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Comparison of surveillance systems for 

monitoring COVID-19 in England: Lessons for 

disease surveillance

Summary 

Background 
During the COVID-19 pandemic, cases were tracked using multiple surveillance systems. 
Some systems were completely novel and others incorporated multiple data streams to 
estimate case incidence and/or prevalence.  How well these different surveillance systems 
worked as epidemic indicators is unclear. This has implications for future disease 
surveillance and outbreak management. 

Methods  

Data from twelve surveillance systems used to monitor the COVID-19 in England were 
extracted (Jan20-Nov21). These were integrated as daily time-series and comparisons 
undertaken using Spearman correlation between candidate alternatives and the most timely 
(updated daily, clinical case register) and the least-biased (from comprehensive household 
sampling) COVID-19 epidemic indicators, with comparisons focused on the period Sep20-
Nov21. 

Findings 

Spearman statistic correlations during the full focus period between least-biased indicator 
(from household surveys) and other epidemic indicator time series were 0.94 (clinical cases, 
the most timely indicator), 0.92 (self-report case status on a digital App), 0.67 (emergency 
department attendances), 0.64 (NHS111 website visits), 0.63 (wastewater concentrations), 
0.60 (admissions to hospital with +COVID-19 status), 0.45 (NHS111 calls), 0.08 (Google 
search rank for ‘covid’), -0.04 (consultations with general practitioners) and -0.37 (Google 
search rank for ‘coronavirus’).  Time lags (-14 to +14 days) did not markedly improve these 
rho statistics.  Clinical cases (the most timely indicator) captured a more consistent 
proportion of cases than the self-report digital App did.  

Interpretation 

A suite of monitoring systems is useful.  The household-survey system was a most 
comprehensive and least-biased epidemic monitor but not very timely.   Data from 
laboratory testing, self-reporting digital App and attendances to emergency departments 
were comparatively useful, fairly accurate and timely epidemic trackers. 
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Research in context 

Evidence before this study 

We searched PubMed on Jun 14, 2023, using search term “(("SARS-CoV-2" or "COVID-19") 
and "surveillance")[Title/Abstract] followed by forward and backward citation searches.  71 
articles were relevant,  11 of these were UK-specific, most others came from high-income 
countries.  Correlations with clinical case data from another source were determined for 57 
studies about concentration of virus in wastewater samples, 10 studies about Internet 
search phrases, 2 studies with estimates from self-reporting (mobile phone) applications, 
and 2 studies with data generated by different population testing frameworks.  Nearly all of 
these studies compared only two surveillance datasets with each other, maximum 4 
different time series together, as epidemic indicators, typically with many adjustments for 
socio-demographic or other confounders, and sometimes for specific sampling sites (in case 
of wastewater samples).  Most time series correlations were assessed using regression 
models or more sophisticated statistical analysis, often from monitoring over relatively short 
time periods, sometimes adjusting for individual wastewater catchments and allowing for 
many confounders. 

Added value of this study 
We consider epidemic monitoring suitable for an emerging data context for 12 surveillance 
systems simultaneously.  We calculated relatively unadjusted correlations to monitor the 
Covid-19 epidemic in England in 2020-2021, comparing 9 alternatives to 3 nominated best 
(least biased or most timely) epidemic indicators.  We wanted relatively unadjusted (for 
confounders) data, because this is how epidemic monitors tend to have to be used in daily 
decision making.  The 9 datasets considered for potentially acceptably timely epidemic 
monitoring were cases suggested by a self-reporting application, syndromic surveillance 
datasets, wastewater monitoring, and Internet searches for relevant words.  Integrating 
recent population survey estimates with data from a daily self-reporting symptom 
monitoring application was an effective approach to epidemic monitoring.  Unadjusted data 
from wastewater sampling, Internet searches and health advice-seeking (rather than 
treatment seeking) activity did not provide good quality epidemic indicators. 

Implications of all the available evidence 
No ideal monitoring system (both very accurate and very timely) existed.  Compared to the 
most timely or least biased estimates of prevalence and incidence, in England in 2020-2021, 
laboratory-confirmed case counts and emergency department attendances were the most 
timely and also independent indicators of concurrent epidemic status.  
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Introduction 

Surveillance systems are an essential tool in the control of infectious diseases 1.  They were 

important during the COVID-19 pandemic 2.  COVID-19 surveillance was essential for 

monitoring trends in COVID-19 morbidity and mortality, identifying impacts on high-risk 

groups, informing modelling studies, targeting the delivery of health services and measuring 

the impact of vaccination and non-pharmaceutical interventions 3. However, comparing 

different surveillance systems can be challenging due to their diverse characteristics.  Even 

within a single country like the UK, several different surveillance systems were 

simultaneously in operation.  It is unclear which systems gave the best balance of timely and 

reliable information about the COVID-19 pandemic progress.  It is therefore prudent to 

evaluate the utility of these systems and how well they tracked COVID-19 incidence, 

particularly for decision-makers. Understanding the strengths and weaknesses of different 

surveillance systems is key to preparedness for future epidemics. 

This is a retrospective observational study of COVID-19 surveillance systems (SS) in England, 

UK.  Assessment of each data available via each surveillance system was undertaken with 

focus on potential sensitivity i.e., especially monitoring rises or falls in the number of cases 

over time.  In addition to sensitivity, we discuss practical challenges in utilising specific SS for 

COVID-19.  We also consider other aspects of how surveillance systems should be evaluated, 

especially with respect to timeliness and comprehensiveness 4.  Timely information is useful 

for having early understanding epidemic developments and to inform decision makers 

about when to make specific decisions with regard to epidemic control 5.  

Our approach was to use two ‘best standard’ community-based COVID-19 surveillance 

datasets to compare to case counts suggested by other available SS that had apparent 

potential to indicate COVID-19 incidence and/or prevalence.  We describe a systematic, 

replicable and consistent set of procedures for comparing case estimates that could be 

derived from these different SS, and implemented without sophisticated calibration or data 

adjustments. We used data in an unadjusted form (as published), because this unadjusted 

analysis is exactly what decision makers usually have to do with emerging data.  We 
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examined correlations for both the full monitoring period and sub-periods.  Finally, we discuss 

the utility of different systems for future outbreaks and factors influencing their effectiveness. 

Methods 

Best standard surveillance data 

We judged that the best standard datasets in use for COVID-19 epidemic monitoring in 

2020-2022 were from two sources.  Comprehensive and least-biased case counts were from 

modelled estimates of new case counts (incidence) and concurrently infectious cases 

(prevalence), as generated by the Office for National Statistics (ONS) from data collected in 

their Coronavirus Infection Survey for England 6 (ONSCISE).  The ONSCISE estimates were for 

swab dates.  The estimates were typically updated weekly and retrospectively using post-

stratification adjustments 7.  The ONSCISE was designed to detect COVID-19 infections 

through a nationally representative cohort sample of the entire population from May 2020 

onwards, to generate estimates of both incidence (new case count) and prevalence 

(estimates of total concurrently infectious cases).  The ONSCISE collected about 150,000 

swab samples every two weeks 6.  By swabbing persons chosen at random, the ONSCISE had 

a high probability of detecting asymptomatic cases, and was otherwise designed to generate 

unbiased estimates of prevalence and incidence at daily or weekly periods. This system was 

also fairly representative as it was a random sample of the population aged 2 years and 

older and was adjusted for demographic variation between sampled and general population 

8. This system had high stability (data collection did not change and models only changed

slightly) throughout the period of this analysis. However, given the time taken to collect, 

analyse and publish its estimates (10-24 day delays between swab collection and reporting 

date were typical), the ONS surveillance lacked timeliness.   

The UK government also collated combined case counts from people testing positive for 

coronavirus under laboratory testing frameworks denoted as Pillar 1 (tests for those with 

occupational risk or clinical need) and Pillar 2 (tests for the general population).  This was 

used as the second best standard dataset. Pillar 1 & 2 (P12) swab results 9,10 were mostly 

available within one day after sample collection  11, and thus were very timely and as well as 

the most comprehensive clinical case data available. We refer to P12 data as the most 

timely epidemic indicator, although biased by under-sampling of asymptomatic cases.  By 
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“epidemic indicator”, we mean a metric that indicates change in case counts.  The dates we 

use for P12 case counts is for swab date not date that the information was published. 

Comparator surveillance systems/datasets 

Many other surveillance datasets were potential epidemic indicators, using methods other 

than counting known cases.  Counts of persons newly admitted to NHS hospitals with 

COVID-19 were available publicly on a government website: coronavirus.data.gov.uk.   

Syndromic surveillance data with ‘COVID-19-like' indicators (i.e. patients presenting to a 

NHS health service with symptoms likely to be caused by COVID-19) were accessed from the 

UK Health Security Agency (UKHSA) real-time syndromic surveillance service, which 

routinely monitors national syndromic SS to respond to a broad range of public health 

issues.  Syndromic surveillance data comprised NHS 111 calls and online assessments, 

emergency department (EDSS) attendances and general practitioner (GP) consultations 12.  

COVID-19 syndromic indicators were newly developed within existing syndromic 

surveillance systems early during the COVID-19 pandemic 13.   

A further source of COVID-19 surveillance data was UKHSA wastewater sampling, specifically 

counts of SARs-CoV-2 viral genome copies in wastewater samples in most areas of England 

14. Wastewater samples had the merit that they should capture samples from

asymptomatic cases.    In addition, we made comparisons with three other potential 

surveillance datasets, all available in the public domain, as concurrent candidates for 

tracking the UK COVID-19 epidemic:  ZoeApp incidence estimates 15 as they were originally 

published, and two search terms (“covid” and “coronavirus”) from Google Trends 16.  

ZoeApp was a nutritional health and wellness programme in development by early 2020 

which was adapted to support symptom tracking during the pandemic.  ZoeApp relied on 

users entering daily information about possible COVID-19 symptoms.  ZoeApp published 

estimates of community and incidence prevalence that were derived from models that 

incorporated what percentage of their App users had reported new case status, with 

adjustments for demographic imbalances. The precise algorithm for how ZoeApp generated 

its incidence estimates does not appear to be published, but has been described by the App 

developers as based in part by combining ZoeApp data with historical ONS estimates  15 17.  

That frequency of relevant search phrases on Internet search engines (such as Google) 
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might indicate underlying community prevalence or incidence of infectious diseases has 

been explored previously 18.   

The 3 “best” datasets and the 9 other candidate COVID-19 SS and their derived datasets that 

are compared in this study are described in Table 1.  All SS and datasets cover the 

geographical area of England only.   Table S1 in the supplementary material describes the 

population coverage for each of the best standard and candidate alternative systems. By 

timeliness in Table 1, we mean the most typical delay after infection was detected until data 

publication.  We note that some SS and datasets were not initially as comprehensive (at 

their start date) as they became by the start of the monitoring period (1 Sept 2020).  For 

instance, Pillar 2 testing did not start until late May 2020, while wastewater sampling only 

started in July 2020 and over time coverage gradually increased.  In contrast, UKHSA 

syndromic surveillance systems are in operation daily for routine all-hazard surveillance and 

were operational for COVID-19-like surveillance from March 2020.    Data cleaning, 

additional processing and specific source details are described in Supplementary material. 

 

Monitoring period 

Narratively, we compare the datasets from earliest date of joint existence up to and 

including 30 November 2021.  This end point was chosen because it precedes the 

emergence of the Omicron variant.   The incubation period 19 , duration of shedding 20 and 

risk of reinfection with Omicron 21 all changed, compared to previous COVID-19 variants.  

Our quantitative analysis focuses on comparisons in the period September 1st 2020 to 

November 30th 2021.  1st September 2020 was deemed a plausible first date by when each 

of the SS selected for this study had likely established routine and standardised data 

collection and reporting procedures. 
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Table 1.  Surveillance systems, derived dataset descriptions 

Short 
name 

Description Primary purpose of dataset Types of cases most likely to be 
detected or indicated 

Timeliness Start 
date 

Best 
standard 
datasets 

P12  9,10 Pillar 1 & 2 case 
counts 

Epidemic control and monitoring Persons compliant with policy, having 
symptoms, medical need, &/or 
exposure 

1-3 days 30 Jan 
2020 

ONSincid  8 ONSCISE incidence 
estimates 

Estimate new cases, epidemic 
control 

All population with new infections 17-24 
days 

11 May 
2020 

ONSprev  8 ONSCISE prevalence 
estimates 

Estimate currently infectious cases, 
epidemic control 

All population likely to be infectious 
and/or ill 

10-17 
days 

26 Apr 
2020 

HospAdm New admissions to 
hospital 

Epidemic monitoring and health care 
usage 

More ill and/or vulnerable cases 1 day 20 Mar 
2020 

EDSS 12 Emergency 
Department 
attendances 

Syndromic surveillance, health care 
usage 

Patients with symptoms suggestive of 
COVID-19 infection who attended 
emergency department; possibly more 
severe cases 

2 days 1 Mar 
2020 

GPIH12 Consultations with 
GPs in usual hours 

Syndromic surveillance, information 
seeking, care needs and care seeking 

Patients with symptoms suggestive of 
COVID-19 infection who consulted a GP 

1 day 4 Feb 
2020 

Comparator 
surveillance 
systems 
/datasets 

111 calls12 NHS 111 telephone 
calls 

Syndromic surveillance, health care 
information seeking and system 
usage 

Patients with symptoms suggestive of 
COVID-19 infection who consulted 
NHS111 via phone 

1 day 16 Mar 
2020 

111 web12 NHS 111 online 
assessments 

Syndromic surveillance, health care 
information seeking and system 
usage 

Patients with symptoms suggestive of 
COVID-19 infection who consulted 
NHS111 via website 

1 day 30 Mar 
2020 

GTcov 18 Google Trends search 
rank for “covid” 

Monitor information seeking; user 
interests; commercial potential 

Individuals who use Internet search 
engines 

< 7 days < 1 Jan 
2020 

GTcor 18 Google Trends search 
rank for “coronavirus” 

Monitor information seeking; user 
interests; commercial potential 

Individuals who use Internet search 
engines 

< 7 days < 1 Jan 
2020 
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 WW 14 Wastewater  Passive epidemic monitoring All cases in monitored areas 
 

≥ 1 day 15 Jul 
2020 

 ZoeApp   15  
17 

Zoe symptom tracker  
application 

To monitor symptoms and disease 

progress associated with COVID-19 
infection 

Individuals who engaged with App  2 days 5 Jul 
2020 
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Analysis: Quantitative comparisons 

We (the authors) mostly treat ONSCISE incidence and prevalence as though they are 

interchangeable epidemic measures and that it is valid to compare them both with most of 

the other candidate datasets we describe.  In actuality, two datasets (Zoe and P12) indicated 

incidence, one dataset (wastewater) indicated prevalence and all other datasets were 

imperfect indicators of incidence and prevalence.  The other systems  indicate prevalence or 

incidence because they can count the same patients in the same episode of illness multiple 

times (e.g.  multiple calls for NHS health advice made by the same individual on one day).  

We have observed that many surveillance studies have not distinguished whether a system 

was measuring incidence and prevalence.  For our study to have relevance to real world 

practice, we felt obliged to also blur the distinction between incidence and prevalence thus 

mimicking common practices applied in other surveillance system studies. 

Otherwise, for comparisons, the ONSCISE estimates of incidence and prevalence, as well as 

the P12 case counts were used as the ‘best standards’.  Comparator datasets were 

compared to the likely best standards in daily time series.  P12 was also compared to the 

ONSCISE estimates.  We applied statistical comparisons between these time series that 

were simple and replicable.  Spearman rho correlation statistics were calculated for the 

entire comparison period, as well as on a moving basis for 60 day periods: e.g., the value for 

30 January 2021 describes time series correlation over the 60 day period from 1 January 

2021 to 1 March 2021 inclusive.  The 60-day period correlations were calculated to see if the 

time series correlations varied over a period of time that was neither very short nor the full 

period.  We chose 60 day moving windows over other possible time divisions that might be 

meaningful for ascertainment, such as predominant COVID-19 variants, predominant 

symptom severity, public concern to seek treatment, likely vaccination status or data 

completeness because of the difficulty in consistently defining start and end dates for each 

of these conditions.  Although we believe that the reporting systems were reasonably stable 

1 September 2020 to 30 November 2021, there were still many reasons why ascertainment 

might vary over time, such as changes in criteria that made a person eligible for free testing 

22, or if severity of disease declined after vaccination programmes which also may have 

reduced index of suspicion 23 and thus motivation to obtain tests.  We report the median 

and interquartile range for the all-period and moving 60 day window correlations.  A non-
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parametric correlation test (Spearman rho) was appropriate because the data had strongly 

nonparametric distributions.   

The (whole period) correlation analysis was replicated but with +/- 14 day lags (the values 

from best standard(s) were kept at original date, but the comparator data were moved by 

+/- 14 days).  Ascertainment ratios were calculated as the candidate alternative case counts 

divided by the best estimates of actual cases (P12 or ONSCISE prevalence / ONS incidence).  

We only calculated ascertainment ratios for the hospital admissions, syndromic surveillance 

and ZoeApp datasets; the search ranks and wastewater viral count data were not suitable to 

compare to an estimate of case counts as denominator.  We report the results with respect 

to a conventional significance indicator (p-value, significance threshold set at p < 0.05), but 

we note that correlation p-values must be carefully interpreted; they can be highly over-

simplistic in describing closeness of variation between time series 24.   This is why we also 

report the coefficient of variation 25 (for the ascertainment ratios) as an alternative to 

Spearman rho with p-values.  We present the ascertainment ratios as means (for all daily 

data) and coefficient of variation (CoV, standard deviation divided by the mean) in 

monitoring period.  CoV can indicate consistency of a relationship.   

The funder had no role in data collection, analysis, interpretation, writing of the manuscript 

or the decision to submit. 

Results 

Time series 

Supplementary Figure S1 shows plots of the best standard times series (columns) against 

each candidate alternative (rows), with no time lags. All plots were designed to plot the 

candidate on left axis, and each best standard on right axis, and coincidence at bottom 

(value=0) and at their relative peaks (which varied).  For these 30 illustrations (but not for 

actual comparisons and analysis), all time series were smoothed (7 day moving average on 

central date) except the ONSCISE incidence and prevalence which were already modelled 

data.   
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Full period correlations 

Table 2 shows correlation (Spearman rho with p-value) between all candidate best standard 

and candidate alternative surveillance datasets over the entire monitoring period: 1 Sept 

2020 to 30 Nov 2021 inclusive.  Correlations are colour coded to make the table quick to 

interpret, with respect to correlation value: green 95% confidence interval ≥  0.7, orange = 

95% confidence interval below 0; grey = 95% confidence interval includes 0; black = 

significant (95% CI > 0) but < 0.7.  Most correlations were significant at p < 0.05, meaning 

there was evidence of correlation; search rank for ‘covid’ is a noticeable exception with ONS 

incidence or prevalence.  ZoeApp and COVID-19 attendances to ED had the highest 

correlation with the best standard data.  Search ranks for “coronavirus” had a negative 

relationship, which possibly reflects changes in nomenclature preference (the term ‘covid’ 

came to be preferred) rather than evidencing lack of interest concurrent with high COVID-19 

prevalence in community).  

Moving 60 day windows 

When moving 60 day windows are used to determine between time series correlation,  

Table 3 shows median values achieved for correlation (Spearman rho) and IQR of the central 

estimates of Spearman rho, comparing candidate and best standards.  In these comparisons, 

the most consistently high correlations were observed for the ZoeApp with ONSCISE, with 

hospital admissions, Pillar 1 & 2 and ED attendances also highly correlated (lower boundary 

of 95% confidence interval for rho > 0.70) with the ONSCISE.  Wastewater data were on 

average positively correlated overall with ONSCISE incidence, but also had great variability 

(IQR -.26 to 0.79).   
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P12 rho 1 

ci (1, 1) 

ONSincid rho 0.943 1 

ci (0.92, 0.95) (1, 1) 

ONSprev rho 0.929 0.929 1 

ci (0.91, 0.95) (0.91, 0.94) (1, 1) 

HospAdm rho 0.656 0.601 0.754 1 

ci (0.59, 0.72) (0.52, 0.66) (0.69, 0.80) (1, 1) 

EDSS rho 0.748 0.673 0.813 0.932 1 

ci (0.69, 0.80) (0.60, 0.73) (0.76, 0.86) (0.91, 0.95) (1, 1) 

GPIH rho 0.141 -0.036 0.032 0.256 0.232 1 

ci (0.06, 0.23) (-0.12, 0.05) (-0.06, 0.12) (0.16, 0.35) (0.14, 0.32) (1, 1) 

111 calls rho 0.464 0.445 0.533 0.566 0.528 0.253 1 

ci (0.38, 0.54) (0.36, 0.52) (0.45, 0.61) (0.49, 0.64) (0.44, 0.60) (0.16, 0.35) (1, 1) 

111 web rho 0.601 0.643 0.647 0.368 0.458 -0.120 0.163 1 

ci (0.56, 0.64) (0.60, 0.68) (0.61, 0.68) (0.29, 0.43) (0.40, 0.51) (-0.20, -0.03) (0.06, 0.25) (1, 1) 

GTcor rho -0.296 -0.374 -0.235 0.219 0.125 0.435 0.452 -0.475 1 

ci (-0.39, -0.20) (-0.46, -0.28) (-0.33, -0.13) (0.12, 0.31) (0.03, 0.22) (0.34, 0.52) (0.35, 0.53) (-0.55, -0.39) (1, 1) 

GTCov rho 0.117 0.079 0.084 0.133 0.188 0.149 0.179 -0.207 0.429 1 

ci (0.01, 0.21) (-0.03, 0.18) (-0.01, 0.18) (0.03, 0.23) (0.08, 0.28) (0.05, 0.24) (0.08, 0.27) (-0.29, -0.12) (0.34, 0.51) (1, 1) 

WW rho 0.658 0.627 0.654 0.674 0.750 0.167 0.517 0.335 0.110 0.149 1 

ci (0.59, 0.72) (0.56, 0.69) (0.59, 0.71) (0.61, 0.73) (0.70, 0.79) (0.07, 0.26) (0.43, 0.59) (0.25, 0.40) (-0.02, 0.19) (0.05, 0.23) (1, 1) 

ZoeApp rho 0.907 0.921 0.920 0.560 0.644 -0.052 0.459 0.606 -0.398 -0.045 0.630 1 

ci (0.88, 0.93) (0.90, 0.94) (0.90, 0.93) (0.48, 0.63) (0.56, 0.71) (-0.14, 0.03) (0.38, 0.54) (0.55, 0.65) (-0.49, -0.29) (-0.14, 0.04) (0.55, 0.69) (1, 1) 

P12 ONSincid ONSprev HospAdm EDSS GPIH 111 calls 111 web GTcor GTCov WW ZoeApp 

Table 2.  Cross correlations between surveillance datasets. rho = Spearman rho estimate, possible range is -1 to +1, ci = 95% confidence interval for rho.  Font colours with 
respect to correlation: Green: 95% confidence interval ≥ 0.7; black = 95% confidence interval is > 0 but lower bound is > 0.70;  grey = 95% confidence interval crosses zero; 
orange 95% confidence interval < 0.  See Table 1 for surveillance set descriptions. 



13 | P a g e

Figure S2 in the Supplementary Material illustrates correlation between best standards and 

alternatives with respect to moving 60 day periods: the correlation plotted is for the middle 

most date in each period.  Note that the vertical scale is consistent across rows (for each 

alternative dataset) but vertical scale is not consistent between columns.  We varied vertical 

scales between systems to give the most information visually.  No system had a constantly 

high correlation with ONSCISE.  Pillar 1 &2 and ZoeApp had the highest average correlation, 

so were closest to reliably reflecting the ONSCISE estimates in these 60 day moving 

windows.  GPIH and Google search terms were least likely to correlate with the ONSCISE in 

moving windows. 

Ascertainment ratio 

Table 4 gives ascertainment ratios: case counts indicated by other systems compared to the 

P12, ONSCISE incidence or prevalence were evidenced in the alternative daily case count 

data.  Results are shown as mean ascertainment ratio per day and coefficient of variation 

(CoV: standard deviation divided by the mean) in monitoring period.  CoV was lowest for 

P12 compared with ONSCISE data.  The ZoeApp CoVs were next lowest, around 0.43 

compared to P12 and either ONS dataset.  The EDSS and hospital admissions datasets also 

provided relatively lower CoV values (respectively ≤ 0.63 and ≤ 0.77).  In contrast, the GP in 

hours data had least consistent relationship (highest CoV values, ~1.60) with P12 or the 

ONSCISE datasets.  Figure S4 in the Supplementary Material shows the variation in the 

ZoeApp ascertainment ratio against ONSCISE incidence, which ranged from 0.22 to 1.47, 

mean 0.65.  The P12 ascertainment ratio was lower (0.49) than ZoeApp, with a range that 

was narrower (0.25 to 0.90), making P12 more consistent.   

Leads or lags between datasets 

Figure S3 in the Supplementary Material indicates the median (black line) full monitoring 

period correlation values achieved with +/- 14 day lead/lags for each candidate dataset, 

compared to each best standard, with shaded 95% confidence intervals around the 

medians.  The x-axis shows the lead or lag (-14 to +14 days).  Zigzag patterns appear where 

both datasets had day-of-week effects (when more cases reported on some days than 

others), especially evident for Pillar 1 & 2 with each of GP consultations, hospital 

admissions, NHS111 calls and wastewater.  Again, the vertical scales are varied between 
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rows to give maximum visual information.  Pillar 1 & 2 and ZoeApp estimates stayed closest 

to predicting ONSCISE allowing for possible lags (when the candidate might predict past 

positivity) or leads (when the candidate dataset might predict future positivity).  

Wastewater and the ZoeApp were particularly good as leads (anticipator) of total 

prevalence. Google search terms and GP in hours consultations were the poorest lead 

indicators of Pillar 1 & 2 or ONS prevalence/incidence. 

Table 3.  Correlation between candidates and best standard databases, in 60 day moving 
windows, median and IQR, centre-most dates are 1 Oct 2020 to 31 Oct 2021 inclusive 

Best standard datasets 

Comparator dataset 
P12 ONS incid ONS prev 

P12 1.0 (1, 1) 0.69 (0.54, 0.84) 0.79 (0.64, 0.90) 
HospAdm 0.73 (0.48, 0.67) 0.62 (0.16, 0.81) 0.82 (0.60, 0.75) 
EDSS 0.75 (0.56, 0.90) 0.53 (0.19, 0.84) 0.89 (0.73, 0.96) 
GPIH 0.54 (0.35, 0.64) 0.11 (-0.02, 0.22) 0.15 (-0.01, 0.23) 
111 calls 0.30 (0.01, 0.74) 0.43 (0.22, 0.61) 0.39 (0.15, 0.75) 
111 web 0.10 (-0.20, 0.41) 0.22 (-0.06, 0.44) 0.16 (-0.30, 0.85) 
GTcor 0.18 (-0.11, 0.81) 0.24 (-0.36, 0.74) 0.47 (0.01, 0.84) 
GTcov 0.37 (0.04, 0.69) 0.40 (0.03, 0.66) 0.41 (0.05, 0.70) 
Wastewater 0.38 (-0.21, 0.81) 0.55 (-0.26, 0.79) 0.48 (0.07, 0.94) 
ZoeApp 0.75 (0.49, 0.88) 0.74 (0.52, 0.89) 0.94 (0.81, 1.00) 

Notes: median rho (Q1, Q3).  

Table 4. Full monitoring period, daily ascertainment ratios, candidates / best standards 

Best standard datasets 

Comparator dataset 
P12 counts ONS incid ONS prev 

P12 1.0 (0) 0.49 (0.30) 0.04 (0.30) 
HospAdm 0.05 (0.67) 0.03 (0.77) 0.00 (0.51) 
EDSS 0.02 (0.55) 0.01 (0.63) 0.00 (0.40) 
GPIH 3.22 (1.60) 1.74 (1.60) 0.12 (1.63) 
111 calls 0.28 (1.28) 0.14 (1.19) 0.01 (1.19) 
111 web 0.29 (1.22) 0.13 (1.17) 0.01 (1.28) 
ZoeApp 1.38 (0.43) 0.65 (0.41) 0.05 (0.44) 

Notes: Values expressed as mean (coefficient of variation). 
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Discussion 

We focused analysis on 9 surveillance systems (SS) for COVID-19 monitoring in England from 

September 2020 to November 2021.  With more sophisticated statistical analysis, perhaps 

adjusting for inherent sampling biases and confounders, any of the 9 SS might correlate very 

well with our nominated 3 best standards. However, we wanted to assess how well the data 

as published or with only the minimal adjustment (i.e., for wastewater) from each 

alternative SS correlated with the best standard datasets.  All time series except ZoeApp and 

wastewater counts had poorer correspondence with the best standards after June 2021.  

This decline in correspondence possibly arises from the successful and rapid COVID-19 

vaccination programme 26.  As noted elsewhere, the vaccination programme effectively 

‘broke the link’ between positivity and health care needs 27.  The wastewater data show that 

prevalence continued to be high, however there was a deterioration in the sensitivity of the 

wastewater data to indicate incidence or prevalence from about September 2021 for 

unknown reasons.  In contrast, the ZoeApp estimates persisted in corresponding closely 

with the ONSCISE data, especially for prevalence of COVID-19.    

Although the absolute ascertainment ratio for ZoeApp estimates were high (mean 0.65) the 

ratio also varied greatly (0.22 to 1.47).  This high variability is undesirable, because it  

suggests an inconsistent relationship.  When a system captures the same percentage of 

cases consistently, there can be greater confidence that the system will accurately indicate 

whether the situation is improving or worsening.  High consistency therefore can make 

ascertainment ratios more useful as epidemic predictors.  Although the P12 ascertainment 

ratio was lower (0.49) than ZoeApp, its range was also much narrower (0.25 to 0.90) making 

it more consistent.  P12 should therefore be interpreted as a more reliable indicator of 

epidemic progress than the ZoeApp data. 

Infectious disease SS have three main functions 1 :  (1) to describe the burden and 

epidemiology of disease, (2) to monitor trends, and (3) to identify outbreaks.  In the early 

days of the pandemic, such information was essential for planning health care delivery, 

identifying those groups most at risk and targeting interventions aimed at reducing 

transmission.  We have not explicitly analysed the data with regard to localised outbreaks 
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(function 3) but we do suggest that the P12 surveillance was best designed to do that.   In 

terms of understanding the direction of travel of the UK epidemic (function 2, whether 

infections were increasing or decreasing), the P12 and ZoeApp achieved this most 

effectively and were timely as measured by their correlation with the ONS estimated 

incidence.  Emergency Department attendance, hospital admissions and wastewater 

sampling also tracked incidence and prevalence relatively well.  Many other SS (GP in hours, 

NHS 111 calls/web, Google Trends search terms) had little value for indicating trend.  This 

may be because these services operated less for health care delivery and more in the role of 

providing information and reassurance.  The ONSCISE was explicitly designed to be effective 

at detecting total burden of infection (function 1).   Although overall, the ZoeApp estimates 

were highly correlated with the ONS incidence, the large variation in the ratio between 

ZoeApp and ONS incidence means that ZoeApp gave an inconsistent estimate of disease 

burden at any one time.  P12 had slightly lower correlation but more consistency with 

ONSCISE estimates.  Other systems gave less reliable estimates of total infections. 

Other important considerations of surveillance systems are timeliness, availability and 

relative cost of each system.  Most of the SS that we describe sampled broadly across the 

population (Table S1 in supplementary material) and were in the public domain and/or were 

made available to public health officials, so availability was relatively high.   No system was 

perfect for timeliness but some systems reported within 24-36 hours.  However, many 

systems detected cases only after symptoms developed which, in the case of COVID-19, is 

after infectiousness starts.   COVID-19 specific SS (e.g., P12 and ONSCISE) were established 

in England rapidly to respond to the pandemic, but at significant cost.  There was therefore 

merit in considering if pre-existing, routine SS (e.g. syndromic 13 and hospital admissions) 

could be adapted to monitor COVID-19 activity simply through the addition of new clinical 

codes.  Indeed, UKHSA syndromic SS were utilised for all acute respiratory surveillance from 

January 2020 to provide reassurance of lack of changes in health care seeking behaviour for 

respiratory illness before any COVID-specific systems were in place.    While more specific 

systems may provide more accurate estimates of COVID-19 activity and health system 

burden, if those estimates are quite delayed then having less sensitive, but more timely 

surveillance data is useful for planning the management and public health response to the 

pandemic.  We do not argue that any one surveillance system (SS) can or should meet all 
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information needs.  A complement of SS is preferable.  That said, for decision-makers in 

resource-scarce settings, it is worthwhile to describe which SS are likely to be the best single 

epidemic monitors.  

We demonstrate how changes in the national response to the pandemic affected the 

sensitivity of SS. For example, GP in-hours syndromic COVID-19-like consultation data 

became less sensitive to best standard systems due to increased access over time to rapid 

and free testing.  Due to changes in dominant variants and fast vaccine rollout with high 

uptake (started December 2020), symptom presentation changed over the course of the 

COVID-19 pandemic and thus during our monitoring period 28.    Because symptoms varied 

over time, presentations by infected persons changed.   These developments likely altered 

the most accurate ways to identify COVID-19 cases over time.   

ZoeApp estimates were evidently generated by incorporating recent ONSCISE 

incidence/prevalence data, which means that ZoeApp should closely correspond with 

ONSCISE data (Table 3).  As a result, the ZoeApp estimates are not independent of the ONS 

estimates.  Our objective was not to only assess mutually independent data sources;  the 

novel technology aspects of the ZoeApp and its unusual status as a participatory surveillance 

system made it worthwhile for consideration as an epidemic tracker.  Integrating recently 

collected data with recent historical population-based survey and modelled 

incidence/prevalence (like ONSCISE) seems to have been a good strategy, producing a 

compromise in terms of timely and relatively accurate estimates of COVID-19 incidence and 

prevalence. This strategy could be adopted by other surveillance systems. 

In contrast, the syndromic surveillance ED attendance data (EDSS) are independently 

recorded counts of attendances for persons attending an ED with a COVID-19-like diagnosis. 

For this reason, the EDSS data may be considered the better quality indicator if independent 

confirmation is desired.  However, the good correspondence of many systems, such as the 

EDSS or hospital admissions data with ONSCISE, declined in summer 2021, as the full 

benefits of the vaccination programme became apparent and medical care demand due to 

COVID-19 infection subsided. 



18 | P a g e

A limitation of our analysis is that we have not addressed possible completeness of each 

dataset.  Full period response rates for ONSCISE and ZoeApp data are not available.  The 

frequency of wastewater samples varied over time, and omissions in NHS service activity 

records are not uncommon in the authors’ experience. The impacts of these data 

completeness issues on our results could be complex, although they also seem likely to have 

had been relatively minor.  We did not analyse effects of variations in estimation methods 

over time (used by ONSCISE or ZoeApp, for instance), because this would be outside our 

aims (to use the candidate alternative data as they were published).  To analyse how the 

estimation algorithms affected results would hugely complicate our analysis and neither the 

relevant raw data nor the precise estimation methods are publicly available.  Our 

comparisons are a form of agreement analysis but they do not extend to assessing how 

differences between the SS estimates of case numbers might have changed estimates in key 

epidemic parameters such as the basic reproduction number. 

There exist other UK surveillance datasets we could have also considered (eg., REACT study 

29), we cannot comment on their potential utility as epidemic monitors.   For practicality, our 

analysis is very specific to a single region (England) in a single sovereign state (UK).  The UK 

has been lauded for having especially complete, comprehensive and complementary COVID-

19 surveillance systems 30.  Of relevance to settings with fewer resources, our analysis 

shows how fairly simple and relatively less expensive epidemic data (clinical case counts, 

self-reported case status and emergency department attendances) may serve as good 

proxies for less biased estimates of community incidence/prevalence. 

In conclusion, none of the surveillance systems we tested here could meet all information 

needs.  Different systems were most useful at different points in the pandemic.  The 

ONSCISE estimates were probably least biased but were not timely.  Syndrome surveillance 

was especially useful early in the pandemic because it was cheaply and quickly customised 

for case monitoring using existing surveillance systems.    P12 and ZoeApp had reasonably 

good correlation with the ONSCISE; of these, the P12 data were most likely to suggest 

impacts on health care system.  The ZoeApp practice of incorporating data that were only a 

few days old (from their App users) with the least biased source (ONSCISE) is a useful 

practice that other SS could emulate.  However, a weakness of this integrated modelling 
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approach was sometimes delayed detection of rapid change.  Methods used for collecting 

data and generating wider estimates should be well-documented and replicable.   Overall 

we highlight the importance of range of different SS for epidemic tracking.   
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