
1.  Introduction
Oceanic lee waves are generated via the interactions of bottom geostrophic flows with small-scale topography 
characterized by wavelengths typically ranging from 0.1 to 10.0  km (Bell,  1975a,  1975b). These waves can 
extract energy from the geostrophic flows and radiate upward into the ocean interior. The generation of lee 
waves results in a drag force on the background flow, acting as an energy sink for the flow (Naveira Garabato 
et al., 2013; L. Yang et al., 2021; L. Yang et al., 2023). When lee waves break due to the wave-wave interactions 
or shear instability, the energy extracted from the geostrophic flows is dissipated and a fraction of it is converted 
into ocean turbulent diapycnal mixing (e.g., Nikurashin et al., 2013).

The global energy conversion rate from geostrophic flows into lee waves is estimated to range from 0.2 to 
0.75 TW, depending on the datasets and methods for estimation (Nikurashin & Ferrari, 2011; Scott et al., 2011; 
Wright et al., 2014). Despite the large difference of overall magnitude of the energy conversion rate, its geograph-
ical distribution is consistent across these studies, with the Southern Ocean (SO) playing a dominant role. In view 
that the global wind work into the surface geostrophic currents is estimated to be around 1 TW (Wunsch, 1999), 
the generation of lee waves could be an important energy sink for wind-driven ocean circulations and a source 
for deep-ocean turbulent diapycnal mixing (Munk & Wunsch, 1998; Wunsch & Ferrari, 2004). Several studies 
based on observations (Brearley et al., 2013; Clément et al., 2016; Cusack et al., 2017; Evans et al., 2020; Hu 
et  al., 2020; Meyer et  al., 2016) and numerical models (Trossman et  al., 2013; Trossman et  al., 2016; Melet 
et al., 2014; Nikurashin et al., 2013; Z. Yang et al., 2021, 2022, 2023b) have highlighted the important role of lee 
waves in regulating the ocean energetics, powering turbulent diapycnal mixing, which in turn impacts the global 
climate system. Understanding the response of lee wave generation to the greenhouse warming is thus important 
for accurately predicting future climate changes.

Melet et al. (2015) investigated the changes of global energy conversion rate into lee waves under different warm-
ing scenarios using the linear theory (Bell, 1975a, 1975b) and a coarse-resolution coupled global climate model 
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(CGCM). They reported that the global energy conversion rate into lee waves is projected to decrease by about 
20% by the end of the 22nd century under a high carbon emission scenario mainly due to the weakening of the 
model-resolved large-scale mean flows near the sea floor. However, the oceanic resolution of their CGCM, that 
is, 1°, is insufficient to resolve the ocean mesoscale eddies that make dominant contribution to the total kinetic 
energy of the geostrophic flows (Ferrari & Wunsch, 2009).

In this study, we evaluate the response of the global energy conversion into lee waves to the greenhouse warming 
using an eddy-resolving (0.1° for the ocean) Community Earth System Model (hereinafter CESM-HR for short; 
Chang et al., 2020). Note that even at this high spatial resolution, the model is still unable to resolve lee waves and 
hence does not include feedbacks associated with them. The paper is organized as follows. Section 2 describes 
the linear theory of lee wave generation and the configurations of the CESM-HR. In Section 3, we compare the 
energy conversion rates into lee waves in the historical period (1930–1934) and in the end of the 21st century 
under the high carbon emission scenario, and analyze the factors responsible for the changes of the energy 
conversion rate. Sensitivity to the choice of Froude number (a nondimensional measure of topographic steepness) 
at which energy conversion saturates is also discussed. A summary is provided in Section 4.

2.  Methodology
2.1.  Linear Theory of Lee Wave Generation

In the case of sub-critical topography where slope of ocean topography is smaller than slope of radiating lee 
waves, the energy conversion rate from geostrophic flows into lee waves E can be derived from the linear theory 
(Bell, 1975a, 1975b):
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where ρ0 is the reference density, k = (k,l) is the horizontal wavenumber, P(k,l) is the two-dimensional topo-
graphic spectrum, Nb and Ub are the bottom stratification (buoyancy frequency) and bottom velocity, and f is the 
Coriolis frequency.

Equation 1 is applicable only to the sub-critical topography. To account for the saturation of E over the super-critical 
topography (Nikurashin & Ferrari, 2010), the value of E in Equation 1 is multiplied by a factor of (Frc/Fr) 2 for 
Fr > Frc, where Fr = Nbh/Ub is the Froude number with h the root-mean-squared height of the small-scale topog-
raphy and Frc is the critical Froude number. In this study, Frc is set as 0.5 following Aguilar and Sutherland (2006), 
but other values of Frc (0.4 and 0.75) are also adopted to test the influences of Frc on the future change of E.

2.2.  Topographic Spectrum

The topographic spectrum model proposed by Goff and Jordan (1988) is used to represent the small-scale topo-
graphic features:
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where H 2 is the variance of the full topographic height, μ is the roll-off slope at high wavenumber, ϕ0 is the 
azimuthal angle and (k0,l0) are the characteristic wavenumbers. Goff (2010) (hereinafter G2010 for short) derived 
the values of these topographic parameters from satellite observations. In this study, we adopt the G2010’s esti-
mates that have been widely used in estimating E (e.g., Baker & Mashayek, 2022; Scott et al., 2011; L. Yang 
et al., 2018). It should be noted that P(k,l) of G2010 is not available everywhere due to the limitation associated 
with the algorithm employed (Figure 1). We reminder readers that the “global ocean” in this study actually refers 
to the region where P(k,l) of G2010 is available.

2.3.  Eddy-Mean Flow Decomposition

The geostrophic flows consist of the large-scale mean flows and mesoscale eddies. Correspondingly, E can be decom-
posed into contributions by large-scale mean flows (ELM) and mesoscale eddies (EME) defined as (L. Yang et al., 2018):

𝐸𝐸𝐿𝐿𝐿𝐿 = −τ ⋅ 𝐔𝐔𝑏𝑏,� (3)
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(U� ⋅ k)2 − � 2 ���� is the wave drag vector, the over-
bar denotes the annual average (large-scale mean flows) and the prime denotes the anomaly (mesoscale eddies). 
Note that, as the lee wave drag is a nonlinear function of the total bottom velocity, the presence of the eddy field 
also contributes to lee wave generation due to the mean flow, that is, ELM. Following L. Yang et al. (2018), the 
contribution of mesoscale eddies to ELM is quantified as:
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2.4.  CESM-HR

The CESM-HR is used to simulate the long-term changes of Nb and Ub under the greenhouse warming. The 
CESM-HR has a nominal resolution of 0.1° (0.25°) for its oceanic (atmospheric) component. There are 62 verti-
cal levels in the ocean with a maximum grid size of 250 m at the 6000-m depth. The simulation is branched off 
from a 500-year-long pre-industrial control simulation (PI-CTRL) at the 250th model year and integrated to 2100 
with a historical run spanning from 1850 to 2005, followed by a future transient climate run from 2006 to 2100 
under the representative concentration pathway 8.5 (RCP8.5) scenario. The monthly mean temperature, salinity and 
three-dimensional velocity are saved during the simulation. In addition, there are daily output for these variables 
during 1930–1934 (historical period) and 2086–2090 (future period).

Figure 1.  Time-mean (a) bottom stratification Nb (s −1), (b) bottom kinetic energy KEb (m 2/s 2) and (c) energy conversion rate 
into lee waves E (W/m 2) during 1930–1934 simulated by the CESM-HR. Regions where the topographic spectrum of G2010 
is unavailable are masked by white.
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In this study, Nb is computed as the value of N at the vertical level just over the 
sea floor, while Ub is computed as the vertically averaged U within 0–500 m 
over the sea floor (L. Yang et  al.,  2018). The model drift after 250 year's 
spin-up is negligible for Ub but less so for Nb (Figure S1 in Supporting Infor-
mation S1). This may bias the simulated long-term change of E under the 
greenhouse warming. To minimize such bias, we subtract the linear trend of 
Nb during the model years 250–500 in PI-CTRL from Nb during 1850–2100. 
Then the daily Ub and the time-mean Nb during 1930–1934 (2086–2090) are 
substituted into Equation 1 to estimate E in the historical (future) period. The 
inter-annual variability of E within each five-year period is found to be much 
smaller than the difference of E between these two periods (Table 1), lending 
support that the five-year period is sufficiently long to get statistically robust 
results. Using different Nb definitions (e.g., the bottom-most Nb or daily Nb) is 
found to have a minor influence on the energy flux calculation.

3.  Results
3.1.  Energy Conversion Into Lee Waves in the Historical Period 
Simulated by CESM-HR

The time-mean Nb during the historical period in the CESM-HR is spatially 
inhomogeneous and generally consistent with that derived from observations 

(Teague et  al.,  1990; Figure  1a; Figure S2a in Supporting Information  S1). Weak bottom stratification with 
Nb ∼ O (10 −4 s −1) is found in most parts of the ocean, whereas large Nb ∼ O (10 −3 s −1) is mainly concentrated 
along shallow mid-ocean ridges. Consistent with other eddy-resolving ocean model simulations (von Storch 
et al., 2012; Figure S2b in Supporting Information S1), the spatial variability of time-mean KEb = (Ub·Ub)/2 is 
even more pronounced, varying by three orders of magnitude (Figure 1b). Large KEb ∼ O (10 −2 m 2/s 2) occurs 
along the western boundaries of ocean basins, the SO and the eastern tropical Pacific, whereas small KEb ∼ O 
(10 −5 m 2/s 2) is mainly distributed in the gyre interior. Furthermore, over most part of the global ocean, KEb is 
dominated by kinetic energy associated with mesoscale eddies (Figure S7 in Supporting Information S1).

Consistent with the existing literature (Nikurashin & Ferrari, 2011; Scott et al., 2011), the spatial distribution 
of time-mean E during the historical period shows large values in the SO, the western boundaries of ocean 
basins and the eastern tropical Pacific (Figure 1c). The globally integrated time-mean E during 1930–1934 is 
193 ± 3.0 GW (hereinafter the errorbar represents the 95% confidence interval), close to the lower bound of the 
previous estimates (Nikurashin & Ferrari, 2011).

3.2.  Response of Energy Conversion Into Lee Waves to Greenhouse Warming

Consistent with previous studies (e.g., Caesar et  al.,  2018; Swart & Fyfe,  2012), we find an increase in the 
strength of the westerly winds in the Southern Ocean (Figure S3 in Supporting Information S1) and a weaken-
ing of the Atlantic Meridional Overturning Circulation (AMOC; Figure S4 in Supporting Information S1) in 
response to future climate change. These atmospheric and oceanic changes could further affect the ocean bottom 
environment. As suggested by Equation 1, Nb and KEb are the two important factors determining the magnitude 
of E. To understand the change of E under the greenhouse warming, the differences of time-mean Nb and KEb 
between 1930–1934 and 2086–2090 are examined. Because the geographical distribution of E is highly inhomo-
geneous (Figure 1c), we focus on the differences in regions where historical E > 0.52 mW/m 2 (indicated by color 
shading in Figures 2a and 2b). Although these regions only cover a quarter of the ocean area, they contribute to 
∼90% of the total E. These regions are referred to as the active-E ocean hereinafter. Note that the mask for the 
active-E ocean is designed to be broad enough to encompass the strong lee wave generation regions under future 
climate conditions.

Figure 2a shows the difference of time-mean Nb between 1930–1934 and 2086–2090 over the active-E ocean 
(see Figure S5 in Supporting Information S1 for differences in the whole ocean). There is a decrease of Nb under 
the greenhouse warming in most parts of the active-E ocean. Patches of enhanced Nb are mainly confined to 
the SO (e.g., 60°W–120°E) and the high-latitude regions of the North Atlantic. The changes in the deep ocean 
stratification depend on processes leading to ventilation of deep water. For example, warming of the Antarctic 

Nb (s −1) Ub (m/s) Frc E (GW)

Historical Historical 0.5 193.0 ± 3.0

Historical Historical 0.4 179.4 ± 2.8

Historical Historical 0.75 218.3 ± 3.4

Future Future 0.5 155.5 ± 4.8

Future Future 0.4 142.4 ± 4.2

Future Future 0.75 169.3 ± 5.6

Historical Future 0.5 166.9 ± 4.5

Future Historical 0.5 176.5 ± 3.2

Note. The errorbar corresponds to the 95% confidence interval.

Table 1 
The Globally Integrated Time-Mean Energy Conversion Rate Into Lee 
Waves E Under Different Conditions of Nb and Ub and Using Different 
Values of Frc
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Bottom Water and cooling of the North Atlantic Deep Water would decrease the deep ocean stratification (Zhao 
& Thurnherr,  2018). The time-mean Nb averaged over the active-E ocean decreases by 6.5% in response to 
the greenhouse warming. This appears contrary to the findings of Melet et al. (2015) who reported an overall 
increase of Nb in a warming climate but is qualitatively consistent with the projections from the high-resolution 
CGCMs in the Coupled Model Intercomparison Project Phase 6 (CMIP6) archive (Eyring et al., 2016; Table 
S1 and Figure S6 in Supporting Information S1). Furthermore, it should be noted that the calculation made by 
Melet et al. (2015) covers the entire ocean and includes regions with small E values, which can lead to misleading 
conclusions about the effects of Nb change on E change. For example, Nb along the shallow mid-ocean ridges 
increases significantly under the greenhouse warming (not shown). But the increase of Nb there should contribute 
little to the change of globally integrated E.

The value of KEb decreases under the greenhouse warming over most parts of the active-E ocean, with patches of 
increased KEb in the SO. The most notable decrease of KEb is located in the Gulf Stream, the Drake Passage and 
the Kerguelen Plateau, where the time-mean KEb during 2086–2090 is less than 50% of that during 1930–1934. 
Such regional strong response of KEb to the greenhouse warming may be related to multiple dynamical processes. 
For example, the decrease of KEb in the Gulf Stream region may be related to the weakening of the deep west-
ern boundary current in response to the slowdown of the North Atlantic Deep Water formation rate (Dickson 
et al., 2002), while the decrease of KEb in the South Atlantic may be related to the slowdown of the Antarc-
tic Bottom Water formation rate (Zhou et al., 2023) or the shift of the Antarctic Circumpolar Current (Beech 
et al., 2022). The weakened eddy field plays a more important role in the reduction of KEb, although the weak-
ened mean flow also contributes (Figure S7 in Supporting Information S1).

Figure 2.  Change of time-mean (a) bottom stratification Nb (s −1), (b) bottom kinetic energy KEb (m 2/s 2) and (c) energy 
conversion rate into lee waves E (W/m 2) during 2086–2090 relative to their counterparts during 1930–1934 simulated by the 
CESM-HR. (a) and (b) only show the results in the active-E ocean. Yellow numbers indicate the percentage changes of Nb 
and KEb averaged over the active-E ocean in (a) and (b), but the percentage change of E averaged over the global ocean in (c).
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The globally integrated time-mean E during 2086–2090 decreases to 155.5  ±  4.8  GW, a ∼20% reduction 
compared to 193.0 ± 3.0 GW during 1930–1934 (Table 1). The change of E under the greenhouse warming is 
spatially inhomogeneous and generally resembles that of KEb (Figures 2b and 2c). Significant decreases in energy 
conversion can be found in the Gulf stream and Drake passage, whereas other regions of the Southern ocean show 
a meridional shift more than a simple decrease. To quantify the respective contribution of the changes of Nb and 
KEb to the change of E, we recompute E during 2086–2090 by either fixing Nb or KEb as their historical values, 
denoted as EN−fix and EU−fix respectively (Table 1). The globally integrated time-mean EN−fix (166.9 ± 4.5 GW) 
and EU−fix (176.5 ± 3.2 GW) during 2086–2090 are close to each other and significantly smaller than the globally 
integrated time-mean E (193.0 ± 3.0 GW) during 1930–1934. Therefore, both the weakened Nb and KEb contrib-
ute importantly to the reduction of E under the greenhouse warming. Nevertheless, the relative importance of 
Nb and KEb changes in determining the change of E is region-dependent (Figure 2). For instance, the reduced E 
under the greenhouse warming in the Gulf stream and the Drake Passage is primarily explained by the decreased 
KEb, whereas the reduced E in the Pacific section of SO (e.g., 120°W–150°W) is largely attributed to the reduced 
Nb there.

3.3.  Role of Mesoscale Eddies in the Change of Energy Conversion Into Lee Waves Under Greenhouse 
Warming

Both the interactions of large-scale mean flows and mesoscale eddies with topography generate lee waves. The 
time-mean EME and ELM during 1930–1934 share similar spatial distributions (Figures 3a and 3b). However, EME 
is systematically larger in magnitude than ELM and accounts for two-thirds of the globally integrated time-mean 
E, consistent with the dominant contribution of mesoscale eddies to the total kinetic energy of geostrophic flows 
(Wunsch & Ferrari, 2004; Figure S7 in Supporting Information S1). Under the greenhouse warming, the values 
of EME and ELM are reduced over most parts of the global ocean (Figures 3c and 3d). The globally integrated 
time-mean EME during 2086–2090 is 20.5% smaller than that during 1930–1934, close to the 17.1% reduction for 
ELM. However, as EME has larger magnitude in the historical period than ELM, the change of globally integrated 
time-mean E under the greenhouse warming is primarily attributed to that of EME.

Due to the nonlinear dependence of the lee wave drag on bottom velocity, the eddy velocity contributes to ELM, 
which is evaluated here using Equation  5. Our result shows that the presence of the eddy field significantly 
enhances the energy conversation into lee waves due to the mean flow (48.7% and 45.7% for the historical and 
future periods), highlighting the important role of eddies in shaping the time-mean wave drag.

3.4.  Sensitivity to Critical Froude Number

One tuning parameter in the computation of Equation 1 is Frc that accounts for the saturation of E over the 
super-critical topography (Nikurashin & Ferrari, 2010). Although Frc is set as 0.5 in this study, it is worth point-
ing out that other values like 0.4 and 0.75 are also adopted in the existing literature (Nikurashin et al., 2014; Scott 
et al., 2011). To evaluate to what extent the uncertainties in Frc affect the change of E under the greenhouse warm-
ing, we perform sensitivity tests by varying the value of Frc from 0.4 to 0.75. The globally integrated time-mean 
E during 1930–1934 increases sublinearly with the increase in Frc, ranging from 179.4 ± 2.8 GW for Frc = 0.4 to 
218.3 ± 3.4 GW for Frc = 0.75 (Table 1). This sublinear dependence of the globally integrated time-mean E on 
Frc is attributed to the fact that a significant portion of E originates from the SO where Fr is generally less than 0.4 
(Figure S8 in Supporting Information S1). As a result, the value of E in the SO does not change as Frc varies from 
0.4 to 0.75. Although Frc has some noticeable influence on the globally integrated time-mean E, the reduction of 
the globally integrated time-mean E is robust regardless of the value of Frc. The globally integrated time-mean E 
during 2086–2090 decreases by 20.6%, 19.4% and 22.4% compared to their counterparts during 1930–1934 for 
Frc = 0.4, 0.5 and 0.75, respectively. We conclude that the uncertainties in Frc do not have a substantial impact on 
the percentage change of E under the greenhouse warming.

4.  Summary
In this study, we investigated the response of energy conversion into lee waves to the greenhouse warming by 
applying the linear theory of lee wave generation to the climate simulation of the CESM-HR resolving mesos-
cale eddies. The globally integrated time-mean E during the historical period (1930–1934) is estimated to be 
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193.0 ± 3.0 GW, with the lee wave generation over the SO making dominant contribution. Under the high carbon 
emission scenario, the globally integrated time-mean E during 2086–2090 decreases by ∼20% compared to that 
during 1930–1934. This decrease is attributed to the weakened bottom large-scale mean flows, mesoscale eddies 
and stratification under the greenhouse warming.

Our findings are qualitatively consistent with those reported by Melet et  al.  (2015). However, the projected 
reduction of E by the CESM-HR is quantitatively more evident than that (a 20% decrease by the end of the 
22nd century) projected by the coarse-resolution CGCM used by Melet et al. (2015). This difference may result 
from two aspects. First, although Melet et al. (2015) found that the change of Nb has little effect on the change 
of E under the greenhouse warming, Nb is projected by the CESM-HR to be reduced (Figure 2a) and contrib-
utes importantly to the reduced E (Table 1). We note that the projected reduction of Nb by the CESM-HR is 

Figure 3.  Time-mean energy conversion rate into lee waves contributed by (a) large-scale mean flows ELM and (b) mesoscale 
eddies EME (W/m 2) during 1930–1934 simulated by the CESM-HR. Regions where the topographic spectrum of G2010 
is unavailable are masked by white. (c) and (d) Same as (a) and (b) but for the change of time-mean ELM and EME during 
2086–2090 relative to their counterparts during 1930–1934. Yellow numbers indicate the globally integrated time-mean ELM 
and EME in (a), (b) and their percentage changes under the greenhouse warming in (c), (d).
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consistent with the projections by the high-resolution CMIP6 CGCMs (Figure S6 in Supporting Information S1), 
lending support to its reliability. Second, the weakened mesoscale eddy flows near the sea floor projected by 
the CESM-HR make important contribution to the reduction of E under the greenhouse warming, whereas such 
effects are not directly resolved in the coarse-resolution CGCM of Melet et al. (2015).

The globally integrated time-mean wind power on the surface geostrophic flows remains nearly unchanged 
between 1930–1934 (0.69 ± 0.01 TW) and 2086–2090 (0.75 ± 0.01 TW). The significant reduction of E under 
the greenhouse warming thus suggests that the lee wave generation becomes less efficient in dissipating the 
wind-driven ocean circulations. Furthermore, the reduced E implies weakened energy source of turbulent diapy-
cnal mixing. Changes of these processes have not been parameterized in the current generation of CGCMs but 
are likely to play an important role in regulating the ocean's heat uptake and carbon sequestration under the 
greenhouse warming.

The lee waves can alter Nb (through lee wave-driven mixing) and ΚΕb (through the generation, propagation and 
dissipation of lee waves in a vertically sheared mean flow). For example, Trossman et al. (2013) found that both 
Nb and ΚΕb are reduced when a lee wave parameterization is included in an ocean model. Furthermore, recent 
studies suggest significant changes in the sensitivity of the Antarctic Circumpolar Current and ocean stratifica-
tion to wind when lee waves are included (L. Yang et al., 2021; L. Yang et al., 2023). The coupled climate model 
employed in this study, despite running at an eddy-resolving resolution, does not resolve lee waves and therefore 
does not include these feedbacks associated with lee waves. Considering the projected reduction of E in response 
to greenhouse warming, including the feedback of lee waves could potentially lead to smaller reductions in future 
Nb and ΚΕb, which consequently results in a lesser overall reduction in future E. This suggests that our projected 
reduction of E may have been overestimated due to the lack of lee wave feedback.

Finally, this study does not take into account the impact of the greenhouse warming on the lee wave-geostrophic 
flow interactions during the upward radiation of lee waves. In addition to Fr, the lee wave energy flux is also 
regulated by the vertical structure of the bottom flow. Recent studies (e.g., Baker & Mashayek, 2021; Kunze & 
Lien, 2019; Sun et al., 2022; Wu et al., 2022; Z. Yang et al., 2023a) suggest that lee wave-geostrophic flow inter-
actions can either transfer energy from lee waves to geostrophic flows or the opposite. The greenhouse warming 
does not only affect Nb and Ub but also the vertical structure of geostrophic flows in the ocean interior (Peng 
et al., 2022), with the later playing a key role in the energy exchange between geostrophic flows and lee waves 
(Kunze & Lien, 2019). The impact of the greenhouse warming on the lee wave-geostrophic flow interactions is 
left for a future study.

Data Availability Statement
The CESM-HR output can be downloaded from the website https://ihesp.github.io/archive/products/
ds_archive/Sunway_Runs.html by selecting the tab “500-YEAR 1850 PRE-INDUSTRIAL CONTROL” 
and “250-YEAR 1850 TRANSIENT SIMULATIONS”. The CMIP6 model data can be downloaded from 
https://esgf-node.llnl.gov/search/cmip6/. The CMIP6 CGCMs used in this study are listed in Table S1 in 
Supporting Information S1. Code for calculating energy conversion rate into lee waves is available at https://doi.
org/10.7910/DVN/WDRLG5.
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