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The dynamics of unstable waves 
in sea ice
Alberto Alberello 1*, Emilian Părău 1 & Amin Chabchoub 2,3

Wave and sea ice properties in the Arctic and Southern Oceans are linked by feedback mechanisms, 
therefore the understanding of wave propagation in these regions is essential to model this key 
component of the Earth climate system. The most striking effect of sea ice is the attenuation of waves 
at a rate proportional to their frequency. The nonlinear Schrödinger equation (NLS), a fundamental 
model for ocean waves, describes the full growth-decay cycles of unstable modes, also known as 
modulational instability (MI). Here, a dissipative NLS (d-NLS) with characteristic sea ice attenuation is 
used to model the evolution of unstable waves. The MI in sea ice is preserved, however, in its phase-
shifted form. The frequency-dependent dissipation breaks the symmetry between the dominant left 
and right sideband. We anticipate that this work may motivate analogous studies and experiments in 
wave systems subject to frequency-dependent energy attenuation.

Arctic and Antarctic sea ice play a prominent role in the Earth system by regulating heat and momentum 
exchanges over large spatial  scales1–4. The sea ice properties are intimately linked to ocean wave properties via 
feedback mechanisms in the marginal ice zone (MIZ)5–7 which around Antarctica, fed by intense Southern Ocean 
waves all year  round8, extends for hundreds of  kilometers9–11. Rapid evolution of the polar regions driven by 
climate  change12–14 have revived and energised research activities in understanding waves properties and feedback 
in the  MIZ7,15, including in the emerging Arctic  MIZ16.

In the MIZ exterior, where the sea ice cover is a mixture of small floes (much shorter than the wavelength) and 
interstitial frazil  ice17,18, as shown in Fig. 1, viscous-like losses have been identified as the main wave attenuation 
 mechanism19–21. In the MIZ interior, where floes are larger and comparable to the wavelength, wave attenuation 
by scattering  dominates20. At leading order in wave steepness, i.e. the wave nonlinearity parameter, each wave 
component attenuates exponentially with distance, see schematic in Fig. 1, and at a frequency-dependent attenu-
ation  rate19,22,23. That is, shorter waves are attenuated faster than their longer counterparts. For a comprehensive 
review of waves in sea ice we refer the reader to Meylan et al.19 and  Squire20, and references therein.

Narrowband ocean wave dynamics can be accurately described by the nonlinear Schrödinger equation (NLS). 
One intriguing dynamical phenomenon, which is responsible for the formation of large-amplitude and coher-
ent waves and has attracted the scientific interest since the late 60s, is the modulation instability (MI)24. In 
fact , and in contrast to the linear stability analysis of Stoke waves, the complete growth and decay cycles can 
be described within the NLS  framework25. More recently, several studies have been devoted to investigate the 
effect of wave dissipation on the phase-shifted recurrent MI focusing  cycles26–31. The latter studies highlight the 
phase-shifted recurrence in the long-term evolution of nonlinear and unstable waves, when constant, weak, and 
linear dissipation effects are at play. That said, the NLS can be also adapted to accommodate the influence of sea 
ice attenuation on the waves by including viscous-like losses as a dissipative term that matches the decay rate of 
the linear amplitude, as shown  by32,33. Within this context, it as been shown that it is important to account for 
the ice-induced frequency dependency in the attenuation of ocean waves in the  MIZ34.

We will focus our attention on the evolution dynamics in infinite depth regime since most of the sea ice 
processes are relevant in deep-water regimes. In this case the weakly nonlinear spatial evolution of damped 
hydrodynamic waves can be described by the d-NLS [e.g26,34]:

where ψ is the complex wave amplitude, which is evolving along the space co-ordinate x, while t denotes the time 
in the frame of reference moving with at the group speed ( t = t ′ − x/cg where cg is the group speed and t ′ the 
time in the fixed frame of reference), i is the imaginary unit, g the gravitational acceleration, k0 the wavenumber 
of the carrier wave, ω0 =

√

gk0 the angular frequency, and D(ω) the frequency-dependent linear attenuation rate. 

(1)ψx + i
k0

ω2
0

ψtt + ik30|ψ |2ψ = −D(ω)ψ ,
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Eq. (1) is therefore written in the frame of reference moving with at the group speed. We remark that the damping 
term is introduced using an heuristic approach, and is equivalent to the one introduced  in34 with the incorpo-
ration of a whole range of dissipative parameters while accounting for the group velocity as reference celerity.

Following19, the viscous-like wave dissipation due to sea ice follows a frequency power law with a particular 
feature that higher frequency components undergo stronger attenuation:

where we use ω = ω0 + δω in the formulation of the dissipation coefficient to explicitly highlight the difference 
in frequency between the carrier wave angular frequency ω0 and other spectral components. The power law 
exponent n depends on the physical mechanisms at  play20 (e.g. viscous  losses16, basal  friction35,  scattering21,36, 
 overwash37,38, floe  slamming39), and usually falls in the range 2–419. The same applies for the real coefficients αn , 
which also depends on the same dynamical and complex  interactions19 and, therefore, on effective sea ice proper-
ties (e.g. thickness, density, effective viscosity)40. The power law dissipation with exponent n = 3 , as mentioned in 
Eq. (2), was found to agree well with field observations and the mathematical  modelling19, and will be therefore 
considered herein. The exponent n is derived from the classical linearised water wave problem when an extra 
pressure term is added to the free surface dynamic boundary condition to model sea ice. When the pressure 
term is assumed proportional to the vertical velocity the resulting wave dispersion relation has imaginary part 
(equivalent to attenuation rate) proportional to ω319. Note that the model is equivalent to the one discussed  in34, 
but in this case the dissipative coefficients α incorporates all the physical parameters and the evolution of the 
wave envelope is written in the frame of reference moving at group speed. The model can be easily modified to 
include other forms of frequency-dependent dissipation.

We investigate the classical MI problem of a monochromatic wave train with frequency ω0 and initial ampli-
tude ai subjected to initially small symmetric sideband perturbations ali and ari :

(2)D(ω) = αn(ω0 + δω)n,

(3)ψi(t) = ai + alie
−iδωt + ari e

iδωt .

Figure 1.  Example of Southern Ocean waves (wave height ≈ 5 m and peak period ≈ 12 s) propagating in a 
MIZ comprised of small ice floes (1–10 m) as seen from the icebreaker S.A. Agulhas II (beam 21.7 m, for visual 
reference) on the 24 July 2022 at 59◦ S and 1 ◦ E, and schematic of exponential dissipation for a monochromatic 
wave of unit amplitude propagating from left to right. In the schematic the green line denotes the surface 
elevation and the red line the wave envelope which undergoes exponential attenuation with distance.
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Note that no phase shift between the carrier and sidebands is imposed. The initial amplitude of the left and 
right sideband, ali and ari  , respectively, is set as 1% of the carrier wave amplitude, i.e. ali = ari = 0.01ai , and the 
frequency difference as δω = 0.1ω0 . Note that the chosen δω gives the maximum growth rate of the sidebands 
in ice free  waters24,41.

The wave steepness, defined using wavenumber of the carrier wave and the sum of all amplitudes, [e.g.42]:

is initially set to 0.1, also defining Tp = 2π/ω0 = 12 s. The corresponding wavelength and wavenumber are 
L = 225 m and k0 = 2.8× 10−2 m−1 respectively. Wave period and steepness are representative of intense storm 
waves at the edge of the Antarctic  MIZ18, wave conditions few tens of kilometers away from the sea ice edge and 
within the MIZ are illustrated in Fig. 1. Besides the conservative case used as a reference, 4 dissipation levels 
defined by α3 value which span a large range are analysed (summarise in Table 1). The dissipative cases are arbi-
trarily defined with respect to each other as low, medium, high and very high.

This work will focus on the physical effects on the unstable wave dynamic when considering frequency-
dependent dissipation in the wave modelling to third-order in wave nonlinearity. We particularly show that 
the shifted MI recurrence is retained, but with a noticeable decrease in the recurrent focusing period with the 
increase of the sea ice dissipation value. Moreover, the asymmetric damping in wave energy components leads to 
an instrinsic behaviour of the dominant sidebands in the respective phase space. We anticipate that this study will 
motivate numerical and experimental studies in several nonlinear wave systems governed by a frequency depend-
ent forced/damped NLS, e.g. optical  cavities43, nonlinear  optics44, exciton-polariton Bose–Einstein  condensates45, 
plasma  physics46, and  metamaterials47.

Results
Spatial evolution and recurrence. The spatial evolution of the unstable dimensionless, normalized, 
envelope |�| = |ψ |/ai in absence of dissipation, i.e. when considering the conservative case, is shown in Fig. 2a. 
Indeed, this is a well-anticipated and know intrinsic dynamic, which involves recurrent focusing cycles with 
same wave amplification factor along the dimensionless space co-ordinate X = x/L . Moreover, when consider-
ing adjusting the wave packet motion with respect to the group speed, all periodic wave amplification maxima 
occur at the same dimensionless time T = t/Tp . This corresponds to the pulsation dynamics of a B–Type dou-
bly-periodic  breather48 for which the recurrence distance is ≈160 wavelengths for the chosen wave parameters. 
Indeed, this is in good agreement with the theoretical value predicted using:

When accounting for a gradual increase of dissipation, as defined by the parameter D , phase-shifted focus-
ing recurrence, which is a characteristic A–Type periodic  feature26,49, emerges. The evolution of the respective 
wave packets are shown in Fig 2b–e. This occurs already for very small values in wave dissipation. Moreover, 
the distance between the cycles diminishes compared to the conservative case, with the shortening being more 
evident for growing degrees of dissipation for low and medium dissipation. The first pseudo-recurrence cycle is 
150 wavelengths for low dissipation and 130 wavelengths for medium dissipation. The picture is more complex 
in the two most dissipative cases in which the length of the first pseudo-focusing cycle increases marginally, 
while immediately followed by the next slight wave focusing. We attribute this behaviour to the rapid decrease 
of wave amplitude with the increase of wave dissipation, and thus the lower wave nonlinearity results in a slower 
growth-decay cycle for the MI. This can be also traced in Eq. (5) in which the wave steepness appears in the 
denominator. As such, the rapid energy loss contributes to the increase of the recurrence period.

By using as a boundary condition the numerical results at the end of each pseudo-recurrence cycle we can 
obtain an updated value for the recurrence length from Eq. (5). Nevertheless, we note that the predictive ability 
of Eq. (5) deteriorates at each cycle and for increasing degree of dissipation in low and medium dissipation. The 
formula usually underpredicts the recurrence length compared to the numerical simulations, e.g. the recurrence 
length of the third cycle is underpredicted by ≈ 10% in low dissipation and by ≈ 30% in medium dissipation. For 
the case of high dissipation, the prediction of the recurrence length in fact improves. Compared to the numeri-
cal simulations, the pseudo-recurrence length predicted using Eq. (5) is shorter by ≈ 10% at the third cycle and 

(4)ε = k0

(

a+ al + ar
)

,

(5)r =
1

2k0ε2
ln

[

8

3

(

2a

al + ar

)4
]

.

Table 1.  Dissipation levels in the simulations.

Dissipation α3 [ s3m−1] D(ω0) [ m−1] ���X=445 [–]

N.A. 0 0 1.000

Low 7 × 10−7 10−7 0.991

Medium 7 × 10−6 10−6 0.905

High 7 × 10−5 10−5 0.372

Very high 1.4 × 10−4 2 × 10−5 0.136
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longer by ≈ 20% at the subsequent cycle. This underlines the fact that the wave prediction become unreliable in 
the case of very high dissipation.

The spatial evolution of the mean wave amplitude 〈�〉 , computed with respect to the time variable, for the 
different dissipation levels is summarised in Fig. 3. Note that the vertical axes is in logarithmic scale to highlight 
deviation from the benchmark exponential decay. In the conservative case, energy is naturally conserved along 
the propagation in the in space coordinate, i.e. ��(X)� = 1 . With the increase of the level of the exponential dis-
sipation rate, i.e. the negative slope is linear in Fig. 3, the mean wave amplitude at the end of the computational 
domain is summarised in Table 1. These values are within 1% of the energy level of the carrier wave component 
subjected to linear attenuation, i.e. exp [−D(ω0)x] . Therefore, the presence of modulation instability cycles does 

Figure 2.  Spatial evolution of the unstable wave envelope in the time domain for increasing dissipation (top to 
bottom) from none (a) to very high (e). The corresponding dissipation values D for the carrier wave are reported 
in Table 1. In panels (a), i.e. the conservative B-Type breather, and (b), i.e. the dissipative A-Type breather, 
the recurrence distances (coloured bars at the bottom) and the recurrence patterns (dashed white lines) are 
highlighted.
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not alter the overall energy that is carried by waves in the dissipative sea ice domain. The negligible difference 
contrasts with simulations for random waves in which the nonlinear cases remained significantly more energetic 
in the sea ice cover compared to corresponding linear cases and the energy decayed less than exponentially 
[cf.34]. However, it is worth noting that for a continuous spectrum the carrier wave component progressively 
shifted to longer wave  period50 which are also less dissipative. On the other hand, the three wave system has a 
more symmetric spectrum and the period of the carrier wave component remains constant during the long-term 
evolution in space. It is also noteworthy that for the lowest dissipation level, at the end of the spatial domain 
in our numerical simulations (approximately three recurrence cycles), the mean wave amplitude is reduced by 
less than 1%. Nonetheless, the spatial pattern of the recurrence cycles still becomes phase-shifted, see Fig. 2b.

Wave amplification. In each of the simulations performed, we tracked the maximum amplification in 
space, irrespective of time, i.e. max |�| shown as thick red line in Fig. 4, and compared to the conservative case, 
depicted in thin red line in Fig. 4. As shown in the surface plots in Fig. 2, the shortening of the recurrence cycle 
is evident even for low dissipation and as a result the maxima occur at location different from the ones for the 
conservative case but amplification is almost unaltered. Strikingly, in the medium dissipation case, see Fig. 4b, 
the spatial frequency of local maxima is almost doubled compared to the conservative case, i.e. the locations in 
which rogue waves occur, i.e. max |�| ≥ 2 , is increased for medium level of dissipation. On the first cycle of 
recurrence the maximum amplification is only slightly diminished and at the end of the numerical domain (after 
5 cycles of phase-shifted recurrence) the maximum amplification is ≈ 2 . For greater levels of dissipation, that 
is, high and very high and as in Fig. 4c–d, the shortening of recurrence cycle is even more pronounced. In the 
high dissipative case, only the first two cycles of phase-shifted recurrences have amplification larger than one, 
since the first cycle has an amplification ≈ 1.5 . For very high dissipation, the damping is predominant and the 
amplitude amplification never exceeds one.

Sidebands dynamics. The evolution of the carrier wave ( A = a/ai ) and first left and right order sideband 
(

Al = al/ai , Ar = ar/ai

)

 is also shown in Fig. 4. All the cases show the energy exchange from the carrier to the 

sidebands during the growing phase of the MI cycle and the opposite in the decaying phase. The frequency 
dependent dissipation would imply that the left (right) sideband undergoes 30% lower (greater) dissipation than 
the carrier. That said, the difference is small but noticeable only in the high dissipation case difference, in all the 
other cases the difference is negligible, i.e. the blue and green lines overlap. For low dissipation, only an acceler-
ated cycle in the dynamics of the carrier and the first order sidebands is observed but their amplitude remain 
almost unaltered compared to the conservative case (thin lines in Fig. 4). For medium dissipation the sidebands 
never return to the initial amplitude level but at the end of each decay cycle are more energetic, i.e. each local 
minimum has a higher value of the previous one. For high dissipation rate a similar behaviour is noted, but the 
higher dissipation rate means that the sidebands are eventually damped. In the high dissipative case, the energy 
exchange between the carrier and the sidebands is almost suppressed after the first cycle, and the carrier band 
decays exponentially (the thick black line overlaps the dash dotted line in Fig. 4d).

To study the dynamics of the first order left sideband we construct its phase space diagram  as51:

Figure 3.  Spatial evolution of the mean wave amplitude in logarithmic scale for the dissipative cases, from low 
(yellow) to very high (blue), as listed in Table 1.
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where �φl denotes the phase difference between the carrier wave mode and the dominant left sideband, 
i.e. �φl = φ − φl . The phase space diagram of the right sideband is obtained in similar manner.

Figure 5 reports the conservative case (in black) in which the subsequent cycles of the MI repeat identically 
in time, i.e. they repeat the same track, and are confined in the right side of the phase space diagram (right and 
left sideband behave exactly in the same way). For the selected initial condition, the trajectory in the phase space 
diagram is confined within the separatrix, and recurrence cycle are in-phase. This is consistent with the expected 
B–Type recurrence. For low to medium dissipation (Fig.5a–d), trajectories switch to an outer trajectory (shaped 
like an eight) and result in phase-shifted recurrence cycles, i.e. A–Type recurrence. Subsequent cycles for the left 
(right) sideband move clockwise (anti-clockwise) and at a higher degree for low dissipation. For frequency-inde-
pendent attenuation no rotation of the main axes in the phase space diagram is observed and the left and right 
sideband behaves in the same manner, see dotted line in Fig. 5a–d. For high to very-high dissipation the switch 
to an eight-like shape of the trajectory that spans the left and right hand side of the phase space is also observed, 
but subsequent loops rapidly degenerate into spiralling cycles due to the substantial attenuation, see Fig. 5e–h.

The different behaviour of the frequency-dependent and frequency-independent and constant attenuation 
is clearly shown by examining the phase difference between the sidebands and the carrier, see Fig. 6. For the 
conservative case, i.e. the case of zero dissipation, the phase difference is the same for the dominant left and right 

(6)
{

ηlx , η
l
y

}

=

{

∣

∣al
∣

∣

2

|ai|2
cos�φl ,

∣

∣al
∣

∣

2

|ai|2
sin�φl

}

,

Figure 4.  Spatial evolution of the wave amplitudes for low to very high dissipation (top to bottom) for the 
carrier peak energy (black), left (blue) and right sideband (green), and the maximum amplitude (red). Thin 
lines denote the conservative case. The dash-dotted line denotes linear decay of the carrier wave amplitude 
component.
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sideband and confined between −π/2 and π/2 , see continuous black line in Fig. 6. For the frequency-dependent 
dissipation left and right sideband span angles between −π to π and behave differently, particularly, for low 
dissipation levels (Fig. 6a), with the right sideband lagging behind the left one in the rotation. It is worth not-
ing that for frequency-independent attenuation, as denoted by dotted line in Fig. 6, the right and left sideband 
behave the same and have an intermediate behaviour between the sidebands in the frequency dependent case. 
Differences between the right and left sidebands in the dissipative case tend to disappear for the higher attenu-
ation levels, see Fig. 6c–d.

Conclusions
The classical dynamics of the modulational instability is studied in the presence of a frequency-dependent 
attenuation, this is in contrast with previous works in which forcing and damping were considered frequency 
independent, e.g.26,29,31,51. Nevertheless, similarly to previous works, a small dissipation is capable of altering the 
recurrence cycle from a B–Type (non-shifted) to A–Type (shifted) breather-type evolution. The most important 
effect of the differential attenuation rate modifies the dynamics of the left/right sidebands and there is a lag 
between the two. However, compared to frequency-independent attenuation, differences in energy and recur-
rence pattern appear unaffected. The large initial nonlinearity of the system triggers pseudo-recurrence cycles 

Figure 5.  Phase space diagram of the left (a, c, e, g) and right sideband (b, d, f, h) for low to very high 
dissipation (top to bottom). The black lines depict the conservative case and the dotted line the frequency 
independent dissipation. Note that the axis’ limits change in each panel.



8

Vol:.(1234567890)

Scientific Reports |        (2023) 13:13654  | https://doi.org/10.1038/s41598-023-40696-3

www.nature.com/scientificreports/

with large amplification of the initial sea state, particularly, for low and medium dissipation. Interestingly, for 
medium dissipation rates the shortening of the cycle means that there are more instances in the domain with 
amplifications greater than two, compared to the conservative case. For comparison, random sea states, see Ref.34, 
reverted towards Gaussian statistics in presence of dissipation.

Despite the complex dynamics in the nonlinear evolution, the total energy decays in agreement with linear 
theory, this contrasts the random waves (cf.34) in which for large dissipation make a considerable difference 
between the linear and nonlinear case. This difference is attributed to the shift of the peak frequency in a continu-
ous wave spectrum, whereas for the classical MI case the carrier wave frequency remains unshifted.

Ultimately, the results show that an energetic swell system propagating in the Arctic and Antarctic sea ice can 
generate exceptionally large waves where none were expected, especially, when dissipation is mild to medium, 
and could cause unexpected hazardous conditions for vessels operating in the marginal ice zone. The present 
research highlights the need to further explore the dynamics of high-order NLS-type systems for broadband 
processes and in the presence of a frequency dependent damping, which could be applied to other physical sys-
tems, e.g. nonlinear optics, Bose–Einstein condensates, and metamaterials, in addition to hydrodynamics waves.

Methods
Benjamin–Feir index and recurrence distance. The Benjamin–Feir Instability  index52,53 is

(7)BFI =
√
2ε

δω/ω0
.

Figure 6.  Phase-difference for low to very high dissipation (top to bottom) for the left (blue) and right sideband 
(green). The black line shows the conservative case and the dotted line the frequency independent dissipation.
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The instability condition for the framework evolving in time is 0 < K < 2
√
2k2a , so the one in space becomes 

0 < � <
√
2kaω , since �/ω = K/(2k) . That is, for the same initial long-wave perturbation and assuming a 

typical exponential energy attenuation under the sea ice the following holds:

For the chosen wave properties the sea ice Benjamin–Feir index at the ice edge BFISI  is 1.41, i.e. 
BFISI (x = 0) = 1.41 , for all considered D values. This is a sufficient condition to trigger growth-decay cycles, 
typical to the  MI54,55.

The theoretical recurrence period for the growth and decay cycle of the unstable wave train is given  by56. In 
the framework of a wave propagating we apply the canonical transformation using the group velocity, to obtain 
the recurrence length (Eq. 5)). Compared  to56, the ratio between the carrier and the sidebands is modified to 
account for possible asymmetry in their amplitude. For the chosen boundary conditions the recurrence cycle 
corresponds to 155 wavelengths using the carrier wavelength L as normalising factor.

Dissipation levels. Various level of dissipation on unstable wave dynamics are analysed in this work: from 
the conservative case (used as benchmark) to very high attenuation values. Recalling that n = 3 is used as the 
power law exponent for the dissipation, the corresponding scaling parameter α3 are reported in Table 1. The 
linear attenuation rate for the dominant wave frequency is also given, i.e. D(ω0) = α3ω

3
0 . The dissipation length-

scale can be expressed by the ratio k/D(ω0) and ranges from infinity for the conservative case, i.e. D = 0 , to 
approximately 1400 wavelengths for the very high dissipative case.

It is worth noting that dissipation scales ω3 in our model, therefore the carrier wave component and the 
sidebands are subjected to different attenuation rates. In particular, by using δω = 0.1ω0 , we obtain that the left 
sideband attenuates at a rate 0.73D(ω0) and the right sideband at a rate 1.33D(ω0) . Therefore, for sidebands with 
the maximum growth rate and cubic attenuation with respect with frequency, the difference in attenuation rate 
between the left and right sideband is almost twice stronger, when considering D(ω0 + δω)/D(ω0 − δω) = 1.83.

Numerical solution. The d-NLS (1) is solved numerically, by advancing ψ(x, t) in space using the fourth 
order Runge-Kutta method. A time-periodic domain which encompasses a full cycle of modulation, includ-
ing 10 wave periods for the chosen δω , is used. As such, this makes an efficient and accurate computation of 
time derivatives in the Fourier domain possible. The frequency-dependent dissipative term can be computed in 
Fourier space in a straightforward manner using the Fourier and inverse Fourier transform ( F  and F−1 respec-
tively) as the following:

The time domain is discretized using 26 elements and the resulting timestep is δt =1.875 s. Thus, T/δt = 6.4 
and the unstable wave envelope is propagated over 100 km in space using δx = 1 m (in dimensionless form the 
computational domain corresponds to X = x/L = 445 wavelengths). Temporal and spatial resolutions guarantee 
numerical stability.

Data availability
All data generated or analysed during this study are included in this published article.
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