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Cognitive difficulties following adversity are not related to mental
health: Findings from the ABCD study
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Abstract

Early life adversity is associated with differences in cognition and mental health that can impact on daily functioning. This study uses a hybrid
machine-learning approach that combines random forest classification with hierarchical clustering to clarify whether there are cognitive
differences between individuals who have experienced moderate-to-severe adversity relative to those have not experienced adversity, to
explore whether different forms of adversity are associated with distinct cognitive alterations and whether these such alterations are related to
mental health using data from the ABCD study (n = 5,955). Cognitive measures spanning language, reasoning, memory, risk-taking, affective
control, and reward processing predicted whether a child had a history of adversity with reasonable accuracy (67%), and with good specificity
and sensitivity (>70%). Two subgroups were identified within the adversity group and two within the no-adversity group that were
distinguished by cognitive ability (low vs high). There was no evidence for specific associations between the type of adverse exposure and
cognitive profile. Worse cognition predicted lower levels of mental health in unexposed children. However, while children who experience
adversity had elevated mental health difficulties, their mental health did not differ as a function of cognitive ability, thus providing novel
insight into the heterogeneity of psychiatric risk.
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Introduction theoretical conclusions they were designed to support (Bignardi
et al,, 2022).

Data-driven methods are increasingly popular for exploring
links between early environmental risks and developmental
outcomes (e.g., Bignardi et al, 2022; Carozza et al, 2022;
Dalmaijer et al., 2023; Sheridan et al., 2020). These complement
experimental approaches and are free from a priori assumptions
about the associations that might exist between exposures and
outcomes. In the current study we adopt one such approach,
hybrid machine learning (Feczko et al., 2018), to explore whether
different forms of adversity are associated with shared or distinct
alterations in cognitive function among children who have
experienced moderate-to-severe adversity (classified as two or
more exposures), and whether any such alterations are related to
differences in mental health.

Most extant research suggests that early life adversity (ELA) - such
as growing up in poverty or experiencing maltreatment — alters
cognitive development (Machlin et al.,, 2019; Rosen et al., 2020;
Slopen et al., 2013) and increases the risk of lifelong mental health
difficulties (Copeland et al., 2018; Green et al, 2010). Three
theoretical approaches guide our current understanding about how
adverse childhood experiences affect development. Specificity
models assume that different forms of exposure alter development
through distinct pathways (e.g., Heim et al., 2013; St Clair et al,,
2015); cumulative risk models focus less on the type of exposure
and instead on the number of exposures, assuming that all stressors
and events have similar effects (Berman et al., 2022; Evans et al.,
2013); and dimensional models share elements of both approaches,
splitting exposures into broad theoretically-driven categories that
are linked to different outcomes (e.g., McLaughlin & Sheridan,
2016) Whlle informative, these frameworks are dlfﬁcult to [mpact of ear[y adversity on Cognitive deve[opment and
reconcile with high rates of co-occurrence across different types  mental health

of adversity (Kessler et al., 1997) and with high levels of variability
among exposures and outcomes (McLaughlin et al., 2021). Each
account has also been inspired and supported by particular
methodological approaches that are hard to tease apart from the

Cognitive abilities are typically reported as lower among children
who have experienced ELA relative to those who have not
experienced ELA (Sheridan & McLaughlin, 2016; Slopen et al.,
2013). For example, physical or emotional abuse and domestic
violence have been associated with difficulties in a broad range
of cognitive functions including receptive and expressive
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growing up in poverty also tend to exhibit greater cognitive
difficulties on measures of attention, language, and reasoning
skills, possibly due to lower levels of cognitive and psychosocial
stimulation (Gur et al., 2019; McLaughlin et al., 2017; Noble
et al., 2007; Sheridan & McLaughlin, 2016).

Exposure to neglect, violence or maltreatment are associated
with elevated levels of mental health difficulties in childhood and
adolescence (Burkholder et al., 2016; LeMoult et al., 2020), and
rates of psychiatric disorders in adulthood are higher among those
who have experienced ELA (Arnow, 2004; Juruena et al., 2020;
Kessler et al., 2010). It has been hypothesized that adversity-related
changes in the neural systems involved in impulse control and
emotion-regulation disrupt the ability to deal with future stressors,
rendering individuals who have experienced ELA more susceptible
to mental health difficulties in later life (Teicher & Samson, 2016;
Tooley et al, 2021). For instance, stress-induced changes in
connectivity between prefrontal and limbic regions may impact on
cognitive processes involved in controlling and regulating emo-
tional responses in challenging situations, including risk-taking,
processing threat-related information, and reward sensitivity (Gur
et al, 2019; Hanson et al, 2017; Herzberg & Gunnar, 2020;
McLaughlin & Lambert, 2017; Mehta et al., 2010).

Challenges of understanding the impact of early adversity

It remains unclear whether different forms of adversity — such as
chronic poverty or parental maltreatment - alter cognition in
distinct ways (Gee et al., 2013; Gur et al.,, 2019; Tottenham &
Sheridan, 2010). This is, in part, a consequence of the different
theoretical approaches adopted to capture adverse experiences,
and the methods used to test these theories. Specificity models
assume that distinct categories of exposure alter development in
distinct ways. For example, emotional abuse/neglect has been
specifically linked to cognitive performance that increases risk
for depression (Gibb et al., 2007; Rose & Abramson, 1992;
Spinhoven et al., 2010). While such models attempt to provide
mechanistic accounts, they fail to capture high rates of
co-occurrence among different types of adversity (Asmussen
et al., 2020; Kessler et al., 1997; McLaughlin et al., 2021). These
co-occurrences make measuring specific effects in observational
data difficult (Bignardi et al., 2022). Cumulative risk models, in
contrast, do not differentiate between the type, chronicity, or
severity of exposure, under the assumption that all stressors and
events act together through accumulating stress (e.g., Berman et al.,
2022; Evans et al,, 2013). The assumption that all adversities
influence development via shared and homogenous pathways fails
to account for divergent effects that may be linked to specific types
of exposure (e.g., Kuhlman et al.,, 2017; McLaughlin & Lambert,
2017). Finally, dimensional models split exposures into broad
theory-driven categories that are then examined in relation to
different outcomes. For example, the threat vs deprivation model
advances that threat-related experiences (i.e., trauma or abuse) lead
to alterations in cognitive processes involved in stress and threat
response and emotion processing, whereas deprivation (i.e., lack
of cognitive stimulation or material resources) leads to more
general difficulties in cognition (McLaughlin & Lambert, 2017;
McLaughlin & Sheridan, 2016). Although dimensional models sit
between specificity and cumulative risk models, the tendency to
group categories that appear too specific into a smaller number of
theory-driven dimensions, before implementing them as predic-
tors of outcomes, fails to accommodate complex relationships that
might exist between different forms of adversity and different
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outcomes (Carozza et al., 2022). Indeed, all three models make a
priori assumptions about the structure of adverse experiences and
their impact on outcomes of interest. As such, their theoretical
conclusions are constrained by the classification model used to test
them and cannot be disentangled from this methodological choice
(see Bignardi et al., 2022 for a discussion).

A further complication is that many studies assume ELA results
in negative outcomes, despite evidence that cognitive alterations
and mental health difficulties may not align in individuals who
have experienced ELA (Teicher & Samson, 2013a, 2013b, 2016).
While some adversity-related changes in cognitive control and
socio-emotional processing may contribute to an increased risk for
mental health difficulties (e.g., LeMoult & Gotlib, 2019; Millan
et al., 2012), they may also be adaptive under conditions of high
stress or unpredictability (Belsky et al., 2012; Snell-Rood & Snell-
Rood, 2020).

Current study

Data-driven methods are an increasingly popular approach for
exploring how early adversity impacts on later outcomes. These
circumvent the need for a priori assumptions about the categorical
structure of adversity. Recent studies have used network
approaches and canonical correlations in this way (e.g., Bignardi
et al., 2022; Carozza et al.,, 2022; Dalmaijer et al., 2023; Sheridan
et al, 2020). Alternative machine-learning methods, such as
Random Forest (RF), may be particularly suited to this problem as
they are able to capture complex non-linear interactions between
variables in the context of a large number of predictors -
something that may be missed with traditional parametric
statistical approaches and predictive models (Qi, 2012). RF
iteratively constructs a series of decision trees to classify individuals
on a prespecified question of interest (i.e., whether an individual
has experienced adversity) using a set of input features (ie.,
cognitive function; Feczko et al., 2018). In this “wisdom of the
crowd” method, each tree casts a predicted classification vote based
on the input data fed to the model to determine the predictive value
of input features (e.g., cognition) for the classification question at
hand (e.g., experienced adversity or not; Breiman, 2001).

In this study we adopted a hybrid machine-learning approach
that combined supervised RF classification with hierarchical
clustering to explore whether differences in cognitive function were
related to having experienced moderate-to-severe ELA. This hybrid
approach is better suited to identifying cognitive profiles tied to
experiences of childhood adversity than traditional clustering
methods because the clustering is based on similarities between
participants across features of cognition that have already been
identified by the RF model as important for classifying whether a
person has experienced ELA (for a detailed overview of this method
see: Feczko et al,, 2018; Feczko & Fair, 2020). Clustering is therefore
less likely to be driven by demographic factors such as age or gender,
or by cognitive variables that are not linked to adversity.

Using this approach, we tested: (1) whether cognitive ability
could accurately classify children as having experienced either
moderate-to-severe adversity or no adversity; (2) whether different
forms of adversity were associated with shared or distinct cognitive
profiles among those who had experienced moderate-to-severe
adversity; and (3) how cognitive function was related to mental
health in youth without a history of adversity or with a history
of moderate-to-severe adversity. We first trained an RF model to
predict whether a young person had experienced moderate-to-
severe ELA before age 10 based on their cognitive function
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measured across multiple tasks at ages 10-12. Next, we applied
hierarchical clustering to the RF model output to identify
subgroups of individuals with different cognitive profiles in those
with and without a history of ELA, and explored whether these
subgroups differed in terms of the type and degree of adversity
experienced, and on measures of mental health at age 12.

Method
Data and measures

The data were obtained from the Adolescent Brain Cognitive
Development (ABCD) study, held in the NIMH Data Archive. This
is a multisite longitudinal study that involves 21 data acquisition
sites across the US, designed to recruit over 11,000 children aged
9-10 and follow them over 10 years into early adulthood (for study
details see Garavan et al., 2018). Project details can be found at
http://acbdstudy.org. Demographics for the ABCD cohort are
reported in Supplementary Table S1. This study uses data from the
baseline (T1), 1-year follow-up (T2), and two-year follow-up (T3)
points, when children were aged 10, 11 and 12 years respectively.

Early life adversity
Twenty-one questions were used to assess whether a child had been
exposed to an adverse experience before the age of 10 (Table S2).
These were taken from the Demographics Survey; Family History
Assessment; Neighborhood Safety/Crime Survey; PTSD Module;
and the Family Environment Scale. Responses were provided by
caregivers and covered experiences from birth up to the baseline
assessment (T1) at age 10 years, except for the material deprivation
questions that asked about experiences in the past 12 months.
Each question was coded as belonging to one of six categories
based on the Child Trauma Questionnaire and the Adverse
Childhood Experiences adversity scales (Berman et al, 2022;
Finkelhor et al, 2013): physical abuse; sexual abuse; domestic
violence; community violence; material deprivation; and house-
hold substance abuse (Table S2). Each of these categories was then
coded as belonging to either the threat or the deprivation
dimension based on the threat-deprivation model of adversity
(McLaughlin & Sheridan, 2016). We defined threat as experiences
involving violence, physical harm, or threat of harm to the child,
including physical and sexual abuse, domestic violence, and
community violence. Deprivation was defined as low levels of
social or cognitive stimulation, and material or nutritional
resources (Berman et al., 2022; McLaughlin & Sheridan, 2016).
The 21 questions were then summed to create several broader
composite scores: First, threat and a deprivation composites were
created by summing the total number of questions endorsed within
each dimension (Sumner et al., 2019). Next, an accumulation score
(i.e., cumulative risk) was created by summing the total number of
adverse experiences endorsed (max 21; Berman et al., 2022).
Finally, a multiplicity score was created by summing the number of
distinct categories of adversity endorsed to capture the extent of
unique exposures (max 6; Teicher & Parigger, 2015). These
multiple indices capture the three different ways in which adversity
is measured in the literature.

Cognition

Detailed information about the cognitive tasks and scoring are

available in the Method Supplement, Section 1.1, and Table S3.
NIH toolbox cognitive battery — The NIH Toolbox Cognitive

Battery (NIHTCB; Weintraub et al., 2013) provided seven

standardized measures of cognition. These included the
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Dimensional Change Card Sort Task to measure shifting and
cognitive flexibility; the Flanker task to measure inhibition; the
List Sorting Working Memory Test to assess working memory;
the Pattern Comparison Processing Speed Task to measure visual
information processing speed; the Picture Vocabulary Task to
measure vocabulary skills; the Picture Sequence Memory Test to
measure visual episodic memory; and the Oral Reading
Recognition Test to measure the ability to pronounce words or
recognize letters. The majority of NIHTCB measures were taken
from the third time point (T3) when the children were aged 12,
except the Dimensional Change Card Sort and List Sort Working
Memory tasks that were only available at Baseline (T1) when the
children were aged 10. Age-corrected scores were used.

Rey auditory verbal learning task — The Rey Auditory Verbal
Learning Task was used to measure auditory learning, memory,
recognition, and delayed recall (Luciana et al., 2018). T3 raw scores
were used.

Little man task - The Little Man Task measured visuospatial
reasoning (Acker & Acker, 1982). Raw scores and reaction times
from T3 were used.

Matrix reasoning task — A computerized version of the Matrix
Reasoning subtest from the Weschler Intelligence test for
Children-V (WISC-V) was used to measure nonverbal reasoning
(Wechsler, 2014). Scaled scores from T1 were used.

Cash choice task - The Cash Choice Task is a single-item
question measuring delay gratification (Wulfert et al., 2002). Item
response at Baseline (T1) was used.

Delay discounting task - The Delay Discounting Task
measures reward processing (Koffarnus & Bickel, 2014).
Indifference scores and response times from Time 2 (T2) were
used.

Game of dice task - The Game of Dice Task measured
participants’ aversion/attraction to risky decisions and probabi-
listic reasoning (Brand et al., 2005). The number of winning vs
losing bets, the final account balance, and the proportion of high-
vs low-risk choices from Time 3 (T3) were used.

EN-back task - The EN-Back task is an emotional variant of the
traditional N-back task which engages working memory, using a
block design that adds elements of facial and emotional processing
(Barch et al., 2013). Accuracy and reaction times from Time 3 (T3)
were used.

Emotional faces stroop task - The Emotional Faces Stroop (EF
Stroop) task, a variant of the classic Stroop task, required
individuals to attend to less salient stimulus cues while ignoring
more salient or automatically processed cues (Stroop, 1935), with
an added emotional component. Accuracy and response times
from Time 2 (T2) were used.

Mental health

Child behavior checklist — The parent-reported Child Behavior
Checklist (CBCL) was used to assess children’s mental health over
the last six months using 113 items rated on a three-point scale (not
true; somewhat or sometimes true; very often or always true;
Achenbach, 2011). These items are then summed into 5 subscales.
Three of these, Anxious/Depressed; Withdrawn/Depressed; and
Somatic Complaints, are summed to form a broader Internalizing
measure. The other two, Rule-Breaking and Aggressive Behavior,
are summed to form a broad measure of Externalizing symptoms.
The Internalizing and Externalizing scales are summed to provide
a Total Problem composite score. The six available DSM-oriented
scales that align with clinical disorder definitions were also
used (Depression Disorder; Anxiety Disorder; Somatic Disorder;
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Attention-Deficit Hyperactivity (ADHD); Oppositional Defiant
disorder; Conduct Disorder). CBCL scores for each of the
subscales, the broader composites, and the DSM-oriented scales
(all normed t-scores) from T3 were used (Supplementary
Table S4).

Prodromal psychosis scale - The Prodromal Psychosis Scale-
Brief Child Version was used as a measure of psychotic symptoms
(Loewy et al.,, 2011). The original 21-item self-report screening
questionnaire for adolescents and adults was modified for use with
children aged 9-11 (Karcher et al., 2018). The “Psychosis Severity”
score from T3, based on the number of total questions weighted by
the level of distress for each endorsed item (range: 0-126),
was used.

Participants

All participants were included unless they had more than 15% of
missing data on the adversity or cognitive measures. The
remaining missing responses on the adversity questions were
coded as “0” (i.e, adverse experience not endorsed). These
responses were coded as 0 because sensitivity analyses (reported in
the Supplement 1.2) revealed that either coding the missing
responses as 1 (endorsing adversity) or using imputation resulted
in estimates of adversity that were substantially higher than
population prevalence estimates (Finkelhor et al, 2005;
McLaughlin et al,, 2012; Struck et al., 2020), indicating both
approaches were heavily biased. Moreover, imputation was not
appropriate for the adversity data as it was both non-binary and
not missing at random (see Supplement for details). Imputation
algorithms are heavily biased towards rare cases with binary data
(e.g., exposures to ELA), explaining why it overestimated the
prevalence of adversity. Furthermore, imputation would have
increased the standard error, which would have increased the
likelihood of model overfitting (a common problem with machine-
learning methods such as RF). The remaining missing cognitive
data were inputted using the “missForest” package in R (Stekhoven
& Buhlmann, 2012). It was possible to apply imputation to these
data in a straightforward manner as they were normally distributed
and missing at random.

Participants were then allocated to a No Adversity (NOA) or
Early Life Adversity (ELA) group based on their responses to the 21
adversity questions. Individuals who had experienced an adversity
in two or more categories were coded as having experienced
moderate-to-severe ELA (“ELA” group). Individuals who
endorsed zero adverse experiences were coded as not having
experienced adversity (“NOA” group). Participants who endorsed
having experienced only a single type of adversity were removed
from the analysis (~21% of the sample). This group were removed
because the focus of the study was on differences between those
who had experienced moderate-to-severe adversity and those who
had not experienced adversity. To compare these groups, it was
necessary to adopt a case-control design and to choose a cutoff for
group allocation with a clear difference between groups on the
adversity measures. While this resulted in approximately 20% of
the sample being excluded, it was not appropriate to include cases
endorsing one adversity in the moderate-to-severe group for
scientific reasons, and because it would have resulted in an “ELA”
sample greater than population-based estimates (Finkelhor et al.,
2005; McLaughlin et al., 2012; Struck et al., 2020). Similarly,
combining this group with the no-adversity sample would not have
been appropriate as they had experienced one adverse exposure. In
other words, the removal of this middle group allowed for direct
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Table 1. Sample demographics for the adversity and no-adversity group

No-adversity ~ Adversity

group group Statistic p
N 5216 739
Age mean (SD) 9.9 (0.6) 9.9 (0.6) t=-0.681 0.496
Female 46.7% 46.1% X?=0.08 0.783
Race/Ethnicity
% White 63.8% 36.9% X?=28822 <.001
% African 8.8% 24.4%
American
% Hispanic 3.0% 3.2%
% Asian 2.6% 0.3%
% Other/ 21.9% 35.2%
Multi-racial
Household
characteristics
% Married 80.94% 34.75% X2=776.92 <.001 *%#*
caregivers
% College-level 73.58% 27.88% X2=620.49  <.001 *¥*
education
Household income X2=1051.66  <.001 ***
< $25k 6.7% 35.5%
$25k-$49.99k 9.3% 31.3%
$50k-$74.99k 12.6% 17.8%
$75k-$99.99k 17.0% 8.4%
$100k + 54.4% 6.9%
Dimensions of
exposure
Threat 0 1.16 X?=4478.11  <.001 ***
Deprivation 0 2.29 X?=5515.53  <.001 *¥*

Notes. Demographics reported at the baseline assessment. Age reported in years. Threat and
deprivation are reported as the mean number of adverse events experienced in each category.
Differences between the no-adversity (NOA) and adversity (ELA) group assessed using t-test and
chi-square. **#p < .001.

comparison between individuals with no exposure and individuals
with moderate-to-severe levels of exposure.

Demographics for the final ELA and NOA sample used in the
analysis are reported in Table 1. Group comparisons showed that
the ELA group had significantly lower performance than the NOA
group on 36 of the 57 cognitive variables (lower scores, longer
response times) (Figure S1, Table S5). They also had significantly
greater difficulties across all 21 measures of mental health (Figure
S2, Table S6).

Analysis plan

The primary analyses were conducted in three steps (see Figure 1
for a schematic overview). First, a random forest (RF) was trained
to predict whether an individual had a history of ELA (ELA or
NOA) using measures of cognition as input features. Hierarchical
clustering was then used to identify putative subgroups with
distinct cognitive profiles within the ELA and NOA groups. These
subgroups were then compared to explore whether they differed by
type of ELA exposure and by mental health profile. Analyses were
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conducted in R version 4.0.3 (R Core Team, 2021). Each step of the
analysis is summarized below.

Random forest classification

A Random Forest (RF) model was trained to predict whether an
individual had a history of ELA (ELA or NOA) using a set of
cognitive variables as input. RF is a supervised ensemble learning
method that can be used for classification problems. Each tree in
the forest is trained using a bootstrapped (randomly selected)
subset of the training sample and a randomly selected subset of
input features. The random subsampling of input features for each
tree allows the model to learn from different features in the data. If
a given feature is a strong predictor of the response variable, it will
be more frequently selected across multiple trees to maximize
classification accuracy. The bootstrap sampling produces an out-
of-bag (OOB) error that estimates the error rate for approximately
one-third of the observations from the training data that are left out
during each bootstrap (Breiman, 2001). The aggregate OOB score
across all classification trees provides an overall OOB error rate to
validate and tune the RF model. By introducing these two forms of
randomness into the model and by averaging results across
multiple decision trees, RF is more robust to noise and reduces
overfitting (Figure 1).

The RF classification model was made up of 10,000 trees and
was implemented using the “randomForest” package in R (Liaw &
Wiener, 2022). The number of features to be randomly selected for
the splitting decision at each tree node (“mtry”) was set to seven
based on a built-in package function. The model consisted of 57
cognitive variables as input features (Table S3), while group status
(ELA or NOA) served as the outcome variable. 60% of participants
formed the training set and 40% formed the testing set. Because of
the unbalanced class distribution, with the ELA group representing
only 13% of the sample, a stratified sampling approach was used to
generate a balanced RF model using the “rfPermute” package in R
(Archer, 2022). As described above, the OOB performance was
used to tune the model, and a separate test set was used to evaluate
its accuracy. As an additional validation, a cumulative binomial
distribution was generated to determine whether the predictive
accuracy of the RF model was significantly better than chance.

RF provides mean decrease accuracy (MDA) scores to help with
model interpretability and to estimate the relative importance and
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Figure 1. Overview of methodological approach: hybrid machine
learning. Notes. Simplified schematic for visualization purposes.

predictive power of each cognitive variable in the model. This is
calculated as the loss in prediction accuracy when a given feature is
removed from the RF model using the “importance” function in
the “randomForest” package in R (Liaw & Wiener, 2022). Due to
methodological considerations outlined in the Supplement (see
also Lu & Petkova, 2014 for an in-depth discussion), we also report
importance metrics derived from elastic net regularization in the
Supplementary Materials, Section 1.3 for completeness.

Identifying and characterising subgroups

The RF generates a proximity matrix based on the frequency that
any given pair of observations end up in the same terminal node,
representing the similarity between participants in terms of their
cognitive profile. This proximity matrix can be fed into a clustering
algorithm to identify subgroups characterized by similar cognitive
profiles based on features identified as important for the original
classification. An agglomerative hierarchical clustering approach, an
unsupervised method that is commonly used for clustering biological
and neurocognitive data, was used to identify subgroups with similar
cognitive profiles within each group (ELA and NOA) using the RF
proximity matrix (Drysdale et al, 2016; Rihel et al, 2010). The
dissimilarity between clusters was measured using Ward’s method,
which minimizes the within-cluster variance at each iteration (Murtagh
& Contreras, 2012). Hierarchical clustering was implemented using the
“cluster” package in R (Maechler et al, 2022). Once hierarchical
clustering was complete, the optimal number of clusters was chosen
using the “elbow” and “silhouette” methods in the “factoextra” package
in R (Kassambara & Mundt, 2020) and by examining the structure of
the plotted dendrogram. Chi-squared and t-tests were conducted to
compare subgroups on multiple indices, including cognitive perfor-
mance, type of adverse exposure, and mental health.

Results
Random forest classification

Using the cognitive data as input, the RF model successfully
classified individuals as having experienced ELA or not with a
balanced accuracy of 67%. Comparing the RF model accuracy
against a cumulative binomial distribution revealed that the model
performed significantly better than chance p<.001. Model
sensitivity - the ability to correctly identify NOA participants —
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Figure 2. Differences in cognitive function between the NOA-low and NOA-high subgroups. Notes. Higher scores indicate greater accuracy and longer response times. Error bars
represent the 95% confidence interval for Cohen’s d. The original value for Game of Dice (losing bets) was inverted so that higher scores represent better performance as for the

other measures in the figure. Only significant differences shown.

was estimated at 61.9%. Model specificity, which represents the
ability to identify ELA participants, was 71.7%. Overall, the RF
model was successful in using cognitive function to distinguish
individuals with a history of ELA from those without.

RF MDA scores were used to identify the relative importance
and predictive power of each cognitive variable in the model. Tasks
measuring language and vocabulary skills (e.g., Picture Vocabulary
and Oral Reading Recognition), nonverbal reasoning (e.g., Little
Man Task, Matrix Reasoning), and reward processing (e.g., Delay
Discounting) were consistently selected as the most important
features driving model classification. RF variable importance is
reported in Table S7 by decreasing order of importance.

Identifying subgroups

The agglomerative coefficient (ac) for the proximity matrix
generated by the RF model showed a strong clustering structure in
both groups (ac for NOA = 0.995; ac for ELA = 0.977). The NOA
group had a slightly stronger clustering structure than the
ELA group, indicative of greater cognitive homogeneity in the
ELA group. Using the cognitive data, hierarchical clustering
identified two subgroups within the NOA group, and two
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subgroups within the ELA group. The two-cluster solution was
optimal for minimi