
Journal of Computer and System Sciences 140 (2024) 103480
Contents lists available at ScienceDirect

Journal of Computer and System Sciences

journal homepage: www.elsevier.com/locate/jcss

Orienting undirected phylogenetic networks ✩

Katharina T. Huber a, Leo van Iersel b,∗,1, Remie Janssen b,1, Mark Jones b,1,
Vincent Moulton a, Yukihiro Murakami b,1, Charles Semple c,2

a School of Computing Sciences, University of East Anglia, NR4 7TJ, Norwich, United Kingdom
b Delft Institute of Applied Mathematics, Delft University of Technology, Van Mourik Broekmanweg 6, 2628 XE, Delft, the Netherlands
c School of Mathematics and Statistics, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand

a r t i c l e i n f o a b s t r a c t

Article history:
Received 16 September 2022
Received in revised form 25 May 2023
Accepted 19 September 2023
Available online 4 October 2023

Keywords:
Phylogenetic network
Graph orientation
Graph algorithm
Fixed-parameter tractability
Polynomial-time algorithm
Characterization
Computational biology
Phylogenetics

This paper studies the relationship between undirected (unrooted) and directed (rooted)
phylogenetic networks. We describe a polynomial-time algorithm for deciding whether an
undirected nonbinary phylogenetic network, given the locations of the root and reticulation
vertices, can be oriented as a directed nonbinary phylogenetic network. Moreover, we
characterize when this is possible and show that, in such instances, the resulting directed
nonbinary phylogenetic network is unique. In addition, without being given the location
of the root and the reticulation vertices, we describe an algorithm for deciding whether
an undirected binary phylogenetic network N can be oriented as a directed binary
phylogenetic network of a certain class. The algorithm is fixed-parameter tractable (FPT)
when the parameter is the level of N and is applicable to classes of directed phylogenetic
networks that satisfy certain conditions. As an example, we show that the well-studied
class of binary tree-child networks satisfies these conditions.

© 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the
CC BY license (http://creativecommons .org /licenses /by /4 .0/).

1. Introduction

Phylogenetic networks are graphs which are used to describe, for example, the evolutionary relationships of extant
species [10]. Such networks generalize the more widely-known concept of phylogenetic trees. The leaves of such a phyloge-
netic network represent extant species, while the interior vertices represent hypothetical ancestors.

Phylogenetic networks are usually rooted acyclic directed graphs, where the vertices and arcs combine to represent
evolutionary events (e.g., hybridization or horizontal gene transfer). However, unrooted undirected graphs have also been
studied which still aim to describe an explicit evolutionary history, but do not include directions on the edges [19]. Reasons
for not including directions can be uncertainty about the location of the root and uncertainty about the order in which
reticulate events occurred, that is, events where species or lineages merge. Moreover, it can be unclear which vertices
represent reticulate events and which vertices represent speciation events or “vertical” descent. See Fig. 1 for an example

✩ This research is based on discussions during and directly after the workshop “Distinguishability in Genealogical Phylogenetic Networks” held at the
Lorentz Center, Universiteit Leiden, The Netherlands, 2018.

* Corresponding author.
E-mail addresses: K.Huber@uea.ac.uk (K.T. Huber), L.J.J.vanIersel@tudelft.nl (L. van Iersel), R.Janssen-2@tudelft.nl (R. Janssen), M.E.L.Jones@tudelft.nl

(M. Jones), V.Moulton@uea.ac.uk (V. Moulton), Y.Murakami@tudelft.nl (Y. Murakami), charles.semple@canterbury.ac.nz (C. Semple).
1 Research funded in part by the Netherlands Organisation for Scientific Research (NWO) grants 639.072.60, OCENW.KLEIN.125 and OCENW.M.21.306 and

partly by the 4TU Applied Mathematics Institute.
2 Charles Semple was supported by the New Zealand Marsden Fund grant numbers UOC1709 and UOC2005.
https://doi.org/10.1016/j.jcss.2023.103480
0022-0000/© 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://
creativecommons .org /licenses /by /4 .0/).

https://doi.org/10.1016/j.jcss.2023.103480
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcss.2023.103480&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:K.Huber@uea.ac.uk
mailto:L.J.J.vanIersel@tudelft.nl
mailto:R.Janssen-2@tudelft.nl
mailto:M.E.L.Jones@tudelft.nl
mailto:V.Moulton@uea.ac.uk
mailto:Y.Murakami@tudelft.nl
mailto:charles.semple@canterbury.ac.nz
https://doi.org/10.1016/j.jcss.2023.103480
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

K.T. Huber, L. van Iersel, R. Janssen et al. Journal of Computer and System Sciences 140 (2024) 103480
Fig. 1. An undirected phylogenetic network (left) and a directed phylogenetic network (right) based on [21,22]. Note that the directed phylogenetic network
can be obtained from the undirected phylogenetic network by adding a root vertex and orienting the edges.

Fig. 2. Left, an undirected binary phylogenetic network with specified reticulation vertices (indicated by squares) and root location (indicated with an arrow)
that has no orientation as a directed phylogenetic network. Right, the same undirected binary phylogenetic network but with no information about the root
and reticulation vertices. This latter undirected binary phylogenetic network can be oriented as a binary stack-free network, but not as a binary tree-child
network.

of an undirected and a directed phylogenetic network which illustrates these differences in perspective. Note that unrooted
networks are also used as a tool to display patterns within data (e.g., split networks [5]) but, as these networks do not aim
to explicitly represent the evolution of the underlying species, we do not focus on them here.

In addition to directed and undirected phylogenetic networks, a third option is partly-directed phylogenetic networks,
that is, phylogenetic networks in which only some of the edges are oriented. Such networks make sense in light of the
discussion above and, indeed, several published phylogenetic networks in the biological literature are partly-directed, e.g., of
grape cultivars [18] and of the evolutionary history of Europeans [17], or contain bi-directed arcs, e.g., of bears [16]. Also, the
popular software tool SNAQ produces partly-directed phylogenetic networks [25]. Despite these publications, partly-directed
phylogenetic networks have yet to be studied from a mathematical perspective, even though this was suggested by David
Morrison in 2013 [20]: “Perhaps the possibility of partly directed phylogenetic networks needs more consideration.”

In this paper, we study two fundamental questions regarding the relationship between undirected and directed phyloge-
netic networks. In the first part of the paper, we investigate the following. Suppose we are given the underlying undirected
phylogenetic network of some directed (nonbinary) phylogenetic network N as well as the location of the root of N and
the desired in-degrees of the reticulation vertices (the vertices where lineages merge) of N . Does this give us enough infor-
mation to uniquely reconstruct N? We show that this is indeed the case. Moreover, given the locations of the root and the
desired in-degrees of the reticulation vertices, we characterize when an undirected phylogenetic network N ′ can be oriented
as a directed phylogenetic network (see Theorem 1). For an example of an undirected binary phylogenetic network where
this is not possible, see Fig. 2. Following this, we give a linear-time algorithm in the number of edges of N ′ to find such
an orientation. We also show how to apply the algorithm to partly-directed networks. In particular, we show how one can
decide in quadratic time in the number of edges whether a given partly-directed network is a semi-directed network, i.e.,
whether it can be obtained from some directed phylogenetic network by suppressing the root and removing all directions
from non-reticulation edges (see Corollary 3).

In the second part of the paper, we study the following question. Given an undirected binary phylogenetic network
N , can N be oriented to become a directed binary phylogenetic network of a given class (with no information about the
location of the root or the reticulation vertices). Again see Fig. 2 for an example. We give an algorithm for this task that
is fixed-parameter tractable (FPT), where the level of N is the parameter (see Algorithm 4). The level of N is a measure of
its tree-likeness. (A formal definition is given in the next section.) The algorithm can be applied to a wide range of classes
of directed binary phylogenetic networks, including the well-studied classes of tree-child, tree-based, reticulation-visible,
and stack-free networks, as well as the recently-introduced classes of valid networks [23] and orchard networks [6,15]. We
include the proof for the class tree-child as an example (see Section 5) since this is one of the most well-studied classes of
phylogenetic networks. The proofs for the other classes, following a similar approach, can be found in [11, Appendix A]. To
obtain this algorithm, we first describe an FPT algorithm where the number of reticulation vertices is the parameter (see
Algorithm 3). The final FPT algorithm (Algorithm 4, which relies on Algorithm 3) may scale better because it has the level
2

K.T. Huber, L. van Iersel, R. Janssen et al. Journal of Computer and System Sciences 140 (2024) 103480
as the parameter, which is always smaller or equal to the reticulation number. All of the algorithms in the paper have been
implemented and are publicly available [13].

To the best of our knowledge, the questions investigated in this paper have not been studied previously. To date, most
publications consider either directed or undirected phylogenetic networks, but do not study how they are related. Exceptions
are a paper studying how to optimally root unrooted trees as to minimize their hybridization number [12] and papers about
orienting split networks [1,9,26]. Also see [8] which looks into the relationship between undirected phylogenetic networks
and Buneman graphs. There is also a large body of literature on orienting graphs (see, e.g., [2,3]), but such papers are not
applicable to our situation because, for example, they do not require the orientation to be acyclic (one exception being [4]
which is discussed later) or they do not have our degree restrictions. Lastly, there are two papers that provide results on
the orientability of genealogical phylogenetic networks. However, these only provide such results as sidenotes to their main
purpose: rearranging networks [14], and characterizing undirected (unrooted) tree-based networks [7].

2. Preliminaries

Throughout the paper, X denotes a non-empty finite set. Biologically speaking, X can be viewed as a set of extant taxa.
An undirected phylogenetic network N on X is an undirected connected (simple) graph, in which no vertex has degree 2, and
the set of vertices of degree 1 (the leaves) is X . We say N is binary if each non-leaf vertex has degree 3. An undirected
phylogenetic network with no cycles is an undirected phylogenetic tree. The reticulation number of an undirected phylogenetic
network is the number of edges that need to be removed to obtain, after suppressing degree-2 vertices, an undirected
phylogenetic tree.

A directed phylogenetic network N ′ on X is a directed acyclic graph with no parallel arcs in which exactly one vertex
has in-degree 0 and this vertex has out-degree 2 (the root), no vertices have in-degree 1 and out-degree 1, and the set of
vertices of out-degree 0 is X and all such vertices have in-degree 1. The vertices of out-degree 0 are the leaves of N ′ . We
say N ′ is binary if all non-root non-leaf vertices either have in-degree 1 and out-degree 2, or have in-degree 2 and out-
degree 1. Vertices with in-degree at least 2 are reticulations, while vertices with in-degree 1 are tree vertices. Arcs directed
into a reticulation are called reticulation arcs. Furthermore, an arc of N ′ is pendant if it is incident to a leaf. If (u, v) is an
arc of N ′ , then u is a parent of v , and v is a child of u. A directed (binary) phylogenetic network with no reticulations is a
directed (binary) phylogenetic tree.

To avoid ambiguity, when the need arises we will say a “nonbinary phylogenetic network” to mean a phylogenetic net-
work that is not necessarily binary. Furthermore, we note that in the phylogenetics literature the terms rooted and unrooted
phylogenetic network are often used. However, since the location of the root does not necessarily imply the direction of all
the arcs, we will use directed and undirected instead of rooted and unrooted, respectively.

Two undirected phylogenetic networks N and M on X are isomorphic if there exists a bijection f from the vertex set of
N to the vertex set of M such that f (x) = x for all x ∈ X , and such that {u, v} is an edge of N if and only if { f (u), f (v)}
is an edge of M . Given an undirected phylogenetic network N on X and a directed phylogenetic network N ′ on X , we say
that N is the underlying network of N ′ and that N ′ is an orientation of N if the undirected phylogenetic network obtained
from N ′ by replacing all directed arcs with undirected edges and suppressing its degree-2 root is isomorphic to N . We say
that N is orientable if it has at least one orientation.

A biconnected component of a directed or undirected phylogenetic network is a maximal subgraph that cannot be dis-
connected by deleting a single vertex. A biconnected component is called a blob if it contains at least three vertices. An
undirected phylogenetic network is level-k if, by deleting at most k edges from each blob, the resulting graph is a tree, that
is, has no cycles. A directed phylogenetic network is level-k if its underlying network is level-k. Hence, a directed binary
phylogenetic network is level-k if and only if each blob contains at most k reticulations.

A graph is mixed if it contains both undirected and directed edges. A partly-directed phylogenetic network is a mixed
graph that is obtained from an undirected phylogenetic network by orienting a subset of its edges. An orientation of a
partly-directed phylogenetic network N on X is a directed phylogenetic network on X that is obtained from N by inserting
the root along a directed or undirected edge, and orienting all undirected edges. A semi-directed phylogenetic network is a
mixed graph obtained from a directed phylogenetic network by unorienting all non-reticulation arcs and suppressing the
root. If the root, ρ say, is incident with the arcs (ρ, u) and (ρ, v), where u is a tree vertex and v is a reticulation, then this
process replaces (ρ, u) and (ρ, v) with the arc (u, v). Note that, as the root has out-degree 2, it is not the parent of two
reticulations. Such networks are of interest because they are used in practical software [25]. A semi-directed phylogenetic
network is a partly-directed phylogenetic network but the converse is not true in general, see Fig. 3.

We emphasize that we do not allow parallel edges or parallel arcs in (undirected and directed) phylogenetic networks.
However, replacing directed arcs of a directed phylogenetic network by undirected edges and suppressing the root may
create parallel edges. We do not consider this case explicitly because it can be dealt with easily. In particular, if an undirected
phylogenetic network has more than one pair of parallel edges, it cannot be oriented; since the oriented phylogenetic
network would contain either a pair of parallel arcs or a directed cycle of length 2. If there is exactly one pair of parallel
edges, then, for the same reason, one of these edges needs to be subdivided with the root to obtain an orientation.

Lastly, for an (undirected) graph G = (V , E), let E ′ and V ′ be subsets of E and V , respectively. The graph obtained from
G by deleting each of the edges in E ′ is denoted by G\E ′ . Similarly, the graph obtained from G by deleting each of the
3

K.T. Huber, L. van Iersel, R. Janssen et al. Journal of Computer and System Sciences 140 (2024) 103480
Fig. 3. Left, a partly-directed phylogenetic network that is semi-directed (it can be rooted along the pendant edge incident with z). Right, a partly-directed
phylogenetic network that is not semi-directed. If it were semi-directed, then a directed phylogenetic network from which it is obtained would have to be
rooted along either the pendant edge incident with x or one of the arcs incident to the neighbour of x; otherwise, there is no directed path from the root
to x. This makes (p, z) an arc, which implies that p has the incoming arc (s, p). For similar reasons, the orientation must include (r, s) and (q, r). But then,
together with (p, q), these arcs form a directed cycle, a contradiction.

Fig. 4. Two non-isomorphic directed phylogenetic networks that are both orientations of the same undirected phylogenetic network with the same root
location and the same set of reticulations.

vertices in V ′ is denoted by G\V ′ . On the other hand, if A and B are sets, the set obtained from B by deleting each of the
elements in A ∩ B is denoted by B − A.

3. Orienting an undirected phylogenetic network given the root and the desired in-degrees

Suppose that N is an undirected binary phylogenetic network, with a designated edge eρ , and R is a subset of the
vertices of N . Does there exist an orientation Nr of N whose set of reticulations is R and whose root subdivides eρ ? In this
section, we characterize precisely when there exists such an orientation. Furthermore, we prove that if an orientation exists,
then it is unique, and we present a linear-time algorithm that finds Nr .

We start by discussing nonbinary phylogenetic networks, which then allows us to treat binary phylogenetic networks as
a special case. In directed nonbinary phylogenetic networks, vertices may have both their in-degree and out-degree greater
than 1, in which case knowing the locations of the root and the reticulations may not guarantee a unique orientation of the
network (see Fig. 4). Therefore, in addition to knowing which vertices are reticulations, we also need to know their desired
in-degrees. See Section 6 for a discussion on nonbinary networks in which reticulations are required to have out-degree 1.

In what follows, let N = (V , E, X) denote an undirected nonbinary phylogenetic network on X with vertex set V and
edge set E . In addition, let eρ denote a designated edge of N where we want to insert the root and, for all v ∈ V , let
d−

N (v) and dN (v) denote the desired in-degree and the total degree of v , where 1 ≤ d−
N (v) ≤ dN (v), respectively. We say that

(N, eρ, d−
N) is orientable and that Nr is a orientation of (N, eρ, d−

N) if there exists an orientation Nr of N such that its root
subdivides eρ and each v ∈ V has in-degree d−

N (v) in Nr . Observe that (N, eρ, d−
N) is not orientable if d−

N (v) = dN (v) for
some non-leaf vertex v of N , or if d−

N (l) �= 1 for some leaf l of N . This leads to the following decision problem.

Constrained Orientation

Input: An undirected nonbinary phylogenetic network N = (V , E, X), a distinguished edge eρ ∈ E , and a map d−
N :

V →N assigning a desired in-degree to each vertex of N .
Output: An orientation of (N, eρ, d−

N) if it exists, and NO otherwise.

3.1. Characterizing the orientability of undirected nonbinary phylogenetic networks

We start by introducing the notion of a degree cut, which will be the key ingredient for characterizing orientability.

Definition 1. Let N = (V , E, X) be an undirected nonbinary phylogenetic network with eρ ∈ E a distinguished edge, and
let Nρ = (Vρ, Eρ, X) be the graph obtained from N by subdividing eρ by a new vertex ρ . Given the desired in-degree d−(v)
N

4

K.T. Huber, L. van Iersel, R. Janssen et al. Journal of Computer and System Sciences 140 (2024) 103480
Fig. 5. Illustration of a degree cut. Shown is the graph Nρ obtained from an undirected phylogenetic network N by subdividing an edge eρ by a new
vertex ρ . Each vertex v with d−

N (v) > 1, represented by an unfilled vertex, is labelled by d−
N (v). A degree cut (V ′, E ′) for (N, eρ , d−

N) is indicated by
taking V ′ to be the set of unfilled vertices and E ′ to be the set of dashed edges.

of each vertex v ∈ V , a degree cut for (N, eρ, d−
N) is a pair (V ′, E ′) with V ′ ⊆ V and E ′ ⊆ Eρ such that the following hold in

Nρ :

• E ′ is an edge cut of Nρ ;
• ρ is not in the same connected component of Nρ\E ′ as any v ∈ V ′;
• each edge in E ′ is incident to exactly one element of V ′; and
• each vertex v ∈ V ′ is incident to at least one and at most d−

N (v) − 1 edges in E ′ .

The notion of a degree cut is illustrated in Fig. 5. Observe that if the desired in-degree of each vertex in V is at most
one, then (N, eρ, d−

N) has no degree cut. We say that a degree cut (V ′, E ′) for (N, eρ, d−
N) is minimal if for any edge e ∈ E ′ ,

we have that (V ′, E ′ − {e}) is not a degree cut for (N, eρ, d−
N).

We will show in Theorem 1 that the non-existence of a degree cut for (N, eρ, d−
N) together with a condition on the de-

sired in-degrees is equivalent to (N, eρ, d−
N) being orientable. One direction of this theorem is established in Proposition 1(i)

and (ii).

Proposition 1. Let N = (V , E, X) be an undirected nonbinary phylogenetic network, eρ ∈ E be a distinguished edge, and d−
N (v) be

the desired in-degree of each vertex v ∈ V , with d−
N (v) = 1 if v is a leaf and 1 ≤ d−

N (v) < dN (v) otherwise. If (N, eρ, d−
N) is orientable,

then each of the following holds:

(i) (N, eρ, d−
N) has no degree cut;

(ii)
∑

v∈V d−
N (v) = |E| + 1;

(iii) N\R is a forest, where R is the set of vertices in V with desired in-degree at least two.

Proof. To prove (i), suppose, for a contradiction, that (N, eρ, d−
N) has a degree cut (V ′, E ′). Consider an orientation Nr of

(N, eρ, d−
N). In this orientation, each vertex v ∈ V ′ is incident to at most d−

N (v) − 1 arcs corresponding to edges in E ′ . Hence,
each vertex in V ′ is incident to at least one incoming arc that does not correspond to an edge in E ′ . Let v ∈ V ′ be an
arbitrarily chosen vertex, and let e be an incoming arc of v that does not correspond to an edge in E ′ . Since there is a
directed path from ρ to v via e in Nr , and since (V ′, E ′) is a degree cut of (N, eρ, d−

N), it must be the case that, prior to
e, this path traverses an arc that corresponds to an edge in E ′ . In particular, this means that there is a directed path from
some other vertex in V ′ to v . Observe that this property holds for all vertices in V ′ , that is, for each v ′ ∈ V ′ , there is a
directed path from some other vertex in V ′ to v ′ . Since V ′ is finite, this implies that Nr contains a cycle, a contradiction.

For (ii), the total in-degree in an orientation is
∑

v∈V d−
N (v). Since an orientation has |E| + 1 edges as edge eρ of N is

subdivided by ρ , it follows that
∑

v∈V d−
N (v) = |E| + 1.

To prove (iii), suppose N\R contains a cycle C = (v1, v2, . . . , v1). Then, in an orientation Nr of (N, eρ, d−
N), each vertex

of C has one incoming and at least two outgoing arcs. Without loss of generality, suppose that {v1, v2} is oriented from v1
to v2 in Nr . Then all other edges incident to v2 are oriented away from v2 in Nr , so {v2, v3} is oriented from v2 to v3. By
repeating this argument, it follows that Nr has a directed cycle (v1, v2, . . . , v1). This contradiction completes the proof of
(iii) and the proposition. �

We will show later in Corollary 1 that (iii) in Proposition 1 is implied by (i) and (ii). We next prove a lemma which will
be used in several proofs. See Fig. 6 for an example.

Lemma 1. Let N = (V , E, X) be an undirected nonbinary phylogenetic network, eρ ∈ E be a distinguished edge, and d−
N (v) be the

desired in-degree of each vertex v ∈ V , with d−
N (v) = 1 if v is a leaf and 1 ≤ d−

N (v) < dN (v) otherwise. Let R = {v ∈ V : d−
N (v) ≥ 2}

denote the set of all vertices of N with desired in-degree at least two. Suppose that (N, eρ, d−
N) has no degree cut and R �= ∅. Then the

following hold:

(i) There exists an edge {t, r} �= eρ in N, where t ∈ V − R and r ∈ R, such that there is a path from an endpoint of eρ to t not traversing
any vertex in R.
5

K.T. Huber, L. van Iersel, R. Janssen et al. Journal of Computer and System Sciences 140 (2024) 103480
Fig. 6. An illustration of Lemma 1. Left, the graph Nρ obtained from an undirected nonbinary phylogenetic network N by subdividing the edge eρ by ρ .
Each vertex with d−

N (v) > 1, represented by an unfilled vertex, is labelled by d−
N (v). The triple (N, eρ, d−

N) has no degree cut. If V denotes the vertex set
of N and R denotes the set of unfilled vertices, the dashed edges are those edges with end-vertices in V − R and R that can be reached from eρ without
traversing an unfilled vertex (‘{t, r} edges’ in the setting of Lemma 1). The dotted edge is an edge with end-vertices in V − R and R that cannot be reached
from eρ without traversing an unfilled vertex. Middle, the graph N ′

ρ obtained by deleting the dashed edge that is incident to the neighbour of w from Nρ

and suppressing the resulting degree-two vertices. Observe that (N ′, eρ , d−
N ′), as defined in Lemma 1, has no degree cut. Right, the graph N ′′ obtained by

deleting the dotted edge from Nρ and suppressing the resulting degree-two vertices. Here, (N ′′, eρ , d−
N ′′) has a degree cut (the unfilled vertices together

with the dashed edges).

(ii) For any such edge {t, r} in (i), (N ′, e′
ρ, d−

N ′) has no degree cut, where

(I) N ′ is the undirected nonbinary phylogenetic network obtained from N by deleting {t, r} and suppressing any resulting degree-
two vertices,

(II) e′
ρ = eρ unless eρ = {p, q} and, p say, is suppressed (and so q is not suppressed as {t, r} �= eρ), in which case, e′

ρ = {q, s},
where s is the neighbour of p that is not in {q, r, t}, and

(III) d−
N ′ is the desired in-degrees of the vertices of N ′ with

d−
N ′(v) =

{
d−

N (v) − 1, if v = r;

d−
N (v), otherwise,

for all vertices v in N ′ .

Proof. Let Nρ be the graph obtained from N by subdividing eρ with a vertex ρ . If, in Nρ , both vertices adjacent to ρ are
in R , then these vertices together with the two edges incident with ρ form a degree cut for (N, eρ, d−

N), a contradiction.
It follows that at least one vertex adjacent to ρ is not in R . Avoiding ρ , take a path from such a vertex to a vertex r ∈ R ,
such that no other vertices of the path except r are in R . To show that such a path exists, assume it does not. This is only
possible when exactly one neighbour of ρ is in R and there is no path avoiding ρ between the neighbours of ρ , i.e., the
edges incident to ρ are cut-edges. In this case, the neighbour of ρ that is in R together with the edge between this vertex
and ρ form a degree cut for (N, eρ, d−

N), a contradiction. Hence, there exists a path from a neighbour of ρ that is not in R to
a vertex r ∈ R , such that this path does not contain ρ and does not contain any vertices from R except r. Then the last edge
on this path is an edge {t, r} with t ∈ V − R and r ∈ R for which there is a path from ρ to t not using any vertex from R .
Note that t �= ρ since we started the path at a neighbour of ρ . Also note that r �= ρ since r ∈ R . Hence, the edge {t, r} is not
incident to ρ and so it is an edge of N . Since it is also an edge of Nρ , it is not equal to eρ . This establishes (i).

To prove (ii), consider any such edge {t, r}, and let P be a path in Nρ from ρ to t avoiding vertices in R . Suppose
(N ′, e′

ρ, d−
N ′) has a degree cut (V ′, E ′). Let N ′

ρ be the graph obtained from N ′ by subdividing e′
ρ with a vertex ρ . Observe

that N ′
ρ can be obtained from Nρ by deleting {t, r} and suppressing any resulting degree-2 vertices (except ρ). Also note

that we can obtain N ′ from N ′
ρ by suppressing ρ and that e′

ρ is the edge created by suppressing ρ . In this proof, we will
work with Nρ and N ′

ρ (rather than with N and N ′) because degree cuts may contain edges incident to ρ .
If t is suppressed when obtaining N ′

ρ from Nρ , let et = {u, v} denote the resulting edge in N ′
ρ , where u ∈ P (possibly u =

ρ). Similarly, if r is suppressed when obtaining N ′
ρ from Nρ , let er = {u′, v ′} denote the resulting edge in N ′

ρ (possibly,
ρ ∈ {u′, v ′}).

Let S be the subgraph of N ′
ρ\E ′ consisting of all connected components containing at least one element of V ′ , and let Sρ

be the subgraph of N ′
ρ\E ′ consisting of the remaining connected components of N ′

ρ\E ′ . Since (V ′, E ′) is a degree cut of
(N ′, e′

ρ, d−
N ′), the subgraph Sρ contains ρ . Furthermore, as P contains no vertices in R (so for all p ∈ P , we have d−

N (p) ≤ 1),
it follows by the fourth property of a degree cut that no p ∈ P is an element of V ′ . Hence, the path P cannot contain any
edges of E ′ , so any node on P is in the component Sρ and, in particular, either t or, if t is suppressed, u is contained in Sρ .

We now derive a contradiction by distinguishing three cases depending on r.
For the first case, assume that either r or, if r is suppressed, er is contained in Sρ . If either t is not suppressed or t is

suppressed and et /∈ E ′ , then (V ′, E ′) is a degree cut of (N, eρ, d−
N), a contradiction. Now suppose that t is suppressed and

et = {u, v} ∈ E ′ . Since u ∈ Sρ we have v ∈ S . Then, (V ′, (E ′ − {et}) ∪ {{t, v}}) is a degree cut of (N, eρ, d−
N), a contradiction.

For the second case, assume that either r or, if r is suppressed, er is contained in S . If either t is not suppressed or
t is suppressed and et /∈ E ′ , then (V ′ ∪ {r}, E ′ ∪ {{t, r}}) is a degree cut of (N, eρ, d−

N), a contradiction. Furthermore, if t is
suppressed and et ∈ E ′ , then (V ′ ∪ {r}, (E ′ − {et}) ∪ {{t, v}, {t, r}}) is a degree cut of (N, eρ, d−), a contradiction.
N

6

K.T. Huber, L. van Iersel, R. Janssen et al. Journal of Computer and System Sciences 140 (2024) 103480
For the last case, assume that r is suppressed and er = {u′, v ′} ∈ E ′ . Without loss of generality, say v ′ ∈ V ′ . If either t is
not suppressed or t is suppressed and et /∈ E ′ , then (V ′, (E ′ − {er}) ∪ {{r, v ′}}) is a degree cut of (N, eρ, d−

N), a contradiction.
If t is suppressed and et = {u, v} ∈ E ′ , then we have, as before, that u ∈ Sρ and v ∈ S . In this case, (V ′, (E ′ − {et, er}) ∪
{{t, v}, {r, v ′}}) is a degree cut of (N, eρ, d−

N). This last contradiction completes the proof of the lemma. �
We are now ready to prove the above-mentioned characterization for when an undirected nonbinary phylogenetic net-

work has an orientation respecting a given location for the root and in-degree of every vertex.

Theorem 1. Let N = (V , E, X) be an undirected nonbinary phylogenetic network, eρ ∈ E be a distinguished edge, and d−
N (v) be the

desired in-degree of each vertex v ∈ V , with d−
N (v) = 1 if v is a leaf and 1 ≤ d−

N (v) < dN (v) otherwise. Then (N, eρ, d−
N) is orientable

if and only if (N, eρ, d−
N) has no degree cut and

∑
v∈V d−

N (v) = |E| + 1.

Proof. If (N, eρ, d−
N) is orientable, then, by Proposition 1(i) and (ii), it has no degree cut and

∑
v∈V d−

N (v) = |E| + 1. The
proof of the converse is by induction on

∑
v∈V d−

N (v) − |V |. Note that
∑

v∈V d−
N (v) − |V | ≥ 0 as d−

N (v) ≥ 1 for all v ∈ V .
If

∑
v∈V d−

N (v) − |V | = 0, then every vertex in V has desired in-degree 1. By assumption, |V | = ∑
v∈V d−

N (v) = |E| + 1, and
so N is an undirected phylogenetic tree, in which case, (N, eρ, d−

N) is trivially orientable.
Now suppose that

∑
v∈V d−

N (v) − |V | ≥ 1, and the converse holds for any undirected nonbinary phylogenetic network in
which the sum of the given in-degree of each vertex minus the size of its vertex set is at most (

∑
v∈V d−

N (v) − |V |) − 1.
Let R denote the set of all vertices in V with desired in-degree at least 2. Since

∑
v∈V d−

N (v) − |V | ≥ 1, it follows that R
is nonempty. Let Nρ be the graph obtained from N by subdividing eρ by ρ . By Lemma 1, there exists an edge {t, r} in
Nρ with t ∈ V − R and r ∈ R for which there is a path from ρ to t not using any vertex from R . In this case, t and r
are both vertices of total degree at least 2, and so they cannot be leaves (i.e., t and r must have required outdegree at
least 1). Set (N ′, e′

ρ, d−
N ′) to be the same as its namesake in the statement of Lemma 1 and let E ′ be the edge set of N ′ .

Recalling that dN (v) denotes the degree of a vertex v ∈ V and
∑

v∈V d−
N (v) = |E| + 1, there are four possibilities to consider

depending on the degree of t and the degree of r in N:

• If dN (t) = 3 and dN (r) = 3, then both t and r are suppressed in obtaining N ′ , and so∑
v∈V ′

d−
N ′(v) =

∑
v∈V

d−
N (v) − 3 = (|E| + 1) − 3 = (|E ′| + 3) − 2 = |E ′| + 1.

• If dN (t) = 3 and dN (r) > 3, then only t is suppressed in obtaining N ′ , and so∑
v∈V ′

d−
N ′(v) =

∑
v∈V

d−
N (v) − 2 = (|E| + 1) − 2 = (|E ′| + 2) − 1 = |E ′| + 1.

• If dN (t) > 3 and dN (r) = 3, then only r is suppressed in obtaining N ′ , and so∑
v∈V ′

d−
N ′(v) =

∑
v∈V

d−
N (v) − 2 = (|E| + 1) − 2 = (|E ′| + 2) − 1 = |E ′| + 1.

• If dN (t) > 3 and dN (r) > 3, then neither t nor r is suppressed in obtaining N ′ , and so∑
v∈V ′

d−
N ′(v) =

∑
v∈V

d−
N (v) − 1 = (|E| + 1) − 1 = |E ′| + 1.

In all four possibilities,
∑

v∈V ′ d−
N ′ (v) = |E ′| + 1. Furthermore, a routine check using the above calculations shows that,

for all four possibilities,
∑

v∈V ′ d−
N ′ (v) − |V ′| < ∑

v∈V d−
N (v) − |V |. By Lemma 1, (N ′, e′

ρ, d−
N ′) has no degree cut; we also

have d−
N ′ (v) = 1 if v is a leaf and 1 ≤ d−

N ′ (v) < dN ′ (v) otherwise. It follows by the induction assumption that (N ′, e′
ρ, d−

N ′) is
orientable. Now consider such an orientation, (N ′)r say, and impose the same arc directions on Nρ except for the edge {t, r}.
If t is suppressed in obtaining N ′ , then dNρ (t) = 3, in which case, the two edges incident with t that are not {t, r} are
oriented to respect the orientation of the corresponding edge in (N ′)r . Analogously, the edges incident with r that are not
{t, r} are orientated in a similar way if dNρ (r) = 3. Now orient {t, r} from t to r, and let Nr denote the resulting orientation
of Nρ . It follows by construction that each vertex in Nr has the correct in-degrees.

It remains to show that Nr is an orientation of (N, eρ, d−
N) by showing that Nr has no directed cycle. If there exists such

a cycle, then this directed cycle uses the oriented edge (t, r) as (N ′)r has no directed cycle. Hence Nr has a directed path P
from r to t . On the other hand, by the choice of t , the directed graph Nr has a directed path Q from ρ to t not using any
vertex from R . Since both P and Q end in t , they must meet. Let v be the first vertex on Q meeting P . Then v �= ρ as P
starts at r �= ρ and both arcs incident with ρ are directed away from ρ . Therefore v has in-degree at least 2. But Q does
not contain any vertices in R . This contradiction completes the proof of the theorem. �
7

K.T. Huber, L. van Iersel, R. Janssen et al. Journal of Computer and System Sciences 140 (2024) 103480
A consequence of Theorem 1 is that Proposition 1(iii) is implied by Proposition 1(i) and (ii).

Corollary 1. Let N = (V , E, X) be an undirected nonbinary phylogenetic network, eρ ∈ E be a distinguished edge, and d−
N (v) be the

desired in-degree of each vertex v ∈ V , with d−
N (v) = 1 if v is a leaf and 1 ≤ d−

N (v) < dN (v) otherwise. Let R denote the set of all
vertices in V with desired in-degree at least 2. If (N, eρ, d−

N) has no degree cut and
∑

v∈V d−
N (v) = |E| + 1, then N\R is a forest.

Proof. If (N, eρ, d−
N) has no degree cut and

∑
v∈V d−

N (v) = |E| + 1 then, by Theorem 1, (N, eρ, d−
N) is orientable. It now

follows by Proposition 1 that N\R is a forest. �
3.2. Orientation algorithm

In this section, we present a polynomial-time algorithm for deciding if, given an undirected nonbinary phylogenetic
network N , there is an orientation of N respecting a given location of the root and desired in-degree of each vertex, in
which case, the algorithm returns such an orientation. The algorithm is different from the proof of Theorem 1. The main
idea of the algorithm is as follows. First we insert the root and orient the edges incident to the root away from it. Then
we iteratively look for a vertex that already has the desired number of incoming arcs and at least one incident edge that
is not oriented, and orient all incident edges that are not oriented as outgoing arcs. We continue like this until there is no
such vertex. We will show (in Theorem 2) that when there is no such vertex, we have either correctly oriented the whole
network, or there does not exist an orientation. The pseudo code is as follows.

Input: An undirected nonbinary phylogenetic network N = (V , E, X), an edge eρ ∈ E , and the desired in-degree d−
N (v) for each v ∈ V ,

with d−
N (v) = 1 if v is a leaf and 1 ≤ d−

N (v) < dN (v) otherwise.
Output: An orientation of (N, eρ , d−

N) if it exists and NO otherwise.
1 if

∑
v∈V d−

N (v) �= |E| + 1 then
2 return NO
3 Subdivide eρ by a new vertex ρ and orient the two edges incident to ρ away from ρ;
4 while there exist an unoriented edge do
5 if there is a vertex v ∈ V with d−

N (v) incoming oriented edges and at least one incident unoriented edge then
6 orient all unoriented edges incident to v away from v
7 else
8 return NO
9 end

10 return the resulting orientation

Algorithm 1: Orientation Algorithm(N, e,d−
N)

Theorem 2. Let N = (V , E, X) be an undirected nonbinary phylogenetic network, eρ ∈ E be a distinguished edge, and d−
N (v) be the

desired in-degree of each vertex v ∈ V , with d−
N (v) = 1 if v is a leaf and 1 ≤ d−

N (v) < dN (v) otherwise. Then Algorithm 1 decides
whether (N, eρ, d−

N) is orientable, in which case, it finds an orientation in time O (|E|). Moreover, this orientation is the unique orien-
tation of (N, eρ, d−

N).

Proof. By Proposition 1(ii), we may assume that
∑

v∈V d−
N (v) = |E| + 1. Let Nρ denote the graph obtained from N by

subdividing eρ with ρ . We say that a vertex of Nρ is processed by Algorithm 1 when the algorithm orients its outgoing
edges. Note that Algorithm 1 only processes a vertex when it already has at least one incoming oriented edge, and when a
vertex is processed all its remaining unoriented edges are oriented outwards.

First suppose that there exists an orientation Nr of (N, eρ, d−
N). We will prove that Algorithm 1 returns Nr . To see this,

we first show that if a vertex of Nρ is processed by Algorithm 1, then every edge incident to this vertex obtains the
same orientation as in Nr . Assume, for a contradiction, that this is not the case, and let v be the first vertex processed
by Algorithm 1 for which at least one of its incident edges is not oriented as in Nr . Immediately before v is processed, it
has d−

N (v) incoming oriented edges and at least one incident unoriented edge. By the choice of v , the incoming oriented
edges of v are oriented the same way as in Nr because the other end-vertices of these edges have already been processed.
Algorithm 1 orients all other edges incident to v away from v . These edges are also oriented away from v in Nr , since Nr

is an orientation and v is required to have in-degree d−
N (v). This contradicts the assumption that at least one edge incident

to v does not have the same orientation as in Nr . It follows that if there exists an orientation Nr of (N, eρ, d−
N), then every

vertex processed by Algorithm 1 has all its incident edges assigned the same orientation as in Nr . To prove that Algorithm 1
returns Nr , it remains to show that every non-leaf vertex is processed by the algorithm.

Assume that Algorithm 1 stops without having processed all non-leaf vertices. Let P be the set of vertices of Nρ that
have been processed at this point. Let E ′ be the set of all edges of Nρ with exactly one end-vertex in P , and let V ′ be the
set of all vertices of Nρ not in P that are incident to an edge in E ′ . Every edge e ∈ E ′ is incident to one processed vertex
u ∈ P and one unprocessed vertex in V ′ . By construction, e is oriented away from u and, by the previous argument, e has
the same orientation in Nr .
8

K.T. Huber, L. van Iersel, R. Janssen et al. Journal of Computer and System Sciences 140 (2024) 103480
If v ∈ V ′ , then, as every oriented edge is oriented in the same direction as in Nr , we have that v is incident to at
most d−

N (v) incoming oriented edges. Also, every edge in E ′ incident to v is oriented towards v . If v is incident to ex-
actly d−

N (v) edges in E ′ , then v is processed by Algorithm 1, a contradiction. So v is incident to fewer than d−
N (v) edges

in E ′ . Since E ′ is an edge cut of Nρ such that ρ is not in the same connected component of Nρ\E ′ as any vertex in V ′ , and
each edge in E ′ is incident to exactly one element of V ′ , it follows that (V ′, E ′) is a degree cut for (N, eρ, d−

N), contradict-
ing Proposition 1(i). This last contradiction implies that all non-leaf vertices of Nρ are processed. Hence, if there exists an
orientation Nr of (N, eρ, d−

N), Algorithm 1 will return Nr , and Nr is the unique orientation of (N, eρ, d−
N).

Now suppose that Algorithm 1 returns an orientation Nr of Nρ . We will prove that Nr is an orientation of (N, eρ, d−
N). It

suffices to show that all vertices of Nr have the correct in-degree and out-degree, and Nr has no directed cycle.
Assume that there exists some vertex u in Nr that does not have the correct in-degree and out-degree. Each vertex that

is processed (as well as each leaf) always obtains the correct in-degree and out-degree. Hence u has not been processed.
Since all edges have been oriented and edges are oriented away from a vertex only if that vertex is processed, it follows that
u has in-degree dN (v), and so u is not a leaf. Thus, d−

N (u) < dN (u) and so u has in-degree at least d−
N (u) + 1. By a similar

reasoning, all vertices v ∈ V have in-degree at least d−
N (v). Hence, as

∑
v∈V d−

N (v) = |E| + 1, the total in-degree of Nρ is at
least

∑
v∈V d−

N (v) + 1 = |E| + 2. But this implies that the total number of edges in Nρ is at least |E| + 2, a contradiction as
Nρ has |E| + 1 edges. Thus, every vertex of Nr has the correct in-degree and out-degree.

Now assume that Nr has a directed cycle. Since every vertex of Nr has the correct in-degree and out-degree, every
non-leaf vertex has been processed. Consider the vertex v of the cycle that is processed first. Let u be the neighbour of v
on the cycle such that there is an oriented edge e from u to v . As any oriented edge incident to a vertex is oriented away
from that vertex when it is processed, e must have been oriented before v was processed. But this implies that u was
processed before v , contradicting our choice of v . Thus Nr has no directed cycles and it follows that, if Algorithm 1 returns
an orientation of N , it is an orientation of (N, eρ, d−

N).
To complete the proof of the theorem, it remains to show that Algorithm 1 runs in O (|E|) time. A naive implementation

takes O (|V |2) time, as there are O (|V |) vertices to process and it may take O (|V |) time to find the next vertex that can
be processed and process it. However, this running time can be improved by observing that any vertex v (apart from the
root ρ) only becomes suitable for processing after it has d−

N (v) incoming oriented edges. Thus it is enough to maintain a
set S of such vertices and check, whenever an edge is oriented, whether an unprocessed end-vertex of this edge should be
added to S . Then, instead of searching for a new vertex to process each time, we can simply take any vertex from the set
S . As each edge is oriented exactly once, the total time spent maintaining S and orienting all edges is O (|E|). �
Partly-directed and semi-directed phylogenetic networks. We end this subsection with two consequences of Theorem 1
and Algorithm 1 concerning partly-directed and semi-directed phylogenetic networks. Recall that a partly-directed phylo-
genetic network is a mixed graph obtained from an undirected phylogenetic network by orienting some of its edges. Let
N = (V , E, A, X) be a partly-directed phylogenetic network on X with vertex set V , undirected edge set E , and directed
edge set A. Let eρ ∈ E and, for each v ∈ V , let d−

N (v) denote the desired in-degree of v . We say that (N, eρ, d−
N) is orientable

if there is an orientation of N in which the root subdivides eρ and, for each v ∈ V , the in-degree of v is d−
N (v). To decide

if (N, eρ, d−
N) is orientable, replace each arc of N by an undirected edge and apply Algorithm 1 to determine whether there

exists an orientation. If it exists, it is unique by Theorem 2. Hence, we only need to check whether each arc in A is oriented
the same way in the obtained orientation. Thus we have the following corollary of Theorem 2.

Corollary 2. Let N = (V , E, A, X) be a partly-directed nonbinary phylogenetic network, eρ ∈ E and d−
N (v) the desired in-degree of

each v ∈ V . Then there exists a linear-time algorithm that decides whether (N, eρ, d−
N) is orientable and finds the unique orientation

if it exists.

We now consider semi-directed phylogenetic networks. Recall that a semi-directed phylogenetic network is a mixed
graph that is obtained from a directed phylogenetic network by unorienting all non-reticulation arcs and suppressing the
root. We noted in Section 2 that a partly-directed phylogenetic network is not necessarily a semi-directed phylogenetic
network. Thus a natural question is whether it is easy to decide if a given partly-directed phylogenetic network is semi-
directed. Corollary 2 allows us to answer this question positively.

Let N = (V , E, A, X) be a partly-directed nonbinary phylogenetic network on X . If there is a vertex of N with exactly one
incoming arc, then N is not semi-directed, so we may assume that there are no such vertices. Let R denote the subset of
vertices of N with at least two incoming arcs. For each vertex v ∈ V , define the desired in-degree d−

N (v) of v as the number
of arcs directed into v if v ∈ R; otherwise, set d−

N (v) = 1 if v /∈ R . For each choice of eρ ∈ E , we apply Corollary 2. Then N is
semi-directed if and only if (N, eρ, d−

N) is orientable for at least one choice of eρ . The running time is O (|E|2), since there
are |E| choices for eρ and Algorithm 1 runs in O (|E|) time. Hence we have the following corollary.

Corollary 3. Let N = (V , E, A, X) be a partly-directed nonbinary phylogenetic network. Then we can decide in O (|E|2) time
whether N is a semi-directed nonbinary phylogenetic network.
9

K.T. Huber, L. van Iersel, R. Janssen et al. Journal of Computer and System Sciences 140 (2024) 103480
Fig. 7. The graph Nρ obtained from the undirected binary phylogenetic network in Fig. 2 by subdividing eρ (the edge indicated with an arrow) by a new
vertex ρ . The set E ′ consisting of the dotted edges and the set R ′ consisting of the two square vertices form the reticulation cut (R ′, E ′).

3.3. Characterizing the orientability of undirected binary phylogenetic networks

We now consider the special case of the decision problem Constrained Orientation for undirected binary phyloge-
netic networks. Here, rather than being given the desired in-degree of each vertex, we are simply given the set of desired
reticulations as all such vertices have in-degree exactly two and all remaining vertices (except the root) have in-degree one.

Definition 2. Let N = (V , E, X) be an undirected binary phylogenetic network with eρ ∈ E a distinguished edge, and
let Nρ = (Vρ, Eρ, X) be the graph obtained from N by subdividing eρ by a new vertex ρ . Given the set of desired retic-
ulations R ⊆ V , a reticulation cut for (N, eρ, R) is a pair (R ′, E ′) with R ′ ⊆ R and E ′ ⊆ Eρ such that the following hold in
Nρ :

• E ′ is an edge cut of Nρ ;
• ρ is not in the same connected component of Nρ\E ′ as any r ∈ R ′;
• each edge in E ′ is incident to exactly one element of R ′; and
• |R ′| = |E ′|.

Observe that, if, in the definition of a degree cut, N is binary, then, because of the fourth property of a degree cut, V ′ is
a subset of the set of vertices whose desired in-degree is two. Hence, the definition of a reticulation cut coincides with that
of a degree cut when N is binary. We say (N, eρ, R) is orientable if (N, eρ, d−

N) is orientable, where d−
N (r) = 2 for all r ∈ R

and d−
N (v) = 1 for all v ∈ V − R . An example of a reticulation cut of the triple (N, eρ, R) in Fig. 2 is illustrated in Fig. 7.

The next proposition is a consequence of Proposition 1.

Proposition 2. Let N = (V , E, X) be an undirected binary phylogenetic network, eρ ∈ E and R ⊆ V . If (N, eρ, R) is orientable, then
each of the following holds:

(i) (N, eρ, R) has no reticulation cut;
(ii) |R| = |E| − |V | + 1;

(iii) N\R is a forest.

To illustrate Proposition 2, the example in Fig. 2 satisfies (ii) and (iii) but, as shown in Fig. 7, it does not satisfy (i), and
hence it is not orientable.

The next theorem is the special case of Theorem 1 when restricted to undirected binary phylogenetic networks. It
characterizes when an undirected binary phylogenetic network with given locations for the root and reticulations has an
orientation. The correctness of this characterization follows from Theorem 1.

Theorem 3. Let N = (V , E, X) be an undirected binary phylogenetic network, eρ ∈ E and R ⊆ V . Then (N, eρ, R) is orientable if and
only if (N, eρ, R) has no reticulation cut and |R| = |E| − |V | + 1.

4. Orientations within a specific subclass of directed binary phylogenetic networks

We now turn our attention to deciding whether a given undirected binary phylogenetic network has a C-orientation for a
given class C of directed binary phylogenetic networks. Unlike Constrained Orientation we are given no information about
the location of the root or the reticulation vertices. Formally, given a class C of directed binary phylogenetic networks, the
problem of interest is as follows:

C-Orientation

Input: An undirected binary phylogenetic network N .
Output: A C-orientation of N if it exists, and NO otherwise.

In this section, we present algorithms for solving C-Orientation for classes C of directed binary phylogenetic networks
satisfying certain properties. In the next section, Section 5, we will show that the class tree-child (i.e., the class of directed
10

K.T. Huber, L. van Iersel, R. Janssen et al. Journal of Computer and System Sciences 140 (2024) 103480
binary phylogenetic networks in which each non-leaf vertex has a child that is a tree vertex) satisfies these properties. In
[11, Appendix A] we use a similar approach to show the same holds for the classes stack-free, tree-based, valid, orchard,
and reticulation-visible.

This section is organised as follows. First, in Section 4.1, we give an example of the final algorithm for the class tree-
child, to get a high-level idea of the approach. Then, in Section 4.2, we give a detailed description of an FPT algorithm for
C-Orientation that is parameterized by the reticulation number of N . Subsequently, in Section 4.3, we extend this to an
FPT algorithm for C-Orientation but with the level of N as the parameter. These algorithms essentially guess the locations
of the root and the reticulations, compute the unique corresponding orientation as in Section 3, and determine whether it
is within the required class. To get an FPT running time, N needs to be reduced to a size which is dependent only on the
reticulation number (or level) first. We will give such a reduction for any class C of directed binary phylogenetic networks
whose members satisfy three certain properties. Intuitively, these properties are as follows. First, membership of C can be
checked by considering each blob separately. Second, if N ′ is a directed binary phylogenetic network in C and new leaves
are attached to N ′ , then the resulting directed binary phylogenetic network is also in C . Lastly, the third property is based
on reducing “chains” (sequences of leaves whose neighbours form a path). The third property implies that if N ′ is a directed
binary phylogenetic network in C and all chains of N ′ are reduced to a certain constant length, then the resulting directed
binary phylogenetic network N ′′ is also in C . Additionally, a particular relationship holds between the C-rooted edges of N ′
and N ′′ . These three properties are formally defined in Definitions 3, 4, and 5, respectively.

4.1. Example

A directed phylogenetic network is said to be tree-child if each non-leaf vertex has a child that is a tree vertex. Before
describing the algorithms in detail, we first give an example of the FPT algorithm, with the level of N as the parameter, for
the case that C is the class of directed binary tree-child phylogenetic networks. The purpose of the example is to give a
high-level overview of the approach.

Consider the undirected input phylogenetic network N indicated in Fig. 8 (where N is the network obtained from No
C

by ignoring the direction of the three arcs). We first consider each of the blobs B1, B2, B3 separately by considering the
induced networks NB1 (which in this case is equal to NB3) in Fig. 9 and NB2 in Fig. 10.

In order to obtain an FPT running time, we shorten long chains. We will show in Section 5 that for the class of binary
tree-child networks, it is safe to reduce chains to length � = 3. Hence, in the network NB1 in Fig. 9, we reduce the long chain
(c1, . . . , c5) to a chain (c′

1, c
′
2, c

′
3) of length 3, this gives the network N�

B1
. Then we find all possible root locations in N�

B1
(indicated with thick edges) using Algorithm 2. For instance, if we choose edge e for the root location, the obtained tree-
child orientation is given below N�

B1
. From this, we can obtain a tree-child orientation of NB1 by adding (and relabelling)

leaves. In this example, we chose edge f as the root location in NB1 , leading to the tree-child orientation shown below it.
Now we turn to the network NB2 shown in Fig. 10. Since there are no long chains, we immediately use Algorithm 2 to

find all possible root locations (indicated with thick edges) and corresponding tree-child orientations. In particular, we see
that NB2 can only be rooted at internal (non-pendant) edges.

We now return to Fig. 8 to see how the algorithm determines where the root location can be in N . Since NB2 cannot
be tree-child rooted at any pendant edge, we orient all cut-edges incident to B2 away from B2 (indicating that the root
cannot be placed on those arcs or in the parts of the network they point at). Since NB1 = NB3 can be tree-child rooted
anywhere, we do not orient any other cut-edges yet. Contracting all undirected edges now gives TC (N). We will show that
when TC (N) is a rooted tree (as is the case in this example), its root corresponds to possible root locations in N . In this
case, the root of TC (N) corresponds to the blob B2. Hence, we orient blob B2 based on a tree-child orientation of NB2 ,
where the root location is an internal edge. Blob B1 is oriented based on a tree-child orientation of NB1 , where the root
location is the pendant edge corresponding to the cut-edge of N closest to B2. Blob B3 is oriented similarly. All cut-edges
are oriented away from B2. This gives the tree-child orientation of N shown in Fig. 8 to the right.

For other classes C , the algorithm is exactly the same except for (possibly) the length � that chains are reduced to and
how it checks whether a produced oriented network is in the class.

4.2. FPT algorithm parameterized by the reticulation number

For a class C of directed binary phylogenetic networks, we begin by describing a simple exponential-time algorithm,
namely, Algorithm 2, that finds all edges of a given undirected binary phylogenetic network where the root can be inserted
in order to obtain a C-orientation and, for all such edges, one C-orientation. The FPT algorithm described later in this
subsection uses Algorithm 2 as a subroutine. Let N be an undirected binary phylogenetic network, and let e be an edge of
N . We say that N can be C-rooted at e if there is a C-orientation of N whose root subdivides e. If this is the case, we also
say that e is a C-rooted edge of N . If e is incident to a leaf l and N can be C-rooted at e, we say that N can be C-rooted at l.
For a set X and a non-negative integer n, we let

(X
n

) = {Y ⊆ X : |Y | = n} denote the set of size n subsets of X .
Note that Algorithm 2 does not necessarily return all C-orientations of N . Indeed, for each edge of N , the inner loop

quits (Line 7) after one such orientation is found. To find the complete set of orientations, simply remove this line. The
correctness of Algorithm 2 and its running time is established in the next lemma.
11

K.T. Huber, L. van Iersel, R. Janssen et al. Journal of Computer and System Sciences 140 (2024) 103480
Fig. 8. Left: The partly directed network No
C . The undirected input network N is obtained by ignoring the direction of the three arcs. The three arcs of No

C
indicate where the root cannot be. Middle: The tree TC (N) obtained by contracting all undirected edges in No

C . The root of TC (N) corresponds to blob B2,
from which we learn that, in a tree-child orientation of N , the root location must be in B2. Right: One possible tree-child orientation of N returned by the
algorithm.

Fig. 9. Top left: The network NB1 (= NB3) induced by the blob B1 (or B3) from Fig. 8. Top right: The network N�
B1

obtained from NB1 by reducing chains
to length 3. Bottom right: A tree-child orientation of N�

B1
. Bottom left: A tree-child orientation of NB1 . In the undirected networks, thick edges indicate

possible root locations.

Fig. 10. Left: The network NB2 induced by the blob B2 from Fig. 8. Thick edges indicate possible root locations. Right: A tree-child orientation of NB2 .

Lemma 2. Let N = (V , E, X) be an undirected binary phylogenetic network with reticulation number k. Then Algorithm 2 applied to
N is correct and runs in O (nk+1(n + fC (n, k))) time, where n = |V | and fC (n, k) is the time-complexity of checking whether a directed
binary phylogenetic network with n vertices and k reticulations is in the class C of directed binary phylogenetic networks.
12

K.T. Huber, L. van Iersel, R. Janssen et al. Journal of Computer and System Sciences 140 (2024) 103480
Input: An undirected binary phylogenetic network N = (V , E, X) with reticulation number k.
Output: The set of C -rooted edges of N and a corresponding C -orientation for each such edge.

1 Set L := ∅ for the root locations and orientations;
2 for each edge e of N do
3 for each guess R ∈ (V

k

)
of the set of k reticulation vertices do

4 Set d−
N (v) = 2 for each v ∈ R and d−

N (v) = 1 for each v ∈ V \ R;
5 Compute N(e, R) = Orientation Algorithm(N, e, d−

N) (using Algorithm 1);
6 if N(e, R) is a C -orientation then
7 L := L ∪ {(e, N(e, R))};
8 Quit the inner for-loop
9 end

10 end
11 end
12 return L

Algorithm 2: A simple exponential-time C-orientation algorithm for a class C of directed binary phylogenetic networks

Proof. Let e be an edge of N . If N can be C-rooted at e, then there is a set R of k reticulations such that, by Theorem 2,
Orientation Algorithm(N, e, R) returns a C-orientation of N rooted along e. Since Algorithm 2 checks all possible locations
for the k reticulations, it will find such a C-orientation. The correctness of Algorithm 2 now follows.

For the running-time, the outer loop runs O (n) times, as the degree of every vertex of N is at most three and so
|E| ≤ 3

2 n. The inner loop runs at most
(n

k

)
times. Inside the inner loop, there are exactly two parts that run in non-constant

time. First, by Theorem 2, Orientation Algorithm runs in O (n) time and, second, by definition, checking whether a directed
binary phylogenetic network with n vertices and k reticulations is in C takes O (fC (n, k)) time. These combine to give a total
running time of O

((n
k

)
n(n + fC (n,k))

)
, that is O (nk+1(n + fC (n, k))). �

To obtain an FPT algorithm for C-Orientation, we need to pose some restrictions on the class C . The first of these
restrictions is described in Definition 3. For a blob B of a directed binary phylogenetic network, the directed binary phylo-
genetic network induced by B is obtained from B by adjoining, to each vertex v of either in-degree 1 and out-degree 1, or
in-degree 2 and out-degree 0, a new leaf x and a new arc (v, x).

Definition 3. A class C of directed binary phylogenetic networks is blob-determined if the following property holds: A di-
rected binary phylogenetic network N is a member of C precisely if every network induced by a blob of N is a member of
C .

Let N be an undirected (resp. directed) binary phylogenetic network on X , and suppose that e is a cut-edge (resp.
cut-arc) of N . A connected component of N\e that is an undirected (resp. directed) phylogenetic tree on X ′ , where X ′ ⊆
X , is called a pendant phylogenetic subtree of N . A pendant phylogenetic subtree is trivial if it consists of a single leaf;
otherwise, it is non-trivial. If a class C of directed binary phylogenetic networks is blob-determined, then, in deciding
whether an undirected binary phylogenetic network N has a C-orientation, we may assume that N has no non-trivial
pendant phylogenetic subtrees. To see this, observe that if N ′ is an undirected binary phylogenetic network obtained from
N by replacing a pendant phylogenetic subtree with a single leaf, say l, then, as C is blob determined and, thus, the existence
of a C-orientation depends only on the biconnected components of N , it follows that N ′ has a C-orientation if and only if
N has a C-orientation (see Fig. 11). Moreover, if e is the pendant edge of N ′ incident with l, then N ′ can be C-rooted at e
if and only if N can be C-rooted at each edge of the pendant phylogenetic subtree replaced by l (again, see Fig. 11). Hence,
we will assume throughout the remainder of Section 4, as well as Section 5, that if N is an undirected binary phylogenetic
network, then N has no non-trivial pendant phylogenetic subtrees.

In addition, note that if N is an undirected binary phylogenetic network with reticulation number at most 1, then we
can decide whether N can be C-rooted at an edge e by running Algorithm 2, with the running time being a polynomial
in the number of vertices and the time needed to check membership of the class C (see Lemma 2). Therefore, we also
assume throughout the remainder of Section 4, as well as Section 5, that each undirected binary phylogenetic network has
reticulation number at least 2.

To describe the remaining two restrictions, we need some additional definitions. Let N be an undirected (resp. di-
rected) phylogenetic network. Adding a leaf to N means that an edge, say {u, v} (resp. arc (u, v)), of N is replaced by
edges {u, w}, {w, v}, {w, x} (resp. arcs (u, w), (w, v), (w, x)), where w is a new vertex and x is a new leaf. The second
restriction is described in Definition 4.

Definition 4. A class C of directed binary phylogenetic networks is leaf-addable if the following property holds: If N is a
member of C and N ′ is obtained from N by adding leaves, then N ′ is a member of C .

The generator G(N) of an undirected (resp. directed) binary phylogenetic network N is the undirected (resp. directed)
multi-graph obtained from N by deleting all (trivial and non-trivial) pendant phylogenetic subtrees together with the edges
(resp. arcs) joining the pendant phylogenetic subtrees to the rest of N , and suppressing each of the resulting vertices of
13

K.T. Huber, L. van Iersel, R. Janssen et al. Journal of Computer and System Sciences 140 (2024) 103480
Fig. 11. Orientating pendant phylogenetic subtrees. Two examples showing how orientations of an undirected binary phylogenetic network N and the
undirected binary phylogenetic network N ′ obtained from N by replacing a pendant phylogenetic subtree with a single leaf can be derived from each other.
In the first example (a), the root is placed along an edge in the pendant phylogenetic subtree of N and, in the second example (b), the root is placed
elsewhere. Note that, for each example, the orientation of the edges within the grey circle are the same. Thus, for a blob-determined class C of directed
binary phylogenetic networks, N has a C -orientation if and only if N ′ has a C -orientation.

degree 2 (resp. in-degree 1 and out-degree 1). Note that if N is undirected, then, for the definition of G(N), we additionally
require the reticulation number of N to be at least 2 (which we assume already). Furthermore, G(N) may have parallel
edges (resp. arcs), as well as undirected (resp. directed) loops. The edges (resp. arcs) of G(N) are called sides.

Let N be an undirected binary phylogenetic network N and let s = {u, v} be a side of G(N). Let P s denote the undirected
path in N starting at u and ending at v from which s is obtained in the construction of G(N) by suppressing degree-2
vertices. A leaf x of N is said to be on s, and s is said to contain x, if x is adjacent to an internal vertex of P s . Let ns
denote the number of leaves that are on side s. An edge of N is on s if it is an edge of P s . If P s is the undirected path
u = u0, e0, u1, e1, . . . , uns , ens , uns+1 = v and ci is the leaf adjacent to ui for all i ∈ {1, 2, . . . , ns}, then, relative to P s , we
say that the leaves c1, c2, . . . , cns and the edges e0, e1, . . . , ens of N on s are ordered from u to v . In addition, if eρ is a
distinguished edge in which we want to insert the root, then s is said to contain the root if eρ is incident to an internal
vertex of P s , that is either eρ is on s or eρ is a pendant edge incident to an internal vertex of P s .

Similarly, if N is a directed binary phylogenetic network and s is a side of G(N), then P s is the directed path in N from
which s is obtained in the construction of G(N) by suppressing vertices of in-degree 1 and out-degree 1. A leaf x of N is
said to be on s, and s is said to contain x, if x is adjacent to an internal vertex of P s . Let ns denote the number of leaves
that are on side s. An arc of N is on s if it is an arc of P s . If s = (u, v) is a side of G(N), and P s is the directed path
u = u0, e0, u1, e1, . . . , uns , ens , uns+1 = v and ci is the leaf adjacent to ui for all i ∈ {1, 2, . . . , ns}, then we say that the leaves
c1, c2, . . . , cns and the arcs e0, e1, . . . , ens of N on s are ordered from u to v .

Let N be an undirected binary phylogenetic network. Let � be a non-negative integer, and let s be a side of G(N) that
contains ns ≥ � leaves of N . Then the undirected binary phylogenetic network obtained from N by deleting ns − � leaves
that are on s and suppressing any resulting degree-2 vertices is said to be obtained from N by an �-chain reduction on s.
More generally, an �-chain reduction on N consists of performing an �-chain reduction on each side of G(N) containing at
least � leaves.

The third restriction is described in Definition 5.

Definition 5. Let C be a class of directed binary phylogenetic networks, and let N be an undirected binary phylogenetic
network that is C-orientable. Let N ′ be an undirected binary phylogenetic network obtained from N by an �-chain reduction
on N . Suppose that s = {u, v} is a side of G(N) that contains at least � leaves of N , and let P s be the undirected path
u = u0, u1, . . . , uns , uns+1 = v of N corresponding to s ordered from u to v . Viewing s as a side of G(N ′), let c′

1, c
′
2, . . . , c

′
�

denote the leaves of N ′ on s ordered from u to v and, for all i ∈ {1, 2, . . . , �}, let u′
i denote the unique vertex of N ′ adjacent

to c′
i . We say that N is �-chain reducible along s if the following two properties hold:

(i) If N ′ can be C-rooted at {u′
i, c

′
i} with i ∈ {1, 2, . . . , �}, then N can be C-rooted at all edges incident to u j for all

j ∈ {i, i + 1, . . . , ns − (� − i)}.
(ii) If N can be C-rooted at an edge e incident with u j with j ∈ {1, 2, . . . , ns}, then N ′ can be C-rooted at {u′

i, c
′
i} for some

i ∈ {1, 2, . . . , �} satisfying j ∈ {i, i + 1, . . . , ns − (� − i)}.

More generally, N is �-chain reducible if N is �-chain reducible along every side of G(N) containing at least � leaves and the
following property holds:

(iii) If N can be C-rooted at an edge e that is neither on a side s containing at least � leaves nor incident with a leaf on a
side s containing at least � leaves, then N ′ can also be C-rooted at e.

A class C of directed binary phylogenetic networks is �-chain reducible if every C-orientable undirected binary phylogenetic
network is �-chain reducible. This concludes Definition 5.

Properties (i) and (ii) in Definition 5 are illustrated in Fig. 12. Fig. 13 shows an example where Property (iii) is necessary.
Note that we can perform an �-chain reduction on any undirected binary phylogenetic network, but not every such network
is �-chain reducible.
14

K.T. Huber, L. van Iersel, R. Janssen et al. Journal of Computer and System Sciences 140 (2024) 103480
Fig. 12. An illustration of an �-chain reduction, and (i) and (ii) of Definition 5 applied to an undirected binary phylogenetic network N . The undirected
binary phylogenetic network N ′ has been obtained from N by an �-chain reduction, where � = 5. Here the side s = {u, v} of G(N) is reduced from ns = 9
to � = 5. Now suppose that N is 5-chain reducible. To illustrate (i) of Definition 5, if N ′ can be C -rooted at leaf {u′

4, c′
4} (that is, i = 4), then N can be

C -rooted at all edges incident with u j for all j ∈ {4, 5, . . . , 8} (dashed edges). Furthermore, to illustrate (ii) of Definition 5, if N can be C -rooted at the
pendant edge incident with u7, then N ′ can be C -rooted at {u′

i, c′
i} for some i ∈ {1, 2, . . . , 5} satisfying 7 ∈ {i, i + 1, . . . , i + 4}, that is, for some i ∈ {3, 4, 5}

(dashed edges).

Fig. 13. An example where (iii) of Definition 5 is not satisfied. Suppose that C is the class of stack-free networks (i.e., networks where no reticulation has a
reticulation as a child) and � = 2. Then the undirected binary phylogenetic network N can be C -rooted at e since the directed network Nr is a C -orientation
of N . However, a routine check shows that the undirected binary phylogenetic network N ′ obtained by performing an �-chain reduction on N cannot be
C -rooted at e. Furthermore, both (i) and (ii) of Definition 5 vacuously hold since neither N nor N ′ can be C -rooted at any of the dashed edges.

Let C be an �-chain reducible, leaf-addable, blob-determined class of directed binary phylogenetic networks. We next
describe an FPT algorithm, namely, Algorithm 3, for C-orientation with the reticulation number of N as the parameter. In
the description of Algorithm 3, recall that adding a leaf x to a directed network means that an arc (u, v) is subdivided with
a new vertex, w say, to create the two arcs (u, w) and (w, v), and that leaf x is added with an arc (w, x) (so, in particular,
the orientation of the added pendant arcs is determined). In particular, when we add back several leaves to form a chain,
we repeat this operation sequentially for each leaf whilst respecting the ordering of the added leaves. See Fig. 9 for an
example.

As with Algorithm 2, Algorithm 3 finds all of the C-rooted edges of a given undirected binary phylogenetic network,
say N , and, for all such edges, it also finds a C-orientation. Loosely speaking, Algorithm 3 starts by performing an �-chain
reduction on N to produce an undirected binary phylogenetic network N� , and then, using Algorithm 2, finds all the C-
rooted edges of N� as well as a C-orientation of N� for each such edge (Lines 1–2). For each C-rooted edge e of N� , the
algorithm then iteratively finds several C-rooted edges of N “linked” to e via Definition 5. It essentially does this by re-
attaching the leaves that were removed in the �-chain reduction (after optionally first removing the leaf edge where the
root is located and relocating the root to the resulting degree-2 node). It thus also provides a corresponding C-orientation.

Noting that G(N) = G(N�), let s be the side of G(N�) that contains either e if e is not pendant or the leaf incident to e
if e is pendant, and let ns be the number of leaves of N on s. How this iterative process proceeds depends on whether (i)
ns < � (Lines 7–10; uses Definition 5(iii)), (ii) ns ≥ � and e is a pendant edge of N� (Lines 11–30; uses Definition 5(i)), or
(iii) ns ≥ � and e is not a pendant edge of N� (Lines 31–33; we argue that we do not need to consider this case explicitly).
Most of the work is in (ii) where Algorithm 3 initially handles pendant edges of N linked to e (Lines 16–22) and then
handles non-pendant edges of N linked to e (Lines 23–29). The fact that this process finds all C-rooted edges of N as well
as a corresponding C-orientation of N for each such edge is established in Lemma 3.

Lemma 3. Let N = (V , E, X) be an undirected binary phylogenetic network with reticulation number k, where k ≥ 2. Then Algorithm 3
applied to N is correct and runs in time

O ((8�(k − 1))k+1(�(k − 1) + fC (8�(k − 1),k)) + �(k − 1)n2) = O (g(k, �) + �(k − 1)n2),

where n = |V |, fC (8�(k − 1), k) is the time complexity of checking whether a directed binary phylogenetic network with 8�(k − 1)

vertices and k reticulations is in the �-chain reducible, leaf-addable, blob-determined class C of directed binary phylogenetic networks,
and g is a function of k and � independent of n.
15

K.T. Huber, L. van Iersel, R. Janssen et al. Journal of Computer and System Sciences 140 (2024) 103480
Input: An undirected binary phylogenetic network N with reticulation number k ≥ 2 and no non-trivial pendant phylogenetic subtrees.
Output: The set of C -rooted edges of N and a corresponding C -orientation of N for each such edge.

1 Construct an undirected binary phylogenetic network N� by performing an �-chain reduction on N;
2 Find the set of C -rooted edges of N� and a corresponding C -orientation N�

e for each such edge e using Algorithm 2;
3 Set L := ∅ for the root locations and orientations;
4 for each C -rooted edge e of N� do
5 Let s = {u, v} be the side of G(N�) that contains either the leaf incident to e if e is pendant, or e itself if e is not pendant;
6 Let ns be the number of leaves of N on s;
7 if ns < � then
8 Extend N�

e to a C -orientation Ne of N by adding back the leaves deleted in the reduction (in Line 1) at their original location;
9 Set L := L ∪ {(e, Ne)};

10 end
11 if ns ≥ � and e is a pendant edge, say {u′

i , c′
i}, of N� then

12 Let c′
1, c′

2, . . . , c′
� be the leaves of N� on s ordered from u to v;

13 Let e′
0, e′

1, . . . , e′
� be the edges of N� on s ordered from u to v;

14 Let c1, c2, . . . , cns be the leaves of N on s ordered from u to v;
15 Let e0, e1, . . . , ens be the edges of N on s ordered from u to v;
16 for each j ∈ {i, i + 1, . . . , ns − (� − i)} do
17 Let f be the pendant edge of N incident to c j ;
18 Modify N�

e to a C -orientation N f of N as follows. First, add back (j − 1) − (i − 1) leaves to an arbitrary arc on the path (along side s)
between u′

i and u and add back (ns − j) − (� − i) leaves to an arbitrary arc on the path (along side s) between u′
i and v . Then,

(re)label the leaves ordered from u′
i to u as c j−1, c j−2, . . . , c1, (re)label the leaves ordered from u′

i to v as c j+1, c j+2, . . . , cns and
relabel the leaf adjacent to u′

i as c j . Now extend the resulting orientation by adding back the remaining leaves deleted in the
reduction (in Line 1) at their original location;

19 if L does not contain a pair with f as the first element yet then
20 Set L = L ∪ {(f , N f)};
21 end
22 end
23 for each j ∈ {i − 1, i, . . . , ns − (� − i)} do
24 Let f = e j ;
25 Modify N�

e to a C -orientation N f of N as follows. First delete c′
i and the root, relocating the root to u′

i . Second, add back
(j − 1) − (i − 1) leaves to an arbitrary arc on the path (along side s) between u′

i (the new root) and u and add back
(ns − (j − 1)) − (� − i)) leaves to an arbitrary arc on the path (along side s) between u′

i and v , (re)labelling the leaves ordered from
u′

i to u and from u′
i to v as c j−1, c j−2, . . . , c1 and c j , c j+1, . . . , cns , respectively. Now extend the resulting orientation by adding back

the remaining leaves deleted in the reduction (in Line 1) at their original location;
26 if L does not contain a pair with f as the first element yet then
27 Set L = L ∪ {(f , N f)};
28 end
29 end
30 end
31 if ns ≥ � and e is not a pendant edge of N� then
32 Do nothing as e is incident with a pendant C -rooted edge of N� , and any corresponding C -orientation of N is constructed in Lines 23–29;
33 end
34 end
35 return L;

Algorithm 3: An FPT algorithm for C-orientation with the reticulation number of N as the parameter, where C is an
�-chain reducible, leaf-addable, and blob-determined class of directed binary phylogenetic networks

Proof. To establish the lemma, we use the same notation as in Algorithm 3. To prove correctness, we first show that the
algorithm correctly infers C-rooted edges of N from the C-rooted edges of N� . Let e be a C-rooted edge of N� , and let s be
the side of G(N�) containing either the leaf incident to e if e is pendant, or e if e is not pendant. If ns < �, then e is an edge
of N and, as C is leaf-addable, it follows that the algorithm correctly concludes that N can be C-rooted at e. On the other
hand, if ns ≥ �, then, as C is �-chain reducible, it follows by Property (i) of Definition 5 that each of the edges of N inferred
by Algorithm 3 is a C-rooted edge of N on side s.

We now show that Algorithm 3 finds all C-rooted edges of N . Suppose that N can be C-rooted at edge eρ , and let sρ
be the side of G(N) that contains either the leaf incident to eρ if eρ is pendant, or eρ if eρ is not pendant. First suppose
that sρ contains fewer than � leaves of N . Then eρ is an edge of N� and, by Property (iii) of Definition 5, eρ is a C-rooted
edge of N� . Thus, as Algorithm 2 finds all C-rooted edges of N� with corresponding orientations, the algorithm correctly
finds eρ and, because C is leaf-addable, a corresponding C-orientation of N .

Now suppose that sρ contains at least � leaves of N . We consider two cases depending on whether or not eρ is a
pendant edge of N . If eρ is pendant, then eρ is incident to a leaf, say c j , of N . By Property (ii) of Definition 5, N� can
be C-rooted at c′

i for some i satisfying j ∈ {i, i + 1 . . . , ns − (� − i)}. Since Algorithm 2 finds all C-rooted edges of N� with
corresponding orientations, the algorithm will establish that N� can be C-rooted at c′

i and also find a corresponding C-
orientation of N� . It follows that Algorithm 3 correctly finds that eρ is a C-rooted edge of N and, it is easily checked, as
C is leaf-addable, a corresponding C-orientation of N in Line 18. If eρ is not a pendant edge of N , then eρ is incident
to a vertex, say u j which is adjacent to c j , of N . By Property (ii) of Definition 5, N� can be C-rooted at c′

i for some i
satisfying j ∈ {i, i + 1, . . . , ns − (� − i)}. Thus, as Algorithm 2 finds all C-rooted edges of N� with corresponding orientations,
16

K.T. Huber, L. van Iersel, R. Janssen et al. Journal of Computer and System Sciences 140 (2024) 103480
the algorithm establishes that c′
i is a C-rooted edge of N� and also finds a corresponding C-orientation. Therefore, by the

argument in the first paragraph of the proof, Algorithm 3 correctly finds that ep is a C-rooted edge of N and, it is easily
checked, as C is blob-determined and leaf-addable, it finds a corresponding C-orientation of N in Line 25. Hence Algorithm 3
correctly finds all C-rooted edges of N as well as a corresponding C-orientation of N .

Note that all C-rooted edges are indeed found in Lines 7–30, so the case of Line 31 can indeed be ignored in the
algorithm.

For the running time, note that Algorithm 3 consists of three separate parts: the �-chain reduction on N to get N� by
deleting leaves (Line 1); the application of Algorithm 2 to find the C-rooted edges of N� and a corresponding C orientation
for each such edge (Line 2); and the inference of the C-rooted edges of N as well as the corresponding C-orientations
(Lines 3–34). It is clear that the reduction in Line 1 can be executed in O (n2) time.

Next we turn to the running time of applying Algorithm 2 to N� . As each side of the generator of N� contains at most �

leaves, the number of vertices and edges of N� are bounded by a function of k and �. This makes the running time of
Algorithm 2 a function of � and k. To be more concrete, first observe that, since G(N) is cubic, 3|V (G(N))| = 2|E(G(N))|.
Combining this with k = |E(G(N))| − |V (G(N))| + 1 (which follows from the definition of the reticulation number) gives
|E(G(N))| = 3(k − 1) and |V (G(N))| = 2(k − 1). Hence, |V (N�)| ≤ 2(k − 1) + 6�(k − 1) ≤ 8�(k − 1) and so, by Lemma 2, the
running time of the second part is

O ((8�(k − 1))k+1(�(k − 1) + fC (8�(k − 1),k))).

For the last part, G(N) can be found in O (n) time by deleting all leaves and suppressing their neighbours. As G(N) and
G(N�) are isomorphic, each side of G(N�) has at most � + 1 edges, and so N� has at most 3(k − 1)(2� + 1) edges. For each
C-rooted edge of N� , we modify a C-orientation of N� at most 2n times, each time taking O (n) time. Hence, the running
time of this part is O (�(k − 1)n2). Taken altogether, the total running time of Algorithm 3 is

O ((8�(k − 1))k+1(�(k − 1) + fC (8�(k − 1),k)) + �(k − 1)n2). �
The next theorem is an immediate consequence of Lemma 3.

Theorem 4. Let C be an �-chain reducible, leaf-addable, blob-determined class of directed binary phylogenetic networks. If fC(8�(k −
1), k) (described in Lemma 3) is a computable function, then C-orientation is FPT with the reticulation number of the undirected
binary phylogenetic network as the parameter.

In Section 4.3, we extend Algorithm 3 to an FPT algorithm for C-orientation, where the level of N is the parameter.
Before doing this, we conclude this subsection with the following sufficient condition for a network to be C-orientable.

Proposition 3. Let N be an undirected binary phylogenetic network with at least � leaves on each side of G(N), and let C be an �-chain
reducible, leaf-addable class of directed binary phylogenetic networks. If, by adding leaves, there is an undirected binary phylogenetic
network that is C-orientable, then N is C-orientable.

Proof. Let N be an arbitrary undirected binary phylogenetic network with at least � leaves on each side of its generator.
Suppose we can add leaves to N to obtain an undirected binary phylogenetic network N ′ that is C-orientable. Since C is
�-chain reducible, it follows by Properties (ii) and (iii) of Definition 5 that applying an �-chain reduction to N ′ gives a
directed binary phylogenetic network N� that is C-orientable. Since N can be obtained from N� by adding leaves and C is
leaf-addable, N is C-orientable. �
4.3. FPT algorithm parameterized by the level

Using Algorithms 2 and 3, in this section we establish an FPT algorithm for C-orientation, where the level of the
undirected binary phylogenetic network N is the parameter. The main idea is to orient each blob of N and to combine
these orientations into an orientation of N (see Fig. 8 for an example). For this second step, we first need the following
definitions.

Let N be an undirected binary phylogenetic network and let B be a blob of N . The undirected binary phylogenetic
network induced by B is obtained from B by adjoining to each degree-2 vertex u a new leaf x and a new edge {u, x}.
Furthermore, for a blob-determined class C of directed binary phylogenetic networks, if N is a member of C , we say that B
can be C-rooted at a cut-edge e = {u, v} of N with u ∈ B and v /∈ B if the undirected binary phylogenetic network induced
by B can be C-rooted at the pendant edge incident to u.

Allowing for bi-directed edges, let No
C be the mixed graph obtained from N by directing each cut-edge e of N incident

to a blob B away from B if B cannot be C-rooted at e. Note that if a cut-edge e joins two blobs of N and neither blob
can be C-rooted at e, then this cut-edge becomes bi-directed. Define TC (N) to be obtained from No

C by contracting every
undirected edge of No . Note that (the underlying graph of) TC (N) is a tree as all edges in the blobs of N are undirected
C

17

K.T. Huber, L. van Iersel, R. Janssen et al. Journal of Computer and System Sciences 140 (2024) 103480
in No
C and therefore contracted (and a graph without blobs is a tree). Also note that TC (N) is not a phylogenetic tree, but a

tree in the usual graph-theoretic sense and that all its edges are directed or bidirected.
Let C be an �-chain reducible, leaf-addable, blob-determined class of directed binary phylogenetic networks. The FPT

algorithm for C-orientation with the level of N as the parameter is described as Algorithm 4. The main idea behind the
algorithm is captured by the following proposition. A rooted tree is a directed tree with a single vertex of in-degree 0, called
the root, in which all arcs are directed away from the root. Note that a rooted tree may consist of a single vertex.

Proposition 4. Let C be a blob-determined class of directed binary phylogenetic networks, and let N be an undirected binary phyloge-
netic network. Then N has a C-orientation if and only if, for each blob B of N, the undirected binary phylogenetic network induced by
B has a C-orientation, and TC (N) is a rooted tree.

Proof. First assume that N has a C-orientation N ′ , and let B be a blob of N . Since C is blob-determined, N ′ induces a C-
orientation of the undirected binary phylogenetic network NB induced by B . Now let {u, v} be a cut-edge of N , where u is
a vertex of B . If {u, v} is directed away from B in No

C , then B cannot be C-rooted at {u, v}, and so, as N ′ is a C-orientation
of N , it follows that {u, v} is not directed towards u in N ′ . Thus {u, v} is directed away from u in N ′ , that is, {u, v} is
directed away from B in N ′ . Therefore if an edge is orientated in No

C , then the orientation of that edge is in agreement with
its orientation in N ′ . (In particular, it follows that no edge is bi-directed in No

C .) Therefore, by contracting the arcs of N ′ for
which the corresponding edges of No

C have no orientation, we obtain TC (N). Since TC (N) is obtained from a directed binary
phylogenetic network by contracting arcs, and TC (N) is a tree, it follows that TC (N) is a rooted tree.

To prove the converse, assume that the undirected binary phylogenetic network induced by each blob of N has a C-
orientation and that TC (N) forms a rooted tree. Let K be the subgraph of N that contracts to the root of TC (N). Then either
(i) K consists of a single blob B of N , or (ii) K contains at least one cut-edge of N . Depending on whether (i) or (ii) holds,
we next show that there exists a C-orientation of N where the root is located either on an edge of B , or on a cut edge e of
K .

If (i) holds, then, as TC (N) is a rooted tree (obtained from No
C by contracting all undirected edges), all of the cut-edges

of N incident to a vertex of B are oriented away from B in No
C . Therefore, as the undirected binary phylogenetic network

NB induced by B is C-orientable, there exists an edge eρ of B at which NB can be C-rooted. We now find a C-orientation
of N as follows. Subdivide eρ by inserting the root, and orient the edges in B the same way as they are orientated in NB .
Orienting all cut-edges of N away from the root, each blob B ′ �= B of N now has exactly one incoming cut-arc, say (u, v).
Since TC (N) is a rooted tree, the undirected binary phylogenetic network induced by B ′ can be C-rooted at the cut-edge
incident to v . Orienting the edges of B ′ (and all other such blobs of N) accordingly, gives a C-orientation of N . For (ii), we
subdivide the cut-edge e of K by the root and proceed in the same way as for (i), starting by orienting all cut-arcs away
from the root. �

The correctness of Algorithm 4 and its running time is established in the next lemma.

Lemma 4. Let N = (V , E, X) be an undirected binary phylogenetic network. Then Algorithm 4 applied to N is correct and runs in
time O (g(L, �)n + �(L − 1)n3)) if C is an �-chain reducible, leaf-addable, and blob-determined class of directed binary phylogenetic
networks, where n = |V |, L is the level of N, and g is a function of L and � independent of n.

Proof. The correctness of Algorithm 4 is essentially given in the proof of Proposition 4, and so it is omitted. For the running
time, first note that all blobs can be found in O (n3) time by checking for each edge whether it is a cut-edge. The rest of the
algorithm consists of two parts. The first part consists of finding all C-rooted edges of the undirected binary phylogenetic
networks induced by the blobs of N and a corresponding C-orientation for each such edge (Lines 1–8), while the second
part consists of constructing No

C and TC (N) and, provided TC (N) is a rooted tree, finding an orientation of the cut-edges
and blob edges of N (Lines 9–29).

By Lemma 3, for a blob B with nB vertices and kB reticulations, running Algorithm 3 on the undirected binary phyloge-
netic network induced by B takes O (g(kB , �) + �(kB − 1)n2

B) time. Since N has at most n blobs and kB ≤ L by the definition
of level, the first part of Algorithm 4 runs in time

O (g(L, �)n + �(L − 1)n3).

For the second part of Algorithm 4, we initially construct No
C and TC (N). Orientating the cut-edges of N incident to blob

vertices to obtain No
C and then contracting the unorientated edges of No

C to obtain TC (N) takes O (n2) time. Once this is
completed, the second part of the algorithm requires only one pass through N to orient its edges, as we may independently
pick an orientation for each blob B from the set of orientations LB with the correct root-edge (finding such orientation in
the set may take O (n) time). Hence, the second part of the algorithm only takes O (n2) time. This completes the proof of
the lemma. �
Remark. If C is not necessarily �-chain reducible and leaf-addable, but is a blob-determined class of directed binary phylo-
genetic networks, then we can adapt Algorithm 4 by replacing Line 3 with the following to obtain an algorithm for deciding
18

K.T. Huber, L. van Iersel, R. Janssen et al. Journal of Computer and System Sciences 140 (2024) 103480
Input: An undirected binary phylogenetic network N with no non-trivial pendant phylogenetic subtrees.
Output: A C -orientation of N if it exists, and NO otherwise.

1 Find the set of blobs of N;
2 for each blob B of N do
3 Apply Algorithm 3 to the undirected binary phylogenetic network NB induced by B and let LB be the returned set of pairs (e, Be) consisting of

C -rooted edge e and corresponding orientation Be of NB ;
4 if LB = ∅ then
5 return NO;
6 end
7 end
8 Construct No

C from N by orienting each cut-edge e of N incident to a vertex of a blob B away from B if there is no pair in LB with e as first
element (possibly orienting edges in two directions);

9 Construct TC (N) from No
C by contracting all non-oriented edges in No

C ;
10 if TC (N) is a rooted tree then
11 Determine the subgraph K of N that is contracted, in Line 9, to the root of TC (N);
12 if K consists of a single blob B of N then
13 Pick an arbitrary element (e, Be) ∈ LB and orient B in N according to Be , calling the root vertex ρ;
14 end
15 if K contains a cut-edge then
16 Subdivide an arbitrary cut-edge e by the root ρ;
17 end
18 Orient all cut-edges of N away from ρ;
19 for each unoriented blob B ′ of N do
20 Find the cut-arc (u, v) entering B ′;
21 Let {v, x} be the cut-edge incident to v in the network induced by B ′;
22 Find a pair ({v, x}, B ′{v,x}) ∈ LB ′ ;

23 Orient the edges of B ′ in N as in B ′{v,x};

24 end
25 return the oriented network N;
26 else
27 return NO;
28 end

Algorithm 4: An FPT algorithm for C-orientation with the level of N as the parameter, where C is an �-chain reducible,
leaf-addable, and blob-determined class of directed binary phylogenetic networks

if an undirected binary phylogenetic network N has a C-orientation:
Let LB be the output of Algorithm 2 applied to the undirected binary phylogenetic network induced by B .
Taking the same approach as the proof of Lemma 4, the running time of this adaption is O (

(n
L

)
n2(n + fC (n, L))), where n is

the number of vertices of N , and L is the level of N .

The next theorem is an immediate consequence of Lemma 4.

Theorem 5. Let C be an �-chain reducible, leaf-addable, blob-determined class of directed binary phylogenetic networks, for any
fixed �. If g(L, �) is a computable function, then Algorithm 4 is an FPT algorithm for C-Orientation, where the level L of the inputted
undirected binary phylogenetic network is the parameter.

5. A specific class

Recall that a directed phylogenetic network is said to be tree-child if each non-leaf vertex has a child that is a tree vertex.
The main result of this section is Theorem 6, which establishes that C-Orientation is FPT when C is the class of directed
binary tree-child phylogenetic networks.

The proof of Theorem 6 relies on combining Theorem 5 with proofs showing that the class of directed binary tree-
child phylogenetic networks is �-chain reducible (with � = 3), leaf-addable, and blob-determined. To establish the �-chain
reducible property, we will show that this class satisfies a variant of this property, called rooted �-chain reducible, which
is described in Section 5.1. We then show that if a directed binary phylogenetic class C is rooted �-chain reducible, leaf-
addable, and blob-determined, then C is �-chain reducible.

The same technique can be applied to many other known classes, see [11, Appendix A].

Theorem 6. Algorithm 4 is an FPT algorithm for deciding whether an undirected binary phylogenetic network N has a tree-child
orientation, where the level of N is the parameter.

5.1. Rooted �-chain reduction

We begin by defining the operation of rooted �-chain reduction. Note that this operation is defined on undirected binary
phylogenetic networks, but with a specified pendant edge eρ which will be used as the root location. We also remark that
19

K.T. Huber, L. van Iersel, R. Janssen et al. Journal of Computer and System Sciences 140 (2024) 103480
Fig. 14. An example of rooted 3-chain reductions. Subfigure (a) shows an undirected binary phylogenetic network N that has a tree-child orientation rooted
at edge eρ as shown below it. The side of the generator G(N) that contains the root is denoted sρ = {u, v}. As the class of tree-child networks is rooted
3-chain reducible, with respect to eρ , a rooted 3-chain reduction on N from at least one of u and v results in an undirected binary phylogenetic network
that can be tree-child rooted at eρ . Subfigure (b) shows a rooted 3-chain reduction on N from u, but, as indicated in (b), it cannot be tree-child rooted
at eρ . However, as shown in Subfigure (c), a rooted 3-chain reduction from v results in an undirected binary phylogenetic network that can be tree-child
rooted at eρ .

we will use the term “rooted �-chain reduction” to refer to a network obtained by this operation, as well as to refer to the
operation itself. Recall that we assume throughout Sections 4 and 5 that networks have no nontrivial pendant phylogenetic
subtrees and that they have reticulation number at least 2.

Definition 6. Let N be an undirected binary phylogenetic network, let � be a non-negative integer, and let eρ be a pendant
edge of N . Furthermore, let sρ = {u, v} be the side of G(N) containing eρ , and let P sρ denote the undirected path of N
corresponding to sρ between u and v . We call an undirected binary phylogenetic network obtained from N by applying the
following three operations a rooted �-chain reduction (from u, with respect to eρ) on N:

(i) for each side s of G(N) other than sρ that contains at least � leaves, delete ns − � leaves on s, where ns is the number
of leaves on s;

(ii) delete all leaves on sρ that are adjacent to an internal vertex of P sρ between u and the end vertex of eρ on P sρ ; and
(iii) if there are at least � leaves adjacent to an internal vertex of P sρ between the end vertex of eρ on P sρ and v , then

delete all but � − 1 of these leaves; otherwise, if there are at most � − 1 such leaves, do nothing.

Definition 7. A class C of directed binary phylogenetic networks is rooted �-chain reducible if the following property holds:
Let N be an undirected binary phylogenetic network and let eρ be a pendant edge of N . Let sρ = {u, v} be the side of G(N)

containing eρ and let Nu and Nv be rooted �-chain reductions from u and v , respectively, with respect to eρ . If N can be
C-rooted at eρ , then at least one of Nu and Nv can be C-rooted at eρ .

An example illustrating these definitions is given in Fig. 14, where C is the class of binary tree-child networks. Note that,
we will eventually show that the class of binary tree-child networks is rooted 3-chain reducible (Lemma 8).

The next two lemmas will be used to show that if a class of directed binary phylogenetic networks is rooted �-chain
reducible, leaf-addable, and blob-determined, then it is �-chain reducible.

Lemma 5. Let C be a rooted �-chain reducible, leaf-addable class of directed binary phylogenetic networks, and let N be an undirected
binary phylogenetic network that is C-orientable. Let N ′ be the undirected binary phylogenetic network obtained from N by an �-chain
reduction on N. Suppose that s = {u, v} is a side of G(N) that contains at least � leaves. Let c1, c2, . . . , cns denote the leaves of N on s
ordered from u to v, and let c′

1, c
′
2, . . . , c

′
� denote the leaves of N ′ on s ordered from u to v. Then each of the following hold:

(i) If i ∈ {1, 2, . . . , �} and N ′ can be C-rooted at c′
i , then N can be C-rooted at c j for all j ∈ {i, i + 1, . . . , ns − (� − i)}.

(ii) If j ∈ {1, 2, . . . , ns} and N can be C-rooted at c j , then N ′ can be C-rooted at c′
i for some i satisfying j ∈ {i, i +1, . . . , ns − (� − i)}.

Proof. For (i), suppose that N ′ can be C-rooted at c′
i , where i ∈ {1, 2, . . . , �}, and let N�

i be a C-orientation of N ′ rooted at
c′

i . Let j ∈ {i, i + 1, . . . , ns − (� − i)}. Now construct an orientation N j of N from N�
i as follows. First, add back j − i leaves

on the directed path from the neighbour u′
i of c′

i to u and add back (ns − j) − (� − i) leaves on the directed path from u′
i

to v relabelling the leaves ordered from u′ to u and u′ to v as c j−1, c j−2, . . . , c1 and c j+1, c j+2, . . . , cns , respectively, and
i i

20

K.T. Huber, L. van Iersel, R. Janssen et al. Journal of Computer and System Sciences 140 (2024) 103480
relabelling the leaf adjacent to u′
i as c j . Note that, as j ≤ ns − (� − i), it follows that (ns − j) − (� − i) ≥ 0. Now extend the

resulting orientation by adding back the remaining leaves deleted in the reduction at their original location. This gives N j ,
an orientation of N rooted at c j . Since C is leaf-addable and N�

i is a C-orientation, it follows that N j is a C-orientation of
N rooted at c j . This establishes (i).

To prove (ii), suppose that N can be C-rooted at c j , where j ∈ {1, 2, . . . , ns}. Since C is rooted �-chain reducible, there
is a rooted �-chain reduction N ′′ on N with respect to the edge incident with c j that can be rooted at c j . Without loss of
generality, we may assume that in this reduction we deleted all the leaves on s between the neighbour u j of c j and u, and
if there are at least � leaves on s between u j and v , we deleted all but � − 1 of these leaves.

First assume that j ≥ ns − (� −1), and let j = ns − t , where t ≤ � −1. In this case, no leaves of N on s are deleted between
u j and v to obtain N ′′ . Thus N ′′ has exactly t + 1 leaves on s and (by definition of c j and of rooted �-chain reduction) N ′′
can be C-rooted at c j the first leaf on s ordered from u to v . Let N�

j denote a C-orientation of N ′′ rooted at c j . We next
construct an orientation N�

i of N ′ from N�
j as follows. Add back � − (t + 1) leaves on the directed path from u j to u, so

that we have exactly � leaves on s, and relabel the leaves ordered from u j to u and from u j to v as c′
i−1, c

′
i−2, . . . , c

′
1

and c′
i+1, c

′
i+2, . . . , c

′
� , respectively, and relabel c j as c′

i . This gives N�
i . Since G(N�

i) is isomorphic to G(N ′) and each side s

of G(N�
i) and G(N ′) contains the same number of leaves, it follows that, up to relabelling the leaves on each side, N�

i is
an orientation of N ′ . Thus, as C is leaf-addable, N ′ has a C-orientation rooted at c′

i , where i = � − t = � − (ns − j). Since
ns − (� − i) = j, we have j ∈ {i, i + 1, . . . , ns − (� − i)} as required.

Now assume that j < ns − (� −1). Then, by applying the rooted �-chain reduction, we delete all leaves of N on s between
u and u j while keeping the network C-rootable at the leaf-edge incident to u j . Hence, we have that N ′′ can be C-rooted at
the first leaf on s ordered from u to v . Moreover, as j < ns − (� − 1), side s of N ′′ contains exactly � leaves. Therefore, as
G(N ′) is isomorphic to G(N ′′), up to relabelling the leaves on each side, N ′ is isomorphic to N ′′ . Hence, N ′ can be C-rooted
at c′

1. Since j ≥ i and ns − (� − i) ≥ ns − (� − 1) > j as i ≥ 1, we have j ∈ {i, i + 1, . . . , ns − (� − i)}, again, as required. This
completes the proof of (ii) and the lemma. �

The next lemma is the non-pendant edge analogue of Lemma 5.

Lemma 6. Let C be a rooted �-chain reducible, leaf-addable, blob-determined class of directed binary phylogenetic networks, and let
N be an undirected binary phylogenetic network that is C-orientable. Let N ′ be the undirected binary phylogenetic network obtained
from N by an �-chain reduction on N. Suppose that s = {u, v} is a side of G(N) that contains at least � leaves. Let e0, e1, . . . , ens

denote the edges of N on s ordered from u to v, and let c′
1, c

′
2, . . . , c

′
l denote the leaves of N ′ on s ordered from u to v. Then each of the

following hold:

(i) If i ∈ {1, 2, . . . , �} and N ′ can be C-rooted at c′
i , then N can be C-rooted at e j for all j ∈ {i − 1, i, . . . , ns − (� − i)}.

(ii) If j ∈ {0, 1, . . . , ns} and N can be C-rooted at e j , then N ′ can be C-rooted at c′
i for some i satisfying j ∈ {i −1, i, . . . , ns − (� − i)}.

Proof. Let e j be an edge of N on s, and let N j be the undirected binary phylogenetic network obtained from N by subdi-
viding e j with a new vertex and adjoining a new leaf to this vertex via a new edge. Let c1, c2, . . . , cns+1 denote the leaves
of N j on s ordered from u to v . Thus c j+1 is the new leaf. Note that G(N) = G(N j). Since C is blob-determined, N j can
be C-rooted at c j+1 if and only if N can be C-rooted at e j . Let N ′

j be the undirected binary phylogenetic network obtained
from N j by an �-chain reduction on N j .

For the proof of (i), assume that N ′ can be C-rooted at c′
i , where i ∈ {1, 2, . . . , �}. Let j ∈ {i − 1, i, . . . , ns − (� − i)}.

Up to relabelling leaves, N ′
j is isomorphic to N ′ , and so N ′

j can be C-rooted at the i-th leaf on s ordered from u to v .
Therefore, as N j has ns + 1 leaves on side s, it follows by Lemma 5(i) applied to N j that N j can be C-rooted at c j′ for
all j′ ∈ {i, i + 1, . . . , (ns − (� − i)) + 1}. In particular, as j + 1 ∈ {i, i + 1, . . . , (ns − (� − i)) + 1}, we have that N j can be
C-rooted at c j+1. Thus N can be C-rooted at e j .

To prove (ii), assume that N can be C-rooted at e j , where j ∈ {0, 1, . . . , ns}. Then N j can be C-rooted at c j+1. To see
this, take a C-orientation of N rooted at e j , and orient the edges of N j , except the pendant edge incident with c j+1, in
the same direction as the corresponding edges of the C-orientation of N . Now subdivide the edge incident with c j+1 by a
vertex w and orient the two edges incident with w away from it. The resulting directed binary phylogenetic network is a
C-orientation of N j rooted at c j+1.

By Lemma 5(ii), N ′
j can be C-rooted at c′

i for some i satisfying j + 1 ∈ {i, i + 1, . . . , (ns − (� − i)) + 1}. Since N ′
j is

isomorphic to N ′ up to relabelling leaves, N ′ can be C-rooted at c′
i for some i satisfying j ∈ {i − 1, i, . . . , ns − (� − i)}. This

completes the proof of (ii) and the lemma. �
A consequence of the last two lemmas is the following proposition.

Proposition 5. Let C be a rooted �-chain reducible, leaf-addable, blob-determined class of directed binary phylogenetic networks. Then
C is �-chain reducible.
21

K.T. Huber, L. van Iersel, R. Janssen et al. Journal of Computer and System Sciences 140 (2024) 103480
Proof. To see that C is �-chain reducible, observe that properties (i) and (ii) of �-chain reducibility follow directly from
Lemmas 5 and 6, while property (iii) of �-chain reducibility is a consequence of C being leaf-addable. �
5.2. Tree-child networks

In this section, we establish Theorem 6. Recall that a directed binary phylogenetic network N is tree-child if every non-
leaf vertex has a child that is a tree vertex. Equivalently, N is tree-child if and only if N has no stack reticulations, two
reticulations one of which is the parent of the other, and no sibling reticulations, two reticulations sharing a common parent
(see [24]). This equivalence will be used throughout this subsection.

Let N be a directed binary phylogenetic network. Since adding leaves to N cannot create any stack or sibling reticulations,
it follows that the class of binary tree-child networks is leaf-addable. The next two lemmas show that this class is also blob-
determined and rooted 3-chain reducible, and thus, by Proposition 5, 3-chain reducible.

Lemma 7. The class of binary tree-child networks is blob-determined.

Proof. Let N be a directed binary phylogenetic network. If N is tree-child, then N has no stack and no sibling reticulations,
and so every directed binary phylogenetic network induced by a blob of N is tree-child.

Now suppose that all directed binary phylogenetic networks induced by a blob of N are tree-child. Then each such
network has no stack and no sibling reticulations. Observe that every reticulation of N is contained in a blob of N and that
both parents of a reticulation are in the same blob (because there are paths from the root to each parent). If N contains
sibling reticulations, then (for similar reasons) their common parent must be in the same blob as each of the reticulations,
and so the network induced by this blob would also contain sibling reticulations, a contradiction. Similarly, N cannot contain
stacks. Thus N is tree-child. This completes the proof of the lemma. �

By Lemma 7, the class of binary tree-child networks is blob-determined. Therefore, as explained in Section 4.2, in the
process of deciding if an undirected binary phylogenetic network N has a tree-child orientation, we may assume that N has
no non-trivial pendant phylogenetic subtrees. The analogous assumption holds for other classes.

Lemma 8. The class of binary tree-child networks is rooted 3-chain reducible.

Proof. Let N be an undirected binary phylogenetic network that can be tree-child rooted at a pendant edge eρ = {vρ, xρ},
where xρ is a leaf, and let Nd be a tree-child orientation of N rooted at eρ . Note that vρ is a tree vertex in Nd . Recall
that we assume that N , and therefore Nd , has reticulation number at least 2, so G(Nd) is well defined and has two sides
s1 and s2 leaving vρ . We next construct a directed binary phylogenetic network N ′

d from Nd as follows. First, for each side
s of G(Nd) that is neither s1 nor s2 and contains at least two leaves, delete all except one of the leaves of Nd on s and
suppress the resulting vertices of in-degree one and out-degree one. At this stage of the construction, it is easily seen that
the resulting directed binary phylogenetic network remains tree-child, as no stack and no sibling reticulations have been
created. Continuing the construction, delete all leaves of Nd that are on either s1 or s2 of G(Nd), and suppress the resulting
vertices of in-degree one and out-degree one. This gives N ′

d . Like the first part, the second part of the construction also
preserves the property of being tree-child. To see this, observe that at most one of s1 and s2 has a reticulation as an end-
vertex; otherwise, N has a reticulation cut, contradicting Proposition 2. Hence, N ′

d has no sibling reticulations. Moreover, as
the root of Nd is not a reticulation, it follows that N ′

d has no stack reticulations. Hence N ′
d is tree-child.

Let N ′ denote the underlying undirected binary phylogenetic network of N ′
d , and let sρ be the side of G(N ′) containing

xρ . We next show that each side s �= sρ of G(N ′) contains at most three leaves of N ′ . To see this, s corresponds to at most
two sides of G(N ′

d); if s corresponds to exactly two sides, then these sides meet at a reticulation of N ′
d with a leaf as a child

(see Fig. 15). Thus s contains at most three leaves of N ′ . On the other hand, the side sρ of G(N ′) corresponds to at most
three sides of G(N ′

d). Namely, s1, s2, and a third side s3 if an internal vertex of sρ corresponds to a reticulation r of N ′
d (see

Fig. 15). If a third side s3 exists, then r is the parent of a leaf of N ′
d . Sides s1 and s2 of G(N ′

d) contain no leaves of N ′
d and,

if it exists, s3 contains at most one leaf of N ′
d . In addition, the leaf xρ is on the side sρ of G(N ′) and, if s3 exists and r has

a child that is a leaf, then this leaf is also on the side sρ of G(N ′). Hence the side sρ also contains at most three leaves of
N ′ in total, where xρ is either the first or the last leaf when the leaves of N ′ on sρ are ordered.

Let Nr be the undirected binary phylogenetic network obtained from N by applying a rooted 3-chain reduction with
respect to eρ . Since G(Nr) = G(N ′), it follows that Nr can be obtained from N ′ by adding leaves and, if necessary, relabelling
leaves. Therefore, as N ′ can be tree-child rooted at eρ and the class of tree-child networks is leaf-addable, Nr can be tree-
child rooted at eρ . Hence N is 3-chain reducible with respect to eρ . It now follows that the class of binary tree-child
networks is 3-chain reducible. �

By Lemmas 7 and 8, the algorithms of Section 4 are applicable to the class of binary tree-child networks. Thus, by
Theorem 4, Theorem 6 holds provided g(L, �) is a computable function. We end this subsection with the following lemma,
which shows that this is indeed the case.
22

K.T. Huber, L. van Iersel, R. Janssen et al. Journal of Computer and System Sciences 140 (2024) 103480
Fig. 15. The (generic) correspondence of the undirected sides of the generator of an undirected binary phylogenetic network N to the directed sides of the
generator of an orientation N ′ of N . If a side {u, v} of G(N) does not contain the root edge, this side corresponds to either (a) one side of G(N ′) or (b) two
sides of G(N ′) separated by a reticulation with a leaf child. If the side {u, v} of G(N) does contain the root ρ , this side corresponds to either (c) the two
sides of G(N ′) incident with ρ , or to three sides of G(N ′) as shown in (d). In this figure, all degree-one vertices are leaves, except the ones labeled u or v .

Fig. 16. An undirected nonbinary phylogenetic network that has no funneled orientation.

Lemma 9. Let C be the class of binary tree-child networks, and let N be a directed binary phylogenetic network. Then deciding if N is
in C takes O (n) time, where n is the number of vertices in N.

Proof. To check whether N is tree-child, we simply need to check that no reticulation is in a stack or in a pair of sibling
reticulations. Since this only requires checking the (local) neighbourhood of each vertex, which is of size at most three as N
is binary, this check can be executed in linear time. �
6. Discussion

We have answered several foundational questions regarding the orientation of undirected phylogenetic networks. We
have also shown that some of our results apply to partly-directed phylogenetic networks. Nevertheless, many interesting
questions remain open.

Our results do not apply directly to some of the phylogenetic networks published in the biological literature. The reason
for this is that these phylogenetic networks fall outside the framework of our definition. It would be interesting to consider
modifications of the definition given here that allow for the study of such networks from a mathematical point of view. For
example, the phylogenetic network of grape cultivars in [18, Fig. 3] contains several interesting complications. Firstly, it can
be directly observed that any orientation of this phylogenetic network needs to have multiple roots (this can, for example,
be concluded from the part of the network containing Muscat of Alexandria, Muscat Hamburg, and Trollinger). Secondly,
as well as undirected and directed edges, the phylogenetic network contains dotted edges joining pairs of cultivars which
are siblings or equivalent. Other examples include the phylogenetic network of bears in [16, Fig. 4] and the phylogenetic
network of the evolutionary history of Europeans in [17, Fig. 1]. The first of these phylogenetic networks contains bidirected
arcs, which we have not taken into account in this paper, while the second has dotted edges indicating that the direction is
either unclear (corresponding to our undirected edges) or bidirectional.

More explicit (computational) questions are the following. Given an undirected binary phylogenetic network N , the
problem of deciding if N has a tree-based orientation is NP-complete [11, Appendix A]. Although we have shown that
the analogous decision problems for the classes of binary tree-child and binary stack-free networks are fixed-parameter
tractable with respect to the level of N , it remains open whether these problems are polynomial-time solvable. We expect
both decision problems to be NP-complete, but have not found a proof. A related question concerns undirected nonbinary
phylogenetic networks. It is common in the literature for directed nonbinary phylogenetic networks to have the restriction
that each reticulation has exactly one outgoing arc. Calling such phylogenetic networks with this restriction funneled, an
open question is whether one can decide in polynomial time if a given undirected nonbinary phylogenetic network has a
funneled orientation. This is not always the case, as can be seen (with some effort) from the example shown in Fig. 16.

Another question is whether our results generalize to directed phylogenetic networks with a root of out-degree 1 or
out-degree greater than 2. This only makes sense when we are allowed to root an undirected phylogenetic network at
23

K.T. Huber, L. van Iersel, R. Janssen et al. Journal of Computer and System Sciences 140 (2024) 103480
an existing vertex, instead of at an edge as we have assumed in this paper. Note that, for directed binary phylogenetic
networks that are blob determined, rooting at an edge is equivalent to adding a leaf to that edge, and rooting along the
resulting pendant edge. Similarly, rooting at a vertex is equivalent to attaching a leaf to the vertex via a new edge, and
rooting along this new edge. For these reasons, we expect our results to generalize. Finally, it would be interesting to find
out whether the results in Section 5 generalize to partly-directed phylogenetic networks.

CRediT authorship contribution statement

Katharina T. Huber: Conceptualization, Formal analysis, Methodology, Writing – review & editing. Leo van Iersel: Concep-
tualization, Formal analysis, Funding acquisition, Methodology, Supervision, Visualization, Writing – original draft, Writing –
review & editing. Remie Janssen: Conceptualization, Formal analysis, Methodology, Software, Visualization, Writing – origi-
nal draft, Writing – review & editing. Mark Jones: Conceptualization, Formal analysis, Methodology, Writing – original draft,
Writing – review & editing. Vincent Moulton: Conceptualization, Formal analysis, Methodology, Writing – review & editing.
Yukihiro Murakami: Conceptualization, Formal analysis, Methodology, Visualization, Writing – original draft, Writing – re-
view & editing. Charles Semple: Conceptualization, Formal analysis, Methodology, Writing – original draft, Writing – review
& editing.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Data availability

No data was used for the research described in the article.

Acknowledgments

We thank the anonymous referees for their careful reading of the paper, their comments and suggestions to improve the
paper.

References

[1] Elizabeth S. Allman, Hector Baños, John A. Rhodes, NANUQ: a method for inferring species networks from gene trees under the coalescent model,
Algorithms Mol. Biol. 14 (1) (2019) 1–25.

[2] Yuichi Asahiro, Jesper Jansson, Eiji Miyano, Hirotaka Ono, Degree-constrained graph orientation: maximum satisfaction and minimum violation, Theory
Comput. Syst. 58 (1) (Jan 2016) 60–93.

[3] Noga Alon, Michael Tarsi, Colorings and orientations of graphs, Combinatorica 12 (2) (1992) 125–134.
[4] Mikhail J. Atallah, A graph orientation problem, Purdue e-Pubs, Department of Computer Science Technical Reports, 83-457, 1983.
[5] David Bryant, Vincent Moulton, Neighbor-net: an agglomerative method for the construction of phylogenetic networks, Mol. Biol. Evol. 21 (2) (2004)

255–265.
[6] Peter L. Erdős, Charles Semple, Mike Steel, A class of phylogenetic networks reconstructable from ancestral profiles, Math. Biosci. 313 (2019) 33–40.
[7] Andrew R. Francis, Katharina T. Huber, Vincent Moulton, Tree-based unrooted phylogenetic networks, Bull. Math. Biol. 80 (2) (2018) 404–416.
[8] Philippe Gambette, Katharina T. Huber, Guillaume E. Scholz, Uprooted phylogenetic networks, Bull. Math. Biol. 79 (9) (2017) 2022–2048.
[9] Daniel H. Huson, Tobias Klöpper, Pete J. Lockhart, Mike A. Steel, Reconstruction of reticulate networks from gene trees, in: Annual International

Conference on Research in Computational Molecular Biology, Springer, 2005, pp. 233–249.
[10] Daniel H. Huson, Regula Rupp, Celine Scornavacca, Phylogenetic Networks: Concepts, Algorithms and Applications, Cambridge University Press, 2010.
[11] Katharina T. Huber, Leo van Iersel, Remie Janssen, Mark Jones, Vincent Moulton, Yukihiro Murakami, Charles Semple, Orienting undirected phylogenetic

networks, arXiv:1906 .07430, 2019.
[12] Leo van Iersel, Steven Kelk, Georgios Stamoulis, Leen Stougie, Olivier Boes, On unrooted and root-uncertain variants of several well-known phylogenetic

network problems, Algorithmica 80 (11) (2018) 2993–3022.
[13] Remie Janssen, Rooting networks, https://github .com /RemieJanssen /RootingNetworks, 2020.
[14] Remie Janssen, Mark Jones, Péter L. Erdős, Leo van Iersel, Celine Scornavacca, Exploring the tiers of rooted phylogenetic network space using tail moves,

Bull. Math. Biol. 80 (8) (2018) 2177–2208.
[15] Remie Janssen, Yukihiro Murakami, On cherry-picking and network containment, Theor. Comput. Sci. 856 (2021) 121–150.
[16] Vikas Kumar, Fritjof Lammers, Tobias Bidon, Markus Pfenninger, Lydia Kolter, Maria A. Nilsson, Axel Janke, The evolutionary history of bears is charac-

terized by gene flow across species, Sci. Rep. 7 (2017) 46487.
[17] Iosif Lazaridis, The evolutionary history of human populations in Europe, Curr. Opin. Genet. Dev. 53 (2018) 21–27.
[18] Sean Myles, Adam R. Boyko, Christopher L. Owens, Patrick J. Brown, Fabrizio Grassi, Mallikarjuna K. Aradhya, Bernard Prins, Andy Reynolds, Jer-Ming

Chia, Doreen Ware, et al., Genetic structure and domestication history of the grape, Proc. Natl. Acad. Sci. 108 (9) (2011) 3530–3535.
[19] David A. Morrison, Networks in phylogenetic analysis: new tools for population biology, Int. J. Parasitol. 35 (5) (2005) 567–582.
[20] David Morrison, http://phylonetworks .blogspot .com /2013 /03 /first -degree -relationships -and -partly.html, March 20, 2013.
[21] David Morrison, http://phylonetworks .blogspot .com /2015 /01 /complex -hybridizations -in -wheat .html, January 7, 2015.
[22] Thomas Marcussen, Simen R. Sandve, Lise Heier, Manuel Spannagl, Matthias Pfeifer, Kjetill S. Jakobsen, Brande B.H. Wulff, Burkhard Steuernagel, Klaus

F.X. Mayer, Odd-Arne Olsen, et al., Ancient hybridizations among the ancestral genomes of bread wheat, Science 345 (6194) (2014) 1250092.
[23] Yukihiro Murakami, Leo van Iersel, Remie Janssen, Mark Jones, Vincent Moulton, Reconstructing tree-child networks from reticulate-edge-deleted

subnetworks, Bull. Math. Biol. 81 (10) (2019) 3823–3863.
24

http://refhub.elsevier.com/S0022-0000(23)00085-5/bibC7EF8BEE2FCD22D556D5EC8E428E2326s1
http://refhub.elsevier.com/S0022-0000(23)00085-5/bibC7EF8BEE2FCD22D556D5EC8E428E2326s1
http://refhub.elsevier.com/S0022-0000(23)00085-5/bibB3347346DCD0F9C2103DB18E1D31FD3Bs1
http://refhub.elsevier.com/S0022-0000(23)00085-5/bibB3347346DCD0F9C2103DB18E1D31FD3Bs1
http://refhub.elsevier.com/S0022-0000(23)00085-5/bib5D587AC0F114AA3F8E07E952047C46C8s1
http://refhub.elsevier.com/S0022-0000(23)00085-5/bib06F03443F25EF64BAFC7E2277D94C812s1
http://refhub.elsevier.com/S0022-0000(23)00085-5/bibCB6053FC7719F4E85D660A2565E0C5B9s1
http://refhub.elsevier.com/S0022-0000(23)00085-5/bibCB6053FC7719F4E85D660A2565E0C5B9s1
http://refhub.elsevier.com/S0022-0000(23)00085-5/bib998CD1053CEFEA8C15ECC0726E4FEF01s1
http://refhub.elsevier.com/S0022-0000(23)00085-5/bibC2F30D86A70AC0EB5DE93BD78600DE57s1
http://refhub.elsevier.com/S0022-0000(23)00085-5/bibE0D29ADEA5AEDB3A1FCEDF8605A30128s1
http://refhub.elsevier.com/S0022-0000(23)00085-5/bib4AB79B453A2EC456CC7B62AABDDA88BEs1
http://refhub.elsevier.com/S0022-0000(23)00085-5/bib4AB79B453A2EC456CC7B62AABDDA88BEs1
http://refhub.elsevier.com/S0022-0000(23)00085-5/bib8D0031AB0900104932592C5A577285B7s1
http://refhub.elsevier.com/S0022-0000(23)00085-5/bib07C242867B1455F9981D2D676CCF73D0s1
http://refhub.elsevier.com/S0022-0000(23)00085-5/bib07C242867B1455F9981D2D676CCF73D0s1
http://refhub.elsevier.com/S0022-0000(23)00085-5/bib5A300BF15D51FF8891DA699777F40EB8s1
http://refhub.elsevier.com/S0022-0000(23)00085-5/bib5A300BF15D51FF8891DA699777F40EB8s1
https://github.com/RemieJanssen/RootingNetworks
http://refhub.elsevier.com/S0022-0000(23)00085-5/bib86F7E2174759DB1213F26856F0BB89A1s1
http://refhub.elsevier.com/S0022-0000(23)00085-5/bib86F7E2174759DB1213F26856F0BB89A1s1
http://refhub.elsevier.com/S0022-0000(23)00085-5/bib5FDC672C76C5B870E48DDF65D292F4E1s1
http://refhub.elsevier.com/S0022-0000(23)00085-5/bibF1D2AA173A8D6C348C30A936ADC21264s1
http://refhub.elsevier.com/S0022-0000(23)00085-5/bibF1D2AA173A8D6C348C30A936ADC21264s1
http://refhub.elsevier.com/S0022-0000(23)00085-5/bibCBF07D0FE08E4C48048F392118E682D8s1
http://refhub.elsevier.com/S0022-0000(23)00085-5/bib15A8DE26589689D0FA41ACEE04D25B8As1
http://refhub.elsevier.com/S0022-0000(23)00085-5/bib15A8DE26589689D0FA41ACEE04D25B8As1
http://refhub.elsevier.com/S0022-0000(23)00085-5/bibCEC654C75FAEDBC72A956D7ABC590199s1
http://phylonetworks.blogspot.com/2013/03/first-degree-relationships-and-partly.html
http://phylonetworks.blogspot.com/2015/01/complex-hybridizations-in-wheat.html
http://refhub.elsevier.com/S0022-0000(23)00085-5/bibD29DB4AC8712F5BDB343991281B26DB1s1
http://refhub.elsevier.com/S0022-0000(23)00085-5/bibD29DB4AC8712F5BDB343991281B26DB1s1
http://refhub.elsevier.com/S0022-0000(23)00085-5/bibD63990AA9DEE5A47323EF4CDDCECF828s1
http://refhub.elsevier.com/S0022-0000(23)00085-5/bibD63990AA9DEE5A47323EF4CDDCECF828s1

K.T. Huber, L. van Iersel, R. Janssen et al. Journal of Computer and System Sciences 140 (2024) 103480
[24] Charles Semple, Phylogenetic networks with every embedded phylogenetic tree a base tree, Bull. Math. Biol. 78 (2016) 132–137.
[25] Claudia Solís-Lemus, Cécile Ané, Inferring phylogenetic networks with maximum pseudolikelihood under incomplete lineage sorting, PLoS Genet. 12 (3)

(2016) e1005896.
[26] Korbinian Strimmer, Vincent Moulton, Likelihood analysis of phylogenetic networks using directed graphical models, Mol. Biol. Evol. 17 (6) (2000)

875–881.
25

http://refhub.elsevier.com/S0022-0000(23)00085-5/bib3E5F3B5C4CDC50EDC919B2AE13614E7Fs1
http://refhub.elsevier.com/S0022-0000(23)00085-5/bib5182D9F9928CCFD4D2807788EDBCEAFAs1
http://refhub.elsevier.com/S0022-0000(23)00085-5/bib5182D9F9928CCFD4D2807788EDBCEAFAs1
http://refhub.elsevier.com/S0022-0000(23)00085-5/bib68C532EFA663F56E31024D8EE2F7B482s1
http://refhub.elsevier.com/S0022-0000(23)00085-5/bib68C532EFA663F56E31024D8EE2F7B482s1

	Orienting undirected phylogenetic networks
	1 Introduction
	2 Preliminaries
	3 Orienting an undirected phylogenetic network given the root and the desired in-degrees
	3.1 Characterizing the orientability of undirected nonbinary phylogenetic networks
	3.2 Orientation algorithm
	3.3 Characterizing the orientability of undirected binary phylogenetic networks

	4 Orientations within a specific subclass of directed binary phylogenetic networks
	4.1 Example
	4.2 FPT algorithm parameterized by the reticulation number
	4.3 FPT algorithm parameterized by the level

	5 A specific class
	5.1 Rooted l-chain reduction
	5.2 Tree-child networks

	6 Discussion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References

