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Abstract 
 
Wheat is hugely important across the globe, providing food and nutrients for 

millions of people and livestock. Like all crops, it struggles with pressure from 

multiple diseases, which need to be controlled to preserve both yield and quality. 

Breeding new varieties with resistance to important diseases is a long process that 

takes many years and requires trained pathologists to manually score thousands of 

plots for disease levels. Automating the disease scoring process would free up time 

for pathologists to work on other important tasks. It also has the potential to improve 

the accuracy of scoring through multiple applications and eliminating human error.   

 

Here we present a dataset of wheat images taken in real growth situations, including 

field conditions, with five categories: healthy plants and four foliar diseases, yellow 

rust, brown rust, powdery mildew and Septoria leaf blotch. This dataset was used to 

train deep learning models to identify and classify the diseases. We collect a 

quantification dataset of yellow rust images and performed experiments with 

different score categories to train various models. Finally, we carry out experiments 

with simulated data for determining the viability of deep learning models for disease 

quantification.  

 

In this thesis we find that deep learning models are capable of classifying complex 

field images, with accuracies of over 97%. We identify limitations in the data 

collection for quantification of wheat diseases in the field and provide a method for 

determining ideal dataset size. These results show the viability of deep learning 

models for quantifying disease and determine some of the challenges which need to 

be overcome to develop an automated method for use in the field.
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Chapter 1 Introduction/ Literature Review 

 

1.1 Wheat and its diseases 
 

1.1.1 The importance of wheat 
 
Wheat is a hugely important staple crop, which provides food for humans and 

livestock worldwide (Shewry, 2009). It is consumed across the globe and cultivated 

over a huge range from 67°N in Scandinavia and Russia to 45°S in Argentina, 

including elevated regions in the tropics and subtropics (Feldman, 1995). In 2020 

over 760 million tonnes of wheat were produced worldwide, making it the third most 

produced crop globally (FAOstat https://www.fao.org/faostat/en/#data/QCL). Due to 

the growing demands of a rising population, the production of wheat and other grain 

crops has tripled since 1960 and is expected to continue rising (Godfray et al., 2010). 

 

For humans, wheat is a major source of starch and energy, as well as providing many 

other health benefits. It provides protein, vitamins, dietary fibre, and phytochemicals 

(Shewry and Hey, 2015). In the UK especially, wheat is an extensive source of 

dietary fibre, which can help reduce the risk of type 2 diabetes, cardio-vascular 

disease, and some cancers. Due to westernisation of the diet, global demand for 

wheat is increasing due to its gluten proteins which are used in the production of 

processed foods (Day et al., 2006). Gluten provides valuable viscoelastic functional 

qualities to dough (Shewry et al., 2002), for producing consumables such as bread, 

noodles and pasta.  

 

Some modern day wheat species are diploid (having two sets of chromosomes), 

however many are polyploid having four sets of chromosomes (tetraploid) or six sets 

(hexaploid) (Hancock, 2004). The most commonly produced species of wheat is 

Triticum aestivum (hexaploid), sometimes known as bread wheat, which makes up 

approximately 95% of the global wheat production. In the UK, this makes up the 

very great majority of wheat grown. The second most cultivated species is Triticum 
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durum (tetraploid), or durum wheat, used for pasta, which makes up the majority of 

the remaining wheat production. There are a few other species cultivated in only 

small areas; einkorn (diploid T. monococcum var. monococcum), emmer (tetraploid 

T. turgidum var. dicoccum), and spelt (T. aestivum var. spelta) (Shewry and Hey, 

2015) 

 

The vast majority of wheat grown in the UK is winter wheat, which is sown early 

autumn and harvested in the spring and summer. It requires a period of cold, 

vernalisation, in order to produce seed. The rest of the wheat grown in the UK is 

spring wheat, which is sown late winter and is harvested late summer.  

 

1.1.2 Wheat diseases 
 
As the population of the world continues to grow, one of the biggest challenges 

facing food security is crop disease (Strange and Scott, 2005). Wheat, like all crops, 

can be subject to yield losses thanks to pests and diseases, which have been reported 

to consume over 20% of the world’s wheat crop annually (Savary et al., 2019). 

Disease can have devastating effects on the yield of a crop, in some cases causing 

major losses where food quality is concerned. Not only is this a problem on a global 

scale, but it also has effects on a local scale for individual farmers. In poorer areas of 

the world, farming is the main or only source of income for many families 

 

For any farmer, being able to detect and identify diseases on their plants is hugely 

important for the mitigation of potential losses. The problem with this, however, is 

that identifying crop diseases often requires specialist knowledge which is not 

always readily available to all farmers and can be expensive. Even with specialist 

knowledge, there are multiple factors that make it even more challenging. Many 

diseases appear with similar symptoms, meaning they are easily confused with one 

another. Furthermore, it is not uncommon for multiple diseases to be present at any 

one time, making the task of distinguishing them even more difficult. For this 

reason, it is important to know about the ailments, their symptoms and when and 

how to treat them. In this thesis we focus on foliar diseases (diseases affecting the 

leaves) for wheat plants. These diseases were chosen because, at the time of planning 
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the work in this thesis, they were considered to be of particular importance in the 

UK.  

 

The first disease we will discuss is yellow rust, also called stripe rust, caused by the 

basidiomycete fungus Puccinia striiformis f.sp. tritici (Pst) (Liu and Hambleton, 

2010). This is an important disease across the UK, especially in the East. It can cause 

yield losses of 40-50% in susceptible wheat varieties and affect grain quality, 

however resistant varieties and fungicide sprays can mitigate the losses so they are 

usually small (AHDB, 2020). Yellow rust rated by AHDB as having high 

importance for variety recommendation and therefore breeding. Although it’s the 

most important disease in dryer parts of England (the east), it’s easier to control with 

fungicides than some other diseases, e.g., Septoria (see below). 

 

Yellow rust infection can occur whenever there is green leaf material, and the 

conditions are favourable. In the UK this is usually in the spring, when temperatures 

are in the range of 2-15°C and humidity levels are high, however some strains are 

capable of surviving in higher temperatures, up to 23°C. When the temperature is 

lower, below 2°C,t the fungus lies dormant as mycelium until favourable conditions 

return and spores can be produced. Mild winters can mean that the epidemic starts 

much earlier in the season, thus lasting much longer. Spores are spread by contact 

between the leaves or by the wind. 

 

The earliest yellow rust infections in the season appear as randomly scattered 

yellow/ orange uredinial pustules on younger leaves. These pustules contain asexual 

urediniospores, which are produced on wheat and infect wheat, thus generating 

annual epidemics. As the leaves age, the pustules form stripes, giving way to the 

most recognisable symptoms of the disease. yellow rust gets to the later stages of its 

life cycle, the distinctive orange spores fall from the leaf leaving necrotic lesions 

with black telia (AHDB, 2020). These black telia are often pulvinate to oblong in 

shape and range from approximately 0.2 – 0.7mm in length and 0.1mm in width 

(Chen et al., 2014). Figure 1.1 shows yellow rust symptoms on leaves. 
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Telia produce teliospores, the resting stage of rust fungi. Teliospores produce 

basidiospores, which infect alternate hosts, a deciduous, evergreen shrub called the 

barberry species, on which sexual reproduction occurs. This happens from Iran to 

China but sexual reproduction is not yet known to occur in Europe. 
 
The genotypes of Pst which have appeared in Europe since 2011 originated from 

east Asia (Hovmøller et al., 2016) and have a much higher capacity for telia 

production than the only clone of Pst which was present in northern Europe until 

2010 (Ali et al., 2011). 

 

Figure 1.1: An example of yellow rust symptoms including black telia on the left leaves and orange 
uredinia on the right. From https://www6.versailles-grignon.inrae.fr/bioger/pages-perso/Suffert-

Frederic Ó Frédéric Suffert, INRAE 
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The next disease we include in our work is Septoria tritici blotch, also known as 

Septoria leaf blotch or simply Septoria, caused by the ascomycete fungus 

Zymoseptoria tritici (formerly Mycosphaerella graminicola) (Hardwick et al. 2001). 

It is thought to be the most important and damaging disease for winter wheat in the 

UK (AHDB, 2020). It is rated as having very high importance for variety 

recommendation and thus breeding, partly because of its potential for causing yield 

losses and partly because of the difficulty of controlling it with fungicide (because 

Zymoseptoria tritici is now largely resistant to azole, QOI and SDHI fungicides). It 

causes infections across the whole country, with areas where rainfall is higher being 

most at risk. Much like yellow rust, yield losses can be high (up to 50%) and the 

quality of the grain affected. Mitigating the losses largely depends on the 

development of resistant varieties and dryer weather throughout the summer months. 

 

Figure 1.2: Mature Septoria lesions with small black pycnidia. From 

https://www.apsnet.org/edcenter/disandpath/fungalasco/pdlessons/Pages/Septoria.aspx Ó 

American Phytopathology Society 
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Septoria lesions appear in long oval shapes restricted by the leaf veins, resulting in a 

rectangular lesion shape. Immature lesions appear as brown necrotic tissue. As they 

mature, small black fruiting bodies, called pycnidia, form, see Figure 1.2. These 

pycnidia are smaller than the telia of yellow rust, approximately 0.06 – 0.2mm in 

diameter, and are almost spherical in shape (Tiley, Foster and Bailey, 2018). Higher 

levels of infection can mean that lesions join together to form large areas of the leaf 

that are necrotic, brown tissue. 

 

Septoria lies dormant during the winter, predominantly as pseudothecia (sexual 

fruiting bodies) and some pycnidia (asexual fruiting bodies). The pseudothecia 

sexually produce ascospores, which are wind-born, and pycnidiospores are produced 

asexually by pycnidia in the epidemic phase, which are transferred through rain 

splash in infected lower leaves. In the spring and summer, when the majority of 

Septoria infection happens due to optimal temperatures of 15-20°C, pycnidiospores 

are responsible for the majority of the spread of disease. Following infection, 

symptoms appear following a latent period of two – four weeks.  

 

Yellow rust and Septoria can cause problems for a pathologist throughout the 

scoring process due to their similar appearance at certain stages in their life cycle 

(Brown 2021). Before sporulation, both diseases form lesions with yellow or pale 

brown areas of necrosis on the infected leaf. In most of Europe, the uredinial stage of 

yellow rust is formed a few weeks earlier than the pycnidial stage of Septoria. These 

two stages are clearly visible different, however at the later stages of yellow rust 

infection when the black telia are formed, it can be difficult to distinguish from 

mature Septoria lesions that are formed at approximately the same time (Schirrmann 

et al., 2021).  The yellow rust telia are superficially similar to Septoria pycnidia, thus 

presenting problems even for experienced pathologists when they have limited time 

to look closely at each plot. This can lead to mistakes when assessing wheat varieties 

and treatment options. 

 

To further complicate the problem, another important wheat disease, brown rust 

caused by Puccinia triticina (Goyeau et al. 2006; Bolton et al. 2008), produces 

orange/brown pustules on the leaves of wheat plants. Brown rust is rated as medium 
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importance nationally, but this is an average rating. It has high importance in south-

east England (south of Cambridge and east of Bournemouth) and is unimportant in 

northern England and Scotland. 

 

In its earliest stages, the brown rust pustules appear in a way similar to early yellow 

rust infection, with a lighter orange colour, thus leading to the two diseases 

frequently being confused with one another. Later in the season, as the infection 

develops, the colour of the brown rust pustules is often darker, and the pustules 

continue to be randomly dispersed across the leaf, see Figure 1.3. At this stage, it is 

easier to distinguish the two rust diseases. 

 

 

Brown rust is active at 7-25°C, a wider temperature range than yellow rust and 

requires surface moisture on leaves for spore germination (AHDB, 2020). Spores are 

Figure 1.3: Brown rust. Brown rust symptoms can often be confused with yellow rust at certain 

stages of its life cycle. https://ahdb.org.uk/brownrust Ó AHDB 



 

 24 

spread by wind and infection in the UK often occurs mid-late summer, due to the 

optimum temperature and humidity levels. 

 

The final foliar disease to mention is powdery mildew, which is an important disease 

in many parts of the world and is caused by Blumeria graminis (Dubin and 

Duveiller, 2011). Mildew mainly appears with distinctive white, fluffy pustules, 

which are easy to distinguish from the three other diseases we have discussed, Figure 

1.4. That being said, no list of wheat diseases would be complete without its 

inclusion. 

 

 

Mildew of winter and spring wheat is mostly well controlled by breeding (Brown 

and Wulff, 2022). Currently rated by AHDB as medium importance but will be 

upgraded to high importance from 2023, because it is now resistant to most 

fungicides, therefore it is important for the moderate to high durable resistance found 

in all current varieties to be maintained. Only one variety with a rating of 3 (on a 1-9 

scale, lower numbers represent high susceptibility and high numbers represent high 

Figure 1.4: Powdery mildew infection. https://eldersrural.com.au/news/powdery-mildew-control-

in-wheat/ Ó Elders 
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resistance) has been released in the last 40 years (Leeds in 2017, on which mildew 

was difficult to control). 

 

Powdery mildew requires living plant tissue to grow. When this is not available, it 

survives as mycelium in host plants. When conditions are right for germination, the 

mycelium produce conidia which infect living host plants and are dispersed through 

wind. Infection can happen over a wide temperature range (5-30°C), with 15°C 

being the optimal temperature. Rain or other free water inhibits germination, 

however high humidity is required. Following infection there is a latent period of a 

week before symptoms are shown. Typical mildew infection begins with the white 

fluffy pustules mentioned above. Towards the end of the season black spore cases 

(cleistothecia) develop within the pustules (AHDB 2020). 

 

The four diseases described above are not the only diseases which affect wheat. Here 

we will mention a selection of other diseases which we have decided not to include 

in our work: 

 

• Septoria nodorum (Parastagonospora nodorum) was important until about 

1990 but has now been almost completely controlled by breeding (Cowger et 

al., 2020).  

• Fusarium head blight: UK varieties are susceptible but environmental 

conditions are unusually not conducive to disease development. Hence rated 

by AHDB as medium importance. However, important to breeding 

companies for markers in areas of Europe with warm, humid summers, 

especially central Europe (southern Germany, Switzerland, Austria, 

Hungary, Romania). Fusarium head blight mainly affects the ears of wheat, 

rarely causing severe symptoms on leaves. 

• Tan spot (Pyrenophora tritici-repentis or Drechslera tritici-repentis) is 

common in the UK and is not thought to cause significant yield losses. 

• Stem rust (Puccinia graminis) occurs sporadically (Saunders, Pretorius and 

Hovmøller, 2019) and is a serious disease in hotter, dryer areas such as East 

Africa and Southwest Asia. Recent outbreaks of wheat stem rust in Europe 

have caused yield losses in Sicily but not in northern Europe.  
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• Barley yellow dwarf virus (BYDV), transmitted by aphids, was controlled 

until 2019 by neonicotinoid insecticides, which are now banned (European 

Commission, no date). It was considered locally unimportant at the time of 

planning the work in this thesis, so was not included, however its importance 

has since risen. BYDV causes areas of necrosis at the leaf tip, which can 

sometimes be confused with Septoria, however it is more important on 

barley and oats than on wheat. 
 

1.2 Breeding for disease resistance 
 

1.2.1 The breeding process 
 

Resistance to common diseases is a trait that is desirable amongst the farming 

community. Often this resistance needs to be bred into the crop over a long period of 

time. Over multiple breeding seasons, varieties can be selected based on their levels 

of disease resistance. However, this is not the only desirable trait, and as such 

multiple traits are measured during the breeding process. In the UK, as there is not 

one standout trait which is important over all others, breeding for wheat is a 

balancing act between desirable traits such as yield, disease resistance and grain 

quality. This is in contrast to locations in Europe, for example, where fusarium 

resistance is a standout trait which all varieties need to strive for, see previous 

section. 

 

The breeding process for new wheat varieties takes many years, moving from 

millions of seeds all the way to only one or two varieties which will be produced 

commercially. The pedigree method is very common for use in wheat breeding, 

however is very resource and labour intensive (Baenziger, 2016). It allows selection 

among individual plants and whole families at every inbreeding generation 

(Rutkoski, Krause and Sorrells, 2022) . This method begins by making many crosses 

between lines which contain desirable traits, based on knowledge and genomics. 

Each plant contains thousands of genes, so selecting the plants for crossing is a 

complex process. A team of individuals will then make the crosses by emasculating 
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the female plant and fertilising using pollen from the male. From this process, often 

millions of seeds are collected for planting as the F2 population in the subsequent 

year. Each new generation is planted in subsequent years. 

 

The F2 population is planted in single plant rows, so that individual plants within 

families can be selected and caried forward to the next generation (F3). Generations 

F3 and F4 are planted as families in rows. Visual selection takes place for every 

generation, taking only the lines which appear to be showing the best traits through 

to the next year. Generations F5 – F7 are often planted as both treated and untreated 

yield plots, where they can be tested for different traits. It takes approximately 5-6 

years for the lines to meet the desired level of homozygosity. 

 

By the eighth year, the number of varieties has decreased significantly to 

approximately 10 lines, which can now be taken forward for national list trials. For a 

variety to be marketed commercially, they must be added to the national lists (GOV 

https://www.gov.uk/guidance/national-lists-of-agricultural-and-vegetable-crops). 

These trials take place over two years at various approved locations. The varieties 

which are added to the national lists must demonstrate that they pass distinctiveness, 

uniformity, and stability (DUS) and value for cultivation and use (VCU) testing. 

DUS tests need to prove that the varieties differ from any other variety already 

available within the species, that the distinctive characteristics are produced 

uniformly and that these characteristics are stable (do not change) over subsequent 

breeding periods. VCU tests need to show that the variety has satisfactory value for 

cultivation and use (GOV https://www.gov.uk/guidance/vcu-protocols-and-

procedures-for-testing-agricultural-crops). Once they have passed these tests, they 

can be listed on the national lists and sold commercially. Usually only one or two 

varieties makes from the initial cross make it to this point. 

 

The final end goal for any newly bred variety, however, is inclusion on the 

recommended lists. The recommended lists are publications which provide potential 

consumers with information about traits such as the quality, yield and resistance to 

individual diseases to aide in choosing varieties. The recommended varieties are 

considered to have the potential to provide a consistent economic benefit to the UK 

cereals or oilseeds industry (AHDB https://ahdb.org.uk/knowledge-library/using-the-
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recommended-lists-for-cereals-and-oilseeds-rl). The varieties are chosen for 

recommendation based on information and data gathered from many trials. 

 

The pedigree method can take 9 years to get a variety listed on the national lists, and 

even longer to be selected for the recommended lists. For this reason, there are a 

couple of methods used by breeders to speed up the process: single seed descent and 

double haploid production. In single seed descent, a single seed is taken from each 

plant in the earlier generations and used to grow the next generation. This happens in 

the glasshouse and multiple generations can be produced in the same year, thus 

reducing the number of years required to reach the desired level of homozygosity. 

The downside of this is that it is more expensive than the normal pedigree method. 

 

In double haploid production a haploid plant is created by either intergeneric crosses 

(with maize or corn) or by another culture. The chromosomes of the haploid plant 

are doubled, producing a double haploid plant which is completely homozygous. A 

single seed is then taken to form the next generation. As with single seed descent, 

this method reduces the time taken to reach the desired level of homozygosity, 

however it is an even more expensive method.  

 

Often, due to only using single seeds for the first few generations, when either of 

these methods are used, the same crosses are used with the pedigree method also. 

This is in case any information is lost throughout the sped-up process. 

 

1.2.2 Scoring disease levels 
 
During various stages of the breeding process, plants need to be scored for the 

amount of disease present in order to assess the resistance or susceptibility to certain 

diseases. The lines with high susceptibility are removed from consideration, while 

those with high resistance are put forward to the next stage. For help making these 

decisions, the plants are scored using a scale which represents how much of each 

disease is present.  
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A widely used scale used for scoring disease is a scale of 1-9 developed by NIAB. 

This scale gives a score between 1-9 based on the amount of disease present on a 

plot, from zero disease present (most resistant) to no green tissue left (most 

susceptible). Figure 1.5 shows the guidance for scoring yellow rust and Septoria of 

wheat taken from the AHDB recommended list guidance (AHDB 

https://ahdb.org.uk/recommended-lists-disease-ratings). For brown rust and mildew 

the same separations of infection are used for different categories. Most breeding 

companies give a score of 1 to the most resistant plots (0% infection) and a score of 

9 to the most susceptible (100% infection). The recommended lists use the same 

Figure 1.5:  In blue: Guidance for scoring yellow rust and Septoria used for rating in the 

recommended lists (https://ahdb.org.uk/recommended-lists-disease-ratings Ó AHDB). In green: 

The score associated with each level of infection. 
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score categories to rate their varieties, however they give score 1 to the most 

susceptible plots and score 9 to the most resistant. In this thesis we follow the 

method used by breeding companies.  

 
Although the final varieties put forward for the recommended lists are scored into 

these score categories, over the course of the breeding process some breeding 

companies use variations of this method for their own plants. In some cases, the 

categories are expanded to have decimal values, or half values in order to give better 

differentiation between the levels of disease. Otherwise, come companies give a 

percentage score, which can then be transformed into a score based on the above 

figure. 

 

Scoring is a time-consuming process, often made more difficult by the variation in 

disease symptoms, similarity between different diseases and the presents of multiple, 

simultaneous infections. Currently scoring needs to be undertaken by an experienced 

pathologist, which can be expensive, especially with non-local trials where the 

pathologist is required to travel. Often, in these cases, non-local trials are only scored 

once per season. 

 

It would be beneficial to produce an automated method to aide scoring for breeders. 

An automated method would allow pathologists to use their time for other important 

tasks, while the automated scoring model could be used by any person, perhaps as a 

mobile application. It could also be taken out multiple times, even in non-local trials, 

where a person local to the trial could be hired for this purpose. This would be more 

efficient in managing time and cost. It would also remove the difference in scores by 

different pathologists, and eliminate errors made due to tiredness etc. 

 

In this thesis we investigate deep learning as a possible tool for automating the 

scoring process. We begin with identification of wheat diseases in field conditions, 

before investigating models for quantifying the amount of disease present. 
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1.3 Deep learning for crop disease detection 
 
In recent years, deep learning models have become a key player in the role of 

detection and identification of crop diseases. If you are not familiar with machine 

learning, refer to chapter 2 for an introduction to the concepts described here. 

Convolutional neural networks (CNN) (LeCun et al., 1999) are a type of deep 

learning network which have become popular for image classification of plant 

diseases (Boulent et al., 2019). Many studies utilise pre-defined CNN structures for 

their work. A few examples that occur over and over again throughout the literature 

are AlexNet (Krizhevsky et al., 2012), GoogLeNet (Szegedy et al., 2014) and 

Inception (Szegedy et al., 2016), however there are plenty of others which provide a 

starting point for almost all of the studies we will discuss. These pre-defined 

networks are all CNNs with different numbers of layers and additional features to aid 

with feature extraction. See chapter 2 for description of deep learning components 

and the training process. 

 

A good place to start here is with the Plant Village dataset (Hughes and Salathe, 

2016). This collection of almost 88,000 images taken in controlled conditions was 

the first openly available dataset of crop disease images. The dataset contains 38 

categories, each corresponding to a plant-disease pair. Each image contains a single 

diseased or healthy leaf taken from the plant and placed on a neutral background and 

photographed under different lighting conditions. Many studies use the whole or part 

of this dataset with their work (Mohanty, Hughes and Salathé, 2016; Amara, Bouaziz 

and Algergawy, 2017; Brahimi, Boukhalfa and Moussaoui, 2017; Ferentinos, 2018; 

Rangarajan, Purushothaman and Ramesh, 2018; Zhang, Huang and Zhang, 2018; 

Saleem et al., 2020).  

 

Mohanty et al., (2016) aimed to show the viability of deep learning networks for 

classification of a range of different diseases. They performed the first deep learning 

experiments using the Plant Village dataset with two different pre-trained networks: 

AlexNet and GoogLeNet. Through training these two networks both from scratch 

and using transfer learning, with a range of image processing techniques and train-

test splits (the split of data between training and testing), they returned near perfect 
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classification accuracy of 99.34% by using a pre-trained GoogLeNet, full colour 

images and an 80-20 train-test split. 

 

Much like Mohanty et al., Brahimi et al., (2017) also used transfer learning with the 

two pre-trained networks AlexNet and GoogLeNet. In this study however, rather 

than using the entire Plant Village dataset, a subset of images containing only 

diseased tomato leaves was used. Both studies utilized the networks by transfer 

learning and by training from scratch in an attempt to compare the results from both 

methods. In the same way as in the work of Mohanty et al., the best results gained in 

Brahimi et al.’s work were of extremely high accuracy, reaching 99.18% accuracy in 

classifying tomato diseases. Again, this result came from the use of GoogLeNet with 

pre-training, although they do not specify the train-test split. 

 

Another study that made use of a subset of the Plant Village dataset is that of 

Amara et al., (2017). They used only the banana leaf images in their work with the 

LeNet (Lecun et al., 1998) architecture. Although using a previously defined 

network, they did not use a pre-trained version, rather the architecture was trained 

from scratch with the banana leaf images. They used a range of train-test splits with 

both coloured and grayscale images. It was shown that the networks that used 

coloured images always outperform those without, thus showing the importance of 

colour information for the problem. Using a train-test split of 80-20, the network 

achieved an accuracy of 98.61%, another extremely promising result. 

 

Too et al., (2019) took the whole of the Plant Village dataset and evaluated the 

performance of multiple pre-trained networks in classifying the diseases. They used 

transfer learning with some fine-tuning of VGG16, Inception V4, Resnet with 50, 

101 and 152 layers and DenseNets (Huang et al., 2018). DenseNets was the best 

performer having gained an almost perfect accuracy of 99.75%. 

 

This almost perfect accuracy is a common occurrence in studies which use only 

images from the Plant Village dataset. Although comprehensive in that it covers a 

wide range of diseases and plant species, the images within are not representative of 

those which would be found in real growth situations. They contain images of leaves 

taken from the plant and placed on a plain background, thus eliminating any 
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background information, which obviously would not be the case in the field. The 

high accuracies gained in these studies are impressive, however it is unknown how 

any of the models would perform when confronted with real field data.  

 

Ferentinos, (2018) demonstrated the issues of the Plant Village dataset for field use in 

their work. They made use of multiple pre-trained networks within his study; AlexNet, 

AlexNetOWTBn (Krizhevsky, 2014), GoogLeNet, Overfeat (Sermanet et al., 2013) 

and VGGNet. The dataset used contains images taken from Plant Village as ‘lab 

condition’ images and was supplemented with more images taken in the field. This 

resulted in a dataset of 87,848 images sorted into 58 classes, some that contained just 

lab conditions, others that contained just field conditions and some with both. The 

most successful architecture in this study was the VGG network, which gained an 

accuracy of 99.53% on unseen images. Due to the presence of both lab condition and 

field condition images within the dataset used, Ferentinos (2018) experimented with 

training on laboratory condition images and testing on field condition images and vice 

versa. The accuracy of classification in these experiments was significantly lower than 

with the mixture of images for training. Training on field images and testing on 

laboratory images resulted in an accuracy of 65.69%, whereas the other way around 

resulted in an accuracy of only 33.27%. These figures emphasize the importance of 

including all relevant conditions within a training set for use in practice. 

 

Although the Plant Village dataset is used regularly throughout the literature, there 

are plenty of studies which make use of data acquired elsewhere. Sladojevic et al., 

(2016) created a large dataset of images (over 30,000 in 15 classes) by taking 

pictures from internet searches. The dataset included a class for just healthy leaves 

and also a class with just background images. The reason for this was to train their 

network to differentiate leaves from their surroundings. The network used for this 

study was the pre-trained CaffeNet (Jia et al., 2014) model. Using this method, they 

gained a classification accuracy on their dataset of 96.3%. They concluded that the 

accuracy for individual categories was slightly lower on the classes which contained 

fewer images. Another thing to note about this study is how the images were 

collected. As they were taken straight from the internet, it is possible that some of 

the images have been wrongly classified which would have affected the accuracy of 

the network. 
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Barbedo, (2018) used a dataset of images collected in both field and controlled 

conditions. The size of the dataset was relatively small, only 1383 images in total, 

spread over 56 disease-crop categories. This meant that there were only a small 

number of samples for each class. They performed experiments by training a model 

to classify the images both as is, and with the background removed. The results 

varied over all the categories, with no distinctive positives or negatives recorded for 

removing the background information. This was probably because the low number 

of training images was not enough for the model to make accurate representations 

from the data, whether the background was included or not. 

 

A study by Lu et al., (2017) used a relatively small dataset of rice disease images 

(500 images) to train CNNs inspired by LeNet and AlexNet architectures. Although 

they did not use the actual networks for either training from scratch or transfer 

learning, they did create a very similar network to those already defined. The 

accuracy gained for this network was 95%; while still a very encouraging result, this 

is slightly lower than many of the results discussed before. A reason for this could be 

to do with the size of the dataset used; with only 500 images spanning 10 categories, 

it could be hard for the network to learn all the characteristics present in each of the 

categories.  

 

Alongside their own network modelled on a combination of AlexNet and 

GoogLeNet, Liu et al., (2018) utilized four pre-trained networks on their apple leaf 

disease identification problem; AlexNet, GoogLeNet, VGGNet and ResNet .They 

compared their network results to those obtained through transfer learning with the 

pre-trained networks and found that their model outperforms the known networks. 

The final accuracy recorded for their network was 97.62%, a percentage point higher 

than the next best performer VGGNet. Many studies make use of pre-defined 

networks; however, Liu et al. show that in some cases, defining a new network will 

gain a better performance. Often new networks will be inspired by one or several of 

the widely known networks (like in Lu et al., (2017)), but this might be the best way 

to get all the best components for tackling the problem. 
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The train-test split is important for ensuring a network has enough data to learn from, 

while also having enough to for evaluating its performance. It is also important to 

include validation where possible. Often the validation is incorporated into the train 

part of the split when described in the literature.  

 

Oppenheim et al., (2018) experimented with different train-test splits to find the best 

combination for their work detecting potato tuber disease. Their dataset contained 

2465 images of disease lesions cropped from whole potato images, with four 

diseased and one uninfected category. They found that, unsurprisingly, more training 

data increased accuracy. The model that performed best on the test data used a 90-10 

train-test split and gained an accuracy of 95.8%. Many studies elect to stick to an 80-

20 split in the training and test data, in this case the higher amount of training images 

may improve training, but the lower amount of test images may not have contained 

enough images to fully show the performance of the network considering the size of 

the original dataset. A 90-10 split may be more suited to a larger dataset where the 

test set would contain more images. This would not be an issue, of course, with a 

significantly large dataset containing, for example, 100,000’s of images, where each 

subset would contain ample data. 

 

At the time the classification work in this thesis was carried out, there was little to no 

research which utilised a large, multi-category dataset of field images for any 

disease. In recent years, the Plant Village dataset is still a popular tool for testing 

new deep learning architectures and training methods (Kulkarni et al., 2021; 

Albattah et al., 2022; Pandian et al., 2022). We have encountered one study by 

Haque et al., (2022) where a dataset collection effort similar to our own was 

conducted. In this study, they collect images in field of maize plants with three 

diseases and a healthy category. Data augmentation methods are used to combat 

imbalance between the number of images per category.  

 

The studies discussed above have shown the great potential for deep learning to be 

used for crop disease detection. The Plant Village dataset was a breakthrough in the 

field, which has seen multiple networks classify its images with incredibly high 

accuracy. Furthermore, other works have used more complex images while still 

gaining promising results. The problem with these works is that they are not likely to 
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be viable for use in the field. Due to the time investment often required for collecting 

field data, many of the datasets used are relatively small. This means that it is 

unlikely that the range of variable conditions which would occur in the field are 

represented within the training data. Moreover, in some cases only two classes are 

used, one disease and healthy. Here, when confronted with a disease which wasn’t 

included, a model would likely classify it as the disease it was trained on, which 

could cause problems with applying the wrong control measures. There is a lot of 

room for expanding these techniques for use with more comprehensive field datasets 

containing more diseases and crop types. 

 

1.4 Deep learning for crop disease severity assessment 
 
When compared with the research for using deep learning for crop disease detection, 

little research has been conducted for determining the severity of crop disease using 

deep learning. Much of the research into this problem has been conducted since the 

planning of our quantification experiments took place in early 2020, so plans were 

guided mainly by our own experience and knowledge. 

 

The studies for this section can be split into two main groups. The first involves the 

collection of data which is then labelled with a severity score or class. These images 

are then used to train a deep learning model to classify them into the pre-defined 

scores. One of the earliest studies for severity assessment was by Wang et al., 

(2017), who took apple black leaf rot images from the Plant Village dataset and had 

botanists assign a class to each; : healthy stage, early stage, middle stage, or end 

stage. They end up with just over 100 images per category, which their model is able 

to classify with an accuracy of 90.4%. This is a good starting point, although they 

highlight the need for collecting more data, across more severity categories in more 

versatile conditions. 

 

In a different approach, Mi et al., (2020) collected 5242 images of wheat leaf images 

in the field, with various levels of stripe rust infection. The images were divided into 

6 levels of infection. In this study, prior to network training the images were cropped 
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to form a rectangle around the leaf, so little background information remained. The 

result was a fairly well-balanced dataset, with over 600 images per score category. 

After training, their model was able to classify images from their test set with 

97.99% accuracy. This study provided encouraging results, however it would be 

ideal for a model to not require cropping images prior to usage. If this model were 

deployed in the field, there would be a significant time investment to get the data 

into the right format for use. 

The second group of studies require more data preparation. Images are annotated in a 

process called semantic segmentation, where each pixel is assigned a class label. In 

the case of crop disease severity, these classes could be healthy tissue, disease tissue 

and background information. A model then learns to perform this segmentation 

themselves, and from there calculate a percentage of infection. 

 

An earlier example of this method was by Lin et al., (2019). In their work with 

cucumber powdery mildew, they collect a small dataset of 50 leaf images taken in 

controlled conditions. Every image is manually annotated with the segmentation of 

the disease lesions. 30 of the images are augmented and used to make the train 

dataset. They determine that their model achieves a “satisfactory” segmentation 

accuracy when tested on the other 20 images and conclude that their method is 

feasible in practice. The main limitation with this study is the dataset size. Although 

the data is augmented to produce more training samples, there are only 30 initial 

samples to augment, meaning that there will be little natural variation in the images. 

 

Chen et al., (2021) collect a dataset of rice bacterial leaf streak (BLS) images, taken 

in the field. They use LabelMe software (Russell, Torralba and Murphy, 2008) to 

assign a class of BLS lesion, rice leaf or background to each pixel in the images. The 

percentages of infection were sorted into five disease score categories. Their model 

was able to accurately segment the disease lesions and classify the images into the 

corresponding score category with at least 89% over all classes. It is important to 

note that in this study, despite using realistic field data, the data is all collected on a 

single day in a single location. Therefore, the range of conditions and amount of data 

needs to be built upon for deployment in the field. 
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In a similar experiment, Divyanth et al., (2023) used a segmentation model to 

identify and then calculate the severity of three corn diseases. Through their 

segmentation methods and model training, they were able to identify and quantify 

the severity of the diseases to a high accuracy. The inclusion of multiple diseases is a 

useful tool for working towards an automated method. In many cases, multiple 

infections can be present at once. It would be useful to build on this work with a 

larger dataset for training. 

Both types of study discussed in this section show the early stages of this problem. 

They show the promise of using deep learning for quantifying the amount of disease 

present using two different methods. The first, classifying labelled images into 

severity classes, shows promise using carefully curated or cropped images. It would 

be useful to be able to use images that are not taken in controlled conditions or 

require editing by the user before use. 

 

The second method using semantic segmentation also produces good results with 

small datasets of images. In each case, the segmentation process performs with 

relatively good accuracy, meaning they can approximate the amount of disease 

present fairll well. The accuracy of these models could likely be increased with 

further training data.  

 

All the studies discussed in this section use single leaf images, whether in controlled 

or field conditions, to train their models. While this is a promising start, a breeder 

will not be scoring disease on a single plant very often. During the breeding process, 

they are required to score full plots. To be able to automate this process, any model 

will need to be trained using full plot images. 

 

1.5 Thesis overview 
 
In this thesis we will investigate the potential for deep learning models for wheat 

disease identification and scoring given complex images taken in realistic growth 

conditions. This will provide a foundation for eventually producing an automated 
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method to aid breeders and farmers in tasks which usually require specialist 

knowledge to achieve. 

 

In chapter two we give an introduction to deep learning. Here we provide 

descriptions of the individual aspects of the deep learning models used in our work 

as well as the process of training a deep learning model as a whole. We also outline 

the challenges posed by data collection and the data requirements for using deep 

learning to classify and quantify crop diseases.  

In our third chapter we produce deep learning models for the classification of wheat 

diseases. We collect a dataset of diseased wheat leaf images taken in complex, 

realistic growth conditions, which is used to train a deep learning model to classify 

four diseases (and a healthy category). We show that deep learning models are 

capable of handling complex images and can classify them with high accuracies. The 

performance of our model is compared to human participants, revealing it can 

perform at least as well as pathologists on image data. We perform an experiment to 

verify that the correct information is being used by the model to drive classifications. 

 

Breeders have identified a need for automating the scoring process to save time and 

remove differentiation between different scorers. The fourth chapter explores deep 

learning models for quantifying the amount of disease present. A dataset of scored 

yellow rust plots is collected and used to train deep learning models. We highlight 

limitations in the collection of field data for this problem. We perform experiments 

with simulated data which show that classification based on infection level is 

possible given sufficient data. This work provides the means for evaluating the best 

experimental design for a disease quantification problem. 

 

In our final chapter we discuss the results of our work, along with the limitations we 

discovered and possible ways these could be overcome. The potential next steps for 

taking this work closer to an automated disease scoring system are also outlined. 
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Chapter 2 Introduction to Deep Learning 

 
The use of deep learning is a constant theme throughout this thesis. For this reason, 

we provide an introduction, within this methods chapter, to the various elements of 

deep learning for crop disease detection and quantification that we have used. 

 

The two main libraries we use for creating and training our deep learning models are 

Keras (Chollet and others, 2015) and Tensorflow (Abadi et al., 2015). Keras is an 

interface (API) for Tensorflow, allowing for a quick and easy implementation of a 

deep learning model that relieves the user from many of the complexities of 

Tensorflow. A deep learning model in Keras can be written in a few, relatively 

simple, lines of code and is much more user-friendly than Tensorflow. Tensorflow is 

a comprehensive, open-source library for machine learning. Where Keras is useful 

for learning and understanding deep learning models, and quick experimentation 

with model architectures, Tensorflow has a wider range of capabilities for real world 

applications. 

 

2.1 Machine Learning 
 
To understand deep learning and its purpose in this project, it would first be wise to 

introduce the entire topic of machine learning, of which deep learning is a type. 

Machine learning is a field that focuses on using algorithms that ‘learn’ to perform a 

task. The following section will describe some of the aspects of a machine learning 

problem, which are important for the work in this thesis. 

 

2.1.1 What is classification? 

 
In machine learning, classification is an algorithm which predicts a class label 

associated with the input data. For example, in this thesis we are using a model to 
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predict the disease present in an image. A classification model is trained using 

labelled data, in our case images labelled with a disease class,  

 

2.1.2 How to assess quality 

 
As with any scientific problem, it is important to be able to assess the quality of the 

results. For classification, the main metrics for this are accuracy, precision, and 

recall, the latter two often being combined to give an F1 score. 

 

Accuracy is defined as the percentage of correct predictions out of all predictions 

made. In a perfect scenario, where the model had learned enough to correctly predict 

every classification, the accuracy would be 100%, however in practice, a 100% 

accuracy is rarely (if ever) achievable. The accuracy which would be deemed 

acceptable often depends on the particular problem at hand and the accuracy of a 

human completing the same task. In some cases, a lower accuracy may be accepted 

where the model is able to compete in another manner, for example speed or man 

hours. Accuracy is the main metric we look at in this thesis due to the replicable 

nature of the work.  

 

In some classification problems, in addition to accuracy, it is useful to know the 

measure of false positive and false negatives for the model. This would be of 

particular importance for example in a medical field false classifications in disease 

diagnoses could have critical repercussions. This is where precision and recall come 

in. 

 

Precision is a measure of how many of the classification predictions for a certain 

class were correct. So, in a medical sense, the number of positive diagnoses that 

were actually positive cases. Obviously, it wouldn’t be ideal to diagnose a person as 

having a condition when they don’t actually have it, as this would result in emotional 

trauma and unnecessary treatments and tests. In this work, the precision would be the 

number of predictions for each class that were correct for that class. Falsely 

predicting the wrong disease could result in the wrong fungicides being deployed, so 
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the precision for each class needs to be high. Precision is calculated by the number 

of true positives over the sum of true and false positives. 

 

Recall is a measure of how many actual pieces of data from a certain class were 

correctly identified. In this work, that would be the number of correctly classified 

images for one class out of all the images of that class. Although the recall should 

ideally be high, it is not quite as important in this case due to the replicability of our 

model. In a field there would be 1000’s of plants allowing for several classifications 

to be performed to build a full picture of the disease situation in the field. In a 

medical field it is more important, missing a positive diagnosis would mean that vital 

treatment would not be given. Recall is calculated by the number of correctly 

identified positives out of all positive pieces of data. 

 

In machine learning, an F1 score is often used as a measure of quality, combining the 

precision and recall over the whole model for all categories. We used the macro 

averaged F1 scores for our work, which is the unweighted mean of F1 scores for 

each class. The F1 score for each individual category was calculated using Equation 

1, then an average F1 score was calculated for the entire model. 

 

Equation 1 

𝐹1 = 2 ×
(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙)
(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙) 

 

2.1.3 What is overfitting? 

 
A common issue in machine learning problems, and one that needs to be mitigated 

during training, is the problem of overfitting. Overfitting occurs when a machine 

learning model learns specifics about the training data and so is not able to perform 

accurately on new data. This means that the model would be able to make extremely 

accurate predictions on the training data, but essentially be useless in the field. When 

working correctly, a model will learn general features about the training data which 

it is able to apply to new data it has never seen before. 
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There are multiple ways to try and combat overfitting when training a model, the 

first and most obvious being the use of validation data. 

 

2.1.4 What is validation? 

 
Validation is the process of evaluating the performance of a machine learning model. 

A validation set of a data is used during the training of a machine learning network 

to help ensure that the model does not overfit to the training data. 

 

In this thesis we use a hold-out validation set, which is separate to the test set. After 

each iteration through the training data, the model makes predictions on the 

validation data to see how it performs on new information. If the model is learning 

too much about the training samples, it will not perform well on the validation set as 

it will not be able to generalise to this data. This information allows us to see when 

the model overfits and use this to determine how many iterations to train the final 

model for prior to evaluating on the test set (completely new, unseen data). 

 

2.2 Deep Learning Network Components 
 
In this section we will introduce the different elements of the deep learning models 

that we create throughout this thesis. The descriptions contained within this section 

are sufficient for the reader to have a good understanding of the work in this thesis, 

however they are not fully comprehensive. More information can be found in the 

papers cited as well as various books including (but not limited to): 

• Deep Learning with Python – Francois Chollet 

• Deep Learning – Aaron Courville, Ian Goodfellow, Yoshua Bengio 
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2.2.1 Layers 

 
Before jumping into the individual components that make up our deep learning 

models, it would first be beneficial to describe the overall topology of a neural 

network.  

 

A neural network is a type of machine learning or deep learning model which learns 

to perform a task in a way that is inspired by the human brain. It is made up of 

interconnected neurons (see section 2.2.2) which are arranged in a layer formation. 

Every network begins with an input layer. This is the layer which takes the raw data 

into the model (for example image data). At the end of each network there is an 

output layer. This layer provides predictions about the data, for example 

classifications. 

 

In between the input and output layer there are hidden layers. Hidden layers perform 

computations to transform the input data into something the output layer can use to 

make its predictions. The number of layers can be anything from zero upwards 

depending on the experimental design. For a simple problem with little available 

data for training, fewer hidden layers may be used, however for more complex 

problems with lots of data there may be more. This can be experimented with during 

the training process.  

 

2.2.2 Neurons 
 
A neuron takes input signals, either from neurons in the previous layer or from input 

data, performs a function and then sends output signals to the neurons in the 

following layer. Each input signal has an associated weight, which is a learnable 

parameter which is adjusted throughout training. The weight dictates the importance 

of the preceding signal on the entire network. At the beginning of training, the values 
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for the weights are randomly initialized. Neurons are present in all layers of a deep 

learning network and are the nodes through which data flows. 

 

Once the neuron has received the input signals and their associated weights from all 

neurons, 𝑛, in the preceding layer, the signals, 𝑥!, are multiplied by their weights, 𝑤!, 

and summed before being passed to an activation function. The activation function 

calculates the output of the neuron, see Figure 2.1. The activation function is chosen 

for each layer and is applied to all the neurons in that layer. 

 

In the models we create in this thesis, we use two different activation functions. For 

the input layer and all layers before the output, a rectified linear unit (ReLU) 

function is used, see Figure 2.2, which sets all negative values to 0. This activation 

function is commonly used in neural networks due to their computational simplicity, 

meaning faster training, and linear behaviour for positive values, which allows for 

easier optimisation of the model. Networks which utilise the ReLU function often 

yield better performance than networks trained with other activation functions 

(Glorot et al., 2011).  

 

Figure 2.1: A neuron receives an input signals and weights. The signals are multiplied by 

their weights and summed before being passed to an activation function to produce an 

output signal. 
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For the output layer which gives the predictions a softmax function is used, see 

Figure 2.3. It converts the input of the function to a probability distribution over the 

number of classes, where the values are non-zero and add up to one. Here, a higher 

input value would produce a higher probability. 

 

 

Each layer in a deep learning network is made up of multiple neurons, which are 

connected to a selection of the neurons in the previous and following layers. This 

selection depends on the type of layer used. There can be any number of neurons in a 

layer. A small number will mean a small number of learnable weights, and therefore 

a limit on the amount the network can learn. Conversely, too many neurons will 

overcomplicate the problem and increase the computing power required for the 

calculations. It is best to use the fewest number of neurons possible to complete the 

task, without having too few. This number depends on several factors such as the 

complexity of the data, and the types of activation function used, and can be 

determined by experimenting with different values. 

Figure 2.2: Rectified linear unit (ReLU) function. Sets all negative inputs to 0. 
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2.2.3 Optimising weights 

 
After each run through the input data (epoch), the output is predictions for the 

classifications of the data. A loss function is used to measure how far these 

predictions are from the expected output. It takes the predicted results and computes 

a distance score for how far away they are from the true results. The loss is the result 

which shows how well the network performed on the previous data. Throughout 

training, the network needs to update its weights in order to minimise the loss. 

 

In this work we use categorical cross-entropy as the loss function. This can be 

calculated by Equation 2 where S is the number of samples, N is the number of 

classes, t is the true distribution for a sample of data (this will be a vector zeros of 

length N, with a 1 at the position corresponding to the correct class) and p is the 

predicted distribution produced by the output activation function. 

Figure 2.3: Softmax function. A higher input produces a higher probability. 
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Equation 2 

𝐿(𝑡, 𝑝) = −99𝑡!"𝑙𝑜𝑔;𝑝!"<
#

"$%

&

!$%

 

 
The nature of neurons in a deep learning network means that information is only 

passed forwards through the model. To be able to update the weights after each 

iteration, information somehow needs to be passed back through the model. This 

process is called back-propagation and is how the network fine-tunes the weights. 

The model uses information about the loss function and an optimizer to calculate the 

new values for the weights. An optimizer is a function used to minimise the loss 

function. There are many different optimizers, three which are commonly used are 

Adagrad (Lydia and Francis, 2019), RMSProp (Hinton and Tieleman, 2012) and 

Adam (Kingma and Ba, 2017). 

 

2.2.4 Hyperparameters 

 
In addition to these weights that are optimised through the training process, a 

number of other factors are important that need to be chosen prior to training – these 

are hyperparameters. When developing a deep learning model for a specific purpose, 

it always involves tuning the network hyperparameters to find the configuration 

which gains the optimal results. Examples of hyperparameters are: 

● network architecture – the number, size, and type of layers in the model 

● batch size – how many images the model works through before updating its 

parameters 

● learning rate – the magnitude of change to the model weights during training 

● number of training epochs – how many times the model works through every 

piece of training data 

● optimizer – used to update the weights to reduce the loss function. The loss 

function is how the network measures its performance. It computes how far 
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the predictions of the network are from the true labels of the images and 

gives a loss score. The more accurate the predictions, the lower the loss. 

The choice of hyperparameters can greatly affect the convergence rate and overall 

performance of a network.  

 

2.2.5 Convolutional neural network 

 
Convolutional Neural networks (CNNs) (LeCun et al., 1999) are widely used in a 

multitude of different computer vision tasks. They have proven to perform well on 

many image classification problems, including the ImageNet Large Scale Visual 

Recognition Challenge (ILSVRC) (Russakovsky et al., 2015).  

 

Figure 2.4: Example of how a feature map is produced using a filter in a convolutional layer. 

Step 1 is element-wise multiplication, where each element in the feature map is multiplied by the 

value in the image in the same position. Step 2 sums all the outputs from element-wise 

multiplication and adds the resultant value to the output feature map. The filter is then moved to 

the next position in the image and the process is repeated. 
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An image is made up of pixels, each of which has a value corresponding to the 

colour of the pixel. For a grayscale image, each pixel is denoted by a single number 

between 0 and 255. For an RGB image each pixel has three values, one for each of 

the three channels: red, green, and blue. A convolutional layer uses filters to create 

multiple feature maps from an input image. 

 

The filter slides over the input image and performs element wise multiplication at 

each point. The outputs are then summed to generate the input for the feature map. 

The filter then slides to the next position on the input image and repeats this process. 

This process is shown in Figure 2.4 giving an example of a filter’s resulting feature 

map on a given input image. The feature maps generated after each layer then 

become the input for the following layer. The number of filters, and the size of the 

filters are hyperparameters which can be set during the definition of the model 

architecture. Our figures show a 3x3 filter, but larger filters are also used in many 

models. 

 

2.2.6 Fully connected layers 

 
A fully connected layer (also called a dense layer) is a layer where all its neurons are 

connected to all the neurons in the preceding layer. This is different to a 

convolutional layer, where the neurons in one layer are only connected to a selection 

of neurons in the following layer. Fully connected layers are used as part of the 

classification part of the model. First the data is flattened to be one dimensional as 

this is the format needed to provide the classifications. Fully connected layers 

followed by a softmax activation function make the classifier, which provides the 

predictions.   

 

2.2.7 Batch Normalisation 

 
Batch normalisation (batch norm) allows a model to use normalised data throughout 

the training process (Ioffe and Szegedy, 2015). Much like the input data, which is 
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normalised prior to being fed through the network, see section 2.3.1, a batch norm 

layer normalises the outputs of the neurons from the previous layer prior to the 

activation function being applied. It does this for each batch of data. Throughout 

training, as the weights of the model are updated, it is possible for one weight to 

become significantly larger than the other weights. Deep learning networks do not 

handle large values well as they stop the model from converging. This is where batch 

norm comes in to normalise the data between layers. The addition of these layers 

makes training more stable and decreases the learning time due to the standardised 

data they produce. 

 

For each batch of data, batch norm takes the outputs from the previous layer’s 

neurons (𝑂!) and calculates the mean (µ) and standard deviation (s) using Equation 

3 and Equation 4 respectively where 𝑚 is the number of neurons in the previous 

layer. 

Equation 3 

𝜇! =
1
𝑚9𝑂! 

 

Equation 4 

𝜎! = A
1

(𝑚 − 1)9
(𝑂! − 𝜇)' 

 

The outputs are then normalised using Equation 5. 

 

Equation 5 

𝑂B! =
𝑂! − 𝜇!
𝜎!

 

For data to be normalised the mean needs to be scaled and shifted to zero and the 

standard deviation to one. This is done using Equation 6 and the batch norm layer’s 

two trainable parameters g and b, which are learned over the epochs like the 

neuron’s weights and are different for each batch norm layer.  
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Equation 6 

𝑏𝑛()*+)* = 𝛾𝑂B! + 𝛽 

 

Much like the weights throughout the network, g and b are adjusted throughout 

training to find the optimal values to produce the best predictions. 

 

2.2.8 Max Pooling 

 
Max pooling layers are used to down sample the size of the feature maps, so reduce 

their dimensions, produced after a convolutional layer. This reduces the number of 

parameters that the network needs to learn and therefore the computational cost of 

the model. It is also used as a method to combat overfitting resulting from using only 

convolutional layers. Over time, a CNN without any max pooling would start to 

associate the presence of features with a specific location. Adding max pooling to 

reduce the dimensionality means that the filters used to produce the feature maps 

will be looking at a larger portion of the input. This in turn means that the network 

will learn to be less dependent on the location of specific features. 

 

The way a max pooling layer works is similar to a convolutional layer, using filters 

to perform an operation on the input feature map. Where it differs is that instead of 

Figure 2.5: Example of max-pooling down sampling an input feature map. In each position the 

filter selects the maximum value to add to the output feature map. After this is complete at one 

position, the filter moves 2 pixels across or down to the next position and repeats the process. 
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performing element wise multiplication, the filter instead picks out the maximum 

value in the receptive field. Most commonly, the filter size used by a max pooling 

layer is 2 x 2, which moves across the input feature map with a stride 2. The stride of 

a layer defines how much a filter moves across an image. In a convolutional layer it 

is often set as 1, meaning the filter moves by one pixel to the next location. A stride 

of 2 for a max pooling layer down samples the feature maps by a factor of 2. Figure 

2.5 shows an example of the max pooling operation over an input feature map. 

 

2.2.9 Dropout 

 
Dropout works by randomly dropping (setting to zero) a number of output features 

of the layer throughout training (Srivastava et al., 2014). For example, if a layer 

would usually return a vector [1.2, 0.3,  1.1,  0.9,  0.8], after applying dropout there 

would randomly be zeros in a number of locations in the vector: [1.2,  0, 0,  0.9,  

0.8]. The percentage of features which are dropped is set by the dropout rate, usually 

0.5 in the networks used within this thesis.  

 

This method helps to reduce overfitting by introducing noise into the results. 

Without the noise, the network may start to learn coincidental patterns which aren’t 

significant. The noise breaks up these patterns so that the model can’t remember 

them, thus only learning significant features.  

 

2.2.10 Residual connections 

 
In a deep learning network, each layer is built on top of the one before. This means 

that the output of one layer is only available as input to the following layer. Hence, if 

any information is lost along the way, for example due to a layer not having enough 

neurons to handle all the information available to it, then it cannot be regained at a 

later stage – it is lost for good. The loss of information in this way is called a 

representational bottleneck (Chollet, 2017a).  
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Backpropagation propagates a signal from the output layer of a network back 

through previous layers to the earlier layers, this is how a neural network is trained. 

The more layers that are stacked upon one another, i.e., the deeper the network, the 

more likely that the signal being propagated can become weaker or disappear 

entirely. If this happens then the network can no longer be trained. This is the 

problem of vanishing gradients (Hochreiter, 1998). 

 

Residual connections (He et al., 2016) provide a way to help tackle both 

representational bottlenecks and vanishing gradients. They provide a way for 

information from the output of earlier layers to be fed into later layers, thus limiting 

the amount of information lost. Figure 2.6 shows an example of a very short network 

with a residual connection. Here, it shows that the output of Layer1 is not only being 

used as input to Layer2 but is also being added to the output of Layer3. This creates 

a kind of shortcut for the earlier outputs to be included in the later layers. Residual 

connections are often used in deep neural networks with many layers to ensure that 

as much information is being maintained throughout the training process, and we 

experiment with several models that utilize them in this thesis. 

Figure 2.6: A short network with a residual connection. The output of layer 1 is used as 

input for layer 2 and also added to the output of layer 3. 
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2.2.11 Depthwise-separable convolutions 

 

Depthwise separable convolutional layers provide a less computationally demanding 

alternative to normal convolutional layers (Chollet, 2017b). These layers reduce the 

number of trainable parameters in a network, making them faster to run than using 

conventional convolutional networks. As well as reducing computational cost and 

time, the use of these layers can often increase the final accuracy gained on a 

problem. 

 

Where the filters in a convolutional layer perform a convolution on all channels at 

once, the depthwise separable convolutional layer performs a spatial convolution on 

each individual channel from the input separately. Following this it performs a 1x1 

Figure 2.7: An example of a depthwise-separable convolution. a) shows the spatial convolution 

and b) shows the pointwise convolution. See text for full explanation. 
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pointwise convolution on all channels together. Figure 2.7 shows an example of how 

a depthwise separable convolution works. In Figure 2.7 a), the input is an 18x18 

image with three channels. Three single channel 3x3 filters are used to perform 

spatial convolution on each of the channels of the input, so resulting in one channel 

of the output image for each of the filters. The output will then be a 16x16 image 

with three channels. 

 

Figure 2.7 b) shows the pointwise convolution part of the operations. A 1x1 

convolution is performed over the output 16x16x3 image, meaning that it iterates 

over every pixel. The 1x1 filter has three channels to match the number of channels 

in the image. The resulting image has the same height and width (16x16) but only 

one channel. The number of channels can be increased in the same manner as for a 

normal convolutional layer, by using multiple 1x1x3 filters to gain multiple 16x16x1 

output feature maps. 

 

2.2.12 Residual Attention Network  

 
Attention modules are used within CNNs to get the network to give more attention to 

the important information in the data and disregard the unimportant background 

information. A residual Attention Network is built by stacking Attention Modules 

which generate attention-aware features (Wang et al., 2017b). We use a residual 

attention network in our quantification chapter in the hope that it would be able to 

focus on the amount of disease present without being distracted by the complex 

background information. 

 

The attention module is made up of two parts, the trunk branch, and the mask 

branch. The trunk branch uses residual units to perform feature processing to gain 

meaningful information about the input. With input 𝑥 the output of the trunk branch 

is 𝑇(𝑥). The mask branch uses a bottom-up top-down structure to softly weight 

output features, to estimate the importance of the features, with the goal of 

improving trunk branch features. The bottom-up step down-samples the image with 

max pooling to gain information about the whole image, while the top-down step 

combines this global information with the original feature maps by up-sampling 
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(interpolation) to keep the output feature map the same size as the input feature map. 

The output of this branch is a learned mask 𝑀(𝑥) which is the same size as the input 

feature maps. It acts as a gate for passing information through the network. A 

simplified example is a mask that blocks out blue colour, thus eliminating the 

background sky information. The output of the attention module 𝐻 is given by 

Equation 7 where 𝑖 is the range of spatial information and 𝑐 is the channel index. 

 

Equation 7 

𝐻!,-(𝑥) = 𝑀!,-(𝑥) ∗ 𝑇!,-(𝑥) 

Figure 2.8 shows the architecture of the residual attention network used in Wang et 

al. (2017) which is used as the basis of our experiments with a residual attention 

model in Chapter 4.  

 

2.3 Basics of Training a Deep Learning Model 
 

2.3.1 Data requirements 

 

Figure 2.8: An example residual attention model. Here p, r and t are hyperparameters. p is the 

number of pre-processing residual units before splitting into trunk branch and mask branch. t is 

the number of residual units in the trunk branch and r is the number of residual units between the 

adjacent pooling layer in the mask branch (Wang et al., 2017, p4).  
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One of the biggest challenges for the successful application of machine learning 

techniques for the identification of plant diseases (or any image classification task 

for that matter) is the availability of data. The majority of these methods require 

large datasets of labelled or annotated images, which can be time-consuming to 

collect and process. For example, with plant disease detection, it is necessary to have 

a large number of images for each disease for each plant species that is being 

modelled. In the case of disease quantification, there needs to be enough images for 

every score or disease severity level. 

  

One of the most famous, and largest, datasets used for image analysis with deep 

learning is the ImageNet dataset (Deng et al., 2009). This dataset was created for use 

with object recognition software. The full dataset contains more than 14 million 

images with over 20,000 categories, however a smaller subset of this has been used 

in the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) (Russakovsky 

et al., 2015). This challenge ran annually between 2010 and 2017, encouraging 

participants to develop and improve computer vision techniques for image 

classification and object recognition. Multiple winning networks created for this 

competition over the years are now used as the starting point for hundreds of deep 

learning problems, including the problem of crop disease detection. 

  

Collecting a dataset of images for use with any deep learning problem is not quite as 

easy as simply gathering as many images as possible by any means. It is important to 

ensure that the dataset contains appropriate information for the required use case. 

The rest of this section will discuss the factors to consider when preparing a dataset 

for plant disease recognition and classification. These factors include range of 

conditions, controlled versus uncontrolled capture conditions, image quality issues, 

the number of images required and labelling and annotation requirements. 

  

The most widely known, and one of the only openly available datasets used for the 

recognition of plant diseases, is the Plant Village dataset (Hughes and Salathe, 

2016). This is a collection of almost 88,000 images taken in controlled conditions 

with 38 categories, each corresponding to a plant-disease pair. Each image contains a 

single diseased or healthy leaf taken from the plant and placed on a neutral 

background and photographed under different lighting conditions. While this dataset 
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was ground-breaking in the field of plant disease detection when it was first created, 

the use of controlled conditions in the photos means that it is not comprehensive 

enough to be useful for an automated system in field conditions. 

  

The Plant Village dataset was useful for demonstrating the potential of deep learning 

methods for the classification of plant diseases; however, in order to create a model 

that will be useful in realistic growth conditions, it is now important to collect 

datasets which accurately represent those conditions. PlantDoc (Singh et al., 2020) is 

a dataset created to cover many of the diseases present in the Plant Village dataset, 

but the images instead cover real field conditions. Here, images were downloaded 

from the internet and checked by members of the team before being added to the 

new dataset. This resulted in almost 3000 images, spanning 27 of the categories from 

Plant Village (any classes with fewer than 50 samples were removed for this 

dataset). This is a step in the right direction, but there is a distinct possibility of mis-

classified samples within the dataset due to them being taken from internet searches. 

Also, with it still being a relatively small dataset spanning a lot of classes, there is 

still a high chance that not all conditions are being covered. 

  

For studies that are looking at building a model for a certain crop, as for the work 

within this thesis, it is unlikely that there are already datasets openly ready and 

available for use. This means that, for each case, there will be a large collection 

operation required prior to any numerical experiments.  The result is usually a 

relatively small dataset with few categories (in some cases only two: diseased or 

healthy). While these can be useful for the problem at hand, there is still some way 

to go with generating a larger dataset to be used in a wider variety of cases. 

  

The collection of a dataset which sufficiently covers each category can be a time-

consuming task, often requiring the specialist knowledge of an expert pathologist 

and multiple volunteers to take the pictures. Furthermore, it is not simply a case of 

capturing a large number of images for each category, but also including a 

representative range of conditions. If the model is to be used for identifying diseases 

in the field, then the range of typical conditions that could be encountered in the field 

need to be represented. This includes: 
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·   The variation in crop varieties/ species – for example different leaf 

colours or sizes 

·   State of the crop – seedling, adult, flowering, mature with seed 

·   Stage and severity of the disease – early to late infection, mild to severe 

symptoms (particularly important for disease quantification) 

·   Weather and lighting conditions – Full sun, sun, and cloud, overcast, rain, 

etc. 

·   Background information – this needs to be consistent throughout the 

dataset. Having one class with different background information to the 

rest (e.g., glasshouse instead of field) will cause issues in training 

·   Image qualities – Focus, depth of field, range of angles 

  

The main point to remember when creating a dataset for deep learning is that the 

conditions present need to be consistent between classes. Any class (category) 

containing conditions which are not present in the others, for example one class 

having sky in the background whereas no other does, will cause the network to learn 

the wrong information about that class and classify it based on the presence of sky, 

rather than the disease information. 

  

Another factor to consider if working with real condition images is the diversity of 

background information, which might contribute negatively to the training process 

by distracting from the features that are of interest. If the images are collected in a 

field, for example, this may not be too much of an issue as the field conditions are 

likely to be relatively uniform. However, if the images are of a plant species which 

grows in various wild locations, then a vast array of background information can be 

expected. Where possible, the full range of diverse background conditions should be 

represented in images across all classes. 

  

The number of images is also important. The number of images to aim for per 

category will depend on the complexity of the problem at hand. A simpler problem, 

for example a binary classification problem of healthy or diseased, will require fewer 

images than a classification problem with multiple diseases with similar symptoms. 

However, the general rule of thumb with deep learning datasets is the more data, the 
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better (ideally hundreds, if not thousands or even tens of thousands, of images per 

category in our opinion). The more images the network has to learn from, the better 

its performance is likely to be. It is also best if the data is relatively well balanced, 

with a similar number of images in each category, so the network does not learn a 

bias towards one class due to it having significantly more training samples than the 

others. 

  

One technique to increase the number of images in a dataset where it is not possible 

to collect more is data augmentation. Augmenting the data involves performing 

multiple transformations on each image to add new samples to the dataset (Perez and 

Wang, 2017). For example, an image may be mirrored, flipped horizontally or 

vertically, rotated, or shifted to create tens of new images from a single sample. The 

main drawback of this is that there is no actual new data created, just variations of 

existing data. This means that the original dataset still needs to contain enough 

variation so that the network can learn enough to form predictions. There are other 

methods for working with smaller datasets, however where possible it is always 

better to collect more data. 

  

After collecting all available data, it will then need to be labelled and collated into a 

full dataset. For best results, a pathologist will need to label each image with the 

correct category, either as the images are taken, or by going through all data and 

assigning categories later. This of course can be incredibly time consuming and can 

result in misclassifications within the dataset if a pathologist is not available. In 

cases where different visualisation techniques are being used with the dataset, it may 

also be necessary to annotate the data with further information (e.g., a bounding box 

around a disease lesion). This often has to be done manually on each image and is a 

huge undertaking, requiring many hours of work and in some cases specialised 

knowledge.  

 

Once all labelling and annotation is complete, the data can be sorted into the train, 

validation and test sets and go through pre-processing prior to being used with a 

deep learning model. It is important to separate the data into the three subsets before 

any pre-processing occurs to ensure that data leakage does not affect the model. If 

pre-processing is done on all the data together, then it will have access to knowledge 
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about the dataset as a whole which will influence the training. Data leakage can 

happen when the model gains information about the test or validation set during 

training, which means it can make more accurate predictions which will not be a true 

representation of the model’s ability on unseen data. 

 

Deep learning networks take floating-point tensors as their input, so any data used 

for training or evaluating a model should be formatted as such. In computer science a 

tensor is a multi-dimensional array which stores data of a specific type. With image 

classification, the images are often stored in the dataset as .JPEG or .PNG files. Pre-

processing is the method of converting these image files into floating-point tensors 

prior to feeding them into a network. First the images are decoded into their RGB 

pixel grids, where each pixel has a value between 0 and 255 for each of the three 

colour channels. Following this, the data is normalised by dividing each value by 

255 to get all data in the range 0 – 1, giving a dataset for each image in the format 

A[i][j][k]. Normalising is important because feeding larger or heterogeneous values 

into a network can stop the model from converging.  

 

2.3.2 Model Training 

 
The deep learning networks that are used for the identification of crop diseases are 

often a type of CNN trained to perform their task by image analysis and 

classification. CNNs are used because of their strong ability to extract useful features 

from the images (Yamashita et al., 2018). Each network has an input layer where the 

data (in this case images) is fed into the network and an output layer, which is where 

the predictions are given. Between these are a number of hidden layers which 

perform feature extraction. The number, size, and type of layers in a deep learning 

network is referred to as the model architecture.  

  

Feature extraction is the process where the network learns features from the images 

that are relevant for the predictions. Earlier hidden layers, closer to the input layer, 

learn low level features, for example lines and edges. As the images are progressed 

through the hidden layers, the extracted features become increasingly complex. 
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Figure 2.9 shows a simplified representation of the deep learning workflow for 

image analysis. Feature selection prior to deep learning approaches was done 

manually by experts with domain knowledge and was a highly time-consuming 

undertaking. An advantage of the manual approach is that the features are often 

meaningful features that humans can relate to, such as number of eyes, number of 

legs, etc. The features inherent to deep learning networks are learnt during the 

training phase by adjusting the weights in the network to increase the performance. 

This automation brings huge advantages in terms of saving time and not relying on 

expert domain knowledge but has the disadvantages that the features are often not 

easy to extract and interpret. Feature selection is thus part of the overall network 

weight optimisation process.  

 

Training a network for image analysis requires a large dataset of images to work 

with, ideally tens of thousands of images depending on the problem. The image 

dataset is split into smaller datasets, usually train, validation, and test sets, however 

some studies use only a train set and test set. In cases where there is enough training 

data, having a separate validation set is usually the best method. However, if the 

dataset used is smaller and having a separate validation set would make the train 

and/or test set too small, then studies often use other validation techniques such as 

Figure 2.9: A simplified depiction of a deep learning model for the classification of dog and cat 

images. The model takes images at input, has multiple hidden layers for feature extraction, and 

produces classification predictions as output. 
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K-fold validation and iterated K-fold validation and shuffling (Refaeilzadeh, Tang 

and Liu, 2009). The split of the dataset between these sets varies over different 

studies, but the bulk of the images is always contained within the train set, with a 

smaller amount in the validation and test sets. 

  

When training a model, the train set of images is fed into the network in small 

batches (e.g., 64 images at a time). Once all the images have been through once, this 

is known as an epoch. The network will be trained for a certain number of epochs, as 

defined by the programmer. The number of epochs should be sufficient to reach 

convergence during the optimisation process to deliver the best performance. 

Training for too many epochs can waste computational resources and lead to 

overfitting (see below). This number is often picked by taking an educated guess 

based on previous research and experiments in similar fields. Many studies will try 

multiple experiments with different numbers of epochs before finding the number 

that yields the best results for their data. 

  

Between every epoch, the current network parameters are evaluated against the 

validation set to ensure that the training process is not overfitting to the data in the 

train set. If it were overfitting, then it would be learning features that are specific to 

the images in the train set and would not be able to generalise to new data of the 

same type once training is complete, as would be found in the test set. For example, 

if the network were looking for a certain feature from the train data which did not 

appear in the validation data, such as the presence of different soil colours, the 

validation set would highlight a discrepancy in the performance. The network 

parameters would then be readjusted to ensure that it is not using that soil 

information from the train set for classifying that disease, but rather the disease 

information on the plant instead. Ideally, the train, validation and test tests would all 

contain both colours of soil.  

  

Throughout training, the network is constantly adjusting its internal parameters after 

each batch and epoch to allow it to better make predictions about the images. As it 

learns, the accuracy of the predictions increases until it reaches a peak at the end of 

training. At this point, a new, trained instance of the network is defined and trained 

for the same number of epochs that returned the peak accuracy. It is trained on all 



 

 65 

available training data, the train and validation sets combined. Following this, the 

network can be evaluated on the test set of images. This is a set of images of the 

same kind as contained in the train and validation sets, but that the network has 

never seen before. This shows how the trained network performs on brand new 

images to give a final accuracy rating. The whole process from start to finish can 

take a long time, from hours to days, to even months. This depends on multiple 

factors, such as the computing power available, the size of the network and the size 

of the dataset. For example, a model with 10 convolutional layers would likely take 

double the time to train than a model with 5 convolutional layers would using the 

same data. Furthermore, training the same model using one or many GPUs would be 

significantly faster (for example hours or days) than training using only CPUs (for 

example tens of days or months). 

  

2.3.3 Transfer Learning 

 
A lot of studies begin their experiments by using transfer learning with their datasets. 

This is a method that takes the knowledge learned by a previously trained network 

and applies it to the new problem. The main advantage of this is that it is relatively 

quick compared to training a deep learning network from scratch. Some examples of 

networks often used for transfer learning are AlexNet (Krizhevsky, Sutskever and 

Hinton, 2012), GoogLeNet (Szegedy et al., 2014), VGGNet (Simonyan and 

Zisserman, 2015), ResNet (He et al., 2016), Inception V4 (Szegedy, Ioffe, et al., 

2016) and MobileNet (Howard et al., 2017). 

  

Transfer learning uses a network which has been fully trained on a large dataset 

(often the ImageNet dataset described in section 2.2.2). The pre-trained network is 

divided into two parts; the convolutional base, which is the part that performs feature 

extraction on the images, and the fully connected classifier, which forms predictions 

about the images. Depending on the method used, all or parts of the network are 

repurposed for the new dataset. In some cases, only the network structure is used and 

is retrained for the new problem without using the pre-trained knowledge. We use 

two different methods of transfer learning over the course of this PhD, which will 
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each be described in the following sub-sections. These both use the same pre-trained 

models and fully connected classifier, however they are trained in different ways. 

 

2.3.3.1 Method 1 

 
The first method of transfer learning that we will describe takes the convolutional 

base of the pre-trained network, complete with learned weights from having been 

trained on a larger dataset. The original fully connected classifier is discarded. This 

is because the features learned by the convolutional base are often more general and 

able to be reused, but the classifier is likely to have learned representations which are 

much more specific to the original training data. 

 

We feed the data for the new problem (here for wheat disease classification) through 

the convolutional base a single time, allowing the convolutional base to perform 

feature extraction. The extracted features are then used to train a newly defined, 

fully-connected classifier network. This method is much quicker and cheaper to run 

than training the entire model from scratch (see method 2), as the convolutional base, 

which is the most computationally expensive part of the network, only needs to be 

run once.  

 
2.3.3.2 Method 2 

 
The second method we use takes the entire pre-trained network, without separating it 

into the convolutional base and fully-connected classifier. In this case, we freeze the 

weights for the convolutional portion of the network. This means that they stay the 

same throughout training and can no longer be changed as the model learns. The 

fully-connected classifier portion of the network, however, does learn through 

training and its weights and parameters are constantly updated as it learns. 

 

The new data is sent through the entire network for multiple training epochs, much 

like training a full model from scratch, until a final accuracy is reached. This is a 

much more time consuming and expensive method, however it allows the user to 
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retrieve information from the individual layers in the convolutional base. This 

information can be used for analysing the performance of the model by generating 

area importance heatmaps (Selvaraju et al., 2020), for example. 
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Chapter 3 Classification of Wheat Diseases 

  
The first step to producing an automated deep learning model for scoring wheat 

disease in the field is to ensure that the defining features of the disease can be 

detected and classified from realistic field data. If this is not possible then there is no 

way that it would be able to identify and then quantify the amount of disease present. 

It is important to use data collected in real growth situations for training a model as 

this will reflect the conditions that would be encountered in the field. Including this 

kind of data in a training dataset will allow the model to learn to ignore background 

features. Furthermore, the disease information can be affected by the environment 

around it. For example, the lighting conditions that would be found in the field are 

different to those that would be experienced in controlled laboratory conditions, 

therefore the appearance of the disease symptoms will be different in each situation 

due to the variance in light.  

 

For any model to be useful in real field situations, it would ideally need to perform at 

a level of accuracy and speed at least equal to the human pathologists who would 

usually be classifying these diseases. However, a slightly lower accuracy than human 

classification, several percentage points for example, would also be acceptable as our 

model could be taken out multiple times to build a clearer picture of the infections in 

a certain location. We explore the human and model accuracies for our problem in 

section 3.1.5. This could be done by anyone and wouldn’t require the time of a 

trained pathologist to do so. 

 

In this chapter we aimed to produce a viable deep learning model for wheat disease 

detection in the field. We hypothesized that convolutional neural networks (CNNs) 

would be able to handle the complex images and be able to classify the different 

diseases. We collected a large, comprehensive dataset of images taken in realistic 

growth conditions, including four of the most important wheat foliar diseases in the 

UK (see section 1.1.2). We experimented with multiple deep learning architectures 

to find the configuration that classifies the images into their disease category with 

the highest accuracy. Ideally, any model would need to perform at least as well as 
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human pathologists to be useful in the field, so we compared our best performing 

model’s classification power against five expert pathologists with backgrounds in 

identifying these wheat diseases.  

 

3.1 Methods 
 

3.1.1 Collection of a dataset of wheat disease images in 

realistic growth conditions 

 
Training a network to classify images requires a large dataset of images sorted into 

categories. A dataset that could be used to train a network to identify and classify 

wheat diseases needed to be collected. For this work we aimed to define and train a 

deep learning model to classify images containing a single disease using images 

taken in realistic growth conditions, including complex background information. 

 

The diseases we decided to include in our dataset were Septoria, yellow rust, brown 

rust, and mildew. We also included a healthy category to ensure that any trained 

model would not classify healthy leaves as having a disease due to a lack of any 

other option.  The locations for photography were chosen by my supervisor, James 

Brown (in particular locations in Norfolk), and pathologists from RAGT, Limagrain 

and KWS. The majority of field photographs were taken in plant breeders’ trials 

containing thousands of wheat lines. A minority were taken in farmers’ fields 

containing diverse commercial varieties, which were not identified or marked in any 

way for the image collection. These locations provided plenty of variation in the 

appearance of the wheat over different varieties, as well as a range of susceptibility 

to the diseases. This was important to collect a variety of infection levels for the 

dataset. 

 

Photos were taken over a three-week period in diverse weather conditions. However, 

due to a lack of mildew in field situations thanks to breeders having good control 

over mildew in the UK (Brown, 2015), many mildew images were taken in 
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glasshouse conditions. The images were taken from diverse lines from genetic and 

plant breeding experiments. Each photography location was identified by a 

pathologist as having only one disease present during the photography window and 

the resulting photographs were all labelled with that disease. This was possible due 

to many of the photography locations being breeding trials where other diseases 

were controlled with fungicides. Other locations were chosen because they were 

known to have high levels of one disease and low levels of other diseases, reducing 

the risk of mixing diseases. We were able to make logical decisions for 

photographing in farmers’ fields based on the part of the country and what part of the 

growth season it was. Different diseases can be more prevalent in some areas and at 

certain points in the season. 

 

It would be ideal for any model trained to identify wheat diseases to be deployed on 

a mobile device, as this way any person would be able to take it out to the field 

without having to rely on a trained pathologist. To replicate the capture conditions 

for deployment on a mobile device, the majority of the photographs were taken using 

various iOS and Android smartphones, with a range of camera resolutions. Some 

images were also taken using a low-resolution setting of a digital camera. The 

resultant images had resolutions that ranged from 6 – 16 Megapixels. 

 

Photography volunteers were given instructions for capturing their images to ensure 

that the data was collected consistently over the whole dataset. They were told to 

collect images of leaves still attached to the plant, where the main focus was from 

one up to five leaves all infected with the same disease (or healthy). The images 

were to contain normal background information and be taken at a range of distances 

and angles to emulate the different capture styles that would be used by the future 

user. The volunteers were also provided with a selection of sample images to allow 

them to see visually what the images we needed would look like. 

 

We were conscious of the need to collect images which accurately represented the 

range of conditions that would typically be found in realistic growth environments. 

All weather and light conditions which could affect the appearance of the diseases 

needed to be included, for example sun, cloud, and rain. We also had to make sure 
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that we captured variation in the wheat plants that we imaged, including leaf colour 

and growth stage of the plants. Additionally, it is important to be able to identify 

these diseases through all stages of their life cycle and over all possible symptoms, 

so we needed to include the different stages and symptoms in the images we 

collected. This was achieved by visiting some of the sites multiple times and 

photographing each category across the entire growth period to include early, 

middle, and late infections. Making many visits to photography locations for each 

category allowed us to collect a good range of variation in symptoms. While trying 

to capture as diverse a range of conditions in our dataset as possible, we had to 

ensure that this range was as consistent as possible over all of the categories to 

ensure that our models did not learn something about a single category due to the 

absence of a certain attribute in all other categories. Information about the location, 

disease, weather conditions and date were noted for each collection session. 

 

As with the other categories, the mildew was imaged over the entire growth period, 

and where possible, with different weather conditions. However, naturally as many 

images were captured in glasshouses, there was a difference in the background 

information included in these images when compared to the field images.  

 

We wanted to make sure that the dataset included as much useful information 

(disease and leaf tissue) with as few misclassifications as possible. Every image was 

loaded individually using preview and checked for quality control purposes. Due to 

the way we classified the images initially, by labelling all images from one location 

with a single disease (or healthy), there was the potential of other diseases forming 

multiple infections on the plants in some of the images. In some cases, other diseases 

weren’t entirely controlled by fungicides, so some images were taken of the wrong 

disease in error. During quality control, any image that contained a disease other 

than the one that matched the initial label was removed. This included images with 

multiple diseases present. 

 

As with any task carried out by humans, there was also the possibility of human 

error in the photographing. This meant that some images contained no useful 

information about the disease (for example an accidental image taken which contains 
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predominantly soil and little to no leaf information), were too blurry to be included 

or the useful leaf and disease information was covered by a hand or shoe etc. All of 

these images were removed, however we kept images that had additional features 

(like fingers, boots, or line markers) as long as the relevant disease information was 

not obstructed. This was done to ensure that the images were as representative as 

possible of the type that would be taken when the model is taken out on a mobile 

device in future. We cannot assume that every image taken by every person using the 

model would be perfect without additional features or manageable amounts of blur. 

All images that passed quality control were assigned a label corresponding to the 

disease present. 

 

We took every precaution to ensure that the images were correctly classified prior to 

being included in the dataset, however due to the nature of the problem there will 

naturally be some misclassifications included. The way the images were labelled as a 

group depending on where they were photographed and then being quality controlled 

by a single person means that some misclassifications would have slipped through. 

In an ideal world, the data would be checked by multiple pathologists before using to 

train any models to ensure that as many images were labelled correctly. 

 

At this point, we sorted the images into a train, validation and test set ready for use 

with our deep learning models. Each category was shuffled prior to being divided 

into the three sets. This meant that images from each location were likely to be 

spread across the three sets, ensuring that a model was trained and tested on the same 

variety of conditions. We split our dataset as follows: 60% of images in the train set 

and 20% of images in each the validation and test sets. Every category was divided 

in these proportions. We felt that our dataset was of sufficient size for this split to 

contain enough variation across all three subsets. The exact numbers contained in 

each category for each set of data is discussed in section 3.2.1. 
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3.1.2 Transfer learning with our dataset 

 
Our goal was to develop and train deep learning networks to classify images as 

Septoria, yellow rust, brown rust, mildew, or no disease from images taken in 

realistic growth conditions. We decided that the best place to start was by utilising 

pre-trained networks through transfer learning. By using these models which have 

already been trained on a larger dataset, we were able to extract features from our 

dataset much quicker than training a model from scratch. This meant that we could 

get some results early in the process which would tell us whether or not deep 

learning networks could handle a complex dataset like ours without us having to do 

any pre-processing to our images prior to training.  

 

For the experiments in this chapter, we used keras version 2.2.0 (Chollet and others, 

2015) to define, train and evaluate all the deep learning models in python 3.5.1. We 

experimented with four pre-trained networks (MobileNet (Howard et al., 2017), 

InceptionV3 (Szegedy et al., 2015), VGG16 (Simonyan and Zisserman, 2015) and 

Xception (Chollet, 2017b)) to extract features from our dataset. These four models 

were chosen as they were available within keras and could be imported with the pre-

trained weights using only a few lines of code. One further model, Resnet50 (He et 

al., 2016), was tried, however the code repeatedly failed, so it was removed from our 

experiments.  

We used method 1 for transfer learning, see section 2.2.3.1. We removed the part of 

the pre-trained network which provides classifications and sent our images once 

through the part of the network which extracts features, the pre-trained convolutional 

base. Having extracted the features, we defined a short classifier network which took 

the extracted features as input for training. The architecture of the classifier network 

was the same for all four pre-trained networks (see Figure 3.1) and used an 

RMSProp optimizer (Hinton and Tieleman, 2012). For each model we use 

classification accuracy and F1 score (Goutte and Gaussier, 2005) to evaluate 

performance.  
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Our first experiments used input image sizes of (150,150) or (128,128) depending on 

the individual network requirements for input size. Batch size 32 was used for 

training the classifier network. Due to the complexity of our images, we also 

experimented with a larger batch size and input image sizes. We multiplied each 

component by four for every model, giving a batch size of 128 and input image sizes 

of (512,512) or (600,600). 

 

3.1.3 Defining our own model architectures 

 
The results from transfer learning suggested that deep learning networks can deal 

with complex images such as those taken for our dataset, under real field conditions, 

Figure 3.1: An artistic representation of the architecture of our fully 

connected classifier network. 



 

 75 

for detecting wheat diseases. The results are above the baseline metrics that we 

calculated based on our data. 

 

To find a baseline for our models, we used the zero rule, which is widely used in the 

machine learning community. This rule states that if the classifier always chooses the 

most common class (the class with the most samples), then it will be right 𝑥% of the 

time, where 𝑥 is the percentage of the whole dataset contained within the most 

common class. In our case this is the Septoria class, containing 36.84% of the test 

data. Therefore, our zero-rule baseline for classification accuracy is 36.84%. 

 

Table 3.1: The percentage of the full dataset contained within each individual category. 

Category Percentage of dataset 

Brown rust 13.06% 

Healthy  11.86% 

Mildew 15.35% 

Septoria 36.84% 

Yellow Rust 22.89% 

Total 100% 

 

 

Another baseline metric we used is that of the weighted random guess. If our dataset 

were perfectly balanced then a random guess would have a one in five chance of 

being correct, so would have a 20% accuracy. As our dataset is imbalanced, we use a 

weighted random guess which squares the percentages (in decimal format e.g., 30% 

as 0.3) of the dataset for each category and adds them together. Table 3.1 shows the 

percentage of the full dataset contained within each category. For our dataset, the 

accuracy baseline for a weighted random guess is 24.28%. Any model with an 

accuracy above this point is adding value, however, to be useful as a predictor is also 

needs to be above the zero-rule baseline. 

 

Although the accuracies of the pre-trained network are relatively high, they were not 

as high as would be ideal for use in the field. We estimate that a trained pathologist 
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undertaking the same task in the field would be able to classify the diseases with 

accuracy percentages of 95% or higher. We decided to explore other network 

architectures to see if we could optimize the classification accuracy. We 

experimented with multiple deep learning architectures, based on convolutional 

neural networks (CNNs), where we changed the number of layers and the types of 

layers used to find the combination which provided the highest classification 

accuracy on the test data. We also experimented by changing the hyperparameters 

(such as input image size, batch size, learning rate, number of epochs) to further 

optimise the performance of our models.  

 

Each model was trained, validated, and tested using the method described in section 

2.2.2 All networks were trained using the Norwich Bioscience Institute’s high-

performance computing (HPC) facilities. The pre-trained networks used central 

processing units (CPUs) on the HPC clusters, whilst our own networks were trained 

using graphics processing units (GPUs) to decrease training time.  

 

3.1.4 Masking images 

 
While it is important for a trained model to be able to classify the images with high 

accuracy, it is no use if the classifications are being made based off of the wrong 

information. In our case, we want the model to be using the leaf and disease 

information to drive classification, and not any arbitrary background features which 

may be present in the dataset. 

 

As an experiment to determine whether our model was using the correct information 

for its classifications, we used black masks to cover the important information 

(disease lesions and leaf tissue) in a selection of images from our test dataset. A 

rectangular mask was placed over the foreground diseased (or healthy) leaves in 

images from each category. We theorised that with a mask covering this information, 

a deep learning model would have trouble to correctly classify the images and would 

instead have to ‘guess’ rather than make an informed decision. This would result in a 

drop in classification accuracy for the masked image dataset when compared with 
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the same images with no mask. The masks were added using the editor functions in 

the Preview app, available on apple computers. The number of masked images 

created for each category is described in section 3.2.5. 

 

We sent the newly masked images and their original counterparts through the trained 

network to gain predictions for each set. Confusion matrices were used to compare 

the results. 

 

3.1.5 An experiment to evaluate our model against human 

participants 

 

Table 3.2: Sample of network results on test data to show how images were selected for 

experiment with human participants 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We designed an experiment which allowed us to evaluate the performance of our 

model against multiple trained pathologists with backgrounds in working with these 

diseases on wheat. The experiment took a small subset of images (describe in the 

next paragraph) from the original dataset and gained classification accuracy results 

Filename Prediction 

score 

Network 

prediction 

Correct/ 

Incorrect 

Mildew1936 35.7 YellowRust Incorrect 

Healthy1598 36.1 Mildew Incorrect 

Yrust240 40.9 BrownRust Incorrect 

⋮ ⋮ ⋮ ⋮ 

Brust173 39.8 BrownRust Correct 

Yrust3027 57.4 YellowRust Correct 

Mildew1282 60.1 Mildew Correct 

Healthy1976 63.9 Healthy Correct 

Mildew1121 66.0 Mildew Correct 

Healthy1744 68.9 Healthy Correct 
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for our model and five pathologist participants. The smaller dataset used for this 

experiment contained images taken from the test set of images. It contained 999 

images, which is about a quarter of the size of the original test set. This number 

represents a reasonable compromise between getting a good statistical assessment on 

the performance of the pathologists and the network and the number of images that 

could realistically be classified by a human in a few hours. 

 

To choose the images for this experiment we first took all the images from the test 

set which were incorrectly classified by the network. We did this to see if there was 

any correlation between the images that the network struggled to classify and those 

that the pathologists struggled with. From there, we ordered the rest of the images by 

the network’s prediction scores and added every fourth image to the dataset, see 

Table 3.2. This ensured that the dataset contained a selection of images that, from the 

network’s perspective, had varying degrees of difficulty in classification and were 

well distributed across the five categories. The images were shuffled randomly to 

ensure that there was no way to know which disease would appear next when 

presented to the participants. 

 

Table 3.3: Tag numbers for each category in qtagger 

 

 

 

 

 

 

 

 

 

We used a tagging system, qtagger (Hartley, no date) (link in reference), created by 

supervisory team member, Matthew Hartley, which allowed us to present the images 

in our smaller set to each of the five pathologist participants in the same order. The 

tagging system worked by loading each image individually onto the screen. The 

Category Tag 

Brown Rust 1 

Yellow Rust 2 

Septoria 3 

Mildew 4 

Healthy 5 
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participants then assigned a tag to the image corresponding to the class it contained, 

and this action caused the next image to be loaded, replacing the previous. Each 

category was assigned a number between one and five (see Table 3.3) so that, 

instead of having to find the right category name each time, the participants only 

needed to enter the number which represented the category they had chosen. This 

meant that the tag could be entered quickly without much additional effort. Qtagger 

is open source and freely available. It is implemented in python and uses the Qt 

framework as a graphical interface and the dtool library for data management. 

 

The system made a record of the tags made by each participant, and the time taken 

between clicks. We could then compare the classifications for each participant with 

those of the network and the true labels for each category, and also get a rough idea 

of the time taken for each participant to classify every image in the dataset. We used 

confusion matrices to display the classification results for each participant and our 

model. 

 

Initially, we presented this experiment to the pathologist participants as individuals, 

however we conducted a second experiment where the group were allowed to 

discuss their classifications and even remove images that they were not able to agree 

upon. For this second experiment, we removed all images that all five pathologists 

classified correctly in the first experiment. This was done to save time, as we 

theorised that there was a high chance that they would classify these images the 

same a second time and working as a group was likely to take longer than individual 

classification.  

 

3.2 Results 
 

3.2.1 Dataset collection 

 
To evaluate the potential of automated disease detection from realistic field images 

with complex background information, we collected images that reflected the 
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conditions found in typical growth situations. With the help of volunteers, we 

collected over 20,000 images (before quality control) across the five categories. 

Table 3.4 gives information about the photography locations, approximate number of 

images collected and weather information where available. In all categories other 

than mildew, all of the images were taken in outdoor field conditions, except for a 

very small amount in the healthy category that were taken in glasshouses. 

Approximately 80% of mildew images were taken in glasshouse conditions due to a 

lack of available mildew-infected field plots. 

  

The dataset contains images of wheat leaves with either Septoria, yellow rust, brown 

rust, mildew, or no disease, taken in real growth conditions. The photos include 

complex backgrounds, as would be encountered in the field. We took care to include 

many different conditions which are found in the field, firstly, so the model can work 

in all situations and secondly, to reduce the risk of the model learning features that 

are not related to the disease. The different conditions Ie camera position, weather, 

lights, wheat varieties including shades of green of leaves, age of plant and the life 

cycle stage of any disease present. There were similarly diverse conditions in the 

photos of mildew on Iheat in glasshouses, however the background information in 

many of the glasshouse pictures was different than for those images taken in the 

field. Figure 3.2 and Figure 3.3 show example images for each category in field 

conditions, as well as an example image for mildew taken in glass house conditions. 

 

After image collection was complete, the images were quality controlled and the 

final dataset contained 19,172 images, spread across all five categories. Each 

category was split so that 60% of images were placed into the train set, and 20% 

went into each the validation and test set. Table 3.5 shows the distribution of images 

in our dataset overall and through the three subsets. 
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Figure 3.2 Example images from our dataset showing some different conditions and levels of 

infection. (Part 1) 
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Table 3.5: Distribution of images across all five categories for the full dataset, and the three 

subsets: train, validation, and test. 

    

Category Full Dataset Train Set Validation Set Test Set 

Brown Rust 2503 1501 501 501 

Healthy 2274 1364 455 455 

Mildew 2943 1765 589 589 

Septoria 7063 4237 1413 1413 

Yellow Rust 4389 2633 878 878 

TOTAL 19172 11500 3836 3836 

Figure 3.3: Example images from our dataset showing some different conditions and levels of 

infection. (Part 2) 
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3.2.2 Pre-trained models 

 
Our first experiments used pre-trained models MobileNet, InceptionV3, VGG16 and 

Xception for feature extraction, before training a newly defined classifier network to 

classify the images in our dataset. The classifier network that we used had the same 

architecture for each of the pre-trained models. It consisted of one fully connected 

layer with 256 neurons, dropout (Srivastava et al., 2014) and the fully connected 

output later which provided the predictions. We used a learning rate of 1x10-4 and a 

batch size of 128. Table 3.6 provides individual information for each of the four 

models about the input image sizes and number of training epochs we used for 

training on all available data prior to testing.  

 

Table 3.6: Input sizes and number of training epochs used for each of the four pre-trained 

networks 

Models used Input image size for 
feature extraction (pixels) 

Number of 
training epochs 

InceptionV3 600 x 600 20 

MobileNet 532 x 532 15 

VGG16 532 x 532 30 

Xception 600 x 600 15 

 

 

Table 3.7: Classification accuracy and F1 score for each of the pre-trained networks 

Models Used Classification accuracy 

on test dataset 

F1 Score 

MobileNet 91.46% 0.90 

InceptionV3 91.41% 0.91 

VGG16 85.16% 0.83 

Xception 89.87% 0.89 
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Table 3.7 shows the classification accuracies and F1 scores for each of the pre-

trained models used for this experiment. These results are significantly higher than 

our weighted random guess and zero rule baselines, proving that deep learning 

models are capable of handling complex data, such as the images in our dataset. 

Following this, we decided to experiment with our own model architectures with the 

aim of finding the network that provides the highest classification accuracy. 

 

3.2.3 Training new model architectures 

 
We did a collection of experiments with different numbers and types of layers. First, 

we started by using the train and validation step to try different architectures and 

hyperparameters, then the models which seemed to perform best on the validation set 

were evaluated on the test set. Table 3.8 shows a summary of our experiments and 

the different hyperparameter values used, the highlighted rows show the models 

which were sent for testing. All initial training was conducted using the HPC cluster, 

not the GPU nodes.  

 

Table 3.8: Summary of network experiments, validation accuracy results and approximate train 

time 
Model Input size Batch size Epochs Learning rate Approx. train time Peak validation acc.

1.1 (256,256) 32 30 1.00E-05 1 day 76.92%
1.2 (512,512) 128 30 1.00E-05 17 days 78.90%
2.1 (256,256) 128 50 1.00E-04 6 days 91.79%
2.2 (512,512) 128 50 1.00E-04 18 days 92.26%
2.3 (256,256) 128 75 1.00E-04 8 days 93.12%
2.4 (256,256) 8 75 1.00E-04 8 days 96.76%
2.5 (256,256) 128 125 1.00E-04 12 days 94.84%
2.6 (512,512) 32 50 1.00E-04 16 days 97.55%
2.7 (512,512) 32 20 1.00E-04 9 days 96.75%
2.8 (256,256) 8 200 1.00E-04 28 days 97.11%
2.9 (512,512) 32 100 1.00E-04 38 days 98.04%

2.10 (256,256) 8 400 1.00E-04 60 days 97.55%
3.1 (512,512) 8 20 1.00E-04 9 days 95.31%
3.2 (512,512) 8 48 1.00E-04 30 days 96.71%
4.1 (512,512) 8 20 1.00E-04 21 days 84.30%

res1.1 (160,160) 128 50 1.00E-04 4 days 76.17%
res1.2 (512,512) 64 30 1.00E-04 7 days 80.26%
res2.1 (512,512) 64 30 1.00E-04 7 days 85.79%
sep1.1 (128,128) 128 50 1.00E-04 4 days 72.07%
sep1.2 (512,512) 128 30 1.00E-04 8 days 76.17%
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We used our knowledge of previous image classification experiments, such as those 

found in ‘Deep Learning with Python’ (Chollet, 2017a), coupled with the available 

information about the pre-trained models to determine a sensible starting point for 

our experiments. The pre-trained models ranged from 16 to 71 layers deep, so we 

decided to test different numbers of layers, starting small, to find the optimal 

number. We chose to start small with the aim of keeping training time as short as 

possible. In general, models with more layers take longer to train than those with 

fewer layers.  

 
3.2.3.1 Model 1 
 

To start our experiments, we defined a CNN consisting of 6 convolutional layers, as 

model 1. The layers were organised in blocks of two, with batch normalisation 

following each and the blocks separated by a max pooling layer. We included 

dropout of 0.3. A visual representation of the model architecture is shown in Figure 

3.4. We trained two instances of this network architecture, the first, model 1.1, with 

input image size (256,256) and batch size 32, and the second, model 1.2, with input 

image size (512,512) and batch size 128. The learning rate was set at 1x10-5. The 

first model ran significantly quicker than the second, where the training accuracy 

climbed in steps, see Figure 3.5. To a certain extent, the quicker run time was 

expected, however as seen in Table 3.8, the difference is quite extreme ranging from 

Figure 3.4: A visual representation of the model 1 architecture. 
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1 day for model 1.1 to 17 days for model 1.2, We are uncertain what caused the 

significant change in training time or the step climbing nature of the validation 

accuracy, however as the second model yielded better results (Figure 3.6) we 

decided not to pursue model 1.1 any further.  

 

 

 

 

 

 

 

 

 

 

Figure 3.5: Training and validation accuracy plot for model 1.1 
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3.2.3.2 Model 2 

 
As the validation accuracies did not seem to be reaching the same levels as the pre-

trained models did, we decided to try a deeper architecture. The architecture, model 

2, consisted of 13 convolutional layers, again each followed by batch normalisation. 

The layers were separated into blocks by max pooling layers, two blocks of two 

convolutional layers followed by three blocks of three convolutional layers. This 

time dropout was set at 0.5 and the learning rate was 1x10-4.  A visual representation 

of the model 2 architecture is shown in Figure 3.7. With this architecture, 10 

experiments were conducted, models 2.1 – 2.10, where the batch size, input size and 

number of training epochs were changed. Figure 3.8, Figure 3.9 and Figure 3.10 

show the training and validation accuracy and loss plots for the three experiments 

using this architecture which we decided to evaluate on the test set (models 2.4, 2.6 

and 2.8). In each case the validation accuracy reaches over 96%, which is 

Figure 3.6: Training and validation accuracy plot for model 1.2 
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significantly higher than for the first model architecture. As such, neither model 1.1 

or 1.2 were sent to test.  

 

The results in Table 3.8 show three other instances for the second model architecture 

where the validation accuracy climbed above 96%. Model 2.7 was not sent for 

evaluation because the validation accuracy still appeared to be climbing, see Figure 

3.11. Instead, a new version of this model, with the same hyperparameters, was sent 

to train for 100 epochs instead of 20 (model 2.9). This yielded the highest validation 

accuracy of all our experiments but took over a month to train. At this point we had 

already finished evaluating all three of the other models and continued with further 

experiments detailed in this thesis, so decided not to invest the extra time with this 

model. 

 

The other model which had an accuracy over 96% which we decided not to test was 

2.10. Although one of the highest validation accuracies, this model was just a 

version of model 2.4 but trained for 400 epochs instead of 75. This was done because 

there was a slight slope in the validation results for 2.4 and we wanted to see whether 

it would climb much further with extra training time. We concluded that the 

validation results were not significant enough to warrant the two months of training 

time required, and therefore did not pursue this model further. 

 

 

 

  

Figure 3.7: Visual representation of the model 2 architecture. 



 

 90 

 

  

a) 

b) 

Figure 3.8: Training and validation accuracy (a) and loss (b) plots for model 2.4 
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Figure 3.9: Training and validation accuracy (a) and loss (b) plots for model 2.6 

a) 

b) 
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a) 

b) 

Figure 3.10: Training and validation accuracy (a) and loss (b) plots for model 2.8 
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3.2.3.3 Model 3 
 

 

Another CNN was defined to test whether an even deeper model would be able to 

improve on the results of the previous architecture and if so, would it be significant 

enough improvement to justify the added computational cost. The third model, 

Figure 3.11: The training and validation accuracies for model 2.7. Here both accuracies still 

appear to be climbing at the end of training. 

Figure 3.12: Visual representation of the model 3 architecture. 
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model 3, architecture added a fourth block of three convolutional layers to the end of 

the second model, this new architecture can be seen in Figure 3.12. With this 

architecture, two experiments were conducted with different numbers of training 

epochs. Both experiments took the larger (512, 512) input image size. Initially, for 

model 3.1, we tried 20 epochs, however it was clear from Figure 3.13 that both the 

validation and training accuracy were still climbing. Consequently, more training 

epochs were added for model 3.2. This model trained for 48 out of the 50 intended 

epochs before it was cancelled due to down time on the cluster. As a result, the 

individual results for each epoch were not stored, nor was the trained model saved. 

All accuracy results were collected by manually going through the results file 

generated during training, see Figure 3.14. 

 

Again, the validation and train accuracy appear to be rising further, and it would 

have been possible to send a new version of the model to train for even more epochs. 

We decided against this due to the time taken for training. The results possibly could 

have gotten higher than all previous models, but we decided that the added time 

Figure 3.13: Training and validation accuracy for model 3.1. Here both accuracies are still 

climbing at the end of training 
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investment was not worthwhile. This decision was influenced by the fact that we had 

already collected good results for the fully evaluated models using the shorter model 

2 architecture.  

 

3.2.3.4 Model 4 
 

Figure 3.14: Training and validation accuracy for model 3.2 

Figure 3.15: Visual representation of the model 4 architecture. 
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One more CNN architecture was defined, model 4, with 8 convolutional layers in 

four blocks of two. Max pooling, batch norm and dropout of 0.5 were included. 

Throughout all previous experiments, the filter size for all convolutional layers was 

kept at (3x3). For this model (4.1), we used different filter sizes throughout the 

model. In the first block the filters were (8x8). Blocks two and three had filter sizes 

(5x5) and the fourth block had filter size (3x3). A visual representation of the model 

4 architecture can be seen in Figure 3.15. Figure 3.16 shows the validation and train 

accuracies for this model. It appears the model is overfitting to the train data from 

around epoch 10 and the validation accuracy peaks around 84% and plateaus. We 

conducted no further experiments with this model architecture. 

 

 

3.2.3.5 Model res1 

 
As well as using ordinary convolutional layers in our experiments, we utilized two 

other layer types: depth-wise separable convolutions and residual connections. Our 

first experiment, res1, included three blocks of two convolutional layers with 

Figure 3.16: Training and validation accuracies for model 4.1 
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residual connections between the outputs of blocks one and two, and the outputs of 

blocks two and three. Max pooling and batch norm were used; however, no dropout 

layer was included. This was because this architecture was taken from some earlier 

experiments that we had conducted using the Plant Village dataset whilst learning 

about deep learning and we had not included dropout at that point. Figure 3.17 

shows a visual representation of the res1 model architecture. We trained two models 

Figure 3.17: Visual representation of the res1 model architecture. 
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res1.1 and res1.2 with different input and batch sizes. In both cases, the model 

appears to overfit almost immediately, see Figure 3.19 and Figure 3.18. 

Figure 3.18: Training and validation accuracies for model res1.2 

Figure 3.19: Training and validation accuracies for model res1.1 
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3.2.3.6 Model res2 

 
A second attempt at a residual model, res2, added a fourth block of convolutional 

layers and a further residual connection between the outputs of blocks three and four. 

A visual representation of the res2 model architecture can be seen in Figure 3.20. We 

theorised that a deeper model may be better equipped to handle our data. Error! 

Reference source not found. shows that this is not the case as the model overfits in 

the same way as res1.1 and res1.2. 

  

Figure 3.20: Visual representation of the res2 model architecture. 
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3.2.3.7 Model sep1 

 
Our final model architecture, sep1, combined depth-wise separable convolutions and 

residual connections, much like Xception (Chollet, 2017b). The architecture contains 

a block of two convolutional layers followed by three blocks of two depthwise 

separable convolution layers, with a residual connection between the outputs of 

blocks two and three. Again, max pooling and batch norm were used without 

dropout. Figure 3.23 shows a visual representation of the sep1 architecture. Sep1.1 

and sep1.2 were trained using different input image sizes and different numbers of 

epochs. Much like the residual models, overfitting occurred very early on, with the 

validation accuracy plateauing much lower than the training accuracy, see Figure 

3.24 and Figure 3.25 . 

 

Figure 3.21: Training and validation accuracies for model res2.1 
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Figure 3.22: Visual representation of the sep1 model architecture. 
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Figure 3.23: Training and validation accuracies for model sep1.1 

Figure 3.24: Training and validation accuracies for model sep1.2 
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3.3.4 Evaluation of models 

 
After all our experiments with different architectures and hyperparameter values, 

three models were chosen to be evaluated. All were variations of the model 2 

architecture. Two models, 2.4 and 2.8, used input size (256, 256) and batch size 8, 

but were retrained on all available train data prior to testing for 75 and 200 epochs 

respectively. The other, 2.6, had input size (512, 512) and batch size 32, and was 

trained for 50 epochs. When this work was carried out, we were able to complete the 

evaluation process for model 2.4 using the GPU node on the cluster, so gaining 

results in 7 days. The other models were evaluated using the ordinary cluster nodes 

due to memory availability at the time. The final accuracy and loss results for the 

fully trained models can be seen in Table 3.9. 

 

Table 3.9: The final classification accuracies and loss scores for the three fully evaluated models 

Model Final classification 
accuracy 

Final loss 

2.4 97.05% 0.122 
2.6 97.31% 0.120 
2.8 97.34% 0.213 

 

 

Due to the nature of our experimentation, where the choice of hyperparameters was 

influenced by the results of previous experiments, the evaluation process took place 

at different times for these models. Consequently, we gained results for model 2.4 

over a month before any other model. Whilst the others were still training and 

evaluating, we conducted further experiments detailed in this thesis using model 2.4 

and so it is the model we will focus on for the rest of this thesis. 

 

In Figure 3.26, the confusion matrix shows that model 2.4 performs consistently well 

across all categories, with 94% classification accuracy or above. Where there are 

misclassifications, Septoria is often the predicted category. This is to be expected 

due there being more Septoria data in the dataset, therefore the potential for some 
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bias. However, this does not seem to be affecting the model too much as the results 

are still consistently high. 

 

3.2.5 Masking images 

 
A number of images from our test dataset were chosen from each category and 

masks were added to cover the important leaf and disease information by my 

summer student, Douglas Brown. Examples of the masked and non-masked images 

used in this experiment are shown in Figure 3.27. The distribution of images across 

each of the categories is shown in Table 3.10. 

 

The classification results for the original versions of the images used in this 

experiment and the masked images are shown in the confusion matrices in Figure 

3.28. There is a clear difference between the classifications of the two sets of images. 

As expected, the confusion matrix for the original images’ echoes that of the full 

Model 2.4 

Figure 3.25: Confusion matrix of model 2.4's predictions on the test data set 
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dataset, where the network classifies the images with high accuracy, making only a 

small number of misclassifications.  

 

Table 3.10: The distribution of masked images across the five categories in the dataset 

Category Number of masked images 
Brown rust 148 
Healthy 99 
Mildew 97 
Septoria 175 
Yellow rust 118 
Total 637 

  

Figure 3.26: Examples of the masked images (left) and their non-masked versions (right) 
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a) 

b) 

Figure 3.27: Confusion matrices for the a) the un-masked image versions and b) the 

masked image versions 
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The masked images produced different results. Here, there was a clear bias towards 

mildew classification over all the categories. This means that there was only a small 

difference between the mildew category classifications over both image sets, which 

implies that the model could have been using background information to classify 

these images. There was also a smaller tendency of incorrect classification as 

healthy. This was not as obvious as the bias towards mildew, but it was the only 

other category which was consistently picked as an incorrect classification over all 

categories. 

 

3.2.6 Comparing our model against trained pathologists 

 
To assess the performance of our deep learning model, we compared its 

classification performance on a portion of images from the test set against five 

experienced pathologists using the same subset of data. The dataset used in this 

experiment contained 999 images representing samples of varying levels of 

difficulty in classification (based on the network’s performance). This dataset 

included 111 images that the network incorrectly classified and 888 images that were 

correctly classified by the network. Our model’s prediction accuracy for this dataset 

was thus 88.88%.  Table 3.11 shows the distribution of images across the categories 

in the smaller dataset used for this experiment. 

 

Table 3.11: The distribution of images used to compare the model and pathologists’ 

classifications 

Category Number of Images 

Brown Rust 128 

Healthy 122 

Mildew 161 

Septoria 349 

Yellow Rust 239 

Total 999 
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The human participants for this experiment were five expert crop pathologists, one 

each from the John Innes Centre, RAGT and KWS and two from Limagrain. Each 

participant had substantial experience in identifying and scoring these wheat 

diseases. Table 3.12 gives a summary of the experience and specialisations for each 

pathologist participant. We asked the pathologists to classify the images as 

individuals in order to obtain a range of results to represent the breadth of knowledge 

which could be expected to be found in breeding companies.  

 

Table 3.12: The experience and specialisation of the five pathologist participants 

Participant 
Number 

Years of Experience Specialisation 

1 35 Cereal diseases, in particular mildew, 
yellow rust and Septoria, especially in field 
trials 

2 40+ Cereal pathologist for major breeding 
company 

3 20 Wheat disease observation plots, mainly 
for QTL mapping work 

4 10 Scoring trial plots for wheat disease, in 
particular rusts and Septoria 

5 12 Common European cereal diseases 
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Figure 3.28: The confusion matrices and classification accuracy results for our model and the five 

pathologist participants 
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The confusion matrices in Figure 3.29 show the results of the trained network 

compared with the results of the five pathologist participants. Our network classified 

each category with an accuracy of 80% or higher, with mildew being the category 

with the most incorrect classifications. In contrast to this, each of the five 

participants classified mildew with 94-95% accuracy, making it one of the highest 

accuracy classes. Of the 999 images, 643 images were correctly classified by all five 

participants. 

  

Another difference between the network’s results and the pathologists was in the 

classification of the Septoria category. Here, the network performs extremely well, 

gaining 96% accuracy, but all but one of the pathologists were less accurate, with a 

range of 76-85%. For these four pathologists, the main source of incorrect 

classification was yellow rust, with healthy also being significantly misclassified for 

two of the four. The pathologist who performed similarly to the network on the 

Septoria category instead showed a dip in classification accuracy in the yellow rust 

category. Here, almost all the misclassifications were Septoria. 

 

In a second experiment, the same five pathologists were presented the images again, 

but this time they classified them together as a group. For this, we removed 643 that 

all five participants correctly classified in the first experiment, leaving 356 to be re-

classified together. In this experiment the group was allowed to disregard any image 

that they could not agree on a classification for. This happened due to possible 

misclassifications in the dataset itself, or the presence of multiple diseases that was 

missed during quality control.  

 

Of the 356 images that the group were presented with, there were 46 which the 

group could not decide on a classification for and so were disregarded for assessment 

later. Of the remaining 310 images, the group correctly classified 265. Assuming that 

the 643 images which were correctly classified by all in the original experiment 

would be correctly classified by the group, that meant that all together the group 

correctly classified 908 images. Removing the 46 disregarded images, the total 

number classified was 953, thus giving a classification accuracy score for the group 

of 95.28%. 
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Of the images that were disregarded, none were in the healthy category. This was not 

surprising due to the clear differences between a healthy and diseased leaf. Only one 

image was in the mildew category, and it was a very light infection, so the discussion 

was between whether to classify as mildew or healthy. The remainder of the images 

were brown rust, yellow rust and Septoria. In all cases the discussion was whether 

there was a misclassification in the image, or whether there were multiple diseases 

present in the image. This highlighted potential issues in a few of the images 

contained within our dataset, which likely arose from human error during the initial 

labelling and quality control stages of data collection. 

 

3.3 Discussion  
 
In this chapter we aimed to evaluate the viability of deep learning models, 

specifically convolutional neural networks, for identifying wheat diseases from 

images taken in realistic growth conditions. In recent years, datasets acquired in the 

field have become more widely used (Li, Zhang and Wang, 2021). Our dataset 

includes images that capture the complex conditions found typically in real growth 

situations and represent typical examples of the kind of images that automated 

disease scoring in realistic situations would need to be able to deal with. Several 

studies pre-processed their images to remove complex background information 

(Barbedo, 2018), or did not include background information in their images at all 

(Mohanty, Hughes and Salathé, 2016; Liu et al., 2018). We aimed to use our dataset 

as is, without removing the background information, so that there would not need to 

be any extra pre-processing steps when deployed in the field. 

  

In many cases, the datasets collected and used for plant disease detection with deep 

learning are still significantly smaller than those used in other cases (such as the 

ImageNet dataset) (Liu and Wang, 2021). Our dataset aimed to overcome this 

bottleneck for wheat disease, whilst also being as comprehensive as possible for use 

in the UK. Internationally, other foliar diseases are important too, and any 

international user of this model would need to take that into account or provide 

additional training data for these diseases.  
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Our models gained over 97% classification accuracy on new data from the test set. 

These results show that, with enough data, there is no need to augment or segment 

the images prior to training. Deep learning models are capable of handling and 

classifying images with complex background information. 

 

If the results of these experiments had been poor, we would have had to look into 

options for enhancing our dataset to aid learning. The first method would have been 

to collect further data. Another option would have been to augment the data, so 

creating a larger dataset by rotating, mirroring, and shifting our images to create new 

ones. Failing that, we could have experimented with segmenting the images to remove 

background information or annotating our data in some way to show the model where 

the disease information is in each image. 

 

To confirm that the network was performing correctly (i.e., using the leaf and 

disease information to drive classification), we used images in which we masked the 

relevant diseased areas of the plant. A comparison of the classification accuracy 

between the masked and unmasked images, showed a steep drop in prediction 

accuracy when the important parts of the image were covered for all but the mildew 

category. This suggests that the network was correctly identifying diseased parts of 

the plant for the Septoria, yellow rust, brown rust, and healthy categories. For the 

mildew images the prediction accuracy using masked images remained comparable, 

suggesting that other, non-disease related features might have been driving the 

classification. This is supported by our model’s higher rate of misclassification of 

mildew images than the other diseases in the experiment with pathologist 

participants.  

 

To understand this, the conditions in which the photographs of different diseases 

were taken should be considered. Almost all the incorrect classifications of the 

masked images were healthy or mildew. The misclassifications as healthy likely 

arose from having little disease and much greenery present in the background. The 

issue with the mildew images may result from them being collected predominantly 

in glasshouse conditions, rather than in the field. The black pots used in the 

glasshouse, which are present in many of the mildew images, may have caused many 



 

 113 

of the masked images to be classified as mildew in the absence of any other disease 

information, because the black masks may have been mistaken for plant pots. 

 

If this is the case, then our assumption that the other four categories are performing 

as they should, could be wrong. This is because the issue with the mildew could be 

the overpowering force for the masked images, so even if there are other 

misrepresentations in the data, the black masks as mildew takes precedence. 

Although we believe that our dataset contains a consistent range of conditions over 

each category other than mildew, and so should not be learning any irrelevant 

features, further investigation is required to clarify that the model is basing its 

corrections on the correct features. We discuss potential methods for testing this in 

section 5.2. 

 

In our experiment to compare the model’s classification power against human 

participants, our network outperformed each participant by at least 2%. Furthermore, 

the network classified the 999 images faster (approximately one hour on a Mac 

desktop) than the pathologists, who took close to three hours for the same dataset. The 

model’s computation could also be sped up by using GPUs and parallelisation much 

more easily than it would be to recruit more trained pathologists to perform the same 

job.  

 

An important thing to note here is that this classification was performed on static 

images. The deep learning network achieved an impressive accuracy for such data, at 

least comparable to that of expert crop pathologists, however, it is likely that the 

performance of the pathologists would increase with real plants. In a real field 

situation, a pathologist would be able to take a closer look, change their viewing 

angle, and obtain information that would normally be available to them that isn’t 

accessible from static images. So, although this experiment is an interesting exercise 

to compare classifications from images, it does not fully represent the overall 

performance of the pathologists in practice. That being said, a significant problem 

with disease scoring in large trials, such as plant breeding trials, is that for trials to be 

scored by a person is slow and requires a lot of time of people with valuable 

specialist skills. The ability to move and gain other angles in the field is likely to 

increase the viewing time for each specimen, so this needs to be considered.  
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Furthermore, there is the issue of discrepancies between human labelling to consider. 

For example, in this experiment there were 160 cases where only one participant 

gave an incorrect classification. When shown the images again as a group, in many 

cases there was a unanimous decision on the classification of the image, indicating a 

human error aspect to this experiment. However, in some cases where two or more 

participants incorrectly classified an image and were shown it again as a group, there 

was still difficulty in deciding which disease was present. This presented evidence of 

the difficulties in distinguishing Septoria from yellow rust, and yellow rust from 

brown rust when certain symptoms are present. 

 

An automated system deployed on a mobile phone will greatly increase the 

throughput and reduce the cost of disease scoring, making it possible to score a large 

trial several times. This has the potential to increase substantially the accuracy of the 

process through repetitive scoring. The next step would be to use deep learning 

methods to quantify the amount of disease present and to give a score. Whereas a 

classification model is useful for identifying the presence of a disease on a plot or 

field, a scoring model would allow breeders to quantify the spread of the disease and 

be hugely beneficial for developing varieties with resistance to certain diseases. We 

start to look at this problem in our next chapter. 
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Chapter 4 Quantification of Wheat Diseases 

 
The classification of diseases is an important step towards breeding for disease 

resistance. The previous chapter showed how deep learning can accelerate and 

automate this process. The next crucial next step is to use deep learning for 

quantifying the amount of disease present. Breeding for disease resistance in crops 

currently takes multiple growth periods and a lot of hard work and input from 

pathologists throughout. Often, it is only possible to score each plot once during the 

growth period due to the time investment required and the availability of 

pathologists (Bird, N., KWS, personal communications). Here, we explore ways of 

computationally automating disease quantification. An efficient and automated 

quantification algorithm would allow for continuous monitoring of crops throughout 

the growing season and a more robust evaluation of resistance. 

 

A deep learning model, deployed for example on a mobile device, which could score 

disease would allow any member of the breeding team to apply it with little to no 

training. This would free up the time of pathologists for other important tasks, with 

the added benefit of being able to track disease progression over time thanks to 

multiple scores. 

 

Here, we investigate the viability of using deep learning models to aid with scoring 

of wheat diseases by training various model architectures using a dataset of yellow 

rust disease images that we collected. Due to the complexity of the problem, we 

experiment with different simulated images based on the same scoring system used 

in our real data experiments. 
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4.1 Collection of a wheat disease dataset for 

quantification 
 
We wanted to test the ability of deep learning models for quantifying the amount of 

disease present as well as being able to identify and classify. This required a new 

dataset of images to be able to train a model. When breeders are scoring plants, they 

assign a score for the amount of disease present in the entire plot. Therefore, to be 

useful for breeders trying to score wheat plots, we needed to collect a dataset 

containing images of full wheat plots. 

 

The number of volunteers and places we could photograph were limited due to 

various restrictions in place as a result of the global Covid19 pandemic. As a result, 

we had to make some decisions about what would be best to focus on for these 

collection periods. We decided to focus on just one disease to begin with for 

quantification to begin with. Yellow rust was chosen by the pathologists from the 

breeding companies associated with this project, Limagrain, KWS and RAGT, 

because they each had access to field trials which were either sprayed against other 

diseases or were grown in areas where other diseases were not likely to be prevalent.  

 

The collection of images required much preparation and planning to ensure that it 

contained the appropriate information for quantitative scoring. Each session of 

photography had to take place on the same day, or as close as possible, to when the 

plots were scored by a pathologist. The images needed to be collected in a way that 

allowed us to later label the photo of the plot with the score that was given by the 

pathologist. Photography took place over several weeks in the summers of 2020 and 

2021. It was done by me, and representatives from each of the three companies, 

RAGT, KWS and Limagrain.  

 

As with the classification of wheat diseases, we wanted to include as many growth 

conditions as possible in our dataset, including light, weather and plant and disease 

life cycle stage. It was also important to capture the images in a way that would 

replicate how a pathologist would see the plot and give it a score. The majority of the 
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time, pathologists look at the top and side of the plot, although some pathologists 

like to part a plot to see how much disease is present within. We decided to take a 

mixture of images from the top of the plot and as a side angle and not to photograph 

a parted plot. The reason for this is that one of the aims of training a deep learning 

model to quantify disease is to reduce the time needed for this process. Having to 

part each plot to take an image would add time to the collection process. 

 

There were two methods used for collecting images over the photography period. 

The first method was simply taking a single image per plot, or three images where 

the plots were larger. Figure 4.1 depicts an example field layout for the wheat plots 

photographed. The layout can differ slightly depending on the company and trial 

type, but this model can be used as a base. The photographer would note the line 

number that was being photographed and take the pictures for every row in that line. 

A separation picture would be taken of something else to show the end of the line 

and make it easier to sort the images later. Once all the images were collected in this 

manner, they could be assigned with a score. The scores were stored in a 

Figure 4.1: An example layout of a field trial where the plots are 

organised by line and row numbers 
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spreadsheet, making it easy to take the images taken for a certain line and match 

them to the scores for that line, see  . In cases where three images were taken per 

plot, each line in the score spreadsheet was triplicated to allow the images to match 

up correctly.  

 

  

The second method of collection used a free application called “Inventory Photos 

Plus”, which can be found in the google play store for android phones as 

“INVPHOTOPK: Inventory Photos Plus K”. From here we will refer to the 

application as IPP. The reason that IPP was not used by all photographer volunteers 

is because it was not available for use with iOS smartphones, meaning those with 

apple devices had to use the first method detailed above. 

 

IPP allows the user to give photos taken a custom name with index number and 

saves them into a custom folder, see Figure 4.3. For our task, we were able to label 

images with the date taken, photography location and company, and align the photo 

index numbers with the plot numbers. All photos were then easily aligned with the 

Figure 4.2: Segments of the spreadsheets used to align scores with image filenames for a) 

RAGT, b) Limagrain and c) KWS 
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correct scores using the plot numbers in the score spreadsheet and the index numbers 

of the images. 

 

 

The locations for photography were dedicated yellow rust trials, which had been 

sprayed against other diseases. In some cases, other diseases were not fully 

controlled by fungicides, and so the plots were scored for these diseases as well as 

yellow rust. We chose to remove any images where a disease other than yellow rust 

had been given a score of 5 – 9. This left only images with no other disease or only 

small amounts of other diseases present other than yellow rust. 

 
Over 6000 images were collected across England at breeding sites belonging to 

KWS, RAGT and Limagrain. Discussions with all three companies involved 

determined that the best scoring method to use for our datasets so that the resultant 

Figure 4.3: The user interface for IPP, used for collecting, labelling, and storing images 
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model would be most useful all round was the NIAB 1-9 scale (see section 1.2.2). 

All plots that were photographed at the KWS sites were scored using this method, 

however plots at RAGT and Limagrain were scored using slightly different systems 

unique to the company. 

 

For the images taken at Limagrain, the plots were scored by being given a 

percentage of infection. During image sorting and quality control, we had to convert 

these scores into the 1-9 categories. Table 4.1 shows the ranges of percentages that 

were sorted into each of the 9 score classes. 

 

Table 4.1: The percentage ranges for sorting Limagrain images into 1-9 categories 

Score Infection percentage 
range 

1 0 
2 0.01 – 0.4 
3 0.5 – 2 
4 2.1 – 7 
5 7.1 – 17 
6 17.1 – 35 
– 35.1 - 60 
8 60.1 – 80 
– 80.1 - 100 

 

The plots that were photographed at RAGT were scored similarly to the 1-9 scale 

however, they included .5 categories also. Upon discussion with the pathologist from 

RAGT, we decided that the .5 scores would be assimilated into the score above. For 

example, plots with a score of 2.5 would be included in the score 3 category in our 

dataset. 

 

Having matched all images with their scores, the images were sorted into folders 

corresponding to the score number. We then manually quality checked each folder 

for any images that were not acceptable for inclusion in the final dataset. Images that 

were removed were those that were considered too blurry to show enough 

information (for example, where the leaf and background information could not be 

distinguished between), those that were clearly not showing the same score as its 

classification or any that showed significant amounts of any other disease.  



 

 121 

 

We chose to divide the dataset in three different ways based on the amount of data 

collected. The original dataset, we have called YR1, represented the optimal scenario 

of 9 categories. Ideally, a model would be able to learn how to classify the images 

into one of nine categories for each of the 9 scores. However, with the complexity of 

the images collected and the number of them, there may not have been enough data 

for the model to learn to distinguish between that many categories. For this reason, 

we combined the categories in two different ways as well as keeping one version of 

the dataset with all nine categories separate.  

 

Having consulted with pathologists from the three companies, the first way we 

combined categories was to have the first six scores as separate categories, as in the 

first dataset. Then, due to a lower number of images in the higher categories and 

because a breeding line with a score of 7 or above would usually be rejected, we 

grouped scores 7, 8 and 9 into a single category. This dataset we have called YR2. 

 

In the event that this would still not be enough to train a network to a high accuracy 

with the available data, we combined the scores one more way into a third dataset. 

Score 1 was kept on its own as a ‘no disease’ category. Scores 2 and 3 were 

combined to make a ‘low disease’ category. Scores 4 and 5 made a ‘moderate 

disease’ category and scores 6 – 9 combined to make an ‘unacceptable’ category. 

This dataset we have called YR3. 

 

All three datasets were divided into train, validation, and test sets ready for training 

deep learning models. 60% of the images for each category were put into the train 

set, while 20% were added to each the validation and test sets. 

 

After quality control was complete, we were left with a dataset of 5526 images. 

Table 4.2, Table 4.3 and Table 4.4 shows the number of images per category for the 

three datasets and their distribution into the train, validation, and test sets for YR1, 

YR2 and YR3 respectively. 
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Table 4.2: The distribution of images in the YR1 dataset 

Score category Total no. 
images 

Train set Validation 
set 

Test set 

1 1683 1010 336 337 
2 844 507 168 169 
3 686 412 137 137 
4 556 334 111 111 
5 753 452 150 151 
6 530 318 106 106 
7 324 195 64 65 
8 115 69 23 23 
9 35 21 7 7 

 

 

 

Table 4.3: The distribution of images in the YR2 dataset 

Score category No. Images Train set Validation 
set 

Test set 

1 1683 1010 336 337 
2 844 507 168 169 
3 686 412 137 137 
4 556 334 111 111 
5 753 452 150 151 
6 530 318 106 106 
7 + 474 285 94 95 

 

 

 

Table 4.4: The distribution of images in the YR3 dataset 

Score category No. Images Train set Validation 
set 

Test set 

No disease 1683 1010 336 337 
Low disease 1530 918 306 306 
Moderate disease 1309 786 261 262 
Unacceptable 1004 603 200 201 
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4.2 Experimentation with deep learning models for 

quantification 
 
Having collected and sorted our images into new datasets for training deep learning 

models to quantify the amount of disease present, we moved on to experimenting 

with different model architectures.  

 

As with our classification work in chapter 3, we needed to find the baseline for our 

models. These baselines were different for each of the three datasets we used in these 

experiments. Table 4.5 a), b) and c) show the percentages of the entire dataset 

contained within each category for YR1, YR2 and YR3 respectively. 

 

Table 4.5: The percentage of the entire datasets contained within each category for a) YR1, b) 

YR2 and c) YR3 

Score 
category 

Percentage 
of dataset 
% 

 Score 
category 

Percentage 
of dataset 
% 

 Score 
category 

Percentage 
of dataset 
% 

1 30.46  1 30.46  No disease 30.46 
2 15.27  2 15.27  Low disease 27.69 

3 12.41  3 12.41  Moderate 
disease 

23.69 

4 10.06  4 10.06  Unacceptable 18.16 

5 13.63  5 13.63    
6 9.59  6 9.59    

7 5.86  7+ 8.58    

8 2.08       

9 0.64       

 

 

As the most common class in each of the three datasets is score 1, or no disease for 

YR3, the zero-rule baseline for all three datasets is 30.46%. In the case of the 

weighted random guess, each of the three datasets has a different baseline. For YR1 

this is 17.33%, for YR2 it is 17.68% and for YR3 it is 25.86%. 

a) b) c) 
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The models we used for these experiments were CNN’s. Different layer types and 

architectures were experimented with including depth-wise separable convolutional 

layers (Chollet, 2017b), residual connections (He et al., 2016) and attention 

mechanisms (Wang et al., 2017b). See chapter 2 for descriptions. The neural 

networks were developed using keras version 2.2.0 (Chollet and others, 2015) in 

Python 3.5.1. Training was carried out using a RMSProp optimiser.  

 

Each model architecture was sent to train using each of the three datasets. The best 

performing model was retrained using all available training data (train and validation 

sets combined) for all three yellow rust datasets prior to being evaluated using the 

test dataset to gain a final accuracy score. All images from the test set were sent 

through the trained models to get a classification prediction. These predictions along 

with the true labels for each image were used to create a confusion matrix showing 

where the models made misclassifications. The confusion matrices were generated 

using functions from the scikit-learn (sklearn) (Pedregosa et al., 2011) package in 

python. 

 

Having determined that our classification model 2.4, used in the experiments with 

pathologists and masked images, was able to handle complex input images, we chose 

to begin our quantification experiments with this network architecture. See chapter 3 

for details about model 2.4. We could then adjust the model, test different 

architectures, and eventually tune the hyperparameters to get the best results for the 

new problem. 

 

A new instance of model 2.4 was sent to train for each of the three datasets, YR1, 

YR2 and YR3. We chose to go straight in at 75 epochs as we were dealing with 

more complex data than the classification data, therefore it was unlikely that the 

model would be able to train to a high accuracy with fewer epochs. The models took 

approximately two days to run, significantly quicker than our classification model 

due to the smaller dataset. 
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Figure 4.5: Training and validation accuracies for model 2.4 trained with YR2 

Figure 4.4: Training and validation accuracies for model 2.4 trained with YR1 
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Figure 4.4, Figure 4.5 and Figure 4.6 shows the training and validation plots for all 

three datasets. In each case, it is clear that the model starts to overfit between 20 and 

25 epochs, when the validation accuracy stops plateaus. The validation accuracy 

peaks at approximately 40% for both YR1 and YR2 and at 50% for YR3. While this 

is better than our weighted random guess and zero rule baselines, they are not 

accuracies that would make a model useful for work in the field. 

 

We were inspired to research attention mechanisms and modules by the work by Mi 

et al., (2020), where they used attention mechanisms for classifying wheat stripe rust 

on individual leaves. This work was very similar to our current problem, only using 

single leaves instead of full plots. We hypothesized that the methods would be 

transferrable, and a model of the same type would perform better on our data than 

model 2.4.  

                                                                                                                                  

Figure 4.6: Training and validation accuracies for model 2.4 trained with YR3 
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We repurposed a code by Deontae Pharr (https://github.com/deontaepharr/Residual-

Attention-Network) which creates a residual attention network for image 

classification using keras. This began with a convolutional layer, then max pooling. 

The remainder of the convolutional base of the model consisted of residual blocks 

(containing residual connections) and attention modules. The model ended with three 

fully connected layers followed by dropout, then the final fully connected 

classification output layer. See Appendix 1 for full attention module code used. For 

each dataset, we trained an instance of this residual attention model with input image 

size (256,256). Initially the models were sent to train for 20 epochs, however the 

training accuracy seemed to be climbing still and we hoped that the validation 

accuracy would follow suit with further training time. Therefore, we sent the models 

to train for 200 epochs. 

 

 

 

 

 

Figure 4.7: Training and validation accuracy for our residual attention model trained with YR1 
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Figure 4.8: Training and validation accuracy for our residual attention model trained with YR2 

Figure 4.9: Training and validation accuracy for our residual attention model trained with YR3 
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The train and validation accuracy plots the residual attention model trained with 

YR1, YR2 and YR3 are shown in Figure 4.7, Figure 4.8 and Figure 4.9. It can be 

seen that in each case, the model gains both a lower train and validation accuracy. 

The training accuracy peaks at approximately 30% for YR1 and YR2, and 

approximately 38% for YR3. Meanwhile, in each case the validation accuracy yields 

strange results. For YR1 and YR2, the validation accuracy hits 30% immediately and 

does not move from that point.  For YR3, the validation accuracy actually climbs 

higher than the training accuracy.  

 

This could be for a few reasons. The first could be due to the use of dropout. In this 

model we use three dropout layers, where 50% of the features are set to zero each 

time during training. When the model is validated however, all of the features are 

used, therefore leading to a higher accuracy on the validation data than the training 

data. Another potential reason for the higher validation accuracy is due to the size of 

the dataset. The model may be learning patterns in the data, and due to the larger size 

of the train set when compared with the validation set, there is more variance in the 

train set. This leads to a higher error rate for the train set than the validation set.  

 

We decided not to perform any further experiments with this model. Although the 

results were not particularly useful in terms of building a model for scoring yellow 

rust in the field, it did point out a potential pitfall (the size and lack of variance) in 

our dataset, which is important for continuing this work.  

 

We took the res1 and sep1 model architectures from our classification experiments 

(section 3.2.3) to try with our three datasets. Each model was trained using each of 

the three datasets using an input size of (256,256). In each case, the model overfits 

almost immediately. In an attempt to combat this, we added dropout of 0.5 to the end 

of both models. We also increased the input image size to (512,512) with the aim of 

allowing the models to capture more features from the data.  
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Figure 4.11: Training and validation accuracies for res1 model with added dropout for YR2 

Figure 4.10: Training and validation accuracies for res1 model with added dropout for YR1 
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The results of these experiments yielded results that were much the same those 

without our additions to combat overfitting. The second residual model, with added 

dropout, however produced the highest validation accuracy over all the experiments. 

The training and validation accuracies for this model can be seen in Figure 4.10, 

Figure 4.11 and Figure 4.12, for YR1, YR2 and YR3 respectively.  

 

We chose this model to send for testing for all three datasets. The purpose of testing 

at this point was to gain information about the classifications the models were 

making. From the training results, it was clear that there was going to be many 

misclassifications across the board. Using the predictions on the test sets from each 

fully trained model, we produced confusion matrices. Ideally, we would want to see 

the misclassifications for each score coming from the score to either side, e.g., 

images of score 5 would be misclassified as score 4 or score 6 when not correctly 

classified as score 5. If this were the case, it would show that we require more data 

for training, but that the data is of the correct sort and that the model should be 

Figure 4.12: Training and validation accuracies for res1 model with added dropout for YR3 
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capable of learning to classify with the inclusion of further data. Figure 4.14, Figure 

4.13 and Figure 4.15 show the confusion matrices for our residual model trained and 

tested using YR1, YR2 and YR3 respectively. 

 

Figure 4.14: Confusion matrix of classifications for the res1 model architecture with added 

dropout trained on YR2 

Figure 4.13: Confusion matrix of classifications for the res1 model architecture with added 

dropout trained on YR1 
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Figure 4.15: Confusion matrix of classifications for the res1 model architecture with added 

dropout trained on YR3 

Unfortunately, all three confusion matrices show that the misclassifications are not 

limited to the neighbouring categories as we hoped. Instead, for YR1 and YR2, there 

is a strong bias to the score 1 category, which is unsurprising due to the imbalance in 

the dataset. Where the misclassifications are not as score 1, they are scattered across 

the rest of the categories suggesting that the model is struggling to learn features 

which are representative of the different classes.  

 

The performance of the YR3 model is marginally better, where there are more 

correct classifications, especially in the unacceptable category. We believe this is 

because this dataset was more balanced in terms of number of images per category 

than the other two datasets.  

 

It is clear that the data we have for these experiments is not sufficient for training a 

model to score the amount of disease present. The scattered misclassifications 
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throughout suggest that the data is not fully representative of the labelled classes, a 

problem which is also not helped by the imbalance in image quantities throughout 

the data for YR1 and YR2. To continue with this work, further image collection 

efforts will be required to balance the datasets and ensure accurately scored images. 

At this point we decided to not do any hyperparameter tuning with these models. We 

determined that any tuning would be unlikely to affect the accuracy results 

significantly enough to make the models useful in the field. In a situation where we 

were confident that the images contained accurate score information, we could have 

experimented with removing some of the ‘no disease’ data to help balance the 

dataset. As we did not have this confidence, we did not pursue this idea. 

 

4.3 Creation of simulated datasets 
 
Following the results of the work with real field images for yellow rust 

quantification, it became clear that a much larger and much more time-consuming 

image collection effort would be needed to have a chance of producing high enough 

accuracies for use in the field. Therefore, we devised a set of experiments with 

simulated data to test whether deep learning models would be capable of quantifying 

the amount of disease present using the 1-9 score categories from an image under 

more controlled conditions. 

 

For our first experiments we created simulated images of black (0) and white (1) 

pixels, where black represented an ‘uninfected’ pixel and white was an ‘infected’ 

pixel. We used NumPy in python to create arrays of zeros of size (500, 500) where 

each pixel had a percentage chance of being ‘infected’ depending on the disease 

score the image was representing. We chose this size as it was similar to the input 

size for our classification model (512,512) and was easily divisible into percentages. 

 

We followed the same categories for the scores as with the real field data, so created 

a dataset with 9 categories labelled as score_1 to score_9. Table 4.6 shows the 

percentage of infection each score represented and the range of infection percentages 

that this included to make the dataset more representative of real conditions. 
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For each category, a value within the percentage range was chosen using the 

numpy.random.uniform function. This was the probability of infection for a single 

pixel, we will call this POI. A 500 x 500 array of 0’s and 1’s was then created using 

numpy.random.choice, where each pixel had a 1-POI chance of being a 0 and a POI 

chance of being a 1.  

 

Table 4.6: The percentage ranges used to represent each score category 

Score % of infection % range 
1 0 0 
2 0.1 0.01 – 0.4 
3 1 0.5 – 2 
4 5 2.1 – 7 
5 10 7.1 – 17 
6 25 17.1 – 35 
7 50 35.1 – 60 
8 75 60.1 – 80 
9 100 80.1 – 100 

 

 

The resultant arrays were converted to datatype uint8 and assigned a unique 

universal identifier (UUID). They were then saved to a folder corresponding to the 

score number as a .png using python image library (PIL). 

 

For the initial dataset we made 10,000 images per category, 7000 in the train set, 

2000 in the validation set and 1000 in the test set, we will call this dataset S10k. This 

was used as the ideal dataset, which would have enough images per category to show 

the full potential of deep learning models for this problem. 

 

Following this, we made four other smaller datasets with 100, 250, 500 and 1000 

images per category sorted in the same proportions, these will be known as S100, 

S250, S500 and S1k respectively. These were designed to try and find guide for the 

number of images required for producing high accuracies. Each dataset contains 

images of the same type, but new images were generated for each dataset purely 

because it took less computational time to generate brand new images than it did to 
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copy a portion of the original dataset. Image generation was done using a MacBook 

Pro connected to the internal JIC VPN, to allow them to be stored in the group 

scratch location. Figure 4.16 shows an example image from each of the 9 score 

categories for the S datasets.  

Table 4.7 shows the number of images in each category for the train, validation, and 

test sets for all five S datasets created. 

 

 

Figure 4.16: An example image for each category in the S datasets 
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Table 4.7: The distribution of images across the whole dataset and the train, validation, and test 

sets for all the S datasets 

 
Dataset Total images 

per category 
No. of train 
images per 
category 

No. of 
validation 
images per 
category 

No. of test 
images per 
category 

S10k 10,000 7,000 2,000 1,000 
S1k 1,000 700 200 100 
S500 500 350 100 50 
S250 250 175 50 25 
S100 100 70 20 10 

 

 

The next step towards creating a more realistic simulated dataset was to arrange the 

infected pixels in a way that was more representative of disease lesions on a leaf. To 

do this we made a new dataset of simulated images, again using zeros as ‘healthy 

tissue’ and ones as ‘infected tissue’, however this time the ones were added in line, 

or stripe, formations. This was done to imitate yellow rust lesions, to test whether 

having patches of infection produces a different outcome to having a uniformly 

distributed infection. 

 

To create this data, we again started with a 500 x 500 NumPy array of zeros. We also 

defined a 2 x 50 array of ones, which was our individual stripe lesion. The POI was 

randomly selected in the same way as before for each category and used to calculate 

the number of pixels that would need to be converted into ones to reach that 

percentage, we will call this the infection level. To place the stripe lesions onto our 

zeros array we used a loop to randomly select a zero coordinate. There we replaced 

the surrounding pixels with the ones in our stripe array. After each loop, the number 

of ones in the array were counted and if it were fewer than the infection level, then 

the process of adding a stripe lesion was repeated. If the number of ones was equal to 

the infection level, then the loop was broken, and the array was ready to be saved as 

an image. Finally, if the number of ones was greater than the infection level then we 

calculated how much greater and changed that number of ones back to zeros 
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(randomly selecting ones across the entire array). The arrays were saved in the same 

way as for the S datasets (S10k, S1k etc.). We created two datasets, first with 1000 

images per category and then with 10,000 images per category, named stripe1k and 

stripe10k respectively. Figure 4.17 shows an example image for each score category 

in the stripe datasets. 

 

 

We were interested to see how using more realistic colours in our images would 

affect the results of training. We hypothesised that it would make little difference to 

the results, however it would be useful to discern whether the model is learning any 

internal colour representations. We created a third set of data in the same way as the 

Figure 4.17: An example image for each score category for the stripe datasets 
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stripe dataset, however when converting the array to an image prior to saving, we 

used a colour palette to assign green to all zeros as ‘leaf tissue’ and orange to all 

ones/ stripes as ‘infected tissue’. Again, we created two datasets with 1000 and 

10,000 images per category, named colstripe1k and colstripe10k. Figure 4.18 shows 

an example image from each score category for the colstripe datasets. 

 

 

In real field images, there is a lot of background information, such as sky, soil, or 

stones, as well as leaves and disease. We wanted to introduce this into our simulated 

data and so take them one step closer to realistic images. A fourth set of images was 

made, again beginning with a 500 x 500 array of zeros. This time, instead of 

Figure 4.18: An example image for each score category in the colstripe datasets 
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calculating the infection level for the whole array, it was calculated for 90% of the 

array. We considered this 90% of the array to be leaf tissue which could be infected 

(225,000 pixels) and the other 10% would be background information. The stripes 

were placed again using the same method until the infection level was reached. Once 

all stripes were placed, the background information was added.  In our colour 

palette, we assigned each of the five background numbers a colour that would be 

typical of the kind of background information that would be found in the field 

(brown, blue, grey). 25,000 pixels (equal to 10% of the array) containing a zero 

(healthy pixel) were randomly chosen and replaced with either 2, 3, 4, 5 or 6, with a 

20% chance of choosing each value. This left an image with 10% of the pixels 

representing background information uniformly distributed across the array. To pick 

the colours used in our data and get their RGB values we used the website 

coolors.co. See Figure 4.19 for the palette we chose from this website. The two 

datasets created in this way were names bg1k and bg10k. An example image for 

each score category in the bg datasets can be seen in Figure 4.20. 

 

 

 

Figure 4.19: The colour palette used to make our datasets, from coolors.co 
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The simulated images for the stripe, colstripe and bg datasets required more 

computing power and time to produce than for the S dataset images. For this reason, 

the GPU node on the JIC HPC facilities were used to speed up the process.  

 

4.4 Training deep learning models using simulated data 
 
For the purpose of testing whether a deep learning model has the potential for 

disease quantification from images, we simply took the final model architecture from 

our classification network and used it for all of our experiments. We had shown this 

Figure 4.20: An example image for each score category for the bg datasets 
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architecture was capable of classifying complex images, which we hypothesised 

would translate to this problem also. As we were only testing the viability of using 

deep learning models for scoring levels of infection and not aiming to find the ideal 

network architecture, we did not do any hyperparameter tuning at this stage. 

 

Initially, we trained a version of our model for 5 epochs using the large S10k dataset. 

The aim of this was to determine whether a deep learning model would be able to 

classify an image into severity of infection (where white pixels are infected and 

black are healthy). The results of the real field data experiments showed that training 

broke down within the first few epochs, so it was logical to test whether the same 

would happen here before training for longer. Following this the four smaller S 

datasets were used to find a guide for the minimum number of images required to 

train a model of this kind. A new instance of our model was trained with each of 

these datasets.  

 

 

Figure 4.21: Training and validation accuracies for model trained with S10k for 5 

epochs 
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Having decided on the optimum number of training epochs for each of the datasets, a 

new instance of the model was trained on all available data (train and validation 

together) for the determined number of epochs. Then, the model was shown the test 

images, which it had never seen before, and a final accuracy score was given. As 

with the real field data, we used the test data to collect classification predictions and 

generate confusion matrices for each of the fully trained models. 

 

Figure 4.21 shows the training and validation accuracies for each of the five epochs 

when trained using S10k. We can see that the validation accuracy stays close to the 

train accuracy, with expected fluctuation in the earliest epochs, and shows no 

obvious signs of overfitting. It reaches approximately 95% accuracy, however there 

is possibility that it could climb a percentage point or two higher with more training 

epochs.  

 

For this reason, we re-ran our code to train the model for 10 epochs. It can be seen 

from Figure 4.22 that the validation accuracy stays very close to the train accuracy 

throughout training. There is still potential for higher accuracies with further 

Figure 4.22: Training and validation accuracies for model trained with S10k for 10 

epochs 
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training, however this was not an exercise to maximise classification accuracy. 

Therefore, this model was sent to test to get a final accuracy and obtain classification 

prediction information for the confusion matrix, see Figure 4.23. The confusion 

matrix shows that the model classifies all categories with very high accuracies (95% 

or above), and that all misclassifications occur within the score categories adjacent to 

the true label. 

 

 

We created the four smaller datasets with the aim of finding a lower limit on the 

amount of data required for a problem like this. Using each dataset, a new model was 

trained for five epochs initially. Again, this was done to ensure that training would 

run as expected and that there would be no overfitting due to smaller amounts of 

training data. 

 

Figure 4.23: Confusion matrix of the classifications by model trained with S10k 
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Figure 4.24: Training and validation accuracies for model trained using S100 for 5 

epochs 

Figure 4.25: Training and validation accuracies for model trained using S250 for 5 

epochs 
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Figure 4.27: Training and validation accuracies for model trained using S500 for 5 

epochs 

Figure 4.26: Training and validation accuracies for model trained using S500 for 5 

epochs 
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Figure 4.24, Figure 4.25, Figure 4.26 and Figure 4.27 shows the training and 

validation plots for the models trained on S100, S250, S500 and S1k for five epochs. 

In each case the training accuracy still appears to be climbing. The validation 

accuracies are harder to interpret due to the small number of epochs. For S250 and 

S1k, the validation accuracy appears to be mostly climbing in the same way as the 

training accuracy, however for S100 and S500 the validation accuracies are a little 

more erratic. This could be due to overfitting, however more likely simply the early 

stages of training where the use of the validation set of images is ensuring that the 

models do not learn specifics from the train set. Training for further epochs would 

confirm this. 

 

We concluded that it would be beneficial to try training for all four datasets for 

further epochs. We trained a new model for each dataset for 20 epochs. Following 

this the S100, S250 and S500 models all looked like they had the potential for their 

accuracies to climb further with more training, so they were sent to train for 50 

epochs. The validation accuracy for the S1k model appeared to peak within the 20 

epochs, therefore it was not sent to train for further epochs. 

 

Figure 4.28: Training and validation accuracies for model trained using S100. The red line 

indicates where the validation peaks and the number of epochs that the model will be trained 

for using all available data 
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Figure 4.29: Training and validation accuracies for model trained using S250. The red line 

indicates where the validation peaks and the number of epochs that the model will be trained 

for using all available data 

Figure 4.30: Training and validation accuracies for model trained using S500. The red line 

indicates where the validation peaks and the number of epochs that the model will be trained 

for using all available data 
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After training models for 20 epochs with S1k and 50 epochs with S100, S250 and 

S500, we were able to see clear points where the validation accuracy reaches its 

highest point before plateauing and the model starts to overfit. Figure 4.28, Figure 

4.29, Figure 4.30 and Figure 4.31 shows the training and validation accuracy plots 

for these four models with the epoch where the validation peak is reach marked with 

a red line. This point marks the number of epochs that each model will be trained for 

using all available data (training plus validation) prior to being tested with new 

images from the test set. See Error! Reference source not found. for the number of 

epochs used for final training of the four models along with their final accuracy 

results on the test data. 

 

Table 4.8: The number of epochs used for final training and the final accuracies on the test sets 

for each of the S datasets 

Dataset No. epochs for final training Final accuracy 
S100 27 78.4% 
S250 20 66.9% 
S500 32 94.2% 

Figure 4.31: Training and validation accuracies for model trained using S1k. The red line 

indicates where the validation peaks and the number of epochs that the model will be trained 

for using all available data 
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Figure 4.32 shows the confusion matrices for datasets S100, S500 and S1k. There is 

a clear improvement in the results as the size of the dataset increases, with the S1k 

dataset producing the best classification results. The misclassifications for each 

dataset predominantly fall within the classes on either side of the true label, which is 

what was expected. One class that seems to consistently cause some issues 

throughout is the score 7 class. We thoroughly checked the data and concluded that 

the images all contained the correct score level. 

 

 

 

S1k 15 94.1% 

Figure 4.32: Confusion matrices for models trained using S100 (top left), S500 (top right) and 

S1k (bottom) 
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We theorise that the issues which occur with the higher score categories are due to 

the wider ranges for the percentage of infection, thus creating more variation in the 

images within those categories. Looking at small thumbnails of a selection of images 

from a lower score category and a higher score category, there is a clear difference in 

the average shade range. In the lower category, e.g., score 2 (see Figure 4.33) the 

images are all a very similar shade of grey. For the higher score category, score 7 

(see Figure 4.34), the shade of grey varies more due to a wider range in the number 

of infected pixels that the images could contain. This could be causing the model to 

have more trouble learning the range of features for the higher categories than the 

lower ones with less variation. 

 

The results that were gained from the S250 dataset proved to be more problematic. 

There were many more misclassifications across the board, with one category (score 

6) gaining 0 correct classifications, see Figure 4.35. Furthermore, the 

misclassifications were not restricted to the classes on either side of the true label but 

were instead more scattered. Scores 6, 7 and 8 had many misclassifications as score 

4 and score 9 was misclassified as score 6.  

 

Upon collecting these results, the dataset and code to create the dataset were 

thoroughly checked for any issues which could have caused the discrepancies. No 

issues were found, so we decided to repeat the full train and testing process, with a 

newly generated set of S250 data (S250_2), to see if the results were replicated. 

Using the training graph from the original experiment as a guide, we trained a new 

instance of our model with the new data for 30 epochs (in case the validation 

accuracy took longer to peak in experiment). The validation accuracy peaked at 

epoch 20, the same as previously. Final training was done for 20 epochs and the 

model evaluated on the test set from S250_2. Figure 4.36 shows the confusion 

matrix for the second experiment, with the new S250_2 dataset. The issue with score 

6 is still present, however the misclassifications throughout are confined to the 

adjacent categories to the true label.  
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Figure 4.34: A selection of thumbnails of the images contained in the score 7 category of the S 

datasets 

Figure 4.33: A selection of thumbnails of the images contained in the score 2 category of the S 

datasets 
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Upon collecting these results, the dataset and code to create the dataset were 

thoroughly checked for any issues which could have caused the discrepancies. No 

issues were found, so we decided to repeat the full train and testing process, with a 

newly generated set of S250 data (S250_2), to see if the results were replicated. 

Using the training graph from the original experiment as a guide, we trained a new 

instance of our model with the new data for 30 epochs (in case the validation 

accuracy took longer to peak in experiment). The validation accuracy peaked at 

epoch 20, the same as previously. Final training was done for 20 epochs and the 

model evaluated on the test set from S250_2. Figure 4.36 shows the confusion 

matrix for the second experiment, with the new S250_2 dataset. The issue with score 

6 is still present, however the misclassifications throughout are confined to the 

adjacent categories to the true label.  
  

Figure 4.35: Confusion matrix for model trained using S250 dataset 
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We hypothesise that the reason for the issues in the two S250 experiments is due to 

the amount of available training data. There is not enough data in the validation set 

to be able to guide the model into making the correct representations from the 

images. The larger datasets are able to better find the patterns for each category, thus 

leading to fewer misclassifications.  

 

The reason we do not see the same sort of results in the even smaller S100 dataset 

could simply be because the test set used is so small. With only 10 images per 

category for testing, it is harder to gauge the true performance of the network as it 

has fewer opportunities for misclassifying. To test this, we used the model trained 

using the S100 data to generate predictions using the larger test sets from the S250, 

S500 and S1k datasets. Figure 4.37 shows the confusion matrices for each of the 

three experiments. Using more data highlights an issue in the score 7 category 

similar to the issue we saw in the first S250 experiment. 

Figure 4.36: Confusion matrix for model trained using S250_2 dataset 
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Our experiments show that the S1k dataset produces the most consistent 

classifications throughout. For this reason, we determine that 1000 images per 

category is a good guide for creating a dataset. Any fewer results in some of the 

classes with higher levels of infection getting misclassified more than the lower 

levels of infection.  

 

Following the experiments using the S datasets, we worked through the other 

simulated datasets (stripe, colstripe and bg) to test the ability of our network as we 

move towards more realistic data. In each case, the larger datasets containing 10,000 

images per category were used to determine the results with an ideal amount of data. 

Figure 4.37: Confusion matrices for model trained using the S100 dataset and evaluated on the test 

sets from S250 (top left), S500 (top right) and S1k (bottom) 
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The datasets with 1000 images per category were used to test how the model would 

perform with our smaller size datasets, which is a more realistic amount for 

collecting in the field.   

  

To test our model with a distribution of infected pixels that was more realistic, we 

created the stripe and colstripe datasets. Using these, we were able to test whether a 

deep learning model would be able to classify the images by level of infection when 

the infected pixels were not distributed uniformly across the image. As we had been 

working with yellow rust, which appears with stripe lesions on the leaf, we decided 

to place the infected pixels in stripe formations. We did this both in black and white, 

like the S datasets, and in green and orange to mimic the green leaf tissue and orange 

yellow rust lesions. This was done to test whether the colour of the images had any 

effect on the results.  

 

We also added noise to our data in a third set of data. This bg data included 

uniformly distributed ‘background’ information. In realistic settings, there would be 

soil, sky and stones etc. included in any image taken. The bg datasets were used to 

determine how the results would be affected with the addition of this background 

noise. 

Figure 4.38: Training and validation accuracies for model trained with stripe1k dataset. The 

red line shows the point where the validation accuracy peaks, and the number of epochs used 

for final training 
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Figure 4.39: Training and validation accuracies for model trained with colstripe1k dataset. 

The red line shows the point where the validation accuracy peaks, and the number of epochs 

used for final training 

Figure 4.40: Training and validation accuracies for model trained with bg1k dataset. The 

red line shows the point where the validation accuracy peaks, and the number of epochs 

used for final training 
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The first instances of our model were trained using datasets containing 1000 images 

per category. We sent the models to train for 20 epochs. Figure 4.38, Figure 4.39 and 

Figure 4.40 show the training and validation accuracies for stripe1k and colstripe1k 

and bg1k respectively. In all three cases the validation accuracy appears to stop 

rising and peaks between 90% and 95%. Therefore, we did not train the models for 

any further epochs. The red lines on the graphs show where the validation accuracy 

peaks and determines the number of epochs that the models were trained for using 

all available data prior to testing. 

 

Table 4.9: The number of epochs for final training and the final classification accuracies for all 

the datasets with 1000 images per category 

Dataset Final training 
epochs 

Final classification 
accuracy 

S1k 15 94.1% 
Stripe1k 12 91.85% 
Colstripe1k 8 94.08% 
Bg1k 6 83.1% 

 

Table 4.9 shows the number of epochs each of the 1k datasets was trained for prior 

to testing and the final classification accuracies. The S1k results are included for 

completeness. The confusion matrices in Figure 4.41 show that for all three datasets 

the models are performing as expected, with no misclassifications other than in the 

adjacent score categories. It is interesting to note that the colstripe1k model performs 

slightly better overall. This is probably due to individual patterns learned by the 

separate networks which cause the differences in accuracy. Unsurprisingly, the 

model trained using the most complex dataset, bg1k, has the lowest classification 

accuracy. 

 

We also trained an instance of our model with 10,000 images per category for each 

type of data. In the same manner as for S10k, the models were trained for 10 epochs. 

The validation and train accuracies did still appear to be rising as can be seen in 

Figure 4.42, much like for S10k, however due to time constraints we decided to test 

each model at 10 epochs and not train further.  
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The results for the 10k datasets can be seen in the confusion matrices in Figure 4.43. 

Unsurprisingly, each set of data produces high accuracy results throughout, which is 

a clear sign that using more data (where possible) will produce the better results. 

That being said, we also show that it is possible to get high accuracies with smaller 

datasets. In the case of relatively simple, and idealistic simulated data, 1000 images 

per category proves to be enough to hit accuracies of 90% and above. However, this 

number can be expected to be much higher as the data gets more complex and 

moving into real field data.  

 

 

 

Figure 4.41: Confusion matrices for the models trained using stripe1k (top left), colstripe1k (top 

right) and bg1k (bottom) 
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Figure 4.42: Training and validation accuracies for the Strike10k (top left), Colstripe10k (top 

right) and BG10k (bottom) datasets. 
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Figure 4.43: Confusion matrices for the models trained using stripe10k (top left), colstripe10k 

(top right) and bg10k (bottom) 
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4.5 Discussion 
 

4.5.1 Deep learning for quantification with real field data 

 
Due to the few studies for crop disease quantification which had been published at 

the time the planning for this work was taking place (Lin et al., 2019; Wang et al., 

2019), we used our knowledge gained from chapter 3 and the desired outcomes of 

the project to guide our data collection effort. Instead of taking single leaf images, 

we photographed full plots, as would be expected from an automated scoring 

method. With our work we could determine the pitfalls and get an idea for the 

requirements for working with this kind of data. 

 

Before even beginning our experiments with real field data for wheat disease 

quantification, it was clear that this was going to be a much more complex problem 

than disease classification. Where we took images that focused on a single leaf or 

plant in our classification dataset, here we had to image entire plots. This meant 

including messier data without a clear focal point in the image.  

 

Before training of any model was even started, we could see some potential issues 

with the collected dataset. The first was the number of images that the dataset 

contained overall. In our classification dataset from chapter 3, we had 19,000 images 

spanning five categories. For the quantification of yellow rust, with 9 score 

categories, we had a dataset less than a third of the size. It would have been illogical 

to assume that the model would perform as well on a more complex problem, with 

much less training data. 

 

The second issue was the imbalance of data across the 9 categories. For score 1 we 

had 1683 images, whereas at the other end of the scale in score 9 we only had 35, 

which in our view was far too few for the model to be able to learn accurate 

representations. There was a general trend of having fewer samples per category as 

the disease severity increased.  
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Upon collecting all the results from our experiments with this dataset, it was clear 

that no amount of fine tuning for these networks would provide the high accuracies 

that would be useful in the field. We had another look at the dataset with James 

Brown, who has many years of experience in scoring wheat diseases and found there 

were many images where the score assigned to the image did not match the 

symptoms visible in the photo. We do not believe this is due to misclassification of 

the plots themselves, but due to the angle of the photo or part of the plot 

photographed, the image does not match the score of the plot. 

 

In future, a dataset collected in realistic field conditions would need to be 

significantly larger than the one used in this work and have a better balance across 

all categories. Furthermore, the method of collection and assigning of scores would 

need to be changed. Our work makes it clear that simply scoring a plot and 

photographing close to the time of scoring is not sufficient for getting images which 

accurately represent the plot score, and that a new method would need to be 

determined which aligns better with the methods used by pathologists. We discuss 

potential ways to tackle this problem in section 5.3. 

 

4.5.2 Deep learning using simulated data for disease 

quantification 

 
The hypothesis behind our experiments with the simulated datasets was that deep 

learning models would be able to quantify the amount of disease present in an image 

provided it was supplied with enough data of sufficient quality. Our first series of 

experiments provided an ‘ideal’ scenario where the images were very uniform 

without any background information or patterns within the infected areas. Clearly, 

these datasets are a very simplified version of different infection levels and do not 

fully represent what is found in the field. Their purpose was to be used as an initial 

proof of concept that it was possible to use deep learning models for a quantification 

problem. 
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Although the results using these ideal simulated images are very encouraging, it’s 

important to note the potential pitfalls when trying to relate this back to the problem 

in the field. These datasets provide the models with very uniform images which, to 

the naked eye, do not show major differences between the images within a category. 

As a result, there is the possibility that our models are not in fact learning to count 

the number of infected pixels or calculate the percentage of infection, but instead are 

classifying the images based on the average grayscale. As the percentage of infection 

or number of white pixels increases, the overall colour of the image moves from 

black, through gradually lightening shades of grey, to almost white at the highest 

infection level. 

 

Our further experiments went some way to proving that the model is actually 

classifying the images based on level of infection, rather than the average colour of 

the image. With the infected pixels distributed in clusters more representative of 

disease lesions, there was less opportunity for the model to differentiate the classes 

based on colour. This was especially true in the lower score classes where the level 

of infection was depicted by only a few lesions, so the infected areas were more 

concentrated. The addition of background noise also affected the overall colour 

interpretation of the images. 

 

The results of our simulated data experiments provide a starting block for 

determining the minimum number of images required to achieve a certain level of 

accuracy for a given number of categories. With some further experiments and 

optimization of the codes, this methodology could be used to determine the best 

experimental design for network training. Simulated data of increasing complexity 

can be generated much quicker than collecting a full dataset of field images. Finding 

the amount of data required to reach an ideal accuracy would mean that the data 

collection in real conditions could be more guided, and the risk of collecting too little 

data reduced. This is especially important where data is collected over a growth 

period, like with crop breeding, as there is a long period to wait before more data can 

be gathered. 
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5 Discussion 

 
Having presented our results in the previous chapters, we will here discuss their 

importance and contribution to the field. We will also mention the limitations of the 

work conducted, as well as suggested improvements and opportunities for future 

research. We will then conclude this thesis with a summary of the key findings. 

 

5.1 Wheat disease classification 
 
An important first step towards an automated, deep learning, scoring system for 

wheat disease is simply being able to identify and classify the diseases in realistic 

conditions. If this were not possible, then it is highly unlikely that any deep learning 

model would be able to quantify the amount of disease present. 

 

Many previous studies have trained deep learning models to classify crop diseases. 

These studies typically use carefully curated data, taken in controlled conditions 

(Mohanty, Hughes and Salathé, 2016; Barbedo, 2018). Whilst some of these datasets 

are quite large, they do not contain the necessary variation in conditions which 

would be expected in field situations. It would be unrealistic to presume that a model 

trained on this kind of data would be able to perform when confronted with more 

complex field data. Conversely, studies which use realistic field images for training 

their models (Lu et al., 2017; Oppenheim et al., 2018), generally have small amounts 

of data which would not be able to cover the range of conditions expected and so 

would generalise to the available training data.  

 

At the time this work took place, we were not aware of any openly available datasets 

of wheat disease images with the potential to overcome these limitations. We have 

since been made aware of the Wheat Fungi Disease Dataset (Genaev et al., 2021), 

however upon inspection we found there to be many potential misclassifications in 

several categories. Furthermore, the images in the dataset were much more varied, 
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from entire plots to single plants, which we did not consider was especially relevant 

to field scoring of diseases.   

 

Our data collection effort produced a dataset with over 2000 images per category, 

taken in realistic growth conditions. The purpose was to capture the range of 

weather, light and growth stages of disease and plant which would be encountered in 

the field, so any trained model should hypothetically perform when taken out to test 

on new field data. We consider this dataset to be a valuable asset for the scientific 

community. Not only is it useful for training deep learning models to classify 

important UK wheat diseases, but it also has the potential to be used for training 

purposes. Breeders, pathologists and even farmers would be able to use the range of 

images to learn the symptoms of each of the disease, to allow them to be able to 

identify these diseases themselves. Until such time as an automated system is 

deployable, this would help people make decisions about their crops relating to 

disease management. 

 

We trained a model using our collected dataset and found it was able to classify the 

images with an accuracy that rivals trained pathologists. It is interesting to note that 

the classification accuracy we achieve (97.05%) is very close to those from studies 

with much more controlled data. Amara et al., (2017) gained 98.61% classifying 

banana leaf diseases and Brahimi et al., (2017) achieved 99.18% classification 

accuracy on tomato leaf diseases, both taken from the Plant Village dataset. This 

suggests that it is not necessary to take images in controlled conditions, and that field 

data is sufficient for training models to classify diseases provided there are enough 

training examples. Our fully trained model has the potential to be used by farmers, 

agronomist, and breeders for identifying disease on their crops if it were deployed in 

a usable fashion (such as on a mobile application). This is something we’d have 

liked to develop; however limited time meant it wasn’t possible at this time. 

 

It is important to note that this model is trained to classify individual wheat diseases 

and does not deal with multiple simultaneous infections. In reality, there are often 

cases where two or more diseases occur at once on a single plot. There is now the 

opportunity to explore methods which can identify and classify multiple infections in 
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a single image. This would be particularly helpful for farmers without access to 

trained pathologists needing to determine what is infecting their crop in order to 

deploy any countermeasures. 

 

Another limitation that is worth mentioning is that our data contains only visible 

infections, from the earliest visible signs through to late infection. As a result, our 

model would not be able to identify asymptomatic disease on the plants. The models 

we used learn features about the images in order to make a prediction about their 

contents. An asymptomatic leaf would appear the same as a healthy leaf in the 

visible spectrum, therefore we assumed that our model would classify all 

asymptomatic images as healthy. Some studies are making use of multiple spectrums 

by utilising hyperspectral imaging devices (Jin et al., 2018; Nagasubramanian et al., 

2018; Wang et al., 2019). There may be features in spectrums other than the visible 

spectrum which could aid a model in classifying the disease before symptoms are 

visible to the naked eye. The downside of this method is that hyperspectral cameras 

are often very expensive, and so a model that requires one to use it would not be 

accessible to a large portion of the community. 

 

Comparing our model to the performance of five pathologists showed that it is 

capable of classifying the diseases from images at least as well as a trained expert. 

This is an important factor for a model that would be used in the field to eliminate 

the need for a trained pathologist. We also found that the model classified the images 

much faster than the participants. This speed can also be increased by using GPU’s 

and parallelisation much easier than it would be to hire more pathologists to do the 

same job. 

 

5.2 Evaluation of model performance 
 
It is not only important for any trained model to perform with high accuracy, but it 

also needs to be working as intended. For a model to be useful, it needs to be using 

the correct information to drive its classifications. In our case, the disease and leaf 

information are the important information which should be used to determine the 
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correct class. If a model were using an arbitrary background feature instead, it would 

not perform well given new data and it could be highlighting a bias in the dataset. 

We aimed to determine whether our model was using the correct information for 

fuelling its classifications. 

 

Our first approach was to try using Grad-CAM (Selvaraju et al., 2020) to produce 

area important heatmaps for our images. This method produces a heatmap using the 

information contained in the last convolutional layer of a model, which can then be 

stretched over the input image. Areas which are important in driving the 

classification of the model would appear red and less important parts (such as 

background information) would appear blue. Unfortunately, due to the number and 

types of layer we use in our final model, the output feature map for the final 

convolutional layer was only 4x4 pixels, therefore the heatmap produced was also 

4x4 pixels. When stretched over a much larger input image, these heatmaps did not 

provide any useful information about the important locations of the images. 

 

We took a selection of images from our test set and placed a black mask over the 

important disease and leaf information. We hypothesized that covering the important 

information would result in a drop in performance, providing the model has learned 

to use the correct information for driving its classifications. When confronted with 

masked images, our model had a higher misclassification rate. Classifications were 

heavily biased towards mildew, with some bias towards healthy. It is likely that the 

bias towards healthy is due to the green background information being mistaken as 

healthy leaves. The mildew misclassifications are suggestive of an underlying issue 

with the training data, stemming from the different collection conditions in the 

mildew category. Ideally, we would have liked to collect more mildew images taken 

in the same conditions as the other categories images and re-trained the model. 

However, we were not able to do this due to there being little mildew in the field 

thanks to high levels of resistance in many UK wheat varieties. 

 

This experiment provides important insights about the necessity of collecting data in 

the same capture conditions for all categories of a dataset. Covering a wide range of 

conditions is not enough on its own, this range needs to be as similar as possible 
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over all classes. This will eliminate biases in the data which the network could learn 

instead of focussing on the important information. 

 

While the masked images caused the confusion that we expected for a model using 

the correct information to drive classifications, this experiment does not definitively 

prove that this is the case. Further investigation is required to show the features 

which are most important for making class predictions. One particular method we 

discovered which could be incredibly valuable for this issue is the activation atlas 

(Carter et al., 2019). The activation atlas is a method for visualising features in a 

network, which can show what features the model is using for making its 

classifications. It can show the feature space for each layer in the network, and the 

features in the final layers can be very informative. Figure 5.1 shows the activation 

atlas for the final layer in an example model trained using the ImageNet (Deng et al., 

2009). The main grid shows the feature space for the chosen layer. Hovering over 

the individual features gives information about their attributions to a given class. In 

the far-left column one can select the individual classes to highlight the important 

features used for making classifications. The second column is where the different 

layers can be selected, to show how the features develop throughout the model. We 

believe that this could be a valuable tool for use with any classification model and 

would be fruitful for future research. 

 

Figure 5.1: Example activation atlas screen taken from https://distill.pub/2019/activation-atlas/ 
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5.3 Quantification of disease 
 
An automated disease scoring method requires a model which is able to quantify the 

amount of disease present. It was always our intention to begin by training a model 

to quantify a single disease at a time, however we hoped to be able to do this for 

multiple separate diseases. Due to the global Covid-19 pandemic, we were more 

limited with the data we were able to collect for this part of the project. We chose to 

focus on collecting images of yellow rust infections, due to the availability of yellow 

rust trials which would be scored over the growth season.  

 

We were encouraged by the work of Mi et al., (2020), where they were able to score 

images of yellow rust leaves with 97.99%. Their work used images of single leaves, 

which were cropped to remove the majority of background information. We hoped to 

build on this work using our collection of full wheat plot images, with the hope that 

we could eliminate the need for additional pre-processing such as cropping.   

 

We collected a dataset of over 5000 images, sorted into 1 – 9 categories that 

represent the amount of disease present, which was used to multiple deep learning 

networks in three different configurations. Unfortunately, the results of these 

experiments revealed that it was unlikely we would be able to train a model to high 

accuracies using this data alone.  

 

This work highlighted multiple issues with our quantification dataset. The first, and 

most obvious, was the clear imbalance of data across the categories. The second 

issue to note is the size of the dataset as a whole. Finally, we show that simply taking 

an image of a scored plot does not necessarily mean that the image is going to show 

the same score. Prior to fixing the amount and imbalance of the data, it is first 

important to fix the content. For use in the field, an image taken would need to be 

representative of the score of the plot to ensure that the plot as a whole is scored 

correctly. This presents a challenge thanks to the possibility of patchy infections. In 

reality a pathologist can look at a plot and be able to give the average score for that 

plot, however in this work the model has to decide based on one image which may 

not show all the available information. 
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Overcoming these problems is going to require a more substantial data collection 

effort. One method we suggest may work is to use multiple images per plot as input 

for a network, then the model could use all the data to calculate an average plot score 

in a similar way to a pathologist. This method could motivate a move from 

smartphone images collection (and later deployment of a model) to the use of 

drones. Drones have already been used in studies for remote sensing in agriculture 

(Yang et al., 2017; Inoue, 2020). It would be easy for a drone to move over a plot 

and collect for example 10 images before moving to the next plot, thus easily 

collecting data for many plots without much human interaction. It would also mean 

that a future model could also be deployed on a drone, so eliminating the need for 

someone to take the model out manually. Clearly, there is much opportunity for 

building on our work and using our findings as a guide for progressing with the 

problem of automated disease scoring. 

 

We created multiple simulated datasets of increasing complexity for determining the 

viability of scoring disease on this scale given more controlled conditions. Our 

results suggest that a deep learning model would be able to handle quantifying 

disease in this way, provided that there was enough informative data for training. 

These experiments can be used as a first assessment of the number of images 

required to reach a certain level of accuracy. The methods we define could be used 

to determine a minimum number of images required per category for a desired 

accuracy with a given number of categories. It could be a powerful means of 

evaluating the best experimental design for network training. 

 

5.4 Conclusion 
 
The aim of this thesis was to evaluate the viability of using deep learning models for 

the identification and quantification of wheat diseases using images taken in 

complex, realistic growth conditions. This work would provide a starting point for 

eventually producing an automated method to aid breeders in scoring wheat disease 

on their plants. 
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We collected a large dataset of wheat disease images, including four disease 

categories and one healthy category. This dataset is used to train various deep 

learning models with the aim of finding the best performing architecture in terms of 

classification accuracy. The accuracy results of over 97% show that deep learning 

models are capable of handling images with complex background information, such 

as would be found in realistic growth conditions. When compared with the 

performance of five human participants, our model performs at least as well as 

expert pathologists. Masking images highlights the need for collecting images of the 

same type across all categories to ensure accurate results. 

 

Another dataset of yellow rust plot images was collected, sorted into disease score 

categories to train a model in quantification of disease. This dataset was significantly 

smaller, yet contained more categories, than the classification dataset and our 

experiments suggest the need for a much larger training set of images, especially 

with regard to such a complex problem. Creating simulated images provided a 

foundation for determining the ideal amount of data necessary for achieving a 

desired classification accuracy.  

 

This thesis demonstrates the potential for using deep learning in the field to classify 

and quantify diseases on wheat. The results of the classification model are highly 

encouraging and open the door for expanding the problem to other diseases, crops, 

and potentially multiple, simultaneous infections. The data collection efforts 

highlighted various issues with regards to datasets for quantification. Further work is 

required to overcome these issues and move closer towards an automated scoring 

system.  

 

Data Availability  
 
The dataset of 999 images used in the experiment with pathologists is freely 

available from https://zenodo.org/record/7573133. Due to the size of the full datasets 

and agreements with the associated companies, these can be requested from 

james.brown@jic.ac.uk,  
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Appendix 1 
 
The residual attention model code by Deontae Pharr: 

 
from keras.layers import Input, Conv2D, Lambda, MaxPool2D, 
UpSampling2D, AveragePooling2D, ZeroPadding2D 
from keras.layers import Activation, Flatten, Dense, Add, Multiply, 
BatchNormalization, Dropout 
 
from keras.models import Model 
 
# Todo: Make scalable/all-encompassing 
class ResidualAttentionNetwork(): 
 
    def __init__(self, input_shape, n_classes, activation, p=1, t=2, 
r=1): 
        self.input_shape = input_shape 
        self.n_classes = n_classes 
        self.activation = activation 
        self.p = p 
        self.t = t 
        self.r = r 
         
    def build_model(self): 
         # Initialize a Keras Tensor of input_shape 
        input_data = Input(shape=self.input_shape) 
         
        # Initial Layers before Attention Module 
         
        # Doing padding because I'm having trouble with img dims 
that are <= 28 
        if self.input_shape[0] <= 28 or self.input_shape[1] <= 28: 
            x_dim_inc = (32 - self.input_shape[0]) // 2 
            y_dim_inc = (32 - self.input_shape[1]) // 2 
             
            # Pad the input data to 32x32 
            padded_input_data = ZeroPadding2D( (x_dim_inc, 
y_dim_inc) )(input_data) 
            conv_layer_1 = Conv2D(filters=32, 
                             kernel_size=(3,3), 
                             strides=(1,1), 
                             padding='same')(padded_input_data) 
        else: 
            conv_layer_1 = Conv2D(filters=32, 
                             kernel_size=(3,3), 
                             strides=(1,1), 
                             padding='same')(input_data) 
         
        max_pool_layer_1 = MaxPool2D(pool_size=(2, 2),  
                                     strides=(2, 2), 
                                     padding='same')(conv_layer_1) 
 
        # Residual Unit then Attention Module #1 
        res_unit_1 = self.residual_unit(max_pool_layer_1, 
filters=[32, 64, 128]) 
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        att_mod_1 = self.attention_module(res_unit_1, filters=[32, 
64, 128]) 
         
        # Residual Unit then Attention Module #2 
        res_unit_2 = self.residual_unit(att_mod_1, filters=[32, 64, 
128]) 
        att_mod_2 = self.attention_module(res_unit_2, filters=[32, 
64, 128]) 
 
        # Residual Unit then Attention Module #3 
        res_unit_3 = self.residual_unit(att_mod_2, filters=[32, 64, 
128]) 
        att_mod_3 = self.attention_module(res_unit_3, filters=[32, 
64, 128]) 
 
        # Ending it all 
        res_unit_end_1 = self.residual_unit(att_mod_3, filters=[32, 
32, 64]) 
        res_unit_end_2 = self.residual_unit(res_unit_end_1, 
filters=[32, 32, 64]) 
        res_unit_end_3 = self.residual_unit(res_unit_end_2, 
filters=[32, 32, 64]) 
        res_unit_end_4 = self.residual_unit(res_unit_end_3, 
filters=[32, 32, 64]) 
 
        # Avg Pooling 
        avg_pool_layer = AveragePooling2D(pool_size=(2, 2), 
strides=(2, 2))(res_unit_end_4) 
 
        # Flatten the data 
        flatten_op = Flatten()(avg_pool_layer) 
 
        # FC Layers for prediction 
        fully_connected_layer_1 = Dense(256, 
activation='relu')(flatten_op) 
        dropout_layer_1 = Dropout(0.5)(fully_connected_layer_1) 
        fully_connected_layer_2 = Dense(256, 
activation='relu')(dropout_layer_1) 
        dropout_layer_2 = Dropout(0.5)(fully_connected_layer_2) 
        fully_connected_layer_3 = Dense(256, 
activation='relu')(dropout_layer_2) 
        dropout_layer_3 = Dropout(0.5)(fully_connected_layer_3) 
        fully_connected_layer_last = Dense(self.n_classes, 
activation=self.activation)(dropout_layer_3) 
          
        # Fully constructed model 
        model = Model(inputs=input_data, 
outputs=fully_connected_layer_last) 
         
        return model 
 
    # Pre-Activation Identity ResUnit Bottleneck Architecture 
    def residual_unit(self, residual_input_data, filters): 
         
        # Hold input_x here for later processing 
        identity_x = residual_input_data 
         
        filter1,filter2,filter3 = filters 
         
        # Layer 1 
        batch_norm_op_1 = BatchNormalization()(residual_input_data) 
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        activation_op_1 = Activation('relu')(batch_norm_op_1) 
        conv_op_1 = Conv2D(filters=filter1, 
                         kernel_size=(1,1), 
                         strides=(1,1), 
                         padding='same')(activation_op_1) 
         
        # Layer 2 
        batch_norm_op_2 = BatchNormalization()(conv_op_1) 
        activation_op_2 = Activation('relu')(batch_norm_op_2) 
        conv_op_2 = Conv2D(filters=filter2, 
                         kernel_size=(3,3), 
                         strides=(1,1), 
                         padding='same')(activation_op_2) 
     
        # Layer 3 
        batch_norm_op_3 = BatchNormalization()(conv_op_2) 
        activation_op_3 = Activation('relu')(batch_norm_op_3) 
        conv_op_3 = Conv2D(filters=filter3, 
                         kernel_size=(1,1), 
                         strides=(1,1), 
                         padding='same')(activation_op_3) 
         
        # Element-wise Addition 
        if identity_x.shape[-1].value != conv_op_3.shape[-1].value: 
            filter_n = conv_op_3.shape[-1].value 
             
            identity_x = Conv2D(filters=filter_n, 
                             kernel_size=(1,1), 
                             strides=(1,1), 
                             padding='same')(identity_x) 
             
        output = Add()([identity_x, conv_op_3]) 
 
        return output 
 
    def attention_module(self, attention_input_data, filters): 
        # Send input_x through #p residual_units 
        p_res_unit_op_1 = attention_input_data 
        for _ in range(self.p): 
            p_res_unit_op_1 = self.residual_unit(p_res_unit_op_1, 
filters=filters) 
 
        # Perform Trunk Branch Operation 
        trunk_branch_op = 
self.trunk_branch(trunk_input_data=p_res_unit_op_1, filters=filters) 
 
        # Perform Mask Branch Operation 
        mask_branch_op = 
self.mask_branch(mask_input_data=p_res_unit_op_1, filters=filters) 
 
        # Perform Attention Residual Learning: Combine Trunk and 
Mask branch results 
        ar_learning_op = 
self.attention_residual_learning(mask_input=mask_branch_op, 
trunk_input=trunk_branch_op) 
 
        # Send branch results through #p residual_units 
        p_res_unit_op_2 = ar_learning_op 
        for _ in range(self.p): 
            p_res_unit_op_2 = self.residual_unit(p_res_unit_op_2, 
filters=filters) 
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        return p_res_unit_op_2 
 
    def trunk_branch(self, trunk_input_data, filters): 
        # sequence of residual units, default=2 
        t_res_unit_op = trunk_input_data 
        for _ in range(self.t): 
            t_res_unit_op = self.residual_unit(t_res_unit_op, 
filters=filters) 
 
        return t_res_unit_op 
 
    def mask_branch(self, mask_input_data, filters, m=3): 
        # r = num of residual units between adjacent pooling layers, 
default=1 
        # m = num max pooling / linear interpolations to do 
 
        # Downsampling Step Initialization - Top 
        downsampling = MaxPool2D(pool_size=(2, 2),  
                                     strides=(2, 2), 
                                     
padding='same')(mask_input_data) 
 
        for _ in range(m): 
            # Perform residual units ops r times between adjacent 
pooling layers 
            for j in range(self.r): 
                downsampling = 
self.residual_unit(residual_input_data=downsampling, 
filters=filters) 
 
            # Last pooling step before middle step - Bottom 
            downsampling = MaxPool2D(pool_size=(2, 2),  
                                         strides=(2, 2), 
                                         
padding='same')(downsampling) 
         
        
#===================================================================
================================ 
 
        # Middle Residuals - Perform 2*r residual units steps before 
upsampling 
        middleware = downsampling 
        for _ in range(2 * self.r): 
            middleware = 
self.residual_unit(residual_input_data=middleware, filters=filters) 
 
        
#===================================================================
================================ 
         
        # Upsampling Step Initialization - Top 
        upsampling = UpSampling2D(size=(2, 2))(middleware) 
 
        for _ in range(m): 
            # Perform residual units ops r times between adjacent 
pooling layers 
            for j in range(self.r): 
                upsampling = 
self.residual_unit(residual_input_data=upsampling, filters=filters) 
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            # Last interpolation step - Bottom 
            upsampling = UpSampling2D(size=(2, 2))(upsampling) 
         
        conv_filter = upsampling.shape[-1].value 
         
        conv1 = Conv2D(filters=conv_filter, 
                         kernel_size=(1,1), 
                         strides=(1,1), 
                         padding='same')(upsampling) 
         
        conv2 = Conv2D(filters=conv_filter, 
                         kernel_size=(1,1), 
                         strides=(1,1), 
                         padding='same')(conv1) 
 
        sigmoid = Activation('sigmoid')(conv2) 
 
        return sigmoid 
 
    def attention_residual_learning(self, mask_input, trunk_input): 
        # https://stackoverflow.com/a/53361303/9221241 
        Mx = Lambda(lambda x: 1 + x)(mask_input) # 1 + mask 
        return Multiply()([Mx, trunk_input]) # M(x) * T(x) 
 

 

 


