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Abstract—Recently, convolutional neural networks (CNNs) and
fully convolutional neural networks (FCNs) have been success-
fully used for monitoring coastal marine ecosystems, in particular
vegetation. However, even with recent advances in computational
modelling and data acquisition, deep learning models require
substantial amounts of good quality reference data to effectively
self-learn internal representations of input imagery. The classical
approach for coastal mapping requires experts to transcribe in-
situ records and delineate polygons from high-resolution imagery
such that FCNs can self-learn. However, labelling by a single
individual limits the training data, whereas crowdsourcing labels
can increase the volume of training data, but may compromise
label quality and consistency. In this paper we assessed the reli-
ability of crowdsourced labels on a complex multi-class problem
domain for estuarine vegetation and unvegetated sediment. An
inter-observer variability experiment was conducted in order
to assess the statistical differences in crowdsourced annotations
for plant species and sediment. The participants were grouped
based on their discipline and level of expertise, and the statistical
differences were evaluated using the Cochran’s Q-test and the
annotation accuracy of each group to determine for observation
biases. Given the crowdsourced labels, FCNs were trained with
majority-vote annotations from each group to check whether
observation biases were propagated to FCN performance. Two
scenarios were examined: first, a direct comparison of FCNs
trained with transcribed in-situ labels and crowdsourced labels
from each group was established. Then, transcribed in-situ labels
were supplemented with crowdsourced labels to investigate the
feasibility of training FCNs with crowdsourced labels in coastal
mapping applications.

We show that annotations sourced from discipline experts
(ecologists and geomorphologists) familiar with the study site
were more accurate than experts with no prior knowledge of
the site and non-experts, with our results confirming that biases
in participant annotation were propagated in FCN performance.
Furthermore, FCNs trained with a combined dataset of in-situ
and crowdsourced labels performed better than FCNs trained on
the same imagery with in-situ labels.

Index Terms—Remote Sensing, Deep Learning, Convolutional
Neural Network, Multispectral, Crowdsourcing
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COASTAL ecosystems such as wetlands, estuaries and
coral reefs represent dynamic and important nurturing

habitats for a wide variety of plants, fish, shellfish and other
wildlife [1]. With growing concerns over climate change,
these coastal areas will be subject to changing atmospheric
and ocean temperatures, sea levels, ocean chemistry, weather
patterns and the increased demands of a growing global popu-
lation. This emphasises the need to create and act on strategies
that maintain a sustainable balance of coastal ecosystem
health, while also effectively managing the use of resources
that are derived from these ecosystems [2], [3].

In coastal monitoring, remote sensing has provided a major
platform for ecologists to assess and monitor sites in many
applications [4], [5]. Satellite imagery can provide global
to regional observations at regular sampling intervals with
successful applications for coastal management [2]. However,
this avenue of data acquisition often struggles with cloud
contamination, oblique views, costs for data acquisition and
coarse resolution relative to the often narrow features of
interest that stretch along the coast [6]. The shift to uncrewed
aircraft systems (UASs) and commercially available cameras
tackles the latter issues as it resolves coarse satellite resolution
(typically 2 - 30m) by collecting several overlapping very high
resolution (VHR) images and stitching sensor outputs together
using Structure from Motion (SfM) techniques to create high-
resolution orthomosaics [7], [8] (commonly less than 0.1 m).

Parallel to the advancements in data acquisition, computer
vision (CV) has also improved in the last decade with deep
learning (DL) [9] and the introduction of convolutional neural
networks (CNNs) [10]. These methods have surpassed previ-
ous state-of-the-art results in a wide variety of computer vi-
sion applications [10]–[12]. Traditionally, supervised machine
learning (ML) methods can be defined by two separate com-
ponents: feature extraction and model training. Instead, CNNs
learn hierarchical abstract representations of input imagery in
a self-learning fashion, which in effect combines feature learn-
ing and supervised classifier training in one optimisation [9].
Fully convolutional neural networks (FCNs) are an adaptation
of CNNs that perform per-pixel classifications, and enable
contextual features to be extracted within a wide receptive
field while also preserving the spatial origin of these features
to produce a fine-grained and spatially explicit segmentation
of the object [11], [13]. This is appropriate for remote sensing
mapping applications where aerial imagery can be segmented
to meaningful sets of classes in order to delineate objects or
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species of interest [14]–[19].
This said, even with the advent of UASs and FCNs to map

coastal environments, the quantity and quality of data labels
is a pivotal concern in many real-world scenarios because DL
models perform best with large, labelled, training datasets [9],
[20]. In remote sensing, reference observations (FCN training
data) are often acquired in-situ, which involves high logistic
efforts, potential inaccuracies due to geo-location errors as
well as sampling and observation bias [21], [22]. Moreover,
the volume of data generated with UAS imagery may cover
a substantial spatially-continuous area with respect to the
real-world, yet the ratio between the area covered via in-
situ surveying and the total area covered in imagery is often
relatively small [16], [23]. Methods such as transfer learning
[24], data-augmentation [25] and semi-supervision [26], [27]
can provide tools for FCNs to self-learn if there are limited
amounts of labelled data, as is often the case for environmental
monitoring. However, an alternative for efficient in-situ data
collection is visual identification and delineation of training
data directly from orthomosaics [28]–[30] - possible in UAS
imagery because the resolution is sufficiently high that even
features as small as 10 × 10 cm can often be accurately
identified and labelled. Further to this, crowdsourced labels
can provide an even more cost-effective alternative to laborious
labelling procedures from aerial imagery involving individual
domain specific experts with studies showing that aggregated
labels can provide better quality generalisation in machine
learning modelling which draw parallels with field of expert
frameworks and ensemble learning [31], [32].

Remote sensing applications have also leveraged the use of
crowdsourced labels to supplement aerial imagery datasets in
a variety of manners [33]. Commonly, web-based applications
prompt participants to classify binary tasks with known GPS
information for accurate geo-location. This has led to success-
ful workflows that combine deep learning and crowdsourcing
for several study sites: Guatemala, Laos and Malawi using
MapSwipe [34]; the Missing Maps humanitarian project using
OpenStreetMap [35]; settlements in Nigeria, Somalia, Pakistan
and Afghanistan using Tomnod platform [36]; and for crop
mapping in South East India using Plantix [37]. Furthermore,
coastal surveying has also leveraged crowdsourced annotations
for deep learning applications of litter mapping in the shores
of Xabelia beach in Lesvos, Greece [38] and shoreline change
mapping in two open-coast sandy beaches located within the
Sydney metropolitan area [39].

These studies focus on combining crowdsourced labels with
deep learning models on binary problem domains to avoid
ambiguity for participants and erroneous labelling [33]. In
contrast, coastal mapping requires the identification of mul-
tiple feature classes, some of which are superficially similar
depending on the situation (e.g. sand and mud, seagrass and
filamentous algae).

In this paper, we tackled the problem of deriving crowd-
sourced training data for estuarine vegetation and unvegetated
sediment ecosystems at Budle Bay (Northumberland, UK).
We performed an inter-observer experiment of crowdsourced
annotations on a complex multi-class problem domain that
includes intertidal coastal species, such as seagrass, saltmarsh

and macro-algae. The experiment population consisted of 12
participants split into 3 groups based on their discipline and
level of expertise in habitat mapping. The experiment was
analogous to crowdsourcing labelled data in remote sensing
applications as participants were prompted to classify pre-
determined points. Our experimental setup comprised two
sets of points: a set whereby the true semantic value of
each human annotation was known according to an in-situ
survey of the study site conducted by the UK Centre for
Environment, Fisheries and Aquaculture Science (Cefas) and
UK Environment Agency (EA), and an extra set of points
created through expert photo-interpretation to balance class
distribution (see Section II-D).

The analysis of our inter-observer variability experiment
uses the Cochran’s Q test to assess the statistical differences of
crowdsourced annotations from each group. Furthermore, the
annotation accuracy and a per-class analysis of crowdsourced
annotations was used to assess for any potential observation
biases.

Given the annotations from the inter-observer experiment,
the feasibility of FCNs trained with crowdsourced annotations
was investigated in two scenarios: first, four FCNs were trained
with different versions of labelled data on the same imagery.
Three FCNs were trained with labels based on majority-vote
annotations from each participant group in the inter-observer
experiment and the other FCN was trained with transcribed
labels from the in-situ survey. This scenario allows for a
direct performance comparison for FCNs trained with in-
situ labels and crowdsourced labels, and evaluates whether
biases in crowdsourced annotations were propagated in FCN
performance. The second scenario investigates the feasibility
of supplementing transcribed in-situ labels with crowdsourced
labels using two FCNs. For this scenario, one FCN was
trained with the set of points described in Section II-D,
whereas the other FCN was trained with a combination of
transcribed in-situ labels and crowdsourced labels on the same
imagery. Consequently, we list the following contributions in
the proposed manuscript.

• Discipline experts (ecologists and geomorphologists) fa-
miliar with the study site were more accurate than experts
with no prior knowledge of the site and non-experts.

• FCNs trained with crowdsourced labels from discipline
experts familiar with the site had comparable performance
to FCNs trained with in-situ labels.

• FCNs trained with a combined labelled set of in-situ
labels and crowdsourced labels were more accurate than
FCNs trained with in-situ labels on the same imagery

Sections II-B and II-C detail the study site. Section II-E
describes the experimental setup and Section II-F describes
the FCN model and parameter training. Lastly, Sections III-A
and III-B present the results of the inter-observer experiment
and FCN experiments, and Sections IV-A, IV-B and IV-C
the analysis and discussion of the inter-observer and FCN
experiments.
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Fig. 1. Distribution of tags recorded during the in-situ survey (left) and the full set of points to be annotated, comprising the in-situ points plus those
determined using expert photo-interpretation (right).

II. METHODS

A. Study site

The research focused on Budle Bay, Northumberland, UK
(55.625◦N, 1.745◦W). Budle Bay is a large (c. 300 ha) estu-
arine embayment with a single tidal inlet [40]–[42]. Sinuous
and dendritic tidal channels are present within the estuary,
and bordering the channels are areas of seagrass and various
species of macroalgae. The tidal range varies between 1-4m
for the majority of the year and the estuary is fully drained
on low spring tides.

B. Image collection

Full details of the data collection can be found in [23]. Fig-
ure 1 displays a very high resolution orthomosaic of Budle Bay
created from the Cefas and EA RPA survey in September 2017
using Agisoft’s MetaShape [43] and SfM. SfM techniques
rely on estimating intrinsic and extrinsic camera parameters
from overlapping imagery [44]. A combination of appropriate
flight planning in terms of altitude and aircraft speed, and the
camera’s field of view are important factors for producing good
quality orthomosaics. For this work, a MicaSense RedEdge3
multispectral camera was used to capture the site. The camera
consisted of 5 narrow band filters for red (655–680 nm),
green (540–580 nm), blue (459–490 nm), red edge (705–730
nm) and near infra-red (800–880 nm) channels at a ground
sampling distance of approximately 8 cm.

The resulting VHR orthomosaic was orthorectified using
GPS logs of camera positions and ground control markers
spread out across the site. This process ensured that the mosaic
was well aligned with respect to the real-world and ecological
features present within the coastal site. The orthomosaic
had 32,647×26,534 pixels in 5 image bands. For ease of
processing, the orthomosaic was split into 24 non-overlapping
tiles of 6000×6000 pixel images with each image containing
geographic information for further processing.

C. In-situ survey and class domain

The accompanying ground survey identified 13 ecological
classes grouped into background sediment, algae, seagrass and

saltmarsh.
Classes defining background sediment were rock, gravel,

mud and sand. In-situ measurements of unvegetated sediment
were predominately in the presence of water and moisture.
However, as parts of the orthomosaic included dry sand, an ex-
tra sediment class was added through photo-interpretation (16
polygons). Two heuristics for delineating dry sand polygons
were defined: first, the spectral reflectance of sand varies with
presence of surface moisture and presents higher reflectance
intensity for patches of dry sand [45]. Therefore, polygons
were delineated by examining bright unvegetated areas in
Figure 1. Second, each generated polygon was cross-checked
with the topographic Digital Surface Model (DSM) to ensure
that patches of dry sand only occur if the surface level was
raised.

Algal classes include microphytobenthos, Enteromorpha sp.
and other macroalgae (inc. Fucus sp.). Lastly, the coastal
vegetation classes were seagrass and saltmarsh. Thus, a total
of seven classes were listed as follows:

• Background sediment: dry sand and other bareground
• Algae: microphytobenthos, Enteromorpha and other

macroalgae (including Fucus)
• Seagrass: Zostera noltii and Zostera angustifolia merged

to a single class
• Other plants: saltmarsh
The in-situ survey recorded 108 geographically referenced

tags with the percentage cover of all listed ecological features
within a 300 mm radius. The percentage cover was estimated
in quadrat sampling fashion [46], [47]. For each in-situ mea-
surement, the class value with maximum percentage cover was
chosen as the label.

D. Class distribution

The class distribution of in-situ measurements was not bal-
anced, which may add cognitive bias and consequently skew
results in human annotations for the experiment [48]. Recog-
nising biases during crowdsourced data collection efforts is
an important step to countering the effect these may impose
on model training and is an enabling factor for algorithmic
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fairness [49]. Therefore, a set of points from the in-situ survey
were combined with extra points added through expert photo-
interpretation (by the lead author) in order to balance the
class distribution for the experiment setup. From the original
set of 108 in-situ points, a balanced set of 53 points was
chosen (the remaining 55 in-situ points were used for FCN
performance evaluation see Section III-B). Then, added points
through photo-interpretation were based on class dependant
heuristics.

First, no extra points for dry sand were added as the set
of photo-interpreted polygons covered a substantial area to
generate enough points for both the experiment and FCN
testing. Other bareground was a sediment class that comprised
wet sediment features such as wet sand and mud. Selected
points presented dark brown or gray color, rugged texture and
low elevation values relative to the rest of the site. Generally,
added points were sampled within a close vicinity of known
in-situ records. But, this was not considered as an important
factor for other bareground points as long as color, texture
and elevation within a 300mm (6×6 image patch) radius was
consistent.

Vegetation classes were split into three sets: algae, seagrass
and saltmarsh. The geo-location of extra points for vegetation
classes was always within the vicinity of known in-situ points
to establish a baseline for comparing colour and texture.

Saltmarsh points were found to be easily identifiable due to
slight elevation changes in the DSM but also because coastal
saltmarsh occupy the interface between land and sea [50].
Therefore, saltmarsh points were most present on estuary bor-
ders. Identifying points for both species of intertidal seagrass
was dependant on the following texture and colour features:
both species occur in mixed beds of waterlogged depressions
between free-draining hummocks dominated by Zostera noltii
and presented sparse leaves with light yellow green or green
colour. [51]–[53].

Microphytobenthos are microscopic organism that inhabit
the upper millimetres of illuminated wet sediments, typically
appearing only as a subtle greenish shading [54]. Identifying
extra points for microphytobenthos was only possible within
very close vicinity of known in-situ points, with colour
(greenish shading) used as the identifier. Extra points for
Enteromorpha sp. had to present bright green colour while
other macroalgae (inc. Fucus), with similar texture to En-
teromorpha sp., was presented in a dark brownish color [55],
[56]. Enteromorpha sp. and other macroalgae were spatially
continuous compared to seagrass, which were more likely to
be sparse. This further aided distinguishing and picking extra
points for these classes. While the vegetation species may be
found in other circumstances (e.g. saltmarsh hummocks can
grow amongst seagrass slightly away from estuary borders),
our intent was to maximise our confidence that our selected
points were classified correctly rather than to select across the
range of possible appearances for each species. Overall, an
extra 54 points were added through expert photo-interpretation
to maintain the class distribution balance. Therefore, the set
of points to be annotated for each participant comprised 119
points whereby 53 points were drawn from the in-situ survey
and an extra 54 were created through photo-interpretation and

the remaining 12 points were randomly selected from dry sand
polygons.

E. Experiment setup
The goal of the experiment was to examine the variability

in annotations from multiple participants with differing back-
grounds in research and expertise with marine habitat map-
ping. Each participant was presented with a unique and random
order of points to be annotated and a small set of labelled
sample images representative of the vegetation classes, to
assist with identification. Figures 2 and 3 respectively display
the set of labelled sample images presented to each participant
and the user interface available to participants during the
experiment. Participants used ArcMap 10.6.1 to visualise and
annotate samples.

Each participant generated 119 annotations with each cell
containing a semantic value corresponding to the class domain
in Section II-D. The participant population was split into three
groups based on their level of expertise, to explore whether
prior knowledge of the study site, research background and/or
previous experience with marine annotation could influence
experimental results. The criteria separating each group were
as follows:

• Group A: expert ecologist or geomorphologist, present
at the in-situ survey and/or had previous experience with
annotating marine biology for the study site.

• Group B: expert ecologist or geomorphologist, but was
not present at the in-situ survey and/or did not have
experience with annotating marine biology for the study
site.

• Group C: not an expert ecologist or geomorphologist,
nor had experience with annotating marine biology from
aerial imagery.

Therefore, annotations were grouped into 3 sets based on the
stated groupings.

To evaluate the inter-observer variability within each group
the Cochran’s Q test was used to investigate the statistical sig-
nificance of differences between K observations on the same n
elements with binomial distribution [57], [58]. For this work,
K series of observations corresponded to participants within
a group and elements for each observation were individual
annotations of participants. Therefore, the null hypothesis was
that annotations for participants within a group were drawn
from one common dichotomous distribution, which would
imply low variability in annotations. However, the Cochran’s
Q test states that each annotation must be dichotomous and
represented as 0 or 1. Since the experimental annotation setup
was a complex multi-class problem, each annotation was
compared with the assigned label (either in-situ or photo-
interpreted) and represented as 1 if correct, otherwise the
annotation was represented as 0.

The Cochran’s Q test statistic with K−1 degrees of freedom
follows a χ2 distribution and is given in Equation 1.

Q =
K(K − 1)

∑
j(Cj − C̄)2

KS −
∑

i R
2
i

(1)

Where, Cj is a column total, Ri is a row total, C̄ is the average
column total and S is the total score, i.e. S =

∑
i Ri =
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Fig. 2. Sample images representative of vegetation classes used in the
analyses.

Fig. 3. User interface for providing participant annotations during the
experiment.

∑
j Cj . In this context, a column total is the sum of correct

annotations for a single participant, and a row total is the sum
of correct annotations for a single point across all participants.

F. Fully Convolutional Neural Networks

CNNs have proven to surpass prior-art techniques in a large
number of different CV applications since the introduction of
AlexNet [10]. The shift from supervised traditional machine
learning algorithms, whereby tailored feature extraction meth-
ods and classifier tuning are replaced with a joint optimisation
of both procedures, is an enabling factor for CNN success.
The feature extraction process consists of repeated convolution
and pooling operations that transform the input image into
hierarchical abstract representations of data. The joint optimi-
sation is achieved by adjusting convolutional kernel weights
and biases through the derivative chain-rule that minimises the
error between network outputs and annotated labels [9].

FCNs [11], [13] are an adaptation of CNNs for semantic
segmentation. The architecture of FCNs can be broken down
into three parts: an encoder, a decoder and a classification
layer. The encoder network is a CNN without the final
fully connected layer, the decoder network applies repeating
upsample and convolution operations on feature maps created
by the encoder network and the classification layer consists
of 1 × 1 convolution kernels and a softmax transfer function

to produce per pixel class probabilities. Figure 4 displays the
architecture used for this work. The overall architecture was
a U-Net [11] and the encoder network is a VGG-13 [60] pre-
trained on ImageNet. However, the weights in the input layer
were randomly initialised and changed to handle a 5-channel
input image.

1) Data pre-processing and training parameters: FCNs
were trained with segmentation maps that contain a one-to-
one mapping of pixels encoded with a semantic value, with
the goal to optimise this mapping [13]. Segmentation maps
were generated using the geographic coordinates stored in
each point and converting real-world coordinates to image-
coordinates. If a point or multiple points resided within
an image tile, then the candidate image was sampled into
256×256 image blocks centered on labelled parts of the image.
For each point, a bounding box consistent to 300 mm was
placed. Figure 5 shows a gallery of sample imagery used for
training FCNs.

The loss was computed by processing a mini-batch of
images with the FCN which result in per-pixel probabilities
P ∈ RB×K×H×W and comparing network outputs with the
corresponding annotated maps Y ∈ ZB×H×W ; where B, K,
H and W are respectively, batch size, number of target classes,
height and width of image. Then, the negative log-likelihood
loss was calculated between segmentation maps and network
probabilities.

Ls(P, Y ) =


0, if Y (x) = −1

−
∑K

k=1 Yk(x) log(Pk(x)),
if Y (x) ̸= −1.

(2)

Where, x ∈ Ω; Ω ⊆ Z2 is a pixel location and Pk(x) is
the probability for the kth channel at pixel location x, with∑K

k′=1 Pk′(x) = 1. For each image, the loss was the sum of
all individual pixel losses using Equation (2) and averaged
according to the number of labelled pixels within Y . Previous
work on the same study site uses semi-supervision methods
to improve the generalisation and performance of FCNs [23].
However, the use of an unsupervised loss term would influence
the analysis of our experimental setup by allowing networks
to adjust weights based on non-labelled parts of the image,
whereas our goal was to determine the effects of aggregated
crowdsourced labels.

During training, each image was augmented with stochastic
transformations that consist of rotations up to 25◦ and horizon-
tal or vertical flips. Each network was trained for 200 epochs
with a batch-size of 12 with Adam optimiser. The optimiser
learning rate was constant and set to 0.001. All FCNNs were
implemented and trained using Pytorch version 10.2.

III. RESULTS

A. Inter-observer experiment results

Table I and Figure 6 give the results of our experiment. The
significance level for each control group was set to 5% and
the degrees of freedom were set according to the number of
participants within a particular group. Therefore, the critical
values according to a χ2 distribution were 9.49, 12.59 and
7.81, for control groups A, B and C respectively.
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Fig. 4. U-Net architecture and loss calculation. The input channels were stacked and passed through the network. The encoder network applies repeated
convolution and max pooling operations to extract feature maps, while the decoder network upsamples these and stacks features from the corresponding layer
in the encoder path. The output is a segmented map, which was compared with the ground-truth mask using crossentropy loss. The computed loss was used
to train the network, through gradient descent optimisation.

Fig. 5. Gallery of images and corresponding ecological target classes. OM—Other macroalgae inc. Fucus; MB—Microphytobenthos; EM—Enteromorpha;
SM—Saltmarsh; SG—Seagrass; DS—Dry sand; OB—Other bareground.

Fig. 6. Confusion matrices for the majority vote annotations for each control group.
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Participants Accuracy (%) Group Cochran Q DoF /α Outcome
1 70.09%
2 76.64% A 2.0842 4 / 0.05 Not reject
3 70.09%
4 72.90%
5 59.81%
6 27.10%
7 63.55% B 78.8 6 / 0.05 Reject
8 61.68%
9 75.70%
10 63.55%
11 42.06% C 14.39 3 / 0.05 Reject
12 55.14%

TABLE I
PARTICIPANT ANNOTATION ACCURACY AND COCHRAN Q TEST STATISTIC

RESULTS. PARTICIPANTS WERE GROUPED BASED ON THEIR LEVEL OF
EXPERTISE AND PRIOR KNOWLEDGE OF THE STUDY SITE AND/OR
WHETHER PARTICIPANTS WERE FAMILIAR WITH AERIAL IMAGERY

ANNOTATION.

The test statistic described in Equation 1 objectively evalu-
ates the statistical significance of differences between K obser-
vations on the same n elements with a binomial distribution.
By comparing each annotation with the known in-situ label
and representing correct annotations as 1 and incorrect as 0,
the Cochran’s Q test evaluates whether annotations, which can
be correct or incorrect, were drawn from the same binomial
distribution. Therefore, the test statistic for a group may not
allow us to reject the null hypothesis, which would imply low
inter-observer variability, but participants within that group
could collectively annotate test points incorrectly. In fact,
participants were more likely to be collectively incorrect than
correct due to different incorrect annotations being represented
as 0. For example, if the class label for a given point was
dry sand but participants annotate the said point as other
bareground and microphytobenthos, then both annotations
were represented as 0 which would contribute to a smaller test
statistic value. Hence, the test statistic was analysed along with
the annotation accuracy metrics so that emphasis was placed
on groups that were collectively correct and also yielded a test
statistic that does not reject the null hypothesis.

B. FCNs results

The metrics to quantify FCN performance were pixel ac-
curacy, precision, recall and F1-score. Pixel accuracy is the
ratio between pixels that were classified correctly and the
total number of labelled pixels in the test set for a given
class. Equation 3 describes each metric, where TP , TN , FP
and FN are respectively: True Positive, True Negative, False
Positive and False Negative pixel classifications.

Our evaluation consisted of two different tests: the first
test shows the effects of training several FCNs on different
versions of labelled data based using majority-vote annotations
from each group. This test evaluated whether errors in the an-
notation experiment were propagated to the FCN performance.
For training the FCNs, we used the same points as in the inter-
observer variability experiment - a set of 53 randomly selected
points from the in-situ survey, an additional 54 points chosen
through expert photo-interpretation and 12 points from dry
sand polygons. The remaining 55 points recorded in-situ were
used for model testing and a further 12 points from dry sand
polygons. Therefore, FCNs were trained on the combined set

P R F1 P R F1
DS 0.982 0.956 0.968 0.982 0.997 0.989
OB 0.721 0.668 0.693 0.921 0.647 0.76
EM 0.433 0.769 0.554 0.517 0.738 0.608
MB 0.972 0.814 0.885 1.0 0.921 0.959
OM 0.99 1.0 0.995 0.982 0.809 0.887
SG 0.579 0.995 0.73 0.672 0.711 0.691
SM 0.928 0.944 0.936 0.918 0.915 0.917

In-situ labels Majority-vote group A
TABLE II

PRECISION, RECALL AND F1 SCORES FOR MODELS TRAINED WITH
IN-SITU LABELS AND FOR MODELS TRAINED WITH MAJORITY-VOTE

ANNOTATIONS FROM GROUP A. DS—DRY SAND; OB—OTHER
BAREGROUND; EM—ENTEROMORPHA; MB—MICROPHYTOBENTOS;

OM—OTHER MACROALGAE; SG—SEAGRASS; SM—SALTMARSH

of 119 points and the remaining 67 points comprised the test
set. For our second test, the combined training set was reduced
to the same initial set of 53 randomly selected in-situ points
and the remaining 66 labels (54 from photo-interpretation
plus 12 points from dry sand polygons) were replaced with
majority-vote annotations from each group. The goal of the
second experiment was to determine whether supplementing
a reduced training set with majority-vote annotations still
achieves comparable results to models trained with in-situ
labels.

Figure 7 shows the results of our first experiment and
Table II provides further insight into class specific performance
on FCNs trained with in-situ data versus FCNs trained with
majority-vote annotations from group A. Figure 8 shows the
results of training FCNs on a reduced dataset of in-situ labels
versus FCNs trained on a combined train set of in-situ labels
and majority-vote annotations. The confusion matrices and
tabled metrics contain the average results of 5 sequential train
and test runs.

pixel accuracy =
TP + TN

TP + FP + TN + FN
(3)

precision =
TP

TP + FP
(4)

recall =
TP

TP + FN
(5)

F1 = 2.× recall × precision

recall + precision
(6)

IV. DISCUSSION

A. nter-observer experiment analysis

From our results, the null hypothesis that participant anno-
tations were drawn from the same distribution was not rejected
only in group A. Moreover, group A also exhibited the highest
mean and lowest variance in accuracy for annotations with
72.43+

−3.106%, which showed that participants in group A
were more likely to be correct than the other two groups. The
pre-exposure of participants in group A to the target classes at
the study site justified the lowest test statistic for participant
annotations within this particular group. Furthermore, the latter
statement can be also supported by examining the majority
vote confusion matrix for group A (top-left matrix in in Figure
6), where the accuracy of the majority vote annotations was
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Fig. 7. Confusion matrices for FCNN models trained using different versions of labelled data. Results for models trained on in-situ labels (top-left) and
majority-vote annotations for group A (top-right), group B (bottom-left) and group C (bottom-right)

81.31% for group A - higher than the highest accuracy of
any participant in the experiment. This illustrates that anno-
tations for participants in group A were better if performed
collectively and as a whole group A were good candidates for
crowdsourcing labels for this particular study site. Given the
low variability in annotations for group A, examining Figure
6 also informed us about the problematic classes to annotate
from aerial imagery. Other bareground was a sediment class
composed of rock, mud and wet sand, and microphytobenthos
typically appearing only as a subtle greenish shading on wet
sediment [54], which could justify why both classes were
mutually misannotated. The same reasoning can be applied
to annotations for Enteromorpha sp. and seagrass, since both
classes exhibit similar colour and texture from an aerial point
of view.

The null hypothesis for participants in group B was rejected
by a significant margin. This could be due to: (1) partici-
pants in this group were not familiar with annotating aerial
imagery for this study site. In IR crowdsourcing, this is also

known as the ambiguity effect whereby missing information
makes annotations appear more difficult and consequently less
attractive [59]. Alternatively, (2) the participant population
contained experts from different disciplines who may have
conflicting biases during annotation. If participants do not
agree with each other, then the test statistic yields a high
value based on whether annotations were correct or not.
Specifically, the second highest overall annotation accuracy
was from participant 9 while the lowest accuracy was from
participant 6, both of whom belong to group B. In fact,
participant 9 is a benthic ecologist with specific knowledge
at identifying intertidal algae, while participant 6 is an expert
in sedimentology. This contrast in discipline is reflected in
annotation and subsequently in the test statistic due to correct
or incorrect annotation on the same test points. The average
accuracy was lower than in group A - 57.50+

−18.16% and the
majority vote confusion matrix paints a similar picture - high
variability and feature ambiguity lead to erroneous labelling,
with an overall normalised majority-vote accuracy of 64.41%
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Fig. 8. Confusion matrices for FCNN models trained using set of in-situ labels (left), and using the same in-situ set supplemented with majority-vote
annotations for groups A, B and C (top-right, bottom-left, bottom-right).

(middle-right matrix in Figure 6).

For participants in the final group C, the null hypothesis
was also rejected, however by a smaller margin than group B.
Again, this implies that participants within this group exhibit
high inter-observer variability. Both the average accuracy and
majority-vote accuracy were the lowest out of all groups,
with 53.5+−10.82 and 60.75% (bottom-left matrix in Figure 6),
which also reflected low confidence in participant annotations.
However, even with lower accuracy, participants within group
C showed less variability in correct/incorrect annotations than
the group B participants. This could be due to participants
in group C not having any prior knowledge of the study
site or with annotating aerial imagery and associating similar
colour and texture based on the sample images in Figure 2
to the same class. The confusion matrix for group C provides
insights into problematic target classes to annotate for subjects
with the least experience. Algae classes, e.g. Enteromorpha

sp. and other macroalgae, were often mutually mislabelled,
while seagrass was often annotated as Enteromorpha sp.. This
implies that vegetation classes were hard to discern from an
aerial point of view with no prior knowledge. Furthermore
and similarly to group A, other bareground, a sediment class
that includes wet sand, was also incorrectly annotated as
microphytobenthos, which again implies that these two classes
are hard to discern from each other.

To sum up, this analysis covers three groups and assessed
the inter-observer variability in participants with different
backgrounds and expertise, while also assessing the accuracy
of each participant, average group accuracy and majority vote
accuracy. Participants in group A showed to have low inter-
observer variability while also correctly annotating 81.31%
of the points collectively. Participants in group B and C
exhibited high inter-observer variability. Examining the cri-
teria separating each group, having discipline expertise, prior
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knowledge of the site and/or previous experience annotating
marine biology play an important role in minimising inter-
observer variability and ensure accurate annotation, and lack
of exposure to these criteria leads to high variability and low
confidence. While, our results also suggested that an expert
ecologist or geomorphologist without in-situ exposure pro-
duced similar overall accuracy annotations as non-experts, this
was influenced by the individual accuracy result of participant
6 since the majority of participants within group B yielded a
higher accuracy in annotations than two of three participants
in group C. Lastly, aggregating labels based on majority-vote
annotations also draw parallels with field of expert frameworks
in low-level image processing and ensemble learning [31],
[32], [62], [63]. These frameworks model high-dimensional
probability distributions by taking the product of several expert
distributions, where each expert works on a low-dimensional
subspace that is relatively easy to model. This is similar and
accurate for annotations in all groups. In general, aggregating
labels showed an increase in accuracy scores of 8.88%, 6.91%
and 7.25%, respectively for groups A, B and C. This alludes
to the specific and complementing nature of different research
backgrounds aiding the accurate annotation.

B. FCNs with different versions of labelled data

The first test in our evaluation considered four FCNs trained
with different versions of the labelled data.

First, FCNs trained with in-situ labels (top-left matrix in
Figure 7) were viewed as the baseline for the remaining
FCNs trained on majority-vote annotations from each group.
The normalised accuracy with in-situ labels was 87.79% and
models exhibited high confidence and accurate predictions for
dry sand, other macroalgae, seagrass and saltmarsh. Other
bareground proved to be a problematic class to model with a
majority of predictions confused with microphytobenthos and
Enteromorpha sp.. This paints a similar picture to majority-
vote annotations for participants in group A (top-left matrix
in Figure 6) whereby microphytobenthos was mislabelled as
other bareground. However, FCNs do not mutually mislabel
seagrass with Enteromorpha spp. which implies that FCNs
were better at discerning these two specific vegetation classes
than participants from group A.

The normalised accuracy for FCNs trained with majority-
vote annotations from participants in group A was 81.99%
(top-right matrix in Figure 7). This particular group exhibited
low inter-observer variability and accurate annotations with
the exception of microphytobenthos and other bareground;
which may be due to both classes being present in wet sand.
Furthermore, Enteromorpha sp. was mutually mislabelled with
seagrass because both classes showed similar colour and
texture from an aerial point of view. The latter bias in anno-
tations from participants in group A was propagated to FCN
performance - where 23.3% of seagrass labels were predicted
as Enteromorpha sp. (top-right in Figure 7). However, exam-
ining Enteromorpha sp. predictions showed that this particular
class was over represented due to erroneous predictions and
confusion with other vegetation classes such as saltmarsh,
seagrass and other macroalgae. Therefore, erroneous labels

from participants in group A caused FCNs not only to mutually
mislabel Enteromorpha sp. with seagrass, but also resulted in
cascading errors for other vegetation classes due to overfitting
for Enteromorpha sp.. Similarly to previous work using aerial
imagery for annotation, this test also showed that empirical
models can compensate certain degrees of erroneous human
annotations [19], [28].

FCNs trained with majority-vote annotations from partic-
ipants in group B yielded a normalised accuracy of 63.72%
(bottom-left matrix in Figure 7). Annotations from participants
in group B exhibited high inter-observer variability, resulting
in low confidence in majority-vote annotations. This was
due to conflicting biases between experts, i.e., ecologists,
geomorphologists and sedimentologists, and the ambiguity
effect through lack of exposure to the in-situ survey or aerial
annotation of marine vegetation species from the study site.
The main trends in human annotations from this group were
other bareground mislabelled as dry sand, and a general
confusion of vegetation classes between Enteromorpha sp.,
other macroalgae and seagrass. These errors were also prop-
agated into FCN performance as 64.1% of other bareground
predictions were mislabelled as dry sand and seagrass was
severely misclassified and predicted as Enteromorpha sp. and
other macroalgae, respectively 60.4% and 35.6% (bottom-left
matrix Figure 7).

The final set of majority-vote labels from group C yielded
a normalised accuracy of 66.36% (bottom-right matrix in
Figure 7). Even though the average and majority-vote accu-
racy for annotations provided by group C were lower than
results yielded by group B - FCNs trained with majority-
vote annotations from subjects in group C yielded a higher
test set accuracy than majority-vote annotations from group
B. Our experiment showed that participants in group C pre-
sented high inter-observer variability but by less of a margin
than group B (Table I in Section III-A). The analysis also
showed that non-expert participants in group C exhibited low
confidence predictions for other bareground with 31.8% of
points labelled as microphytobenthos (bottom-left matrix in
Figure 6). Similarly to participants in group B, they exhibited
a general confusion in annotations for vegetation classes - in
particular, seagrass and Enteromorpha sp. were often mutually
misannotated. Again, these errors in human annotations were
propagated to FCN errors, e.g. mutual misclassifications for
seagrass and Enteromorpha sp. classes.

Our analysis supports the hypothesis that errors in crowd-
sourced human annotation were propagated into the FCN per-
formance. All groups had a similar trend whereby annotations
for microphytobenthos were mislabelled with wet sediment
classes. This bias was propagated into all models trained with
majority-vote annotations where other bareground was either
under represented (bottom-left matrix in Figure 7), over repre-
sented (bottom-right matrix in Figure 7) or confused with dry
sand (top-right matrix in Figure 7). The mutual mislabelling of
Enteromorpha sp. and seagrass points for participants in group
A caused the FCN to misclassify all vegetation classes as
Enteromorpha sp.. This showed that poor annotations not only
propagated errors into the FCN performance, but could also
cause cascading errors with classes that exhibit similar colour
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and texture from an aerial point of view. This stresses the
need for good quality labels as FCNs optimise their weights
and biases based on a non-linear one-to-one mappings between
image pixels and labelled maps [13]. However, our results also
showed that FCNs trained with low inter-observer variability
and high confidence annotations, as shown with subjects in
group A, can demonstrate comparable performance to the
FCNs trained with in-situ labels. Conversely, training with
annotations from groups B or C, which manifested high inter-
observer variability and higher rates of erroneous labelling,
severely degraded FCN performance.

C. FCNs with balanced in-situ only versus crowdsourced
supplemented labelled data

The second and final test in our evaluation considered two
FCNs. One model was trained with only the balanced in-situ
labels. Therefore, the training set was the initial balanced
set of 53 randomly points with in-situ labels (see Section
II-C) and the labels for the remaining 66 photo-interpreted
points were replaced with the semantic value of majority-vote
crowdsourced annotations.

For comparison, we considered a FCN trained with just the
balanced set of 53 in-situ labels which yielded a normalised
test set accuracy of 82.9% (top-left matrix in Figure 8). The
accuracy was lower than FCNs trained with the combined
full training set of 53 in-situ labels and 66 photo-interpreted
labels (top-left Figure 7). This was expected as FCNs learn
hierarchical representations of data through gradient descent
[9], and if FCN kernel weight and bias adjustments were
based on fewer image examples, then model performance and
generalisation also degrades. The main affected and under
represented class was seagrass where the accuracy dropped
from 99.5% (top-left matrix in Figure 7) to 43.6% (top-left
matrix in Figure 8).

The normalised accuracy for FCNs trained with the in-situ
set supplemented with the labels from the participants in group
A was 89.6% (top-right matrix in Figure 8) which was also
the highest accuracy of all FCNs in our analysis. This setting
improved the test set accuracy compared to the model trained
with just in-situ labels. This was due to two reasons: first,
supplementing the dataset allows for more unique samples
to be incorporated into the training set, and second, the
supplemented crowdsourced portion of the training set from
group A exhibited low inter-observer variability and accurate
annotations. Furthermore, this particular result provided an
interesting comparison with the FCN trained on in-situ plus
photo-interpreted labels (the top-left matrix in Figure 7).
Both FCNs yielded satisfactory results which confirms that
aggregated labels from multiple annotators within group A
were as good as the efforts of a single expert annotator
(lead author). This comparison also showed that in-situ efforts
can be combined successfully with aerial imagery annotation,
which could reduce costs and labour from in-situ surveys.

The accuracy for FCNs trained using in-situ labels supple-
mented with the labels from participants in groups B and C
were respectively 73.34% and 68.7% (bottom-left and bottom-
right matrices in Figure 8). Our analysis of both datasets was

performed jointly as FCNs trained in both settings paint a
similar picture. Both sets of models failed to achieve better
results than models trained with just the balanced set of in-
situ labels (top-left in Figure 8), which again stresses the
need for good quality crowdsourced labels. FCNs trained with
majority-vote annotations from participants in group B over
represented seagrass and also misclassified all other macroal-
gae pixels, mostly as seagrass (bottom-left matrix in Figure 8).
A similar outcome happened for models supplemented with
the labels provided by group C - again all other macroalgae
class instances are misclassified, this time mostly as saltmarsh
(bottom-left matrix in Figure 8). In both settings this would
be due to poor annotation performance from these two groups
(see Fig. 6).

V. CONCLUSION

This work analysed the feasibility of using crowdsourced
annotations on a complex multi-class problem domain that
includes intertidal coastal species, such as seagrass, saltmarsh
and macro-algae.

To assess the quality of crowdsourced annotations, an
inter-observer variability experiment was performed with a
population of 12 participants that were split into 3 sets of
groups. The criterias for each group were based on discipline
expertise and previous experience with either annotating aerial
imagery for this study site or marine biology in general. The
assessment was possible by analysing the statistical differences
in crowdsourced annotations using the Cochran’s Q test.
Furthermore, the annotation accuracy and a per-class analysis
was used to assess for any potential observation biases.

The results for our experiment show that discipline experts
familiar with the study site were more accurate than experts
with no prior knowledge of the site and non-experts. This
confirms that discipline expertise, prior knowledge of the site
and/or previous experience annotating marine biology play an
important role in minimising inter-observer variability and en-
suring accurate annotation, and that lack of exposure to either
these criteria leads to high variability and low confidence.
Furthermore, the results of our analysis also point to a small
performance gain between annotators with expert discipline
knowledge versus annotators with no previous experience in
marine biology annotation or domain expertise. But, this may
be skewed due to annotations from participant 6.

The experiment stressed the difficulty of labelling a com-
plex multi-class marine biology problem and therefore, we
conclude that pre-exposure to the study site is important
for intertidal classification if good quality labels are to be
guaranteed and that in-situ groundtruthing may be unavoidable
to prevent confusion by site experts. For instance, the general
confusion between microphytobenthos with other bareground
and Enteromorpha sp. with seagrass (Sections III-A, IV-B and
IV-C).

For the experiment with FCNs trained with crowdsourced
annotations, two scenarios were considered: the first was a
direct comparison of FCNs trained with majority-vote crowd-
sourced annotation from each participant group with FCNs
trained with transcribed in-situ labels. This showed that an-
notations that exhibit low inter-observer variability and high
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confidence annotations, as shown with subjects in group A,
demonstrate comparable performance to the FCNs trained
with in-situ labels. Conversely, training with annotations from
groups B or C, which manifested high inter-observer variabil-
ity and higher rates of erroneous labelling, severely degraded
FCN performance. Therefore, we conclude that errors in
crowdsourced human annotations were propagated into FCN
performance. The second experiment considered two FCNs:
one whereby the training set was the initial balanced set of
53 points with transcribed in-situ labels (see Section II-D),
and the other where the training set was the initial set of 53
points with in-situ labels supplemented with majority-vote an-
notations from each participant group. In this scenario, FCNs
supplemented with majority-vote annotations from participant
group A reported a normalised accuracy of 89.6%, which was
also the highest accuracy of all FCNs in our analysis. This
showed that in-situ efforts can be combined successfully with
crowdsourced aerial imagery annotation, which could reduce
costs and labour from in-situ surveys, given that crowdsourced
labels are consistent and accurate. Similarly to the previous
scenario, FCNs supplemented with majority-vote annotations
from participant groups B and C severely degraded FCN
performance, which again stresses the need for good quality
crowdsourced labels.

However, this work does not fully exclude in-situ surveying
but merely affirms that a good quality labels can be found in-
situ but a healthy quantity of labels can also be supplemented
from aerial imagery which would reduce in-situ efforts and
costs.
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