] ( , )k k c c         U r r U r  (2) 

Here:    is the angular frequency, r   is the spatial position of a point in the 

detection area, ( , )U r   is the potential function of the displacement, 0 ( )k    and 

0 ( )c    represent the wavenumber and phase velocity of helical Lamb wave in the 

defectless pipe wall, respectively. ( , )c r  is the actual phase velocity at the point r . 

When the frequency is fixed, ( , )U r  and ( , )c r  can be simplified as ( )U r  and 

( )c r . As displayed in Fig.3, 1r  and 2r  represent the excitation and receiving point, 

respectively.  

Let  2 2
0 0( ) [ / ( )] 1O k c c r r , Eq.(2) here can be written to: 

 ( ) ( ) ( )u s U r U r U r  (3) 

 2 2
0( ) ( ) 0uk  U r  (4) 

 2 2
0( ) ( ) ( ) ( )sk O   U r r U r  (5) 

In which: ( ), ( ), ( )u sU r U r U r are the total field, incident field and scattering field 

respectively. And the Green’s function uG   is the solution to 2 2
0( ) uk G     . 

Therefore, Green's function can be viewed as the scattering field of a point source. If 

we consider the scattering region as an array of scattering points, then the scattering 

field can be represented as the superposition of scattering from these point sources, 

namely: 

 2 2( ) ( ) ( ) ( )s G O d  U r r r r U r r  (6) 

Therefore, the solution of Eq.(2) can be written as [34]: 
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 2 2 2 2 2( ) ( ) ( ) ( ) ( ) ( ) ( )u s u G O d    U r U r U r U r r r r U r r  (7) 

Here, (2)
2 0 0 2( )= / 4 ( )G j H k   r r r r   is the Green’s function, and  j is the 

imaginary unit. ( ) ( )q
pH x  represents p-th order Hankel function of class q. ( )O r  is 

the objective function. In general, 2( )uU r  can be calculated by the Green’s function.  

 

 

Fig.3. The diagram of the scattering on the pipe wall. 

 

In order to facilitate the calculation, the pipe wall shown in Fig.3 can be divided 

into grids. Assuming that the number of grids is I, Eq.(7) can be rewritten in the form 

of an algebraic summation based on the method of moments. 

 1 1 1 1 2 2 1 2
( ) ( ) ( ) ( ) ( ) ( )i u i s i u i i i i i

I

O c   U r U r U r U r r U r  (8) 

In which: 

 
1 2

1 2

(2)
0 1 0 1 2

(2)
0 1 0 0 0 1 2

/ 2 [ ( ) 2 ] , ;

/ 2 ( ) ( ) , .
i i

i i

j k aH k a j i i
c

j k a J k a H k R i i





    
  

 (9) 

Here 1 2, 1,2,3,...,i i I  represent the serial number of grid points, located at the 

center of the grid. a is the radius of the grid and 
1 2i iR  is the distance between 1i  and  

2i  . 1( )J x   stands for the first order Bessel function. In this condition, 

1 2 2 1 2
( ) ( ) ( )s i i i i i

I

O cU r r U r  . Record the receiving probe number as 3i  ( 3i n mN   ), 

when the grid point 1i  coincides with the receiving probe 3i , the scattering field can 

be expressed as: 
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 3 2 2 3 2
( ) ( ) ( )s i i i i i

I

O dU r r U r  (10) 

3 2i id  is the special form of 
1 2i ic  with the same expression, Eqs. (6) and (7) can be 

rewritten into the form of the matrix: 

 ( ) ( ) ( )t in t U U COU  (11) 

 ( ) ( )s tU DOU  (12) 

Where: ( )tU , ( )inU  and ( )sU  stand for the matrix of the total field, incident field 

and scattering field, respectively. The composition of C  and D  take 
1 2i ic  and 

3 2i id  

as the basic element. O  represent the objective function. Eqs. (11) and (12) are the 

final forward governing equations, based on which the following inversions will be 

carried out. 

2.2 The technique of dictionary reconstruction 

The forward model of helical guided waves travelling in the pipe wall has been 

given in section 2.1. The forward input of Eq.(12) is the scattering field ( )sU , which 

can be achieved from simulation or experiment. However, the helical Lamb mode wave 

packets will be overlapped due to the multimodes and multipaths when measuring the 

helical guided waves. How to extract the single mode wave in a specific path plays a 

key role in solving the problem. In the case of low frequency-thickness products, there 

are only A0 and S0 modes. The group velocities of these two helical Lamb modes are 

widely different, which can be easily obtained from the dispersion curve. Therefore, the 

single mode helical Lamb wave could be extracted based on propagation velocity. As 

is displayed in Fig.4(a), the n-th and (n+N)-th probes are the same receivers that can 
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acquire signals from both S1 and S2 paths. However, the propagation distances between 

the two paths are close, Fig.4 (b) shows the overlapping situation in the time domain. 

For the purpose of solving the dilemma, an overcomplete path dictionary has been 

established to extract the time-domain signals from the single mode.  

 

(a)                          (b) 

Fig.4.(a) The schematic diagram for the propagation of two specific signal paths, S1 

and S2 are close in length. (b) The actual received signal containing two propagations 

with A0 and S0 modes. 

 

This technique mainly relies on the dispersion curves of Lamb waves propagating 

through the plate. At high frequencies, the properties of helical Lamb waves are similar 

to those of flat plates. In this paper, it is necessary to thoroughly consider the 

comparison between helical Lamb waves and flat plates under low frequency-thickness 

products. As shown in Fig.5(a), ( , )c r   is phase velocity with    being the angle 

formed by the propagation direction and the x-axis. ( )xc r   and ( )yc r   are the 

circumferential and axial propagation phase velocities of the pipe, where ( )yc r  can be 

considered equivalent to propagation in a flat plate. The expression for ( , )c r  can be 

written as [15]: 
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 2 2 2 2

( ) ( )
( , )

( ) sin ( ) cos

x y

x y

c c
c

c c


 




r r
r

r r
 (13) 

 

 

(a)                           (b) 

Fig.5. The pipeline coordinate system and the dispersion curve. (a). Coordinate system 

of the pipeline structure. (b) The circumferential dispersion curve of the pipeline and 

the dispersion curve of the flat plate at low frequency-thickness products. 

 

Fig.5(b) shows the dispersion curves for two Lamb wave modes in both a steel 

pipe (outer diameter is 219mm, thickness is 10.95mm) and a flat plate (thickness is 

10.95mm). Based on Fig.5 and Eq.(13), for the selected pipe diameter and thickness, 

an analysis of the error between the phase velocity of helical and traditional Lamb 

waves displayed in Fig.6(a) reveals that the error in the circumferential Lamb wave 

velocity along the pipe is the largest, at around 5%. With a wall thickness of 10.95mm, 

equivalent to 10% of the pipe radius, we consider the circumferential Lamb wave with 

the maximum error as an example. The comparison of errors between helical Lamb 

waves and plate Lamb waves is illustrated in Fig.6(b), covering a wall thickness-to-

pipe radius ratio ranging from 5% to 10%. This indicates that at lower frequencies, 

thinner pipe walls result in higher accuracy of helical Lamb waves. When determining 
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the frequency and thickness of helical Lamb waves, they can be treated as flat plate 

waves within a reasonable margin of error.  

 

(a) 

 

(b) 

Fig.6. Error analysis of pipeline dispersion curves caused by different angles and 

wall thicknesses. (a) At d/R = 10%, the relative error analysis of helical Lamb waves 

compared to plate Lamb waves for different propagation directions. d is the wall 

thickness and R is the pipe radius; (b). The analysis of errors between circumferential 

Lamb waves in the pipeline and plate Lamb waves when the range of d/R varies from 
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5% to 10%. 

 

When the dispersion relationship of helical Lamb waves is established, the specific 

wavefield separation techniques are as follows and more detailed derivation steps can 

be referred to [36]. 

Select a windowed cosine function ( ) ( ) cos( )f t w t t  as the excitation of the 

guided wave, ( )w t   is the windowed function,    is the angular frequency, t  

represents the time item. When the excitation propagates at a distance of x, a linear 

mapping technique for dispersion removal of Lame waves [9,37-38] can be utilized to 

obtain the response of signal: 

 1 0 0( , ) ( )cos( )f x t A w t k x t k x     (14) 

In which 0 0 0 1 0/ ( ) 1/ ( )p gk c k c   ，  , 0( )pc    and 0( )gc    are the phase 

velocity and group velocity at the central frequency 0 . Let 1 1t k x , it represents the 

propagation time when the signal travelled at a distance of x. ( , )f x t  can be replaced 

by: 

 1 1 0 1 0 1 0 1 1( , ) ( )cos[ ( ) / ]f t t A w t t t t t k k t         (15) 

Here: A means the amplitude. Let 0 1 0 1 1= /t k k t     , it represents the phase 

variation. Assuming that the signal received by the transducer contains multiple paths, 

an overcomplete path dictionary 1 2[ , ,..., ,..., ]r RL L L L L  can be built for these path 

elements. In which: 1, 2,3,...,r R , rL  represents the r-th path. Since various pipe 

wall boundary conditions will cause a phase shift of the signal in each path, a phase 

dictionary 1 2[ , ,..., ,..., ]s S        can be constructed for each path dictionary. 
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1, 2,3,...,s S  stands for the marks of phase. 

Based on the planar expansion technique given in section 2.1, all the propagation 

paths can be predetermined for each receiving signal. Taking the A0 mode signal in 

Fig.4(b) as an example, it contains two paths in total. At this point R=2, each data set 

of the path is divided into S phases. The original signal can be processed into a single 

mode by adding a windowed function, this single mode signal is denoted as y. It can be 

written in the form of  y Lx e  with the help of path dictionary. Assuming that the 

signal y contains Y time items, then the dimension of y is 1Y   . On this basis, the 

dimension of 1 2[ , ,..., ,..., ]r RL L L L L   is ( )Y R S   . 

1

2

...

...
r

R

 
 
 
 

  
 
 
 
  

x

x

x
x

x

  is the weighting 

factor of the multipath, and its dimension is ( ) 1R S  , e is the error item. The so-called 

separating algorithm is to solve the optimization problem 
2

2
min y Lx  . After 

obtaining x,  r r r y L x  can be calculated to achieve the single path signal. 

2.3 Inverse model 

In section 2.1, the forward governing Eq.(11) and (12) have been deduced. The 

objective function O  is the component to be solved and the scattering field ( )sU  is 

the input. Section 2.2 describes the method for extracting the single helical Lamb 

wavefield. As a matter of course, if the signals do not overlap, it can truncate the signals 

directly to reduce the computational effort. The specific scattering field is obtained by 
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measuring the subtraction between the defective signal and the defectless signal in the 

frequency domain. If there is no healthy signal available as a reference, the Green's 

function can be directly computed to replace the incident field. Up to now, the extraction 

of the experimental scattering field [20-23] still relies on subtracting signals to obtain 

it. 

The following is the procedure for solving the objective function. 

Firstly, ( )sU  can be achieved from simulation or experiment. On the basis of Born 

approximation, ( ) ( )t inU U  , Eq.(12) can be replaced by ( ) ( )s inU DOU  and ( )inU  

will be calculated by Green’s function. Then, the initial objective function 0O  could 

be obtained. This result is not accurate enough and needs more iterations. The number 

of iterations can be denoted by k (k=1,2,3,…), substitute 1kO  into Eq. (11) to solve 

the full field ( )t
kU  . At the same time, kD   should be modified by 

1
1 -1( )k k k


 D D I O C . Calculate the difference between the latest scattering field and 

the measured scattering field ( ) ( ) ( )Δ s s s
k k U U U  . Afterwards, Δ kO  can be solved 

from ( ) ( )Δ Δs t
k k k kU D O U  . Let 1 Δk k - k O O O   and start the next iteration. Finally, 

when the error ( )Δ s
kU   reaches a certain accuracy   , the iteration is stopped. The 

above solution algorithm is the basic idea of the distorted born iteration method [39,40]. 

When the final objective function is achieved, 2
0 0 0( ) ( ) / ( )c k c O k r r r  can 

be calculated by  2 2
0 0( ) [ / ( )] 1O k c c r r  . ( )c r   is the phase velocity at the 

detection point r . It can be converted to the thickness distribution based on the 

dispersion curve. The ultimate purpose of this paper is to measure the corrosion of the 

pipe wall utilizing the thickness distribution. The procedure of the proposed method is 



18 

 

shown in Fig.7. 

 

Fig.7. Schematic of the algorithm, containing the signal separation and the imaging 

method.  

3. Numerical model 

3.1 Simulated setup 

In order to verify the imaging theory, a pipe model was established using 

ABAQUS software. As displayed in Fig.8, the same amount of transducer arrays are 

arranged on both sides of the detection area and each array is equipped with 16 probes. 
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The length of the detection area is 30cm, with a pipe diameter of 219mm and a wall 

thickness of 6mm. In this pipe condition, the dispersion relationship error of Lamb 

waves in the pipe wall and flat plate is within 3%. The material is iron (Young's modulus 

= 210 Gpa, Poisson ratio = 0.3, density = 7850 kg/m3). The relative single A0 mode 

wavefield was excited at a point in the ring array, perpendicular to the outer surface and 

then the other array with all probes would capture the transmission signal. Absorbing 

boundaries of 40 layers were modelled at the end of the pipeline utilizing the increased 

damping to avoid reflections [41-43]. The excitation signal is a five-peaked wave 

expressed in Eq. (16). 

 0 0( ) [1 cos(2 /5)] cos(2 )f t f t f t     (16) 

Here, 0 200kHzf   is the centre frequency. Cubic elements with an approximate 

size of 1mm have been utilized to discretize the pipe model into 3618073 nodes. There 

are 5000 incremental steps set in the model and each step is 1e-7s. The average 

computation time per incremental step is 0.7145s when using a common computer with 

11th Gen Intel Core i7-11700 @ 2.50 GHz. As required by the array, it is necessary to 

repeat the calculation 16 times, taking a total time of about 15.88 hours.  

 

Fig.8. Simulated setup for capturing the helical-guided waves in an iron pipe. 
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3.2 The imaging results 

 

Fig.9. The partial propagation routes of the helical guided wave travelling in the 

pipe wall of Order 0, with a total of 17 17  sets of data available. 

 

As set in the simulation, each array is equipped with 16 probes. On this basis, the 

ultimate scattered field can be obtained in 289 groups (Fig.9) by considering only the 

helical guided wave in the pipe wall of Order 0. In the forward part of the imaging 

algorithm, the detection area is evenly divided into 3306 grids. Obviously, the input 

data would be insufficient. In order to improve the imaging resolution, the received 

signals travelling through the pipe walls of Order 0 and Order -1 are considered, then 

a total of 1089 sets of scattered fields can be achieved. When the objective function is 

transformed into a thickness distribution, the imaging results are shown in Fig.10. The 

defect is a flat circular shape with a diameter of 6cm. 
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Fig.10. Thickness distribution of the pipe wall. (a) The theoretical thickness 

distribution; (b) The thickness imaging only considering the direct paths; (c) The 

thickness imaging considering the direct and helical paths.  

 

Based on the deepest point of defect in the imaging area, the accuracy analysis of 

the detection results is shown in Table 1. It can be noticed that the remaining thickness 

and location of the defects are well reconstructed. When the high-order helical guided 

waves are considered, the thickness error is controlled within 3% and this is very 

accurate. Reconstruction results only relying on the direct waves have a large error. It 

can also be visualized from Figs. 10(b) and 10(c) that when the input scattering field of 

the imaging algorithm is insufficient, the noise pollution of the imaging results is more 

severe. If the number of probes is certain, the imaging accuracy can be significantly 

improved by making full use of the propagation characteristics of helical guided waves. 

In order to better verify the algorithm, an experimental platform is built in this paper 
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with the same setting conditions in the next section.  

Table 1 

The accuracy analysis of the detection results. 

 
Defect 

location (mm) 

Location 

error (mm) 

Defect remaining 

thickness (mm) 

Thickness 

error (%) 

Fig.10(a) (516,150) / 4 / 

Fig.10(b) (508,148) 8.246 4.264 6.6% 

Fig.10(c) (510,149) 6.083 4.102 2.55% 

4. Experimental verification 

4.1 Experimental setup 

A stretch of pipe with the same dimensions as the simulation was selected for 

experimental verification. In order to provide the same defects as the simulation, a 3D-

printed mould was fabricated and adhered to the surface of the pipe using epoxy glue. 

Then hydrochloric acid (20%) was poured into the mould. After 1 month of continuous 

soaking, the remaining thickness of the pipe became 4mm. The defects generated by 

this method can be approximately considered as flat. The excitation array consists of 

16 circular plain piezoelectric transducers and the receiving array uses commercial 

transducers (HS-GP) with a centre frequency of 200 kHz to enhance the signal-to-noise 

ratio. Both of these transducers have a diameter of 1cm. The guided wave detection 

system (Fig.11) is composed of a signal generator (DG-4102), a power amplifier 
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(Aigtek-2022H), a pipe containing the corrosion defect, an oscilloscope (MDO-3204) 

and a computer with the control software. During the experiment, the pipe was placed 

directly upright on the ground. The total length of the pipe is 1.5m, and within the 

limited acquisition range, there are no reflected waves.  

 

Fig.11. Experimental testing platform. 

4.2 Signal processing for experiments 

Compared with the simulated signal, the experimental acquisition data contain 

much noise. Moreover, the signal excited by the piezoelectric transducer also contains 

the S0 mode, which further enhances the challenge of signal processing. As illustrated 

in Fig.12(a), the helical guided wave   can be generated from the transmitter qT  to 

the receiver pR , in which 2 1( )p q n n

N
   
 , 1n  and 2n  are the serial numbers 

for the excitation and receiving probe arranged in the pipe wall of Order 0, respectively. 

Taking the received signal shown in Fig.12(b) as an example, the signal consists of A0 

and S0 modes, but the S0 mode has a low amplitude and may be drowned in the 

vibration noise during propagation. Therefore, we only consider the propagation of the 

A0 mode in this paper, and the specific processing is shown in Fig.13.  
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(a) 

 

(b) 

Fig.12.(a)Helical guided wave paths on the surface Order -1, Order 0 and Order 1. 

(b)Waveforms measured across the transducers of the receive array when source #1 

radiates. The waveform contains two modes, S0 and A0 mode. The arrows mark the 

waveforms of the four helical guided waves and the S0 mode is neglected.  

 

 

Fig.13. The simple extraction method of useful signals received from transducers #7 
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and #8.  

These two signals in Fig.13 are taken from Fig.12(b). The direct wave signal of 

probe #7 can be extracted automatically from the original signal with a window function. 

The overlapped 1  and 0  wave from receiver #8 can also take this approach, but 

their further separation would depend on the method in section 2.2. In particular, the 

overlapped 1   and 0   wave represents two different paths, their travelling 

distances are 0.425m and 0.489m, respectively, which means the dictionary

1 2[ , ,..., ,..., ]r RL L L L L  contains only 1L  and 2L .   of this case can be divided as 

[0, / 50, / 25,..., 2 ]    , the phase interval is / 50  . Fig.14 shows the separation 

results of all signals. The majority of these signals can be extracted by direct 

interception, and the few signals with serious overlap are selected by constructing 

dictionaries after removing the S0 modes. The experimental pipeline has rust marks and 

exhibits slight anisotropy. There is a certain amount of discrepancy between the actual 

propagation signal and the simulation. 

 

(a)                                (b) 

Fig.14. The received signals after separation. (a) the signals of 0  from the receiving 

array; (b)the signals of 1  from the receiving array. 
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4.3 Experimental reconstruction 

The inversion algorithm similar to the numerical model can be operated to conduct 

the experimental thickness mapping when all the signals have been separated. Fig.15 

demonstrates that this tomography method is also applicable to real environments. The 

imaging accuracy improves when the acquired signal is sufficiently utilized, i.e., more 

different order helical guided waves are considered. However, compared to the 

simulation, the thickness reconstruction of the experimental signal is slightly poor. The 

defect shape (Fig.15a) is very irregular when the input scattered field data is not 

sufficient. Fig.16 and Fig.17 show the trend of the thickness variation in a line chosen 

across the centre of the defect. It can be clearly seen that the thickness gradient varies 

largely in the defect area of the experimental imaging. The minimum value of the 

thickness can also provide a certain indication of the corrosion status in the pipe wall. 

In addition, the experimental results can precisely give the corrosion size and location, 

and this is instructive for industrial non-destructive testing.  

 

Fig.15. Thickness distribution of the pipe wall employing experiments. (a) The 

thickness imaging only considering the direct paths; (c) The thickness imaging 

considering the direct and helical paths.  
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Fig.16. The thickness distribution through the centre of the defect along the 

circumferential direction. The red lines in the 4 figures represent the true values. (a) 

The blue line is the simulation result only considering the direct wave paths; (b) The 

blue line is the simulation result using the helical waves of 1 , 0  and 1 ; (c) The 

blue line is the experimental result only considering the direct wave paths; (d) The blue 

line is the experimental result using the helical waves of 1 , 0  and 1 . 

 

 

Fig.17. The thickness distribution through the centre of the defect along the axial 

direction. The red lines in the 4 figures represent the true values. (a) The blue line is the 
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simulation result only considering the direct wave paths; (b) The blue line is the 

simulation result using the helical waves of 1 , 0  and 1 ; (c) The blue line is the 

experimental result only considering the direct wave paths; (d) The blue line is the 

experimental result using the helical waves of 1 , 0  and 1 . 

 

In order to provide a more quantitative description of the relationship between the 

reconstruction results and the actual thickness error, a metric NLR is defined here. 

 
2 21 [ ( ) ]/ ( )i i i

NL exa cal exa
i i

R T T T     (17) 

Where： i
calT   represents the thickness value assigned to a reconstructed point i within 

the cross-section, while i
exaT denotes the actual thickness. A smaller reconstruction error 

is observed when NLR  approaches 1, suggesting that the reconstruction of the defect 

becomes more feasible. The circumferential and axial directions of the pipe wall are 

defined as the x and y axes, respectively. When considering only one unfolded surface, 

replica=0, and when considering two unfolded surfaces, replica=1, and so forth. The 

calculation results for NLR   are provided in Table 2. Through the definition of this 

parameter, it is evident that higher-order helical guided waves indeed enhance the 

reconstruction performance of thickness. The improvement of NLR  in the experiment 

is more pronounced although the experimental reconstruction errors are relatively 

larger compared to simulations. 
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Table 2 

The metric NLR  calculated from the simulation and experiment. 

NLR  Simulation Experiment 

y=150, replica=0 0.9567 0.9354 

y=150, replica=1 0.9628 0.9626 

x=516, replica=0 0.9149 0.8969 

x=516, replica=1 0.9448 0.9404 

 

5. Discussion 

The qualitative conclusions drawn from the experiments and simulations in 

verifying the algorithms in this paper are consistent. The utilization of high-order 

helical guided waves can achieve more precise imaging. However, the inversion part of 

the imaging algorithm relies on the Born approximation in the initial iteration. In the 

case of more complex defects, the restrictions of this approximation will grow stronger. 

Therefore, this issue will be discussed in this section at first.  

As the pipe wall corrodes very slowly, according to the testing experience of this 

paper, the wall thickness reduction of 1mm takes about 18 days using hydrochloric acid 

(20%). Simulation is a reasonable alternative means through the preceding analysis. 

Fig.18 gives the reconstructed results for two circular defects, their theoretical residual 

thicknesses are 3mm and 4mm, respectively. When only the direct path signal is 

considered, the outline of defects with lighter corrosion is extremely ambiguous. The 
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defect situation in Fig.19 is more complicated, containing three defects of different 

shapes and depths. The theoretical remaining thickness of defects 1,2 and 3 are 2mm, 

3mm and 4mm respectively. Currently, the thickness reconstruction has major errors 

with the sparse input data. Further detailed quantitative analysis of the thickness is 

shown in Figs.20 and 21. Fig.20 shows the trend of the thickness variation in a line 

chosen across the centre of the defect, and Fig. 21 is an error statistic for the double-

defect and triple-defect models. The thickness error of both double-defect and triple-

defect models can be controlled within 1mm as long as the propagation characteristics 

of helical guided waves are properly utilized. As shown in Figs.19 and 20, in the model 

with three defects, the imaging performance did not show a significant improvement at 

replica=2. When replica changes from 1 to 2, the reconstruction of defect 1 indeed 

became more accurate, but there was no improvement in the reconstruction of defect 3. 

On one hand, under the limitations of the Born approximation, the initial solution for 

the three-defect model is inaccurate, leading to poorer reconstruction results compared 

to the two-defect model. Furthermore, in the case of multiple defects, high-order helical 

guided waves experience more severe attenuation and are highly susceptible to noise 

contamination.  
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Fig.18. The reconstructed results contain two defects using the simulated data. (a) The 

theoretical thickness distribution; (b) Wall thickness reconstruction only considering 

the direct wave paths; (c) Wall thickness reconstruction utilizing all the helical guided 

waves in the pipe wall of Order -1 and Order 0; (d) Wall thickness reconstruction 

utilizing all the helical guided waves in the pipe wall of Order -1 , Order 0 and Order 

1. 

 

Fig.19. The reconstructed results contain three defects using the simulated data. (a) The 

theoretical thickness distribution; (b) Wall thickness reconstruction only considering 

the direct wave paths; (c) Wall thickness reconstruction utilizing all the helical guided 

waves in the pipe wall of Order -1 and Order 0; (d) Wall thickness reconstruction 

utilizing all the helical guided waves in the pipe wall of Order -1 , Order 0 and Order 

1. 
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Fig.20. The thickness distribution in a line through the centre of the defect. The purple 

lines in the 2 figures represent the true values. The other three different colored lines 

respectively consider different orders of helical wave propagation. (a) The thickness 

results calculated from Fig.19; (b) The thickness results calculated from Fig.20. 

 

Fig.21. Error analysis of imaging results. (a) Thickness error calculated from Fig.18, 

including three cases of helical guided waves; (b) Thickness error calculated from 

Fig.19, including three cases of helical guided waves. 

 

The examples provided in Fig.18 and Fig.19 only considered the damage located 

strictly between the arrays of transducers and sensors. The corrosion defects in Fig.22 
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located close to the sensor array have been studied to validate the algorithm’s 

performance. The remaining thicknesses of defects 1 and 2 are 3mm and 4mm, 

respectively. In this case, the difficulty of signal processing does not increase because 

the extraction of the scattering field is obtained by subtraction between the healthy and 

the defective signal. When considering only direct wave signals, thinner defects are 

almost impossible to observe. This is because fewer rays are passing through the array's 

edges, making it difficult to clearly describe the characteristics of the defect. When 

considering helical waves, with a more abundant dataset, it is possible to improve the 

resolution of defects. The thickness distribution between the centres of the two defects 

is shown in Fig. 23. It can be easily observed that when more rays pass through the 

defect, the thickness assessment becomes more accurate. 

 

 

Fig.22. The reconstructed results consider the defects close to the sensor array using the 

simulated data. (a) The theoretical thickness distribution; (b) Wall thickness 

reconstruction only considering the direct wave paths; (c) Wall thickness reconstruction 

utilizing all the helical guided waves in the pipe wall of Order -1 and Order 0; (d) Wall 

thickness reconstruction utilizing all the helical guided waves in the pipe wall of Order 

-1 , Order 0 and Order 1. 
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Fig.23. The thickness distribution in a line through the centre of the defect. The purple 

lines in the 2 figures represent the true values. The other three different colored lines 

respectively consider different orders of helical wave propagation. (a) The thickness 

results calculated from defect 1 in Fig.22; (b) The thickness results calculated from 

defect 2 in Fig.22.  

 

When considering the parameter NLR , a quantitative description of the thickness 

distribution along the intercepted sections passing through the defect centers in Figs. 

18, 19, and 22 are presented in Fig.24. y=150 represents a line segment passing through 

the defect center in the circumferential direction. Similarly, x=172 and x=516 both 

correspond to line segments passing through the defect center in the axial direction. As 

the expansion of the pipe wall surfaces increases, NLR  gradually increases and 

approaches 1. In Fig.24(a), the NLR values for the blue line are significantly better than 

those for the red line. This is because in more complex defect scenarios, the limitations 

of the Born approximation are more pronounced, leading to a decrease in the 

reconstruction accuracy of this algorithm. This phenomenon is also evident in Fig.24(b). 
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When defects are located near the array, their influence on the reconstruction results is 

not significant. This is because the defect area in Fig.22 is smaller than that in Fig.18, 

resulting in only minor phase variations in the waves, which have a smaller impact on 

the Born approximation. 

 

 

Fig.24. The variations in NLR  from different simulation scenarios. (a) The results of 

NLR  calculated from the line along the circumferential direction in Figs.18 and 19; (b) 

The results of NLR  calculated from the line along the axial direction in Figs.18 and 22. 

 

In spite of the iterative idea introduced in this work, the restriction of born 

approximation remains as well. Besides the born approximation factor, the pipe itself 

is curved and not equivalent to the plate. The accurate governing equation of the helical 

guided waves relies on the three-dimensional Lamè–Navier equation, but it is extremely 

tough to solve and verify experimentally [15]. Therefore, reasonable assumptions in 

this paper are necessary. Compared to previous work, this paper offers significant 

improvements as well. In signal processing, a novel method has been proposed to 
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separate overlapped guided waves. The key point of this method is to minimize the 

residuals between the reconstructed signal and the original signal by building the path 

and phase dictionaries. As seen from the experimental signal in Fig.12, the dispersion 

of signals can worsen the overlap problems, which brings out the necessity of this 

approach. The restriction of this technique holds that it is only applicable to isotropic 

structures and the specific propagation path must be known. In terms of defect 

reconstruction, this paper built the relationship between thickness and objective 

function directly. The vast majority of imaging algorithms are merely capable of 

localizing simple defects [13,14,17-19]. Diffraction tomography [20] could also 

implement thickness mapping, while it requires the same structure with a known defect 

depth as a reference. The full-waveform inversion [24-26] can obtain the thickness 

distribution with high precision by iterating over the velocity field. However, the 

inversion process in this approach is very time-consuming. The convergence for a 

single frequency can be achieved in 20 to 40 iterations. In the former paper [24], an 

irregularly shaped defect took around 4.5 hours to get the results. The distorted born 

iteration method in this work calculates much faster. Take Fig.19(d) as an example, the 

whole process iterates 8 times, taking 4 minutes for each iteration. Because the 

dimensionality of the matrix to be solved itself is poor, the detection region is divided 

into 3306 points and the input scattering field is 2401 in total. Due to the weakness of 

the full waveform inversion, its application is more often in seismic wave surveys. The 

methods in this paper can provide some guidance for nondestructive testing and 

structural health monitoring. 
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In order to improve the imaging accuracy of complex defects, we can borrow the 

advantages of HARBUT [21-23] and full waveform inversion. HARBUT selects bent 

ray tomography to provide the initial solution, overcoming the limitations of the Born 

approximation. The velocity map obtained in the final iteration at each frequency was 

used as a starting model for the next frequency in the full waveform inversion. With the 

application of these two methods, the present algorithm is expected to achieve better 

results in the future. 

6. Conclusion 

In this work, a systematic tomography framework containing signal separation and 

imaging has been presented to enable guided waves propagating in helical paths in the 

pipe to conduct the thickness mapping. The over-completed dictionary is designed to 

extract the single wave packet along different paths, so that the scattered field of the 

single path can be obtained as the input of the imaging algorithm. For reconstructing 

the pipe defects, the forward governing equation derived from the Helmholtz equation 

and the inversion model based on the distorted born iteration method are utilized to 

achieve the objective function, which can be converted to the thickness distribution 

eventually. Corresponding numerical simulations are carried out, with experimental 

verification conducted. The conclusions of this study can be summarized as follows: 

(1) The helical guided wave travelling on the pipe with a known distance can be 

separated from the overlapped signals based on the dictionary reconstruction. In 

particular, this technique appears more essential in experimental signals with dispersion 
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effects causing the worse distinguishment. 

(2) The thickness mapping of the pipe wall can be successfully realized from 

perspectives of numerical simulations and experimental measurements when the 

objective function is solved in the distorted born iteration method and converted to 

thickness. 

(3) The algorithm in this paper is superior in high-quality and rapid imaging, while 

the resolution will drop if the initial objective function is not provided when dealing 

with complex defect problems. 

This work is an attempt to conduct guided wave tomography in isotropic plate-like 

structures. Not limited by guided waves, it is foreseeable that this imaging method is 

still suitable for seismic wave inversion and breast ultrasonography since they meet the 

same acoustic governing equation. Actually, the frequency and bandwidth of seismic 

and body waves are quite distinct from those of guided waves. The outcome of imaging 

is uncertain and needs to be explored in the future.  
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