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Abstract

Train delays are a serious problem in the UK and other countries. Much re-

search has gone into developing methods for predicting train delays. Most of

these methods use only single models or homogeneous ensembles and their per-

formance in terms of accuracy and consistency in general is unsatisfactory. We

have therefore developed heterogeneous ensembles that use different types of

regression models with an aim of improving their prediction performance.

We first looked at a wide range of base-learner models, including the state-of-

the-art methods, Random Forest and XGBoost. Overall, our ensembles were

more accurate than any of these single models.

We developed two methods for model selection when building the ensemble,

the first uses accuracy and the second uses accuracy and diversity. We found

that using accuracy resulted in the most accurate ensembles. We adapted the

Coincident Failure Diversity measure for regression and compared its effective-

ness with other diversity measures. While it proved the best, overall, we found

no relationship between ensemble accuracy and diversity in the regression con-

text. We also investigated the effect of ensemble size.

We compared the performance of our ensembles with the deep learning meth-

ods CNN and Tabnet and found that our ensembles were more accurate. How-

ever, ensembles of deep learning models proved to be more accurate than those

of single machine learning models.
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We tested our ensembles using a different set of train delay data and found

that they produced more accurate and consistent results, indicating that our

methods generalise well to new data.
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Heterogeneous Machine Learning Ensembles for Predicting Train Delays

1.1 Background

Efficient train services are a vital part of transport networks worldwide, with

many train services available every day with a broad choice of departure times

and routes, linking city-centres, seven days per week, 24 hours per day, and 365

days of the year. Passenger travel by rail is overall less environmentally dam-

aging than travel by road or air (European Environment Agency, 2020).

However, train delays are a major problem for both train companies and pas-

sengers in the UK (Network Rail, 2017). This has been the case for a number

of years, a report by the UK National Audit Office stated that in 2006-7 delays

on the UK rail network totalled over 14 million minutes, equivalent to over £1

billion in terms of lost time (National Audit office, 2008). Delays can occur

for a variety of reasons but the inconvenience to the passengers affected is the

same regardless of the nature of the delay. For the train operating compa-

nies delays can have a significant impact on the success of franchises (Murray,

2001).

In the UK, railway performance was officially measured using the Public Per-

formance Measure (PPM), a measure that was devised to combine punctuality

and reliability into a single value. PPM was replaced by an enhanced metric—

Control Period 6 (CP6) in April 2019, but PPM is still a useful indication and

as our data was up to 2019 before the Covid-19 Pandemic, we used it in this

study. For the purposes of PPM, “A train is defined as on time if it arrives

at the destination within five minutes (i.e. 4 minutes 59 seconds or less) of

the planned arrival time for London and South East or regional services, or 10

minutes (i.e. 9 minutes 59 seconds or less) for long distance services” (Network

Rail, 2022a). The PPM itself is defined as “the percentage of trains which ran
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their entire planned journey calling at all scheduled stations and arriving at

their terminating station within 5 minutes (for London and South East and

regional services) or 10 minutes (for long distance services)” (Network Rail,

2022a).

There has been a consistent decline in the PPM over recent years, prior to

the Covid-19 pandemic—from over 91% in 2013–14 to 85.6% in Q3 of 2018–19

(Office of Rail and Road, 2019). This was in spite of the fact that the entire

rail industry has been working intensively to improve its performance.

In the UK, official Department for Transport figures show that the number of

rail passenger numbers steadily increased by more than 150% between 1985

and 2019 (Department for Transport, 2020). While there was an initial drop in

passenger numbers that occurred as a result of the Covid-19 pandemic, this has

since begun to reverse and there is no reason to expect the passenger numbers

to not continue to increase in the future as they have in the past, and for the

PPM to continue to decline. This can be seen in that the recent PPM figure

of 83.9% for 26 June to 24 July 2022 was lower than the figure of 90.3% for

the equivalent period in 2021 (Network Rail, 2022b).

Initial delays (termed primary delays) can be the result of many causes, in-

cluding trespassers on the line, signalling problems, accidents, fallen trees,

equipment failure and construction work. (Oneto et al., 2018). An overview

of the Delay Attribution Guide is provided by the Open Rail Data, which

has a list of codes for different types of delay, Network Rail feeds and Train

Movements (OpenRailData, 2019). The initial delays can then cause a chain

of consequential delays on other trains, (which are termed reactionary delays)

(Lee et al., 2016). As a result of the consistently increasing number of pas-

sengers, the rail networks have needed to run more train services to meet the
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demand. This has meant that the trains are closely scheduled to run with a

minimum distance between them. The consequence of this is that there is little

buffer time and space for any disruption in the rail system, so even a small

initial delay can cause many secondary delays which disrupt a large number of

train services, resulting in considerable inconvenience to the passengers.

Recognising that train delays are highly inconvenient and disruptive for train

passengers, the railway networks and train companies try to do everything

in their capacity to avoid train delays. When incidents occur, they provide

passengers with information about the length and nature of the delay. In order

to achieve this, train controllers must have some means of predicting train

delays as early as possible. As well as enabling them to provide information

for passengers this can enable them to take steps to reduce or prevent further

delays. If the delays are expected, then the lead operation controller can be

appointed at the regional control center, and a holding message can be issued

to the affected lines and location (Network Rail, 2017).

In this research we intend to develop a machine learning ensemble that will

combine multiple models generated from different types of standard learning

algorithm, in order to enhance the accuracy and reliability of the prediction of

train delays. At present, machine learning is an area undergoing very active

development and this analytical approach has led to tremendous achievements.

Since the amounts of data available are increasing rapidly, the role of machine

learning is becoming increasingly important in offering big data solutions in

predictive analytics. It thus has the potential to provide useful tools to enable

train companies to more accurately predict delays and to ameliorate frustra-

tions for passengers.
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A key part of the project will be to construct a framework for producing mod-

els which can be incorporated into an ensemble for modelling and predicting

delays. This research will give a review of the literature which deals with the

problem of train delays. The methodology used will be explained in detail and

justified.

1.2 Motivation

In recent years, there have been numerous instances of trains being delayed

due to increasing numbers of passengers and the limitations of the rail network.

Thus, being able to predict delays accurately is crucial when train controllers

are trying to devise plans to prevent or reduce some of these delays. As a first

consideration, ensembles provide better accuracy than a single classification

or regression model. Many studies have shown that ensemble learning is more

effective than using a single model due to the fact that combining the outputs

of multiple models will often result in better results than using only one model

(Dietterich, 2000; Breiman, 1996; González et al., 2020; Thompson, 2018). The

success of the ensemble approach, which gives robust and consistent results,

led us to use it in our study.

Such machine learning ensembles can be used to help improve the train service

in the UK. This research will explore the use of various prediction models to

build an ensemble to predict the extent of delays to train journey times, using

historical data made available by Network Rail and their open source feeds.

We will focus on the Norwich to London Liverpool Street service of the Greater

Anglia area. However, the outcomes of this research and of the systems and
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models will be generalizable. Thus, the methods developed will be useful in

dealing with data from any service within the railway system of the UK.

1.3 Research Aim and Objectives

The aim of this research is to develop heterogeneous machine learning ensemble

techniques for predicting train delays.

The objectives of this research are as follows:

1. To develop methods for generating ensembles that contain models gen-

erated by more than one type of algorithm.

2. To develop methods for selecting which models to include in the ensem-

ble.

3. To evaluate the performance of the methods developed, and determine

which of them are best for predicting train delays.

4. To evaluate how well the methods developed generalise to new data.

It should be noted that majority of machine learning ensemble methods gen-

erate homogeneous ensembles, i.e., the ensemble is composed of one type of

model. This is particularly so with train delay prediction where only one publi-

cation reporting a heterogeneous ensemble method has been published to date

(Nair et al., 2019). The authors did not focus on the methodology, and there-

fore did not investigate how to build an effective heterogeneous ensemble, and

their ensemble was sensitive to parameter values and not generalisable. Het-

erogeneous ensembles have proven effective in other problem areas (Alyahyan

et al., 2016; Aytuğ, 2018; Gashler et al., 2008; Smȩtek and Trawiński, 2011),

and therefore they should be able to work effectively on train delay data. Be-
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cause they take advantage of the strengths of a variety of prediction methods,

they should be particularly suited to a complex problem such as train delay

prediction.

1.4 Research Questions

Based on the above objectives, this research seeks to answer the following

questions:

1. How should a heterogeneous ensemble be built so that it performs better

than single models?

2. What factors should be taken into consideration when selecting models

for building into an ensemble? A number of factors will be examined,

including accuracy, diversity and ensemble size.

3. Is there any relationship between accuracy and diversity in the context

of building an ensemble for performing regression?

4. How should the models be combined to produce better results?

5. Do heterogeneous ensembles perform better than state-of-the-art meth-

ods such as deep learning?

1.5 Contributions of the Research

An effective solution is provided by this research that can predict train delays.

This research also benefits passengers as it enables train operating companies

to provide them with information about the nature and duration of delays very

soon after they occur.
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1. A study we conducted and published (Al Ghamdi et al., 2020) examined

how heterogeneous models performed better than single models and how

powerful the ensemble method can be in terms of accuracy and consis-

tency when compared with single models. A subset of the initial experi-

ment is used, which covers a period of 7 months, along with weather data.

This work was applied and tested for each pair of stations. As we have

observed, each trip behaves differently, which means that certain parts

of the journey are subjected to more delays than others, which could

indicate some uncertainty that a model cannot predict. Since no single

model would work for all stations, this suggested the need for different

algorithms, not just one. Based on literature reviews, we found that our

ensemble performed better than the most well-known algorithms. This

work is described in Chapter 4.

2. As an extension of our work, we built a heterogeneous ensemble which

includes state of the art algorithms such as XGboost within the collection

of models, along with established methods such as Random Forest. This

work is described in Chapter 5.

3. We investigated the effect of the accuracy of the individual models on

overall ensemble accuracy. We also investigated the effect of model di-

versity on overall ensemble accuracy. We found that accuracy of the

individual models was important, but diversity had no effect. This work

is described in Chapter 5.

4. We investigated the use of different metrics for measuring diversity. For

this we redefined some of the existing metrics developed for regression,

for example correlation. Then we redefined some of the existing metrics

developed for classification, for example CFD, in order to apply them to
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a regression problem. We also applied both pairwise and non-pairwise

metrics. This work is described in Chapter 5, and has also been accepted

as a paper for IEEE Transactions on Intelligent Transportation Systems.

5. We investigated the effect of the number of models on ensemble accuracy

and found that the highest accuracy was achieved with a small (3-4)

number of models. This work is described in Chapter 5.

6. We investigated the decision making function and compared the use of

two different methods for combining the model outputs, namely aver-

aging and weighted averaging. We found that weighted averaging gave

more accurate ensembles. These methods are described in Chapter 3,

and their use is investigated in Chapters 4 and 5.

7. We tested two Deep Learning benchmark methods, CNN and Tabnet,

to see how well they would work in predicting the by using the DL

models. One of these methods, Tabnet, has not previously been applied

to train delay prediction. We found that there was no single model

that performed better than the other and that when we applied our

ensemble framework to deep learning, we found that ensembles of DL

models performed better than single DL models. This work is described

in Chapter 6.

8. In order to verify our methods, we evaluated them statistically and also

tested them on new data collected from different train operating compa-

nies. As a result of our tests, we can confirm that our models are robust

and generic. This is described in Chapter 7.
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1.6 Outline of the Thesis

This section provides an overview of the structure of the thesis.

Chapter 1. Introduction. This chapter describes the background, motiva-

tion, and purposes of the study and the contributions of the research.

Chapter 2. Literature Review. In this chapter, we review existing litera-

ture relevant to this thesis. This chapter presents an overview of delay,

specifically train delays and ensemble methods.

Chapter 3. Research Methodology. The methods and design of the study

are presented in this chapter. It also explains the datasets that were used

in all of our research.

Chapter 4. Heterogeneous Ensemble for Predicting Train Delay. This

chapter presents the empirical investigation of the effects of heteroge-

neous ensembles and two aggregation functions for combining the out-

puts of individual models.

Chapter 5. Model Selection Methods for Building Heterogeneous

Ensembles. This chapter examines model selection methods. It in-

vestigates the effects on ensemble accuracy of individual model accuracy

and diversity, and the number of models. Two model selection criteria

are proposed and investigated.

Chapter 6. Deep Learning Heterogeneous Ensemble. This chapter ex-

amines different Deep Learning benchmark methods tested and applied

to the ensemble framework.
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Chapter 7. Evaluation and Discussion This chapter presents the results

of the research and work conducted for this thesis are discussed and

evaluated.

Chapter 8. Conclusions and Suggestions for Further Work This chap-

ter presents the conclusion and future work are discussed.
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2.1 Related Work

In this review of the literature we will discuss some of the different methods

that have been applied to train delay prediction to date. Various methods have

been used for predicting train delays, including regression and classification.

Regression has been studied much more, with relatively little work having been

produced that uses classification.

A recent publication by Spanninger et al. (2022) gives a reasonably comprehen-

sive review of publications on train delay prediction methods. They divide the

methods into event-driven, which model the dependencies of the train arrivals,

departures and other events on the network, and data-driven where the train-

event dependency structure is not explicitly modelled. They conclude that

while event-driven approaches are easily interpretable, the best data-driven

methods give the most accurate predictions overall and have the additional

advantage of being easier to apply in real time.

In this review we will look initially at work using methods that generate in-

dividual models, then at those that use methods that generate ensembles of

models.

2.1.1 Train delay prediction using single models and hy-

brid approaches

Stochastic approaches have been much applied in this field. As early as 1994,

Carey and Kwieciński (1994) used stochastic approaches to simulate interac-

tions between trains to help avoid the effects of knock-on delays. Later, in

2008, Yuan and Hansen (2007) recommended the use of stochastic methods

Chapter 2 Mostafa Al Ghamdi 13



Heterogeneous Machine Learning Ensembles for Predicting Train Delays

for estimating arrival and departure delays in Holland. Yuan and Hansen

(2007) used a stochastic based modeling approach to highlight techniques that

estimate reactionary delays, which are systematic in nature and are the cause

of delays in railway stations. Their approach used probability distributions

to deal with data fluctuations. They explore delays resulting from conflicts of

routes and the transfer of trains between connections. However, as noted in

a recent paper by Li et al. (2022), approaches using probability distribution

models have failed to provide accurate predictions of train delay durations

when they occurred.

More recently, the use of Bayesian networks has been explored by a number

of researchers. Lessan et al. (2019) made use of Bayesian network models for

predicting the time delays. They stressed that traditional techniques require

frequent updating, pointing out that if real-time train movement data is to

be used, it will be extremely resource-intensive. They therefore used differ-

ent structures, including the so-called hybrid structure, primitive-linear and

heuristic hill-climbing. Their method aims at using the technique of data re-

lated to high-speed routes in China, which cover distances of over 1000 km.

When applied to these routes a level of accuracy of over 80% was achieved

and so it is evident that modelling such routes can be done effectively. Their

method also differentiates between the primary and reactionary delays. How-

ever, it should be noted that most lines in the UK railway system do not cover

such huge distances, neither are they high-speed, and therefore it is not certain

how well their approach would generalise to the UK network.

Bayesian networks were also used by Corman and Kecman (2018). These

were applied to historical data from Sweden. Their method had the advantage
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that it was not restricted to static data but was also able to include dynamic

characteristics of delays which were constantly fluctuating.

Support Vector Machines are another method which has been used in the field

of transport to predict arrival times. In China, Yu et al. (2010) applied this

hybrid method to the prediction of bus arrival times. Later, Marković et al.

(2015) used SVM as a method for identifying any connections between train

delays and railway network qualities. The work by Marković et al. (2015)

focuses on anticipating and avoiding delays, particularly as finding any con-

nections between the two could enable railway staff make use of learned choices

to decrease delays.

Two further potential methods discussed by Marković et al. (2015) were hybrid

simulation and machine learning, and multiple regression.

Artificial Neural Networks (ANN) are a class of algorithm which can be used

to make predictions and produce train delay information. Yaghini et al. (2013)

used ANNs to predict arrivals and departures on the Iranian train network.

This entire investigation was completely different from all other research re-

viewed, because it permitted the implementation of classification in contrast

to the more widely applied regression approach. (In a later study, Choi et al.

(2016) used the classification method to predict airline delays due to bad

weather.)

Yaghini et al. (2013) only used five input features. These were: the starting

place, the destination, the route, as well as the month and year in which

the journey is taking place. Their method worked very successfully, but we

would note that dataset they were using was for a relatively simple railway

network.
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Extreme Learning Machines (ELMs), Shallow and Deep, were used by (Oneto

et al., 2018) for creating a system to predict train delays because ELMs can

learn faster than those which use traditional learning algorithms, which may

not be fast enough, and they generalise well (Huang et al., 2006). They are

also more appropriate for use with Big Data than methods which use univari-

ate statistics because the model adapts and improves when fed external data

(Oneto et al., 2018).

Deep learning networks have been used to model train delays as a time-series

problem. Huang et al. (2020) combined three types of neural networks, 3D

CNN, LSTM, and FCNN to produce a hybrid called CLF-Net which performed

better than conventional machine learning models, and state-of-the-art deep

learning models in terms of root mean squared error and mean absolute error.

Zhang et al. (2021a) used a graph convolutional network model to capture the

spatial-temporal characteristics of train operation data. They compared their

model with ANNs, SVRs, RFs, and LSTM, and reported that it was better at

predicting the cumulative effect of train delays.

While train delay prediction can be treated as a time-series problem, most

reaearchers have treated it as a regression problem, which does not have the

dependencies that the time series approch has. We will adopt the regression

approach, using ensembles, which we will discuss in the next section.

2.1.2 Ensemble approaches

The methods employed in the research we have discussed above all produce

single models. Even hybrid approaches, while they may incorporate more than

one model, effectively function as a single model.
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Ensemble techniques differ from both single models and hybrid approaches in

that they employ a committee consisting of several models. They work in a

way analagous to a committee of human experts whose combined decision is

more reliable than that of one individual. The ensemble approach is based

on the fact that while no one individual model may be perfect for solving a

problem, a committee of several models can be. Ensemble methods almost

invariably outperform single models (Wang, 2008).

Many types of ensemble methods have been developed and they have been

applied in many fields, including the prediction of train delays.

Oneto et al. (2016) published a paper that focuses on highlighting the process of

how a machine learning algorithm is used. Their approach proved to be a very

efficient one and is of particular relevance to our research. It employs kernels,

ensembles and neural networks, and works on the method of comparison and

contrast between the performances of each. The problem is treated as a time

series forecasting one in this model. Weather data is utilized in this model

in order to extend the delay prediction model to enhance the performance,

and the method uses both the historical and forecasted weather measures for

assisting the prediction model. By including forecasted and historical weather

information, a rise of 10% in the accuracy was observed. This makes it evident

that incorporation of such information is very important, since those research

projects which did not make use of such features had lower levels of accuracy.

Oneto et al. (2016) uses the Random Forest approach, of which they state, “RF

combine bagging to random subset feature selection”. They set the number

of trees to 500 and use the ensemble technique. We will employ the ensemble

approach in our research because, in comparison to using single classification

or regression models, it is expected to perform better.
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Wen et al. (2017) also compared the Random-Forest Model to a simple Multiple

Linear Regression Model and found the Random Forest Model to have better

levels of prediction accuracy. They determined the optimal number of trees to

use by examining the error between different tree sizes, because they required

an accurate but not overly complex model. Both Wen et al. (2017) and Oneto

et al. (2016) state that Random Forest outperforms other approaches, and they

suggest that it is the best algorithm for predicting train delays.

Several other authors have also used Random Forest for train delay predic-

tions. Kecman and Goverde (2015) concluded that in their application it out-

performed linear regression and decision trees. Gao et al. (2020) used a two

stage RF model and found that it increased the accuracy of delay predictions.

Nabian et al. (2019) used a bi-level RF approach, while Nair et al. (2019) used

a large scale application of RF.

Shi et al. (2021) used the well-known XGBoost algorithm of Chen and Guestrin

(2016), with hyperparameter tuning by Bayesian optimization, for predicting

train delays. When tested using data for two high speed railway lines in China,

it performed better than six other well-known algorithms including random

forest, which gave the next best performance.

These existing studies that we have discussed showed that machine learning

models are of great benefit in the prediction and avoidance of train delays.

The ensemble approach has proven effective and in comparison to using single

classification or regression models, it would be expected to perform better, as

has proven to be the case. To date there has been very little work on using

heterogenous ensemble methods. Homogeneous ensembles have the advantage

of using a committee of models. However, the models are all of the same

kind. In contrast, a heterogenous ensemble has models produced by different
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algorithms and so are therefore methodologically heterogeneous. This means

that they are less likely to make similar errors, resulting in a more accurate

ensemble.

The only published example of a heterogenous ensemble in the context of pre-

dicting train delays that we are aware of is that of Nair et al. (2019). They

developed a heterogenous ensemble consisting of three models: random forest,

kernel regression and mesoscopic simulation of the network. They only gener-

ated one model of each type and performed no model selection. They found

that the ensemble performed better than the individual models. However, they

also found that their approach was sensitive to hyperparameters and tuning

was required. This means that their method would not generalise well.

We would note that the work of Nair et al. (2019) also shows another advantage

of the heterogeneous ensemble approach. This is, that any modelling algorithm

can be used to generate the models including ensemble methods. Thus, it

has the potential to bring together models generated by different ensemble

methods.

2.1.3 Work in related fields.

Commercial aviation, like rail transport, is a complex system in which many

stages of the process may be subject to delays, such as airports, runways,

airspace and boundaries. Problems can potentially arise due to weather condi-

tions, air traffic control issues, mechanical issues, and capacity problems. The

origin-destination matrix is complex and delays can be costly for passengers,

airlines and other stakeholders. Carvalho et al. (2020) conducted a systematic

mapping study of flight prediction research and produced a detailed taxonomy
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classifying prediction models according to their components. The components

covered included air transportation system datasets, concerning airlines, air-

ports or ensemble and carriers, plus information from service providers, reg-

ulatory bodies and government agencies. The review considered statistical

analysis, most frequently using such techniques as regression models, multi-

variate analysis, correlation analysis, econometric models and parametric and

non-parametric tests. It also reviewed the work of Tu et al. (2008) which used

Probabilistic Models encompassing analysis tools which use historical data as

the basis for estimating an event’s probability of occurrence. Network repre-

sentation, as used by Abdelghany et al. (2004), was also reviewed, in which

graph theory is used to study flight systems with acyclic graphs employed to

model airline schedules, detect possible delays and their effect elsewhere in the

network. Operational Research can facilitate improved decision making and

uses sophisticated methods of analysis such as simulations, optimization and

queue theory.

Operational Research was used by Schaefer and Millner (2001) and by Hunter

et al. (2007) to consider delays in arrivals and departures under varying weather

conditions, and by Soomer and Franx (2008) to calculate the cost of de-

lays.

Most pertinent to the current research, examples of machine learning, explor-

ing the development of algorithms capable of learning from data and making

predictions based upon it, are covered in the review by Sternberg et al. (2017).

They noted that machine learning methodology is becoming increasingly im-

portant in flight systems analysis, particularly for prediction and classification,

and the most frequently used methods are neural networks, k-Nearest Neigh-

bor, SVM, random forests and fuzzy logic. For example, Rebollo and Balakr-
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ishnan (2014) predicted root delay at US airports over periods of 2, 4, 6 and 24

hours, using random forest and provided comparisons between their methods

and regression. They found that as they expanded their forecast horizon, more

test errors occurred. Khanmohammadi et al. (2014) predicted root delay using

an adaptive network they had created using fuzzy inference systems. These

predications were then input into fuzzy decision-making method for sequencing

flight arrivals at JFK International Airport.

Balakrishna et al. (2008) predicted taxi-out delays at JFK and Tampa Bay in-

ternational airports by means of a reinforcement learning algorithm: a Markov

decision process was used to model the problem, which was then solved using

a machine learning algorithm. Their model performed well 15 minutes prior

to the scheduled departure time. To predict propagation effect delays at air-

ports, Zonglei et al. (2008) built a recommendation system prediction using

the k-Nearest Neighbor algorithm and historical data to identify earlier, sim-

ilar situations. They found various advantages to their approach, including

fast response time and simple, logical comprehension.

Gui et al. (2019) considered a wide range of scope of factors which have the

potential to impact on flight delay, and conducted a comparison of a number of

machine learning-based models used for general flight delay prediction tasks.

The dataset they created for their scheme comprised automatic dependent

surveillance-broadcast (ADS-B) messages. These were received, pre-processed,

and amalgamated with further data including airport information, weather in-

formation and flight schedules. Their design for prediction included various

classification tasks plus a regression task. Their experiments indicated that

that long short-term memory (LSTM) could cope with the aviation sequence

data it received but that a problem arose with overfitting in their dataset,
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which was limited. However, in comparison with earlier models, their random

forest-based model performed well in terms of prediction accuracy (90.2% for

the binary classification) and it was able to surmount the overfitting prob-

lem.

Truong (2021) predicted the likelihood of flight delays using data mining and

causal machine learning algorithms, in a process, known as USELEI process

(Understanding, Sampling, Exploring, Learning, Evaluating, and Inferring).

The process was used because CRISP-DM (Cross Industry Standard Process

for Data Mining) and SEMMA (Sample, Explore, Modify, Model, Assess),

which are commonly used for research in data mining do not take into account

important features of causal data mining which requires the identification of

causal relationships between variables and the creation of an entire structural

causal network from sizeable data sets. Data from various sources were used

and the results suggested that predictors had significant effects on the probabil-

ity of flight delays. These included capacity, reported arrivals and departures,

demands on arrivals and departures, efficiency, volume of traffic at both ori-

gin and destination locations. Significantly, causal interrelationships among

variables in a fully structural network were highlighted along with the way in

which these predictors interacted the occurrences of delays resulting from such

interactions. The predictive power and precision of the final network was high,

with a 91.97% predictive accuracy and the validity of the model was demon-

strated in the positive and negative predictive values of 91.56% and 95.45%,

respectively, confirming the efficacy of USELEI for the prediction of non-delay

as well as delay occurrences. Truong (2021) found that possible scenarios could

be assessed by using sensitivity analysis and causal inference, which can then

help lessen the chance of delays.
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In the area of passenger road transport, passenger satisfaction and increasing

use of bus services may also be affected by the accuracy of delay predictions.

Models used for predicting delays for buses have tended to rely on limited data

sources and simplistic model architectures, resulting in poor performance when

predicting across an entire network. Models have therefore tended to focus on

individual routes. However, rather than just looking at individual routes,

Shoman et al. (2020) proposed prediction of bus delays across the entire bus

network using a deep learning-based approach. Large quantities of heteroge-

nous bus transit and vehicle probe data were used. The researchers used entity

embeddings which made it possible for their model to fit functions and, at the

same time, learn patterns from different types of data streams (categorical and

continuous). One model was produced which was able to classify factors which

impact on delays covering numerous routes and different stations simultane-

ously, at different times of the year and different times of day, in Saint Louis,

Missouri. Their modelling framework performed well for delay prediction cov-

ering multiple stops. The mean absolute percentage error was just 6%. The

high performance of the model of Shoman et al. (2020) over multiple routes

was based on its use of heterogenous data and its ability to simultaneously

model continuous and categorical data using deep learning.

Zhang et al. (2021b) analysed 2 important factors in real time bus dispatch-

ing which can be used to deal with fluctuations in travel time due to traffic

conditions and passenger numbers. They predicted bus arrival times by com-

bining Support Vector Regression and Kalman Filters. They also proposed

automatic timetable redesign using a circle search algorithm, and their results

were verified in a case study in Shenzhen, China.
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From our review of the published work on predicting train delays and the work

in the related transport areas of aviation and roads it is clear that similar

approaches are being used in several transport areas. Therefore it is highly

likely that methods developed in one area could be used in other areas, and

thus the methods we have developed for rail transport in our research for this

thesis have strong potential to be used in other transport areas. However, the

existing publications adopted the single model approach, and so would have the

same limitations as existing single model solutions to train delay prediction.

The disadvantage of the single model approach is that it is less accurate and

less reliable than the ensemble approach. The ensemble approach is able to

utilise the advantages of multiple methods and avoid their disadvantages.

2.2 Ensemble Learning

Predictive machine learning is a field where algorithms fit a model such as an

artificial neural network to existing data, which can then be used to predict

the values of new data. Common uses are classification, where the class of new

samples is predicted and regression where the values of a continuous target

variable are predicted.

An ensemble of models is a set of learning models whose predictions are com-

bined in some way in order to obtain a more generalisable prediction by com-

bining their predictions together (Dietterich, 2000). It was noted by Schapire

(1990), that it is possible to create a strong learner by combining several weak

learners into an ensemble. It has also been demonstrated by Hansen and

Salamon (1990) empirically, that a prediction error made by an ensemble of

multiple models can be less than the error of the best single model in the
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ensemble. In addition, other researchers (Alyahyan et al., 2016) have shown

that an ensemble will outperform individual models (Brown et al., 2005; Wang

et al., 2003). Furthermore, an ensemble offers a high level of reliability (Wang,

2008).

Two conditions must be met in order for an ensemble to outperform the in-

dividual members in it. First, the base learners need to be accurate (so that

they outperform random guessing), and secondly, they need to be diverse (in

other words, they should make different errors when making new predictions).

(Dietterich, 2000; Hansen and Salamon, 1990)

An ensemble can be categorized into two types. A homogeneous ensemble is

built with models generated by one type of base learner only, e.g. decision

trees. In contrast, a heterogeneous ensemble is built using models generated

by several different kinds of base learners.

Heterogeneous ensembles are expected to perform better than homogenous en-

sembles because they are built with methodologically different models, which

may have learned different aspects of a problem from the training data and

could be more diverse from each other to avoid making the same mistakes.

Previous studies comparing the effectiveness of heterogenous and homogenous

ensembles (Alyahyan et al., 2016; Aytuğ, 2018; Gashler et al., 2008; Smȩtek

and Trawiński, 2011; Nanglia et al., 2022) have shown that heterogeneous

ensembles do perform better than homogenous ensembles in terms of both

accuracy and reliability.

These studies have demonstrated that heterogeneous ensembles are generally

more accurate and more reliable, which is particularly important in a critical

industrial application such as train delay prediction, where consistent and

Chapter 2 Mostafa Al Ghamdi 25



Heterogeneous Machine Learning Ensembles for Predicting Train Delays

robust predictions are more important than the absolute prediction accuracy,

as long as the accuracy is within a tolerable limit, e.g one minute.

Because of the potential benefits of heterogeneous ensembles in terms of diver-

sity, and therefore accuracy, we chose to investigate their use for the prediction

of train delays in this study.

2.2.1 Ensemble Construction Methods

Much effort has been applied into developing effective ensemble learning meth-

ods and assessing their performance. In this section we will discuss ensemble

construction methods and factors that affect ensemble performance.

Ensembles can be constructed using a variety of methods. We will now discuss

the most widely used manipulation methods that are applied to a wide variety

of ensemble learning algorithms. The review by Dietterich (2000) discusses

reasons why ensembles may perform better than single models and methods

for ensemble construction. We will now discuss three of these methods for en-

semble construction: Data Level Manipulation, Algorithm Level Manipulation

and Features Level Manipulation.

Data Level Manipulation

With data level manipulation, a number of training datasets are created by re-

sampling the original data according to some sort of sampling distribution. By

using a specific algorithm, a classifier or regression model is then constructed

for each training set. Dietterich (2000) found that this approach is particu-

larly effective for unstable learning algorithms such as decision trees, neural

networks, and rule-based learning algorithms. (In contrast, linear regression,
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nearest neighbor, and linear threshold algorithms are very stable and so data

level manipulation would be less effective with them.) Breiman (1996) intro-

duced bagging, which is one of the most popular ensemble methods using this

approach.

Algorithm Level Manipulation

There are two ways of applying algorithm level manipulation. The first applies

the same method several times to the same training data in order to produce

multiple models. This approach produces what is known as a homogenous

ensemble where the models are all of the same type, for example an ensemble

of decision trees, or of neural networks (Tan et al., 2016). There are various

ways of ensuring that the models are not all identical, for example changes to

the network topology or the weights of the links between neurons may result

in the production of different models, in the case of an ensemble of artificial

neural networks

The second way to apply algorithm level manipulation generates an ensemble

by combining models produced by multiple learning algorithms, that is, dif-

ferent algorithms are applied to the data and the models combined into an

ensemble. The ensembles generated this way are referred to as heterogeneous

ensembles.

Features Level Manipulation

This approach involves repeatedly selecting a subset of feature inputs from the

training dataset. Then this subset us used by the base classifier to generate a

model. The models are then combined to produce the ensemble. The selection
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of the subset can be random or be based on certain criteria. When the dataset

contains many repeating features, it can be particularly useful. An example

of this approach is the Random Forests algorithm of Breiman (2001), where

input features are manipulated and decision trees serve as the base classifiers

(PN, 2006). Another example is the XGBoost algorithm of Chen and Guestrin

(2016).

2.2.2 Popular Existing Homogeneous Ensemble Meth-

ods

The majority of ensemble methods generate homogeneous ensembles. The

most commonly used approaches are Bagging, Boosting and Random Forest.

XGBoost is another popular ensemble method that gives good performance.

These are all described below.

Bagging

Bagging (from bootstrap aggregating) was proposed by Breiman (1996).This

method can be applied to regression and classification problems. It works by

reducing the variance by sampling multiple subsets of the training data with

replacement. As a result of this process, each subset has a (1−1/e) probability

(≈ 63%) of containing any individual sample in the original training dataset

Skurichina and Duin (2002). After generating individual models from each

bagged subset, using the base learner, (e.g. decision tree,) the final output of

the ensemble is obtained by averaging or voting on the outputs of the multiple

models obtained.
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Boosting

Boosting was proposed by Freund et al. (1999). The aim of boosting is to build

a strong classifier by generating multiple models using a weak learner, and then

combining their outputs in order to get a better performance. In boosting the

models are generated sequentially by successive iterations of the algorithm,

whereas with bagging they can be generated in parallel. One of the most

well know boosting algorithms for classification is AdaBoost (from Adaptive

Boosting). After each boosting iteration the weights applied to individual

samples are increased for samples misclassified at the previous iteration. Thus,

the algorithm focuses on the more difficult samples. The final ensemble output

is made by weighted voting.

Random Forest

Random Forest is an ensemble algorithm that was proposed by Ho (1995)

generates a variety of decision trees that can be used for classification and

regression. It employs bagging of the features during tree construction and the

trees are constructed by sampling with replacement samples from the original

training dataset. Each tree node sample from the training dataset contains

an attribute that is selected according to a random process. The ensemble

prediction is achieved by averaging for a regression model and by majority

voting for classification.

XGBoost

XGBoost (From eXtreme Gradient Boosting) was proposed by Chen and

Guestrin (2016) and is a boosting algorithm that has proven to be one of

Chapter 2 Mostafa Al Ghamdi 29



Heterogeneous Machine Learning Ensembles for Predicting Train Delays

the most powerful ensemble algorithms. It was designed to be very efficient

and employs Newton gradient descent. It has been used in many domains

(Asselman et al., 2021; Li et al., 2020b; Liu et al., 2022), demonstrating that

it has the ability to perform fast and accurate results. It can use parallel and

distributed computing to speed up the learning process, resulting in a faster

modelling process.

2.2.3 The factors that influence ensemble performance

The study by Wang (2008) discussed how an ensemble’s accuracy can be in-

fluenced, by what factors and to what degree, and listed the following fac-

tors:

1. Accuracy of individual models.

2. Decision Making Function.

3. Diversity of individual regressors.

4. Number of models within an ensemble.

5. Methods for selecting models.

We now discuss these factors.

Accuracy of individual models

Ensemble accuracy depends on the accuracy of each individual model in the

ensemble. In general terms, members whose accuracy is higher than a random

guess should to be used, this would be expected to result in an ensemble having

a more accurate result than a single model (Wang, 2008).
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Decision Making Function

Any ensemble requires a decision making function to combine the outputs

of the individual models to produce the final output. This function plays

a very critical role in determining the performance of the ensemble (Wang,

2008).

(In our research we developed two functions for this, one employing averaging

and the other employing weighted averaging.)

Two types of decision making function can be employed: fusion and selec-

tion.

Using the fusion approach, the individual predictions are merged to produce

the final ensemble output. The term fusion refers to procedures that combine

the decisions of all ensemble members. In contrast, ensemble selection proce-

dures combine only a portion of the available decisions to create the ensemble

output.

Diversity of individual regressors

The ensemble learning approach depends on the individual models being able

to collectively give a better prediction than any one singe model. However,

in order to do this they need to be diverse, that is, although they may make

errors, the individual models must not make the same errors in terms of their

predictions. Diversity measures have been devised with the aim of quantifying

the overall amount of difference between the individual models making up an

ensemble. Thus, a diversity measure is a measure of difference between models

within an ensemble in terms of their predictions.
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While there is no generally agreed absolute definition of diversity, there are sev-

eral diversity definitions and methods for assessing diversity for classification

problems (Wang, 2008). Ensemble diversity measures are typically recognized

as representative approaches for reflecting failure independence among ensem-

ble team member models, and are predicted to have a consistent association

with ensemble accuracy (Wu et al., 2021). Diversity measures are divided into

pairwise and non-pairwise. Pairwise measures only consider two models and

non-pairwise can work with all the models. At present, no specific and widely

accepted standard diversity measurement technique exists for classificaton or

for regression problems.

For regression problems, it is more challenging in measuring diversity among

the models, which is probably the reason that most diversity measures are de-

fined for classification problems but not applicable to regression ensembles as

they require the categorical outputs and cannot handle the real value output

in regression problems. One review (Dutta, 2009) evaluated several measures

for evaluating diversity in regression ensembles by using correlation coeffi-

cient, covariance, dissimilarity measure, Chi-square, and mutual information,

etc.

In regression problems, diversity is explained based on ambiguity decompo-

sition proposed by Krogh and Vedelsby (1994) who prove that the ensemble

predictor guarantees a lower squared error than individual predictors. A typ-

ical study by Liu et al. (2000) demonstrated that negative correlation can be

useful to push the models apart if it is integrated in the training of neural net-

works. But again, this mechanism is not related to the final decision making

and hence its effectiveness is limited.
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In addition, these studies do not consider how the diversity in an ensemble

can be affected and measured when a model is added to or removed from an

ensemble, which may affect its overall prediction (Dutta, 2009).

In the literature, several ways for calculating diversity have been described.

However, the majority of published measures of diversity are not applicable to

regression ensembles because they were developed for classification ensembles

and cannot be directly transferred to regression. One study (Dutta, 2009) eval-

uated several measures for evaluating diversity in regression ensembles (cor-

relation coefficient, covariance, dissimilarity measure, chi-square, and mutual

information). For this study we redefined some of the metrics evaluated by

Dutta (2009) and also modified probably the most effective non-pairwise di-

versity measure for classification—the Coincident Failure Diversity(CFD) of

Partridge and Krzanowski (1997), for regression problems. To the best of our

knowledge this is the first time that CFD has been applied to a regression

problem.

It is worth noting that the estimation of diversity is challenging and the existing

diversity definitions may not necessarily have a linear relationship with the

actual useful diversity, however, we would expect them to broadly reflect some

level of the diversity, i.e. an ensemble with a high diversity measure value

would be more diverse than one with a lower value.

It is important to note that different diversity measures will give values across

different ranges, therefore when using diversity as a component of the fitness

function, we normalised each diversity metric to range from 0 to 1, with 1

being the highest level of diversity. The metrics that we used in our study are

described below:
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Correlation In statistics, the correlation (COR) coefficient is a measure of

how strongly two variables are related to one another based on their relative

movements, with a range of values between -1.0 and 1.0. A correlation of -1.0

indicates that there is a perfect negative correlation; while a correlation of

1.0 indicates that there is a perfect positive correlation. As a result of the

correlation value of 0.0, no linear relationship can be found between the two

variables. Therefore, the diversity is inversely proportional to correlation, i.e.,

when the correlation is high, the diversity will be low and vice versa. It can

be used as a diversity measure between a pair of models.

For a given pair of models x and y, where r = correlation between them, i is

an index over the N data samples xi = output value of x, yi= output value of

y, x̄ = mean of x, and ȳ = mean of y,

r =

∑
(xi − x̄)×

∑
(yi − ȳ)√∑

(xi − x̄)2 ×
∑

(yi − ȳ)2
. (2.1)

Covariance The covariance (COV) indicates whether the two variables x

and y vary together in a correlated manner. Unlike the correlation, whose

values are limited to -1 and +1, the values of covariance are unbounded, and

can be anything between -∞ to +∞,

(The symbols are the same as in Equation 2.1)

cov =

∑
(xi − x̄)×

∑
(yi − ȳ)

N − 1
. (2.2)

Disagreement The disagreement (DIS) score measures how dissimilar the

predictions from two different models are. It is mainly used for binary vari-

ables, but may be indirectly applied to the continuous output after it is
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firstly converted into binary values with a threshold value θ, as per Equa-

tion 2.3,

f(x) =

 0, x < θ

1, x >= θ
. (2.3)

Disagreement is then calculated as per Equation 2.4,

Disagreement =
N01 +N10

N00 +N01 +N10 +N11
, (2.4)

where N11 represents the samples correctly predicted, and N00 represents the

samples incorrectly predicted by a pair of predictors M1 and M2, respectively.

Samples that are correctly predicted by M1 and incorrectly by M2 are repre-

sented by N10, and samples which are correctly predicted by M2 but incorrectly

byM1 are represented by N01.

CFD The Coincident Failure Diversity score was defined by Partridge and

Krzanowski (1997) to measure the probability that two or more models fail on

a test data simultaneously and was also used for binary variables. But in a

similar manner as mentioned above, it can be modified to handle continuous

variables for regression problems, as shown below. CFD is calculated as:

CFD =
M∑

m=1

(M −m)

(M − 1)
× fm, (2.5)
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where, M = total number of models in ensemble, m = a number of models

(between 1 and M), and:

fm =
number of samples incorrectly predicted by m models

number of samples incorrectly predicted by at least one model
. (2.6)

When CFD = 0, this means that all the members of an ensemble are the

same, hence there is no diversity. When CFD = 1, the ensemble members

have a maximum diversity, indicating that all members make distinct errors

that are compensated by other members. So an ensemble with a maximum

diversity should produce a perfect answer, although its members may make

some mistakes.

CFD has previously been reported to be the best non-pairwise measure of di-

versity (Bian, 2006). In a study involving ten non-pairwise diversity measures,

Bian and Wang (2007) noted that CFD values are relatively independent from

the number and accuracy of models in the ensemble.

Number of models within an ensemble

As with a committee of human experts, an ensemble with a large number of

members can be expected to be more accurate than one with a small num-

ber. However, having more models in the ensemble will only be beneficial if

they are diverse from one another, so that they do not make the same mis-

takes and the optimum size of the ensemble will vary according to the dataset

characteristics, model accuracy and model diversity. Thus, a small ensemble

with high diversity could give better performance than a large one with low

diversity.

Chapter 2 Mostafa Al Ghamdi 36



Heterogeneous Machine Learning Ensembles for Predicting Train Delays

Methods for selecting models

Many ensemble selection approaches have been published in the literature in

order to reduce computation time, as well as categorizing them as follows:

Cluster-based, Optimization-based and Ordering-based selection (Zhou, 2012).

Mohammed et al. (2022) demonstrate how to build low-complexity, small-size,

and highly accurate ensembles using ensemble selection. These results indicate

that the proposed method of ensemble selection is a suitable alternative to

large-size ensembles.

Cluster-based. As a general rule, clustering is used to partition individual

learners into groups of learners, where individuals within the same group be-

have similarly, while different groups behave differently with great diversity

(Zhou, 2012).

Optimization-based. In order to find the most efficient solution, ensemble

selection is formulated as an optimization problem. Learners are included in

the final ensemble with the aim of improving generalization (Zhou, 2012).

Ordering-based. In this method, the regressor or classifiers in the pool of

models are sorted according to some criteria such as accuracy or diversity.

Using ordered aggregation, an empirical study by Mart́ınez-Muñoz et al. (2008)

showed that selection ensembles generated through ordered aggregation can be

both competitive and robust compared with computationally more expensive

approaches that select optimum or near-optimal subensembles directly. A

study of 26 UCI data sets was conducted by Lu et al. (2010) to examine

how ensemble pruning or selection can be used to construct subensembles

based on the order in which the ensemble members outperformed the original
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ensemble. They showed that the subensembles generated outperformed the

original ensemble.

In our study we will use this approach, as overall it is the most appropriate

for our purposes.

2.3 Summary

In this chapter we have discussed previous work done in the field of train de-

lay prediction and also looked at work in the related fields of air and road

passenger transport delay prediction. Random Forest has been the most effec-

tive algorithm for train delay prediction overall and has been used by several

researchers.

The work of Oneto et al. (2016) who employed the use of many detailed fea-

tures, such as weather conditions and position of other trains on the network

contrasts with that of of Yaghini et al. (2013), discussed above, who used a rel-

atively simple dataset. The different approaches of Yaghini et al. (2013), who

used data for the Iranian network, and Oneto et al. (2016), who focused on

the Italian rail network, highlight the importance of tailoring the method em-

ployed and the features selected to suit the specific problems of the network.

The Iranian network has a much lower level of complexity than the Italian

network. Since the UK rail network is extremely complex with a consider-

able number of crossovers, it might therefore be thought that Oneto’s method

would be better suited to it than that of Yaghini et al. (2013).

Several other authors have also used Random Forest for train delay predic-

tions. Kecman and Goverde (2015) concluded that in their application it out-

performed linear regression and decision trees. Gao et al. (2020) used a two
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stage RF model and found that it increased the accuracy of delay predictions.

Nabian et al. (2019) used a bi-level RF approach, while Nair et al. (2019) used

a large scale application of RF. These applications demonstrate how powerful

the Random Forest ensemble method is and for this reason we will include it

as one of the base learners to be used in building our heterogeneous ensembles,

and also as a benchmark method for comparison purposes.

We have discussed ensemble learning methods and how they might be applied

to the problem of train delay prediction. We noted that heterogeneous ensem-

bles have been shown to give better performance than homogeneous ensembles.

But we also noted that almost all existing applications of ensembles to train

delay prediction were homogenous ensembles, and the only application of het-

erogeneous ensembles that we are aware of would not generalise well.

The factors affecting ensemble performance have been considered, and we es-

pecially noted the importance of diversity and discussed measures of ensemble

diversity. A number of diversity metrics were discussed and it was noted that

the CFD score of Partridge and Krzanowski (1997) has been reported by pre-

vious researchers to be the best diversity measure. We discussed existing work

on the use of ensemble selection to improve ensemble performance, and noted

that ordering-based selection is, overall, the best approach.
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3.1 Introduction

This chapter provides an overview of the design and methods used in this re-

search in order to accomplish its aim. We will present the ensemble framework

that was used for all our experiments and describe its components. We also

present the datasets that we used to test our methods. We also present the

methods used for evaluating the significance of the results.

The rest of the chapter is organized as follows:

Section 3.2 will present the research research design and methods.

Section 3.3 describes the dataset and preprocessing.

Section 3.4 will provide details of the methods for evaluating and presenting

the results.

Section 3.4.4 describes the statistical tests for comparison.

Section 3.5 will give a summary of the chapter.

3.2 Research Design and Methods

The aim of our research is to develop heterogeneous ensemble machine learning

methods that can be used for predicting train delays. The research will be

carried out as a case study using train data on the Greater Anglia line between

Norwich and London Liverpool Street stations.

The ensemble framework is introduced in Subsection 3.2.1 and described in

detail in Subsections 3.2.2–3.2.6.
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The data used covers a period of 2 years and 5 months between 2017 and 2019.

It is described in Section 3.3.

3.2.1 Heterogeneous Ensemble Framework for Predict-

ing Train Delay

The overall framework of our Heterogeneous Machine Learning Ensemble (HMLE)

is shown in Fig. 3.1. It consists of five phases: (1) data preprocessing and fea-

ture extraction, (2) data partitioning, (3) modelling, (4) Model Selection, and

(5) building the ensemble. These phases are described in Subsections 3.2.2–

3.2.6. The framework will be adapted for each experiment. A detailed descrip-

tion of the framework used for each experiment will be given in the relevant

chapter.

Data

D1

Data

D2

Data

Di

Feature 

Extraction

Feature 

Extraction

Feature 

Extraction

Data 

Partitioning 
Modelling 

Model 

Selection 

Building 

Ensemble 

Figure 3.1: Ensemble Framework, showing the stages in ensemble con-

struction.
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3.2.2 Data Preprocessing and Feature extraction

The dataset we have used consists of a flat table where rows represent samples,

i.e., timepoints where a train passes a point on the railway line and columns

represent the attributes of the data. The database and its preprocessing are

described in detail in Section 3.3.

In our system, the input data X will consist of features derived from two

sources, one from the train company, which was used in all our experiments,

and one from the weather company, which was used in our initial experiments

X = {x1, x2, .., xj, .., xJ}, where J is the total number of features. For example,

x1 could represent the departure delay for the last station and x2 the depar-

ture delay for the current station. Different features were used in different

experiments.

It should be noted that while several datasets can be merged into one and then

used to generate multiple models that are then combined into an ensemble, it

is not possible to modify or “update” that ensemble to take into account new

data, e.g. by adding more models generated using the new data. If new data

is added, then a completely new ensemble must be generated using the new,

combined dataset.

3.2.3 Data Partitioning

In this phase, the dataset will be split into training, validation and testing

sets. For all partitioning random seeds will be used in order to ensure repro-

ducibility of results and shuffling the dataset. To conduct this research, the

initial dataset was partitioned into training, validation and testing subsets.
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The Train test split function provided by Scikit-Learn (Buitinck et al., 2013)

was used to achieve this splitting of the data. When performing experiments

with multiple runs, we used a different random seed for each run, in order to

achieve different partitions and to ensure reproducibilty.

3.2.4 Modelling

In the modelling phase, a collection of models, CM , will be produced.

CM = {m1,m2, . . . ,mi, . . . ,mI} where each mi will come from a regression

model. The models produced at this stage will be the candidates for being

selected to build the ensemble. A wide range of algorithms could be used

for generating the models, including deep learning, existing ensemble meth-

ods such as Random Forest and conventional methods e.g. regression. By

using different algorithms to generate the models a heterogeneous ensemble

can be generated. All models will be learned from the training data. In this

study, we are mainly concerned with ensemble learning, therefore these learn-

ing algorithms are regarded as black boxes in our research. For this study, we

used a range of different types of standard base learner which are available

in Scikit-Learn (Buitinck et al., 2013) and other libraries, and are well-known

methods that have previously been used in train delay prediction. In each

chapter describing experiments, the base learners used are listed. This phase

of modelling entails two important considerations: (1) What is a suitable base

learner? (2) What is the optimum number of models?

In our experiments we used the default parameter settings for the base learner

algorithms that we used. This was because our focus was on the development

of ensembles and to investigate whether they had ability to do better than

individual models working alone. To attempt to optimise parameters for every
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algorithm would have entailed a large amount of work which would have given

little benefit, as the default values generally give good results.

3.2.5 Model Selection

The model selection is the fourth step of the proposed framework. In connec-

tion with this step, it is important to note that the models in the ensemble

for predicting train delays must have two important characteristics—one is

accuracy and the other is diversity.

Model selection involves choosing from among many different models stored

in the collection of models. Different aspects were taken into account during

the development of this stage. We began by investigating the size of the

ensemble and how this may affect its performance. We then explored the

effect of the accuracy of the models and finally, we examined the effects of

their diversity.

In order to carry out the investigation of model selection two different selection

methods were devised. The first (MSM1) only considers the accuracy, the

second (MSM2) considers both accuracy and diversity, which was computed

using different metrics. These selection methods will be fully described in

Sections 5.2.1 and 5.2.1, respectively, in Chapter 5.

3.2.6 Building Ensemble

Building the ensemble involves combining together some or all of the models

selected in order to build an ensemble that will produce the best prediction for

the delay at a station by combining the results from the M models chosen. For
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this process, two techniques will be used, Averaging and Weighted Averaging,

which are described below.

Averaging(AE) This is a technique that computes the mean of the outputs

from all the individual models in an ensemble as the final output of the en-

semble. It is the simplest decision fusion function and often used for regression

problems. In this technique, all the models in an ensemble are used to make

their prediction independently for each data point and their predictions in real

value are then averaged to produce a final prediction. (Equation 3.1.)

ya =

∑M
j yj

M
, (3.1)

where, yj is the output from member model j, M is the number of models in

the ensemble, 1 ≤ j ≤M .

Weighted Averaging(WE) This is a variation of averaging, or a gener-

alised averaging fusion function. The important difference is that outputs of

individual models are assigned with different weights based on their perfor-

mance when computing the final value. There can be different ways to calcu-

late the weights, based on then chosen metrics, e.g. R2 or MAE. In this study,

for our initial experiments we used the metrics described in Section 4.4.1, for

our later experiments, described in Chapters 5 to 7, we used R2. The pro-

cedure is as follows (using R2 as an example): for model j, its weight wj is

computed with equation 3.2, based on its R2
j on the validation data, where a

is the multiplying factor to further adjust influence of a model. When a > 1,

the weight is boosted to increase the influence of a good model in making the

final decision; whilst a < 1, the weight is further reduced for the models with
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poor performance. When a = 1, the value of R2 of a model is just taken as its

weight, which was used in this study for simplicity, without loss of generality,

as per Equation 3.2,

wj = ajR
2
j . (3.2)

The weighted output of the ensemble yw can then be computed by Equa-

tion 3.3,

yw =

∑M
j yj × wj∑M

j wj

, (3.3)

where, yj is the output from member model j, wj is the weight for model j,

M is the number of models in the ensemble, 1 ≤ j ≤M .

3.2.7 Prediction Modelling Scheme

Delay Prediction Representation

Firstly, instead of predicting the actual arrival time of a given train Ti at its

next station, we convert it to predict the difference between the planned and

actual arrival time at a station. So let tpa represent the planned arrival time, on

the timetable, of train Ti at an intended station Sj; taa, the actual arrival time

of that train at that station. The time difference, ∆t, between the timetabled

arrival time and the actual arrival time is calculated by the following equation

which calculates the target variable y,

y = ∆t(Ti, Sj) = taa(Ti, Sj)− tpa(Ti, Sj). (3.4)
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The predicted arrival time for train Ti at station Sj can then be derived by

Sj(Ti) = tpa + ∆t. It should be noted that when ∆t is positive, it means a

train is delayed and when it is negative, it means that a train arrives early.

This predicted time will be taken, together with other variables, as the inputs

to the next model for predicting the arrival time of a following station.

These predictions are based on the running time. With these features, differ-

ent models are trained as candidate models for building heterogeneous ensem-

bles.

3.3 Datasets and Pre-processing

3.3.1 Datasets

A dataset covering a period of 2 years and 5 months between 2017 and 2019,

train running data was collected from the Historic Service Performance data

repository (HSP) (NRE, 2018). Weather data was also collected from the

weather stations nearest to the railway stations in question, which were used

in the initial experiment Chapter 4 . This dataset was originally collected by

Mr. Douglas Fraser of the School of Computing Sciences, University of East

Anglia. For our initial investigations, discussed in Chapter 4, a subset of this

dataset covering a period of 7 months was used. It is described in Section 4.1.

For the remaining work the entire dataset was used, excluding the weather

data. Table 3.1 lists the features from the raw data that were selected from

the dataset of train running data.
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Table 3.1: Description of the key features of the raw data.

Key Description
RID A rid is a unique identifier for a journey.
tbl Code for train location
wta Planned arrival times
wtd Planned departure times
arr at Actual arrival times
dep at Actual departure times
wtp Planned passing point
pass at Actual passing point
canc reason A train delay code that represents the reason for the

cancellation

3.3.2 Pre-processing

The data used need to be as complete, accurate, and consistent as possible,

in order achieve the best results. Therefore detailed data cleansing was per-

formed. We did not perform any imputation of missing data. This is because

we had enough data to carry out our research, even when all records with

missing data were removed, and data imputation can introduce errors. We

preferred to ensure that the dataset was as free from errors as possible.

1. Firstly all the csv files were concatanated into a single file.

2. Then journey level data were processed to distinguish between stopping

stations and passing points/non-stopping stations. (At a stopping sta-

tion passengers can get in and out, whereas the train just passes a passing

point/non-stopping station).

3. We identified the stations where the train stopped in each complete jour-

ney. We then made a list of all the various combinations of stations

stopped at. This enabled us to identify journeys where the trains had

stopped at the same combination of stations.
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4. We converted columns wta, wtp , arr at and dep at to datetime format,

which makes calculations easier.

5. Duplicate records were removed.

6. The column indicating whether a journey was cancelled was removed.

7. Records with missing values were removed.

8. We ran numerous logical checks to identify records containing errors.

(E.g. some trains were listed as arriving earlier than they left, this was

one example of inconsistency.) These records were deleted.

9. Features were then extracted. (Different combinations of features were

extracted for different experiments.)

10. Columns of numeric data were adjusted to zero mean and unit standard

deviation using scikitlearn StandardScaler function.

11. Categorical data, such as day of week and day of month, were all con-

verted to binary using one hot encoding.

3.4 Evaluation Methods and Metrics

The evaluation of results is a critical part of all research and different re-

searchers into train delay prediction have adopted different methods and met-

rics to calculate performance. The choice of metric in train delay prediction

is important because while predicting the delay is a regression problem, the

criterion for a train being officially delayed is normally based on an absolute

cut off, e.g. 1 minute, and delay prediction is therefore also a classification
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problem. Furthermore, data relating to timetables and recorded delay values

are rounded to e.g. the nearest minute. (See Oneto et al. (2018).)

It should be noted that while the current PPM standard on the UK network

declares a train to be late only if it is more than 5 minutes behind schedule,

this can be the result of a series of smaller delays at several stations, so for

our evaluation we will use a smaller cutoff. Different measures for reporting

train delays have been used by different researchers, the measures we will use

are described below.

3.4.1 Percentage correct prediction after rounding (%CP)

The continuous output produced by regression models is unlikely to be whole

integers. Output values are therefore rounded to the nearest integer. Com-

parison is then made with the actual outputs in the test dataset to assess the

number of journeys the model accurately predicted to the minute following

rounding.

3.4.2 Percentage within 1 minute prediction after round-

ing (%|P| <1)

This is the same as the above evaluation, using comparison to assess whether

the model predicted exactly or within 1 minute either way.

3.4.3 Regression Metrics

We employed four common metrics to evaluate the prediction accuracy of the

proposed technique for predicting next arrival delay in this study. These were,
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mean absolute error (MAE), mean squared error (MSE), root mean squared

error (RMSE) and R-squared (R2):

MAE =
1

N

N∑
i=1

|yi − ŷi|, (3.5)

MSE =
1

N

N∑
i=1

(yi − ŷi)2, (3.6)

RMSE =

√√√√ 1

N

N∑
i=1

(yi − ŷi)2, (3.7)

R2 = 1−
∑

(yi − ŷi)2∑
(yi − ȳi)2

, (3.8)

where N is the number of samples and i is the index of the sample, 1 ≤ i ≤

N .

3.4.4 Statistical Tests for Comparison

The performance of the ensemble methods was evaluated using the Friedman

test to compare all the methods used. Critical difference diagrams were used

to view the results.

Critical Difference Diagrams

Critical difference (CD) diagrams (Demšar, 2006), enabled statistical compar-

isons between our results to be made. In CD diagrams the results are presented

on a numerical range and results that do not differ significantly are grouped
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using solid black lines. Two results are significantly different if they are not

found in any common group.

The comparison is a two step process. The null hypothesis is that the average

ranks of k methods do not differ significantly, the alternative hypothesisis is

that the mean rank of least one regressor is different.

In step one, the k methods are ranked according to their performance; then,

the average ranking of each algorithm is calculated. The null hypothesis, can

be tested using the Friedman test (Equation 3.9),

Q =
12l

k(k + 1)
·

[
k∑

j=1

r̄2
j −

k(k + 1)2

4

]
, (3.9)

where Q is the Friedman test statistic, l is the number of runs, r̄2
j is the rank

of the jth of k algorithms and the statistic is estimated using a chi-squared

distribution with k − 1 degrees of freedom. The rejection criterion used was

p < 0.05.

This calculation is often conservative, so Demšar (2006) used an alternative

statistic, devised by Iman and Davenport (1980):

FF =
(l − 1)Q

l(k − 1)−Q
, (3.10)

where Q is the Friedman test statistic.

Under the null hypothesis this equation follows an F distribution with (k− 1)

and (k − 1)(l − 1) degrees of freedom.

Step two is applied if the null hypothesis is rejected. Here, post-hoc pair-wise

Nemenyi tests are used. These indicate significant differences between the
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average ranks of two regressors if their difference is equal to or more than the

critical difference, CD, as per Equation 3.11,

CD = qa

√
k(k + 1)

6l
. (3.11)

Here qa is calculated from the difference in the range of standard deviations

between the sample with the smallest value and the sample with the largest

value. The CD diagram presents the results.

The CD diagram (see for example Figure 4.9) presents the algorithms in rank

order according to accuracy from highest to lowest, where the algorithm with

highest accuracy is in position 1, the next in position 2, and so on.

The thick lines on the CD diagram link the algorithms that do not differ

significantly. Hence, it is easy to identify which algorithms differ significantly

from each other, because they are not linked by the same thick line.

3.5 Summary

In this chapter we have given an overview of our research methodology. We

have presented the framework for generating heterogeneous ensembles and

given details of its phases. The five phases are: (1) data preprocessing and

feature extraction, (2) data partitioning, (3) modelling, (4) selecting models,

and (5) building the ensemble.

(1) Data preprocessing involves cleaning the data to remove incomplete records,

standardising numerical data and converting categorical data to binary. No

imputation of missing data was performed in order to avoid introducing errors

into the data we used.
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(2) Data partitioning was used to split the data into training, validation and

testing datasets.

(3) Modelling employs different algorithms to generate machine learning mod-

els for inclusion in the ensemble.

(4) Selection of models was performed to decide which models to include in

the ensemble. Different criteria (accuracy and diversity) were used to to do

this.

(5) The models were combined together in order to build the ensemble. Two

different criteria, averaging and weighted averaging, were used for performing

this.

We have described the data preprocessing and feature extraction, the data

partitioning, the model selection and the methods for combining the models.

The datasets have been described. Finally, we have described the statistical

tests and critical difference diagrams we will use to help in the evaluation of

our results.
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4.1 Introduction

Over recent years ensemble learning methods have gained a lot of attention

and have become one of the most popular ways for solving real data analysis

problems in a wide range of research and competitions. Despite the fact that

many algorithms have been applied in the past for the prediction of train

delays, there has been only one application of a heterogeneous ensemble (HE)

in this area.

A heterogeneous ensemble contains models that are different because they have

been generated by different base learner algorithms. Therefore, for our initial

experiments we devised an ensemble that was able to generate models from a

wide variety of base learner algorithms and combine them together.

The rest of the chapter is organized as follows:

Section 4.2 Describes the proposed heterogeneous ensemble.

Section 4.3 Describes the dataset and feature extraction.

Section 4.4 Presents the experimental design.

Section 4.5 Presents and discusses the experimental results.

Section 4.6 Summarises the chapter.

4.2 Proposed heterogeneous ensemble

For these initial experiments we devised a framework (Figure 4.3) adapted

from our overall framework described in Section 3.2.1. The main difference

was that for these initial experiments we did not apply or investigate any
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model selection in this experiment. (Chapter 5 will cover the process of model

selection.)

The framework consists of five phases: (1) data preprocessing and feature

extraction, (2) data partitioning, (3) modelling, (4) collection of models, and

(5) building the ensemble.

For phase (1) data preprocessing was performed as described in Section 3.3.2,

then feature extraction was performed as described below in Section 4.3.2.

For phase (2) the dataset was partitioned into training, validation and testing

subsets. This was performed using a random seed to enable reproducibility,

and also to enable different random partitions to be made by using different

random seeds.

Phase (3) was the modelling phase. Here different regression algorithms were

used to generate different regression models from the training data. (The fact

that each model was generated from a different algorithm is what makes the

ensemble heterogeneous.)

In phase (4) the models generated in phase (3) were all put into a collection

of models.

Phase (5) was the final stage where the models were combined together into

the heterogeneous ensemble. This was performed using either averaging or

weighted averaging.

4.3 Dataset and features

Because this was an initial experiment we used a subset of the dataset described

in Section 3.3. It contained data for a seven month period from 01-01-2017
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to 01-08-2017. In total, it contained data relating to 5499 valid journeys that

could be used in the modelling process. (The total number of station-to-station

journey instances was 33293.)

Figure 4.1 shows the proportions of journeys that were early, on time and

delayed. By on time we mean that there is no difference between the scheduled

time and the actual time. It can be seen that 27.4% were not delayed, 21.3%

were on time and 51.4% were delayed.

In addition, for this dataset, we also included weather data from a dataset

collected from the weather stations nearest to the railway stations in question,

provided free of charge by Weatherquest Ltd. This data was preprocessed by

Mr Bradley Lewis Thompson of the University of East Anglia for his MSc dis-

sertation (Thompson, 2018) who extracted data for the nearest hour for the

weather station nearest to the rail station from which the train departed for

each record in the train delay dataset. The data were only complete for tem-

perature and precipitation, so these were the only features that we used.
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Figure 4.1: Proportions of all NRW – LST journey delays. The pie

chart shows the percentage of journeys that were early, on time or de-

layed.
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Figure 4.2: Bar chart of arrival delays between the station pairs, NRW–

DIS, DIS–SMK, SMK–IPS, IPS–MNG, MNG–COL, COL–CHM, COL–

LST. The average arrival delays are shown, with the SDs indicated by

error bars.
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4.3.1 Station pairs

The full list of stations for the Norwich to London Liverpool Street journey

is: Norwich (NRW), Diss (DIS), Stowmarket (SMK), Ipswich (IPS), Man-

ningtree (MNG), Colchester (COL), Chelmsford (CHE) and London Liverpool

Street (LST). However, not every train stops at every station. Therefore data

are available for journeys between the following pairs of stations: NRW–DIS,

DIS–SMK, DIS–IPS, SMK–IPS, IPS–MNG, MNG–COL, COL–LST, COL–

CHM.

The arrival delays are shown for NRW–DIS, DIS–SMK, SMK–IPS, IPS–MNG,

MNG–COL, COL–CHM, COL–LST in Figure 4.2, with the SDs indicated by

error bars. The smallest average delay is for NRW–DIS, which is the first stage

of the journey, and the largest average delay is for COL–LST, LST being the

terminal station on the journey. This indicates that the delays accumulate

through the course of the journey. Similarly, the SDs are larger for stations

that are later in the journey, again this would be the result of the accumulating

delays. This pattern is to be expected and the difficulty of the prediction task

can be seen from this figure.

4.3.2 Features derived for Model Input

Normally some sort of feature selection and engineering would be applied to

any prediction problem. This dataset contains a large number of records and

a relatively low number of features. Train delays are caused by many factors

and each one may have only a small impact. We found that only one feature

was in itself a strong predictor of the arrival delay, which was the departure

delay.
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For this study we were able to derive the following features from the raw data

which had an impact on the delay:

• The departure delay for the last station.

• The departure delay for the current station.

• Day of the Week: Monday = 1, Sunday = 7.

• Day of the Month: The day of the month = 1–31.

• Weekday/Weekend: True = Weekday; False = Weekend.

• On-Peak/Off-Peak: True = on-peak; False = off peak.

• Hour of the Day: the hour period of the day the journey 0–23.

• Temperature: for the relevant hour, reading in degrees Celsius taken

from the nearest weather station for the current station.

• Rainfall: Levels of precipitation, according to the nearest weather sta-

tion.

While there are many factors that could impact on the train delays, such

as number of passengers, type of train, distance between stations and driver

experience, these were not available in the data we had.

The effect of including the weather data was investigated in Section 4.5.2.

4.4 Experimental Design

In these initial experiments we were investigating the feasibility of building

ensembles containing models generated by different base learner algorithms.
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In order to do this we used the framework described above and performed the

following steps.

1. First, feature extraction from the dataset was performed as described in

Section 4.3

2. We then divided the data into training, validation, and testing sub-

datasets. This is a commonly used practice, where the validation set

is used to check the accuracy of the generated models during training,

and the test set is used to test the accuracy of the final ensemble. There

is no standard ratio for dividing up the dataset, but normally the valida-

tion and test sets would each contain between 10 and 20% of the samples.

A balance has to be struck between having as many samples as possible

for training, and sufficient to perform accurate validation and testing.

We decided that using the split 70%:15%:15% did this. We split the

dataset using a random seed. Each experiment was repeated five times,

using different random seeds, and the results were averaged.

3. We applied a series of regressor algorithms from the scikit-learn library

to generate models. Various algorithms were selected to build the mod-

els in these ensembles. We deliberately chose a wide variety of algo-

rithms in order to make the ensemble as heterogeneous as possible. Of

the fifteen chosen, twelve generate individual models; Linear Regres-

sion (LR), Multi-layer Perceptron (MLP) (Rosenblatt, 1961), ElasticNet

(EN), k-nearest neighbours Regressor (KNN). Support Vector Regres-

sion (SVR), Kernel Ridge Regression (KR), Gaussian process regression

(GPR), Bayesian Ridge (BR) (Box and Tiao, 2011), Stochastic Gradi-

ent Descent (SGD) (Jain et al., 2018), Lasso (Santosa and Symes, 1986),

Ridge (Hoerl and Kennard, 1970) and LassoLars (LL); and three produce
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essentially homogeneous ensembles; Extra Trees Regressor (ET), Gradi-

ent Boosting Regression (GBR) (Friedman, 2001) and Random Forest

(RF) (Ho, 1995).

As noted in Section 3.2.4, the default parameter settings were used for all

these algorithms as our focus was to investigate whether our ensembles

have ability to do better than individual models that work separately,

no matter how well an individual model does.

4. All the models generated were put into a collection of models.

5. These generated models were then used to form an ensemble. Here two

different decision making functions were applied to combine the outputs

of the models in a heterogeneous ensemble to produce a final output.

Because of the different decision making functions the ensembles are

named as Averaging Ensemble (AE) and Weighted Ensemble (WE). The

weighted averaging was performed using the performance of the models

on the validation data. The performance was calculated using the metrics

described in Section 4.4.1. Finally the completed ensemble was tested

using the testing data. The performance of the individual models on the

validation data and the performance of the ensemble on the testing data

were calculated using the metrics described below in Section 4.4.1.

In a further experiment we used the same procedure and investigated how

beneficial it was to include weather data in the dataset. For this we only used

the data for the journey from Norwich to Diss.

Overall we conducted a total of 1220 experimental runs for the work describe

in this chapter.

Figure 4.3 illustrates the framework of our HE.
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Dataset Feature Extraction 

Collection Of Models (CM)

Decision Making Function (AE,WE)

     Data partitioning 

Training Validation Testing  

Base Learner 
Algorithm1 

Base Learner 
Algorithm2 

Base Learner
Algorithm m 

Heterogeneous Ensemble 

Figure 4.3: Framework of Heterogeneous Ensemble showing the pro-

cess of generating the ensemble.
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4.4.1 Evaluation Methods

In this initial experiment and investigation, we evaluated the methods using

the following metrics.

Percentage correct prediction after rounding (%CP). The continuous

output produced by regression models is unlikely to be whole integers.

Output values are therefore rounded to the nearest integer. Compari-

son is then made with the actual outputs in the test dataset to assess

the number of journeys the model accurately predicted to the minute

following rounding.

Percentage within 1 minute prediction after rounding (%|P| <1). This

is the same as the above evaluation, using comparison to assess whether

the model predicted exactly or within 1 minute either way.

4.5 Results and discussion

A number of experiments were carried out to investigate the performance of

our ensemble models.

4.5.1 The general results for all available station pairs

Table 4.1 presents the results for the delays between all available pairs of

stations, measured by both percentage of correct prediction and by percentage

of prediction accurate to within one minute. Figures 4.4 and 4.5 present this

data in graphical form.
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Figure 4.4 shows the percentage of correct prediction between pairs of sta-

tions.

In these results we present the average values of accuracy measures of single

models, the averaging ensembles and the weighted ensembles. The average

of single models result is the value obtained from averaging the accuracy ob-

tained from generating models using each algorithm separately. The averaging

ensemble result is the value obtained when all the algorithms are used to gen-

erate models and those models are put into an ensemble, and assigned equal

weights. The weighted ensemble result is the value obtained when all the algo-

rithms are used to generate models and those models are put into an ensemble,

and the models are weighted according to accuracy.

The worst performance was for the COL–LST journey, and we will discuss

possible reasons for this later. For the remaining pairs of stations, the average

accuracy of single models never produced more than 50% correct predictions

and falls as low as 25%. With the averaging ensembles, the prediction accuracy

showed a marked improvement, the lowest average percentage correct predic-

tion being 30% and the highest 71%. The best results were produced by the

weighted averaging ensembles. Here the standard deviation was constant. Its

lowest correct prediction, between Diss and Ipswich was 47% and the highest,

between Ipswich and Manningtree was 82%.

The results for COL–LST are noticeably worse than any other pair of stations.

This could be due to a number of reasons. For example, LST is the terminal

station on the line and there could be delays as the trains are waiting to enter.

However, we note that in this situation the weighted ensemble achieved a much

better performance than either the average of single models or the averaging
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ensemble. Thus, the weighting mechanism can be seen to work effectively, even

when the performance of the individual models was poor.

It is noteworthy that the pattern of correct predictions was remarkably con-

sistent for each of the three methods. Another phenomenon can be observed

from the results is that for some stations on the same journey, the accuracies

of either individual models or ensembles performed poorer than other stations.

This suggests that the underlying prediction problems are specific to journeys

between particular pairs of stations, where there may be some uncertainties

that were not represented by the data. For example, for the pair of SMK-IPS,

it was found later that there were some freight trains going through IPS sta-

tion but not recorded in this dataset. Moreover, the accuracy of predictions

was also affected by the amount of available train data, which was reflected by

a dip at CHM station because some trains did not stop here and hence there

was not the same amount of the training data as for other stations.

Figure 4.4: The results obtained for predicting the delays between

pairs of stations using average of single models, averaging ensembles

and weighted averaging ensembles. The SDs of the values are indicated

by bars.
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A considerable improvement in accuracy was demonstrated when the average

prediction was accurate to within one minute, as shown in Fig 4.5. Once again,

the pattern was similar to that of correct prediction but the lowest mean was

65%, for the average of single models. For weighted averaging, the accuracy

levels reached as high as 98%

Figure 4.5: The results for correct prediction within one minute for the

delay between pairs of stations obtained using average of single models,

averaging ensembles and weighted averaging ensembles. The SDs of the

values are indicated by bars.

The results presented in Table 4.1, Figure 4.4 and Figure 4.5 are the means

and the standard deviations of the predictions over five runs. Table 4.2 shows

the results obtained for the individual fifteen base learner models with the five

partitions of the data. From this table it can be seen that no single model

gives the best performance in each run, although some models perform better

than others more often.
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Table 4.1: Comparison of the results for the delays between all available

pairs of stations. Showing % CP and %|P |<1 for average of single

models, averaging ensembles and weighted averaging ensembles.

Average of Single Models Averaging Ensemble Weighted Averaging Ensemble
Section % CP %|P |<1 % CP %|P |<1 % CP %|P |<1

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD
NRW - DIS 41.34 8.17 87.12 4.88 54.79 1.47 93.25 0.66 71.69 1.41 94.35 0.79
DIS - SMK 48.78 10.90 92.28 5.35 71.34 0.65 95.41 0.43 75.41 1.08 96.21 0.38
DIS - IPS 25.30 9.05 65.16 16.34 29.77 2.88 79.37 2.09 47.37 2.26 84.61 1.12

SMK - IPS 37.87 9.39 84.85 17.34 42.81 2.61 93.69 1.99 65.14 0.81 95.89 0.66
IPS - MNG 43.69 10.71 90.94 11.47 67.47 7.26 97.58 0.95 81.85 1.13 98.36 0.40
MNG - COL 44.96 10.76 92.86 11.02 60.49 4.88 97.55 0.63 78.10 0.79 98.38 0.26
COL - LST 11.69 3.35 33.36 6.36 14.00 1.06 41.29 2.40 25.42 0.94 59.82 1.31
COL - CHM 32.34 13.97 75.36 19.03 43.76 4.48 90.35 3.35 64.52 0.70 92.82 0.34

4.5.2 Investigating the usefulness of the Weather Data

In order to investigate the usefulness of the weather data we conducted two

sets of experiments, using the journey from Norwich to Diss. The first used

all the features, the second omitted the weather features (temperature and

precipitation). Each set was run five times with different data partitions to

test the consistency of prediction.

Using All Features

Fig 4.6 shows results for correct delay prediction and for correct delay predic-

tion within one minute, for average of single models, averaging ensembles, and

weighted ensembles, for Norwich-Diss, using all the features for prediction. It

also shows the standard deviation for each result, indicated by the error bar.

Average of single models performed least well, with a mean accuracy of only

41%. The averaging ensembles produced a mean percentage accuracy of 55%,

while the best accuracy levels were produced the weighted average, at 72%. It

was interesting to note that when a margin of error of one minute was allowed,

there was a lower difference between the three methods. Nevertheless, the

Chapter 4 Mostafa Al Ghamdi 70



Heterogeneous Machine Learning Ensembles for Predicting Train Delays

single models were still worst, while the weighted ensembles performed best.

However, the difference between the averaged and the weighted ensembles is

only about 1%.
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Figure 4.6: The results for correct prediction and correct prediction

within one minute for the delays between Norwich and Diss obtained

using average of single models, averaging ensembles and weighted aver-

aging ensembles, where all the features were used in training. The SDs

of the values are indicated by bars.

Removing Weather Data

In our inputs, some were defined as weather features as described in Sec-

tion 4.5.2. In order to investigate whether they were useful or not in our mod-

elling, this experiment removed these features from the dataset, then trained

the models and build two types of ensembles. In Figures 4.7 and 4.8 it can

be seen that removing these weather features decreased the accuracy of the
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ensemble. These results indicate that weather features do capture some useful

information that is learned by ensembles.
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Figure 4.7: Results produced for prediction of arrival time between

Norwich-Diss, using averaging ensembles, when using all features, and

when weather features were removed. The SDs of the values are indi-

cated by bars.
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Figure 4.8: Results produced for prediction of arrival time between

Norwich-Diss, using weighted averaging ensembles, when using all fea-

tures, and when weather features were removed. The SDs of the values

are indicated by bars.
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4.5.3 Critical Comparisons

The statistical tests described in Section 3.4.4 were conducted to compare

the accuracies of individual models, the averaging ensembles and the weighted

ensembles, and also Random Forest which was chosen as a comparison baseline

because it was already considered to be one of the most accurate methods for

predicting train delays (Oneto et al., 2016).

On average, over all the experiments for the entire train service journey, our

weighted ensembles were ranked in the first place, with the averaging ensem-

bles in second place, Random Forest third and individual models fourth. The

critical distances among these four methods are represented by the critical dis-

tance diagrams Fig. 4.9 and Fig. 4.10. The interpretation is that the methods

linked with a thick bar are not statistically different from each other.

As can be seen, the methods are linked with two thick bars: the first one in-

cludes the WE (weighted averaging ensembles), AE (averaging ensembles) and

RF, and the second group includes, AE, RF and average of single models.

Fig. 4.9 presents the results obtained with %CP. With this metric our WE en-

sembles gave the highest accuracy and they were statistically different from the

average of single models. The AE ensembles and RF were also more accurate

than the average of single models, but not statistically significantly different.

Ensembles are used because, in principle, they can give more accurate perfor-

mance than single models, although not all ensembles actually achieve this.

From these results it can be seen that our WE ensembles have achieved bet-

ter accuracy than single models. Both RF and our AE ensembles were also

more accurate than the single models, but overall only our WE ensembles were

statistically better than the single models.
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Figure 4.9: Critical difference comparison between our ensembles, av-

erage of single models and Random Forest ensembles, using correct pre-

diction measure %CP.

Figure 4.10: Critical difference comparison between our ensembles, av-

erage of single models and Random Forest ensembles, using the measure

of correct prediction within one minute %|P| <1.

Fig. 4.10 presents the results with %|P| <1. It can be seen that the rank order

of the four methods is the same as with %CP, the WE ensembles being the

most accurate, then the AE ensembles, followed by RF and with the average

of single models being the least accurate. As with %CP, the only statistically

significant difference was that the WE ensembles were more accurate than

the single models. Thus with both performance metrics, our WE ensembles

achieved significantly more accurate performance than the single models.
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4.6 Summary

We built heterogeneous ensembles by using 15 models in combination, using

an averaging decision making function. We also used a weighted averaging

decision making function to see whether this produced any improvement in

the results. The experiments were run, in five sets, for eight pairs of stations

between Norwich and London Liverpool Street. The average for correct pre-

diction from single models never rose above 50%. But averaging ensembles

showed improved accuracy over average of single models, and the weighted en-

sembles produced the best overall results. A similar pattern was noted when

the mean prediction metric was accurate to within one minute.

Two sets of experiments were then conducted, to investigate the benefit of the

weather data, with each run five times for the Norwich to Diss section of the

journey. The first experiment used all features for single models, averaging and

weighted averaging ensembles, the second did the same but with the weather

data removed. Overall, removing weather data led to a decrease in accuracy

for both averaging and weighted ensembles. The patterns were similar for the

correct prediction and for predictions to within one minute.

In conclusion, it can be stated that averaging ensembles produce better results

than both average of single models and random forest, and that weighted

averaging ensembles show improved accuracy over averaging ensembles. Our

ensembles appear to learn better and produce more accurate results when all

features are included.

These initial investigations and experiments thus produced encouraging re-

sults. These results demonstrated that our proposed ensemble methods are

technically feasible and effective.
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For these initial investigations we have only used accuracy to assess the per-

formance of our ensembles. In the next chapter, where we will investigate the

effect of ensemble size, and the use of accuracy and diversity as model selec-

tion criteria when building heterogeneous ensembles, we will employ additional

standard criteria, such as R2 to assess their performance.
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5.1 Introduction

In the previous chapter we reported our initial experiments on using heteroge-

neous ensembles for analysing train delay data. Our initial results were encour-

aging and showed that heterogeneous ensembles performed better than Ran-

dom Forest. In this chapter we will describe experiments investigating methods

for model selection when building heterogeneous ensembles. We have called

these ensembles Model Selecting Heterogeneous Ensembles (MSHE).

The rest of the chapter is organized as follows:

Section 5.2 Describes the proposed model selection methods.

Section 5.3 Describes the dataset and feature extraction.

Section 5.4 Presents the experimental design.

Section 5.5 Presents and discusses the experimental results.

Section 5.6 Summarises the chapter.

5.2 Proposed model selection methods

For our work in this chapter we extended the framework described in Chapter 4

by adding a model selection step. The new framework for our MSHE is illus-

trated in Figure 5.1. In this figure the additional model selection step can be

seen between the collection of models and the decision making function.

For this model selection step we propose two model selection methods (MSM)

based on two different criteria to build the heterogeneous ensemble. The first—
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MSM1—only considers the accuracy, and the second—MSM2—considers both

accuracy and diversity.

The purpose of employing model selection is ensure that only the best mod-

els are used in the ensemble. A large variety of base learners can be used

to construct models, but it is not known how well they will perform on a

given dataset. By constructing models on the training data and then mea-

suring their performance on the validation data an assessment can be made

on their effectiveness and a decision made as to which models to include in

the ensemble. Our model selection methods are described in detail below in

Section 5.2.1.

We investigated the use of two different model selection criteria: accuracy

and diversity. For the measurement of diversity we investigated pairwise and

non-pairwise measures. Because several of these measures were developed for

classification ensembles they cannot be directly applied to regression ensem-

bles, so we adapted them to work in the regression context. These diversity

measures are explained in detail below in Section 5.2.2.

5.2.1 Model selection methods

Ensemble model selection attempts to select a subset of the suitable models

from a collection of the trained models to build an ensemble with the aim of

achieving the maximum accuracy with as fewer models as possible (Mohammed

et al., 2022).

This is because more models require more resources (time and space), so when

building an ensemble, it is thus beneficial to prune models while preserving

accuracy and diversity (Tsoumakas et al., 2008).
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In our research we proposed two model selection methods (MSM) based on

two different criteria to build heterogeneous ensembles. The first, Model Se-

lection Method 1 (MSM1), only considers the accuracy, and the second Model

Selection Method 2 (MSM2), considers both accuracy and diversity.

MSM1

This selection method only considers the accuracy of individual models. Firstly,

it starts with a collection of the models (CM) that have been generated with

various learning algorithms or provided with a collection of some existing pre-

trained models, and their accuracies are evaluated on a given validation dataset

with a chosen metric, such as R2 or any other suitable one. All the models

are then ranked in a descending order according to their validation accuracy.

The ensemble Φ starts empty. Then, starting from the top of the ranking, we

choose the highest ranked model in the collection and add it to the ensemble

Φ. Then the performance of the in-building ensemble will be evaluated in the

next component.

This selection process repeats until as long as that the accuracy of the on-

building ensemble keeps improving and stops when the accuracy starts to drop.

However, in our experiments, we let it continue until there is no model left in

the collection just to examine the effect of a permutation of the entire collection

of the models by producing an accuracy plot over the growth of an ensemble

from empty to the full size, as shown by the figures in Results Section.

This selection method can be generalised by setting up a selection batch size,

say V. That is, in every iteration, V models are selected together as a batch

and then added to a growing ensemble, rather than just one model at a time.

This can speed up the process of ensemble construction. The batch size can
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be determined or varied by a number of factors, such as the difference of

accuracy among the models, or the sizes of the model collection and the size

of an intended ensemble, etc. In our experiments, as the size of the model

collection is relatively small, we set V = 1, with an intention of evaluating the

contribution of each individual model.

Algorithm 1 for MSM1

Input: Collection of trained models, CM, validation data Val
Output: The best ensemble Φbest

1: B=count(CM )
2: for i = 1 to B do
3: calculate Accuracy R2 on Val
4: end for
5: sort CM in descending order according to their accuracy R2

6: for i = 1 to B do
7: select the ith model and add to Φi

8: evaluate Φi, and record the best fo far, Φbest

9: if Φbest > Φi then
10: Stop
11: else
12: Continue
13: end if
14: end for

MSM2

This selection method takes account of both accuracy and diversity when se-

lecting models. First, the highest accurate model (HAM) is selected from the

collection of models (CM). Then the second model is chosen with the high-

est diversity model (HDM) to HAM. As we applied two different diversity

measures: Pairwised and non-pairwised (CFD), this selection method has two

variants, MSM2a and MSM2b. For MSM2a, the diversity between models in

CM is calculated with a pairwise diversity measure such as correlation, co-

variance and disagreement. For MSM2b, we use the CFD that considers the
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combinations of the models in the CM and each combination consists of HAM,

HDM and the remaining model, then they are added to the ensemble.

Algorithm 2 for MSM2a pairwise

Input: Collection of trained models, CM, Diversity-metric, valida-
tion data Val
Output: The selected models Φ

1: B=count(CM )
2: for i = 1 to B do
3: calculate Accuracy R2 on Val
4: end for
5: sort CM in descending order according to their accuracy R2

6: HAM=the highest accuracy model in CM
7: remove HAM from CM
8: for i = 1 to B do
9: calculate diversity (HAM , CMi))

10: end for
11: sort CM in descending order according to their diversity
12: for i = 1 to B-1 do
13: select first i models and add them to a new set called NCM
14: add model combination(HAM,NCM) to Φ
15: end for

5.2.2 Diversity Measures used with MSM2

For the diversity measures to use with MSM2 we chose Disagreement, Co-

variance, Correlation and CFD. Of these CFD is a non-pairwise measure, the

others are pairwise.These measures were described in detail in Chapter 2. As

noted there, it is important to note that different diversity measures will give

values across different ranges, therefore when using diversity as a component

of the fitness function, we need to normalise each diversity metric to range

from 0 to 1, with 1 being the highest level of diversity. In order to do this we

have redefined Correlation and Covariance, as described below.
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Algorithm 3 for MSM2b non-pairwise

Input: Collection of trained models, CM, Diversity-metric, valida-
tion data Val
Output: The selected models Φ

1: B=count(CM )
2: for i = 1 to B do
3: calculate Accuracy R2 on Val
4: end for
5: sort CM in descending order according to their accuracy R2

6: HAM=the highest accurate model in CM
7: remove HAM from CM
8: for i = 1 to B-1 do
9: Find all possible combinations of i models and add them to a new set

called NCM
10: M = count (NCM)
11: for j = 1 to M do
12: Compute Diversity (HAM , NCMi)
13: end for
14: sort NCM in descending order according to their diversity
15: select model combination(HAM , NCM0)
16: add selected models to Φ
17: end for
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Dataset Feature Extraction 

Collection Of Models (CM)

Decision Making Function (AE,WE)

Data partitioning 

Training Validation Testing  

Base Learner 
Algorithm1 

Base Learner 
Algorithm2 

Base Learner
Algorithm m 

Heterogeneous Ensemble 

Model Selection Methods (MSM1,MSM2)

Figure 5.1: Framework of Model Selecting Heterogeneous Ensemble

showing the process of generating the ensemble.
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Correlation

In order to use this as a diversity measure between a pair of models, which we

call as the correlation diversity Dr we have redefined it as below.

For a given pair of models with their outputs: yi and yj, with k as an index

over the intended N data samples,

Dr = 1−r
2
,

where, r =
∑

(yik−ȳi)×
∑

(yjk−ȳj)√∑
(yik−ȳi)2×

∑
(yjk−ȳj)2

.
(5.1)

When r = −1, Dr is 1, meaning that the maximum diversity is achieved,

r = 0 => Dr = 0.5, indicating that two models have a random diversity

between them; and when r = 1 => Dr = 0, there is no diversity between two

models. So, for any pair of models, they must meet the condition: Dr > 0.5,

to be considered diverse enough.

Covariance

Similarly we have redefined Covariance. The covariance indicates whether two

variables vary together in a correlated manner. Unlike the correlation, whose

values are limited to −1 and +1, the values of covariance are unbounded, could

be anything between −∞ and +∞, which can be difficult to interpret or be

used as a diversity measure, we need to convert it to a limited and meaningful

representation. We have employed the sigmoid function to convert the range

of possible covariance values to (0, 1) and we define the covariance diversity

Dv as follows:
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Dv =
2e−|cov|

1 + e−|cov|
, (5.2)

where, cov =

∑
(yik − ȳi)×

∑
(yjk − ȳj)

N − 1
. (5.3)

With this definition, the bigger |cov| is, the smaller diversity is, and vice versa.

When |cov| is small or close to zero, which means that two variables do not show

correlation in their trends, so Dv is close to 1, i.e. maximum diversity.

5.3 Dataset and features

For this experiment we used the full dataset described in Section 3.3.1. This

contained data for a period of two years and five months from 01-01-2017 to

05-05-2019. In total, it contained data relating to 16371 valid journeys that

could be used in the modelling process. (The total number of station-to-station

journey instances was 107431.)

Figure 5.2 shows the proportions of journeys that were early, on time and

delayed. By on time we mean that there is no difference between the scheduled

time and the actual time. It can be seen that 29.2% were not delayed, 8.54%

were on time and 52.3% were delayed.

No weather data were included in this dataset because we were unable to obtain

any. We purchased weather data covering the period of the dataset, but it was

found to be incomplete and was not as accurate as the weather data provided

by Weatherquest for the seven month period of the initial study described

in Chapter 4. We noted in Section 4.5.2 that there was some benefit from

including the weather data, however for this study we were focusing on the
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62.3%

29.2%

8.54%

Delayed
Early Arrival
On Time

Figure 5.2: Proportions of all NRW – LST journey delays. The pie

chart shows the percentage of journeys that were not delayed, on time

and delayed.

ensemble development and it was not judged necessary to include the weather

data.

In the published literature a number of factors have been reported to have an

impact on train delay. For this experiment we did not use the same features

as we used in our initial experiments in Chapter 4, because we were trying to

build more precise models. Therefore we derived the following features from

the raw data, which we found to have an effect on the delay:

• The planned travel time from the current station to the next.

• The actual travel time from the current station to the last.

• The planned travel time from the current station to the last.

• The planned dwell time at the current station.

• The actual dwell time at the current station.
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• The arrival delay for the current station.

• The departure delay for the last station.

• The departure delay for the current station.

• The number of passing points. (Places where the train’s passing is

recorded.)

• Day of the month.

• Day of the week.

• Hour of the day.

5.4 Experimental design

Our experimental design was based on that used in our initial experiments,

described in Section 4.3, but with three differences. Firstly the base learner

models were not exactly the same. Secondly there was the additional step of

model selection in the framework. Thirdly, in these experiments we have also

investigated the effect of the size of the ensemble on its performance.

We performed the following steps.

1. First, feature extraction from the dataset was performed, as described

in Section 5.3

2. We then divided the data into training, validation, and testing datasets

using a 70% : 15% : 15% split. We split the dataset using a random seed.

Each experiment was repeated five times, using different random seeds,

and the results were averaged.
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3. Because our purpose in this work was to build a heterogeneous ensemble

we employed a wide range of base learner algorithms. The regressors

we used were chosen with the aim of representing a wide spectrum of

machine learning themes from the baseline method to “state-of-the-art”

methods. Of them, eight generate individual models; Linear Regres-

sion, Bayesian Ridge (Box and Tiao, 2011), Stochastic Gradient Descent

(Jain et al., 2018), Lasso (Santosa and Symes, 1986), Ridge (Hoerl and

Kennard, 1970), K-nearest neighbours Regressor, ElasticNet and Multi-

layer Perceptron (Rosenblatt, 1961); and four produce essentially ho-

mogeneous ensembles; Random Forest (Ho, 1995), Decision tree (DT),

Gradient Boosting (Friedman, 2001), and XGBoost (XGB) (Chen and

Guestrin, 2016).

We have not used all the base learners we used in Chapter 4, because

some gave very poor performance and we did not consider that it was

worthwhile to continue to use them. However for these experiments we

also included XGBoost, because is a very well known state-of-the-art

algorithm which is known to give good performance.

As noted in Section 3.2.4, the default parameter settings were used for all

these algorithms as our focus was to investigate whether our ensembles

have ability to do better than individual models that work separately,

no matter how well an individual model does.

4. All the models generated were put into a collection of models.

5. A model selection method, either MSM1 or MSM2 was applied to select

models for inclusion in the ensemble, using the validation data. MSM1

selects on the basis of accuracy, while MSM2 selects on the basis of ac-

curacy and diversity. MSM2 is further divided into MSM2a, which uses
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a pairwise diversity measure, either covariance, correlation or disagree-

ment; and MSM2b which uses the non-pairwise diversity measure, CFD.

6. These generated models were then used to form an ensemble. Here two

different decision making functions were applied to combine the outputs

of the models in a heterogeneous ensemble to produce a final output.

Because of the different decision making functions the ensembles are

named as Averaging Ensemble (AE) and Weighted Ensemble (WE). The

weighted averaging was performed using the performance of the models

on the validation data. The performance was calculated using the metrics

described in Section 5.4.1. Finally the completed ensemble was tested

using the testing data. The performance of the individual models on the

validation data and the performance of the ensemble on the testing data

were calculated using the metrics described below in Section 5.4.1.

In order to test our results we have employed a number of statistical methods

and used CD diagrams, as we did with our results in Chapter 4.

5.4.1 Evaluation methods

In contrast to Chapter 4, we evaluated the results using the four metrics listed

in Section 3.4.3. These are, mean absolute error (MAE), mean squared error

(MSE), root mean squared error (RMSE) and R-squared (R2). These are

standard metrics used for assessing the results obtained from regression exper-

iments. For most of the experiments we have only presented the R2 and MAE

values because RMSE and MSE showed comparable patterns. The values of

all four measures are presented for the examples of single runs.
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Using R2 with different numbers of features can cause problems, because the

value of R2 increases with larger numbers of features. For this reason, the

adjusted R2 measure (see Equation 5.4) is often used, which takes into account

the number of features. However, we found that with our results, because the

number of samples was much larger than the number of features, the difference

between the two measures was negligible. The equation for adjusted R2 is

shown in Equation 5.4:

adjusted R2 = 1− (1−R2)(N − 1)

N − J − 1
, (5.4)

where N is the number of samples and J is the number of features.

It is obvious that where N is much larger than J the difference between R2 and

adjusted R2 will be very low. For example, in our experiments in this chapter,

the number of samples was 107431 and the number of features was 12, so

an unadjusted R2 value of 0.79090 (the first R2 value in Table 5.1) becomes

0.79088 after adjustment. Therefore we used R2 throughout our studies.

5.5 Results and discussion

In our initial experiments in Chapter 4 presented results for each pair of sta-

tions separately. To do this for the work in the current chapter was considered

impractical, and so the results presented here are for all the pairs of stations.

This also more generic, as the methods would have to be generalisable to give

consistent results across multiple pairs of stations.

In the experiments described in this chapter and subsequent chapters we ap-

plied model selection, and ensembles were generated with different numbers of
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models. When presenting the results, the results for the ensembles are for en-

sembles of different sizes, from 2 to 12. The corresponding results for accuracy

of single models are the average of the individual models that were used in

that ensemble. So, for example, where an ensemble contained two models, the

corresponding result for accuracy of single models was the average accuracy

of those two models. (This will differ from the accuracy of the ensemble, of

course, because in the ensemble the outputs of the models are merged by the

decision making function before the accuracy is measured.)

In these results we present the average values of accuracy of single models,

the averaging ensembles and the weighted ensembles. The average of single

models result is the value obtained from averaging the accuracy obtained from

generating models using each algorithm separately. The averaging ensembles

result is the value obtained when all the algorithms are used to generate models

and those models are put into an ensemble, and assigned equal weights. The

weighted ensemble result is the value obtained when all the algorithms are

used to generate models and those models are put into an ensemble, and the

models are weighted according to accuracy.

Figures 5.3 and 5.4 present the results for average of single models, averaging

ensembles (AE) and weighted averaging ensembles (WE). These heterogeneous

ensembles of variable sizes (from 2 to 12) were built with the algorithm MSM1,

and the AE and the WE fusion functions. In Figure 5.3 R2 values of the

predictions are given, with the standard deviations (SD) over five repeat runs.

These results are also presented in Tables 5.1 and 5.2 which show the means

and standard deviations (SD) of R2 and MAE, respectively, of predictions

made by the single models, and the heterogeneous ensembles. In Figure 5.4

the MAE values of these predictions are presented. (Note: In Figure 5.3 and
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some subsequent figures the plots are moved slightly along the x-axis in order

to show them clearly by avoiding overlapping of the error bars.)
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Figure 5.3: R2 values for AE, WE and average of single models using

MSM1, with SD values indicated by error bars. The ensembles showed

higher accuracy than the average of single models.
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Figure 5.4: MAE values for AE, WE and average of single models

using MSM1, with SD values indicated by error bars. The ensembles

showed lower error than the average of single models.
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From these results it can be seen that both types of ensemble (AE and WE)

had consistently higher R2 values that the single models. In addition their

SD values were lower, except for the ensemble sizes 2 and 3, where the SD

values were relatively small for both ensembles and single models. Also, the

SD values for both AE and WE are much more consistent across the number

of models than the SD for SM. The R2 values are slightly better for WE than

AE.

The SD values for single models were sometimes quite large. For example, in

Figure 5.3 the error bars (showing the SD) become larger as the number of

models increases. The reason for the high values with the larger numbers of

models is that the most accurate models were being added to the ensemble in its

initial stages of construction, and the least accurate when it was at its largest,

the least accurate models also had the greatest inconsistency, resulting in the

largest SD. Where MSM2 was being used with pairwise diversity measures

the SD values were large even with a small number of models, for example in

Figure 5.11. This was because when the non-pairwise diversity measures were

used the least accurate models were being selected in the early stages of the

ensemble construction. As explained below, this was because they were the

most diverse from the most accurate model, which was always used as the first

model in the ensemble. Hence, even with only two models the SD value was

high. As more models were added, the more accurate ones were included in

the ensemble, and the SD values reduced, but never became very low.

Thus we can say that the ensembles outperform the single models not only

terms of in accuracy but also in consistency (with much smaller SDs). The

AE and WE ensembles were nearly the same to begin with, but as the number

of models increased, the WE performed slightly better. This is because there
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are significant variations in the weights, which aid the ensemble by giving

more weight to the most accurate models. Thus there are advantages of the

ensembles in terms of both accuracy and consistency, with the WE being best

overall. The fact that the ensembles are more consistent in very important

because it indicates that they are more robust. Therefore if used for predictions

in a real time system it will have a greater level of reliability than a system

based on single models.

The ensembles generated with 3 to 4 models achieved the best performance, as

shown by Figures 5.3 and 5.4. This is important because it indicates that the

ensembles were achieving the best performance with a small number of mod-

els. As the size of the ensembles increased beyond 4 models the performance

deteriorated. Thus ensembles generated using our strategy achieve their best

performance using a small number of iterations. A consequence of this is that

it should be possible to identify the models that are used most often when con-

structing ensembles, and those that are not. Thus the poorly performing base

learners could be excluded from future ensemble building in order to reduce

the size of the collection of models and the build time.

It is important to note that the ensembles outperformed the best single model

(BSM), as can be seen in Figures 5.5 and 5.6, which show the performance of

the best single model and that of the ensembles for separate single runs of the

methods, i.e., they are not averages over multiple runs. For the runs presented

in Figure 5.5 the ensembles sized 3 and 4 outperformed the best single model,

for those presented in Figure 5.6 the ensembles sized 2, 3 and 4 outperformed

the best single model. Thus the best performing ensemble outperformed the

best single model. Thus the heterogeneous ensembles sized 2 and 3 were able to

perform consistently, which gives them a definite advantage over single models,
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or a homogeneous ensemble composed of one type of model. Thus, even if the

best single model was a state-of-the-art method such as XGBoost or Random

Forest, the ensembles performed better.

Figures 5.7 and 5.8 show the R2 and MAE values obtained, respectively, for

ensembles of different sizes, with AE, WE and average of single models using

MSM2 with CFD for diversity measurement.

In Figure 5.7 R2 values of the predictions are given, with the standard devia-

tions (SD) over five repeat runs. These results are also presented in Tables 5.3

and 5.4 which show the means and standard deviations (SD) of R2 and MAE,

respectively, of predictions made by the single models, and the heterogeneous

ensembles. In Figure 5.8 the MAE values of these predictions are presented. It

can be seen that AE and WE consistently perform better than single models.
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R
²

Figure 5.5: R2 values obtained for one individual run for AE, and

WE using MSM1, with the value for the most accurate single model

indicated. It can be seen that ensembles sized 2 and 3 were more accurate

than the most accurate single model.
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Figure 5.6: R2 values obtained for one individual run for AE, and

WE using MSM1, with the value for the most accurate single model

indicated. This is a different run from that presented in Figure 5.5. In

this run ensembles of sizes 2, 3 and 4 were more accurate than the most

accurate single model.
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Figure 5.7: R2 values for AE, WE and average of single models using

MSM2 and Coincidence Failure Diversity as the diversity measure. SD

values are indicated by error bars.
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Figure 5.8: MAE values for AE, WE and average of single models using

MSM2 and Coincidence Failure Diversity as the diversity measure. SD

values are indicated by error bars.

Tables 5.5–5.9 show the means and standard deviations (SD) of R2 and MAE

of predictions made using MSM2 with the other diversity measures.

Figures 5.9 and 5.10 present comparisons of the R2 values obtained for different

size ensembles using MSM1 and MSM2 for AE and WE ensembles, respectively.

These results are also presented in Tables 5.11 and 5.12, respectively.

These results demonstrate that with MSM1 for both AE and WE, performance

remains constant when varying the size of ensembles from 2 to 12 models and

is always the best.

With CFD as the criterion for model selection as models were added to the

ensemble beyond the initial 2, the performance, (as measured by an increase in

R2 and a decrease in MAE,) improved, until the ensemble contained 5 models.

Thus using MSM2 with CFD for building ensembles was effective, although it

was not as effective as using MSM1 which gave a better performance, and did

so with fewer models.
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Table 5.13 presents the results for a single run of MSM2 with CFD and shows

the scores obtained as models were added to the ensemble. It can be seen

that the CFD score decreased as each model was added, but that the accuracy

increased initially, then decreased. The reason for the decrease in diversity

was that the most diverse models were added in the early stages of ensemble

construction. We have not presented comparable results for the other diversity

measures since only CFD was effective and the other measures did not give

any benefit.

The other three diversity measures, all gave equivalent patterns to each other.

Figures 5.11 to 5.16 and Tables 5.5 to 5.10 present the results. (It should

be noted that MAE gives a graph that has a pattern that is the reverse of

Correlation and R2 because it is measuring error, i.e. a lower value indicates

higher accuracy.) As with CFD, for a given ensemble size WE ensembles always

give the best performance, closely followed by AE then by single models.
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Figure 5.9: R2 values obtained with AE using the two selection meth-

ods MSM1 and MSM2, different diversity measures with MSM2, and

different ensemble sizes.
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Figure 5.10: R2 values obtained with WE using the two selection

methods MSM1 and MSM2, different diversity measures with MSM2,

and different ensemble sizes.

With regard to the ensemble performance as models are selected and added

to it, when the third model is added to the ensemble the R2 value decreases

and the MAE value increases. (Figures 5.9 and 5.10, Tables 5.1–5.10, and
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Figure 5.11: R2 values for AE, WE and average of single models using

MSM2 and correlation as the diversity measure. SD values are indicated

by error bars.
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Figure 5.12: MAE values for AE, WE and average of single models

using MSM2 and correlation as the diversity measure. SD values are

indicated by error bars.
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Figure 5.13: R2 values for AE, WE and average of single models using

MSM2 and covariance as the diversity measure. SD values are indicated

by error bars.
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Figure 5.14: MAE values for AE, WE and average of single models

using MSM2 and covariance as the diversity measure. SD values are

indicated by error bars.
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Figure 5.15: R2 values for AE, WE and average of single models

using MSM2 and disagreement as the diversity measure. SD values are

indicated by error bars.
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Figure 5.16: MAE values for AE, WE and average of single models

using MSM2 and disagreement as the diversity measure. SD values are

indicated by error bars.

Figures 5.11 to 5.16.) Then as further models are added the R2 value increases

a small amount as each model is added. Similarly the MAE value decreases

by a small amount as each model is added. Thus the performance of the

ensemble decreases to its lowest when the ensemble contains 3 models and

then as more models are added the performance improves. Compared with

the drop in performance when the third model is added, the improvement

with each successive model is relatively small and it takes several models to be

added to the ensemble before the performance is better than the initial value

with 2 models. Overall the worst performance is given with three models and

the best is only achieved when all the models have been added.

This is, of course, completely different from the pattern for MSM2 with CFD,

and when using MSM1. It indicates that the selection mechanism is failing in

its aim of selecting the best models early on in the building of the ensemble

and in fact it appears to be selecting the worst performing model as the third

model. The improvement in performance observed as more models are added is
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simply due to the better performing models then being added. Overall we can

say that using these diversity measures to select the best models has totally

failed. This is confirmed by the fact that the best performance is not obtained

until all the models have been added.

In contrast, while MSM2 with CFD was not as effective as MSM1 at building

heterogeneous ensembles, it did give an initial improvement in performance as

models were added, and performance reached a peak before it began to drop as

the poorer performing models were added to the ensemble. Thus, to a certain

extent, using CFD as a criterion for selecting models was effective.

In this work we have examined whether diversity can be useful for improving

the accuracy of an ensemble when used for selecting models to build it. Our

results show that there is no observable relationship between diversity and

accuracy in regression problems. Compared to other diversity metrics, CFD

stands out as the best.

Clearly, the ensembles built with selection method MSM1, i.e. using accuracy

measure as its selection criterion, produced the most accurate results. The fact

that MSM2 did not give as accurate ensembles as MSM1 is surprising in view

of the fact that for classification ensembles diversity among models has been

shown to be an important factor affecting the overall accuracy of the ensemble,

and an ensemble of weak learners can still give very high accuracy providing

they are sufficiently diverse. However, the measurement of diversity is not

trivial and several measures of diversity have been developed for classification

ensembles. These diversity measures do not all perform equally well, i.e. some

are more effective at measuring diversity than others. Because of there are

almost no diversity measures designed for regression problems we adapted

some existing classification diversity measures for this purpose, in particular

Chapter 5 Mostafa Al Ghamdi 106



Heterogeneous Machine Learning Ensembles for Predicting Train Delays

Table 5.1: R2 values and SDs for AE, WE and average of single models

using MSM1.

M
MSM1 AE MSM1 WE

Average of
single models

R2 SD R2 SD R2 SD
2 0.7909 0.0057 0.7909 0.0057 0.7888 0.0010
3 0.7917 0.0052 0.7917 0.0052 0.7885 0.0012
4 0.7911 0.0053 0.7911 0.0053 0.7840 0.0091
5 0.7892 0.0055 0.7892 0.0055 0.7803 0.0114
6 0.7867 0.0055 0.7869 0.0055 0.7765 0.0138
7 0.7849 0.0053 0.7850 0.0053 0.7735 0.0149
8 0.7829 0.0052 0.7831 0.0052 0.7713 0.0152
9 0.7810 0.0051 0.7813 0.0051 0.7693 0.0151
10 0.7796 0.0052 0.7799 0.0052 0.7664 0.0149
11 0.7770 0.0052 0.7776 0.0052 0.7590 0.0335
12 0.7734 0.0052 0.7747 0.0052 0.7499 0.0441

CFD since it is recognised to be the best diversity measure for classification

ensembles. However it is possible that these adapted measures were not able

to capture the diversity in the regression ensembles and for this reason MSM2

was not as effective for model selection as MSM1.

When compared with the single models, our ensembles of models have not

only the highest accuracies but also the most consistent results. The accu-

racy of single models often varies considerably over multiple runs. A current

most accurate model may perform considerably worse in another run and it is

very difficult to predict which run a single model can produce the best result.

In contrast, an ensemble can perform consistently well in any run, and this

high reliability, as represented by their smaller standard deviations, is more

important in real-world applications.
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Table 5.2: MAE values and SDs for AE, WE and average of single

models using MSM1.

M
MSM1 AE MSM1 WE

Average of
single models

MAE SD MAE SD MAE SD
2 1.0544 0.0143 1.0544 0.0143 1.0628 0.0057
3 1.0521 0.0113 1.0521 0.0113 1.0649 0.0069
4 1.0503 0.0109 1.0502 0.0109 1.0812 0.0332
5 1.0573 0.0109 1.0571 0.0109 1.0995 0.0500
6 1.0666 0.0113 1.0660 0.0113 1.1193 0.0662
7 1.0741 0.0137 1.0707 0.0104 1.1318 0.0689
8 1.0774 0.0100 1.0765 0.0100 1.1425 0.0690
9 1.0842 0.0100 1.0838 0.0102 1.1486 0.0683
10 1.0904 0.0096 1.0892 0.0096 1.1548 0.0674
11 1.1040 0.0089 1.1008 0.0089 1.1857 0.1207
12 1.1241 0.0088 1.1176 0.0088 1.2061 0.1641

Table 5.3: R2 values and SDs for AE, WE and average of single models

using MSM2 with Coincident Failure Diversity as the diversity measure.

M
MSM1 AE MSM1 WE

Average of
single models

R2 SD R2 SD R2 SD
2 0.7568 0.0086 0.7612 0.0098 0.7209 0.0950
3 0.7689 0.0069 0.7732 0.0066 0.7384 0.0729
4 0.7776 0.0071 0.7795 0.0071 0.7482 0.0628
5 0.7787 0.0053 0.7798 0.0057 0.7508 0.0561
6 0.7810 0.0041 0.7820 0.0047 0.7560 0.0520
7 0.7812 0.0052 0.7819 0.0058 0.7571 0.0479
8 0.7798 0.0051 0.7804 0.0056 0.7570 0.0443
9 0.7785 0.0048 0.7790 0.0054 0.7570 0.0415
10 0.7767 0.0048 0.7776 0.0054 0.7568 0.0391
11 0.7768 0.0052 0.7771 0.0057 0.7573 0.0372
12 0.7734 0.0052 0.7747 0.0057 0.7497 0.0440
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Table 5.4: MAE values and SDs for AE, WE and average of single

models using MSM2 with Coincident Failure Diversity as the diversity

measure.

M
MSM1 AE MSM1 WE

Average of
single models

MAE SD MAE SD MAE SD
2 1.2049 0.0233 1.1804 0.0234 1.3005 0.3373
3 1.1493 0.0170 1.1336 0.0170 1.2437 0.2581
4 1.1124 0.0150 1.1009 0.0149 1.2144 0.2214
5 1.1046 0.0092 1.0954 0.0091 1.2017 0.1978
6 1.0940 0.0084 1.0866 0.0085 1.1841 0.1865
7 1.0935 0.0090 1.0874 0.0090 1.1847 0.1701
8 1.0971 0.0090 1.0917 0.0091 1.1867 0.1577
9 1.1004 0.0087 1.0956 0.0088 1.1883 0.1477
10 1.1040 0.0083 1.0997 0.0084 1.1901 0.1410
11 1.1062 0.0090 1.1023 0.0091 1.1898 0.1323
12 1.1241 0.0088 1.1176 0.0088 1.2151 0.1545

Table 5.5: R2 values and SDs for AE, WE and average of single models

using MSM2 with correlation as the diversity measure.

M
MSM1 AE MSM1 WE

Average of
single models

R2 SD R2 SD R2 SD
2 0.7602 0.0083 0.7650 0.0082 0.7280 0.0857
3 0.7373 0.0101 0.7406 0.0080 0.7034 0.0741
4 0.7498 0.0080 0.7546 0.0080 0.7168 0.0662
5 0.7570 0.0067 0.7606 0.0068 0.7253 0.0604
6 0.7600 0.0065 0.7627 0.0066 0.7305 0.0555
7 0.7612 0.0063 0.7633 0.0065 0.7341 0.0516
8 0.7626 0.0052 0.7644 0.0052 0.7371 0.0486
9 0.7644 0.0051 0.7660 0.0051 0.7399 0.0462
10 0.7672 0.0055 0.7687 0.0055 0.7427 0.0445
11 0.7709 0.0051 0.7723 0.0051 0.7468 0.0440
12 0.7734 0.0052 0.7747 0.0052 0.7503 0.0440
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Table 5.6: MAE values and SDs for AE, WE and average of single

models using MSM2 with correlation as the diversity measure.

M
MSM1 AE MSM1 WE

Average of
single models

MAE SD MAE SD MAE SD
2 1.1872 0.0220 1.1674 0.0222 1.2781 0.3056
3 1.2891 0.0197 1.2644 0.0204 1.3651 0.2634
4 1.2318 0.0182 1.2131 0.0183 1.3282 0.2275
5 1.2013 0.0135 1.1863 0.0139 1.3011 0.2065
6 1.1874 0.0137 1.1753 0.0144 1.2856 0.1886
7 1.1802 0.0143 1.1704 0.0153 1.2743 0.1748
8 1.1717 0.0070 1.1633 0.0073 1.2641 0.1647
9 1.1651 0.0067 1.1540 0.0144 1.2557 0.1564
10 1.1516 0.0110 1.1445 0.0111 1.2449 0.1516
11 1.1352 0.0089 1.1282 0.0089 1.2261 0.1535
12 1.1241 0.0088 1.1176 0.0088 1.2151 0.1538

Table 5.7: R2 values and SDs for AE, WE and average of single models

using MSM2 with covariance as the diversity measure.

M
MSM1 AE MSM1 WE

Average of
single models

R2 SD R2 SD R2 SD
2 0.7575 0.0084 0.7628 0.0085 0.7214 0.0950
3 0.7338 0.0081 0.7406 0.0082 0.7034 0.0741
4 0.7524 0.0070 0.7575 0.0070 0.7202 0.0692
5 0.7604 0.0061 0.7644 0.0062 0.7290 0.0622
6 0.7635 0.0056 0.7664 0.0058 0.7335 0.0577
7 0.7647 0.0054 0.7672 0.0055 0.7367 0.0533
8 0.7660 0.0044 0.7680 0.0044 0.7395 0.0489
9 0.7671 0.0048 0.7688 0.0048 0.7414 0.0472
10 0.7685 0.0051 0.7700 0.0051 0.7439 0.0458
11 0.7705 0.0054 0.7719 0.0054 0.7468 0.0444
12 0.7734 0.0052 0.7747 0.0052 0.7503 0.0440
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Table 5.8: MAE values and SDs for AE, WE and average of single

models using MSM2 with covariance as the diversity measure.

M
MSM1 AE MSM1 WE

Average of
single models

MAE SD MAE SD MAE SD
2 1.2049 0.0233 1.1804 0.0234 1.3005 0.3373
3 1.2891 0.0197 1.2644 0.0204 1.3651 0.2634
4 1.2164 0.0161 1.1959 0.0162 1.3063 0.2452
5 1.1840 0.0139 1.1671 0.0143 1.2799 0.2215
6 1.1701 0.0135 1.1564 0.0137 1.2682 0.2003
7 1.1622 0.0138 1.1508 0.0142 1.2594 0.1844
8 1.1562 0.0118 1.1465 0.0121 1.2511 0.1725
9 1.1519 0.0108 1.1435 0.0111 1.2473 0.1618
10 1.1461 0.0070 1.1386 0.0071 1.2391 0.1557
11 1.1368 0.0104 1.1298 0.0105 1.2286 0.1536
12 1.1241 0.0088 1.1176 0.0088 1.2180 0.1536

Table 5.9: R2 values and SDs for AE, WE and average of single models

using MSM2 with disagreement as the diversity measure.

M
MSM1 AE MSM1 WE

Average of
single models

R2 SD R2 SD R2 SD
2 0.7568 0.0086 0.7628 0.0085 0.7214 0.0950
3 0.7338 0.0081 0.7406 0.0082 0.7034 0.0741
4 0.7509 0.0070 0.7557 0.0070 0.7171 0.0665
5 0.7592 0.0063 0.7628 0.0063 0.7265 0.0613
6 0.7630 0.0055 0.7658 0.0055 0.7326 0.0569
7 0.7644 0.0053 0.7667 0.0053 0.7359 0.0527
8 0.7663 0.0054 0.7682 0.0055 0.7391 0.0498
9 0.7663 0.0053 0.7679 0.0054 0.7410 0.0478
10 0.7684 0.0051 0.7698 0.0050 0.7433 0.0456
11 0.7709 0.0052 0.7723 0.0052 0.7468 0.0444
12 0.7734 0.0052 0.7747 0.0052 0.7503 0.0440
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Table 5.10: MAE values and SDs for AE, WE and average of single

models using MSM2 with disagreement as the diversity measure.

M
MSM1 AE MSM1 WE

Average of
single models

MAE SD MAE SD MAE SD
2 1.2049 0.0233 1.1804 0.0234 1.3005 0.3373
3 1.2891 0.0197 1.2644 0.0204 1.3651 0.2634
4 1.2304 0.0165 1.2120 0.0170 1.3289 0.2270
5 1.1954 0.0073 1.1801 0.0070 1.2970 0.2097
6 1.1794 0.0064 1.1671 0.0064 1.2778 0.1935
7 1.1707 0.0057 1.1604 0.0057 1.2679 0.1786
8 1.1609 0.0116 1.1521 0.0121 1.2572 0.1689
9 1.1590 0.0118 1.1515 0.0124 1.2516 0.1614
10 1.1471 0.0092 1.1398 0.0092 1.2425 0.1527
11 1.1352 0.0087 1.1283 0.0087 1.2289 0.1533
12 1.1241 0.0088 1.1176 0.0088 1.1976 0.1683

Table 5.11: R2 values obtained with AE using the two selection meth-

ods MSM1 and MSM2, different diversity measures with MSM2, and

different ensemble sizes.

MSM1 MSM2 MSM2 MSM2 MSM2
M (CFD) (COR) (COV) (DIS)

AE AE AE AE AE
2 0.7909 0.7568 0.7602 0.7575 0.7568
3 0.7917 0.7689 0.7373 0.7338 0.7338
4 0.7911 0.7776 0.7498 0.7524 0.7509
5 0.7892 0.7787 0.7570 0.7604 0.7592
6 0.7867 0.7810 0.7600 0.7635 0.7630
7 0.7849 0.7812 0.7612 0.7647 0.7644
8 0.7829 0.7798 0.7626 0.7660 0.7663
9 0.7810 0.7785 0.7644 0.7671 0.7663
10 0.7796 0.7767 0.7672 0.7685 0.7684
11 0.7770 0.7768 0.7709 0.7705 0.7709
12 0.7734 0.7734 0.7734 0.7734 0.7734
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Table 5.12: R2 values obtained with WE using the two selection meth-

ods MSM1 and MSM2, different diversity measures with MSM2, and

different ensemble sizes.

MSM1 MSM2 MSM2 MSM2 MSM2
M (CFD) (COR) (COV) (DIS)

WE WE WE WE WE
2 0.7909 0.7612 0.7650 0.7628 0.7628
3 0.7917 0.7732 0.7406 0.7406 0.7406
4 0.7911 0.7795 0.7546 0.7575 0.7557
5 0.7892 0.7798 0.7606 0.7644 0.7628
6 0.7869 0.7820 0.7627 0.7664 0.7658
7 0.7850 0.7819 0.7633 0.7672 0.7667
8 0.7831 0.7804 0.7644 0.7680 0.7682
9 0.7813 0.7790 0.7660 0.7688 0.7679
10 0.7799 0.7776 0.7687 0.7700 0.7698
11 0.7776 0.7771 0.7723 0.7719 0.7723
12 0.7747 0.7743 0.7747 0.7747 0.7747
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5.5.1 Critical Comparisons

Figures 5.17–5.22 present our results using Critical Difference diagrams.

Figure 5.17 is the CD diagram of the results with two selection methods for

AE ensembles of different sizes. (These were presented in Figures 5.9.) It can

be seen that MSM1 AE has the highest accuracy. It is more accurate than

MSM2(CFD) AE, but the difference is not statistically significant. However,

it is more accurate than MSM2(COV) and the difference is statistically signifi-

cant. The other MSM2 ensembles, MSM2(COR) AE and MSM2(DIS) AE, are

less accurate than MSM2(COV) AE. Thus MSM1 AE achieves an accuracy

that is statistically significantly better than the ensembles using pairwise di-

versity measures (COV, COR and DIS) for selecting models, and it is also more

accurate than the ensemble using the non-pairwise diversity measure (CFD)

to select the models. The rank order from highest to lowest accuracy is MSM1

AE, MSM2(CFD) AE, MSM2(COV) AE, MSM2(COR) AE and MSM2(DIS)

AE.

Figure 5.18 presents the equivalent comparison for the ensembles using weighed

averaging. (These were presented in Figures 5.10.) The rank order is the same,

and MSM1 WE is statistically significantly more accurate than MSM2(COV)

WE, MSM2(COR) WE and MSM2(DIS) WE. MSM1 WE is also more accurate

than MSM2(CFD) but the difference is not statistically significant.

Figures 5.19–5.22 compare the results for ensembles ranging in size from 2–5,

generated with MSM1 with the results for Random Forest and XGBoost.

For the ensembles of size 2 (Figure 5.19) the AE ensemble is more accurate

than than WE, but the difference is not statistically significant. Both the AE

and WE ensembles are statistically significantly more accurate than RF. They
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are also more accurate than XGBoost, but the differences are not statistically

significant. XGBoost is more accurate than RF, but not significantly. The

rank order from highest to lowest accuracy is AE, WE, XGBoost, RF.

For ensembles of size 3 (Figure 5.20) WE performs better than AE, but there

is no significant difference. As with the ensembles of size 2, both AE and WE

size 3 ensembles are statistically significantly more accurate than RF. WE

and AE ensembles are more accurate than XGBoost, but the difference is not

significant.

The interesting difference between the ensembles of size 3 and those of size 2

is that the size 3 WE were more accurate than the AE, while the size 2 AE

were more accurate than the WE. This is probably because when there are

three models, it is always possible for two accurate models to compensate for

one inaccurate model to give an overall result that is accurate. Whereas when

there are only two models, one accurate model cannot compensate for one

inaccurate one. The ensemble principle depends on having an overall majority

of good models, which is not possible when there are only two.

For ensembles of size 4 (Figure 5.21) the rank order is the same as for ensembles

size 2 and 3. The WE and AE ensembles are both more accurate than RF, but

the difference in accuracy is only statistically significant for the WE. This is

probably because the fourth model is not very accurate, and so the weighting

mechanism of the WE ensembles causes the more accurate models to have

a greater input to the overall output of the ensemble, whereas in the AE

ensembles all the models contribute equally. This shows the benefit of having

the weighting mechanism in the ensemble.

For ensembles of size 5 (Figure 5.22) the rank order is different from that

with ensembles sized 2–4. The WE ensembles are still the most accurate, and
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are statistically more significantly accurate than RF. However, XGBoost is

now more accurate than the AE ensemble. This is probably because the fifth

model added to the WE and AE ensembles is of much lower accuracy than

the other models, and while the weighting mechanism in the WE ensembles is

able to compensate for this, in the case of the AE ensembles the presence of

a model with very low accuracy cannot be compensated by the more accurate

models.

Overall our ensembles perform better than both Random Forest and XGBoost.

We did not present the results beyond ensemble size 5. The performance

deteriorates for the larger ensembles and this is most likely due to the poorer

performing models being included, that were excluded by the selection process

in the smaller ensembles.

Overall the key results of this study are that: (1) By incorporating models pro-

duced by the most well known and state-of-the-art methods, Random Forest

and XGBoost, into our heterogeneous ensembles we have been able to take ad-

vantage of both methods and improve upon their performance. (2) The most

accurate results were obtained using ensembles generated with model selection

according to accuracy and weighed averaging of the model outputs.

These results demonstrate the benefit of the heterogeneous ensemble approach

in general, and also show that our specific implementation approach using

model selection according to accuracy and weighed averaging of the model

outputs is effective.
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Figure 5.17: Critical difference comparison for results with the two

selection methods, MSM1 and MSM2, with different diversity measures

for MSM2, for AE ensembles of different sizes.

Figure 5.18: Critical difference comparison for results with the two

selection methods, MSM1 and MSM2, with different diversity measures

for MSM2, for WE ensembles of different sizes.
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Figure 5.19: Critical difference comparison for ensembles size 2 with

MSM1 AE and MSM1 WE, Random Forest model, and XGBoost model.

Figure 5.20: Critical difference comparison for ensembles size 3 with

MSM1 AE and MSM1 WE, Random Forest model, and XGBoost model.

Figure 5.21: Critical difference comparison for ensembles size 4 with

MSM1 AE and MSM1 WE, Random Forest model, and XGBoost model.
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Figure 5.22: Critical difference comparison for ensembles size 5 with

MSM1 AE and MSM1 WE, Random Forest model, and XGBoost model.
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5.6 Summary

The experiments described in this chapter were performed in order to inves-

tigate the effect of ensemble size, and the use of accuracy and diversity as

model selection criteria when building heterogeneous ensembles. Our results

have helped to answer the research questions:

• What factors should be taken into consideration when selecting models?

(For which we have examined a number of factors, including accuracy,

diversity and ensemble size.)

• Is there any relationship between accuracy and diversity in the context

of building an ensemble for performing regression?

We have developed two methods, MSM1 and MSM2, to investigate the use

of Accuracy, and Accuracy and Diversity, respectively, in ensemble construc-

tion. For MSM2 we used both pairwise and non-pairwise diversity measures.

These were all used with the Average and Weighted Average decision making

functions that were developed in Chapter 4.

MSM1 considers only accuracy when selecting models to build the ensemble.

Models are selected based on their performance on the validation data and

sorted in descending order based on R2 accuracy. They are then added to the

ensemble, one by one.

MSM2 considers accuracy and diversity when selecting models to build the

ensemble. Initially the highest accuracy model is selected and put into the

ensemble, from then on models are selected based on diversity. We tested

several diversity measures, both pairwise and non-pairwise. Two of these (CFD

and Disagreement) were designed for classification problems, so we redefined
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them in order that they could be applied to regression problems. The other

measures (Covariance and Correlation) were redefined so that their outputs

were comparable with those of CFD and Disagreement, a range from 0 to 1,

where 0=no diversity and 1=maximum diversity.

We assessed our ensembles using both R2 and MAE. Other measures (RMSE

and MSE) were also employed but were not presented (except for the examples

of single runs) as they showed comparable patterns. We also employed the

Friedman test to compare our ensembles with the state-of-the-art methods,

XGBoost and Random Forest. Critical distance diagrams to visualise the

results.

The results showed that MSM1 generated more accurate ensembles than MSM2.

Thus, model selection by accuracy was more effective than model selection by

accuracy and diversity. Of the diversity measures tested, only CFD gave any

benefit. This was the only non-pairwise measure tested, the rest were all pair-

wise. There is no generally agreed definition of diversity, however diversity has

been shown to be an important factor affecting classification ensemble perfor-

mance. Our results suggest that there is no direct relation between ensemble

performance and diversity for regression problems. This may be because the

measures being used were not able to capture the diversity. We note that in

the context of classification ensembles, non-pairwise measures are recognised

to be better than pairwise, and the fact that it was only the non-pairwise

measure that gave any benefit when selecting models for our regression ensem-

bles does suggest that diversity can be captured and used in the regression

context. However, there needs to be more work done on developing effective

non-pairwise diversity measures for regression ensembles.
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Of the two decision making methods, WE gave ensembles with slightly better

accuracy than AE, and both types of ensemble gave better performance than

single models.

We found that the ensembles with 3 to 4 models had the highest accuracy. This

shows that our methods for building heterogeneous ensembles work effectively

and are able to identify the best models to include in the ensembles.

Our ensembles were more consistent than the single models. The SD values

of the ensemble accuracies for ensembles with 4 and more models were con-

sistently lower than the SD values of the single models. With ensembles size

2 and 3 their SD values were relatively small for both ensembles and single

models. The results we have presented are the averages of five runs, however,

we have also shown the results of two individual runs where it can be seen that

the most accurate ensembles (i.e. sized 3 and 4) are more accurate than the

best single model.

The results of the Friedman test, shown in the critical difference diagrams,

indicate that our ensembles were better than the state-of-the-art methods,

XGBoost and Random Forest

In the next chapter we will investigate the use of deep learning, which is

now a popular approach a number of fields, in order to compare it with our

ensembles.
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6.1 Introduction

In the work described in the previous chapters we were focusing on heteroge-

neous ensemble construction and used machine learning (ML) algorithms for

the base learners.

We tried to cover the most well-known algorithms that have been used pre-

viously as base learners in regression ensembles. We also used a sufficient

number of different algorithms, in order to be able to examine the impact of

the number of models the overall accuracy of the ensemble, as well as using a

wide variety of base learner algorithms.

In this chapter we will explore the use of deep learning as a new approach with

our heterogeneous ensembles for predicting train delay.

Deep learning (DL) has become increasingly popular in recent years and some

studies (Huang et al., 2020; Zhang et al., 2021a) have used it for predicting

train delays.

Huang et al. (2020) used a time-series approach in which the non-time series

data, time-series data and spacio-temporal data were fed separately into a

fully connected neural network (FCNN), long short term memory recurrent

neural network and a 3-dimensional CNN respectively. These then all fed into

a FCNN. Zhang et al. (2021a) also used a time series approach but split the

data into weekly, daily and recent subsets, since there can be delay patterns

according to the time of day or the day of the week. Each subset was processed

using a graph convolution network feeding into a convolutional layer which fed

into a FCNN. The outputs of the FCNNs were weighted and fused. But their

description is not clear on how the weighting is actually determined.
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It should be noted that our data are tabular in nature, and the use of DL

architectures with tabular data has only recently been explored. (Arik and

Pfister, 2021) In general, DL has mainly been used for computer vision and

natural language processing.

Recently there has been a growing interest in finding a DL architecture for

tabular data (TD). The purpose of this part of our study was to search for a

benchmark DL method that could handle the data that we have. That is, we

wanted to try and use DL and test it on our train delay data, and then compare

it with machine learning in the heterogeneous ensemble context.

We used two different DL architectures, namely the Tabnet network and the

CNN network. These are described in Section 6.2. For these algorithms hy-

perparameter tuning was necessary, this is described in Section 6.3.1.

The rest of this chapter is organised as follows:

Section 6.2 Presents the deep learning methods and the proposed deep learn-

ing heterogeneous ensemble.

Section 6.3 Presents the experimental design.

Section 6.4 Presents and discusses the experimental results.

Section 6.5 Summarises the chapter.

6.2 Deep learning methods

For our work in this chapter we devised a new framework based on that in

Chapter 4. This employs deep learning methods instead of machine learning
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methods and uses the same dataset as that used in Chapter 5. This framework

is shown in Figure 6.2.3.

The deep learning algorithms that we used were Tabnet and CNN. These are

described below.

6.2.1 Tabnet

Tabnet is a deep neural network designed for tabular data. Decision trees were

incorporated into deep learning in this architectural approach, which was first

proposed by Google (Arik and Pfister, 2021). The tabnet was composed of an

encoder and a decoder, as seen in Figure 6.1. Because our dataset is labelled,

we will focus on the encoder. (The decoder is used for unsupervised learning

with unlabelled data and is therefore not applicable.)
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Encoder: the encoder, (see Figure 6.1(a)), consists of multiple layers. Each

layer has 3 components—feature transformer, attentive transformer and mask.

The features are input as raw features into a batch normalization, then the

raw features are passed through four layers of the feature transformer, which

are shown in Figure 6.1(c). This is followed by the attentive transformer and

then important features are selected by feature masking.

Feature transformer: Figure 6.1(c)), shows the example from Arik and

Pfister (2021) containing 2 shared layers and 2 decision step dependent layers.

The fully connected (FC) layer feeds into a batch normalization (BN) layer

which feeds into a gated linear unit (GLU) which is used to prevent exploding

or vanishing gradients. The residual connection is normalised and is multiplied

by 0.5, to ensure that the variance throughout the network does not vary

widely.

Attentive Transformer: as can be seen in Figure 6.1(d) this consists of a

fully connected (FC) layer, a batch normalization (BN) layer, prior scales layer

and sparsemax layer. Each step of the process is controlled by the attentive

transformer. During the first step, the input is passed to the FC layer, which

is then followed by batch normalization, which is then multiplied by the prior

scale. In other words, the prior scale reveals how much information is known

about the features already from the previous steps, and how many features

have already been used in the steps that came before. This that means that

the output all integrates into overall decision making.

Feature masking: the outputs from the attentive transformer step are then

fed to a mask. This simply ensures that only the selected features will be input

to the model.
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6.2.2 CNN

The Convolutional Neural Network (CNN) is another well known deep learning

architecture. The most common applications of CNNs are in computer vision

(Ding et al., 2018), speech recognition (Palaz et al., 2019) and face recognition

(Li et al., 2020a), but they can be applied in many other areas.

Artificial neural networks function in an analogous way to neurons in the

human brain, and CNNs are based on the organization of neurons in the visual

cortex of the human brain.

A CNN consists of a convolutional layer, a pooling layer and a fully connected

layer. The convolutional layer is responsible for extracting the features from

the data using a kernel function. The only difference between our application

of CNN and the standard CNN is the way the filter is applied, because our data

are structured in 1D, instead of 2D as in the case of images. The pooling layer

is designed to reduce the number of parameters while retaining the important

information in the data, we used standard max-pooling in this layer. The fully-

connected layer is a traditional multi layer perceptron where every neuron is

connected to another.

The CNN structure we adopted for our experiments is shown in Figure 6.2.

It contains an input layer, a convolutional layer, a pool layer where we used

max-pooling, a flattening layer and three dense layers.
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Figure 6.2: Our CNN architecture, as used in our application, consist-

ing of an input layer, a convolutional layer, a pool layer where we used

max-pooling, a flattening layer and three dense layers.

6.2.3 Deep Learning Heterogeneous Ensemble (DLHE)

For these experiments we devised a framework (Figure 6.3) based on the frame-

work described in Chapter 4 (Figure 4.3).

This employs deep learning methods instead of machine learning methods and

uses the same dataset as that used in Chapter 5.

The framework consists of five phases: (1) data preprocessing and feature

extraction, (2) data partitioning, (3) modelling, (4) collection of models, and

(5) building the ensemble.

For phase (1) data preprocessing and feature extraction were performed as

previously described in Section 5.3, in order to give a fair comparison with our

previous experiments.

For phase (2) the dataset was partitioned into training, validation and testing

subsets. This was performed using a random seed to enable reproducibility,
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Dataset Feature Extraction 

Collection Of Models (CM)

Decision Making Function (AE,WE)

Data partitioning 

Training Validation Testing  

Deep Learning Heterogeneous Ensemble 

Base Learner Algorithm1 

(Deep Learning )

Base Learner Algorithm2

(Deep Learning ) 

Figure 6.3: Framework of the Deep Learning Heterogeneous Ensemble

showing the process of generating the ensemble.
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and also to enable different random partitions to be made by using different

random seeds.

Phase (3) was the modelling phase. Here we employed the deep learning

algorithms instead of machine learning algorithms. It is important to note

that hyperparameter tuning must be employed with deep learning algorithms.

Therefore we performed initial experiments to determine appropriate values

for the hyperparameters of the algorithms used.

In phase (4) the models generated in phase (3) were put into the collection of

models.

Phase (5) was the final stage where the models were combined together into

the deep learning heterogeneous ensemble. This was performed using either

averaging or weighted averaging.

6.3 Experimental design

We performed extensive initial experiments to fine tune the hyperparameters

of the DL algorithms that we were going to use in our heterogeneous ensem-

bles. (The DL algorithms are described in Section 6.2 and the tuning of their

hyperparameters is described below in Section 6.3.1.)

Then, we tested these hyperparameter-optimised DL algorithms with the het-

erogeneous ensembles. For this we employed the framework shown in Fig-

ure 6.3, using the hyperparameter-optimised DL algorithms for the base learn-

ers.

The dataset was divided (70% : 15% : 15%) into training, validation and testing

datasets, using a random seed to enable reproducibility and also to ensure
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that different partitions could be generated (by using different seeds) when

performing an experiment multiple times.

The hyperparameter-optimised DL models (as described in Section 6.3.1) are

then generated and put into the collection of models, the decision making

function is applied and the heterogeneous ensemble generated, for this we

used averaging and weighted averaging as in previous experiments. We call

this a Deep Learning Heterogeneous Ensemble (DLHE).

Python, TensorFlow, and Pytorch-tabnet 2.0.0 were used in the implementa-

tion of these experiments which were performed on a standard PC with an

Intel i5 processor and 16GB RAM.

6.3.1 Parameter Setting

The Hyperparameters of Tabnet

The hyperparameter settings are listed in Table 6.1. The parameters N d,

N a and N steps are the most important parameters. There are recommended

default values for them suggested by Arik and Pfister (2021), but because this

is a relatively new algorithm we tested a range of values for them. In order

to prevent overfitting we used the early stopping technique. We performed

training using the Adam optimiser and used mean squared error for the loss

function. We used 200 epochs of training and a batch size of 128.
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Table 6.1: Hyperparameter values used with Tabnet.

Hyperparameter Description Value

N d Width of the decision prediction layer 8
N a Width of the attention embedding for each mask 8
N steps Number of steps in the architecture 5
Lr Learning rate 0.01
optimizer fn optimizer Adam
gamma the coefficient for feature reusage in the masks 1.3
N shared Number of shared Gated Linear Units at each step 2

The Hyperparameters of our CNN

Our CNN architecture is shown in Figure 6.2. Table 6.2 lists the hyperpa-

rameter values we adopted after testing a wide range of values for them. We

employed early stopping to prevent overfitting. Training was performed using

the Adam optimiser and the loss function was mean squared error. We used

200 epochs of training and a batch size of 128.

Table 6.2: Hyperparameter values used with our CNN.

Layer Number Layer Output Size Kernel Size Stride Activation

1 Input 12 x 1 - - -
2 Convolution 12 x 1 x 5 5 x 1 1 Relu
3 Pooling 6 x 1 x5 2 x 1 2 -
4 Flatten 30 x 1 - - -
5 Dense 16 x 1 - - Relu
6 Dense 8 x 1 - - Relu
7 Dense 1 x 1 - - Linear

6.3.2 Evaluation metrics

We evaluated the results using the four metrics listed in Section 3.4.3. These

are, mean absolute error (MAE), mean squared error (MSE), root mean
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squared error (RMSE) and R-squared (R2). These are standard metrics used

for assessing the results obtained from regression experiments. The values of

all four measures are presented for all the single runs and the averages of five

runs.

6.4 Experimental Results and Discussion

6.4.1 Experiment Results

Figures 6.4 to 6.6 present the results obtained with the single DL models

(Tabnet and CNN) and DLHEs. It can be seen that the R2 values for the AE

and WE DLHEs are higher than those of the single DL models, indicating that

they are more accurate. The values of MAE, RMSE and MSE also show that

the DLHEs (AE and WE) are more accurate than the single DL models.

Table 6.7 gives the SD values from five runs for each algorithm. It can be seen

that the SD values of the AE and WE DLHEs are consistently lower than the

SD values of the single DL models. Thus the ensembles containing the DL

models are more consistent than the single DL models. Thus the ensembles

of the DL models display a combination of increased accuracy and increased

consistency, just as the ensembles of ML models displayed compared with the

single DL models.

We used the same type of framework for these experiments with DL models

that we used in Chapters 4 and 5 for our experiments with ML models. The

fact that we have obtained comparable results shows that our framework is able

to work with a wide range of base learner algorithms for building heterogeneous

ensembles.
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Our results also show that CNN achieved a greater accuracy than Tabnet, even

though our data are tabular and Tabnet was developed for tabular data while

CNN was not. This does suggest that there still needs to be more work done

in developing DL methods that perform well on tabular data. Shwartz-Ziv

and Armon (2022) concluded that in their experiments ML methods outper-

formed DL methods on tabular data, and our results are consistent with their

conclusions.

The WE DLHEs achieved a slightly higher R2 score than the AE, but the

values of the other metrics were the same. The fact that there is such a similar

performance from both WE and AE strongly suggests that their accuracies are

extremely similar. This is also confirmed in that the values for the comparable

individual runs for AE and WE (i.e. using the same random seed) also match

(see Tables 6.5 and 6.6). We only had two DL models in these ensembles.

With a larger number of different models, as with our experiments using ML

models, it is unlikely that they would all give the same performance, so we

would expect that the WE ensembles would be more accurate.

Tables 6.3 to 6.6 present the results of all five runs of each experiment we

performed using DL algorithms, giving the values of all four metrics (R2, MAE,

RMSE and MSE) with the averages. It was not possible to present all the

results of all our experiments in Chapter 5 in this way, but we have been

able to do so in this chapter. It can be seen that the four metrics all show

comparable patterns.

Figure 6.7 presents the results (average R2 of five runs) obtained for single DL

models, DLHEs (AE and WE), and also for the heterogeneous ensembles (AE

and WE, using MSM1) containing two ML models. Figures 6.8 and 6.9 present

the equivalent results for the heterogeneous ensembles (HEs) generated using
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MSM1 with three and four ML models, respectively. (Note that the DLHE

ensemble results presented in Figures 6.8 and 6.9 are for two model ensembles,

because we only investigated two different DL algorithms.)

It can be seen that the heterogeneous ensembles with MLs were more accu-

rate than the single DL models. They also had lower SD values. Thus they

were more accurate and more consistent. We conclude from these results that

our heterogeneous ML ensembles are better than the DL algorithms we have

tested. We would note as well that the hyperparameters of the DL algorithms

needed to be tuned in order to achieve the performance they did, while the

ML algorithms we employed were used with the default parameters.

The DLHEs outperformed the single DL models and the HEs with MLs. How-

ever, their SD values were higher.

Table 6.3: R2, MAE, RMSE and MSE values obtained with five runs

of Tabnet using different random seeds when partitioning the data, and

the average values.

Tabnet R2 MAE RMSE MSE

Run1 0.79288 1.05847 1.87057 3.49904
Run2 0.77431 1.08104 1.93952 3.76175
Run3 0.78511 1.04094 1.84547 3.40575
Run4 0.78271 1.07811 1.88220 3.54266
Run5 0.79404 1.03728 1.83332 3.36106
Avg 0.78581 1.05917 1.87422 3.51405
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Table 6.4: R2, MAE, RMSE and MSE values obtained with five runs

of our CNN using different random seeds when partitioning the data,

and the average values.

CNN R2 MAE RMSE MSE

Run1 0.79189 1.05642 1.84940 3.42027
Run2 0.78616 1.07217 1.88794 3.56431
Run3 0.78277 1.04595 1.85550 3.44287
Run4 0.79374 1.05871 1.83381 3.36286
Run5 0.79159 1.05487 1.84416 3.40093
Avg 0.78923 1.05762 1.85416 3.43825

Table 6.5: R2, MAE, RMSE and MSE values obtained with five runs

of DLHE using AE, and using different random seeds when partitioning

the data, with the average values.

AE R2 MAE RMSE MSE

Run1 0.80591 1.02805 1.81080 3.27899
Run2 0.80849 1.02479 1.79872 3.23538
Run3 0.78735 1.03293 1.83585 3.37033
Run4 0.79344 1.04882 1.83514 3.36775
Run5 0.79633 1.03298 1.82310 3.32369
Avg 0.79830 1.03351 1.82072 3.31523

Table 6.6: R2, MAE, RMSE and MSE values obtained with five runs

of DLHE using WE, and using different random seeds when partitioning

the data, with the average values.

WE R2 MAE RMSE MSE

Run1 0.80601 1.02805 1.81080 3.27899
Run2 0.80861 1.02479 1.79872 3.23538
Run3 0.78735 1.03293 1.83585 3.37033
Run4 0.79346 1.04882 1.83514 3.36775
Run5 0.79633 1.03298 1.82310 3.32369
Avg 0.79835 1.03351 1.82072 3.31523
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Table 6.7: Summary of results with deep learning single models and

deep learning heterogeneous ensembles using AE and WE, listing R2,

MAE, RMSE and MSE values, with the SDs.

M R2 SD MAE SD RMSE SD MSE SD

Tabnet 0.78581 0.00996 1.05917 0.02030 1.87422 0.04136 3.51405 0.15615
CNN 0.78923 0.00899 1.05762 0.00946 1.85416 0.02049 3.43825 0.07634
AE 0.79830 0.00879 1.03351 0.00923 1.82072 0.01601 3.31523 0.05821
WE 0.79835 0.00885 1.03351 0.00923 1.82072 0.01601 3.31523 0.05821
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Figure 6.4: R2 values with deep learning single models and deep learn-

ing heterogeneous ensembles using AE and WE. The SDs of the values

are indicated by bars.

Chapter 6 Mostafa Al Ghamdi 140



Heterogeneous Machine Learning Ensembles for Predicting Train Delays

Tabnet CNN AE WE
0.9

0.95

1

1.05

1.1

1.15

1.2

Models

M
A
E

Figure 6.5: MAE values with deep learning single models and deep

learning heterogeneous ensembles using AE and WE. The SDs of the

values are indicated by bars.
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Figure 6.6: RMSE values with deep learning single models and deep

learning heterogeneous ensembles using AE and WE. The SDs of the

values are indicated by bars.
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Figure 6.7: R2 values with deep learning single models, deep learning

heterogeneous ensembles, and machine learning heterogeneous ensem-

bles using MSM1 size 2. The SDs of the values are indicated by bars.
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Figure 6.8: R2 values with deep learning single models, deep learning

heterogeneous ensembles, and machine learning heterogeneous ensem-

bles using MSM1 size 3. The SDs of the values are indicated by bars.
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Figure 6.9: R2 values with deep learning single models, deep learning

heterogeneous ensembles, and machine learning heterogeneous ensem-

bles using MSM1 size 4. The SDs of the values are indicated by bars.
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6.4.2 Critical Comparisons

Figures 6.10 to 6.13 are CD diagrams comparing the values of metrics for the

single DL models and the AE and WE DLHEs.

Figure 6.10 is the CD diagram of R2 values. It can be seen that the ensembles

(WE and AE) were both more accurate than the DL single models. However,

the difference was not statistically significant, as indicated by the fact that

they are all linked under one bar. The rank order, from highest to lowest

accuracy, was WE, AE, CNN, Tabnet.

Figure 6.11 is the CD diagram of MAE values. This shows some differences

with the R2 diagram. The ensembles were more accurate than the DL sin-

gle models, but the WE and AE ensembles were of the same accuracy. The

ensembles were also statistically significantly more accurate than Tabnet, but

the difference between the ensembles and CNN was not significant. The rank

order, from highest to lowest accuracy, was AE and WE (equal), CNN, Tab-

net.

Figure 6.12 is the CD diagram of RMSE values. With this measure the en-

sembles were more accurate than the DL single models, but the differences

were not statistically significant. The AE and WE ensembles were of the same

accuracy and the rank order, from highest to lowest accuracy, was AE and WE

(equal), CNN, Tabnet.

Figure 6.13 is the CD diagram of MSE values. This measure gave the same

overall pattern as RMSE, although the actual values were different. The en-

sembles were more accurate than the DL single models, but the differences

were not statistically significant. The AE and WE ensembles were of the same

accuracy and the rank order, from highest to lowest accuracy, was AE and
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WE (equal), CNN, Tabnet. MSE and RMSE are similar measures, so it is not

surprising that they gave similar patterns.

From these CD diagrams it can be seen that while the differences between the

ensembles and the single DL models were only significantly different with the

MAE measure, they were more accurate, which shows that the ensemble ap-

proach did improve the accuracy. These ensembles only contained two models,

if more models could be included then it is possible that more of the measures

would indicate that the ensembles were statistically significantly more accurate

than the single models.

Figures 6.14 to 6.16 are CD diagrams of R2 values obtained with DL models,

DLHEs, and HEs generated using MSM1 containing from 2 to 4 models. (Note

that in all three figures the DLHE ensemble results presented are for two model

ensembles, because we only investigated two different DL algorithms.)

Figure 6.14 is the CD diagram for the 2 model HEs. It can be seen that

the DLHE ensembles were the most accurate, then the HEs, then the DL

single models. The rank order was WE(DLHE), AE(DLHE), AE(MSM1),

WE(MSM1), Tabnet, CNN. Thus, the ensembles of DL models were more

accurate than the ML ensembles of two models. None of the differences in

accuracy was statistically significant.

Figure 6.15 is the CD diagram for the 3 model HEs. Here the DLHE en-

sembles were again the most accurate, then the ML ensembles. However, the

WE(MSM1) ensemble was more accurate than the AE(MSM1) ensemble. This

was probably because since the ML ensembles contained 3 models, instead of

2, the weighting mechanism was more effective. The DL single models had the

lowest accuracy. The rank order was, WE(DLHE), AE(DLHE), WE(MSM1),
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AE(MSM1), CNN, Tabnet. None of the differences in accuracy was statisti-

cally significant.

Figure 6.16 is the CD diagram for the 4 model HEs. The rank order of the

ensembles was the same: WE(DLHE), AE(DLHE), WE(MSM1), AE(MSM1).

However, there was a large difference in accuracy between WE(MSM1) and

AE(MSM1). This was probably because they contained 4 models and the

fourth model was not very accurate, so the AE(MSM1) ensemble’s accuracy

was affected, but the weighting mechanism of the WE(MSM1) ensemble was

able to compensate for the poor accuracy of the fourth model.

Overall, the results from the work presented in this chapter clearly show the

benefit of our heterogeneous ensemble approach, whatever type of base learner

is being used, and benefit of the weighting mechanism can also seen from the

results presented.

6.5 Summary

In this chapter we have investigated the use of DL algorithms as base learners

with our heterogeneous ensemble approach.

We investigated two different DL algorithms, Tabnet and CNN. Tabnet was

particularly developed for use with tabular data, which our train delay data

is.

We carried out hyperparameter tuning to these DL algorithms by applying a

wide range of values, in order to get the best performance from them. We then

employed the same framework as used in our previous experiments, but used
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,

Figure 6.10: Critical difference comparison for R2 values obtained

with deep learning single models Tabnet and CNN, and deep learning

heterogeneous ensembles using AE and WE.

Chapter 6 Mostafa Al Ghamdi 147



Heterogeneous Machine Learning Ensembles for Predicting Train Delays

Figure 6.11: Critical difference comparison for MAE values obtained

with deep learning single models Tabnet and CNN, and deep learning

heterogeneous ensembles using AE and WE.
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Figure 6.12: Critical difference comparison for RMSE values obtained

with deep learning single models Tabnet and CNN, and deep learning

heterogeneous ensembles using AE and WE.
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Figure 6.13: Critical difference comparison for MSE values obtained

with deep learning single models Tabnet and CNN, and deep learning

heterogeneous ensembles using AE and WE.
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Figure 6.14: Critical difference comparison for R2 values obtained with

deep learning single models Tabnet and CNN; deep learning heteroge-

neous ensembles using AE and WE; and machine learning heterogeneous

ensembles using MSM1, using AE and WE, containing 2 models.
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Figure 6.15: Critical difference comparison for R2 values obtained with

deep learning single models Tabnet and CNN; deep learning heteroge-

neous ensembles using AE and WE; and machine learning heterogeneous

ensembles using MSM1, using AE and WE, containing 3 models.
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Figure 6.16: Critical difference comparison for R2 values obtained with

deep learning single models Tabnet and CNN; deep learning heteroge-

neous ensembles using AE and WE; and machine learning heterogeneous

ensembles using MSM1, using AE and WE, containing 4 models.

Chapter 6 Mostafa Al Ghamdi 153



Heterogeneous Machine Learning Ensembles for Predicting Train Delays

the hyperparameter-optimised DL algorithms for the base learners instead of

ML algorithms.

As in previous experiments we generated ensembles using Averaging and Weighted

Averaging for the decision making function.

We assessed our results using four metrics: R2, MAE, RMSE and MSE. We

applied the Friedman test and viewed the results using critical difference dia-

grams. These enabled us to compare the DL algorithms and ensembles with

our ML ensembles.

We found that heterogeneous ensembles of DL algorithms gave more accurate

results than single DL models. We also found that heterogeneous ensembles of

ML models gave better results than the single DL models, and were also more

consistent. The DL ensembles were more accurate than the ML ensembles,

but were not as consistent.

In our list of research questions we asked the question “Do heterogeneous en-

sembles perform better than state-of-the-art methods such as deep learning?”

and we believe that the answer to this question is “Yes.” Our results clearly

show that our HEs perform better than the two DL methods tested. In addi-

tion we would note that our HEs achieve their performance using the default

hyperparameters, while the DL algorithms needed hyperparameter tuning to

achieve their results.

In the next chapter we will evaluate our work and discuss it in detail.
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7.1 Introduction

The aim of this research was to develop heterogeneous machine learning en-

semble techniques for predicting train delays, that are more accurate and more

reliable than single models. Having presented our results in Chapters 4 to 6,

in this chapter we will give an overall evaluation of our work and discuss it

further.

In addition we will present results from testing our methods on a new set of

train delay data. This dataset is from a different UK railway region from the

dataset we used to develop our methods, and testing our methods with it will

enable us to assess how well our methods generalise to new data.

The rest of the chapter is organized as follows:

Section 7.2 We give an overview of our work.

Section 7.3 Presents and discusses the experimental results obtained with

the new dataset.

Section 7.4 Summarises the chapter.

7.2 Overview

The ensemble approach seeks to combine the outputs of several models with

the aim of giving more accurate and reliable outputs than any one single model,

and it has been applied in many areas, including train delay prediction. En-

sembles function like a human committee and they often do outperform single

models. However, most ensemble methods produce homogeneous ensembles,

that is, all the models are of the same type, e.g. decision trees. A heterogeneous
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ensemble, in contrast, consists of models of more than one type, e.g. decision

trees and artificial neural networks. The reasoning behind this approach is

that they are able to take advantage of the strengths of different types of

model, and therefore can potentially give better performance than ensembles

composed of only one type of model. Heterogeneous ensembles have been used

in a number of problem areas, but, to date, there has only been one study

applying them in train delay prediction. However, that particular study had a

number of disadvantages: the ensembles only used three types of base learner

and performed no model selection. In addition, the generated ensembles were

sensitive to hyperparameter values and tuning was required, this means that

they would not generalise well.

Because of the potential benefits of heterogeneous ensembles, we decided to

undertake this research, in order to produce heterogeneous ensembles that

perform well and would generalise well. To achieve our aim we set the following

objectives:

1. To develop methods for generating ensembles that contain models gen-

erated by more than one type of algorithm.

2. To develop methods for selecting which models to include in the ensem-

ble.

3. To evaluate the performance of the methods developed, and determine

which of them are best for predicting train delays.

4. To evaluate how well the methods developed generalise to new data.

In order to achieve our first objective, we developed ensemble methods

that utilised a wide range of machine learning algorithms and evaluated their

performance. We included both well established methods such as decision
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trees, and also included state-of-the-art methods such as Random Forest and

XGboost. This work was reported in Chapters 3 to 5. The ensemble framework

was described in Chapter 3, the initial experiments were described in Chapter 4

and further experiments in Chapter 5. We also investigated the use of the

Deep Learning methods Tabnet and CNN, and this work was reported in

Chapter 6.

To achieve our second objective we developed methods for selecting mod-

els for inclusion in the ensemble. We investigated the use of two different

criteria for model selection, accuracy and diversity. This work was reported

in Chapter 5. For this we developed two model selection methods, MSM1,

which only considers accuracy, and MSM2 which considers both accuracy and

diversity.

MSM1 works by starting with a collection of models generated by different

base learners that have been evaluated by a chosen metric such as R2. These

models are ranked according to accuracy and added iteratively to the ensemble

starting with the most accurate; the accuracy of the ensemble is then evaluated

and once the ensemble accuracy has reached its highest value the construction

is terminated.

MSM2 starts by taking the most accurate model, then it adds further models

to the ensemble, based on diversity. Thus the second model chosen is the one

that results in the highest diversity in the ensemble, and further models are

added based on diversity. For the diversity measure we tested both pairwise

and non-pairwise measures. The majority of diversity measures were developed

for classification ensembles and CFD has been reported to be the best non-

pairwise measure of diversity. Therefore, we adapted it for use in the regression

context. For pairwise diversity measures we used correlation, covariance and
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disagreement. The outputs of correlation and covariance were adapted to be on

the same 0 to 1 scale as CFD and disagreement, to ensure compatibility.

To achieve our third objective we evaluated our ensembles in two differ-

ent ways. For our initial experiments, described in Chapter 4, we used two

measures, percentage correct prediction after rounding and percentage within

one minute after rounding. These were based on the standard railway industry

practice for measuring train delays. For our later experiments, described in

Chapters 5 and 6, we used four standard statistical metrics: R2, MAE, RMSE

and MSE, in order to perform a rigorous assessment of our ensembles’ per-

formance. We also employed the Friedman test and viewed the results using

critical difference diagrams.

To achieve our fourth objective we tested our methods on a new set of

data that relates to a different railway region in the UK from the dataset used

during the development of all our methods. This work will be described in

Section 7.3, later in this chapter.

Based on the above objectives, we sought to answer the following research

questions:

1. How should a heterogeneous ensemble be built so that it performs better

than single models?

2. What factors should be taken into consideration when selecting models

for including in an ensemble? A number of factors will be examined,

including accuracy, diversity and ensemble size.

3. Is there any relationship between accuracy and diversity in the context

of building an ensemble for performing regression?

4. How should the models be combined to produce better results?
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5. Do heterogeneous ensembles perform better than state-of-the-art meth-

ods such as deep learning?

The first of these questions was addressed in Chapters 3 and 4. In Chapter 3 we

described our framework for building heterogeneous ensembles. In Chapter 4

we described our initial experiments and presented the results from them.

The framework of our Heterogeneous Ensemble consists of the following five

phases: (1) data preprocessing and feature extraction, (2) data partitioning,

(3) modelling, (4) model selection, and (5) building the ensemble.

For phase (1) we used data collected by a colleague for a single rail route (Nor-

wich to London Liverpool Street) in the Greater Anglia region of the UK rail

network. This covered a period of 2 years 5 months. For our initial experi-

ments described in Chapter 4 we used the first 7 months of the dataset and

for our later experiments we used the entire dataset. We performed cleansing

and preprocessing of the raw data so that it was in a suitable format to use

for modelling. It is essential that appropriate cleansing and preprocessing is

performed on any dataset before it is used for machine learning.

We also had weather data for the first 7 months of our train delay dataset.

We did not have weather data for the remainder of the period, as explained in

Section 5.3.

In phase 2 we split the dataset into training, validation and testing subsets.

This is a very important practice to follow. The use of the separate testing

dataset ensures that the algorithms building the models have not “seen” the

data on which they are tested and so the test data can be used to provide an

independent check on the model accuracy. In the same way use of a validation

dataset provides an independent means of assessing the performance of the
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models during the ensemble building process. This is important, for example,

when weights are assigned to models within the final ensemble, based on their

performance. When performing the splitting we used a random seed to ensure

reproducibility, the use of different random seeds also allows different splits of

the dataset to be made so that multiple repetitions of a given experiment can

be performed, and the results compared to check for reproducibility.

Phase 3 is the modelling phase. Here we used a wide variety of machine learning

algorithms as base learners. This was important because these algorithms work

in different ways, and so an ensemble built from them is heterogeneous. In

principle, any algorithm that can fit a regression model to data can be used,

and so we were able to include a wide spectrum of algorithms including basic

linear regression, K-nearest neighbours and state-of-the-art methods such as

Random Forest and XGboost. We were also able to use the Deep Learning

methods Tabnet and CNN. This ability to use a wide variety of algorithms is

the key to the success of heterogeneous ensemble methods.

In phase 4 model selection is performed. This phase was not implemented in

our initial experiments described in Chapter 4, but was developed in Chapter 5.

The use of model selection is a key part of our completed ensemble approach.

Some algorithms will perform better than others on different datasets. Se-

lecting the best models is essential in order to generate the best ensemble.

Therefore we devised a model selection process that selected the best perform-

ing models one by one, until the ensemble reached its highest accuracy. For

our research we continued the building of the ensemble in order to see how the

performance changed as the more poorly performing models were added, but

in a real world application model selection would stop when peak performance

was reached.

Chapter 7 Mostafa Al Ghamdi 161



Heterogeneous Machine Learning Ensembles for Predicting Train Delays

In order to select models we devised two methods, which we called MSM1 and

MSM2. MSM1 selects models based on their accuracy, while MSM2 selects

models on the basis of accuracy and diversity. We devised these two methods

because it is generally accepted that the two important factors affecting the

overall accuracy of an ensemble are the accuracy and diversity of its component

models, and we wished to investigate how these factors could be used to build

our heterogeneous ensembles. In principle, any diversity measure that can be

used with regression ensembles could be used in this context, and we tested

both pairwise and non-pairwise methods. In practice it is necessary for them

to measure diversity on the same scale, and we modified some of the methods

we used so that they measured diversity on a scale from 0=no diversity to

1=maximum diversity. Also, most diversity measures were developed for clas-

sification ensembles and cannot work directly with regression ensembles. We

therefore modified CFD so that it could work in the regression context.

The final phase is phase 5 where the decision making function combined the

outputs of the models in the ensemble. This is a very important stage in the

process. We devised two different decision making functions. The first, which

we called AE, combined the outputs by averaging. The second, which we called

WE, combined them by weighted averaging, based on their accuracy on the

validation data. It would be expected that different base learners would per-

form differently on a given dataset, and therefore weighting the model outputs

according to their performance might be expected to result in a more accurate

ensemble. We devised these two methods in order to test this.

The experiments described in Chapter 4 used the framework presented in

Chapter 3, apart from the model selection step which was investigated in

Chapter 5.
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In these experiments we compared the performance of single models and the

performance of our heterogeneous ensembles. Table 4.1 lists the key results

from these experiments.

It can be seen that for every pair of stations the AE and WE ensembles always

had higher accuracy than the average accuracy of single models. In addition,

the SD values were always lower for the ensembles than for the average accuracy

of single models. Thus, the ensembles were more accurate and more consistent.

It is important to note that in these initial experiments no model selection was

being performed, and all the models were put into the ensemble. The better

performance of the ensemble compared with the average of single models was

entirely due to the ensemble principle working effectively.

We can therefore conclude that the first research question has been answered,

in that we have demonstrated the building of ensembles that are consistently

more accurate than the average of single models.

Question 2 was “What factors should be taken into consideration when se-

lecting models for including in an ensemble?” and question 3 was “Is there

any relationship between accuracy and diversity in the context of building an

ensemble for performing regression?”

In our experiments in Chapter 5 we investigated the use of accuracy and di-

versity when building ensembles. Our model selection methods MSM1 and

MSM2 used accuracy, and accuracy and diversity, respectively, when build-

ing ensembles. We found that ensembles produced using MSM1 were more

accurate than those produced by MSM2. Figure 7.1 presents the R2 values

obtained for MSM1, with averaging, weighted averaging and for the average

of single models. It shows that the ensembles had more accurate results than

any of the single models. The AE and WE ensembles had similar results, how-
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Figure 7.1: R2 values for AE, WE and average of single models using

MSM1, with SD values indicated by error bars. The ensembles showed

higher accuracy than the single models. Repeat of Figure 5.3
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Figure 7.2: R2 values obtained with WE using the two selection meth-

ods MSM1 and MSM2, different diversity measures with MSM2, and

different ensemble sizes. Repeat of Figure 5.10.
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ever, for when a larger number of models had been added the WE ensembles

were slightly more accurate. This no doubt reflects the fact that the less ac-

curate models were being given lower weighting by WE, and hence the overall

ensemble accuracy was higher.

Figure 7.2 presents the results with MSM1 and MSM2 with WE ensembles.

It can be clearly seen that MSM1, which uses accuracy for model selection,

gives more accurate results than all the variants of MSM2 which uses accuracy

and diversity for model selection. This suggests that model accuracy is the

most important factor to consider when building a heterogeneous regression

ensemble and that diversity is not as important. This is different from what

has been observed with classification ensembles and is somewhat surprising.

However it must be remembered that there is no general agreement on a def-

inition of diversity for either classification and regression ensembles, and also

most measures of diversity were developed for classification ensembles. We

adapted CFD to work in the regression context, because it is recognised as

being the best measure of diversity for classification ensembles. As we noted

in Section 5.5 the performance drops with 3 models and then improves as more

are added. This is due to selection mechanism failing in its aim of selecting

the best models early on in the building of the ensemble and it appears to be

selecting the worst performing model as the third model. This would be due to

this model resulting the greatest diversity in the ensemble. The performance

then improves as other, better performing models are added.

It is interesting to note that of the diversity measures we tested for MSM2,

it resulted in the most accurate ensembles, even thought they were not as ac-

curate as those obtained with MSM1. (See Figure 7.2.) The other measures

tested were all pairwise measures, which in the classification context are recog-
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nised as not performing as well as non-pairwise measures. Therefore, when

using diversity for model selection in the context of a regression ensemble, the

performance of the measures are comparable with the classification context.

This does suggest that the diversity measures are capturing the diversity of

the ensemble to some degree. However, the fact that simply selecting models

on the basis of accuracy (MSM1) gives more accurate ensembles may indicate

that not all the diversity is being captured, i.e. they are not as effective at

capturing diversity in the regression context.

Overall our results do not show any relationship between diversity and ensem-

ble accuracy. Intuitively this should not be the case and we think it is likely

that the measures of diversity used are not reflecting the actual diversity. An

alternative explanation is that because the first model selected is the most

accurate, then the model that is most diverse from this one is likely to be less

accurate and therefore when the second model is selected it sometimes does

not improve the accuracy of the ensemble or even causes a drop in accuracy

when it is added. One possible way to mitigate this would be to require a

minimum level of accuracy before a model could be added, even if it would

result in higher diversity. Overall, our results suggest that more research is

needed on the measurement of diversity in regression ensembles.

Our methods are able to determine the optimum ensemble size, and we found

that a small number of models were able to give excellent performance. The

optimum ensemble size was 3-4 models. (See Figure 7.2.)

This shows that excellent performance can be achieved with a small number of

models if they are selected properly, and our methods are able to do this.
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The fact that our methods are able to select the best models from the collection

of models means that all the models do not need to be included in the ensemble.

This shows the benefit of the model selection strategy.

It is possible that a different dataset may need a larger number of models.

In such a situation our methods would identify this and put the appropriate

models into the ensemble. This means that our methods would generalise to

other types of data and produce the optimum size of ensemble.

We consider that questions 2 and 3 of our research questions have been an-

swered by these results, in that accuracy has been found to be the most im-

portant factor to take into consideration when building ensembles, and that

we have found no relationship between diversity and accuracy in the context

of building a regression ensemble.

We have found throughout our experiments that weighted averaging of the

models according to accuracy gave the most accurate ensembles. We em-

ployed weighting according to R2, but other metrics could be used and this

would be a suitable area for future research. Where the models have similar

performance, the weights will, of course, be similar, but where there is a large

variation in model performance there will be a greater difference in the weights.

Thus poorly performing models will have less effect on the ensemble accuracy,

and the ensembles will show a greater improvement over those that use just

accuracy.

This is seen in the results presented in Figure 7.3. This shows the results ob-

tained with MSM2 using the disagreement diversity measure. In this case the

models have been selected according to disagreement, i.e. they are different in

their predictions and as a result poorly performing models are put into the

ensemble at an early stage of its construction. Here the WE ensembles show
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Figure 7.3: R2 values for AE, WE and average of single models us-

ing MSM2 and disagreement as the diversity measure. SD values are

indicated by error bars. Repeat of Figure 5.15

a higher accuracy than the AE ensembles, and as the ensemble construction

continues, and better performing models are added, performance of both AE

and WE improve, and the difference between them becomes less. We con-

sider that the results with the AE and WE have answered our 4th research

question.

We investigated the use of Deep Learning (DL) algorithms with heterogeneous

ensembles. Table 7.1 presents the results obtained for two types of single DL

models, Tabnet and CNN, and for AE and WE DLHEs constructed using

these models. It can be seen that the DLHEs are more accurate than the

single DL models. Figure 7.4 compares the R2 values obtained with the DL

single models, DLHEs and HEs. The HEs show higher performance than the

DL single models, but the DLHEs show higher performance than the HEs.

Thus, we can conclude that our heterogeneous ensembles do outperform state-

of-the-art deep learning methods, and we therefore conclude that we have

answered question 5 of our research questions. We would note as well that
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Table 7.1: Summary of results with deep learning single models and

deep learning heterogeneous ensembles using AE and WE, listing R2,

MAE, RMSE and MSE values, with the SDs. Repeat of Table 6.7

M R2 SD MAE SD RMSE SD MSE SD

Tabnet 0.78581 0.00996 1.05917 0.02030 1.87422 0.04136 3.51405 0.15615
CNN 0.78923 0.00899 1.05762 0.00946 1.85416 0.02049 3.43825 0.07634
AE 0.79830 0.00879 1.03351 0.00923 1.82072 0.01601 3.31523 0.05821
WE 0.79835 0.00885 1.03351 0.00923 1.82072 0.01601 3.31523 0.05821

Tabnet CNN AE (DLHE) WE (DLHE) AE (MSM1) WE (MSM1)
0.76
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0.81
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Models
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Figure 7.4: R2 values with deep learning single models, deep learning

heterogeneous ensembles, and machine learning heterogeneous ensem-

bles using MSM1 size 2. The SDs of the values are indicated by bars.

Repeat of Figure 6.7

our heterogeneous ensemble approach can be used with DL base learners to

generate ensembles that outperform single DL models, which also shows the

benefit of it. It would, of course, be perfectly possible to generate ensembles

containing both ML and DL models, and this would be a suitable area for

future research.
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Figure 7.5: Critical difference comparison for ensembles size 3 with

MSM1 AE and MSM1 WE, Random Forest model, and XGBoost model.

(Repeat of Figure 5.20)

7.2.1 Comparison of Heterogeneous and Homogeneous

ensembles

The work of this thesis was undertaken because heterogeneous ensembles have

been reported to perform better than homogeneous. We have developed hetero-

geneous ensembles and shown that they gave more accurate results than single

models. However, we can also compare our heterogeneous ensembles with ex-

isting state-of-the-art homogeneous ensembles, Random Forest and XGBoost,

since these methods were used as base learners when developing our heteroge-

neous ensembles.

Figures 7.5 and 7.6 are CD diagrams comparing the results obtained using

Random Forest and XGBoost with heterogeneous ensembles sized 3 and 4, re-

spectively. It can be seen that the heterogeneous ensembles sized 3 and 4 gave

better performance that the homogeneous ensembles Random Forest and XG-

Boost. The results obtained using a new dataset of train delay data, described

below in Section 7.3 and presented in Figure 7.10, show comparable patterns.
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Figure 7.6: Critical difference comparison for ensembles size 4 with

MSM1 AE and MSM1 WE, Random Forest model, and XGBoost model.

Repeat of (Figure 5.21)

The rank order from highest to lowest accuracy was the same (WE(MSM1),

AE(MSM1), XGBoost, RF), and WE(MSM1) was statistically significantly

more accurate than RF. These results show that our heterogeneous ensembles

do give more accurate results than homogeneous ensembles, and confirm that

our hypothesis that heterogeneous ensembles would give more accurate results

than homogeneous ensembles was correct.
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7.3 Application of our Heterogeneous Ensem-

ble methods to a new dataset

In order to investigate how our heterogeneous ensemble methods would gener-

alise to new data we tested them on a second dataset of train delay data. This

contained data for the Weymouth to London Waterloo line of the UK South

Western Railway region. This dataset covered a two year period from 2017 to

2018. Using data from a different region should provide a good indication of

how robust our methods are to handling different datasets.

This dataset contained 128120 instances, and our previous (Norwich to Lon-

don Liverpool Street) dataset that we used to develop our methods contained

107431, making the new dataset slightly larger.

We tested this new dataset with our best performing methods, MSM1 using AE

and WE. We did not test MSM2 because it was not as effective as MSM1 and

here we were concerned with testing the generalisation ability of our heteroge-

neous ensemble methods, and because MSM1 gave the best performance.

Table 7.2 presents the results we obtained, and they are are plotted in Fig-

ure 7.7. It can be seen that the values for AE and WE were very similar,

being identical with for the smaller ensembles, but as more models were added

the WE ensembles had slightly higher accuracy than the AE ones. The sin-

gle model performance was always lower than that of the ensembles. This is

broadly the same pattern that was seen with the NRW–LST dataset. This

is also seen in the SD values, where that of the single models increases much

more than that of the ensembles as the size of the ensemble increases. Thus
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the overall patterns of results obtained with the two datasets are very simi-

lar.

Figures 7.8 and 7.9 show plots of the R2 values obtained using MSM1 with the

NRW–LST and WEY–WAT datasets. It can be seen that higher accuracies

were obtained for the WEY–WAT dataset than for the NRW–LST dataset.

This is very interesting, because the ensembles have performed better on the

new dataset than on the dataset that was used to develop our methodology.

There may be a number of reasons for this, but we would note that the fact

that our ensembles performed better on the new dataset is very strong evidence

that they generalise to new data.

It can be seen that there is no difference in accuracy between the AE and

WE ensembles for the smaller sized ensembles. (See Table 5.1 for NRW–LST

and Table 7.2 for WEY–WAT.) This is almost certainly due to there being no

difference in the accuracy of the most accurate individual models, and so there

is no difference in the weighing being applied to them. As the less accurate

models are added to the ensemble, the WE ensembles then become slightly

more accurate than the AE ensembles, because in them less weight is applied

to the less accurate models.

Overall, we can conclude that whatever the nature of the data, our heteroge-

neous ensembles are very likely to perform better than any single models in

terms of accuracy and consistency and so are generalisable.

Figures 7.10 to 7.12 are critical difference diagrams for the results obtained with

the new dataset. Figure 7.10 presents the results for WE and AE ensembles

size 2 with the state-of the-art methods random forest and XGboost. It can

be clearly seen that the ensembles are better than these methods, as was the

case when they were applied to the NRW–LST dataset.
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Table 7.2: R2 values and SDs obtained with the Weymouth to London

Waterloo dataset for MSM1 using AE and WE, and for average of single

models.

M
MSM1 AE MSM1 WE

Average of
single models

R2 SD R2 SD R2 SD
2 0.8298 0.0062 0.8298 0.0062 0.8272 0.0015
3 0.8296 0.0067 0.8296 0.0067 0.8268 0.0014
4 0.8286 0.0065 0.8286 0.0065 0.8218 0.0097
5 0.8253 0.0068 0.8255 0.0068 0.8146 0.0169
6 0.8214 0.0072 0.8218 0.0071 0.8086 0.0213
7 0.8183 0.0072 0.8188 0.0071 0.8025 0.0256
8 0.8149 0.0072 0.8156 0.0071 0.7986 0.0271
9 0.8116 0.0072 0.8124 0.0071 0.7957 0.0277
10 0.8086 0.0072 0.8095 0.0071 0.7917 0.0276
11 0.8041 0.0073 0.8059 0.0072 0.7796 0.0505
12 0.7985 0.0073 0.8015 0.0073 0.7674 0.0651

Figure 7.11 also includes the single models and overall we can see that the

ensembles were best. The ensembles were significantly better than RF. The

rank order from highest to lowest accuracy was WE, AE, XGBoost, single

models, RF. The ensembles were significantly more accurate than RF, the other

differences were not statistically significant. Figure 7.12 presents the results

for ensembles size 3. Here the ensembles again are seen to be more accurate

than single models, XGBoost and RF. They are also consistently better, while

while XGboost is now in 4th position, compared to 3rd in Figure 7.11. As

in Figure 7.11 the ensembles are significantly more accurate than RF and the

other differences are not statistically significant.

7.4 Summary

This study was undertaken in order to develop heterogeneous ensembles for

predicting train delays. Previously there has only been one application of
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Figure 7.7: Plots of the R2 values obtained using MSM1 AE, MSM1

WE and average of single models with the WEY–WAT dataset. SD

values are indicated by error bars.
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Figure 7.8: Comparison of R2 values obtained using MSM1 (WE)

on the two datasets: the first one (NRW) and the new one (WEY).

The results show that the WE ensembles have reproduced the good

performance on a new dataset.
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Figure 7.9: Comparison of R2 values obtained using MSM1 (AE) on

the two datasets: the first one (NRW) and the new one (WEY). The

results show that the AE ensembles have reproduced the good perfor-

mance on a new dataset.

heterogeneous ensembles to train delay prediction and that was a very limited

study that did not investigate a wide variety of algorithms or mechanisms for

combining models. It was sensitive to hyperparameter values and was therefore

not generalisable. We undertook a much deeper study and investigated the use

of a wide variety of models, model selection and methods for combining models.

We also investigated the use of deep learning. We compared our methods with

well-known algorithms and evaluated them using a number of metrics. We also

applied the Friedman test and used CD diagrams to view our results. Finally

we used a new dataset and applied our methods to it. The results showed that

our methods generalise to new data.

At the start of this study an number of objectives were set, in this chapter we

have shown that were all met. We also asked a number of research questions

which we have shown were all answered.

Our objectives were:
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Figure 7.10: Critical difference comparison for RF; XGboost; and

MSM1 AE and MSM1 WE, size 2; for WEY–WAT dataset.
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Figure 7.11: Critical difference comparison for RF; XGboost; single

models; and MSM1 AE and MSM1 WE, size 2; for WEY—WAT dataset.
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Figure 7.12: Critical difference comparison for RF; XGboost; single

models; and MSM1 AE and MSM1 WE, size 3; for WEY—WAT dataset.
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1. To develop methods for generating ensembles that contain models gen-

erated by more than one type of algorithm.

2. To develop methods for selecting which models to include in the ensem-

ble.

3. To evaluate the performance of the methods developed, and determine

which of them are best for predicting train delays.

4. To evaluate how well the methods developed generalise to new data.

Objective 1 was met in that we have developed methods for generating het-

erogeneous ensembles from a wide variety of algorithms. For the base learners

we tested basic methods such as decision trees, state of the art methods random

forest and XGboost; we also tested the use of the deep learning methods CNN

and Tabnet. An important point to note about our heterogeneous ensembles

is that they can use any regressor as the base learner, including homogeneous

ensemble methods.

Objective 2 has been met in that we developed two model selection meth-

ods, MSM1 and MSM2, that select models based on accuracy, and accuracy

and diversity, respectively. These methods work by adding models to the en-

semble until maximum accuracy is reached. They enable an ensemble to be

generated that achieves maximum accuracy and minimum size. (For develop-

ment purposes we added models to the ensemble until all were used, but this

was in order to see what effect they had on the ensemble.)

Objective 3 was met in that we employed various metrics and tested our

results statistically. We found that the best method for predicting train delays
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was an ensemble generated by selecting models based on accuracy and employ-

ing a decision making function that used weighted averaging. For our initial

experiments, described in Chapter 4, we used a measure based on the way

train operators measure train performance according to the percentage that

are on time or late. In our later experiments we employed a number of metrics

to perform a more rigorous evaluation of the performance of our methods. We

have statistically tested our results for significance.

Objective 4 was met by applying our methods to a new dataset of train

delay data, for a rail route operated by a different company in a different

part of the country. We found that our methods performed well on this data

and we therefore concluded that they are generalisable. In fact, our methods

gave greater accuracy with this new dataset than the one we used during their

development. While this was almost certainly due to the characteristics of the

dataset, it nevertheless indicates how well our methods generalise.

Our research questions were:

1. How should a heterogeneous ensemble be built so that it performs better

than single models?

2. What factors should be taken into consideration when selecting models

for including in an ensemble? A number of factors will be examined,

including accuracy, diversity and ensemble size.

3. Is there any relationship between accuracy and diversity in the context

of building an ensemble for performing regression?

4. How should the models be combined to produce better results?

Chapter 7 Mostafa Al Ghamdi 181



Heterogeneous Machine Learning Ensembles for Predicting Train Delays

5. Do heterogeneous ensembles perform better than state-of-the-art meth-

ods such as deep learning?

Question 1 we devised a framework for building heterogeneous ensembles,

which we described in Chapter 3. This was used in our initial experiments

in Chapter 4, where we built heterogeneous ensembles using a wide variety

of base learner models. We devised two decision making functions, one com-

bined the model outputs using averaging, the other using weighted accuracy.

Both these types of heterogeneous ensemble achieved higher accuracy than

any of the single models, including the state-of-the-art methods XGboost and

random forest. In our further experiments in Chapters 5 and 6 the same deci-

sion making methods were used and our heterogeneous ensembles consistently

outperformed both the machine learning methods and also the deep learning

methods, CNN and Tabnet. Thus we consider that we have answered this

question.

Question 2 and 3 we investigated the use of accuracy and diversity when

building ensembles in our experiments in Chapter 5. We devised two methods

for selecting models, MSM1 and MSM2. MSM1 only considers accuracy, while

MSM2 considers both accuracy and diversity. We found that accuracy was

the most important factor to take into consideration when building ensembles.

We found no relation between diversity and ensemble accuracy. In regard to

ensemble size, we found that maximum accuracy was usually achieved with

between 3 and 4 models in the ensemble. While the optimum number of

models may vary with individual datasets, the fact that our ensembles can

achieve maximum accuracy with a small number of models means that the
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ensemble size can be kept small. Thus we consider that we have answered

questions 2 and 3.

Question 4 we built ensembles using two different decision making func-

tions, the first using averaging and the second using weighted averaging. We

found that the weighted averaging gave consistently better accuracy than av-

eraging. Thus we concluded that the best way to combine the models was

using weighted averaging. We therefore consider that we have answered this

question.

Question 5 we investigated the use of deep learning algorithms in Chapter 6.

We tested the deep learning methods Tabnet, which was specifically designed

for use with tabular data, (which our train delay data is) and CNN, which

is a general deep learning algorithm. We found that our machine learning

heterogeneous ensembles were more accurate than the deep learning methods.

In addition we found that heterogeneous ensembles built with the deep learning

algorithms were more accurate than both the individual deep learning models

and the heterogeneous ensembles using machine learning methods. Therefore

we can answer this question in the positive: yes, heterogeneous ensembles

perform better than state-of-the-art methods such as deep learning; but we

would also note that deep learning methods can be used as base learners in

heterogeneous ensembles.

Overall, we consider that we have met all our objectives and answered all our

research questions. In the next chapter we will draw our final conclusions and

make our suggestions for further work.
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8.1 Conclusions

For this thesis we have developed heterogeneous ensemble techniques for pre-

dicting train delays using regression models for the base learners. Heteroge-

neous ensembles have proven effective in other application areas, but almost

nothing has been done in the field of train delay prediction using heterogeneous

ensembles.

We investigated how heterogeneous ensembles can be built in order to achieve

accuracy and consistency. In order to do this we devised a framework for

building heterogeneous ensembles, which we used as the basis for all our ex-

periments.

We performed initial experiments which investigated how models should be

combined in a heterogeneous ensemble, and tested the use of a wide variety of

base learners.

We investigated the use of accuracy and diversity for model selection when

building an ensemble.

We investigated how heterogeneous machine learning ensembles compare with

state-of-the-art machine learning methods and deep learning methods.

As a result of our research we have achieved the following:

1. We devised two methods for combining the models in an ensemble, one

using averaging, the other using weighted averaging.

2. We devised two methods for selecting which models to include when

building an ensemble, one using accuracy, the other using accuracy and

diversity.
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3. Our model selection methods were able to achieve maximum ensemble

accuracy using a small number of models.

4. We showed that selecting models on the basis of accuracy resulted in

more accurate ensembles than using accuracy and diversity.

5. We found no relationship between ensemble diversity and ensemble ac-

curacy.

6. We showed that our heterogeneous ensembles were more accurate than

any of the single models tested, including the state-of-the-art methods

random forest and XGboost.

7. We also showed that our heterogeneous ensembles were more accurate

than the deep learning algorithms Tabnet and CNN.

8. We were able to use deep learning algorithms (Tabnet and CNN) as base

learners in heterogeneous ensembles, and found that they were more ac-

curate than heterogeneous ensembles using machine learning algorithms

as base learners.

9. We showed that our methods generalise to new data by testing them on

a new train delay dataset from a different UK railway region.

In summary, the work undertaken for this thesis has made the following con-

tributions to knowledge:

1. We developed methods for building heterogeneous regression ensembles

for predicting train delays.

2. We developed two methods, MSM1 and MSM2, for selecting models to

include in the ensemble, (based on accuracy, and accuracy and diversity,

Chapter 8 Mostafa Al Ghamdi 186



Heterogeneous Machine Learning Ensembles for Predicting Train Delays

respectively) for selecting the subset of models from a collection of models

to achieve maximum accuracy with minimum size.

3. We adapted the Coincident Failure (CFD) diversity measure to work in

the regression context.

4. We found that there is no relationship between ensemble accuracy and

diversity as measured by currently existing diversity measures.

5. We used deep learning methods as base learners in heterogeneous regres-

sion ensembles.

8.2 Suggestions for Future Work

We developed our methods using a dataset where we had removed any entries

that were incomplete. For the future it would be beneficial to be able to handle

incomplete data. Therefore methods for imputing missing data into a train

delay dataset should be investigated.

We used two methods when combining models: averaging and weighted av-

eraging. The weighted averaging was linear. We did perform some initial

investigations using the softmax function and the beta function. (Results not

shown.) However, we did not find that either was helpful. The softmax func-

tion does not differentiate between the weights and gave similar results to

averaging. The beta function gives very high priority to the best performing

models and severely penalises the lower performing models which meant that

all their input was lost and hence negated the benefit of having an ensem-

ble. The main focus of our work was on building the ensembles, so we did

not carry out extensive investigations into methods for combining the model

Chapter 8 Mostafa Al Ghamdi 187



Heterogeneous Machine Learning Ensembles for Predicting Train Delays

outputs. However, optimising the combining function would be beneficial and

therefore for future work it would be worth investigating different ways of ad-

justing the weighting. For example weighting according to the square of the

accuracy in order to bias it strongly toward the more accurate models.

We investigated the use of accuracy and diversity as measures when selecting,

but other measures could be used, for example combining the accuracy and

diversity into a new measure by multiplying them together. In addition, the

methods we used were ordering-based, and other types of method could be

investigated, such as cluster-based or optimization-based.

We found no relationship between ensemble diversity and accuracy. However,

this may be due to the limitations of the existing diversity measures. It would

be very beneficial to have a diversity measure that truly reflects the diversity

of a regression ensemble. Therefore research should be conducted to develop

diversity measures for the regression context.

We primarily investigated the use of machine learning (ML) algorithms for

the base learners in our ensembles. However, our work using deep learning

(DL) models showed that when an ensemble was built with them, it was more

accurate than the ensembles built with the ML models. Since our ensembles

can be built using any type of regression model as a base learner, it would

be interesting to investigate the use of both ML and DL models in the same

ensemble, to see if ensembles build with both types of model give even higher

accuracies.

Having additional data relevant to train delays could aid in making more ac-

curate delay predictions. Therefore it would be beneficial to have additional

data such as passenger numbers and train type.
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