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Abstract 

For natural diversity to persist, there must be mechanisms in place to protect it 

from the homogenising effects of gene flow. Studies at natural hybrid zones have 

shown that, where divergent populations meet and exchange genes, genetic loci 

involved in adaptive population characteristics can resist gene flow. This results in 

a homogeneous landscape of genomic divergence, with gene flow resistant regions 

showing elevated divergence compared to other loci. Identification of these 

divergent loci may inform about the genetic basis of population differentiation, and 

is therefore a major aim of speciation genomics. However, genomic divergence is 

inherently noisy, varying due to cryptic population histories and intrinsic genomic 

factors. Here I introduce the grouping tree scan as a method for summarising 

between-population diversity across groups of populations. By comparing 

between-population divergence across the whole genome for many populations 

simultaneously, this method reduces the noise associated with within-population 

effects, and provides increased power for detecting divergence signals that may not 

be detectable through conventional two-way genome scans. Furthermore, because 

relationships between populations are determined independently of a priori 

assumptions, the approach is resilient to ascertainment bias. I apply this approach 

to two sympatric subspecies of Antirrhinum majus with contrasting flower colours, 

demonstrating that colour genes alone may be sufficient to facilitate population 

divergence through epistatic reproductive barriers. I then expand the approach to 

look at more distantly related species with distinct growth habits, identifying a 

subset of genomic regions that may underlie reproductive barriers based on 

adaptation to different environments. Finally, I outline a bioinformatic approach for 

detecting sRNA-producing genomic inverted repeats, which may not otherwise be 

detectable through population comparisons. I propose the grouping tree scan as an 

extension of the genome scan toolkit, expanding the utility of pooled-sequence 

data for characterising genetic barriers. 
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1: Introduction 

Life exhibits a wondrous array of natural diversity, all of which exists due to the 

process of evolution. Evolution creates and disseminates heritable variation across 

generations. Fundamentally, this variation is created by the processes of mutation 

and recombination. Its passage, through individuals over time, is then modulated 

by natural selection (which favours specific variation) and genetic drift (which acts 

randomly). Together, these processes create diversity in natural forms. How, 

though, does this diversity persist and grow over time? In this thesis, I will develop 

experimental methods to study how populations of closely related organisms can 

retain their specific adaptive identities, even against a background of pervasive 

gene flow. 

 

When conceptualising evolution, it is typical to work at the population level. 

Consider a hypothetical population of reproductively compatible organisms. For 

simplicity, evolution will be assumed to be neutral (that is, no natural selection will 

be taking place), and recombination will be ignored. Each generation, mutation will 

give rise to new diversity by creating new alleles, and genetic drift will ‘shuffle’ the 

existing diversity by slightly changing frequencies of existing alleles. Now, assume 

the population undergoes dispersal, with some individuals migrating away from the 

established population limits, and establishing a new population. Each population 

will independently undergo divergence, and the distributions of alleles within each 

population will increasingly differ over time. However, for as long as the 

populations remain in contact, they can now undergo gene flow - the exchange of 

genetic material between populations - through hybrid matings. Sharing genes 

decreases the proportion of allelic differences between populations, but increases 

the allelic diversity within populations. Estimations from natural populations 

suggest that only a few migrant individuals per generation are required for 

populations to maintain their shared identities (Crow and Kimura, 1970, Slatkin, 

1987). 
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This highly simplified scenario illustrates how diversity can be maintained between 

populations as they undergo dispersal. However, because the homogenising effect 

of gene flow is much stronger than the diverging effect of mutation, it offers no 

means by which the two populations could become differentiated. To enable this, 

the concept must be expanded to include barriers to gene flow.  

 

Reproductive barriers depend upon genetic and environmental factors 

Conceptually, the simplest possible barrier to gene flow would simply stop two 

populations from meeting. If, for example, populations were to become 

increasingly geographically separated, it would become more difficult for 

individuals to make contact. This would attenuate (and eventually eliminate) gene 

flow, and populations would diverge independently. The emergence of impassable 

landscape features such as oceans, rivers, and mountains may aid in the isolation 

process, by preventing populations from migrating back from where they came. 

Such barriers can all be considered environmental in nature; natural selection is not 

a factor in introducing barriers, and divergence post isolation proceeds through the 

random processes of mutation and drift. I will define these environmental barriers 

as factors that prevent gene flow between populations, but are not genetically 

encoded. 

 

If barriers between populations were solely environmental, then reestablishment 

of contact would erode the accumulated between-population divergence. It is 

therefore generally accepted that the divergence process is completed with the 

introduction of genetic incompatibilities, which prevent gene flow (Coyne and Orr, 

2004). I will define these incompatibilities as genetic barriers - genetically encoded 

elements that restrict gene flow.  

 

Allelic variation at a single locus is generally considered to be insufficient to 

maintain a barrier to gene flow where populations remain in contact. Such barriers 

arise from interactions between two or more genes, and correspond to 

Dobzhansky-Muller incompatibilities (Sweigart and Willis, 2012). The Dobzhansky-
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Muller model is a framework that allows deleterious genetic variation to emerge 

without being detrimental to the originating populations. It requires that distinct 

alleles of two or more genes arise within two populations. These alleles must not 

have a negative effect on fitness within their ‘native’ genetic background. However, 

gene flow that rearranges alleles from different populations must be deleterious. 

The formation of barriers to gene flow between populations is thereby mediated 

by epistasis (i.e. non-additive interactions between alleles at different loci).  

 

Epistasis can result in deleterious consequences, but it can also result in increased 

fitness through coadaptation. First discussed by Dobzhansky (1950), a group of 

alleles can be considered coadapted if they act together to promote increased 

fitness, within the context of their population. An example of a coadapted trait is 

mimicry in the wing patterns of Heliconius butterflies. These butterflies show 

Müllerian mimicry, a phenomenon whereby species that are distasteful or toxic to 

predators come to adopt identical colour patterns, in order to warn against 

predation. The effectiveness of mimics depends on the ability of predators to 

recognise them. If a mimetic butterfly encounters a population of predators that do 

not recognise its warning pattern, its fitness will be severely penalised. 

Combinations of alleles involved in faithfully preserving the ‘correct’ mimetic 

pattern are maintained, and mixing of alleles is maladaptive (Mallet and Barton, 

1989, Choteau et al., 2016). Heliconius wing pattern variation is mostly accounted 

for by four major effect loci (Reed et al., 2011, Martin et al., 2012, Nadeau et al., 

2016, Westerman et al., 2018), with distinct patterns evolving through changes in a 

set of cis-regulatory “modules” (Van Belleghem et al., 2017, Morris et al., 2019). 

However, in practice, defining the genetic basis of coadaptation is challenging. 

 

I have briefly outlined how environmental and genetic barriers to gene flow can 

give rise to reproductive barriers between populations. The extent to which each of 

these factors plays a part in maintaining the barrier depends on the nature of the 

barrier. Here, I consider two distinct types of reproductive barriers. I hypothesise 

that these two barriers are reflected in two distinct instances of speciation within 
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the model angiosperm Antirrhinum. To introduce these barriers, I will first give an 

analogy. 

 

Intrinsic epistatic barriers 

To illustrate the first barrier, which will be addressed in Chapter 3, consider the 

example of road use. Standardisation of the direction in which traffic travels is 

important for the safety of road users, and essential for facilitating beneficial 

advancements such as traffic control and the development of more practical 

vehicles. As of 1986, 76 nations mandated driving on the left-hand side of the road, 

and 166 on the right (The Rule of the Road: An International Guide to History and 

Practice by Peter Kincaid, 1986). Neither solution is intrinsically more effective than 

the other, and one can speculate on the range of cultural, colonial, and legal factors 

involved in establishing the rule of the road in a given nation. However, 

implementing a given solution necessitates the standardisation of laws that render 

the other solution inviable. Once chosen, it is not possible to smoothly transition 

between systems. 

 

Driving on the left or right exhibits three features: 

 

● It represents two equivalent solutions to a shared problem (efficient traffic 

flow). 

● The distinct solutions operate irrespective of environment (driving on left or 

right work equally well in cold or warm climates). 

● Mixed strategies are disadvantageous (switching to driving to the left in a 

country which drives on the right is not a good idea). 

 

Suppose a biological trait distinguishing two populations exhibited the same 

features. Where ‘road handedness’ is maintained by the interaction of laws, traffic 

adaptations, and driver behaviours, there would be a reproductive barrier that is 

maintained by the interaction of suites of alleles that together encode a viable 

adaptive solution. The fitness effect imposed by these barriers is environmentally 
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independent, being a product of inherent factors. Seehausen et al. (2014) defined 

such evolutionary barriers as “intrinsic reproductive barriers” – the activity of the 

barrier arises through the intrinsic interactions of alleles, independently of 

environmental (extrinsic) factors. Distinct allele combinations may confer high 

fitness within each population, but breaking these combinations, as in hybrids 

between populations, imparts a severe fitness penalty. Because these hypothetical 

allele combinations interact to generate their phenotypes, they can be more 

formally described as epistatic. I will therefore refer to these barriers as intrinsic 

epistatic barriers. 

 

Intrinsic epistatic barriers likely underpin the divergence of plumage between two 

species of Australian woodswallow, the masked woodswallow and the white-

browed woodswallow (Peñalba, Peters, and Joseph, 2022). Both species show 

minimal differentiation at the genomic level, but strikingly different coloured 

plumage. These plumage differences do not appear to be associated with mate 

preference. However, woodswallows showing hybrid plumage types are rare. 

Modelling suggests that, in isolation, populations may have diverged at genes 

involved in feather development. Later, populations established secondary contact, 

and underwent extensive gene flow. Most genes flowed freely, as illustrated by the 

low interspecific genomic divergence, but those involved in plumage differentiation 

resisted gene flow. It is therefore possible that the two observed plumage types 

represent equivalent adaptations, with mixed solutions being disfavoured. Similar 

barriers may be acting between black-coated carrion crows and grey-coated 

hooded crows, where two genomic loci explain most variation in plumage, and 

show evidence of resistance to otherwise pervasive gene flow (Knief et al., 2019). 

 

Differentially adaptive barriers 

To introduce the second barrier, discussed in Chapter 4, consider the development 

of clothing in populations of humans occupying extreme environments. 
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The native peoples of the arctic circle have prospered within some of the harshest 

environments on Earth by innovating clothing that is adapted to offer advanced 

protection from arctic conditions. Examples include the Inuit parka, and its 

maternally adapted variant the amauti (Lincoln, Cooper, and Loovers, 2020). 

Without developing similar garments, humans would not have been able to 

continuously inhabit polar regions. Another example is the colonisation of desert 

regions of North Africa by peoples such as the Bedouin and Tuareg. Whilst much of 

North Africa is highly fertile, many cultures traffic and transiently inhabit arid desert 

regions. This is reflected in many traditional garments worn by these groups, which 

comprise robes for management of heat and eye protection to shelter from sand 

(Shkolnik et al., 1980). Cultural groups inhabiting extreme climates have originated 

distinct sets of environmental adaptations. If either group was to adopt some of the 

clothing of the other, they would be at a significant disadvantage within their native 

environments. 

 

Here, the type of clothing exhibits the following features: 

● A better solution for a given environment 

● Distinct solutions for different environments 

● Mixed or hybrid strategies could work in an intermediate environment 

 

Populations with distinct traits exhibiting these features would be differentially 

adapted to distinct ecological conditions, driving the accumulation of genetic 

variation improving fitness within the environment. Using the terminology of 

Seehausen et al., (2014), these barriers are largely extrinsic, because their activity 

is dependent on environmental factors. To avoid making assumptions about the 

distinction between intrinsic and extrinsic barriers, I will simply refer to these 

barriers as differentially adaptative barriers. 

 

Differentially adaptive barriers likely underpin the divergence of Silene dioica and 

Silene latifolia, two species of campion (Favre, Widmer, and Karrenberg, 2017). S. 

dioica occupies moister and more elevated sites than S. latifolia, which occupies 

lower, drier areas. Silene show widespread distributions throughout Europe, and 
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frequently come into contact. However, hybrids are rare in nature, despite 

performing well in controlled conditions. By transplanting large populations of each 

species to the other species’ preferred habitat, it was observed that the ‘foreign’ 

species always showed reduced fitness compared to the native. Hybrid plants were 

also transplanted; these generally performed less well than the native parental 

species, but better than the foreign parent. A later comprehensive analysis of 13 

characterised reproductive barriers demonstrated that differential adaptation is 

likely to be the strongest driver of divergence (Karrenberg et al., 2018). Similar 

adaptive divergence is seen between inter fertile species of Mimulus. M. lewisii and 

M. cardinalis show preferences for different altitudes, and reduced fitness when 

transplanted (Ramsey, Bradshaw, and Schemske, 2003, Angert and Schemske, 

2005). The mechanisms by which S. dioica and S. latifolia have adapted to their 

environments are subtle, and likely underpinned by many adaptations of 

individually small effect (Gramlich et al., 2022). Similarly, adaptive survival clothing 

did not arise fully formed, but is the result of countless individual factors pertaining 

to technology, material availability, and behaviour. 

 

Detecting genetic barrier loci within genomic islands of divergence 

I will now consider the means by which the genes underlying a genetic barrier 

(barrier genes) might be detected. Because selection on genetic barriers reduces 

flow, barrier genes will exhibit reduced gene flow (as will regions linked to the 

genetic barriers). Therefore, studies searching for barrier genes have typically 

aimed to identify signatures of reduced gene flow amongst highly heterogeneous 

landscapes of genomic divergence between distinct populations undergoing gene 

flow (Nosil, Funk, and Ortiz-Barrientos, 2009, Ravinet et al. 2017). These signatures 

are often termed genomic islands of divergence. To directly test for genomic islands 

of divergence within populations, a means of summarising patterns of genetic 

variation is required. The field of genomics is generally concerned with 

characterising genetic variation at the level of genomic sites, or nucleotides. At each 

site, genetic diversity can be summarised by recording the frequencies of different 

alleles. For example, consider a single genomic site across a population of 20 
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individuals. If 18 of these individuals had a T nucleotide at this site, the frequency 

of the T allele would be 
!"
#$ = 0.9. The frequency of all alleles at a site sum to 1. 

Therefore, if the site is biallelic (i.e. has two alleles) then the frequency of the other 

allele can be calculated as 1 − 0.9 = 0.1. Due to the ease of working with biallelic 

single nucleotide polymorphisms (SNPs), and the relative rarity of multiallelic sites, 

it is common practice to apply the simplifying assumption that all multiallelic SNPs 

are biallelic, by removing the least common allele(s) (Li, 2011). Alleles within a pair 

of biallelic SNPs are generally referred to as p and q; p often corresponds to the 

more frequent allele (the “major allele”) but this is not always the case. 

 

Summarising allele frequency differences across the genome 

Having derived allele frequencies, a range of summarising statistics exist to quantify 

allelic diversity within populations. This thesis will utilise four (Figure 1.1). Two 

fundamental statistics, DXY and πw, were proposed by Nei and Li in 1979 (Nei and 

Li, 1979). Within-population diversity (πw, also known as π) refers to the average 

number of allelic differences, per site, that would be observed between two 

sequences drawn at random from a population (Figure 1.1a). Absolute between-

population diversity (DXY, also named πXY) refers to the average number of allelic 

differences, per site, that would be observed between two sequences drawn at 

random from two distinct populations (Figure 1.1b). By relating πw and DXY, a third 

measure, FST, can be derived. FST is formally referred to as Fixation Index, and was 

originally conceived in the 1950s as one of several measures for quantifying 

homozygosity within populations (Wright, 1965). In the context of genomics, FST 

can be thought of more intuitively as relative between-population diversity. Like 

DXY, FST measures divergence between populations, but values are adjusted relative 

to πw. In practice, this makes it easier to compare sites across the genome, even 

where local levels of diversity are quite different. A final statistic, D, can be derived 

by subtracting mean πw from DXY the of the two populations being compared. D 

provides an estimate of net nucleotide diversity, or the amount of allelic diversity 

that has accumulated between populations since they diverged. Like FST, it relates 
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between-population diversity to within-population diversity, meaning that it is a 

relative measure of divergence. 

 
(a) (b) 

!! = #"$" %#$ =	
#"$% + #%$"

2 	
Within-population diversity Absolute between-population diversity	

(c) (d) 

)&' =	
%#$ − !!++++
%#$ + !!++++

	 % = %#$ − !!++++	
Relative between-population diversity	 Net nucleotide diversity	

Figure 1.1: Calculation of diversity statistics from allele frequencies 

Equations for calculating (a) πw, (b) DXY, (c) FST, and (d) Nei’s D from allele 
frequencies p and q. 
 

 

Challenges of genome scans 

The application of diversity statistics to study genome-wide divergence can be 

generically referred to as a genome scan. Genome scans, comparing pairs of taxa, 

have generally used FST as the preferred measure of divergence (Seehausen et al., 

2014). The sensitivity of FST to πw has a normalising effect on divergence 

landscapes, making locally elevated “islands” perceivable against a “sea” of low 

baseline divergence. This ease of detection comes with the cost of conflating DXY 

and πw, making it difficult to determine whether peaks are due to within- or 

between- population diversity. A 2014 paper published by Cruickshank and Hahn 

demonstrates the pitfalls of drawing conclusions about gene flow on the basis of 

FST alone (Cruickshank and Hahn, 2014). Here, they reanalyse published datasets 

with which FST comparisons had been used to identify novel islands of divergence. 

They show that previously identified regions of elevated FST do not show elevation 

of DXY, meaning that the observed FST peaks correspond to low πw. Fluctuations in 

πw and DXY tell very different stories about the evolutionary history of divergence. 
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Variation in πw is linked to a range of population history factors. For example, if a 

population has recovered from an historical bottleneck or founder effect, it may 

show reduced πw across the whole genome. Alternatively, low πw may reflect a 

selective sweep, where an allele conferring an adaptive advantage has rapidly 

‘swept’ to fixation within a population (Stephan, 2019). 

 

In principle, it would be easier to carry out genome scans based on DXY. Here, 

elevated DXY would reflect an absolute increase in allelic differences between 

populations, but not within them. Because DXY accumulates in isolation, and 

reduces under gene flow, regions showing locally elevated DXY are likely to contain 

barriers to gene flow. However, whilst DXY is not sensitive to the current πw, it is 

sensitive to variation in πw that arose prior to the most recent common ancestor of 

the populations being compared. This ancient πw variation is inherently hard to 

characterise, being the result of events that occurred too long ago to reliably 

reconstruct (Cruickshank and Hahn, 2014). This DXY “noise” may obscure genuine 

signatures of divergence. 

 

A separate, but related, challenge in characterising patterns of genomic diversity is 

the distribution of intrinsic genomic factors (Wolf and Ellegren, 2017, Foote, 2018). 

Recombination is the process by which coinherited combinations of alleles 

(haplotypes) from each parent are rearranged during meiosis. Because 

recombination creates new combinations of existing variation, it increases the 

genetic diversity within populations. However, the frequency with which 

recombination takes place shows significant variation across genomes. In some 

cases, this is predictable. Extensive studies in Drosophila have demonstrated that 

centromeric, and pericentromeric, regions show a reduced rate of recombination 

(Begun and Aquadro, 1991, Jensen et al., 2002). This has also been observed in 

plants such as tomato (Fuentes et al., 2022) and maize (Tenaillon et al., 2002). 

Recombination rate can affect local levels of genomic diversity by influencing the 

extent of genomic ‘hitchhiking’ processes, where evolutionary forces acting on a 

specific locus within a haplotype block are reflected across the whole haplotype. 

Studies in a range of organisms have also demonstrated a positive correlation 
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between local mutation rate and πw (Takahashi, Liu, and Saitou, 2004, McGaugh et 

al., 2012, Ponnikas et al., 2022). 

 

Even if genomic islands of divergence can be detected, it may not be possible to 

identify the underlying functional variation (Jiggins and Martin, 2017). Many 

biological traits are known to be highly polygenic, arising from the activity of large 

numbers of genes. Even if a conventional genome scan was able to detect all genes 

involved in a hypothetical polygenic trait, the associated genomic divergence 

landscape would be too noisy for an experimentalist to interpret at the genetic 

level. The individual effects of genes may also be so weak that signals are not 

perceivable. Interpretation may be easier in light of prior knowledge, but this 

highlights another common issue with genome scans - prior knowledge of the 

genetic basis of the trait being analysed may lead to biases in interpretation. 

 

Interpreting genomic divergence using trees 

I have discussed some of the challenges of characterising genomic diversity, and 

identifying potential barriers to gene flow that might reveal barrier genes. Because 

DXY can inform about genetic barriers directly, it represents the most promising 

genome scan statistic for identifying barrier genes. However, to interpret DXY, a 

method is needed which reduces the amount of noise arising from historical πw and 

differences in intrinsic genomic factors. In describing the issues faced when using 

relative measures such as FST, I have demonstrated why simply relating local levels 

of DXY to πw are likely to be insufficient to identify barriers to gene flow without 

additional characterisation. A different approach to interpreting DXY is to compare 

DXY landscapes across multiple populations. Distinct populations with the same 

genetic barriers are expected to show shared patterns of DXY, reflecting the 

genomic regions harbouring barrier genes. By relating DXY landscapes between 

populations, it may be possible to detect parallel divergence through shared DXY 

islands, whilst ‘cancelling out’ noise due to ancient, unshared πw. 
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Relating genomic divergence across sets of populations has long been carried out 

through use of dendrograms, more informally referred to as trees. Trees represent 

the relationship between taxa (which can be individuals or populations) on the basis 

of pairwise distances between them. In biology, trees typically summarise 

relationships between taxa by comparing nucleotide or amino acid sequences. 

Approaches range from simple distance-based measures (such as DXY and D) to 

sophisticated frameworks modelling evolutionary expectations (such as Maximum 

Likelihood and Coalescence) (Yang and Rannala, 2012). The increasing availability 

of whole genome sequencing has seen a shift towards whole genome 

phylogenetics, where taxa are resolved by comparing as many genomic sites as can 

be resolved. Whole genome phylogenies are powerful tools for resolving the 

relationships between populations that are not undergoing gene flow. However, 

they cannot adequately reflect the mosaic nature of genomic divergence that is 

expected where gene flow is uneven. For example, consider a tree of four 

populations showing two distinct ecological specialisations. If these two 

specialisations arose through a single ancestral divergence event, then 

phylogenetic analysis of the underlying genes should group the alike populations 

into monophyletic clades. However, if the populations have since undergone gene 

flow, then phylogenetic analysis of non-adaptive regions may yield non-

monophyletic groupings (Figure 1.2). This phenomenon is broadly termed 

phylogenetic incongruence (Rokas et al., 2003).  

 

In a 2013 study, Martin et al. investigated the patterns of divergence across 31 

genomes from sympatric and allopatric Heliconius species (Martin et al., 2013). By 

dividing the genome into 100 kb windows, phylogenetic trees could be constructed 

across the whole genome, making it possible to predict which regions had been 

subject to gene flow. By classifying all genomic trees to four predefined topological 

groups, it was revealed that up to 40 % of trees from sympatric populations showed 

a topology that was consistent with the geographical distribution of the 

populations, rather than the whole genome phylogeny, suggesting extensive gene 

flow. This approach, later dubbed Twisst (Martin and Van Belleghem, 2017), has 

been used in studying a range of divergent traits (for example, Van Belleghem et 
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al., 2017, York et al., 2018, Dixon, Kitano, and Kirkpatrick, 2019). Twisst summarises 

trees based on user specified taxa, rather than individual species. For example, in 

the 2013 study discussed above, 31 individual butterflies (across two experiments) 

could be simplified into four taxon trees. The numbers of four taxon trees 

corresponding to different pre-defined hypotheses could then be explored. 

Because Twisst can report multiple topologies, it is robust to incomplete lineage 

sorting. This process, where organisms unexpectedly group with more distantly 

related taxa due to shared ancestral variation, has long confounded the study of 

historical speciation (Sousa and Hey, 2013). Another approach to exploring how 

phylogenetic trees vary across the genome was developed by Zamani et al. (2013) 

in the Saguaro software. This not only summarises tree topologies across the whole 

genome, but uses machine learning to infer the points at which genome tree 

topologies change. These approaches differ in their utility. Twisst is useful for 

studying large numbers of individuals based on pre-defined species or geographical 

relationships. Saguaro requires no a priori hypotheses about tree topologies, 

meaning that it can be used to infer genomic landscapes of divergence between 

organisms without being biased by prior observations. In constructing trees, Twisst 

uses Maximum Likelihood inference in constructing trees. Saguaro uses a distance 

matrix approach, where the genome is summarised into “cacti” that describe the 

relationship between taxa across consecutive genomic sites. Relating these 

measures to allele frequencies, as previously described, is challenging. Maximum 

Likelihood infers tree topologies based on statistical models of sequence evolution, 

and Saguaro’s cacti are not designed to provide any immediate biological meaning. 

Therefore, drawing inspiration from these approaches, I have developed a genome-

wide approach for classifying trees constructed from pooled sequence data, based 

on DXY. 
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Figure 1.2: Phylogenetic incongruence through gene flow 

A hypothetical scenario by which gene flow can result in phylogenetic 
incongruence. These trees represent whole genome phylogenies constructed 
for populations showing distinct multigenic traits 1 and 2. Populations showing 
traits 1 and 2 arose through a single divergence event, resulting in a 
monophyletic tree (left). However, gene flow (represented by a blue arrow) 
between populations with different traits reduces divergence around genomic 
loci that are not involved in maintaining the distinctive identities. The result is a 
polyphyletic whole genome phylogeny (right). In principle, phylogenies 
constructed using the genes involved in traits 1 and 2 will still be monophyletic. 
 

 

The grouping tree scan as a means of identifying barrier genes 

To explore the genomic landscape of DXY variation across the genome, I have 

developed the grouping-tree-scan methodology. This approach summarises DXY 

across populations and across the genome using UPGMA hierarchical clustering 

trees. In doing so, the grouping-tree-scan combines the genome-wide nature of a 

genome scan, with the power of phylogenetic comparisons of multiple taxa. The 

approach proceeds as follows: 

 

1. Short read DNA is collected from experimental populations, and DNA from 

each population is sequenced within a pool (pool-seq) 

2. Pool-seq data from experimental populations is mapped to a common 

reference genome 
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3. Pairwise DXY is calculated between all populations, across overlapping 

windows of genomic sequence (subgenomic windows) 

4. For each window, hierarchical clustering (UPGMA) is used to construct a 

representative tree 

5. Trees are grouped into ‘forests’, based on topological similarity 

6. Forests are summarised based on how their trees group the experimental 

taxa, and the amount of DXY separating population groups 

 

By analysing multiple populations at once, grouping-tree-scan provides greater 

power to identify subgenomic regions showing elevated DXY. A focus on pool-seq 

data means that allelic variation can be sampled and compared across 

representative samples of populations. Also, population grouping derived from 

grouping tree scans are ‘aphenotypic’, meaning that they group populations 

independently of any phenotypic assumptions. 

 

Antirrhinum as a model system 

I have introduced the grouping-tree-scan as a means of detecting parallel signatures 

of DXY that may reflect genetic barrier loci. I have also characterised two distinct 

types of genetic barrier: the intrinsic epistatic barrier and the differentially adaptive 

barrier, that may underpin reproductive isolation within natural populations. By 

applying the grouping-tree-scan to a suitable model system, it may be possible to 

test these proposed genetic barrier hypotheses. Analyses detailed here will 

investigate populations of the garden snapdragon, Antirrhinum majus, and its wild 

relatives. A. majus, is an established model system that has been used extensively 

in studies of classical and molecular evolution (reviewed in Schwarz-Sommer, 

Davies, and Hudson, 2003). Along with a wealth of classical genetics resources, A. 

majus boasts an ongoing sequencing programme, with a high-quality chromosome 

level reference genome (Li et al., 2019). A. majus is a diploid (2n = 16) with a genome 

of around 500 Mb. Its wild relatives are distributed around the Mediterranean, 

being primarily native to the Iberian Peninsula. Molecular evidence suggests that 

the genus Antirrhinum did not undergo speciation until relatively recently in 



 28 

evolutionary time, with estimates based on homologous genes in monocots 

suggesting that this occurred less than 5 million years ago (Vargas et al., 2009). Since 

then, taxa within Antirrhinum have evolved to show a great deal of variation in 

morphology and growth habit. Most Antirrhinum species are self-incompatible, 

with experimental evidence suggesting that this system is gametophytic and 

controlled by a polymorphic S-locus (Qiao et al., 2004). However, all species are able 

to interbreed to generate fertile hybrid progeny in the laboratory, and hybrids are 

also found in natural populations. This combination of recent species divergence, 

widespread self-incompatibility, and frequent interspecific hybridisation has long 

confounded taxonomic classification (Wilson and Hudson, 2011). Investigating the 

genetic barriers reflecting historical divergence events in Antirrhinum represents 

the objective of this thesis. 

 

Detection of genetic barriers involving small RNA loci 

In introducing the problem of identifying barrier genes, I have focussed specifically 

on the detection of allelic variation. However, at least one locus that has been 

implicated in Antirrhinum population divergence is an sRNA locus, which differs in 

its mode of action compared to protein coding genes. In characterising the 

molecular basis of yellow pigment biosynthesis in Antirrhinum, Bradley et al. (2017) 

demonstrated that floral patterning of yellow was regulated by a small RNA (sRNA) 

locus, SULF. SULF restricts the spread of yellow on the face of the flower by 

facilitating the degradation of the mRNA transcripts of its target gene, FLA 

(previously known as Am4’CGT) (Bradley et al., manuscript in preparation). By 

carrying out cline analysis, which observes changes in allele frequencies across a 

natural hybrid zone for flower colour, it was demonstrated that the SULF genomic 

region shows steep clines, consistent with natural selection. However, the 

functional SULF element, a 1.5 kb inverted repeat (IR), is absent within yellow-

flowered populations. Therefore, differential SULF function between populations 

must not be due to allelic variation, but to the presence or absence of a functional 

SULF IR. If similar loci to SULF are involved in genetic barriers, they may not be 
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detected using a grouping tree scan. In Chapter 5, I propose and test a bioinformatic 

pipeline for identifying SULF-like loci through comparison of genome assemblies. 
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Aims of this thesis 

Within the following chapters, I will detail my work using bioinformatic methods to 

study barriers to gene flow in Antirrhinum populations. Using the grouping tree scan 

approach, I will first test the hypothesis that divergence between sympatric 

populations of Antirrhinum majus pseudomajus and Antirrhinum majus striatum is 

underpinned by an intrinsic epistatic barrier involving differences in flower colour.  

 

In Chapter 4, using an adapted version of the grouping tree scan, I will analyse 

populations of distantly related Antirrhinum species showing distinctive growth 

phenotypes. I will identify barriers to gene flow between these species and, in doing 

so, test the hypotheses that populations have diverged through differentially 

adaptive barriers. 

 

In Chapter 5, I will outline a bioinformatics pipeline that has been developed to test 

whether SULF-like genetic elements are common within Antirrhinum genomes, and 

whether they might be involved in genetic barriers between species. 

 

In light of these observations, the intrinsic epistatic and differentially adaptive 

barrier hypotheses, and the methods developed to test them, will be evaluated. 
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2: Materials and methods 

DNA extraction and sequencing from pooled leaf tissue 

For Whole Genome Sequencing, genomic DNA was isolated using a 

cetyltrimethylammonium bromide (CTAB) method on ~ 2-5g of leaves harvested 

either from a single individual or as final weight for pooled samples as described by 

Coen, Carpenter, and Martin (1986). Samples from the greenhouse were stored at 

-80°C. Samples collected in field locations throughout France and Spain were either 

placed in bags in silica, or stored in moist paper towel and kept cool at 4°C until they 

could be Courier Posted by overnight delivery to the lab in the UK and frozen at -

80°C on arrival. Short read sequencing of DNA extracted from pooled leaf tissue was 

carried out by Novogene using an Illumina HiSeq 2500. A GPS reading was taken at 

each wild population sampling location. These are recorded in Appendix 1. 

 

Reference genome assembly 

Analyses in Chapter 4 and Chapter 5 used the published Antirrhinum majus 

reference genome (Li et al., 2019). Analyses in Chapter 3 used a more recent draft 

of the Antirrhinum majus reference genome, which I have termed A. majus 

Reference genome version 3.5 (V3.5). This draft was assembled by Sihui Zhu in the 

group of Yongbiao Xue at the Beijing Institute of Genomics. Antirrhinum majus JI7 

was grown, and leaf tissue harvested, as specified within the Methods section of 

the published A. majus reference genome paper (Li et al., 2019). DNA was extracted 

from leaf tissue using the CTAB method, and sequenced. 40X PacBio HiFi reads were 

generated, and assembled using FALCON (Chin et al., 2016). FALCON-Unzip was 

used for initial assembly of reads. Hi-C data was generated by Novogene, and used 

with FALCON-phase to determine the phase of all contigs. Phased contigs were then 

analysed using optical Bionano molecular maps. Low quality maps, with length ≤ 

150 kb or label number ≤ 9 were removed. Bionano genome maps, combined with 

two phased haplotype assemblies, were passed to the Bionano Solve hybrid 

scaffolding pipeline (version 3.6). This was run in non-haplotype-aware mode, as 

recommended within the manual. Where conflicts were detected between 
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sequence maps and optical molecular maps, both were cut at the conflict site and 

assembled, with parameters -B2 and -N2. 

 

Adapters were removed from raw Hi-C reads, and low-quality bases were trimmed 

using Trim Galore! (version 0.6.1) (Krueger, 2015) with default parameters. Clean 

reads were mapped to the Bionano assembly using BWA-MEM (Li and Durbin, 

2009). To generate a chromosomal assembly, the 3D-DNA pipeline (Dudchenko et 

al., 2017) was first used to refine the assembly. Manual review of the candidate 

assembly was carried out interactively using Juicebox Assembly Tools (Durand et 

al., 2016). The reviewed chromosomal assembly was then generated using the 

following command:        run-asm-pipeline-post-review.sh -s 

finalize --sort-output --build-gapped-map 

 

Mapping reads to reference genome 

Pooled Illumina sequencing reads in FASTQ format were mapped to the reference 

genome using BWA-MEM with the -M flag for Picard 

(http://broadinstitute.github.io/picard/) compatibility. Mapped SAM files were 

sorted using SAMtools, and duplicate reads were removed using Picard 

MarkDuplicates. Local realignment around indels was carried out using GATK 

(McKenna et al., 2010) RealignerTargetCreater to generate an intervals file and 

GATK IndelRealigner to carry out the realignment. Read coverage was determined 

for each pool using GATK DepthOfCoverage. Scripts used to run the mapping tools 

are included in the accompanying shell script, snap_map.sh 

(https://github.com/DR-Antirrhinum/DR_thesis_2023). 

 

SlidingWindows analysis 

MPILEUP files were generated from processed BAM files using SAMtools (Danecek 

et al., 2021) mpileup, with minimum and maximum quality thresholds of 30 and 40 

respectively. The -B flag was used to disable the use of probabilistic realignment in 

the computation of base alignment quality, as this can result in an increase in false 

SNP calls due to misalignments. The -A flag was also set to include orphaned reads 
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in variant calling. MPILEUP files were converted to Popoolation2 SYNC format 

(Kofler, Vinay Pandey, and Schlötterer, 2011) for compatibility with 

SlidingWindows.py (version 1.10), a population genomics Python script developed 

by David Field. SlidingWindows.py is available on GitHub 

(https://github.com/dfield007/slidingWindows). SlidingWindows calculates 

populations genetic statistics across the genome, in user defined window sizes. 

Unless otherwise specified, analyses conducted here were carried out using 

window sizes of 50 kb, with a 25 kb overlap. Minimum and maximum quality 

thresholds were set at 20 and 400 respectively. For an allele to be called at a site, it 

must be supported by at least two reads in at least two populations. Within these 

analyses, I used three statistics calculated by SlidingWindows; “piAdj” is πw, 

adjusted for binomial sampling. piAdj = Q%[
('(!)

('(#*+!)], where M is the read depth, 

and b is the minimum read count required for an allele to be called. “dXYraw” is 

DXY. “FstfromMeanPiAdj” is FST calculated using adjusted πw values. D is calculated 

by subtracting mean πw from DXY. Example code used to run SlidingWindows is 

included in the accompanying shell script, sync_SlidingWindows.sh 

(https://github.com/DR-Antirrhinum/DR_thesis_2023). 

 

Constructing a mean DXY / D tree 

Scripts to process the output data tables from SlidingWindows were written in R 

(version 4.1.3), using the RStudio IDE (version 1.4.1717). Between population 

statistics were used to populate distance matrices corresponding to each genomic 

window (“dXYraw”, and “FstfromMeanPiAdj” were used; see the README at 

https://github.com/dfield007/slidingWindows). For a given distance matrix, an 

UPGMA hierarchical clustering tree was constructed using the agnes function from 

the cluster package (Maechler et al., 2022). To generate a mean tree for multiple 

genomic windows, or the whole genome, the mean was calculated across distance 

matrices using the Reduce function. Example code for generating mean trees is 

included within the accompanying R script, grouping_tree_scan.R 

(https://github.com/DR-Antirrhinum/DR_thesis_2023). 
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Whole genome sweep analysis 

To simulate the effect of a whole genome selective sweep within a population, the 

SYNC file for each chromosome was, in turn, parsed to extract the column 

corresponding to the MP11 population. The allele frequencies across each of these 

columns were then edited using a Python script. For each genomic site where more 

than one allele showed depth > 0, one allele was randomly sampled (frequencies of 

N / del alleles were ignored). Probability of sampling was weighted based on the 

frequency of alleles present. The depth of the sampled allele was set to equal the 

total depth at that site. The depth of all other alleles was set to 0. Each edited table 

was then used to replace the original columns within the SYNC files, and the 

SlidingWindows analysis run again. Code used to carry out the whole genome 

sweep is included in the accompanying python program, artificial_sweep.py 

(https://github.com/DR-Antirrhinum/DR_thesis_2023). 

 

Grouping of forests based on comparisons to seed trees 

The similarity of UPGMA trees was estimated using the cophenetic correlation 

coefficient (Sokal and Rohlf, 1962). To compare two trees, their cophenetic 

matrices were obtained using the cophenetic function in base R. Cophenetic 

matrices were then compared based on their Pearson correlation coefficient, 0 =

	 ∑ (#!$#̅)('!$'()"
!#$

)∑ (#!$#̅)%"
!#$ )∑ ('!$'()%"

!#$
, where x and y correspond to the minimum 

merging distances in each matrix. All subgenomic trees were clustered into forests 

by iterative comparisons to randomly sampled seed trees. To do this, a tree was 

sampled at random, and compared to all other subgenomic trees using the 

cophenetic correlation coefficient. An r value of 0.5 was chosen as the threshold for 

tree similarity, in order to capture trees showing moderate or high topological 

similarity. Where r > 0.5, trees were declared similar, and grouped. Once grouped, 

trees were unable to participate in subsequent comparisons. Once a seed tree had 

been compared to all genomic trees, it was added to the forest, and another seed 

tree was selected. This was repeated iteratively until no trees remained. Example 
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code for clustering trees into forests is included within the accompanying R script, 

grouping_tree_scan.R (https://github.com/DR-Antirrhinum/DR_thesis_2023). 

 

Calculation of shortest root branch (SRB) 

To calculate the length of the shortest root branch (SRB) for a tree, a cophenetic 

matrix was derived using the base R cophenetic function. SRB is equal to the 

maximum value within the cophenetic matrix (the tree height) minus the second 

highest value. Example code for calculating SRB is included within the 

accompanying R script, grouping_tree_scan.R (https://github.com/DR-

Antirrhinum/DR_thesis_2023). 

 

Bootstrapping forest clustering 

To test how replicable the results of the forest clustering are, a simple 

bootstrapping process was implemented. Forest clustering was run 25 times. Each 

time, a mean SRB value was calculated for each forest, by averaging the SRB values 

of all trees within a given forest. The forest showing the highest mean SRB was 

identified, and all subgenomic regions within it recorded. This was repeated 24 

more times, after which all subgenomic regions that have appeared within the most 

outlying SRB forest were reported. Example code for bootstrapping the forest 

clustering process is included within the accompanying R script, 

grouping_tree_scan.R (https://github.com/DR-Antirrhinum/DR_thesis_2023). 

 

Classifying trees based on root division 

Trees were divided at their topmost branch (the root branch) using the cutree 

function, with k (the desired number of groups) set to two. To classify trees based 

on root division, populations within each of the split groups were recorded, and 

compared to a user specified signature. Example code for carrying out root division 

classification is included within the accompanying R script, grouping_tree_scan.R 

(https://github.com/DR-Antirrhinum/DR_thesis_2023). 
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Growth conditions and crosses 

Plant populations used in these studies were managed by Lucy Copsey, Desmond 

Bradley, and the John Innes Centre Horticultural Services department. Greenhouse 

plants were grown in JI compost-soil mixes as described (Carpenter et al., 1987) 

with supplemental lights in winter to give 12-16 hour days. Outside plants were 

grown in summer on the same soil mixes in pots or plugs in trays on raised benches. 

Lines from self-incompatible species were maintained by inter-sibling crossing. For 

crosses, young floral buds (pre-anthesis) were opened with sharp forceps and 

young anthers removed. Two to four days later when the flower was open, pollen 

from another plant was daubed onto the stigma using forceps carrying pollen or the 

whole stamen. Four to six weeks later ripe capsules with mature seed could be 

harvested. 

 

KASP genotyping  

KASP Genotyping was performed by Desmond Bradley, as described in Bradley et 

al. (2017). The fluorescence signals discriminating the two alleles were detected in 

a BioRad CFX96 light cycler and data processed with the BioRad CFX Manager 

software v3.1. AFLP methods used standard PCR with a PCR cycle 1 at 94°C for 3 

minutes, followed by 35 cycles of 94°C for 1 minute, 55-58°C for 1 minute and 72°C 

for 2 minutes, before a final cycle of 72°C for 10 minutes and storage at 16°C until 

collection. PCR products were run on 1 % (w/v) agarose gels and stained with 

ethidium bromide before standard UV imaging. KASP / AFLP oligos are recorded in 

Appendix 3. 

 

Flower photography 

Flower photography was carried out by Desmond Bradley. Flowers were places on 

black velvet with a scale bar and Small Grey & Colour Separation Chart (Danes Picta 

BST13) for colour, light level and white balance monitoring. Desmond used an 

Olympus XZ-1 (10 Megapixels) Camera with side / overhead lighting via table lamps 

fitted with halogen 42W 630 lumen (2800k) warm white light bulbs. Camera 
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settings were set to the closest White Balance of 3000K, no flash, Macro On, F stop 

8.0, Exposure Time 1/20-1/40 sec, ISO 200, RAW images, aspect 4:3, high definition. 

 

RNA extraction from flower buds 

Desmond Bradley isolated total RNA from various tissues using the RNeasy Plant 

mini Kit (Qiagen). Leaves were harvested from 3-10 individual plants in a range of 

leaf sizes from very small to mature (Total 10-20 leaves / individual). Shoots (lateral 

shoot branches from leaf axils at various stages of growth) where harvested from 

3-10 plants, collecting the shoot tips (~ top 1 cm) (Total 20-40 / individual). Flower 

buds (including all floral organs) in a range of developmental sizes from small to just 

open flower were harvested from 3-10 plants (Total 10-20 buds / individual). 

Mature flowers from just before opening to just opened, from 3-10 plants, were 

separated into tubes from lobes. Lobes were then either pooled from 3 different 

individuals of the same genotype, or further separated into dorsal/upper lobes vs. 

ventral/lower lobes before pooling. (Total 2-20 /individual). Three independent 

replicates were collected for all genotypes except in the analysis of A. m. 

pseudomajus, A. m. striatum, and A. molle, where a single sample was used to 

ascertain general sRNA composition. For A. m. pseudomajus compared to A. m. 

striatum Desmond used A. m. pseudomajus Accession Ac1266 (sub-location M-AUT-

8) and A. m. striatum Accession Ac1125 (sub-location Z-ALE-11). Total lobes were 

harvested from various individuals to give pools of each genotype in triplicate. 

 

Small RNA libraries were constructed by Desmond Bradley as described in Bradley 

et al., 2017. For a comparison of single samples of A. m. pseudomajus Ac1099 

(sublocation Z-NDM-4), A. m. striatum Ac1130 (sublocation Z-VCO-4) and A. molle 

Ac1313 (sublocation W-RGA-34). Desmond used pools of 3-10 plants in each case, 

and dissected out petals from a range of bud sizes from very small to just opened 

flowers (10-20 buds / individual). For a detailed study of A. m. pseudomajus Ac1099 

(sublocation Z-NDM-4) versus A. sempervirens Ac1169 (sublocation C-NAP-364) 

various tissues were harvested in triplicate, each from 3-10 individual plants. This 

gave 10-40 tissue samples / individual. Leaves were harvested in a range of leaf 
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sizes from very small to mature. Floral buds were harvested in a range of total floral 

buds from smallest buds to first open flower. Petals were harvested and tubes 

discarded to collect dorsal/upper half lobes and ventral/lower lobes from a range 

of floral buds from smallest buds to first open flower. Shoots here harvested at their 

tips (~ top 1 cm) from various sized branches in the axils of leaves. Sequencing of 

sRNAs was carried out by Maria-Elena Mannarelli at the University of East Anglia. 

 

RNAseq differential expression analysis using DESeq2 

Differential expression analysis of total RNA between A. m. pseudomajus and A. m. 

striatum was carried out by Annabel Whibley. DESeq2 (Love, Huber, and Anders, 

2014) was run using default parameters. 

 

Gene prediction using eggNOG-mapper 

To automatically derive functional predictions, eggNOG-mapper 2.1.9 

(Cantalapiedra et al., 2021) was used, through the web interface (http://eggnog-

mapper.embl.de). Sequences to be annotated were submitted in FASTA format, 

selecting the genomic data input option. Blastx-like was chosen as the gene 

prediction method. Otherwise, default parameters were used. 

 

Eight species genome assemblies 

Genome assemblies of the eight species analysed in Chapter 5 were assembled by 

Sihui Zhu at the Beijing Institute of Genomics. Illumina reads were sequenced, and 

trimmed using Trim Galore! with parameters -q25 --stringency 3 to remove 

low-quality bases and adapters. GenomeScope2 (Ranallo-Benavidez et al., 2020) 

was used to evaluate species reads based on the k-mer spectrum, heterozygosity 

rate and haploid genome length. Contig-level assemblies were performed using 

PacBio reads and the Canu package (version 1.9) (Koren et al., 2017). purge_dups 

(Guan et al., 2020) was used to remove duplicate contigs in primary assemblies. 

Repetitive sequence within the assemblies was identified and masked using 

RepeatMasker (Smit et al., 2013). High-quality plant proteins were retrieved from 

SwissProt and aligned to the genome using ProtHint (Brůna et al., 2020). RNAseq 
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datasets were also aligned to the repeat masked genomes. Gene prediction was 

carried out using the Braker2 (Brůna et al., 2021). The overall quality of genome 

assemblies and genome annotations were assessed using LAI (Ou et al., 2018) and 

BUSCO (Simão et al., 2015). 

 

Detection of genomic inverted repeats 

IRs were identified within genome assemblies using Inverted Repeat Finder (IRF) 

(Warburton et al., 2004), with the following parameters: irf307.dos.exe 

in.fa 2 3 4 70 10 150 30000 3500 -d -a4 -i2 

 

Trimming and mapping sRNAs 

sRNAs were first trimmed of High Definition adapters (Xu et al., 2015) using Trim 

Galore!. To do this, the first seven nucleotides of the Illumina adapter sequence 

were matched (TGGAATT), along with the four HD nucleotides at the 3' and 5' ends 

of the inserted sequence. Trimmed sRNAs were mapped to all IRs using Bowtie, 

allowing no more than two mismatches between the sRNA and the IR (-v 2). 

 

BLASTN searches 

Local BLASTN searches were carried out using the BLAST+ application (Camacho et 

al., 2009), using blastn 2.9.0+. Predicted protein coding sequences for Antirrhinum 

majus were downloaded from the Antirrhinum genome database website 

(http://bioinfo.sibs.ac.cn/Am/index.php). 

 

Mapping IRs to genome assemblies 

IRs were mapped to all species genome assemblies, and the A. majus reference 

genome, using Minimap2 (Li, 2021), with the following parameters: ./minimap2 

-x asm5 -a -k 15 -w 5 target.fa query.fa 

 

BLASTX searches 

Comparisons against the NCBI non-redundant protein database (nr) were carried 

out using the online BLASTX search tool (https://blast.ncbi.nlm.nih.gov/). 
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3: Grouping tree scans reveal barriers to gene flow between 

two Antirrhinum subspecies 

Introduction 

Natural hybrid zones, where distinct populations meet and undergo gene exchange, 

have long been a valuable resource in the study of speciation. Over time, pervasive 

gene flow can have an extensive homogenising effect on population genomes. 

Against this backdrop of reduced divergence, loci which resist gene flow show 

characteristic islands of elevated relative divergence. By carrying out comparative 

genomic analyses of populations either side of a hybrid zone, it is theoretically 

possible to identify barriers to gene flow in silico, and thereby capture the 

mechanistic basis of the population divergence (Wolf and Ellegren, 2017, Ringbaur 

et al., 2018). This approach has been utilised in A. majus, of which several natural 

hybrid zones between the contrasting magenta- and yellow-flowered subspecies, 

Antirrhinum majus pseudomajus and Antirrhinum majus striatum, have been 

identified within the north of Spain. A. m. pseudomajus has magenta flowers with 

yellow highlights at the point of bee entry, whereas A. m. striatum has yellow 

flowers with magenta veins around the bee entry point (Figure 3.1). Between the 

two population is an area of around 1 km where predominantly hybrid colour 

phenotypes are detected (Whibley et al., 2006). 
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(a) 

 

(b) 

 

(c) 

 

Figure 3.1: Photographs of A. m. pseudomajus and A. m. striatum flowers 

Photographs of flowers from (a) A. m. pseudomajus, (b) A. m. striatum, and (c) 
hybrid plants. 
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Flower colour in A. m. pseudomajus and A. m. striatum makes use of two distinct 

pigments – magenta coloured anthocyanin, and yellow aurone. The biosynthesis 

pathways of anthocyanin and aurone have been extensively studied in Antirrhinum 

(Martin et al., 1991, Schwinn et al., 2006, Davies et al., 2006, Nakayama, 2022). A 

subset of biosynthetic enzymes have been shown to be major regulators of flower 

colour patterns, and some have been directly implicated in phenotypic divergence 

in the field (Schwinn et al., 2006, Whibley et al, 2006, Bradley et al., 2017, Tavares 

et al., 2018). A major regulator of magenta pigmentation is the ROSEA (ROS) locus. 

This region contains the MYB-like genes ROS1 and ROS2, which interact with 

components of the anthocyanin pathway to generate magenta pigmentation 

throughout the flower (Figure 3.2a). VENOSA (VE) also encodes a MYB-like 

transcription factor. VE expression promotes the synthesis of anthocyanin 

specifically along the veins of dorsal petals. Allelic variation at ROS and VE has been 

shown to generate varying intensities of magenta colouration, in a manner that is 

influenced by environmental conditions (Schwinn et al., 2006). ELUTA (EL), a MYB-

like semidominant repressor of anthocyanin pigmentation, is tightly linked to ROS. 

EL has a restricting effect on the spread of magenta by both ROS and VENOSA 

(Tavares et al., 2018) (Figure 3.2c). Two loci have been implicated in controlling 

yellow flower colour. FLAVIA (FLA) catalyses the biosynthesis of the aurone 

precursor. FLA activity results in spread yellow throughout the flower (Figure 3.2b). 

Mutant fla alleles show restricted or null yellow (Bradley et al., manuscript in 

preparation). SULF is a sRNA producing IR that acts to restrict yellow pigmentation 

by targeting the transcripts of FLA for degradation (Bradley et al., 2017) (Figure 

3.2c). 

  



 43 

 

(a) 

 

(b) 

 

(c) 

 

Figure 3.2: Spread of magenta and yellow in Antirrhinum flowers 

Illustrations showing (a) spread magenta, (b) spread yellow, and (c) restricted 
yellow and magenta in the flowers of A. m. pseudomajus and A. m. striatum. 
Flower illustrations by Mabon Elis. 
 

 

Distinct populations of Antirrhinum majus subspecies show equivalent fitness in a 

shared environment 

Within and around the Planoles hybrid zone, a mutualistic relationship exists 

between snapdragons and several bumblebees of the Bombus genus (Tastard et al., 

2008). The characteristic enclosed flowers of Antirrhinum species prevent 

pollination by small insects, thereby securing a large nectar reward for bumblebees. 

This is believed to promote faithful visitation (Vargas et al., 2017), provided that 

flowers are perceivable to bumblebees. In laboratory experiments, the known 

pollinator Bombus terrestris does not significantly favour A. m. striatum or A. m. 

pseudomajus (Jaworski et al., 2015). The extent to which this approach informs 

about pollinator preference in the field is unclear, as it is infeasible to faithfully 

reconstitute complex ecological relationships where other factors such as scent 

might be having cryptic effects on bee preference. Field studies have characterised 

some of the complexities within the relationships between plants and pollinators, 

including the prevalence of seed and nectar robbing by predatory weevils and 

parasitic bees (Leonard et al., 2013, Jaworski, Thébaud, and Chave, 2016) as well as 

the possible effects of frequency dependent selection, whereby pollinator 

attraction is rooted not only in colour variation within individuals, but within groups 

of organisms showing common phenotypes (Tastard et al., 2012). However, no 
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clear evidence exists to suggest that either subspecies is significantly disadvantaged 

relative to the other (Khimoun et al., 2011). Intensive genomic and ecological study 

at one of these hybrid zones, near the village of Planoles, has provided evidence 

that the two subspecies are broadly genomically similar, but diverge at three 

distinct loci containing four genes involved in flower colour (Bradley et al., 2017, 

Tavares et al., 2018, Bradley et al., preliminary data). The notion that colour genes 

alone might have the capacity to initiate and participate in population divergence 

represents an exciting prospect, informing not only about the diversification of 

flowering plants, but also about the properties of barrier genes. Other experimental 

systems, including Heliconius butterflies and Mimulus monkeyflowers, show strong 

evidence of divergence around colour loci (Cooley and Willis, 2009, Brien et al., 

2022). 

 

The Planoles hybrid zone has been studied using clines and FST analysis 

A classic molecular technique in the study of natural hybrid zones is cline analysis 

(Barton and Hewitt, 1985). By sampling allele frequency across the span of the 

hybrid zone, it is possible to detect spatial patterns in allelic distribution. Where 

allelic variation is strongly involved in phenotypic diversity between populations 

undergoing hybridisation, this spatial pattern, or cline, will be distinctly steep, 

reflecting the rapid increase (or decrease) in the frequency of the population-

specific allele with geographic position. Cline analyses at the Planoles hybrid zone 

have shown that steep clines exist at several flower colour genes, suggesting that 

these loci are under selection (Bradley et al., 2017, Tavares et al., 2018). However, 

steep clines can also indicate that minimal gene flow has taken place across the 

hybrid zone, for example if the two subspecies met only recently. Tavares et al. 

(2018) carried out whole genomic divergence comparisons using FST, a measure of 

relative sequence divergence. FST analysis of populations from either side of the 

Planoles hybrid zone has shown that the genomes of these two distinct subspecies 

are strikingly homogeneous, except at a small subset of loci which show substantial 

divergence. By combining FST comparisons with cline analyses and classical genetics 

experiments, it has been shown that two of these divergence peaks correspond to 

ROS and FLA (Tavares et al., 2018, Bradley et al., manuscript in preparation). 
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Population analyses can be subject to ascertainment bias 

An ongoing challenge of determining speciation genes through analysis of hybrid 

zones is ascertainment bias, where certain members of a population are more likely 

to be sampled than others. In biology, ascertainment bias is commonly discussed in 

terms of detecting SNPs (Lachance and Tishkoff, 2013). In principle, ascertainment 

bias can manifest when the methodology used to capture candidate loci is designed 

with the segregating phenotypes in mind. In Antirrhinum, the techniques used to 

detect divergence at colour loci were designed with respect to the flower colour 

phenotypes of the populations or individuals. Plants were chosen for sampling by 

observing the colour of their flowers, but not on the basis of any other trait. 

Variation in other traits, particularly those that were not visible, was ignored. If, for 

example, divergence was also driven by a trait such as root length or floral scent, 

and neither of these traits showed the same pattern of variation as flower colour, 

then this would not necessarily be reflected in the detected divergence islands. 

 

Hypotheses for explaining colour gene divergence 

To explain the apparently exceptional nature of colour gene loci, two hypotheses 

can be tested. The first postulates that divergence at colour gene loci is driven by 

as-yet-undetected environmental factors. In this case, it is predicted that 

comparisons between populations of differing geographical origin will reveal 

barriers at different traits, depending on the local environmental conditions of the 

populations tested. These additional barriers have not been detected at the hybrid 

zone due to ascertainment bias. An alternative hypothesis suggests that colour 

genes underpin a genetic barrier between A. m. pseudomajus and A. m. striatum. A 

simple architecture that may give rise to such a barrier is heterozygote 

disadvantage, where non-parental allele combinations are less fit than parental 

types (Láruson and Reed, 2016). The dynamic of a barrier causing heterozygote 

disadvantage will vary depending on the nature of the genes involved. However, 

the effects on fitness at different loci are expected to be additive. Alternatively, an 

intrinsic epistatic barrier may be in place. In this case, barrier loci are coadapted, 

and affect fitness multiplicatively (Csilléry et al., 2018). If the gene flow barrier is 

manifested through epistasis, it is expected that divergence islands at a panel of 
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colour genes will always be detectable in comparisons between subspecies, 

regardless of local environmental conditions. Furthermore, assuming that 

epistatically-maintained gene flow barriers are not a common phenomenon, any 

newly identified islands will be predicted to correspond to additional colour genes. 

This is in contrast to the heterozygote disadvantage case, where islands at genes 

relating to other phenotypes might be expected. 

  



 47 

Aim of this work 

In this Chapter, I will carry out a grouping tree scan to test the hypothesis that the 

reproductive barrier between A. m. pseudomajus and A. m. striatum is underpinned 

by an intrinsic epistatic barrier involving colour genes. Using pool-seq data from 18 

plant populations, I will first observe the extent of divergence between populations 

by generating a whole genome DXY tree. Then, to detect barriers to gene flow 

between populations, I will carry out a grouping tree scan. Subgenomic trees will 

be aphenotypically clustered into forests, based on how they group the 

populations. Forests containing trees which show elevated between-group 

divergence will be analysed. This will inform about which genomic regions show 

elevated divergence. It will also show whether elevated divergence is between A. 

m. pseudomajus and A. m. striatum, or between populations of the same 

subspecies. The genic content of genomic islands of divergence will be analysed. If 

identified regions contain genes involved in flower colour, this will provide evidence 

that divergence between populations might be driven by an intrinsic epistatic 

barrier underpinned by colour genes. It will also demonstrate that prior analyses of 

flower colour at the Planoles hybrid zone have not been confounded by 

ascertainment bias. If more loci are detected, or barriers are detected between 

alike populations, this will demonstrate that cryptic environmental or genetic 

factors may be involved in differentiating the populations. 
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Results 

Results: DXY tree scans reveal candidate barrier regions  

To explore the relationship between nine populations of A. m. pseudomajus and 

nine of A. m. striatum (Figure 3.3), whole-genome genetic distance trees were 

generated. For each population, leaves were sampled from 20-60 individuals and 

pooled (pool details recorded in Appendix 1). DNA was extracted from each pool, 

sequenced, and mapped to V3.5 of the Antirrhinum majus reference genome (Zhu 

et al., preliminary work). SNPs were filtered to ensure all were biallelic (for sites 

with more than two alleles, only the two most common alleles were considered). 

In comparing two populations, POP1 and POP2, for a given SNP, p1 and q1 are the 

frequencies of each allele in POP1, and p2 and q2 as the frequency of each allele in 

POP2. Genetic distance relationships between a given set of populations can be 

summarised by constructing a UPGMA tree (Sokal and Michener, 1958). 

 

The primary goal of this analysis was to identify possible barriers to gene flow. To 

minimise confounding effects of inbreeding and selective sweeps on distance trees, 

genetic distance has been reported using Nei’s DXY (Nei, 1987). DXY is defined as 

,!-"+,"-!
#  averaged over all sampled positions. Constructing a DXY tree based on the 

whole genome sequence of each population gave a polyphyletic grouping for the 

subspecies, indicating no genome-wide barrier to gene flow between subspecies 

(Figure 3.4). 

 

One disadvantage of using DXY for tree construction is that does not evaluate to 0 

when comparing identical populations. For identical populations, p! = p#, and 

Y! = Y# so DXY equates to within population diversity Q% = Z!Y! = Z#Y# averaged 

over all sampled positions. The non-zero distance between identical or similar 

populations accounts for the elongated terminal branches in DXY (Figure 3.4). Trees 

generated using a different distance measure, such as Nei’s standard genetic 

distance [ = [./ − Q%\\\\ do not suffer from this problem (Figure 3.5). D gave a 

different tree to that for DXY. Again, subspecies were grouped polyphyletically but 

in this case tree topology may be influenced by sweeps and / or inbreeding. 
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Figure 3.3: Map of 18 experimental populations of A. m. pseudomajus and A. m. 
striatum 

Sampling locations of nine populations of A. m. pseudomajus, and nine of A. m. 
striatum. Terrain is coloured according to altitude. Magenta points are A. m. 
pseudomajus populations, yellow points are A. m. striatum populations. Points 
are scaled according to number of sampled individuals (see Appendix 1). 
 

 

To illustrate the insensitivity of DXY trees to inbreeding / sweeps, one of the 

populations, MP11, was subjected to a genome-wide sweep by randomly sampling 

alleles at each position and setting their frequency to 1 (i.e. fixing them). The 

resulting DXY tree showed only minor changes (probably caused by applying the 

sweep prior to filtering for biallelic sites), whereas in the D tree, MP11 was shifted 

to become the outgroup (Figure 3.6). 
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To determine whether all regions in the genome gave similar DXY trees, the genome 

was divided into 50 kb windows, with a 25 kb overlap between adjacent windows, 

yielding 19,520 windows in total. Figure 3.7 shows a DXY tree for a randomly 

sampled window. This tree has a different topology compared to the whole genome 

tree, but whether this is caused by sampling a smaller region of the genome or 

differential gene flow is unclear. 

 

 

Figure 3.4: Whole genome mean DXY tree for 18 populations 

A DXY tree summarising the relationships between the 18 experimental 
populations. Mean DXY between each pair of populations was averaged over all 
19,520 50 kb genomic windows. The blue box indicates the minimum whole 
genomic mean value of πw across the 18 populations. Population names in 
magenta are A. m. pseudomajus, names in yellow are A. m. striatum. 
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Genomic regions resistant to gene flow between two groups of populations might 

be expected to give DXY trees with a deep division between these populations. To 

identify such trees, all 19,520 DXY trees were first classified according to their 

cophenetic correlation coefficient, a measure of tree similarity (Sokal and Rohlf, 

1962). To avoid having to compute pairwise comparisons of all 19,520 trees, which 

would take a long time computationally, trees were grouped based on similarity to 

randomly sampled seed trees. To do this, a random DXY tree was first selected as a 

seed and compared to all other genomic trees in a pairwise manner. Each 

comparison involved creating a cophenetic matrix for each tree, each being 

populated with the minimum merging distances between all population pairs in 

that tree (Figure 3.8). The cophenetic correlation coefficient between two trees was 

then calculated from the linear correlation between a pair of cophenetic matrices 

(Figure 3.9). All trees with a correlation > 0.5 were classified together and removed 

from further comparisons. Another seed tree was then randomly selected from the 

remaining unclassified trees. This process was iterated until no trees remained, 

yielding groups of trees, henceforth termed forests. Running this algorithm until no 

trees remained yielded 593 forests.  
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Figure 3.5: Whole genome D tree for 18 populations 

A D tree summarising the relationships between the 18 experimental 
populations. Mean D between each pair of populations was averaged over all 
19,520 50 kb genomic windows. Population names in magenta are A. m. 
pseudomajus, names in yellow are A. m. striatum. 
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(a) 

 

(b) 

 
Figure 3.6: Trees plotted before and after a whole genome selective sweep in the MP11 population 

Trees plotted before and after a whole genome selective sweep has been applied to the MP11 population. Within the sweep, all 
polymorphic sites within the MP11 genome are fixed for an allele that has been sampled from the pool of variation at that site. (a) Mean 
whole genome DXY tree before (left) and after (right) the sweep. (b) Mean whole genome D tree before (left) and after (right) the sweep. 
Population names in magenta are A. m. pseudomajus, names in yellow are A. m. striatum. 
 



 54 

 

 

Figure 3.7: DXY tree for a random genomic window 

Mean DXY tree for a randomly sampled 50 kb window of genomic sequence. 
Population names in magenta are A. m. pseudomajus, names in yellow are A. m. 
striatum. 
 

 

A second grouping tree scan was carried out, and forest sizes were compared. 

About 22 % of trees were assigned to a single forest, and the four largest forests 

accounted for about 44 % of all genomic trees. The remaining forests were mainly 

small, with a mean size of 34, suggesting that many topologies show a very limited 

genomic distribution. 
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Figure 3.8: Populating a cophenetic matrix from an UPGMA tree 

Diagram explaining how values in a cophenetic matrix are derived from an 
UPGMA tree. A cophenetic matrix contains minimum merging distances 
between all pairs of populations in a tree. The smallest value corresponds to the 
smallest between-population distance (red bar). The UPGMA algorithm merges 
subsequent populations across increasing distances (blue bar). The largest value 
within the matrix corresponds to the height of the tree, where the two 
outermost clusters merge (green bar). 
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Figure 3.9: Calculation of cophenetic correlation coefficient 

Calculation of the cophenetic correlation coefficient from minimum merging 
distances for two randomly sampled trees. The central plot shows the minimum 
merging distances for all pairs of populations, from each tree. An upwards-
trending best fit line reflects a positive cophenetic correlation. The value of the 
cophenetic correlation coefficient reflects how tightly the points cluster around 
the fit line. 
 

 

To identify DXY trees with deep divisions between two groups of populations, 

indicative of reduced gene flow, the length of the shortest root branch (SRB) was 

calculated for each tree (Figure 3.10). A high value of SRB indicates a deeply rooted 

tree. SRB length was used in preference to the sum of root branch lengths to 

exclude groupings in which only one population was an outlier. In such cases, the 

longest root branch is equal to the total height of the tree (Figure 3.10). For each 

forest, the mean SRB length of all its trees was calculated. Figure 3.11 shows the 

relationship between forest size, and mean forest SRB length for one run of the 

tree classification algorithm. One forest was an outlier, with a mean SRB about 6 

times greater than the mean forest SRB. This outlier forest contained 62 trees (0.32 

% of the total number) derived from windows on chromosomes 1, 2, 4, 5, and 6. 

 

To determine whether the outlier forest was a consistent feature of all runs, a 

bootstrapping approach was used. This involved running the forest classification 

algorithm repeatedly and recording window coordinates for all trees within the 
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forest showing the highest mean SRB. Forests with fewer than four trees were 

ignored. Figure 3.12 shows the results for 25 bootstrap replicates. 446 windows 

occurred at least once in an outlier forest, but only 54 windows (0.44 % of all 

genomic windows), appeared in more than 50 % of replicates. These 54 windows 

mapped to six chromosome regions, I-VI, and showed an elevated mean DXY 
compared to the rest of the genome (Figure 3.13) (t-test, p	<	2.2 ×10-16). There 

was also evidence of reduced mean πw	in A. m. striatum populations (t-test, p	=	9.5 

×10-4) 

 

Figure 3.10: Longest- and Shortest Root Branch 

Illustration of longest root branch (red) and shortest root branch (blue) on two 
trees. Note that, where one population is an outlier, the longest root branch is 
equal to the tree height. 
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Figure 3.11: Forest size and SRB from one grouping tree scan 

Summary of results from one run of the grouping tree scan method. Forest size, 
or number of trees within each forest, is plotted against the mean SRB of all 
trees in a given forest. The largest forest is denoted by (A). The forest with the 
greatest mean SRB is denoted by (I). The y-axis is on a logarithmic scale. 
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Figure 3.12: Bootstrap frequencies of genomic regions in the outlier forest 

Frequency with which different genomic regions occurred within the most 
outlying forest (based on mean SRB) across 25 grouping tree scan replicates. 
Each labelled peak corresponds to a region that consistently appeared within 
bootstrap replicates (Frequency > 12). Proposed names of these regions are 
shown in red. 
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Figure 3.13: Boxplots of DXY and πw across the whole genome, and monophyletic 
regions 

Boxplots summarising mean DXY (top) and πw (bottom) across the whole 
genome, compared to windows within monophyletic regions. ps and st refer to 
A. m. pseudomajus and A. m. striatum populations respectively. Mean DXY is 
significantly higher within monophyletic regions than the whole genomic 
average calculated from all comparisons, and from only A. m. pseudomajus and 
A. m. striatum comparisons (t-test, p < 2.2 ×10-16 in both cases). Mean πw is also 
significantly reduced within A. m. striatum populations compared to the mean 
of all populations (t-test, p = 6.1 ×10-3) and A. m. pseudomajus populations (t-
test, p = 9.5 ×10-4). 
 

 

  



 61 

Results: The six regions give deeply rooted monophyletic DXY trees 

To determine how populations are classified by the trees in the outlier forest, mean 

trees for the largest forest (A in Figure 3.11) and outlier forest (I in Figure 3.11) were 

compared for one of the runs. The mean tree for the largest forest was shallowly 

rooted and gave a polyphyletic grouping (Figure 3.14, right), similar to that 

observed for the whole genome tree. By contrast, the mean tree of the outlier 

forest was deeply rooted, and gave a monophyletic grouping for A. m. pseudomajus 

and a near-monophyletic grouping for A. m. striatum (Figure 3.14, left). The 

exceptional population was A. m. striatum YP1, which grouped closest to the MP4 

population of A. m. pseudomajus. YP1 and MP4 are around 4.2 km apart, and derive 

from opposite flanks of a natural hybrid zone. The grouping of YP1 and MP4 may 

thus reflect extensive gene flow between these two populations. 

 

 

Figure 3.14: Mean DXY trees of the largest and most outlying forests 

Mean DXY trees showing the largest forest (left) and the highest mean SRB 
forest (right), from the initial grouping tree scan. 
 

 
To evaluate the topology of trees that consistently fall in the outlier forest, the 

mean DXY tree for the 54 windows with this property was determined. This tree 

subdivided the subspecies in the same way as the mean tree for the outlier forest 

(Figure 3.15a). The extent to which all 54 trees gave the same subdivision was 

determined by classifying trees according to how their primary root divided the 

subspecies. This classification showed that the most abundant class (24/54) gave a 
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monophyletic grouping for both subspecies (Table 3.1). The second most abundant 

(15/54) gave the same grouping as in the mean outlier forest (Figure 3.15b). The 

third (10/54) gave a monophyletic grouping for A. m. striatum but grouped MP4 of 

A. m. pseudomajus with A. m. striatum (Figure 3.15c). Three of the remaining five 

trees were monophyletic for A. m. pseudomajus. Thus, 68.5 % of trees that 

consistently belonged to the outlier forest gave monophyletic grouping for one or 

both subspecies.  

 

(a) 

 

(b) 

 
(c) 

 

(d) 

 

Figure 3.15: Tree topologies from the outlier forest 

(a) Mean DXY tree topology of all 54 windows that were consistent members of 
the outlier forest (> 12 bootstrap replicates). (b) Most common DXY tree 
topology amongst the 54 windows. (c) Second most common DXY tree topology 
amongst the 54 windows. (d) Third most common DXY tree topology amongst 
the 54 windows. (b), (c), and (d) correspond to the first three trees in Table 3.1. 
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Topology Frequency Description 

 

24	

Monophyletic for A. m. pseudomajus and 

A. m. striatum 

 

15	

Polyphyletic. YP1 within A. m. 

pseudomajus clade 

 

10	

Monophyletic for A. m. striatum. MP4 

adjacent to A. m. striatum clade. 

 

2	

Polyphyletic. YP1 within A. m. 

pseudomajus clade. PER adjacent to A. m. 

striatum clade. 

 

2	

Monophyletic for A. m. pseudomajus. THU 

adjacent to A. m. pseudomajus clade. 

 

1	

Monophyletic for A. m. pseudomajus. BOU 

adjacent to A. m. pseudomajus clade. 
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Table 3.1 (previous page): Consistent tree topologies within the outlier forest 

Topologies, frequencies, and descriptions of the six distinct trees represented 
within the 54 consistent outlier windows. Magenta tips within the trees 
correspond to A. m. pseudomajus populations, and yellow tips correspond to A. 
m. striatum populations. 
 

 

The six chromosomal regions giving rise to the 54 trees identified through 

bootstrapping will henceforth be termed monophyletic regions. Several regions 

contained multiple windows separated by small gaps. These additional windows 

were included in the analyses that follow. Therefore, monophyletic regions consist 

of 85 50 kb windows, comprising 2.38 Mb, or 0.47 % of the genome. 

 

Results: Monophyletic regions harbour loci affecting flower colour variation between 

subspecies 

The phenotypic distinction between A. m. pseudomajus and A. m. striatum is based 

on flower colour pattern. Two of the monophyletic regions harbour flower colour 

loci - region VI includes the ROS and EL MYB-like genes that affect magenta colour 

(Tavares et al., 2018), and region IV includes the sRNA locus SULF that affects yellow 

pigmentation (Bradley et al., 2017). A further monophyletic region, II, has recently 

been shown to also harbour the flower colour locus, FLA (Bradley et al., manuscript 

in preparation). The remaining three monophyletic regions may therefore harbour 

previously unidentified loci influencing flower colour, or loci that affect other traits. 

Two islands, I and V, were tested for phenotypic effects on flower colour. To do this, 

Desmond Bradley and Lucy Copsey generated F2 hybrid populations by crossing A. 

m. pseudomajus and A. m. striatum individuals grown from seed collected near the 

hybrid zone at Planoles. Desmond Bradley then carried out genotyping work on 

plants. Genotypes for the monophyletic regions were determined by KASP / AFLP, 

using SNPs that were distinctive between A. m. pseudomajus and A. m. striatum. To 

minimise confounding effects of other loci known to affect flower colour, plants 

were also genotyped for ROS, EL, SULF and FLA. Visual inspection of flowers from 

plants segregating for region V SNPs revealed significant variation in magenta 

intensity, even on a ROS background (Figure 3.16b), suggesting that region V may 
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harbour a flower colour locus. To test whether region I alleles show a distinct 

phenotypic effect, successive sib-crosses were carried out to generate an F4 family 

segregating for SNPs within region I (pedigree shown in Appendix 2). To observe 

whether allelic difference at monophyletic regions resulted in distinctive colour 

differences, flowers were harvested from plants that were homozygous for A. m. 

striatum alleles at yellow and magenta colour genes, and photographed. By 

comparing flowers showing different genotypes for region I alleles, effects on 

colour could be observed. Figure 3.16a shows representative photographs of 

flowers showing allelic variation within regions I against a consistent colour gene 

background. Together, the results presented in Figure 3.16 show preliminary 

evidence that these regions may be involved in colour variation. Region I likely 

contains a locus that increases yellow in A. m. striatum (provisionally named the 

CREMOSA or CRE locus), whereas region V likely contains a locus that enhances 

magenta in A. m. pseudomajus (provisionally called the RUBIA or RUB locus). 

However, larger sample sizes are required to carry out statistical tests. A 

preliminary analysis of region II (provisionally called the AURINA or AUN locus) by 

Desmond Bradley has also demonstrated that the A. m. striatum allele results in 

increased yellow intensity (Bradley et al., preliminary data). 
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(a) 

 

(b) 
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Figure 3.16 (previous page): Flower photographs showing effects of allelic 
variation in CRE and RUB 

Phenotypic effects of A. m. pseudomajus and A. m. striatum alleles within the 
CRE and RUB regions. (a) Flowers from F4 plants that are homozygous for the A. 
m. striatum CRE allele (top row), heterozygous (middle row), and homozygous 
for the A. m. pseudomajus cre allele (bottom row). The genotypes of relevant 
colour genes is reported at the top of the image – homozygous for A. m. 
striatum ros, sulf, and FLA. (b) Flowers from F2 plants that are homozygous for 
the A. m. striatum RUB allele (top row), and homozygous for the A. m. 
pseudomajus rub allele (bottom row). All plants are homozygous for A. m. 
pseudomajus ROS. This work was carried out by Desmond Bradley. 
 

 

Results: Identification of candidate genes underlying flower colour variation 

To identify candidate genes underlying RUB, AUN and CRE phenotypes, differential 

expression analysis was carried out. mRNA was extracted from flower buds of two 

A. m. pseudomajus and three A. m. striatum accessions by Desmond Bradley. RNAs 

were sequenced by Yongbiao Xue. Annabel Whibley aligned RNAseq data to the 

reference genome, and carried out differential expression analysis using DESeq2 

(Love, Huber, and Anders, 2014). I then analysed output of the differential 

expression analysis to identify differentially expressed genes within monophyletic 

regions. Differential expression p values obtained from DESeq2 are corrected for 

multiple testing, and will therefore be referred to as p-adjusted values. Of the 

45,648 genes predicted in the reference genome, 1,725 (3.8 %) were differentially 

expressed between A. m. pseudomajus and A. m. striatum (p-adjusted < 0.01). The 

monophyletic regions (85 windows) contained 968 predicted coding sequences 

(CDSs), 29 (3 %) of which showed differential expression. These 29 genes were 

distributed across all six monophyletic regions. Four of the 29 genes corresponded 

to ROS1, ROS2, ELUTA (region VI) and FLA (region III). Six differentially expressed 

genes were within region IV, but these did not include SULF, a small RNA (sRNA) 

producing inverted repeat locus involved in repressing yellow pigmentation. In the 

absence of sRNA data, it is unclear whether this is due to non-differential SULF 

expression or insensitivity of mRNAseq to sRNA expression. There were however 

two genes showing high similarity to Am4’CGT, suggesting that region IV may be 
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involved in yellow pigment regulation through elements other than SULF, or that 

SULF acts on these loci as well as its previously defined target on chromosome two. 

Region II included three differential genes, one of which corresponded to AmAS1, 

which encodes aureusidin synthase, the enzyme responsible for synthesising yellow 

aurone pigments from chalcones (Nakayama et al., 2000). Thus, AmAS1 is a strong 

candidate for the yellow flower locus, AUN. The only differentially expressed gene 

within region V encoded a flavonol synthase, which has been implicated in 

controlling the concentration of magenta anthocyanin pigment through 

competitive substrate utilisation (Luo et al., 2016). This gene is therefore a strong 

candidate for magenta flower locus, RUB. Region I contained two differential genes, 

encoding an O-methyltransferase, and a pyrophosphorylase (based on NCBI BLASTX 

similarity). The activity of O-methyltransferases has been implicated in flower 

colour, through interactions with the anthocyanin biosynthesis pathway (Akita et 

al., 2011, Du et al., 2015, Okitsu et al., 2018). Thus, it is possible that this gene 

corresponds to the yellow flower locus, CRE, and might affect yellow through direct 

methylation of aurones, or by affecting flux of substrates that are shared between 

the anthocyanin and yellow pathways. These analyses identify candidate loci for 

RUB, AUN and CRE but further expression and genetic tests would be needed to 

confirm their assignment. It is also possible that one or more of the monophyletic 

regions include loci that influence flower colour through changes that do not modify 

mRNA transcript levels, such as sRNA loci. 

 

Results: Relationship between monophyletic regions and other measures of 

population variation 

The above genome scans of DXY trees have identified six regions with elevated DXY 
that likely harbour barriers to gene flow between subspecies. To see whether these 

regions show visible elevation in pairwise genome scans, DXY and FST values were 

averaged across all comparisons, and plotted (Figure 3.17). No specific loci stand 

out within the DXY scans compared to the background DXY (Figure 3.17 (top)). 

However, three of the six monophyletic regions do show strong peaks in FST scans 

(Figure 3.17 (bottom)).  
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Figure 3.17: Mean DXY and FST from all A. m. pseudomajus / A. m. striatum 
comparisons 

Mean DXY (top) and FST (bottom) from all population comparisons, across all 
19,520 overlapping 50 kb genomic windows. The CRE, FLA and ROS EL regions 
show local FST peaks. Sequential changes in colour reflect different 
chromosomes (1-8). Two other distinct peaks, on chromosome 2 and 
chromosome 6, are uncharacterised (the leftmost FST peak on chromosome 6 
does not correspond to ROS or EL). 
 

 

To clarify the reasons for these observations, 1 kb window scans were carried out 

centred on the six monophyletic regions. Figures 3.18 - 3.20 show plots of DXY, πw, 

D, and FST across monophyletic regions, and 1 Mb flanking regions. For FST	and	DXY, 
average values were plotted, based on all pairwise comparisons between A. m. 

pseudomajus and A. m. striatum. πw was averaged across all populations. D was 

calculated by subtracting mean population πw from the mean DXY of all 

comparisons. To estimate the proportion of SNPs within the monophyletic region 

(and surrounding regions) that show monophyletic distributions, trees were 

constructed for all 1 kb windows. The locations of trees showing either of the two 

most frequent monophyletic topologies in Table 3.1 were marked (Figures 3.18 - 

3.20, red and purple asterisks). The second most common topology was also 

marked (Figures 3.18 - 3.20 , blue asterisks). Across all islands, signatures of 

contiguous monophyletic trees were detected, illustrated by adjacent asterisks. I 

will refer to these contiguous regions as monophyletic islands. 
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Within all regions except FLA, the most commonly detected topology from the 

outlier forest was the most common, doubly monophyletic, topology. The CRE and 

AUN monophyletic islands were both small (< 50 kb). Both islands coincided with a 

small FST and D peak, suggesting that relative divergence was due to increased DXY 
rather than reduced πw. The largest monophyletic island, at the FLA region (Figure 

3.19a), appeared to span over 500 kb. A larger polyphyletic island, comprising trees 

which group the A. m. striatum YP1 population within the A. m. pseudomajus clade, 

was detected immediately adjacent to the monophyletic island. Most of the regions 

showed elevated DXY compared to πw. The SULF region (Figure 3.19b) showed much 

missing data, reflecting low read depth in one or more populations. A small 

monophyletic island was detected to the left of the low coverage region. This 

demonstrated that the SULF region is only detectable as a 50 kb monophyletic 

region due to monophyletic SNPs within adjacent windows. This likely reflects the 

absence of SULF within populations of A. m. striatum (Bradley et al., 2017). The RUB 

monophyletic island spanned the full width of the 50 kb monophyletic region. No 

FST peak was visible, although both DXY and D were slightly elevated. The ROS EL 

monophyletic island was the second largest, spanning around 250 kb, although the 

island showed small gaps between FST peaks. The left-hand FST peak at the ROS EL 

monophyletic region showed no corresponding D peak. This demonstrates that 

locally elevated FST is due to reduced πw, rather than increased DXY. The left-hand 

FST peak corresponds to the location of the ROS1 and ROS2 genes (Tavares et al., 

2018). 
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(a) 

 

(b) 

 
Figure 3.18: 1 kb window plots across the CRE and AUN monophyletic regions 

FST, DXY, and D, plotted across (a) the 100 kb CRE monophyletic region with 1 Mb flanks, and (b) the 75 kb AUN monophyletic region, with 1 
Mb flanks. FST and DXY are averaged from all population comparisons, and πw is averaged from all populations. The blue region represents 
the monophyletic region identified in the grouping tree scan. Asterisks above the plot denote 1 kb windows that yield any of the top three 
topologies from Table 3.1. Red asterisks show the most common (doubly monophyletic) topology. Blue asterisks show the second most 
common (polyphyletic) topology, and purple asterisks show the third most common (A. m. striatum monophyletic) topology. 
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(a) 

 

(b) 

 
Figure 3.19: 1 kb window plots across the FLA and SULF monophyletic regions 

FST, DXY, and D, plotted across (a) the 1.4 Mb FLA monophyletic region with 1 Mb flanks, and (b) the 375 kb SULF monophyletic region, with 
1 Mb flanks. FST and DXY are averaged from all population comparisons, and πw is averaged from all populations. The blue region represents 
the monophyletic region identified in the grouping tree scan. Asterisks above the plot denote 1 kb windows that yield any of the top three 
topologies from Table 3.1. Red asterisks show the most common (doubly monophyletic) topology. Blue asterisks show the second most 
common (polyphyletic) topology, and purple asterisks show the third most common (A. m. striatum monophyletic) topology. 
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(a) 

 

(b) 

 
Figure 3.20: 1 kb window plots across the RUB and ROS EL monophyletic regions 

FST, DXY, and D, plotted across (a) the 50 kb RUB monophyletic region with 1 Mb flanks, and (b) the 375 kb ROS EL monophyletic region, with 
1 Mb flanks. FST and DXY are averaged from all population comparisons, and πw is averaged from all populations. The blue region represents 
the monophyletic region identified in the grouping tree scan. Asterisks above the plot denote 1 kb windows that yield any of the top three 
topologies from Table 3.1. Red asterisks show the most common (doubly monophyletic) topology. Blue asterisks show the second most 
common (polyphyletic) topology, and purple asterisks show the third most common (A. m. striatum monophyletic) topology. 
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Discussion 

Grouping tree scans reveal hidden islands of genomic divergence 

The aim of this work was to use tree classification of genomic windows scans to 

identify consistent barriers to gene flow between A. m. pseudomajus and A. m. 

striatum, independently of phenotypic observations. Applying phylogenetic 

approaches to study DXY patterns addresses some of the challenges of interpreting 

genome-wide datasets. Multiple population comparisons, compared to two-way 

comparisons, have greater power to differentiate between consistent and sporadic 

DXY elevation (Seehausen et al., 2014). This increases sensitivity to consistent 

signals that may not be individually strong. It also reduces the effect of noise arising 

from ancestral πw, which reflects a range of historical and demographic factors and 

is not expected to be consistent between populations. Fundamentally, this 

approach makes distinct genomic regions more directly comparable. This is 

evidenced by the diverse nature of the candidate regions identified. For example, 

FLA resides in a region of low recombination, whereas CRE and AUN likely do not (Li 

et al., 2019). ROS-EL shows locally reduced πw, whereas AUN does not. The latter 

observation that not all islands have reduced πw may explain why some islands have 

not been detected through FST analysis.  

 

Tavares et al. (2018) suggested that reduced πw at ROS-EL was consistent with a 

selective-sweep-mediated origin. This reduced πw is apparent when plotting πw and 

DXY across the region, being especially apparent around the first FST peak, which 

corresponds to the location of the ROS1 and ROS2 genes. A strong FST peak, along 

with the absence of a D peak suggest that πw likely accounts for most of the relative 

divergence at ROS1 and ROS2. Interestingly however, the downstream peak 

corresponding to the EL locus shows elevation in both DXY and D, which is not 

reflective of a selective-sweep-mediated origin 

 

Monophyletic regions contain intrinsic epistatic barrier genes 

The 18 populations presented here were sampled across considerable geographical 

distance, and from different habitats. For the observed barriers to reflect cryptic 
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environmental differences, such differences would have to be shared between 

these disparately sampled populations in a subspecies-specific manner. Divergence 

through environmental adaptation is therefore unlikely. The available evidence 

most strongly supports an intrinsic epistatic genetic barrier. Almost all of the 

genetic divergence between A. m. pseudomajus and A. m. striatum is accounted for 

by six genomic regions. These six regions show concordant monophyletic tree 

topologies, and each contains at least one candidate gene pertaining to a single 

trait: flower colour. If the genetic barrier had an additive effect on fitness through 

heterozygote disadvantage then adaptation would likely make use of traits other 

than colour. In this case, elevated SRB should be detectable in a greater diversity 

of trees. 

 

More evidence for an intrinsic epistatic barrier has been provided through cline 

analyses. To date, four of the six monophyletic regions detected here have been 

shown to have associated steep clines between A. m. pseudomajus and A. m. 

striatum across the Planoles hybrid zone (Bradley et al., 2017, Tavares et al., 2018, 

Bradley et al., preliminary data, Field et al., preliminary data). Steep clines, 

contrasting against the shallow clines seen across most of the genome, reflect 

genomic regions where allele frequency boundaries between populations are 

sharply defined. This provides strong, direct evidence of barriers to gene flow. 

Coincident clines between at least 4/6 monophyletic regions suggests that shared 

evolutionary forces are acting on them, providing evidence that genes may be 

coadapted (Barton and Hewitt, 1985). 

 

The origin of intrinsic epistatic barriers 

The detection of signatures of consistently elevated DXY at only a small subset of 

genomic loci suggests that A. m. pseudomajus and A. m. striatum underwent a 

period of historical isolation, before coming into secondary contact. Whilst in 

isolation, divergence through mutation and drift caused DXY to increase across the 

whole genome. Alleles conferring adaptive advantages were able to sweep to 

fixation within populations. Upon secondary contact, the two subspecies 

underwent extensive gene flow, but this was resisted at barrier gene regions with 
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intrinsic epistatic interactions. Areas of reduced πw within barrier regions may 

represent signatures of historical selective sweeps. Alternatively, elevated DXY in 

monophyletic regions may not reflect resistance to gene flow, but instead reflect 

recruitment of ancient alleles affecting flower colour, perhaps originating through 

introgression from other species. According to this view, the ancient alleles would 

have undergone recombination while they were polymorphic in the population. For 

example, if an ancient allele takes 1,000 generations to become fixed, the linked 

region of elevated DXY would be of the order of 0.1 cM. Assuming that the rate of 

recombination in Antirrhinum is between 0.3 - 3 cM/Mbp (Tavares et al., 2018), 

monophyletic islands would be expected to span between 30 kb and 300 kb. This is 

broadly consistent with observed monophyletic island sizes, except at the 500 kb 

FLA island. It is unclear, however, why ancient hybridisation would only recruit 

flower colour alleles. 

 

Evolutionary relevance of colour genes 

Extensive research in Antirrhinum (Shang et al., 2010, Bradley et al., 2017) and other 

plants (Lunau, Wacht, and Chittka, 1996, Schemske and Bradshaw, 1999, Reverté 

et al., 2016) has demonstrated that pollinators show preferences for specific flower 

colour patterns. Pollinator attraction is essential for reproductive success in 

sexually reproducing plants. Therefore, genes involved in the refinement and 

regulation of flower colour patterns are likely subject to sexual selection (Moore 

and Pannell, 2011). Because sexual selection can drive very rapid evolution of 

genetic barriers, it is postulated that sexual traits may play a role in the early stages 

of speciation (Panhuis et al., 2001, Aagaard et al., 2013). Such early-stage speciation 

around a sexual trait may be taking place within A. m. pseudomajus and A. m. 

striatum. Fitness may also reflect frequency-dependent selection, with pollinators 

having a preference for predominant local colour phenotype (Smithson and 

Macnair, 1996). 
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4: Monophyletic signatures reveal genetic barriers 

underpinning growth habit divergence in Antirrhinum 

Introduction 

Analysis of genomic divergence in A. m. pseudomajus and A. m. striatum 

demonstrated that barriers to gene flow co-localise with loci controlling flower 

colour. I hypothesise that A. m. pseudomajus and A. m. striatum are subject to 

intrinsic postzygotic isolation arising due to negative epistasis, with non-parental 

allele combinations imparting reduced fitness upon hybrid progeny. However, the 

perseverance of barriers to gene flow is not necessarily completely dependent on 

epistatic relationships. Gene flow barriers may arise around loci involved in 

differential adaptation to ecological niches. In such cases, gene flow will be 

restricted between populations that occupy different niches. Because Antirrhinum 

species show a great deal of diversity in traits other than colour, barrier gene 

analyses can be expanded to explore differential adaptation.  

 

Growth habit in Antirrhinum 

Perhaps the most significant phenotypic differences within the Antirrhinum species 

group are in growth habit. Growth habit differences in Antirrhinum encompass a 

range of traits, including plant height, leaf size, leaf shape, flower size, branching 

angles and hairiness. Two distinct habits are recognised, each reflecting a 

characteristic combination of these traits (Figure 4.1). In this thesis, I will refer to 

these habits as alpine and ruderal. The alpine habit is characterised by compact, 

bushy species that grow on rock faces with branches that trail along the growing 

surface. Plants with the ruderal habit are much more widespread, growing on 

sloping hills and grasslands, as well as human-disturbed sites such as roadsides. 

Ruderal species are tall and erect, with large leaves and flowers. The genus 

Antirrhinum has traditionally been grouped into morphological subsections. The 

alpine habit is reflected by subsection Kickxiella, and the ruderal habit by both 

Antirrhinum and Streptosepalum (Rothmaler, 1956, Webb, 1971, Sutton, 1988). 

Studies of allometry (correlated variation in size and shape) have demonstrated 

that growth habit traits are likely to be under the control of many underlying genes 
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of individually small effect (Feng et al., 2009). However, not all growth habit traits 

show a complex genetic architecture. Tan et al. (2020) recently demonstrated that 

hairiness, a phenotype associated with alpine species, is controlled by a single 

glutaredoxin gene. The extrusion of trichome hairs is implicated in protection from 

a number of biotic and abiotic factors. Hairy prevents the emergence of trichomes 

above the fourth leaf internode. Alpine species are typically hairy, which implies 

that they are homozygous for the recessive hairy allele. Ruderal species are 

generally hairless above internode four, implying heterozygosity or homozygosity 

for Hairy. Characterising the genetic basis of divergence between species showing 

distinct growth habits may shed light on the contribution of major effect loci, and 

polygenes. 

 

 

Alpine 
 

Ruderal 

Figure 4.1: Examples of alpine and ruderal growth habits 

Photographs of wild plants in Spain showing characteristic alpine (left) and 
ruderal (right) growth habits. The plant on the left is Antirrhinum molle, and the 
plant on the right is Antirrhinum majus pseudomajus. 
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Identifying growth habit barrier genes through root division analysis 

In Chapter 3 I identified barrier gene regions between A. m. pseudomajus and A. m. 

striatum using an approach that clustered trees based on their topological 

similarity. This revealed that the majority of genomic divergence was accounted for 

by subgenomic regions giving monophyletic trees. A simpler approach to 

characterising divergence between the two subspecies might therefore have been 

to identify all subgenomic regions giving monophyletic trees. However, this would 

have violated the stipulation that regions should be identified independently of 

phenotype, and introduced ascertainment bias. Controlling for ascertainment bias 

when analysing A. m. pseudomajus and A. m. striatum was important in order to 

test the hypothesis that the reproductive barrier was underpinned by colour genes 

only. In comparing species with different growth habits, no such prior assumptions 

are held. Alpine and ruderal species are characterised as diverging in a wide variety 

of traits, but there is not a fixed definition between the two phenotypes. 

Furthermore, there is no prior hypothesis that the regions underlying growth habit 

should necessarily be the most divergent. Alpine and ruderal species show high 

genomic divergence, and a broad geographic distribution hints that many 

populations are unlikely to have undergone gene flow (Duran-Castillo et al., 2022). 

In Chapter 3, dividing trees based on their primary root division was an effective 

means of classifying trees within the outlier forest (Table 3.1). In this chapter, I will 

therefore develop root division analysis as an alternative grouping tree scan. This 

will facilitate the direct detection of subgenomic regions showing trees that are 

monophyletic for alpine and ruderal growth habit, which may contain barrier genes. 

In practice, this resembles a much-simplified version of the Twisst approach (Martin 

and Van Belleghem, 2017), which searches for a pre-defined monophyletic tree 

topology rather than characterising all topologies within the genome. 

 

Multiple evolutionary scenarios can give rise to monophyletic signatures 

Patterns of diversity at barrier regions can reveal the evolutionary relationships 

between species. In principle, genomic regions harbouring barriers to gene flow 

between alpine and ruderal species will give trees that are monophyletic for both 

growth habits. However, barrier genes are not the only evolutionary mechanism 
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which could give rise to monophyletic groupings. Alternatively, the shared 

adaptations of alpine and ruderal species may have arisen through phenotypic 

convergence, where evolution causes populations to become more phenotypically 

similar (Arendt and Reznik, 2008). A convergence hypothesis is supported by 

evidence from whole genome phylogenetics, which suggests that alpine species of 

Antirrhinum form multiple distinct clades within the species tree, and therefore 

arose separately (Wilson and Hudson, 2011, Tan et al., 2020, Duran-Castillo et al., 

2022). Stern (2013) proposed three evolutionary hypotheses that can underlie 

convergent evolution. The first, parallel evolution, postulates that distinct habits 

may have arisen through recruitment of pre-existing growth habit alleles that have 

arisen as polymorphisms within populations (standing genetic variation). 

Alternatively, distinct traits contributing to growth habit divergence may have 

arisen within different populations, and been shared through hybridisation 

following secondary contact between populations showing the same growth habit. 

Finally, convergent evolution may take place through growth habit alleles that have 

been inherited from a shared ancestral population. Stern proposed the collective 

term collateral evolution for the latter two of these hypotheses, because they both 

deal with variation which is inherited “from the same stock but by a different line”.  

Here, for consistency with other chapters, I will separately refer to the third 

hypothesis (convergent evolution through ancestral shared variation) in terms of 

historical barrier genes. For the second hypothesis (sharing of alleles growth habit 

through hybridisation), I will use the term allele sharing. 

 

Recruitment from standing variation, allele sharing, and historical barrier genes can 

all result in monophyletic patterns of allelic variation between alpine and ruderal 

species. However, it may be possible to differentiate between these hypotheses by 

measuring the size of monophyletic islands. The parallel-allele-recruitment 

hypothesis predicts small islands, because alleles are required to have persisted 

against ongoing recombination for up to five million years, the predicted age of the 

Antirrhinum species group (Vargas et al., 2009). Repeated rounds of recombination 

are expected to break down haplotypes. After one million years (~ 1 million 

generations), monophyletic islands are expected to span a genetic distance in the 
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order of 10-4 cM. Assuming a recombination rate of 0.3-3 cM/Mb (Tavares et al., 

2018), the physical distance covered by monophyletic islands should be between 

30 bp and 300 bp, depending on whether they are localised to high or low 

recombining regions. Under an allele sharing hypothesis, growth habit alleles will 

initially exist as polymorphisms following hybridisation. However, because they 

confer a fitness advantage, they may become fixed relatively quickly through 

selective sweeps. The ROS-EL flower colour locus shows reduced local πw, 

consistent with an historic selective sweep (Tavares et al., 2018). Reduced πw at 

ROS-EL spans between 10-50 kb, in a region with a high rate of recombination. This 

value is expected to be up to ten times higher in a low recombining region. This 

provides an estimated monophyletic island size of 10-500 kb under the allele 

sharing hypothesis. If monophyletic islands arise due to barriers to gene flow, then 

the size of the island will depend upon how much gene flow has taken place 

between species, which is unclear. 
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Aim of this work 

This work aims to identify barrier genes involved in growth habit divergence 

between alpine and ruderal growth habits. FST scans will first be carried out to 

compare relative genomic divergence landscapes between species. The presence 

of peaks may indicate barrier gene candidates. An absence of distinct peaks will 

suggest that growth habit divergence is underpinned by many loci of small effect. 

To directly investigate gene flow, a root division analysis will be carried out. By 

identifying subgenomic regions yielding DXY trees that are monophyletic for both 

growth habits, candidate monophyletic islands of divergence can be identified. 

These monophyletic islands will be examined at a finer resolution to look for 

enrichment of SNPs giving monophyletic groupings. The size of high confidence 

monophyletic islands will be measured, in order to test hypotheses as to whether 

they arose through ancestral divergence, parallel allele recruitment, or allele 

sharing. 

  



 83 

Results 

Results: Mapping of pool-seq data from eight Antirrhinum species 

 

Figure 4.2: Locations of 16 sampled populations within France and Spain 

Sampling locations of 16 alpine and ruderal populations. Pool details and GPS 
coordinates can be found in Appendix 1 and Appendix 4. 
 

 

To explore the relationships between alpine and ruderal species of Antirrhinum, 

leaves were collected from 16 populations for sequencing. Populations comprised 

eight species, each being sampled from two distinct geographical areas (Figure 4.2) 

(pool details recorded in Appendix 1 and Appendix 4). A. m. pseudomajus, A. m. 

striatum, A. latifolium, and A. braun-blanquetti showed ruderal growth habits. A. 

molle, A. sempervirens, A. microphylum, and A. pulverulentum had alpine habits. 

Leaves were pooled and sequenced, and pool-seq data was mapped to the 

Antirrhinum majus reference genome using BWA-MEM. Appendix 4 shows genomic 

mapping statistics. Ruderal species showed higher genomic coverage on average 

compared to alpine species, reflecting divergence between alpine species and the 

ruderal reference genome. 
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Results: FST comparisons between species reveal no outstanding FST peaks 

 

Figure 4.3: Mean FST across growth habits 

Whole genome FST comparisons between populations, grouped according to 
growth habit. The mean FST is represented by a dotted red line. Sequential 
changes of colour represent different chromosomes (1-8). 
 

 

To look for islands of relative divergence between alpine and ruderal species, whole 

genome FST comparisons were carried out. Figure 4.3 shows the mean FST from 

alpine against alpine comparison (a/a), ruderal against ruderal comparisons (r/r), 

and alpine against ruderal comparisons (a/r). Mean FST was high in all three cases 

(mean	FST > 0.38). a/r comparisons showed higher mean FST compared to a/a and 

r/r comparisons, which showed similar mean FST. However, the published whole 

genome phylogeny from Duran-Castillo et al. (2021) suggests that A. molle and A. 

braun-blanquetti are more genomically similar to species that don’t share their 

growth habit. To observe this genomic similarity, A. molle was compared to all 

ruderal species (except A. braun-blanquetti), and A. braun-blanquetti was 

compared to all Kickxiella species (except A. molle). As with previous comparisons, 

distinct peaks were not detectable against the elevated background FST (Figure 4.4). 

Mean FST in both cases was elevated compared to FST. estimates from a/a and r/r 

comparisons. 
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(a)

 

(b)

 

Figure 4.4: Comparisons of A. molle / A. braun-blanquetti to species with different 
growth habits 

(a) Whole genome mean FST and DXY comparisons between the two A. molle 
pools, and six ruderal pools (excluding A. braun-blanquetti). (b) Whole genome 
FST and DXY comparisons between the two A. braun-blanquetti pools, and six 
alpine pools (excluding A. molle). Dotted red lines indicate the genomic mean. 
Results have been averaged from 50 kb overlapping windows into 2.5 Mb 
groups. Distinct colours represent different chromosomes (1-8). 
 

 

Averaging across all comparisons showed lower FST values towards the 

chromosome ends, and elevated values towards the centres (Mean FST ends = 0.42, 

Mean FST centres = 0.50). To investigate how patterns of FST variation related to 
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within- or between-population diversity, DXY and πw were averaged across each 

chromosome in non-overlapping 2.5 Mb windows (Figure 4.5). Mean DXY values 

were, on average, three times greater than average πw values. πw showed a 

consistent reduction towards the middle of chromosomes, whereas no clear 

positional effect was apparent for DXY. To quantify this positional effect, 

chromosomes were split into quarters. The outer two quarters were defined as the 

chromosome end regions, and the inner two as chromosome centres. Averaging 

DXY and πw across the centre and end regions of all chromosomes revealed a 

reduction in mean πw (Mean πw ends = 0.0097, Mean πw centres = 0.0074), but no 

significant difference in DXY (Mean DXY ends = 0.023, Mean DXY centres = 0.022). 

These results suggest that globally elevated FST is due to high DXY rather than low 

within population diversity, but patterns of higher and lower FST values reflect πw 

variation. 
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Figure 4.5: DXY and πw, averaged across all alpine, ruderal, and mixed 
comparisons. 

Whole genome mean DXY (orange) and πw (green) averaged across all 
comparisons between alpine species (top), ruderal species (middle), and mixed 
alpine and ruderal species (bottom). Values from 50 kb windows have been 
averaged into 2.5 Mb groups. Black boxes indicate the boundaries of each of the 
eight chromosomes. 
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Results: 2 % of subgenomic DXY trees are monophyletic for ruderal and alpine habits 

To observe the relationships between these eight species pools based on whole 

genomic divergence, a whole genome mean DXY phylogeny was constructed (Figure 

4.6b). This phylogeny is consistent with results from RAD sequencing (Duran-

Castillo et al. 2022). Notably, this tree splits up the alpine group, with A. molle 

forming a sister group with the ruderal Antirrhinum group clade. Additionally, the 

ruderal species A. braun-blanquetti formed a sister group with the alpine clade. The 

placings of these species may be the result of extensive gene flow between alpine 

and ruderal species, or may reflect parallel evolution of alpine and ruderal habits. 
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(a) 

 

(b) 
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Figure 4.6 (previous page): Whole genome mean DXY tree for 16 species pools 

(a) Maximum Likelihood (left) and Coalescence (right) trees generated by Mario 
Durán-Castillo from RAD-seq data from 28 Antirrhinum taxa, with Misopates 
orontium as an outgroup. Lines between the two trees indicate the relative 
positions of taxa on both trees – where this line is orange, the adjacent species 
is also present within Figure 4.6b, and proceeding analyses within this chapter. 
Reproduced and adapted with permission from Durán-Castillo et al., 2022. (b) A 
DXY tree summarising the relationships between the 16 experimental 
populations. Mean DXY between each pair of populations was averaged over all 
19,502 50 kb genomic windows. Taxa in red have an alpine habit, and black taxa 
have a ruderal habit. Observed groupings are consistent with those in Figure 
4.6a. 
 

 

To explore how patterns of divergence vary across the genome, subgenomic DXY 
trees were constructed. Mean DXY was sampled across the whole genome in 50 kb 

windows, with a 25 kb overlap, yielding 19,502 windows. Subgenomic trees were 

constructed from DXY distance matrices using UPGMA. To classify topologies, each 

tree was split at its root division, yielding two clades. In doing this, a simple 

representation of population grouping can be derived for each tree. For example, 

splitting tree that is monophyletic for both growth habits would yield two groups, 

one containing four alpine species and the other containing four ruderal species. 

This can be compactly represented as aaaa:rrrr. The whole genome tree (Figure 4.6) 

can be represented as arrr:aaar. A total of 275 distinct tree topologies were 

detected, based on root division. The 10 most frequent subgenomic tree topologies 

are shown in Table 4.1. Of particular interest in studying growth habit divergence 

are trees which are monophyletic for both ruderal and alpine growth habits 

(aaaa:rrrr). 2 % of all genomic trees (427 / 19,502 trees) gave doubly monophyletic 

growth habit groupings (Figure 4.7). 45 % of doubly monophyletic trees had 

elevated SRB compared to the genomic mean. Deeply rooted, doubly monophyletic 

trees represent the strongest signatures of differential growth habit adaptation. 

The Hairy region tree was within the top 4 % of all doubly monophyletic trees based 

on SRB, confirming Hairy as a candidate gene involved in growth habit divergence. 

The 427 identified windows giving monophyletic trees will be termed monophyletic 

regions. 
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Rank Percentage of 

subgenomic 

trees 

Topology 

code 

Mean Topology Description 

1	 23.4	%	 aaa:arrrr 

 

Polyphyletic for 

both growth 

habits	

2	 21.2	%	 arrr:aaar 

 

Polyphyletic for 

both growth 

habits. Identical 

to the mean 

whole genomic 

topology.	
3	 12.1	%	 r:aaaarrr 

 

Polyphyletic for 

both growth 

habits	

4	 6.5	%	 rrr:aaaar 

 

Polyphyletic for 

both growth 

habits	

5	 6.2	%	 a:aaarrrr 

 

Polyphyletic for 

both growth 

habits	
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6	 4.0	%	 r:aaaarrr 

 

Polyphyletic for 

both growth 

habits. A. 

latifolium 

outlying.	

7	 3.1	%	 a:aaarrrr 

 

Polyphyletic for 

both growth 

habits. A. 

sempervirens 

outlying.	

8	 2.9	%	 aar:aarrr 

 

Polyphyletic for 

both growth 

habits	

9	 2.6	%	 aa:aarrrr 

 

Polyphyletic for 

both growth 

habits	

10	 2.2	%	 aaaa:rrrr 

 

Monophyletic 

for both growth 

habits	

Table 4.1: The top 10 most common tree topologies. 

Genomic frequencies, compact representations, topologies, and descriptions of 
the six distinct trees represented within the 54 consistent outlier windows. 
Within topology codes, a refers to an alpine population, and r to a ruderal 
population. On the trees, alpine taxa are represented by red circles, and ruderal 
taxa by black circles. 
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Figure 4.7: Mean DXY tree for monophyletic regions 

Mean DXY tree topology obtained from averaging all DXY comparison results 
across the 427 subgenomic regions yielding doubly monophyletic trees. Taxa in 
red have an alpine habit, and black taxa have a ruderal habit. 
 

 

The top 10 subgenomic topologies accounted for 84 % of all trees. The doubly 

monophyletic class described above was the tenth most common genomic 

topology. No other topologies in the top ten were monophyletic for either habit. 

The most common topology (aaa:arrrr) occurred 4,555 times (23.4 % of all 

subgenomic trees). Like the whole genome tree, it gave groupings that were 

polyphyletic for both growth habits (Figure 4.8). This polyphyly was due to one 

species, A. molle, being nested within a clade of otherwise ruderal species. The 
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second most common topology (arrr:aaar) was identical to the whole genome tree. 

Four topologies reflected cases where a single species was an outlier, most 

commonly A. braun-blanquetti (12.5 % of subgenomic trees). The remaining 16 % 

of trees showed 217 diverse topologies. 

 

 

Figure 4.8: Mean DXY tree of the most common subgenomic topology 

Mean DXY tree topology from the 4,555 trees showing the most common 
subgenomic topology. Taxa in red have an alpine habit, and black taxa have a 
ruderal habit. 
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Results: Monophyletic islands span at least 7 kb on average, and show elevated DXY	
To distinguish monophyletic regions that are enriched for SNPs showing 

monophyletic distributions, DXY trees were generated in 1 kb windows, with 900 bp 

overlaps, across all 427 identified 50 kb monophyletic regions. Many regions had a 

significant amount of missing data at this increased resolution, consistent with low 

sequencing depth. Low-depth monophyletic regions, returning < 100 / 499 possible 

1 kb window trees, were excluded, leaving 394 regions. 1 kb window trees from 

each remaining region were then classified according to whether they gave 

monophyletic (aaaa:rrrr) or non-monophyletic groupings, based on root division. 

The number of 1 kb windows giving monophyletic trees, and the total number of 

trees recovered, was recorded for each region (trees could not be constructed 

where read depth was low in one or more populations). The greatest reported 

proportion of monophyletic trees within a 50 kb region was 0.98 (378 / 387 1 kb 

window trees being monophyletic). Given that 1 kb windows have 900 bp overlaps, 

each adjacent window covers an additional 100 bp of sequence. To estimate the 

sizes of monophyletic islands across all monophyletic regions, minimum island size 

was estimated. By making the conservative assumption that all 1 kb windows were 

directly adjacent, I could calculate minimum island size as the total number of 

monophyletic 1 kb trees multiplied by the 100 bp interval. The largest monophyletic 

island observed spanned at least 37.8 kb. This is more than 126 times greater than 

predicted by the parallel-allele-recruitment hypothesis, but consistent with barriers 

to gene flow or allele sharing. Minimum island size was calculated for all 427 50 kb 

monophyletic regions (Figure 4.9). The mean minimum island size was 7.1 kb, 

demonstrating that monophyletic islands are generally significantly larger than 

expected by the parallel-allele-recruitment hypothesis. Eight islands had a 

minimum size of zero, reflecting the complete absence of 1 kb window 

monophyletic trees. Here, 50 kb monophyletic trees are likely artifacts of averaging 

many trees with different topologies. 
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Figure 4.9: Estimates of minimum monophyletic island size 

Histogram of minimum monophyletic island size from the 427 monophyletic 
regions. 
 

 

Monophyletic regions were slightly enriched within the central regions of 

chromosomes (59 %) compared to chromosome ends (41 %). Islands within central 

chromosome regions were larger (mean minimum size = 7.7 kb) than those within 

outer regions (mean minimum size = 6.1 kb).  

 

To quantify the extent to which monophyletic islands extend beyond 50 kb 

boundaries, a subset of monophyletic islands were reanalysed with 500 kb flanks 

included. These islands were selected based on the SRB of their 50 kb trees. Islands 
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with the five greatest and five smallest SRB values were selected, along with five 

showing intermediate values  

 

Three plots have been included within this chapter (Figures 4.10 – 4.12), showing 

one region from each of these SRB classifications. The remaining plots are shown 

in Appendix 5. Where multiple islands overlapped, the islands with lower SRB 

values were excluded. Island size correlated with SRB, with deeply rooted 50 kb 

trees reflecting a greater mean monophyletic island size on average (Table 4.2). 

However, the largest island observed did not have a large SRB value, indicating that 

a deeply rooted tree is not necessarily reflective of a larger monophyletic island. 

The 15 surveyed monophyletic islands showed elevated DXY, and regions of very 

low πw. To test whether this was a general trend across monophyletic islands, mean 

diversity statistics were calculated from 50 kb window data (Figure 4.13). 

Monophyletic islands showed significantly elevated DXY in comparisons between 

alpine and ruderal species (t-test, p < 2.2 ×1016). Significant differences in πw were 

not observed for alpine or ruderal species at monophyletic islands (t-test, p = 0.14).  
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Figure 4.10: Plots summarising a monophyletic region showing high SRB 

(left) Summarising 50 kb window tree for the whole monophyletic region. (right, top) Mean FST across the monophyletic region from 
comparisons of all populations, calculated in 1 kb windows with 900 bp overlaps. (right, middle) Mean DXY (green) from all population 
comparisons, and mean πw (orange) from all populations, summarised in 1 kb windows with 900 bp overlaps across the monophyletic 
region. (right, bottom) Nei’s D (DXY - πw) summarised in 1 kb windows with 900 bp overlaps across the monophyletic region. Blue asterisks 
indicate the locations of 1 kb window trees that are monophyletic for alpine and ruderal growth habits. The pale blue area is the originating 
50 kb monophyletic region. 
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Figure 4.11: Plots summarising a monophyletic region showing intermediate SRB 

(left) Summarising 50 kb window tree for the whole monophyletic region. (right, top) Mean FST across the monophyletic region from 
comparisons of all populations, calculated in 1 kb windows with 900 bp overlaps. (right, middle) Mean DXY (green) from all population 
comparisons, and mean πw (orange) from all populations, summarised in 1 kb windows with 900 bp overlaps across the monophyletic 
region. (right, bottom) Nei’s D (DXY - πw) summarised in 1 kb windows with 900 bp overlaps across the monophyletic region. Blue asterisks 
indicate the locations of 1 kb window trees that are monophyletic for alpine and ruderal growth habits. The pale blue area is the originating 
50 kb monophyletic region. 
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Figure 4.12: Plots summarising a monophyletic region showing low SRB 

(left) Summarising 50 kb window tree for the whole monophyletic region. (right, top) Mean FST across the monophyletic region from 
comparisons of all populations, calculated in 1 kb windows with 900 bp overlaps. (right, middle) Mean DXY (green) from all population 
comparisons, and mean πw (orange) from all populations, summarised in 1 kb windows with 900 bp overlaps across the monophyletic 
region. (right, bottom) Nei’s D (DXY - πw) summarised in 1 kb windows with 900 bp overlaps across the monophyletic region. Blue asterisks 
indicate the locations of 1 kb window trees that are monophyletic for alpine and ruderal growth habits. The pale blue area is the originating 
50 kb monophyletic region. 
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Monophyletic region 50 kb tree SRB Estimated monophyletic island 
size (bp) 

Chr3:36150000-36200000 0.0320 200,000 

Chr3:51050000-51100000 0.0244 50,000 

Chr6:23650000-23700000 0.0225 60,000 

Chr7:34350000-34400000 0.0242 150,000 

Chr8:27475000-27525000 0.0317 250,000 

Chr2:18600000-18650000 0.00311 10,000 

Chr3:57550000-57600000 0.00301 10,000 

Chr5:18675000-18725000 0.00303 10,000 

Chr5:56175000-56225000 0.00306 40,000 

Chr8:40975000-41025000 0.00303 375,000 

Chr1:24675000-24725000 0.000155 70,000 

Chr4:6750000-6800000 0.000107 60,000 

Chr6:49950000-50000000 0.000154 0 

Chr7:46200000-46250000 0.000114 1,000 

Chr8:49175000-49225000 0.000116 1,000 

Table 4.2: SRB and monophyletic island size of 15 monophyletic regions 

Estimated monophyletic island sizes for islands showing the five largest SRB 
values (green background), the five median SRB values (yellow background), 
and five lowest SRB	values (orange background). 
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Figure 4.13: Boxplots summarising mean DXY and πw across the whole genome, 
and monophyletic regions. 

Boxplots summarising mean DXY (top) and πw (bottom) across the whole 
genome, compared to windows within monophyletic regions. Al and Ru refer to 
alpine and ruderal populations respectively. Mean DXY is significantly higher 
within monophyletic regions than the whole genomic average calculated from 
all comparisons, and from only alpine and ruderal comparisons (t-test, p < 
2.2×10-16 in both cases).  
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Discussion 

Monophyletic signatures pinpoint genomic islands of divergence around growth 

habit 

This chapter aimed to identify genomic regions segregating between Antirrhinum 

species showing different growth habits, in order to test hypotheses about the 

evolutionary dynamics of growth habit divergence. This has been achieved by 

adapting the grouping tree scan methodology to search for a specific monophyletic 

signature dividing populations based on growth habit. A total of 427 monophyletic 

regions were identified, suggesting that the adaptive architecture of growth habit 

is significantly more complicated than flower colour. However, for a polygenic trait, 

this is actually a surprisingly small number of loci, particularly as several are likely 

to be artifacts. Until monophyletic islands are further characterised, it is difficult to 

conclude whether they are likely to be involved in growth habit divergence, or 

whether they contain genes of strong or weak adaptive effects. However, by 

considering the properties of the identified islands, hypotheses pertaining to their 

origins can be tested. 

 

Monophyletic islands reflect barrier genes, or allele sharing 

Growth habit is a multifaceted trait that is likely to have a complex genetic 

architecture. Therefore, if distinct growth habits arose through parallel de novo 

mutations, the genetic architecture is unlikely to be consistent between different 

species. Analysis of an F2 population generated from crossing A. molle and A. 

sempervirens showed evidence of segregation of major growth habit traits, 

suggesting that the genetic basis of growth habit divergence is shared between 

both species (Li et al., Preliminary data). This direct evidence of shared variation 

affirms the idea that growth habit divergence likely involved some degree of allele 

sharing. The uptake of ancient alleles through introgressive hybridisation is 

regarded as an important driver of adaptive evolution (Marques, Meier, and 

Seehausen, 2019). Results presented here suggest that, even using the inherently 

conservative minimum island size approach, monophyletic islands are generally 

significantly larger than predicted by the parallel allele recruitment hypothesis. This 
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argues that allele sharing through hybridisation is a more likely scenario in the case 

of convergent growth habit evolution. 

 

The hypothesised parallel evolution of the alpine growth habit from a ruderal 

ancestral state is based on findings from whole genome phylogenetic analyses 

(Wilson and Hudson, 2011, Duran-Castillo et al., 2022). However, whole genomic 

trees cannot adequately summarise the heterogenous nature of genomic 

divergence, making it important to consider other hypotheses. In the simplest 

scenario, the divergence of the alpine and ruderal growth habits occurred in a single 

event. In this case, monophyletic islands may contain longstanding barriers to gene 

flow involved in ancient divergence. The grouping of the alpine A. molle with ruderal 

species within the whole genome tree may reflect extensive gene flow across non 

adaptive loci. Indeed, putative hybrids of A. molle and A. m. pseudomajus have been 

observed in the field (Coen, unpublished data). The existence of a major 

subgenomic tree topology grouping A. braun-blanquetti within the ruderal clade 

may reflect shared ancestral alleles between A. braun-blanquetti and other ruderal 

species, which contradicts the postulated parallel evolution of the Streptosepalum 

and Antirrhinum groups. Alternatively, A. braun-blanquetti may have also engaged 

in gene flow with species in the Antirrhinum group, as predicted by ABBA-BABA 

analysis (Duran-Castillo et al., 2022).  

 

To differentiate between ancient barrier genes and allele sharing, future work could 

test how consistently growth habit islands occur within different populations. The 

allele sharing hypothesis proposes that variation arose across a range of 

populations, and was shared through secondary contact. Due to the unlikeliness of 

all populations having made contact, it is expected that the distribution of some 

growth habit adaptations may be sporadic. In contrast, barrier genes are expected 

to have arisen during an ancient divergence of alpine and ruderal species, and are 

therefore expected to be represented across all populations. Preliminary data 

suggests that certain growth habit traits are sporadic in the wild. Work by Tingting 

Li, under my supervision, has shown that at least one population of the ruderal 

species Antirrhinum latifolium has a recessive hairy allele (Li et al., preliminary 
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data). This was also reported by Tan et al. (2020). Analyses presented here only 

contain alpine species from what Tan et al. refer to as the basal Kickxiella group. 

Species such as Antirrhinum hispanicum and Antirrhinum charidemi are 

phenotypically distinct from basal Kickxiella, showing evidence of alpine and ruderal 

characters (Sutton, 1988). Testing for genomic islands underlying these ‘semi-

alpine’ habits may shed more light onto how growth habits diverge. 

 

Further analyses should explore the gene landscape of monophyletic islands 

The detection of monophyletic islands strongly implies genomic regions are 

involved in growth habit divergence. To test whether monophyletic islands 

contained genes involved in growth habit, predicted genes (from Li et al., 2019) 

were extracted from all 427 50 kb monophyletic islands. This yielded 1,219 genes. 

400 / 427 monophyletic islands contained at least one gene. Predicted genes were 

then functionally annotated using eggNOG-mapper (Cantalapiedra et al., 2021). A 

total of 137 genes were annotated. 43 genes were predicted to encode retroviral 

and transposon associated domains. These genes were excluded, leaving 89 genes 

split between 83 regions. Many genes were predicted to encode transcription 

factors, including those with MADS-box and homeobox domains, and those within 

the AP2/EREBP family. Such transcription factors are strong candidates for 

regulation of growth (Ramachandran, Hiratsuka, and Chua, 1994, Kaufman and 

Airoldi, 2018), but functional relevance cannot be implied in the absence of 

expression data. Differential expression analysis of RNAseq data from a range of 

tissues may facilitate the discrimination of candidate genes. An advantage of 

Antirrhinum as a model system is that species showing distinct growth habits are 

inter-fertile. Therefore, the role of identified genes in growth habit divergence can 

be directly tested by generating hybrid populations showing allelic segregation 

across panels of candidate genes.  
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5: Many SULF-like, sRNA-producing inverted repeats show 

presence / absence relationships between Antirrhinum species, 

and may underlie phenotypic divergence 

Introduction 

Response to selective pressures can drive rapid evolution of traits, particularly 

when involved in reproductive success (Franks, Sim, and Weis, 2007, Lankinen and 

Green, 2015, Mackin et al., 2021). Previous chapters have established how colour 

genes can interact to affect fitness. It is likely therefore that evolution of phenotypic 

novelty in colour, and similar traits, depends not only on the evolution of novel 

factors, but also the fine control of existing genes. Flower colour patterns in 

Antirrhinum species involve magenta and yellow pigments. The major yellow 

pigment in Antirrhinum is aurone. Aurone biosynthesis depends on the FLA gene on 

chromosome two (Bradley et al., manuscript in preparation). FLA encodes a 

chalcone 4’-O-glucosyltransferase which catalyses the glucosylation of chalcone to 

aurone, in a biosynthesis pathway with only one intermediate stage (Ono et al., 

2006). Biosynthesis of aurone is restricted to only a few taxa in snapdragons (Ellis 

and Field, 2016), which suggests that the ability to synthesise yellow is a recently 

acquired trait. Another locus, SULFUREA (SULF), has emerged as a regulator of 

yellow patterning. SULF is localised to chromosome 4 and acts to repress the spread 

of yellow by targeting FLA transcripts for degradation. The interaction of SULF and 

FLA gives rise to the restricted yellow observed in A. m. pseudomajus. 

 

Origin and mechanism of SULF 

In 2017, Bradley et al. demonstrated that SULF affects FLA expression through the 

generation of regulatory small RNAs (sRNAs). Use of the term sRNA in the broad 

sense typically refers to any of a range of RNA molecules that act to regulate cellular 

processes through interactions with other RNAs. It is generally accepted that sRNA 

silencing originated as a defence mechanism against transposable elements and 

RNA viruses and has since been adapted to fulfil other functions (Borges and 

Martienssen, 2015, Eamens et al., 2008). Although diverse in their biogenesis and 
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processing, all sRNAs share the property of generating mature RNAs averaging 20 – 

25 nt in length (Hannon et al., 2006, Borges and Martienssen, 2015, Morgado and 

Johannes, 2017). The length of mature sRNA-derived RNAs varies according to their 

function. For example, 24 nt sRNAs are mainly associated with gene silencing at the 

transcriptional level, through RNA-directed DNA methylation (Lewsey et al., 2016). 

21 nt sRNAs are also involved in gene silencing, but act post-transcriptionally, by 

directing the cleavage of complementary mRNAs (Hamilton and Baulcombe, 1999). 

sRNAs produced by SULF are mainly 21 nt (Bradley et al., 2017). 

 

SULF is a hairpin sRNA, originating from an inverted repeat (IR) motif. The SULF IR 

contains regions of inverted sequence homology that can fold back upon 

themselves, forming a unimolecular double stranded RNA. This double-stranded 

conformation of immature sRNAs increases their stability, and allows them to 

escape cellular degradation mechanisms. It also facilitates their recognition by 

processing factors. In plants, the cleavage of precursor sRNAs to generate mature 

transcripts is carried out by DICER-LIKE proteins, which recognise double-stranded 

RNA duplexes (Borges and Martienssen, 2015). Processed transcripts associate with 

a range of ARGONAUTE proteins, which guide sRNAs to fulfil specific roles 

depending on their size and sequence specificity, in tandem with other silencing 

factors (Ma and Zhang, 2018). Many hairpin sRNAs, including SULF, have a region 

of intervening sequence between the two regions of inverted homology. While this 

sequence may affect the stability of the sRNA molecule, it is not expected to yield 

mature sRNAs. For brevity, when discussing hairpin sRNAs / inverted repeats, I will 

refer to the regions of inverted sequence homology as the arms, and the 

intervening sequence as the spacer (Figure 5.1). 
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Figure 5.1: Diagrammatic representation of an inverted repeat 

The two complementary repeat arms (grey boxes) are separated by a spacer 
region. Purple arrows represent the direction of the repeat, relative to a 
hypothetical ancestral paralogue. The dotted red line represents the full span of 
the IR. 
 

 

For a mature sRNA to target the transcripts of a specific gene, it must have sequence 

complementarity to that gene. IRs encoding sRNAs can arise through multiple gene 

duplication events, where one copy comes to exist in an inverted conformation to 

the other (Allen et al., 2004). SULF appears to have arisen from multiple inverted 

duplications of FLA (Figure 5.2). Other sources of sRNA loci include spontaneous 

evolution from pre-existing genomic IRs, or transmission by IR-containing 

transposable elements (Cui, You, and Chen, 2017).  
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Figure 5.2: Proposed origin of SULF through duplication of FLA. 

A simplified schematic showing the hypothesised origin of SULF. An inverted 
duplication of the FLA paralogue gives rise to two paralogous copies within 
close proximity on chromosome 4. The inverted configuration of the gene 
copies means that they show sequence complementarity. Over time, sequence 
similarity to the ancestral paralogue is lost, and neofunctionalisation imparts 
sRNA-producing functionality. Expression of this neofunctionalised locus 
generates transcripts that are able to form hairpin structures. These are 
processed by DICER-LIKE (DCL) and ARGONAUTE (AGO) proteins to target FLA 
transcripts for degradation, and thereby locally repress the spread of yellow 
pigment. Purple arrows indicate the relative orientations of the two FLA 
paralogues. Adapted from Bradley et al., 2017. Snapdragon flower illustration 
by Mabon Elis. 
 

 

Functional similarities to microRNAs 

Similar to hairpin sRNAs are microRNAs (miRNAs). Like hairpin sRNAs, miRNAs 

originate from genomic IRs, and are processed to yield sRNAs that are 20-22 nt (Lee 

and Carroll, 2018). However, miRNA precursor IRs tend to be smaller than hairpin 

sRNA precursors, and processed transcripts show lower complexity than sRNAs 

(Morgado and Johannes, 2017). In contrast to metazoan miRNAs, plant miRNAs 

tend to have specific target sites of high sequence similarity, meaning that they 

target only a limited number of mRNAs. Both hairpin sRNAs and miRNAs have been 

linked to phenotypic variation in natural and domesticated plant populations 

(Debernardi et al., 2017, Clop et al., 2006, Zhang et al., 2018). In each of these 

examples, variation in function involves allelic variation in known miRNAs, or their 
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targets. The activity of SULF is different, in that it depends on the presence of its 

precursor hairpin. Despite the large size of the SULF IR, SULF shows low average 

complexity in its transcripts, akin to a miRNA. It is hypothesised that SULF 

represents an intermediate stage on the pathway to miRNA evolution, and that the 

high relative sequence similarity to its target gene is a consequence of a recent 

evolutionary origin. It follows that sequence similarity will wane over time through 

mutation and drift, and the size of the SULF IR will decrease. This has been observed 

in miRNAs identified within a wide variety of model plant species (Cui, You, and 

Chen, 2007, Nozawa, Miura, and Nei, 2012). 

 

sRNA-mediated neofunctionalisation 

The discovery of SULF has provided insights into how the spread of yellow 

pigmentation is restricted within A. m. pseudomajus, but it has also raised questions 

regarding its origin. It is estimated that around 65 % of plant genes are paralogous, 

sharing descent with at least one other ancestral gene (Moore and Purugganan, 

2005, Panchy, Lehti-Shiu, and Shiu, 2016). When a gene undergoes duplication, one 

copy generally loses its function and goes extinct, in a process known as 

nonfunctionalisation (Nei and Roychoudhoury, 1973, Petrov and Hartl, 2000). 

Alternatively, one of the duplicate paralogues may evolve a new function. This 

process is called neofunctionalisation (NF). Within the classic model of duplicate 

gene fates, as proposed by Susumu Ohno in 1970, NF was classified in terms of 

whether the functional change arises through regulatory or coding functionality 

(Ohno, 1970). SULF falls into both of these categories, having arisen from coding 

sequence changes relative to its original paralogue, but acting in a regulatory 

fashion. This has led to the proposal of sRNA-mediated neofunctionalisation (SNF) 

as a third type of NF, with SULF as the exemplar case. 

 

SNF elements may underpin undetected genetic barriers 

Previous chapters have identified barriers based on the distribution of SNPs. 

However, differential function of SNF loci is expected to be based on the presence 

or absence of the IR, rather than allelic variation. In Chapter 3, the region 
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harbouring the SULF IR was only detected because SNPs in adjacent regions showed 

monophyletic distributions. At 1 kb window resolution, SULF was absent, reflecting 

low read depth (Figure 3.19). If some genetic barriers are underpinned by SNF loci, 

they may not be detectable through mapping-based approaches. Approaches 

detailed in this chapter aim to complement the characterisation of barrier loci, by 

facilitating the detection of SNF candidate IRs. 

 

A bioinformatic approach for detecting SNF candidate loci 

To test whether SNF might be involved in broader phenotypic diversity within 

Antirrhinum, a bioinformatic approach, consisting of six filtering steps, was 

developed in discussion with Simon Moxon and Leighton Folkes. The analyses that 

follow were all carried out be me. Leighton has separately developed a 

computational tool for carrying out a similar analysis (Folkes et al., manuscript in 

preparation). This tool, named SNF, is available at https://github.com/LF-

Bioinformatics/SNF. 

 

I will now outline the six filtering steps used to detect SNF candidate IRs. Each step 

is titled with a criterion – these criteria reflect the SULF-like attributes being tested. 

 

1) SNF candidate loci should be detectable as genomic IRs 

Firstly, if other SULF-like SNF loci are present in the genome of Antirrhinum majus, 

then they should be detectable by scanning for IR sequences. I will identify all 

genomic IRs within eight genome assemblies using Inverted Repeat Finder (IRF) 

(Warburton et al., 2004). Compared to other IR detection tools, IRF is effective at 

identifying IRs that contain long spacer regions, like SULF (Jia et al., 2022).  

 

2) SNF candidate IRs should produce 21 nt sRNAs 

To look for functionally relevant IRs, I will next map sRNAs extracted from different 

Antirrhinum species to all IRs from those species’ assemblies, using Bowtie 

(Langmead et al., 2009). IRs will then be filtered based on their sRNA mapping 

profiles. IRs with low sRNA depth (< 20 mapping sRNAs) will be discarded. To 
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capture SULF-like candidates, IRs will be retained if the mode mapped sRNA length 

is 21 nt.  

 

3) SNF candidate IRs should have target genes 

To predict whether IRs have target genes, candidate IR sequences will be compared 

against predicted coding sequences (CDSs) using local BLASTN searches. In this 

context, targets refer not to complementary mRNA sites as in miRNA literature 

(Agarwal et al., 2015), but to CDSs with statistically significant similarity to the 

longest arm of a given IR. The number of significant BLASTN hits will not be taken 

into consideration. 

 

4) SNF candidate IRs should show presence / absence relationships between 

species 

SNF candidate IRs are expected to show presence / absence relationships between 

species. To test this, candidate IRs will be mapped to all available species genome 

assemblies using Minimap2 (Li, 2021). IRs that are present within all assemblies will 

be discarded. 

 

IRs meeting criteria 1-4 represent good SNF candidate loci. I also propose an 

additional two criteria, which may help in characterising how SNF candidate loci 

function. 

 

5) SNF candidate IRs should show similarity to characterised proteins 

Functional information will be inferred by comparing the longest arm of each SNF 

candidate IR to the NCBI non-redundant protein (nr) database using BLASTX, and 

examining annotations. 

 

6) SNF candidate IRs may underlie growth habit divergence 

If SNF candidate IRs are involved in divergence, then genomic regions harbouring 

IRs should segregate between divergent Antirrhinum species. The characterisation 

of genomic regions showing growth habit monophyly in Chapter 4 presents an 
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opportunity to test whether genomic regions containing SNF candidate IRs show 

evidence of segregation between alpine and ruderal species, provided that a given 

SNF candidate IR is present within the A. majus reference genome. By mapping SNF 

candidate IRs to the A. majus reference genome, and comparing their locations 

against the 427 regions showing growth habit monophyly, I will examine whether 

any identified IRs might underpin genetic barriers involved in growth habit. 
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Aim of this work 

This work presents a case study for the bioinformatic detection of SNF candidate 

IRs within genome assemblies of eight Antirrhinum species. Using sRNA libraries 

derived from tissue from A. m. pseudomajus, A. m. striatum, A. molle, and A. 

sempervirens, detection steps 1-5 will be carried out. Each step will sequentially 

filter genomic IRs, using predefined criteria based on SULF. Taken together, these 

analyses will test the effectiveness of the SNF candidate detection pipeline, and 

provide preliminary evidence as to whether SNF is a common phenomenon within 

Antirrhinum. If identified SNF candidate IRs are also present within the A. majus 

reference genome, their location will be checked against the list of monophyletic 

islands identified in Chapter 4, to detect whether IRs may be involved in growth 

habit divergence. 
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Results 

Results: Less than 0.5 % of the Antirrhinum genome contains inverted repeats 

To quantify genomic IRs within Antirrhinum species, including those which contain 

long spacer regions between repeats, Inverted Repeat Finder was run on eight 

genome assemblies. Figure 5.3 shows histograms of IR counts from eight genome 

assemblies, grouped according to IR length. A total of 257,909 IRs were identified 

across all assemblies. IRs accounted for between 0.11 % and 0.46 % of total genomic 

sequence within each assembly. 27.5 – 28.9 % of IRs were within the SULF size class, 

between 1,000 nt and 2,000 nt in length. This suggests that SULF-like long IRs 

represent a minority of total genomic IRs. 51.8 – 56.4 % of IRs were small (< 1000 

nt). Each assembly contained at least one very large IR (> 20 kb). 

 

 

Figure 5.3: Histograms of IR sizes in eight species assemblies 

Histograms showing the frequency of different size classes of IRs within the 
eight species assemblies. 
 

 

Results: 0.89 % of IRs primarily yield 21 nt sRNAs 

To determine the proportion of genomic IRs that yield sRNAs, sRNAs were extracted 

from petals of three Antirrhinum species by Desmond Bradley, and sequenced by 

Maria-Elena Mannarelli. Two ruderal species, A. m. pseudomajus and A. m. 

striatum, and one alpine species, A. molle, were included. These three assemblies 

contained 76,808 IRs. sRNAs from each species were filtered to remove reads < 18 
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nt and > 28 nt, and were mapped to all IRs from the corresponding species assembly 

using Bowtie. Figure 5.4 shows the numbers of IRs meeting different filtering 

criteria. 75,786 IRs had at least one mapping sRNA. A minimum depth threshold of 

20 mapped sRNAs was applied, leaving 67,427 mapped IRs in total. 98 % (66,119 / 

67,427) of remaining IRs showed a mode sRNA length of 24 nt. 687 IRs had a mode 

sRNA length of 21 nt. This included the SULF hairpin in A. m. pseudomajus (Figure 

5.5). These “mode 21 nt” IRs represented the second largest size class amongst 

mapped IRs (Figure 5.6). 

 

 

Figure 5.4: Venn diagram showing the characteristics of sRNA-mapped IRs from 
A. m. pseudomajus, A. m. striatum, and A. molle 

“Depth > 19” IRs comprise all IRs with > 19 mapped reads. “Mode 21 nt” IRs 
comprise all IRs with a mode mapped read length of 21 nt. “BLASTN hit” IRs are 
all IRs with at least one significant BLASTN hit when compared to predicted 
CDSs. 
 

 



 117 

 

 

Figure 5.5: sRNA coverage plot of the SULF locus 

Read depth of 21-25 nt sRNAs plotted across the SULF IR. Each coloured line represents a different sRNA size class. 21 nt sRNA depth is shown in 
red. The genomic position of SULF within the A. m. pseudomajus assembly is displayed above the plot, in the format scaffold:start-end. 
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For IRs to be SNF candidates, a potential target gene must be observed. To identify 

possible targets based on sequence similarity, local BLASTN searches were carried 

out. The longest arm of each of the 687 mode 21 IRs was compared to predicted 

CDSs from the A. m. pseudomajus, A. m. striatum, and A. molle assemblies using 

default BLASTN parameters. This revealed that 318 / 687 mode 21 IRs showed 

similarity to predicted CDSs, indicating possible target genes. These 318 mode 21 

IRs represented the best SNF candidates, and were retained for further analysis. 

 

 

Figure 5.6: Histogram of mode mapped sRNA length 

Frequencies of different mode mapped sRNA lengths across the 75,786 IRs from 
A. m. pseudomajus, A. m. striatum, and A. molle. The 22 IRs with no mapping 
sRNAs are excluded. 
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Results: 152 candidate IRs segregate between species 

To determine whether SNF candidate IRs are shared between test species, each was 

mapped to all eight genome assemblies using Minimap2. Two very short (< 200 nt) 

IRs failed to map to any assemblies. These were removed from the candidate set. 

Presence / absence patterns of the remaining 316 SNF candidate IRs are 

summarised in Figure 5.7. 52 % of SNF candidate IRs mapped to all assemblies, 

suggesting that they are unlikely to be involved in species divergence. 152 IRs were 

absent within at least one assembly. SNF candidate IRs that show presence / 

absence relationships between alpine and ruderal species are of particular interest, 

as they may be involved in growth habit divergence. 45 IRs were absent within both 

alpine species, A. molle and A. sempervirens. Reciprocally, 4 IRs were unique to A. 

molle, and 2 were shared between A. molle and A. sempervirens only.  

 

Results: 40.8 % of IRs have similarity to protein coding genes 

The 51 growth-habit-candidate IRs, along with the other 101 IRs segregating 

between species, were compared to the NCBI nr database using BLASTX. Again, 

BLAST searches were carried out using the longest arm of each SNF candidate IR. 

Using default parameters, 62 / 152 SNF candidate IRs had significant similarity to 

translated proteins (Table 5.1). 34 % of these 62 SNF candidate IRs showed presence 

/ absence according to growth habit.  
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Figure 5.7: Presence / absence heatmap of SNF candidate IRs in species 

Two colour heatmap showing presence / absence of 411 segregating SNF 
candidate IRs (y-axis) identified from A. m. pseudomajus, A. m. striatum, and A. 
molle. IRs that are present within a given species are coloured red. Results have 
been clustered based on the number of shared IRs. This is summarised in the 
UPGMA tree atop the heatmap. 
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Description Species 
Query 
coverage E value % identity 

E3 ubiquitin-protein ligase 
RING1-like Sesamum indicum 57 % 2.00e-34 45.51 
sugar porter family MFS 
transporter 

Serratia 
marcescens 81 % 0.001 44.44 

lysine-specific demethylase 
jmj25 

Phtheirospermum 
japonicum 99 % 4.00e-24 52.1 

protein embryonic flower 1 
Phtheirospermum 
japonicum 49 % 1.00e-4 62.16 

protein embryonic flower 1 
Phtheirospermum 
japonicum 75 % 3.00e-8 56.25 

auxin-responsive protein 
SAUR19-like Sesamum indicum 94 % 6.00e-49 83.7 
auxin-responsive protein 
SAUR19-like Sesamum indicum 92 % 2.00e-50 81.52 
Dynamin-related protein like Actinidia chinensis 76 % 6.00e-34 36.97 
putative mannitol 
dehydrognase-like Trifolium medium 84 % 2.00e-28 73.85 
WAT1-related protein Striga hermonthica 29 % 5.00e-8 59.52 
F-box/kelch-repeat protein 
at3g23880 

Phtheirospermum 
japonicum 83 % 6.00e-6 43.1 

pectinesterase 2-like Coffea arabica 84 % 3.00e-11 41.3 
E3 ubiquitin-protein ligase 
RING1-like Sesamum indicum 24 % 9.00e-38 56.59 
Regulator of rDNA transcription 
protein 15 

Capsicum 
baccatum 97 % 5.00e-14 96.67 

WAT1-related protein Striga hermonthica 29 % 5.00e-8 59.52 
F-box/LRR-repeat protein 
at4g14096 

Phtheirospermum 
japonicum 59 % 2.00e-7 40.48 

putative mannitol 
dehydrognase-like Trifolium medium 84 % 2.00e-28 73.85 
F-box/kelch-repeat protein 
at3g23880 

Phtheirospermum 
japonicum 83 % 0.001 37.93 

pectinesterase 2-like Coffea arabica 85 % 2.00e-10 42.39 
auxin-induced protein 15A Sesamum indicum 98 % 6.00e-43 81.52 
auxin-induced protein 15A Sesamum indicum 98 % 7.00e-45 84.15 
auxin-induced protein 15A Sesamum indicum 87 % 1.00e-46 77.17 
protein DELAY OF 
GERMNATION 1-like Sesamum indicum 78 % 7.00e-41 54.55 
F-box/kelch-repeat protein 
at3g23880 

Phtheirospermum 
japonicum 85 % 4.00e-4 43.1 

putative B3 domain-containing 
protein At5g66980 Sesamum indicum 46 % 1.00e-9 58 
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Table 5.1 (previous page): BLASTX hits for 25 SNF candidate IRs. 

BLASTX hits against the nr database for 25 SNF candidate IRs. The longest repeat 
arms from 152 SNF candidate IRs were compared to the NCBI nr database using 
BLASTX. 62 / 152 IRs had significant BLASTX hits. 37 annotations were hypothetical / 
uncharacterised proteins. These have been omitted, leaving 25 with similarity to 
known proteins. Query coverage refers to the percentage of the repeat arm with 
sequence similarity to the protein hit. E-value reports the statistical significance of 
the BLAST hit. % identify shows the percentage of matching amino acids between 
the translated repeat arm, and the protein hit. 
 

 

Results: Two SNF candidate IRs are localised within monophyletic islands 

To test whether SNF candidate IRs resided in genomic regions that have been 

observed to segregate between alpine and ruderal Antirrhinum species, IRs were 

mapped to the A. majus reference genome using Minimap2. 106 / 152 candidates 

mapped to the reference genome. To search for monophyletic signatures, the eight 

species dataset analysed in Chapter 4 was utilised. 1 kb window trees, with 900 bp 

overlaps, were constructed across the two 50 kb windows harbouring the SNF 

candidate regions showing growth habit segregation. Two regions yielded trees that 

were doubly monophyletic for growth habit. The first region showed very low sRNA 

depth, suggesting that the SNF is unlikely to be expressed in the petal tissue 

analysed (Figure 5.8). The second region, on chromosome 7, showed a 

monophyletic island size of around 10 kb. The IR, spanning 1,788 nt and identified 

within the A. molle assembly, showed 21 nt sRNA peaks of moderate depth on 

either arm (Figure 5.9). A BLASTX search comparing the longest arm of this IR to the 

nr database suggested that it contains an F-box domain. This is not shown in Table 

5.1, as the most significant hit corresponded to a hypothetical protein. 

 

In total, this analysis detected 152 SNF candidate IRs passing criteria 1-4. Of these, 

25 had similarity to characterised proteins within the NCBI nr database. Two SNF 

candidate IRs were seen to be localised within genomic regions that are divergent 

between alpine and ruderal Antirrhinum species, although one showed very low 

sRNA depth, and may be an artifact. 
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(a) 

 

(b) 
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Figure 5.8 (previous page): sRNA coverage plot and monophyletic island plots for 
a candidate monophyletic SNF candidate IR. 

(a) Read depth of 21-25 nt sRNAs plotted across the candidate IR. Each coloured 
line represents a different sRNA size class. 21 nt sRNA depth is shown in red. 
The genomic position of the candidate IR within the A. m. pseudomajus 
assembly is displayed above the plot, in the format scaffold:start-end. (b) Plots 
showing diversity statistics across a ca. 1 Mb region containing the candidate IR. 
(left) Summarising 50 kb window tree for the whole monophyletic region. (right, 
top) Mean FST across the monophyletic region from comparisons of all 
populations, calculated in 1 kb windows with 900 bp overlaps. (right, middle) 
Mean DXY (green) from all population comparisons, and mean πw (orange) from 
all populations, summarised in 1 kb windows with 900 bp overlaps across the 
monophyletic region. (right, bottom) Nei’s D (DXY - πw) summarised in 1 kb 
windows with 900 bp overlaps across the monophyletic region. Blue asterisks 
indicate the locations of 1 kb window trees that are monophyletic for alpine 
and ruderal growth habits. The black rectangle represents the limits of the 
originating 50 kb monophyletic region. 
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(a) 

 

(b) 
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Figure 5.9 (previous page): sRNA coverage plot and monophyletic island plots for 
a candidate monophyletic SNF candidate IR. 

(a) Read depth of 21-25 nt sRNAs plotted across the candidate IR. Each coloured 
line represents a different sRNA size class. 21 nt sRNA depth is shown in red. 
The genomic position of the candidate IR within the A. m. pseudomajus 
assembly is displayed above the plot, in the format scaffold:start-end. (b) Plots 
showing diversity statistics across a ca. 1 Mb region containing the candidate IR. 
(left) Summarising 50 kb window tree for the whole monophyletic region. (right, 
top) Mean FST across the monophyletic region from comparisons of all 
populations, calculated in 1 kb windows with 900 bp overlaps. (right, middle) 
Mean DXY (green) from all population comparisons, and mean πw (orange) from 
all populations, summarised in 1 kb windows with 900 bp overlaps across the 
monophyletic region. (right, bottom) Nei’s D (DXY - πw) summarised in 1 kb 
windows with 900 bp overlaps across the monophyletic region. Blue asterisks 
indicate the locations of 1 kb window trees that are monophyletic for alpine 
and ruderal growth habits. The black rectangle represents the limits of the 
originating 50 kb monophyletic region. 
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Results: Analysis of sRNA from A. m. pseudomajus and A. sempervirens reveals more 

SNF candidate IRs 

To expand the SNF search, the sRNA extraction and sequencing was carried out in 

triplicate on samples from A. m. pseudomajus and A. sempervirens. sRNAs were 

extracted from four tissue types; leaves, flower buds, petals, and shoots. To capture 

as many candidates as possible, replicate datasets were considered individually in 

the first instance. A total of 54,947 IRs were identified within the A. m. pseudomajus 

and A. sempervirens genome assemblies. Mapping the new sRNAs, 44,397 IRs had 

at least 20 mapping sRNAs in one or more replicates from one or more tissues. 

11,150 IRs had predominately 21 nt sRNAs mapped in one or more replicates. To 

look for possible target genes, the longest arm of each of these IRs was compared 

to predicted A. m. pseudomajus or A. sempervirens CDSs using local BLASTN. 982 / 

11,150 IRs had possible CDS targets based on sequence similarity (Figure 5.10). 

Again, mode 21 IRs represented the second largest size class of mapped IRs (Figure 

5.11). 
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Figure 5.10: Venn diagram showing the characteristics of sRNA-mapped IRs from 
A. m. pseudomajus, and A. sempervirens 

“Depth > 19” IRs comprise all IRs with > 19 mapped reads. “Mode 21 nt” IRs 
comprise all IRs with a mode mapped read length of 21 nt. “BLASTN hit” IRs are 
all IRs with at least one significant BLASTN hit when compared to predicted 
CDSs. 
 

 

Of the 980 IRs that mapped to at least one assembly, 487 were present in all 

assemblies. 493 IRs showed evidence of presence / absence in one or more 

assemblies. 493 SNF candidate IRs was too large a number to easily carry out 

BLASTX searches. To narrow this set down, only those candidates which showed 

mode 21 nt sRNAs within all tissues were retained for BLASTX comparisons. A total 

of 35 SNF candidate IRs showed a mode mapped sRNA length of 21 in all tissues. 27 

of these gave hits when compared against the NCBI nr database using BLASTX (Table 

5.2). 

 

This analysis detected 493 SNF candidate IRs passing criteria 1-4. Of the 35 of these 

that were selected for BLASTX searches, nine showed similarity to characterised 

protein domains (criterion 5). Comparison to known monophyletic regions was not 

carried out for this set. 
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Figure 5.11 Histogram of mode mapped sRNA length 

Frequencies of different mode mapped sRNA lengths across the 54,947 IRs from 
A. m. pseudomajus and A. sempervirens. The 359 IRs with no mapping sRNAs 
are excluded. 
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Figure 5.12: Presence / absence heatmap of SNF candidate IRs in species 

Two colour heatmap showing presence / absence of 411 segregating SNF 
candidate IRs (y-axis) identified from A. m. pseudomajus and A. sempervirens. 
IRs that are present within a given species are coloured red. Results have been 
clustered based on the number of shared IRs. This is summarised in the UPGMA 
tree atop the heatmap. 
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Description Species 
Query 
coverage E value % identity 

F-box/kelch-repeat protein 
at3g23880 

Phtheirospermum 
japonicum 83 % 6.00e-6 43.1 

putative disease resistance 
protein RGA1 Sesamum indicum 25 % 3.00e-10 59.68 
mediator of RNA polymerase II 
transcription subunit 25 
isoform X1 Sesamum indicum 50 % 3.00e-9 61.97 
putative F-box/LRR-repeat 
protein At5g41840 Sesamum indicum 96 % 4.00e-29 52.48 
F-box/kelch-repeat protein 
at3g23880 

Phtheirospermum 
japonicum 83 % 6.00e-6 43.1 

pectinesterase-like Coffea arabica 38 % 4.00e-6 57.14 
E3 ubiquitin-protein ligase 
RING1-like Sesamum indicum 57 % 2.00e-34 45.51 
putative F-box/LRR-repeat 
protein At5g41840 Sesamum indicum 99 % 1.00e-32 56.74 

Dynamin-related protein like 
Actinidia 
chinensis 76 % 6.00e-34 36.97 

Table 5.2: BLASTX hits for 9 SNF candidate IRs. 

BLASTX hits against the nr database for nine SNF candidate IRs. The longest 
repeat arms from 35 SNF candidate IRs were compared to the NCBI nr database 
using BLASTX. 26 / 35 IRs had significant BLASTX hits. 17 annotations were 
hypothetical / uncharacterised proteins. These have been omitted, leaving nine 
with similarity to known proteins. Query coverage refers to the percentage of 
the repeat arm with sequence similarity to the protein hit. E-value reports the 
statistical significance of the BLAST hit. % identify shows the percentage of 
matching amino acids between the translated repeat arm, and the protein hit. 
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Discussion 

0.5 % of surveyed IRs met all SNF candidate criteria 

The primary aim of this chapter was to develop and apply a bioinformatic pipeline, 

to serve as a case study for the detection of SNF candidate IRs. To do this, I defined 

four criteria that a SULF-like SNF candidate IR should meet. These analyses of A. m. 

pseudomajus, A. m. striatum, A. molle, and A. sempervirens have identified 645 SNF 

candidate IRs, out of the 131,755 IRs present in the four species genome 

assemblies. 152 SNF candidate IRs, including SULF, were between 1,000-2,000 nt 

long (Figure 5.13). 206 SNF candidate IRs were larger than 2,000 nt, with the largest 

IR being 16,552 nt. The theoretical maximum size of a SNF locus depends on the 

biological processes that can give rise to IRs. Single gene duplication can arise 

through transposon activity (Wang, Y., Wang, X, and Paterson, 2012). Transposons 

spanning over 20 kb have been characterised in a range of eukaryotic systems 

(Arkhipova and Yushenova, 2019). This raises the possibility that an IR generated 

through multiple transposon mediated gene duplications might be much larger 

than 2 kb. Presumably, a very large precursor sRNA hairpin would be less efficiently 

processed by DICER-LIKE, but this is unclear. 38.5 % of SNF candidate IRs were < 

1000 nt long. These likely include miRNA precursors (Thakur et al., 2011). If SNF IRs 

represent “immature” miRNA loci, then some of these small IRs may be older SNF 

loci, which have lost some of their redundant sequence similarity to their paralogue. 

Characterised miRNA loci could be excluded by comparing small IRs to the miRBase 

(Griffiths-Jones et al., 2006) miRNA precursor database, but this is likely to 

represent only a fraction of all miRNAs in Antirrhinum. 
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Figure 5.13: Histogram of lengths of all SNF candidate IRs. 

Frequency of different IR lengths within the SNF candidate IRs. The large 
outlying IR was 16,552 nt. 
 

 

SNF candidates may target F-box proteins, and auxin responsive proteins 

A total of 152 SNF candidate IRs were compared to the NCBI nr database using 

BLASTX. Of these, 34 showed significant BLASTX hits to characterised protein 

domains – 25 from the first analysis, and nine from the second. Eight of the 34 were 

predicted to contain F-box domains. Five were of the kelch-box type, and three of 

the LRR-repeat type. F-box proteins are diverse, and implicated in a range of 

developmental processes including floral organ development, hormone signal 

transduction, photoperiodism, stress responses, and metabolism (Zhang et al., 

2019). The functional diversity of F-box proteins makes it challenging to speculate 

on their significance as SNF targets. However, possible roles in development are 

compelling, particularly as one SNF candidate IR containing an F-box domain was 

shown to reside in a genomic island that is monophyletic for growth habit. 

However, the fact that this IR was detected in A. molle (an alpine species), but also 



 134 

present within the reference genome (a ruderal inbred line), suggests that it may 

not be a true SNF locus, which should show presence / absence. 

 

The second most common similarity was to auxin responsive proteins, including the 

auxin responsive protein SAUR19-like. SAUR (small auxin upregulated RNA) factors 

are a family of proteins characterised by fast turnaround in response to auxin 

signalling (Stortenbeker and Bemer, 2019). SAUR genes can be rapidly induced in 

response to a range of stimuli, but their transcripts and proteins have very short 

half-lives (McClure and Guilfoyle, 1989; Newman et al., 1993; Knauss et al., 2003). 

To date, no studies have directly implicated sRNAs in SAUR transcript degradation, 

although auxin response factors involved in modulating auxin induced genes are 

known to be regulated by miRNAs (Mallory, Bartel, D., Bartel, B., 2005).  

 

Evidence presented here suggests that SNF candidate IRs identified in different 

species show similar functional annotations. However, interpretation of this is 

limited because not all SNF candidate IRs have been characterised. A greater 

number of annotations could be obtained by running BLASTX searches for all 493 

segregating IRs in the A. m. pseudomajus / A. sempervirens dataset, rather than just 

the 35 which showed mode 21 nt sRNAs in all tissues. However, this proved 

challenging to automate. A preliminary attempt to derive functional predictions 

using eggNOG-mapper in genomic mode returned hits for 104 / 493 IR arms. This 

likely represents a better option than using BLASTX, being significantly simpler to 

run for hundreds of input sequences. 

 

Improving the SNF candidate detection pipeline 

Work presented here is intended as a case study, for future development of in silico 

approaches to characterise SNF candidate loci. It is important, therefore, to 

consider the effectiveness of the approach. A challenge of detecting SNF candidates 

is that currently only one locus, SULF, serves as an exemplar or signature. Thus, the 

properties of SNF candidates were poorly defined, and it was important that 

detection criteria were reasonably relaxed. To capture as many SNF candidate IRs 

as possible, it is important that genomic IRs be detected effectively. An estimated 
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52.6 % of the most recently published Antirrhinum majus genome is repetitive (Li 

et al., 2019). Running IRF on the reference genome revealed that 4.6 % of genomic 

sequence corresponds to IR sequences. The percentage of repetitive sequence 

within each of the eight species assemblies was found to be between 45.2 % and 

49.4 %. This is slightly less than the reference genome. However, the reference 

genome is a published, chromosome level assembly, and is therefore likely to be 

more complete. Reported genomic IR content within the species assemblies was 

less than 0.5 %. This tenfold reduction suggests that the number of IRs detected 

may vary substantially depending on the quality and completeness of the assembly 

used. 

 

A higher depth filter earlier on in the pipeline would reduce noise. Over 98 % of 

genomic IRs showed predominantly 24 nt mapping sRNAs, and were therefore 

disregarded. However, many of these IRs may have also had 21 nt sRNAs mapped. 

A more lenient search could include IRs where the depth of 21 nt sRNAs is similar 

to the depth of 24 nt sRNAs. The SULF IR showed a characteristic pattern of sRNA 

mapping, with a tall, broad 21 nt sRNA peaks on each arm. This distribution fits the 

biological expectation that processed sRNAs should originate from sequence 

showing complementarity to their targets. The approach detailed here lacks any 

means of discriminating based on read distribution. Ideally, the distribution of 21 

nt sRNAs across each IR would be numerically defined, and IRs with sporadically 

mapping sRNAs excluded. A simple way to achieve this would be to filter based on 

depth per position, or by applying a threshold sRNA coverage. Both approaches 

would exclude IRs with sporadically mapping sRNAs. The program ShortStack 

(Axtell, 2013) can be used to improve sRNA mapping data by carrying out de novo 

detection of sRNA clusters, and quantifying the RNA folding dynamics of the 

underlying IR sequence, to infer the likelihood that an expressed IR would 

spontaneously fold in vivo. Shortstack is incompatible with the SNF detection 

pipeline detailed here, as it requires that sRNA libraries are mapped to a reference 

genome, rather than mapping to extracted IR sequences. Future analyses could 

move towards whole genomic sRNA mapping, with minimal changes to the 

downstream analyses. Local BLASTN searches of IR arms against predicted CDSs 
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were effective at filtering many IRs that were unlikely to be SNF candidates. 

However, whether 21 nt sRNAs mapped directly to the predicted target was not 

investigated. A more sophisticated approach to target prediction would map sRNAs 

from each hairpin to its predicted target CDS, and filter based on depth / mode 

sRNA length. A similar approach is utilised by TarHunter to detect miRNA target 

sequences (Ma et al., 2018).  

 

Software for the detection of SNF candidate IRs 

Analyses presented here involve the use of a range of software tools, and custom 

processing scripts, which require experience in bioinformatics to use effectively. If 

SNF is to be studied more widely, it is important that tools are developed which can 

be used by non-specialists. Leighton Folkes has developed a command line tool 

integrating the different steps of this identification process, which we developed 

together in discussion (Folkes et al., manuscript in preparation). The SNF 

implementation is broadly similar to the approach outlined here, but can be 

deployed on compatible machines with minimal effort. Because SNF analyses one 

assembly at a time, additional ad hoc analyses are required to test whether 

detected IRs show presence / absence relationships between assemblies. 

 

Recently, Jia et al. (2022) established LIRBase, an online database of long inverted 

repeats from eukaryotic genomes. This approach shows strong parallels to the 

analyses presented here, and with the SNF tool. Jia et al. used Inverted Repeat 

Finder to predict inverted repeats in 424 eukaryotic genome assemblies. They 

specifically identified long inverted repeats by filtering all IRs where both arms were 

shorter than 400 nt. To detect hairpin sRNAs, the user has the option of providing 

sRNA data, which is aligned to detected IRs using Bowtie. Possible downstream 

analyses include differential expression analysis of sRNAs using DESeq2, prediction 

of target genes by mapping IRs to CDSs using Bowtie, and visualisation of IR 

structure using RNAfold (Lorenz et al., 2011). IRs can be filtered on the depth of 

mapped sRNAs, but also on their position, circumventing the issues of sporadic read 

mapping addressed earlier. The LIRBase suite is a promising resource for future 

analyses of SNF, which should be explored further.  
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6: Discussion 

Summary of the work presented in this thesis 

This work set out to characterise the genetic barriers involved in the divergence of 

Antirrhinum species. Specifically, two divergence events were considered; first 

between closely related A. m. pseudomajus and A. m. striatum populations in a 

shared environment, and the second, more ancient, divergence of Antirrhinum 

species showing distinct growth habits. Prior to analyses, two genetic barriers were 

hypothesised. Within a shared environment, I hypothesised that intrinsic epistatic 

barriers might be in place; the reproductive barrier exists due to genetic 

incompatibilities arising from epistasis. Across distinct environments, with different 

ecological conditions, I hypothesised the existence of differentially adaptive 

barriers, underpinned by genes that confer an adaptive advantage within a specific 

environment. 

 

Work presented here has inferred the genetic basis of barriers in both experimental 

systems using the grouping-tree-scan approach to identify monophyletic islands. By 

leveraging pools of genomic DNA from multiple populations, I have identified 

panels of genomic regions showing signatures of consistent between-population 

segregation with the phenotypes under investigation. Additionally, in response to 

the observation that genetic barriers might be underpinned by sRNA loci showing 

presence / absence distributions between populations, I have presented a case 

study for identifying similar loci. 

 

In the case of A. m. pseudomajus and A. m. striatum, I analysed the six identified 

monophyletic islands in light of SNP and RNAseq data, and concluded that all are 

likely to have a role in controlling flower colour. This implies, though does not 

directly demonstrate, that the genetic barrier between A. m. pseudomajus and A. 

m. striatum is underpinned by incompatibilities between colour genes. 

 

Analysing eight species showing distinct growth habits, I demonstrated that 

monophyletic signatures are restricted to a set of regions encompassing 3.1 % of 
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the genome, none of which were detectable using conventional genome scans. 

Estimating the sizes of the monophyletic islands within each monophyletic region, 

I concluded that they are consistent with barriers to gene flow or allele sharing, but 

are generally significantly larger than would be expected by the prevailing parallel 

allele recruitment hypothesis. 

 

Carrying out a search for SULF-like inverted repeat loci, which may have evolved 

through SNF, revealed a total of 645 IRs with properties similar to SULF. These 

represent the best SNF candidate loci, but further characterisation is required to 

test whether they are involved in phenotypic divergence. 

 

The reproductive barrier between A. m. pseudomajus and A. m. striatum likely 

reflects coadaptation of colour loci 

In the Introduction I postulated that an intrinsic epistatic barrier should have three 

properties: equivalent solutions to a shared problem, distinct solutions that operate 

irrespective of environment, and maladaptive consequences for mixed strategies. 

Characterising the divergent genomic regions between A. m. pseudomajus and A. 

m. striatum suggests that all three of these criteria have been met. The shared 

problem faced by ruderal Antirrhinum species is one of pollinator attraction in 

competitive environments. Colour patterns in A. m. pseudomajus and A. m. 

striatum are solutions to the pollinator attraction problem, showing adaptation that 

is likely to make them effective floral guides to their pollinating bumblebees. The 

two subspecies show distinct but equivalent solutions, with neither colour 

‘signpost’ appearing to be more effective than the other (Whibley et al., 2006). 

Hybrid individuals can be observed at natural hybrid zones, showing intermediate 

flower colour phenotypes. However, these do not proliferate outside of A. m. 

pseudomajus and A. m. striatum contact zones, imlpying that they are generated 

through ongoing hybridisation (Field et al., preliminary data). 

 

In light of these observations, I hypothesise that flower colour in A. m. pseudomajus 

and A. m. striatum is a coadapted trait, arising through the interactions of at least 
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seven loci from six distinct genomic regions. Colour loci together define the 

characteristic colour signposts that differentiate the two subspecies. For a colour 

pattern to be faithfully rendered, the correct alleles of all colour genes must be 

inherited. The substitution of any parental allele is sufficient to disrupt the 

coadapted colour phenotype, and thereby impart a substantial fitness penalty. 

These hybrid incompatibilities form the basis of the intrinsic epistatic barrier.  

 

It is possible that the divergence between A. m. pseudomajus and A. m. striatum 

represents an example of reinforcement where, following secondary contact, 

selection against hybrid phenotypes can result in increased reproductive isolation. 

A similar barrier is hypothesised to exist between sympatric populations of Phlox 

drummondii and Phlox cuspidata. Here, two genes in the anthocyanin biosynthesis 

pathway show cis-regulatory variation between a dark red flowered morph of P. 

drummondii, and the light blue flowered P. cuspidata (Hopkins and Rausher, 2011). 

Each population has one dominant and one recessive variant meaning that, as with 

A. m. pseudomajus and A. m. striatum, hybrids show intermediate flower colours. 

While all interspecific hybrids show reduced fertility, dark red flowered P. 

drummondii show 66 % less interspecific hybridisation than P. drummondii morphs 

with light blue flowers (Levin, 1984). This suggests that magenta colour variation 

alone is sufficient to significantly reduce fitness. More recent evidence has 

suggested that reinforcement can proceed even where gene flow is ongoing, 

provided that the differentiated trait is strongly selected for (Roda et al., 2017).  

 

The observation that all six monophyletic regions identified within A. m. 

pseudomajus and A. m. striatum contain candidate colour genes is a compelling hint 

that colour alone may underlie the reproductive barrier. Flower colour in A. m. 

pseudomajus and A. m. striatum is mainly determined by the activity of two distinct 

but overlapping pigment biosynthesis pathways, downstream of the general 

flavonoid pathway. The anthocyanin pathway is complicated, with at least seven 

enzymes being required for anthocyanin biosynthesis in plants (Holton and Cornish, 

1995). The aurone pathway, by comparison, is much simpler, consisting of two 

genes in Antirrhinum (Ono et al., 2006). Because the aurone pathway is short, there 
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are limited means by which mutation can act to change yellow pigment 

biosynthesis. If FLA and AUN represent true genetic barriers, then they together 

account for the entirety of the aurone pathway. A third proposed barrier locus, 

SULF, also acts through the aurone pathway by regulating FLA expression. 

Preliminary evidence from Desmond Bradley suggests that CRE may also influence 

yellow flower colour, although the mechanism of action remains to be 

characterised. Four genes, within two monophyletic islands, are predicted to 

regulate colour through the anthocyanin pathway; RUB, ROS1, ROS2, and EL.  

 

Many anthocyanin-regulating genes have been characterised as major effect 

regulators of magenta patterning in Antirrhinum. The suggestion that only ROS1, 

ROS2, EL, and RUB show relevance in phenotypic divergence is surprising. Perhaps 

the most striking omission is VENOSA (VE), a gene encoding a MYB-like transcription 

factor that determines the patterning of the magenta anthocyanin pigments within 

a subset of epidermal cells overlying the veins, on the dorsal petals (Schwinn et al., 

2006). In a study of pollinator attraction, Shang et al. (2010) demonstrated that 

plants with dominant VE alleles (i.e. those which showed coloured veins) were more 

regularly visited by pollinators, if their flowers were otherwise pale coloured, or 

lacking anthocyanin. VE activity is unlikely to increase pollinator attractiveness of A. 

m. pseudomajus flowers, as the pattern is unlikely to stand out against the 

uniformly magenta background. However, magenta veins are expected to contrast 

well against the yellow coloured, acyanic flowers of A. m. striatum. Because VE is 

expected to have little effect on fitness in A. m. pseudomajus, VE may not be 

coadapted with other colour genes. If VE affects fitness within A. m. striatum 

populations only, then VE alleles should flow freely within A. m. pseudomajus 

populations, and therefore not underlie a genetic barrier. This could be tested by 

comparing πw at the VE locus in A. m. pseudomajus and A. m. striatum. If VE confers 

additional fitness in A. m. striatum, then it may show reduced πw, consistent with a 

selective sweep. 

 



 141 

Support for genetic barriers and hybridisation in ancient growth habit 

divergence 

For a genetic barrier to arise through differential adaptation, I hypothesised that 

three requirements must be met. Firstly, the underlying loci must represent a better 

solution for a given environment. Secondly, different adaptive solutions must be 

innovated for different environments. Finally, mixed strategies could work in an 

intermediate environment. My analyses of growth habit stop short of characterising 

functional loci, making it difficult to draw conclusions as to whether identified 

monophyletic islands are involved in adaptive divergence. Only one gene involved 

in growth habit divergence in Antirrhinum, Hairy, has been studied in detail (Tan et 

al., 2020). This locus did fall within one of the of the 427 identified monophyletic 

regions, providing tantalising evidence that other such loci may be isolated. The 

characterisation of the genic landscape of other monophyletic islands therefore 

represents a future aim of high priority. 

 

In focussing solely on the genic basis of monophyletic regions, it is easy to lose sight 

of other biological questions that can be addressed. Using a conservative method 

of size quantification, I observed a mean monophyletic island size of ~ 7 kb. This is 

likely to be an underestimate, casting doubt on recruitment of standing variation as 

a source of alleles for growth habit divergence. Even assuming a low recombination 

rate of 0.3 cM/Mb, recombination should break haplotypes down to < 3 kb within 

ca. 1,000 years. The amount of genomic divergence observed between alpine and 

ruderal populations is much too high for such a recent divergence to be considered. 

I hypothesise that monophyletic islands arose through allele sharing (introgression), 

or they represent historic barriers to gene flow, possibly originating through 

differential adaptation. Differentiating between these scenarios requires testing 

whether the underlying genetic variation is sporadically distributed throughout wild 

populations (implying an introgressive origin), or whether it is consistent. If growth 

habit divergence occurs mostly through introgression, then the number of 

identified monophyletic islands may vary in analyses of different populations. It 

should be noted that these scenarios are not mutually exclusive. A single, ancient 
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divergence event between alpine and ruderal species may have been driven by a 

subset of genetic barriers which enabled populations to colonise different habitats. 

Populations may have then accumulated different adaptive alleles in isolation, and 

shared them during periods of contact.  

 

Monophyletic regions showed elevated DXY compared to the genomic mean, 

suggesting that they may reflect barriers to gene flow. However, mean SRB of trees 

at monophyletic regions was not significantly greater than trees showing the most 

common genomic topology. This suggests that more than one topology accounts 

for significant between-population divergence.  

 

The most common topology groups A. molle with ruderal populations, suggesting 

that much gene flow has taken place. Despite this, A. molle is not phenotypically 

intermediate between alpine and ruderal – it retains striking resemblance to other 

alpine species (Rothmaler, 1956, Webb, 1971, Sutton, 1988). The simplest 

explanation for this is that growth habit identity is maintained by a smaller subset 

of genomic loci. An alternative hypothesis is that the most common genomic 

topology might reflect ‘weak’ growth habit loci. I define a weak locus as one that 

has a very small effect on adaptive fitness. Weak adaptive loci conferring slight 

fitness benefits may accumulate in isolation, or through allele sharing with 

populations showing the same growth habit. However, their effects might be so 

weak that they are readily displaced by gene flow with populations showing 

different growth habits. The weak habit model predicts that A. molle has undergone 

gene flow with ruderal species much more recently than other alpine species have.  

Contact between A. molle and ruderal populations is unlikely to have taken place at 

‘extremes’ of their respective environmental ranges. It is possible that weakly 

adaptive variation is specifically adaptive within extreme alpine environments, but 

selectively neutral otherwise. 
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Many SNF candidates IRs exist, but their biological relevance cannot be tested 

in silico 

SNF, a novel type of neofunctionalisation where coding sequence changes give rise 

to regulatory sRNA loci, may be an important mechanism underlying phenotypic 

divergence. Testing the hypothesis of SNF was beyond the scope of this 

computational analysis. Even if identified SNF candidate IRs were near identical to 

SULF, their functional relevance could not be tested without carrying out genetic 

analyses. However, the results provide insights which can inform how SNF loci are 

considered in future studies. Firstly, while up to 645 IRs were SULF-like in terms of 

their sRNA profiles, possible, targets, and presence / absence relationships between 

species, this only represented 0.5 % of all IRs tested. Assuming that many of these 

will be false positives or miRNAs, SNF candidate loci appear to be fairly rare within 

the genome. The main reason for this appears to be the ubiquity of IRs showing 

mode-24 nt mapped sRNAs. Secondly, while BLASTX searches provide limited 

functional information, they can provide hints as to the type of protein families that 

might be targeted by SNF elements. These analyses showed a slight enrichment 

(albeit from a very small sample size) for BLASTX hits against developmentally 

relevant F-box and auxin responsive domains. Finally, while grouping tree scans are 

likely ineffective for direct identification of SNF candidate IRs, results represent a 

useful resource for testing externally identified loci. A drawback to this comparison 

is that IRs must be present within the reference genome used to carry out the 

grouping tree scan. A possible workaround is to map not the IR (which may be 

present or absent), but its surrounding genomic regions, which should be relatively 

consistent in any Antirrhinum species. A long term aim of the grouping tree scan 

work could be to define a set of genomic regions, comparable between assemblies, 

that show monophyletic signatures for traits of interest.  

 

Genetic barriers are underpinned by dispersed genomic loci 

By considering the genomic context of monophyletic regions, it is possible to 

develop an idea of what barrier gene signatures generally look like. In A. m. 

pseudomajus and A. m. striatum, up to 0.47 % of the genome comprised 
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monophyletic regions, and was implicated in the genetic barrier. This represents 

2.38 Mb of sequence, containing a total of 968 predicted CDSs. The average gene 

density in Antirrhinum majus is estimated at 1 gene / 15.5 kb (Li et al., 2019), 

meaning that a 2.38 Mb region would be expected to harbour 154 genes on 

average. This suggests that monophyletic regions are enriched for CDSs. However, 

the genomic average gene density is expected to be low given that over 50 % of the 

A. majus genome consists of repetitive sequence. Many coding sequences will not 

be expressed, and those that are will not necessarily be involved in phenotypic 

divergence. My analysis of Annabel Whibley’s RNAseq DE data from A. m. 

pseudomajus and A. m. striatum reported 29 DE genes over all six monophyletic 

regions.  

 

In the multispecies growth-habit-based comparisons, estimates from 50 kb 

windows suggested that monophyletic regions encompassed 15.4 Mb, or 3.1 % of 

the genome. These regions contained 1,219 CDSs. This is greater than the 995 genes 

expected based on average gene density, but represents less of an enrichment than 

in A. m. pseudomajus and A. m. striatum. The absence of RNAseq data for these 

populations means that any or all of these CDSs may be involved in divergence 

around growth habit. 

 

DE analysis quantifies differences in mRNA transcript levels, and therefore doesn’t 

detect changes in non-mRNA-producing loci. The characterisation of SULF as a locus 

that likely underlies flower colour divergence (Bradley et al., 2017) demonstrates 

the importance of thinking beyond protein-coding genes when characterising 

genetic barriers.  

 

In both grouping tree scan experiments, identified monophyletic regions were 

spread throughout the genome, and did not show strong biases to any particular 

chromosomal regions. This suggests that the approach is robust to variation in 

recombination rate across chromosomes. Monophyletic island size can provide an 

estimate of local recombination rate. Larger islands are likely to reflect regions 

where recombination rate is low, and genetic barrier loci segregate within large 
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haplotype blocks. In practice, this means that large monophyletic islands are more 

likely to contain additional genes that do not directly contribute to observed 

patterns of divergence. Where recombination rate is higher, candidate barrier 

genes are easier to identify. This is most notable at the RUB region; only one gene 

within the 50 kb monophyletic island was differentially expressed.  

 

In these analyses, larger islands tended to be localised towards the centre of the 

chromosome, and smaller islands towards the edges. This loosely corresponds to 

the observed patterns of recombination rate across Antirrhinum chromosomes (Li 

et al., 2019). Centrally located islands were estimated to be larger than those within 

outer regions. However, within this work I have only directly measured the sizes of 

21 monophyletic islands. When estimating the size of the remaining 412 

monophyletic islands, I reported the minimum island size, which reflected the width 

of the island if all overlapping 1 kb monophyletic windows were directly adjacent. 

This approach only operates within the 50 kb boundaries of the originally identified 

monophyletic region, meaning that it cannot detect instances where a 

monophyletic island extends beyond the region. Minimum island size will therefore 

almost always underestimate the width of a monophyletic island. 

 

To best estimate whether island size correlates with chromosomal position and 

genomic recombination rate, the size of the monophyletic island should be 

quantified within all monophyletic regions. The approach to measuring islands 

presented here involves defining the start and end of the island by-eye. This is 

neither objective, nor easy to replicate en masse. An approach is needed that 

determines how far 1 kb monophyletic windows extend out of the 50 kb 

monophyletic region, whilst allowing for reasonably sized gaps that might reflect 

poor read depth or sequencing errors. The Saguaro tool addresses a similar 

problem, detection of phylogenetic boundaries within genomes in the absence of a 

priori assumptions, through use of Hidden Markov Models (Zamani et al., 2013). 
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Genetic barriers show varied signatures of diversity, consistent with distinct 

origins 

In carrying out this work, I have demonstrated a range of parameters that can be 

used to make inferences about the evolutionary history of a given monophyletic 

island. Of these, DXY, πw, D, and FST have been previously defined and extensively 

utilised. SRB, defined here, is equivalent to df, as defined by Hey (1991). This 

measures the number of allelic differences between populations, excluding those 

which also differ within populations. For two populations, X and Y, df is equal to 

*!" − ,! or *!" − ,#, where π is within-population diversity (i.e. πw). In deriving 

SRB, I effectively calculate df using πw for each population, and choose the smallest 

(non-zero) value. The derivation of D is very similar, except that the mean of πX and 

πY is subtracted. df , SRB and D are relative measures of divergence, because they 

depend on πw. A large part in my decision to use SRB was its descriptive nature; 

the shortest root branch is easily observable on any tree. However, D has a more 

intuitive biological relevance, being equal to the number of differences between 

the populations since they split. 

 

It has been shown that genes underpinning the same genetic barriers can show 

strikingly different patterns of allelic diversity. The ROS-EL region, in comparisons 

between A. m. pseudomajus and A. m. striatum, revealed that genes can show 

distinct divergence landscapes even if they are tightly linked. This region showed a 

broad FST peak, which has been previously characterised by Tavares et al. (2018) as 

corresponding to the location of the ROS1 and ROS2 genes, and another 

corresponding to EL. However, only the EL peak showed a coincident peak in D, 

consistent with elevated DXY. This demonstrated that the major component of 

elevated FST at ROS1 and ROS2 was reduced πw, consistent with an historical 

selective sweep. A similar signature was seen at the FLA region, with high FST but 

only slightly elevated D across most of the monophyletic island. Preliminary work 

by Bradley et al. has demonstrated that the monophyletic island, and coincident 

drop in D, reflects the boundary between the FLA gene CDS, and upstream 

promoter. They have also observed that, at the A. m. pseudomajus and A. m. 
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striatum hybrid zone at Planoles, a recombinant FLA allele comprising the promoter 

region of A. m. striatum and the CDS of A. m. pseudomajus has been detected. The 

sudden shift from monophyletic trees to polyphyletic trees across FLA may reflect 

the fact that the recombinant FLA allele exists at high frequency within the hybrid 

zone YP1 population, which therefore groups within the A. m. pseudomajus clade. 

Characterisation of this recombinant is ongoing (Bradley et al., manuscript in 

preparation). 

 

The grouping tree scan – advantages and alternatives 

To date, no published studies have utilised DXY tree comparisons to infer barrier loci 

across whole genomes, but similar methodologies exist for characterising genomic 

divergence across populations. Where the grouping tree scan generates a tree for 

each genomic region, sliding window Principal Component Analysis (PCA) computes 

the most descriptive dimensions of the SNP data, which can be summarised using 

eigenvectors (see e.g. Jay et al., 2021). Similarly, Saguaro (Zamani et al., 2013) 

achieves multiple comparisons by using a Hidden Markov Model to infer genomic 

regions showing shared phylogenies. BayeScan (Fischer et al., 2011) uses Bayesian 

inference to detect FST outliers between populations, and thereby infer loci under 

natural selection. BayeScan models selection by estimating a population-

component (which is shared by all loci) and loci-specific components (which are 

shared by all populations) from FST distributions. In this sense, population 

comparisons are “multi-pairwise” in the same way as other measures described 

here. 

 

The value of the grouping tree scan is in its combining of DXY analysis, hierarchical 

clustering, and whole genome scans. DXY enables the detection of genetic 

divergence independently of within-population diversity, meaning that it can be 

used to infer barriers to gene flow directly from allele frequency data. BayeScan, 

like Twisst, utilises FST, which conflates within- and between-population diversity, 

and PCA derives the components of diversity in a manner that is naïve of this 

distinction. Saguaro utilises absolute genetic distances, but the derived data 
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structures are not designed to be biologically intuitive. The typical drawback of 

using DXY is that it that it is highly heterogeneous across the whole genome, and 

therefore difficult to interpret in pairwise analyses. Hierarchical clustering accounts 

for this weakness by facilitating multi-pairwise analysis of DXY, which helps to 

reduce sporadic noise whilst increasing genuine signals. UPGMA trees have several 

properties that make them useful for exploring large datasets. They can be 

clustered based on topology, which facilitates comparisons across large numbers of 

genomic regions. Simple properties, such as tree height and SRB, intuitively reflect 

the underlying biological phenomena. The derivation of DXY from allele frequencies, 

and UPGMA trees from DXY distributions, is mathematically straightforward. The 

relative effectiveness of the aforementioned approaches will ultimately depend on 

the biological question, the nature of the available data, and the expertise of the 

researcher. Indeed, characterising the differences between results from different 

tools prove complementary for understanding the nature of the allelic divergence 

at loci of interest. 

 

A note on library barcoding 

The grouping tree scan utilises pool-seq as a cost-effective means of capturing as 

much population allelic variation as possible. As with individual sequencing, DNA is 

extracted from each sample in turn. However, by pooling equivalent quantities of 

DNA from all sample, SNPs can be identified from all individuals in one sequencing 

run. In instances where read coverage is high (e.g. when a good quality reference 

genome is available), pool-seq is more efficient for SNP calling than individual 

sequencing (Futschik and Schlötterer, 2010). If the objective of the pool-seq 

experiment is to identify SNPs across populations, then the sample of origin of 

individual sequencing reads might not be important. However, once this 

information is lost, it becomes significantly more difficult to link genotypic data to 

individual phenotypes. It also hinders haplotype identification, necessitating the 

use of predictive bioinformatic tools to deduce individual haplotype sequences 

based on allele frequencies (Wong et al., 2018). Recovery of haplotypes is 

important for identifying structural variation, which has been frequently implicated 
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in population variation (Marroni, Pinosio, and Morgante, 2014, Ruggieri et al., 2022, 

Hollox, Zuccherato, and Tucci, 2022). Multiplex sequencing pipelines, which aim to 

sequence many distinct libraries in a single sequencing run, typically include a 

barcoding step, where an identifying nucleotide sequence is ligated to all reads 

within a given library. By barcoding individual libraries prior to sequencing, it is 

possible to link genetic variation to multiple accessions of origin, even if reads are 

subsequently pooled. Because this requires the generation of multiple libraries, it 

is more expensive, although advances to technology and infrastructure have 

rendered library preparation increasingly cost effective (Head et al., 2014). 

 

Continuing development of the grouping tree scan approach 

The grouping tree scan represents a promising extension of the wider genome scan 

toolkit, having been successfully applied to interpret otherwise noisy genomic 

landscapes of DXY. A limitation of the grouping tree scan in its current form is that 

initial identification of monophyletic regions is tied to windowed averages of DXY, 
and may lack the sensitivity to detect smaller monophyletic islands. Therefore, in 

the further development of the grouping tree scan approach, I propose that scans 

should be carried out using trees from individual genomic sites, rather than window 

averages. Methodologically, this is mostly identical to the scan as described here. 

The same mapping and data generation steps should be carried out. However, 

instead of carrying out a full SlidingWindows analysis, only site statistics should be 

generated. Two statistics, DXY and πw, should be calculated for each genomic site. 

This is already done during the SlidingWindows analysis – the output site file can be 

used. Alternatively, a streamlined approach could be developed, producing a 

smaller data table which required less computational power to process. For each 

site, a DXY distance matrix, an UPGMA tree, and a mean value of πw should be 

generated, and stored. This is the minimum amount of data required for all 

downstream computations. This thesis has utilised two tree classification 

approaches – randomly seeded forest clustering using the cophenetic correlation 

coefficient, and root division analysis. Analyses carried out here suggest that each 

of these approaches is better suited to a different biological problem – both could 
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be implemented for single site grouping tree scans. Ultimately, the aim of the 

approach is to plot the density of SNPs showing trees of interest (based on forest 

SRB, or user specified root division topologies). 

 

Having generated single site tree data, many analyses become possible. To consider 

some of these, I shall consider how they might be applied to the study of growth 

habit. Having established all genomic sites that show monophyletic trees for alpine 

and ruderal growth habits, all predicted CDSs that overlap these sites could be 

extracted. This would facilitate the capture of the full complement of genes that 

might be involved in growth habit divergence. Additionally, chromosomal 

distributions of monophyletic SNPs could be visualised, revealing whether specific 

regions of the genome show enrichment or depletion. Approaches can be 

developed to measure the number and size of islands, which may inform about 

their evolutionary origins. This approach has the potential to facilitate thorough 

characterisation of genomic islands of divergence, at the highest possible resolution 

afforded by mapping-based approaches. 
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7: Conclusions 

Chapter 3 

Application of the grouping tree scan methodology has revealed that six 

monophyletic regions, comprising 0.47 % of the genome, underpin genomic 

divergence between A. m. pseudomajus and A. m. striatum. This is in contrast to 

the whole genome tree, which is polyphyletic for both subspecies and consistent 

with extensive gene flow. Each monophyletic region contained at least one 

differentially expressed candidate colour gene, all of which have been directly or 

indirectly implicated in controlling flower colour patterns. Because the vast majority 

of genomic divergence was explained by flower colour, the heterozygote advantage 

hypothesis can be rejected. These analyses provide strong evidence that genetic 

barrier between A. m. pseudomajus and A. m. striatum is underpinned by colour 

genes only, and reflects an intrinsic epistatic barrier. Future experiments should aim 

to statistically analyse the proposed role of candidate colour genes in generating 

distinct flower colour phenotypes between species. Cline analysis should be carried 

out to confirm that uncharacterised loci show coincident clines, and are therefore 

likely to be coadapted. 

 
Chapter 4 

To test the hypothesis that divergence between alpine and ruderal species involved 

differentially adaptive barrier genes, genome scans were first carried out using FST, 

DXY, and πw. No clear divergence peaks were detectable, demonstrating that two-

way comparisons were confounded by the uneven genomic divergence landscape. 

A grouping tree scan was carried out to classify subgenomic DXY trees. Trees were 

classified into topological groups based on root division, which splits each tree into 

the two outermost clades and records taxa in each clade. The whole genome DXY 
tree, and the most common subgenomic tree, gave polyphyletic groupings for 

growth habits, suggesting that gene flow has taken place between alpine and 

ruderal species. 427 subgenomic regions gave trees that were monophyletic for 

alpine and ruderal growth habits. Conservative estimates of the sizes of 

monophyletic islands at these regions suggest a mean island size of ~ 7 kb. This is 
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much larger than predicted if growth habit divergence took place through 

recruitment of alleles from standing genetic variation. Of the 15 monophyletic 

islands that have been characterised, the largest was ~ 375 kb, which could be 

consistent with allele sharing through hybridisation, or barrier genes. Identified 

monophyletic regions may therefore underpin a differentially adapted genetic 

barrier. More work is required to characterise the genic basis of identified islands, 

and to better estimate the size of all islands. 

 
Chapter 5 

This chapter has outlined a pipeline for detecting SULF-like SNF candidate IRs, to 

test the hypothesis that SNF is a general phenomenon by which phenotypic 

diversity can arise. 645 SNF candidate IRs passed criteria 1-4, out of 131,755 tested. 

This shows that more SNF loci can be detected, but they constitute a minority of all 

genomic IRs. This candidate set is likely to include many false positives – more work 

needs to be done to exclude candidates with poor read mapping profiles. 34 

candidates were selected for comparison to the NCBI nr database using BLASTX. 

This implied a role for SNF in targeting developmental genes, but few conclusions 

can be drawn based on predictions of protein similarity alone. Comparing SNF 

candidate IRs to the growth habit monophyletic region dataset from Chapter 4 

showed that two IRs are located within monophyletic regions. However, one of 

these IRs showed very low sRNA depth, and may be an artifact. The other appeared 

to be present within the alpine A. molle, and the ruderal A. majus reference 

genome. This casts doubt on whether it is likely to be involved in growth habit 

divergence. To test the evolutionary significance of SNF, the candidate list derived 

here should be further filtered to retain only IRs showing valid sRNA distributions, 

and characterised target genes. The effects of these SNF candidates could then be 

tested using segregation analysis, where Antirrhinum species showing presence / 

absence for candidate IRs can be crossed, and phenotypes analysed in a hybrid F2 

population. Analyses should also be expanded beyond Antirrhinum. Using the SNF 

program, Leighton Folkes et al. have detected SNF candidate loci within the 

genomes of Arabidopsis thaliana and Solanum lycopersicum (Folkes et al., 
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manuscript in preparation). Even if SULF is a ‘one-off’ locus in Antirrhinum, other 

SNF loci should be detectable in different genera. 
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9: Appendices 

Appendix 1: GPS coordinates of sampled populations 

Population 

identifier 

Number of individuals 

sampled 

Latitude Longitude 

UNA 60 42.763361 1.772739 

BED 44  42.869186 1.568953 

LU 47 42.968486 2.260464 

AXA 32 42.798143 2.2231055 

MIJ 44 42.725164 2.039864 

MON 50 42.507878 2.122297 

PER 43 42.467675 2.8552415 

BOU 20 42.643378 2.58705 

VIL 50 42.587006 2.367453 

ARS 41 42.3895975 2.4876195 

THU 47 42.644139 2.721694 

BAN 35 42.489458 3.124183 

ARL 21 42.4479485 2.6084845 

CIN 58 43.311569 1.533579 

YP1 50 42.326943 2.052929 

YP4 52 42.359921 1.926958 

MP4 50 42.322234 2.091375 

MP11 50 42.331038 2.170284 

W-QUE-A 17 42.11039 1.824566 

W-FAI 52 42.16628 1.160356 

W-BOX 43 42.1722 1.161639 

W-SAL 31 42.22796 1.738268 

Néouvielle 32 42.83496 0.159931 

Pont Napo 41 42.86 -0.05 

Y-VAU 54 43.69867   5.719556 

Y-AUR 54 43.36913   5.622545 

V-SMP 16 40.41493 -2.76436 

V-BUE 57 40.48723 -2.74822 
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V-CIF 54 40.783 -2.54642 

V-PEL 56 41.01442 -2.63701 

T-ROZ 15 43.22228 -4.38658 

T-HUE 41 42.96974 -4.97417 

 

Appendix 2: Pedigree of F2 and F4 families used to investigate CREMOSA and 

RUBIA phenotypes 

 

Appendix 3: KASP / ALFP oligos used in genotyping flower colour genes 

Locus  Marker 
type  

Marker 
name  

Oligo 
name  Oligo sequence  

FLAVIA 
(upstream) 

KASP  #2205 GAAGGTGACCAAGTTCATGCTgattcctcaagcagaaaacg  

   #2206 GAAGGTCGGAGTCAACGGATTgattcctcaagcagaaaaca  

   #2207 GGAGTGCATCCCTGCCGCG  

FLAVIA 
(downstream) 

KASP  do253 GAAGGTGACCAAGTTCATGCTTTCACGTTCTACGAAGGGGTA  

   do254 GAAGGTCGGAGTCAACGGATTTTCACGTTCTACGAAGGGGTT  

   do255 ctttgcccgttgcttgac  

SULF KASP Set 65 do514 GAAGGTCGGAGTCAACGGATTGCAAAATCTGCCCTTTTCCAACTT  

   do515 GAAGGTGACCAAGTTCATGCTGCAAAATCTGCCCTTTTCCAACTA  

   do516 ACTGATGTGAGCGCCGACTGAGC  

 KASP Set 66 do517 GAAGGTCGGAGTCAACGGATTGAATACCACTAAACGAGTGAATGA  

   do518 GAAGGTGACCAAGTTCATGCTGAATACCACTAAACGAGTGAATGG  

   do519 CTGAATGTCTTCGAAAGGACAGTG  

AURINA  Set 61 do502 GAAGGTCGGAGTCAACGGATTTGGAGTCTTAGCGCTCGACACC  
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   do503 GAAGGTGACCAAGTTCATGCTTGGAGTCTTAGCGCTCGACACA  

   do504 CAATACCACTACTCCTGAAGAGC  

CREMOSA  Set 54b do467 GAAGGTCGGAGTCAACGGATTGTGACTTGGGAGGAAGAATAATC  

   d0468 GAAGGTGACCAAGTTCATGCTGTGACTTGGGAGGAAGAATAATA  

   do477 TTAAGGGGAAAGTGACTTGATCA  

  Do475-
476 

do475 GAGGCTAGGAAGAAAGGTTTGTCG  

   do476 CTAACATTGAGCCAAATATTTGCC  

RUBIA  Set 53 do448 GAAGGTCGGAGTCAACGGATTCACACGTGCAGTAATTGAGGCA  

   do449 GAAGGTGACCAAGTTCATGCTCACACGTGCAGTAATTGAGGCG  

   do50 TTGTTTCAGCTTAAGTTCGGG  

ROS1 KASP ROS1 
intron 

#1911 GAAGGTGACCAAGTTCATGCTCAACATTGACGTACGGTATTC  

   #1912 GAAGGTCGGAGTCAACGGATTCAACATTGACGTACGGTATTT  

   #1483 tggcatcaagttccacacagagcag 

ELUTA AFLP  #1615 cattgtcatgactcgttcaaca 

   #1616 ttaaactgaaaggcaggcaatc  

 
Appendix 4: Depth of genomic coverage across alpine and ruderal species 

pools 

Species Location code Growth habit Mean genomic coverage 

A. molle W-QUE-A Alpine 66.43 

A. molle W-FAI Alpine 41.47 

A. m. pseudomajus W-BOX Ruderal 48.41 

A. m. pseudomajus W-SAL Ruderal 52.07 

A. sempervirens Néouvielle Alpine 43.73 

A. sempervirens Pont Napo Alpine 41.05 

A. m. striatum LU Ruderal 45.89 

A. m. striatum THU Ruderal 38.31 

A. latifolium Y-VAU Ruderal 41.85 

A. latifolium Y-AUR Ruderal 47.06 

A. microphyllum V-SMP Alpine 41.93 

A. microphyllum V-BUE Alpine 36.78 

A. pulverulentum V-CIF Alpine 42.89 

A. pulverulentum V-PEL Alpine 38.45 

A. braun-blanquetti T-ROZ Ruderal 50.96 

A. braun-blanquetti T-HUE Ruderal 91.04 
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Appendix 5: Plots of FST, DXY, and πw across the remaining 12 tested 

monophyletic regions. 
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