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There is no belief update bias for neutral events: failure to replicate Burton
et al. (2022)
Neil Garrett a and Tali Sharotb,c,d

aSchool of Psychology, University of East Anglia, Norwich, UK; bAffective Brain Lab, Department of Experimental Psychology,
University College London, London, UK; cThe Max Planck UCL Centre for Computational Psychiatry and Ageing Research,
University College London, London, UK; dDepartment of Brain and Cognitive Sciences, Massachusetts Institute of Technology,
Cambridge, MA, USA

ABSTRACT
In a recent paper, Burton et al. claim that individuals update beliefs to a greater extent
when learning an event is less likely compared to more likely than expected. Here, we
investigate Burton’s et al.’s, findings. First, we show how Burton et al.’s data do not in
fact support a belief update bias for neutral events. Next, in an attempt to replicate
their findings, we collect a new data set employing the original belief update task
design, but with neutral events. A belief update bias for neutral events is not
observed. Finally, we highlight the statistical errors and confounds in Burton et al.’s
design and analysis. This includes mis-specifying a reinforcement learning approach to
model the data and failing to follow standard computational model fitting sanity
checks such as parameter recovery, model comparison and out of sample prediction.
Together, the results find little evidence for biased updating for neutral events.In a
recent paper, Burton et al. claim that individuals update beliefs to a greater extent
when learning an event is less likely compared to more likely than expected. Here, we
investigate Burton’s et al.’s, findings. First, we show how Burton et al.’s data do not in
fact support a belief update bias for neutral events. Next, in an attempt to replicate
their findings, we collect a new data set employing the original belief update task
design, but with neutral events. A belief update bias for neutral events is not
observed. Finally, we highlight the statistical errors and confounds in Burton et al.’s
design and analysis. This includes mis-specifying a reinforcement learning approach to
model the data and failing to follow standard computational model fitting sanity
checks such as parameter recovery, model comparison and out of sample prediction.
Together, the results find little evidence for biased updating for neutral events.
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Introduction

Unrealistic optimism (Weinstein, 1980) is the ten-
dency to underestimate the likelihood of negative
events (such as illness, accident and natural disas-
ters) and overestimate the likelihood of experien-
cing positive events such as professional success
(Wiswall & Zafar, 2015). It impacts human decision
making in domains ranging from politics to
medical care (Krieger et al., 2016; Paling, 2003;
Staats et al., 2018). Understanding the mechanism
that generates unrealistic optimism is crucial for
developing methods to mitigate this bias, for
example in relation to beliefs about the risk of

climate change (Sunstein et al., 2016) or COVID-19
(Globig et al., 2022).

A core mechanism shown to generate and main-
tain positive beliefs is asymmetric belief updating
(Benjamin, 2019; Eil & Rao, 2011; Kappes et al.,
2018; Korn et al., 2012; Kube & Rozenkrantz, 2021;
Kuzmanovic et al., 2018, 2015; Mobius et al., 2011)
whereby individuals place a larger weight on infor-
mation that is better than expected, compared to
worse than expected, when updating their beliefs.
This phenomenon has been shown both in relation
to beliefs about future negative events (e.g. learning
that the likelihood of being a victim of card fraud is
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lower than expected leads to greater belief updat-
ing than learning it is higher than expected) and
positive events (e.g. learning that the likelihood of
winning a grant is higher than expected leads to
greater belief updating than learning it is lower
than expected). This asymmetry in updating can
lead to optimistic beliefs, biased self-perceptions
and flawed financial predictions (Barber & Odean,
1999; Dunning et al., 2004; Eil & Rao, 2011; Green-
wald, 1980; Kube et al., 2022; Kube & Rozenkrantz,
2021; Kuhnen, 2015; Peysakhovich & Karmarkar,
2016; Russo et al., 1996; Shefrin, 2009).

All past studies (Kappes et al., 2018; Kube et al.,
2022; Kuzmanovic et al., 2018, 2016, 2015; Kuzma-
novic & Rigoux, 2017; Ma et al., 2016; Oganian
et al., 2019; Sharot et al., 2011) except one
(Burton et al., 2022) have examined optimistic
biased updating in relation to beliefs about
future aversive (e.g. catching a cold) or positive
(e.g. being invited to a party) events. For negative
events, beliefs are updated more in response to
learning the likelihood of the negative event is
lower than expected (Garrett & Sharot, 2017;
Kappes et al., 2018; Kuzmanovic et al., 2018,
2016, 2015; Kuzmanovic & Rigoux, 2017; Oganian
et al., 2019; Sharot et al., 2011). For positive
events, beliefs are updated more in response to
learning the likelihood of the positive event is
greater than expected (Garrett & Sharot, 2017).
Recently, Burton et al., examine belief updating
for neutral events. They loosely base their study
on the belief update task (Kappes et al., 2018;
Kuzmanovic et al., 2018, 2016, 2015; Kuzmanovic
& Rigoux, 2017; Ma et al., 2016; Oganian et al.,
2019; Sharot et al., 2011; Sharot & Garrett, 2022).
They claim to show a greater degree of updating
after learning that neutral events are less likely
than expected compared to more likely. They
suggest that their results implies that the optimis-
tic update bias found when examining updating
for positive and/or negative events is not
genuine.

However, instead of using the classic task
(Oganian et al., 2019; Ossola et al., 2020; Sharot
et al., 2011) to investigate this, Burton et al.
alter the task, changing the response scale and
the distribution of probability base rates, among
other modifications. These modifications, as dis-
cussed in detail below, have been previously
documented to introduce confounds, not present
in the original task, which will indeed lead to

false positives (Garrett & Sharot, 2017; Sharot &
Garrett, 2022).

Here, we attempted to replicate Burton et al.’s
findings of biased belief updating with neutral
stimuli. We were unable to replicate their results
when analysing Burton et al.’s own data. In addition,
we found evidence that their implementation of the
task introduced confounds in the design and analy-
sis. Moreover, we were unable to replicate their
results in a new data set we collected (using an
unconfounded set of stimuli), finding no evidence
of bias. Together, these findings suggest that
there is no evidence for asymmetric belief updating
for neutral events.

Materials and methods

Participants

One hundred participants were recruited via the
online platform Prolific. This sample size is the
same as the one used by Burton et al., in Exper-
iments 1–3. Completion of the experiment took
approximately 1 hour and participants were com-
pensated for their time. The study was approved
by UCL’s Ethics Committee. This study was not
preregistered.

Task

The study involved two sessions (Figure 1(a)). In a
first session, each participant was presented with
one of 39 life events (e.g. Buy laundry detergent in
the next two weeks) and asked to imagine the
event happening to them. They were then asked
to estimate how likely that event was to happen
to them (E1); participants were also asked to give
a second estimate of the likelihood of the event
happening to an average person in the population
(eBR; an estimate of the base rate). Participants
were instructed to type in each estimate between
3% and 77% and were not able to enter responses
outside of this range. There were no restrictions
on participants’ response time. The order of the
two estimates (E1 and eBR) was counterbalanced
between subjects by randomly assigning each par-
ticipant to one of two conditions: E1 followed by
eBR (N = 51), or eBR followed by E1 (N = 49). After
these two initial estimates were recorded, partici-
pants were shown the base rate statistic (BR) of
the event happening to someone from the same
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socioeconomic environment as them, which ranged
from 10% to 70%. Finally, participants were asked to
rate how negative or positive they found the event
on a five-point scale (1 = very negative, 2 = negative,
3 = neural, 4 = positive, 5 = very positive). In a
second session, which took place immediately
after the first session, participants were asked to
re-estimate how likely each event was to happen

to them (E2). Again, there were no restrictions on
participants’ response time.

After completion of the task, we tested partici-
pants’ memory for the information presented. Par-
ticipants were asked to recall the information
previously presented (BR) of each event. Sub-
sequently, participants were then asked to rate all
life events according to their past experience with

Figure 1. Task design. (a) On each trial, participants (N = 100) were presented with a short description of 1–39 events and
asked to estimate how likely this event was to occur to them. Estimates were entered into a text box displayed on the com-
puter screen using a computer keyboard on a scale between 3% and 77%. Participants were then asked to estimate how
likely the event was to occur on average in the population on the same scale. They were then presented with the average
probability of that event occurring to a person like themselves (derived from factual sources, see Supplementary Materials).
In a second session, participants were asked to re-estimate how likely the event was to occur to them. For each event, an
update term was calculated as the difference between the participant’s first and second estimations, such that positive
numbers indicate a move towards the base rate. (b) All events probabilities lay between 10% and 70% with a midpoint
of 40. (c) Following Burton et al. (2022), we plot the magnitude of belief updating for events rated as neutral by participants,
predicted by the linear mixed effects model with bars representing 95% confidence intervals. As can be observed, there is
no asymmetry in belief updating for trials in which participants learned the event is more likely than they had originally
estimated (upwards) or less likely (downwards). In other words, we were unable to replicate the difference in updating
Burton et al. report.
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each event (“Has this event happened to you
before?” From 1 = never to 6 = very often), vividness
of imagination (“How vividly could you imagine this
event?” From 1 = not vivid to 6 = very vivid); famili-
arity (“Regardless if this event has happened to
you before, how familiar do you feel it is to you
from TV, friends, movies and so on?” From 1 = not
at all familiar to 6 very familiar); and arousal
(“When you imagine this event happening to you
how emotionally arousing is the image in your
mind?” From 1 = not arousing at all to 6 = very
arousing). The survey was constructed and pre-
sented using web based survey service Qualtrics.

Analysis

The aimof this studywas to examine if a bias emerges
in updating beliefs about neutral life events. Life
events were categorised as neutral for each partici-
pant individually according to their own evaluation.
Specifically, events were classified as neutral if the
participant rated the event as 3 during the task
(mean [sd] number of trials rated neutral per partici-
pant: 19.23 [6.56]) and we made sure to only
include these neutral events in the analysis.

Participants could either receive information in a
“downwards direction” or an “upwards direction”
depending on whether the participant initially over-
estimated or underestimated the probability of the
event relative to the base rate, respectively. Specifi-
cally, if their first estimate (E1) was higher than the
base rate presented (BR), the information would
be categorised as “downwards” and if their first esti-
mate (E1) was lower than the base rate presented
(BR), the information would be categorised as
“upwards”. Trials in which the initial estimate was
equal to the statistic presented were excluded
from subsequent analyses as these could not be
categorised into either condition. In addition, we
followed the exclusion criterion employed by
Burton et al. Specifically, mean updates in each of
the two conditions (upwards/downwards) were cal-
culated and outliers were removed (±3 × the inter-
quartile range).

Linear mixed effect models

Belief update was calculated for each trial and par-
ticipant as the difference between first and second
estimate. As done previously (e.g. Kuzmanovic
et al., 2015) and followed by Burton et al., update
was calculated such that positive scores indicate a

move towards the base rate and negative scores a
move away from the base rate:

update (downwards) = E1–E2

update (upwards) = E2–E1

Following Burton et al. we used a linear mixed
effects (LMM) model with update entered as the
dependent variable, direction of error (upwards/
downwards) as a fixed factor, and participant as a
random factor, including intercepts and slopes as
random effects. In the syntax of the lme4 package,
the specification for the regression was as follows:

update � direction + (1 + direction|Participant)
We then used Type III tests and Satterthwaite’s

approximation for degrees of freedom to calculate
the statistical significance of the fixed effects. We
also examined whether we could detect an effect
if we ran the LMM without random slopes, i.e.

update � direction + (1|Participant)
Tobeclear,wedonot think this is a validmodel spe-

cification but wanted to test whether even with this
very lenient approach that Burton et al. took to the
data, a false positive could arise for neutral events
when the proper experimental design was used.

Finally, we reran the LMM (with both random
intercepts and slopes) excluding trials (25% of
trials rated neutral) that would be assigned into a
different category under and alternate classification
scheme (Garrett & Sharot, 2017, 2014) in which trials
were partitioned into downwards/upwards accord-
ing to whether participants estimate of the base
rate (eBR) was higher (downwards) or lower
(upwards) than the base rate presented (BR).

Linear regression

Next we examined the relationship between esti-
mation errors and update. For each trial, an esti-
mation error term was calculated as the unsigned
difference between the probability presented and
participants’ first estimate on that trial (the likeli-
hood the event happens to them, i.e. E1).

estimation error =
|probability presented− first estimate |

We estimated the extent to which participants
integrated new information into their beliefs by
regressing absolute estimation errors against
update scores separately for upwards and
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downwards trials for each participant:

Update (downwards) = b0 + b1∗estimation error

Update (upwards) = b0 + b1∗estimation error

This resulted in two scores (the unstandardised
regression coefficients b1 in the equations above)
for each participant: one for upwards trials and
one for downwards trials. These were compared
with one another using paired sample t tests.

Bayesian analysis

This analysis directly follows the procedure of
Burton et al.

Participants estimate of each event occurring
to themselves in the future (E1) and estimate
of the base rate (eBR) were used to calculate
an Implied likelihood Ratios (LHR) on each
trial as:

LHR = E1
1− E1

4
eBR

1− eBR

This LHR was then used in conjunction with the
base rate presented (BR) to calculate trial by trial
predicted posterior odds, calculated as:

Posterior Odds = BR
1− BR

× LHR

Finally, Posterior Odds were used in conjunction
with E1 to calculate the degree to which a rational
Bayesian agent would update on each trial, as:

Bayesian Update = E1− Posterior Odds
1 + Posterior Odds

∣
∣
∣
∣

∣
∣
∣
∣

From here, two measures were calculated (Baye-
sian Difference, Bayesian Raito), both of which
compare Bayesian Update with participants actual
update (defined as above) observed:.

Bayesian Difference = Bayesian Update− Update

Bayesian Ratio = Update
Bayesian Update

Each of these measures were compared for upwards
trials versus downwards trials using Wilcoxon paired
difference test or paired sample t tests.

Reinforcement learning

This analysis directly follows the procedure of
Burton et al. which claims to follow a modelling
approach presented by Kuzmanovic and Rigoux

(Kuzmanovic et al., 2018; Kuzmanovic & Rigoux,
2017).

Updates (calculated as above) are modelled as:

Update = a× d× (1− rP× w)

δ is a prediction error, defined as the difference
between participants estimate of the base rate
(eBR) and the actual base rate presented (BR):

d = eBR− BR

rP—“relative personal knowledge”—is calculated
according to whether estimates of the base rate
are higher or lower than estimates of ones own like-
lihood, as:

rp = eBR− E1
eBR

if E1 , eBR

rp = E1− eBR
100− eBR

if E1 . eBR

rp = 0 if E1 = eBR

α and w are free parameters. α, the learning rate,
determines the degree to which beliefs change in
proportion to the prediction error. w accounts for
participants’ individual variability in their sensitivity
to rP.

Rather than fit this model to participants updates
to derive α and w estimates for each participant—
which would be the normal approach for a
reinforcement learning model of this form (Daw,
2011)—Burton et al. instead do the following.

First, they assume that w is 1 for all participants.
This enables them to reduce the update equation to:

Update = a× d× (1− rP)

Which in turn enables them to rearrange the terms of
the Update equations such that a sits as the depen-
dent variable:

a = Update
d× (1− rP)

Second, they use the above formulation to calcu-
late a “trial by trial” learning rate (trials where
update = 0, i.e. beliefs stay the same, the authors
assume that a = 0). We note that this model specifi-
cation is different to the one proposed by Kuzmano-
vic and Rigoux (in which a single learning rate is
applied to all of a participants’ updates) and
model comparison is used to compare different
model specifications. We do not suggest others try
to follow this approach, we are simply following
Burton et al.’s flawed recipe.

JOURNAL OF COGNITIVE PSYCHOLOGY 5



a is then averaged for each participant for each
condition (upwards, downwards) and then the two
conditions compared using a Wilcoxon paired
difference test.

Details of Burton et al.’s experiments

For full details of the experiments conducted by
Burton et al., we direct the reader to their paper.
However, for convenience, we provide some brief
details here. Burton et al. conduct 4 separate exper-
iments. They use the same stimuli set and sample
size (N = 100) in experiments 1–3. In experiment 4,
Burton et al. used a subset (20/51) of the stimuli
used in their experiments 1–3 and a larger sample
size (N = 200). There are small differences in the
design of the four experiments. Specifically, when
in the experiment participants are asked to rate
event valence and provide a revised self-estimate
differs. In experiment 1, participants provided
revised self-estimates in session 1 (after seeing the
base rate for an event). In experiments 2–4,
revised self-estimates were elicited in a separate
session. Event ratings were either provided in a
final session (experiments 1, 2 and 4) or in the first
session at the end of each trial (experiment 3). The
authors report only small variations in the results
across studies and state these slight differences
are not consequential. Participants were recruited
from the online platform Prolific in all 4 exper-
iments. Burton et al. opt to aggregate data over
only 3 of the 4 experiments (not including data
from the 4th experiment). A justification for this
omission was not provided.

Results

Failure to find evidence of an update bias for
neutral events in Burton et al. data. Burton
et al., conduct four experiments, each analysed

using four approaches: Linear Mixed Models
(LMM) (Marks & Baines, 2017), Bayesian analysis
(Shah et al., 2016), Reinforcement Learning (Kuzma-
novic & Rigoux, 2017) and the classic approach—
Linear Regression (Kappes et al., 2018; Sharot
et al., 2011). The three approaches which they
report in the Supplementary Material—Bayesian,
Reinforcement Learning and Linear Regression—
all fail to show a bias in updating for neutral
events (see Table 1). This includes the Bayesian
ratio approach that the authors themselves advo-
cated for previously (Shah et al., 2016).

Failure to replicate Burton, Shah, Harris &
Hahn. We ran a new study (see Methods) in an
attempt to replicate Burton et al. and failed to find
any evidence of an update bias for neutral events.
In particular there was no difference in the
amount of updating in response to observing prob-
abilities that were lower than expected relative to
probabilities that were higher than expected. This
failure was observed regardless of the analytic
approach adopted.

Our study followed Burton et al.’s approach to
the Belief Update Task but corrected for confounds
they introduce, which are absent in the original task
(Sharot & Garrett, 2022). All analysis was restricted to
events participants rated as neutral (see Sup-
plementary Table 1 for list of events used and
their accompanying statistics).

First, we ran linear mixed effects models (LMMs),
exactly as implemented by Burton et al. Update was
entered as the dependent variable, direction of error
(upwards/downwards) as the independent variable.
Intercepts and slopes were taken as random effects
(i.e. allowed to vary across participants). This
revealed no difference in updating beliefs as a func-
tion of whether updating is upwards or downwards
(F(1, 81.94) = 0.11, p = 0.74, Figure 1(c)). Even when
re rerunning the model in a manner that inflates
degrees of freedom (Barr et al., 2013; Judd et al.,

Table 1. Belief update bias in neutral stimuli?
Exp 1

(N = 100)
Exp 2

(N = 100)
Exp 3

(N = 100)
Exp 4

(N = 200)
Aggregate
(N = 500)

Bayesian difference Marginal (0.049) Marginal (0.044) Yes (0.013) NO (0.22) Yes (0.001)
Bayesian ratio Yes (0.001) NO (0.784) NO (0.449) NO (0.93) NO (0.06)
Reinforcement learning Yes (0.001) NO (0.704) NO (0.324) NO (0.94) NO (0.06)
Regression coefficient Yesa (0.001) NO (0.662) NO (0.540) NO (0.28) NO (0.07)
aThis specific effect holds only if the authors unique trial exclusion protocol is followed. This is a protocol that is bespoke to them and has not—to
our knowledge—ever been followed by any other researchers using the Belief Update Task. If all trials are included (as would normally be the
case), this effect also disappears (t(96) = 1.47, p = 0.15).

Burton et al.’s data reveals an effect of belief update bias for neutral events in study 1. This effect is highlighted in the title of their paper “Asym-
metric Belief Updating Observed with Valence-Neutral Life Events”. Yet, they fail to replicate their own effect in studies 2, 3, 4 or in the aggregated
data. p values are in parentheses.
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2012; Murayama et al., 2014) by only including inter-
cepts as random effects (as per the main analysis of
Burton et al.), we still did not observe a bias in
belief updating for neutral stimuli (F(1, 1918.7) =
0.68, p = 0.41). Finally, we reran the LMM excluding
trials that could potentially be misclassified as
upwards or downwards which can occur if the
base rate presented sits between participants own
estimate of the event occurring and their estimate
of the base rate (Garrett & Sharot, 2017, 2014) (see
Methods). Once again, this revealed no difference
in updating beliefs as a function of whether
updating is upwards or downwards (F(1, 86.29) =
1.05, p = 0.31).

Next, we turned to examine whether learning
scores differed on trials when participants received
numbers that are higher than expected vs. lower
than expected. Learning scores are regression
coefficients which express the degree to which par-
ticipants are updating their beliefs in proportion to
the error made. This is a “classic” approach used to
analyse data from the task and that Burton et al.
report in their Supplementary Material. Comparing
these for downwards versus upwards once again
revealed no difference in learning rates about
neutral events, regardless of whether participants
learned the event was more likely than anticipated
or less likely (t(88) = 0.43, p = 0.67, paired sample
ttest).

Burton et al., use three more analytic approaches.
Two are Bayesian methods the authors have tried to
popularise (Shah et al., 2016). The third is a
Reinforcement Learning (RL) approach developed
by Kuzmanovic and Rigoux (Kuzmanovic et al.,
2018; Kuzmanovic & Rigoux, 2017). We note
however that the belief updating task is not actually
an RL task in which agents learn to select actions
that maximise rewards iteratively via trial and error
(Sutton & Barto, 2018). See for instance (Cazé &
van der Meer, 2013; Lefebvre et al., 2017; Palminteri
& Lebreton, 2022; Palminteri, Lefebvre, et al., 2017a)
for biases in learning in RL. Burton et al.’s implemen-
tation is also at odds with what was actually pro-
posed by Kuzmanovic and Rigoux (Kuzmanovic
et al., 2018; Kuzmanovic & Rigoux, 2017). Namely,
Burton et al. use an entirely different model specifi-
cation in which learning rates change on a trial by
trial basis (Courville et al., 2006; Pearce & Hall,
1980) and do not follow basic model fitting prac-
tices which would typically include parameter
recovery, model comparison and out of sample pre-
diction (Kuzmanovic et al., 2018; Kuzmanovic &

Rigoux, 2017; Palminteri, Wyart, et al., 2017; Wilson
& Collins, 2019).

Analysing the new data using these methods we
find that two of these approaches reveal the oppo-
site effect to that reported by Burton et al. (Bayesian
ratio approach: median downwards = 0.46, median
upwards = 0.67, Z = 3.07, p = 0.002, paired sample
Wilcoxon test; Burton et al.,’s “Reinforcement Learn-
ing”; median downwards = 0.58, median upwards =
0.80, Z = 3.27, p = 0.001, paired sample Wilcoxon
test). Only one approach—the Bayesian Difference
approach—revealed an effect in the same direction
as in Burton et al. (mean downwards = 0.08, mean
upwards = 0.04, t =−2.99, p = 0.004, paired sample
t test). In sum, we failed to replicate Burton et al.’s
(2022) findings of belief update bias for neutral
events.

Discussion

The belief update task has been used by scientists
around the world to test a wide range of questions
related to belief formation and optimism (Kappes
et al., 2018; Korn et al., 2016, 2012; Kube et al.,
2022; Kuzmanovic et al., 2018, 2016, 2015; Kuzma-
novic & Rigoux, 2017; Ma et al., 2016; Oganian
et al., 2019). The central finding is that participants
update their beliefs to a greater extent in response
to desirable than undesirable information. For nega-
tive events (e.g. robbery) this means updating
beliefs more when learning that the events are
less likely than expected than more likely and for
positive events (e.g. promotion) the other way
around.

Burton et al., claim to show a similar pattern of
belief updating in response to information about
the likelihood of neutral events as has been pre-
viously shown in response to negative events.
However, three out of four of their own experiments
actually fail to show this effect in three of four ana-
lytic approaches they use. Moreover, they claim to
show the effect over the aggregated data of the
experiments. However, the authors actually aggre-
gate their results over only three experiments
despite conducting four separate experiments.
When we re-examined their data, aggregating
over all four experiments, we found that the aggre-
gated results do not in fact show a bias in neutral
events in three out of the four analytic approaches
reported in their supplementary material, including
the classic approach. Thus, the claim the authors
repeatedly make in the manuscript—that their
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aggregated supplementary results show a belief
update bias for neutral events—is misleading and
demonstrably false.

Whilst reviewing the analysis code of Burton et al.
in order to run this analysis, we found evidence that
the researchers did initially aggregate data over all
four experiments, but subsequently edited the rel-
evant parts of the code to avoid incorporating the
data from Experiment 4 in the final results they
report. For example, in the code the authors used
to compile the aggregate data for the Bayesian
Ratio measure (available here,1 see code lines 562
and 613), the authors set up the data frame to
compile the data with 500 rows (one row for each
participant)—which is the participant count for all
four experiments (there are 100 participants each
in studies 1, 2, and 3, 200 participants in study 4).
This results in 200 rows of missing data.

When we then examined the one analytic
approach that shows an effect in Burton et al., we
found that this is in fact only observed using
LMMs that fail to include random effects (i.e. they
only include a random intercept). Conducting stat-
istical tests on a large number of data points
which are “nested” within participants in this way
(without accounting for this structure) incorrectly
increases the power of the analyses. Indeed, it is
well known that failure to incorporate random
effects inflates degrees of freedom by 10–40 fold.
This increases Type-1 error rates substantially and
thus should not be reported (Barr et al., 2013;
Judd et al., 2012; Murayama et al., 2014). Such
errors have led to papers being retracted in the
past (Fisher et al., 2015). The authors justify this
approach as a model that includes random effects
does not converge. However, this does not change
the fact that they are inflating the likelihood of
type-1 error by failing to include random effects.
This inflation is why this specific analytic approach
reveals significant findings while none of the other
approaches do. We note that if one was to report
LMMs that inflate degrees of freedom due to non-
convergence, it would then be necessary to show
that the same effect is observed using a different,
statistically sound approach. In supplementary
Tables S2–S6 they report additional LMMs that do
not converge. The authors state they use LMMs
because they wanted to follow a “precedent in
this literature” but cite a solitary study—Marks and
Baines (2017)—which also inflates degrees of

freedom. Regardless, when we attempted to repli-
cate Burton et al.’s results in a new study, we
failed to do so even using LMMs that inflated
degrees of freedom.

We also closely examined the task design Burton
et al. used to collect their data. This revealed a
number of confounds inserted into their version of
the task, that are known to produce false results.
Specifically, the authors took a task that has been
carefully designed but changed key aspects of it
including altering the response scale and skewing
event probabilities (see Supplementary Figure 1).
These changes introduce confounds that are well
known (Garrett & Sharot, 2017; Sharot & Garrett,
2022), not least to the authors themselves who
were previously criticised for generating spurious
results in this way (Garrett & Sharot, 2017).

In the original task, very rare or very common
events are not included—all event probabilities lie
between 10% and 70%. Participants are told that
the range of probabilities is between 3% and 77%
and are only permitted to enter estimates within
this range. This is done for two reasons. First, It is
known that people’s perception of very low prob-
abilities is distorted (Kahneman & Tversky, 1979).
Second, it is important to ensure that the range of
possible overestimation is equal to the range of
possible underestimation. That is, if all event prob-
abilities lie between 11% and 78% and participants
are allowed to enter numbers between 0% and
100% then by design, they will not be able to
update upwards as much as downwards. As a
result, it has been established that if this paradigm
is used to make claims about differences between
downwards and upwards updating (regardless of
whether the events are neutral, positive or nega-
tive), care has to be taken to use a set of base
rates that are centred around the midpoint of the
scale (Garrett & Sharot, 2017; Sharot & Garrett,
2022).

Burton et al., fail to do this in any of their exper-
iments (see Supplementary Figure 1). The mean
event base rate in their experiments sit close to
30% on a 0–100 scale. We have been very clear in
the past (Garrett & Sharot, 2017; Sharot & Garrett,
2022) that such a large positive skew in the base
rate distribution like this, will artificially create
greater updating for “downwards trials” (where
the base rate presented is lower than participants
first estimate) compared to “upwards trials” (where

1https://osf.io/3nteq/?view_only=9ea1dcb105164bda9f35228b3bb3495c.
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the base rate presented is higher than participants
first estimate), which is exactly the pattern observed
by Burton et al. It is baffling why Burton et al. delib-
erately chose to test their hypothesis in four separ-
ate experiments using a scale and base rate set well-
known to them to produce false positives.

Moreover, despite all past papers of the update
bias including 20–40 trials per condition (that is
per “good news” and “bad news”) the authors
have on average seven trials per condition for
neutral stimuli. They are thus increasing noise,
which increases the likelihood of false findings (it
is more likely that LMMs with random slopes
included would have converged given a greater
number of trials per condition). In addition, the
authors fail to collect ratings of possible confounds
which are always collected and controlled for when
using the task (Garrett & Sharot, 2017; Ossola et al.,
2020; Sharot et al., 2011; Sharot & Garrett, 2022).
They claim this is because it has been shown that
controlling for these variables does not change
the results. This logic is flawed. The fact that the
effect holds after confounds are controlled for
when it is a true effect does not mean that it will
hold when it is not a true effect (that is a bias for
neutral stimuli). Thus, their results are unreliable
and uninterpretable.

Given all of these concerns, we attempted to
replicate Burton et al.’s findings by running a new
study. We failed to find any evidence of a belief
update bias for neutral events. In sum, we show
that the claims made by Burton et al., are clearly
not supported by their data, or anyone else’s.
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