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Abstract. We associate a formal power series to every pp-formula over a

Dedekind domain and use it to study Ziegler spectra of Dedekind domains R

and R̃, where R a subring of R̃, with particular interest in the case when R̃

is the integral closure of R in a finite dimensional separable field extension of

the field of fractions of R.

1. Introduction

Our long term interest regards the ring A of algebraic integers. This is a Bézout

(hence Prüfer, equivalently arithmetical) domain of Krull dimension 1, but not a

Dedekind domain. The decidability of the first order theory of modules over A
was proved in [12, Theorem 3.7], see also [8], without any explicit description of its

Ziegler spectrum, which is still lacking. Recall that this spectrum is the one-point

union of the spectra of the localizations AM at the non-zero prime ideals M of

A, which are 1-dimensional valuation domains with value group isomorphic to the

additive group of rationals; this implies [24, Lemma 8.3] that their Ziegler spectra

have the continuum power. Finding the way these spectra are patched together

could be a real difficulty towards a full description of the Ziegler spectrum of A.

On the other hand, a pp-formula in the first order language of A-modules contains

only finitely many scalars of A and so is defined over the ring of integers of some

finite dimensional Galois field extension of Q, which is a Dedekind domain. This

suggests as a possible way to analyse Zg(A)

• first to consider the Ziegler spectrum of a Dedekind domain R, which is

very well known (see § 2),

• but also to compare the spectra of two Dedekind domains R ⊆ R̃, with

particular emphasis on the case when both R and R̃ are subrings of A, or

even the rings of algebraic integers of some finite dimensional field extension

Q ⊆ Q ⊆ L.

The latter will be one of the main topics of this paper, also devoted to a comparison

of pp-formulas over R and R̃.

Let us describe in the context of a discrete valuation domain V (with primitive

generator π) the technique that we introduce in this paper to study pp-formulas.

2000 Mathematics Subject Classification. 03C60.

Key words and phrases. Dedekind domain, locally bounded pp-formula, Poincaré series.
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To every pair (ϕ,ψ) of pp-formulas over V we associate a formal power series

PV (ϕ,ψ) :=

∞∑
n=1

`V (ϕ,ψ, V/πnV ) tn,

where `V (ϕ,ψ, V/πnV ) denotes the length of the V -module ϕ/ψ(V/πnV ). We show

(Proposition 4.3) that this power series in Z[[t]] is a rational function with a pole at

t = 1 whose multiplicity is equal to the Krull-Gabriel dimension of ϕ/ψ, considered

as a coherent functor on the category V -mod of finitely presented V -modules or,

equivalently, the m-dimension of the pp-pair ϕ/ψ in the sense of Ziegler [24]. The

map (ϕ,ψ) 7→ PV (ϕ,ψ) respects the relations that define the Grothendieck group

G0(V ) (described in §2.5) and therefore induces a morphism G0(V )→ Z[[t]], which

we prove (Theorem 4.2) to be an embedding.

In the sequel, this technique is globalised to associate a Poincaré series PR(ϕ,ψ)

to a pp-pair over any Dedekind domain R and used to study its Dedekind extensions

R ⊆ R̃ by determining PR̃(ϕ,ψ).

Here is the plan of this article.

The background introductory section § 2 contains several important preliminaries

both about model theory of modules (such as pp-formulas, pp-pairs, pp-types, pure-

injective modules) and Dedekind domains (equivalent definitions, main examples

and basic properties). We also recall a structure theorem of finitely generated

modules over these domains. This leads to a representation theorem for pp-1-

formulas over them. In the same section we will examine extensions of Dedekind

domains R ⊆ R̃ as described before, as well as the Grothendieck group of pp-pairs

of a commutative ring R.

The first part of the paper is devoted to single Dedekind domains R. § 3 char-

acterizes the pp-pairs over R such that the corresponding open set in the Ziegler

topology has Cantor-Bendixson rank ≤ 1. In § 4 we equip every pp-pair over a

discrete valuation domain with the Poincaré series. We show that the Cantor-

Bendixson rank of a pp-pair is equal to the multiplicity of singularity at 1 of its

Poincaré series. In § 5 we equip every pp-pair over a Dedekind domain R with a

Poincaré series in Z[[tP : P non-zero prime ideal of R]]. Here our main theorem

(see 4.2 and 5.1) singles out a natural group homomorphism from the Grothendieck

group of the category of pp-pairs of R to the additive group Z[[tP : P non-zero prime

ideal of R]] and studies its main properties.

The second part of the paper deals with extensions of Dedekind domains R ⊆ R̃
(as before). Now the main result (in § 6) describes the way an indecomposable pure-

injective module over R̃ decomposes over R, see 6.4 and 6.6. Then we compare the

Poincaré series of the same pp-pair over R both over R̃ and over R: this is the topic

of § 7.

Finally, when R̃ is the integral closure of R in a finite Galois extension of the

field of fractions Q of R, we analyse how the automorphisms of the Galois group
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of L ⊇ Q act on the pp-formulas over R̃. The main result here is Theorem 8.7,

providing an explicit isomorphism between the lattice of pp-1-formulas over R̃ fixed

by the Galois group and that of pp-1-formulas over R.

Our hope is that, in some future work, all these results may be of some help in

the study of the Ziegler topology of A.

For every ring R, R-Mod (respectively Mod-R) denotes the category of left (re-

spectively right) R-modules, while R-mod is the category of finitely presented left

R-modules. We mainly refer to [17] and [18] for model theory of modules, and to

[11] for Dedekind domains.

We thank Sonia L’Innocente for many discussions and suggestions on these top-

ics.

2. Background

2.1. Dedekind domains. An integral domain is a Dedekind domain if it satis-

fies any of the equivalent conditions of the following theorem.

Theorem 2.1. For any integral domain R, the following are equivalent:

(1) R is Noetherian, integrally closed and has Krull dimension 1 (that is, each

non-zero prime ideal is maximal);

(2) R is Noetherian and every localisation RM at a maximal ideal M is a

valuation domain;

(3) Every ideal of R can be written as a product of a finite number of prime

ideals;

(4) R is Noetherian and all finitely generated torsion-free R-modules are pro-

jective.

Dedekind domains include principal ideal domains PID, like the rings of integers

and Gaussian integers. If R is a Dedekind domain with field of fractions Q and L is

a finite dimensional field extension of Q then the integral closure of R in L is also

a Dedekind domain. We are particularly interested in the case when R is the ring

Z of integers, so that Q is the field Q of rationals. Then L is a number field, and

the integral closure of Z in L is called the ring of algebraic integers of L. By the

previous considerations, it is a Dedekind domain, even if sometimes not a PID.

A crucial property of Dedekind domains is unique factorization of ideals. Accord-

ing to Condition (3) in Theorem 2.1, every non-zero proper ideal P of a Dedekind

domain R decomposes as a finite product
∏m
j=1 P

hj

j where m and the hj are positive

integers, and the Pj are pairwise different non-zero prime (equivalently maximal)

ideals of R.

This decomposition is also unique up to the order of the factors. The exponent

hj of the power Phj

j is the largest positive integer such that Phj

j contains P. When
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M is none of the Pj but is a non-zero prime ideal of R, then one agrees that its

exponent in the decomposition above is 0.

Let us also recall the following fundamental result about finitely generated mod-

ules over Dedekind domains.

Theorem 2.2. [1, Theorems 6.3.20 and 6.3.23] Let R be a Dedekind domain. Every

finitely generated R-module is of the form

Rn ⊕ J ⊕
l⊕
i=1

R/Pkii

where n, l ∈ N, J is an ideal of R and for 1 ≤ i ≤ l, Pi is a non-zero prime ideal

of R and ki is a positive integer.

This confirms that all finitely generated torsion-free modules over a Dedekind

domain are projective, so part of Condition (4) in Theorem 2.1, see also [1, Corollary

6.3.4], [2, 2.3.20, B and C]. In particular all ideals over a Dedekind domain are

projective.

2.2. pp-formulas and their special form over Dedekind domains. For k a

positive integer, a pp-k-formula is a formula in the language, L(R) = (0,+, (r·)r∈R),

of (left) R-modules of the form

∃y(Ax = By)

where x is a k-tuple of variables and A,B are appropriately sized matrices with

entries in R. If ϕ is a pp-k-formula and M is a left R-module then ϕ(M) denotes

the set of all elements m ∈ Mk such that ϕ(m) holds. This is a subgroup of Mk,

called pp-subgroup. When R is commutative, it is also a submodule.

Let ppkR denote the set of pp-k-formulas, more precisely of their equivalence

classes modulo the first order theory TR of R-modules. This set ppkR is a lattice

under implication (equivalently under conjunction and sum of pp-formulas). For

M ∈ R-Mod, write ppkR(M) for the set of pp-k-definable subsets of M or equiva-

lently the quotient of ppkR after identifying pp-formulas which define the same set

in M .

A pp-k-pair is an ordered pair of pp-formulas ϕ,ψ ∈ ppkR such that ϕ ≥ ψ, that

is, ψ implies ϕ in TR.

For (ϕ,ψ) a pp-k-pair, we write [ψ,ϕ] for the interval in ppkR, i.e. the set of

σ ∈ ppkR such that ψ ≤ σ ≤ ϕ; if M ∈ R-Mod then we write [ψ,ϕ]M for the

corresponding interval in ppkR(M).

Recall that a commutative ring is arithmetical if and only if its lattice of ideals is

distributive. Equivalently, every localization of R at a maximal ideal is a valuation

ring. Then an integral domain is arithmetical if and only if it is Prüfer, see [13,

Theorem 6.6 p. 127].
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Proposition 2.3. [5, 3.1] Let R be a commutative ring. The lattice pp1
R is dis-

tributive if and only if R is an arithmetical ring. In particular pp1
R is distributive

when R is a Dedekind domain.

If M is finitely presented module and m ∈ M is a tuple of length k then there

is a pp-k-formula ϕ which generates the pp-type of m in M , that is, for all pp-k-

formulas ψ, ψ ≥ ϕ if and only if m ∈ ψ(M). Conversely, if ϕ is a pp-k-formula, then

there exist a finitely presented module M and m ∈M a tuple of length k such that

ϕ generates the pp-type of m in M . We call M together with m a free-realisation of

ϕ. For proofs of these assertions and more about free-realisations, see [18, Section

1.2.2].

Let ϕ,ϕ′ ∈ ppkR. If m ∈ M and m′ ∈ M ′ are free-realisations of ϕ and ϕ′

respectively then m+m′ in M ⊕M ′ is a free-realisation of ϕ+ ϕ′.

For every ordinal α one introduces a lattice ppR(α), starting from ppR(0) = pp1
R,

collapsing at each (successor) step intervals of finite length and handling in the

straightforward way limit ordinals. For instance, in the basic step, two pp-formulas

ϕ(x) and ϕ′(x) are identified if and only if in pp1
R the closed interval [ϕ∧ϕ′, ϕ+ϕ′]

is of finite length. The m-dimension of ppR, mdim(ppR), is

• the smallest ordinal α such that ppR(α) is a lattice of finite length, if such

an ordinal exists,

• ∞ (or undefined) otherwise,

see [17, 10.2 pp. 203-208] or [18, 7.2 pp. 302-311] for the full proper definition. The

same concept makes sense in every closed interval [ψ,ϕ] with ψ ≤ ϕ pp-formulas.

We will see later, mainly in Section 4, that mdim(ppR) = 2 when R is a Dedekind

domain which is not a field.

We now use Theorem 2.2 to deduce some special forms for pp-formulas over

Dedekind domains. In the next statement and later, = means equality in ppkR, that

is, equivalence with respect to TR.

Proposition 2.4. Let ϕ be a pp-k-formula over a Dedekind domain R. Then ϕ

decomposes as a finite sum

ϕ = ϕ0 +
∑

P prime

ϕP

where ϕ0 is freely realised in Rn, P ranges over non-zero prime ideals of R and ϕP

is freely realised in a sum of modules R/Pn, with n a positive integer.

Moreover ϕ0 has the form ∃y x = Aϕy for some appropriately sized matrix Aϕ

over R.

Let ϕ,ψ be pp-k-formulas. Then ϕ ≤ ψ if and only if ϕ0 ≤ ψ0 and for each

non-zero prime ideal P, ϕP ≤ ψ0 + ψP .

Proof. The first claim directly follows from the description of finitely generated

modules over Dedekind domains in Theorem 2.2. In particular, since ideals are
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projective, any pp-formula realised in an ideal is also realised in a direct sum of

copies of R.

The fact that pp-formulas freely realised in some Rn are of the form stated is

[18, Lemma 1.2.29].

Next suppose ϕ ≤ ψ. Then ϕ0 ≤ ψ and ϕP ≤ ψ for all P. Since ϕ0 is freely

realised in Rk, ϕ0 ≤ ψ if and only if ϕ0(R) ⊆ ψ(R) = ψ0(R). In fact, for all P,

ψP(R) = 0 by [18, Corollary 1.2.17], because Hom(R/Pn, R) = 0 for all n. Now

ϕ0(R) ≤ ψ0(R) implies ϕ0 ≤ ψ0 since ϕ0 is freely realised in Rk.

On the other hand ϕP ≤ ψ implies ϕP(R/Pn) ⊆ ψ(R/Pn) ⊆ ψ0(R/Pn) +

ψP(R/Pn) for all positive integers n since ψQ(R/Pn) = 0 for Q 6= P a non-

zero prime ideal. Now ϕP(R/Pn) ⊆ ψ0(R/Pn) + ψP(R/Pn) for all n implies

ϕP ≤ ψ0 + ψP because ϕP is freely realised in a sum of modules of the form

R/Pn. �

For R a commutative ring and J a finitely generated ideal of R, let J | x denote

the pp-formula which defines JM in all R-modules M . Equivalently, if a1, . . . , an

generate J , then J | x := a1|x+ . . .+ an|x.

Lemma 2.5. Let R be a Dedekind domain. The map from the ideal lattice of R to

pp1
R which sends any ideal I of R to I | x ∈ pp1

R is a lattice homomorphism.

Proof. The only thing that needs to be checked is that for all ideals I, J of R,

I | x ∧ J | x = I ∩ J | x.

Let P be a non-zero prime ideal of R. If N is an RP -module and K is an ideal

of R then KN = KRPN . Moreover, IRP ∩ JRP = (I ∩ J)RP . So, since all

indecomposable pure-injective R-modules are restrictions of (indecomposable pure-

injective) RP -modules for some prime P (see the next subsection), it is enough

to note that if R is a discrete valuation domain and I, J are ideals of R then

I | x ∧ J | x = I ∩ J | x. �

Lemma 2.6. Let R be a Dedekind domain.

(1) If ϕ is a pp-1-formula freely realised in a finitely generated torsion-free

module then ϕ has the form J | x for some ideal J . Moreover, J | x is

equivalent to
∧n
j=1 P

hj

j | x where J decomposes in R as
∏n
j=1 P

hi
j , the Pj

are pairwise distinct non-zero prime ideals of R and the hj are positive

integers.

(2) If ϕ is a pp-1-formula freely realised in R/Pn where P is a non-zero prime

ideal of R and n is a positive integer, then ϕ has the form P l | x ∧ xPr = 0

where l, r are nonnegative integers, l + r = n and r > 0.

In particular, pp1
R is generated by formulas of the form Ph | x and xPh = 0 where

P is a non-zero prime ideal and h is a positive integer.

Proof. (1) Since all finitely generated torsion-free modules are projective, if ϕ is

freely realised in a finitely generated torsion-free module then ϕ is freely realised
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in Rn for some positive integer n. Therefore ϕ =
∑n
i=1 ϕi where each ϕi is freely

realised in R, whence has the form ai | x for some ai ∈ R. Thus ϕ =
∑n
i=1(ai |

x) = (
∑n
i=1 aiR) | x.

The final part follows from Lemma 2.5, since
∏n
j=1 P

hj

j =
⋂n
j=1 P

hj

j .

(2) Take a ∈ R and look at a+Pn ∈ R/Pn. Suppose a ∈ Ph\Ph+1 where 0 ≤ h ≤
n− 1. Then a satisfies Ph | x ∧ Pn−hx = 0. Now suppose that b ∈ R satisfies the

formula Ph | x ∧ Pn−hx = 0. So b ∈ Ph ∩ Ph+(l−n) = Ph · Pmax{0, l−n}. We need

to show that there is a homomorphism f : R/Pn → R/P l with f(a+Pn) = b+P l.
But such an f exists if and only if b ∈ aPmax{0, l−n}RP = PhPmax{0,l−n}RP . �

Corollary 2.7. Let ϕ be a pp-1-formula over a Dedekind domain R. Then

ϕ = ϕ(R)|x+
∑
P∈Ω

ϕP

where Ω is a finite set of non-zero prime ideals of R and, for all P ∈ Ω, ϕP is a

pp-1-formula freely realised in a sum of modules of the form R/Pn, n a positive

integer. Moreover, if ϕ(R) 6= 0 we can suppose that P ∈ Ω implies P | ϕ(R).

Proof. We know from Lemma 2.6 that ϕ0 := J | x for some ideal J of R. Now

J = ϕ0(R) = ϕ(R) as required.

The “moreover” claim is true because if P does not divide ϕ(R) then ϕ(R) | x
is equivalent to x = x in R/Pn for any positive integer n. �

2.3. Irreducible pp-types and indecomposable pure-injective modules.

Let R be a ring, M ∈ R-Mod and m a k-tuple of elements from M . The pp-type of

m in M, denoted by ppM (m), is the set of pp-k-formulas ϕ such that M |= ϕ(m).

For any filter p in the lattice of pp-k-formulas there exist an R-module M and m a

k-tuple of elements from M such that p = ppM (m).

A pp-k-type p is irreducible if for any ψ1, ψ2 ∈ ppkR, if ψ1, ψ2 /∈ p then there

exists σ ∈ p such that ψ1 ∧ σ + ψ2 ∧ σ /∈ p. When pp1
R is distributive, in particular

when R is a Dedekind domain, a pp-1-type p is irreducible if and only if for all

ψ1, ψ2 ∈ pp1
R, ψ1 + ψ2 ∈ p implies ψ1 ∈ p or ψ2 ∈ p, i.e. the pp-1-types are exactly

the prime filters of the distributive lattice pp1
R.

A pure-embedding between two modules is an embedding which preserves the

solution sets of pp-formulas. We say a module U is pure-injective if for every pure-

embedding g : U → M , the image of U in M is a direct summand of M . A pure-

injective module is indecomposable if it admits no non-trivial direct summands.

Each pure-injective module is the pure-injective envelope (a minimal pure-injective

extension) of a direct sum of indecomposable pure-injectives, up to a possible further

pure-injective summand, which is superdecomposable, that is, with no indecompos-

able non-trivial direct summand.

Lemma 2.8. [24, Theorem 5.4] Let R be a commutative ring and U an indecom-

posable pure-injective R-module. The set P(U) of the scalars r ∈ R such that the
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endomorphism of U defined by m 7→ rm is not an automorphism is a maximal ideal

of R (called the maximal ideal attached to U).

Theorem 2.9. [18, Theorem 5.2.2] Let R be a Dedekind domain. The indecom-

posable pure-injective R-modules are:

(1) For each non-zero prime ideal P of R,

(i) R/Pn for every positive integer n,

(ii) the completion, RP = lim←−R/P
n, of R in the P-adic topology,

(iii) the injective hull E(R/P) = lim−→R/Pn, of R/P, and

(2) the field of fractions of R.

Moreover over R there is no superdecomposable pure-injective module.

2.4. The Ziegler spectrum. The Ziegler spectrum Zg(R) of a ring R is the fol-

lowing topological space.

• The points are the (isomorphism classes of) indecomposable pure-injective

R-modules.

• A basis of open sets for the topology is given by

(ϕ/ψ) := {U ∈ Zg(R) : ϕ(U) ⊃ ψ(U)}

where (ϕ,ψ) is a pp-pair, so that ϕ(M) ⊇ ψ(M) for every R-module M .

Here ⊃ denotes proper inclusion. Indeed pp-1-pairs are enough to induce

the topology.

For ϕ and ψ arbitrary, we put (ϕ/ψ) = (ϕ/ψ ∧ ϕ). The Ziegler spectrum was

introduced in [24], see also [17] and [18]. Over a Dedekind domain R (which is not a

field) the Ziegler spectrum is well understood, see [17, 4.7 and Corollary 2.Z11]. The

isolated points are the indecomposable modules of finite length R/Pn ' RP/PnRP
where P is a non-zero prime ideal and n is a positive integer. The points of Cantor-

Bendixson rank (CB-rank from now on) 1 are the RP and the E(R/P), for P as

before. Finally, the field of fractions of R, viewed as an R-module, is the unique

point of CB-rank 2.

2.5. The Grothendieck group of pp-pairs. For more detailed information about

categories of pp-pairs see [18, 3.2.2] and [9, §1].

The objects of the category Leq+
R of pp-pairs are pairs of pp-k-formulas (ϕ,ψ)

where ϕ ≥ ψ in ppkR and k is a positive integer. We identify (ϕ(x), ψ(x)) with

(ϕ(y), ψ(y)) whenever x and y are tuples of variables of the same length.

Let (ϕ,ψ) and (σ, τ) be pp-pairs, with ϕ,ψ ∈ ppkR and σ, τ ∈ ppmR , and let x, y

be disjoint tuples of variables with length |x| = k and |y| = m. The morphisms

ρ : (ϕ,ψ)→ (σ, τ) are given by pp-formulas ρ(x; y) such that

(i) ϕ(x) ≤ ∃yρ(x; y),

(ii) ψ(x) ≤ ρ(x; 0),

(iii) ∃xρ(x; y) ≤ σ(y), and,
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(iv) ρ(0, y) ≤ τ(y).

Recall that R-mod denotes the category of finitely presented R-modules. We

write (R-mod, Ab) for the category of additive functors from R-mod to the cat-

egory Ab of abelian groups and (R-mod, Ab)fp for the full subcategory of the

finitely presented functors in (R-mod, Ab). For any F ∈ (R-mod, Ab)fp, there

exist A,B,C ∈ R-mod and a right exact sequence A→ B → C → 0 such that

(1) 0→ (C,−)→ (B,−)→ (A,−)→ F → 0

is exact (see [18, 10.2]). Here, for M ∈ R-mod, (M,−) := HomR(M,−). The

representable functors (M,−) with M ∈ R-mod are exactly the projective objects

in (R-mod,Ab)fp. Therefore every functor F in (R-mod,Ab)fp has a projective

resolution of length ≤ 2.

Theorem 2.10. ([18, Theorem 10.2.30]) Let R be a ring. The category Leq+
R is

equivalent to (R-mod, Ab)fp.

It will be useful for us to have description of the equivalence, at least on objects

(for full details see [18, Theorem 10.2.30]). Suppose that (ϕ,ψ) is a pp-pair. Let

Fϕ/ψ : R-mod→ Ab be the functor defined on objects by Fϕ/ψ(M) = ϕ(M)/ψ(M)

and on morphisms f : M → N by Fϕ/ψ(f)(a + ψ(M)) = f(a) + ψ(N) for every

a ∈ ϕ(M). Then Fϕ/ψ ∈ (R-mod, Ab)fp.

The equivalence functor from Leq+
R to (R-mod, Ab)fp is given on objects by

sending (ϕ,ψ) to Fϕ/ψ.

Now suppose that F ∈ (R-mod, Ab)fp. Take A,B ∈ R-mod and f : A→ B such

that

(B,−)→ (A,−)→ F → 0

is exact. Take a a generating tuple for A. Let ϕ generate the pp-type of a in A and

let ψ generate the pp-type of f(a) in B. Then F ∼= Fϕ/ψ.

For example, if F = (A,−), that is, if f = 0, then the pp-type of a in A is

generated by any quantifier free formula Ux = 0, where U is a matrix of presentation

for A. The projective objects of the category are therefore of the form (A,−) ∼=
Fϕ/ψ, where ϕ is quantifier free and ψ = 0.

Let A be an abelian category and suppose that C is a (skeletally) small additive

subcategory, closed under extensions in A. The Grothendieck group Gr(C;A) of

such an inclusion C ⊆ A is defined to be the abelian group with generators [C],

indexed by the isomorphism classes of C, modulo the relations [A] − [B] + [C],

whenever

(2) 0 // A // B // C // 0

is exact in A. The (class) function Ω: Ob(C) → Gr(C;A), C 7→ [C], is additive

in the sense that Ω(B) = Ω(A) + Ω(C), for every short exact sequence (2). It is

universal with respect to this property, in the sense that every additive function
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Ob(C)→ G to an abelian group G factors uniquely through Ω. In case, C = A, the

Grothendieck group is plainly denoted by Gr(A).

Let K0(R-mod, ⊕) denote the free abelian group on the objects of R-mod modulo

the subgroup generated by A+B−M whenever M is isomorphic to A⊕B. It may

happen that some non-zero A in R-mod is sent to 0 in K0(R-mod, ⊕) and that non-

isomorphic A,A′ ∈ R-mod have the same image in K0(R-mod, ⊕) (see [23, Theorem

1.11 p. 74]). However, when R is commutative, if the image of A ∈ R-mod is zero

then A = 0.

The defining relations on K0(R-mod, ⊕) ensure that there is a unique map

K0(R-mod, ⊕) → Gr(proj(Leq+
R );Leq+

R ) induced by the assignment A 7→ (A,−);

it is clearly surjective. By [23, Theorem 4.4 p. 102] or [20, Theorem 3.1.13], the

composition

K0(R-mod,⊕)→ Gr(proj(Leq+
R );Leq+

R )→ Gr(Leq+
R )

has an inverse F 7→ [(A,−)] − [(B,−)] + [(C,−)] defined in terms of the projec-

tive resolution (1). This implies that both of the maps in the composition are

isomorphisms. We document this as follows.

Remark 2.11. For any ring R, the map from K0(R-mod, ⊕) to Gr(Leq+
R ) induced

by sending [M ] ∈ K0(R-mod, ⊕) to [(M,−)] ∈ Gr(Leq+
R ) is an isomorphism.

In the remainder of this paper we put for simplicity G0(R) := Gr(Leq+
R ) (so

isomorphic to K0(R-mod, ⊕)) and we call it the Grothendieck group of pp-pairs

of R. Just to summarize, we can view it, in terms of pp-formulas, as built in the

following way.

• We consider the (additive) free abelian group generated by pp-k-pairs (ϕ,ψ)

where k ranges over positive integers.

• Let (ϕ,ψ), (ϕ′, ψ′) and (ϕ′′, ψ′′) be pp-pairs with corresponding numbers

of free variables k, k′, k′′, and assume that there are pp-formulas ι and π,

with k′+k, k+k′′ free variables respectively, defining in each R-module N

a short exact sequence

0 → ϕ′(N)/ψ′(N)
ι(N)−−−→ ϕ(N)/ψ(N)

π(N)−−−→ ϕ′′(N)/ψ′′(N) → 0.

Factor the free abelian group built before by the relations

(ϕ,ψ) = (ϕ′, ψ′) + (ϕ′′, ψ′′)

for every choice of (ϕ,ψ), (ϕ′, ψ′) and (ϕ′′, ψ′′) with this property.

The quotient group is just the Grothendieck group G0(R). We will denote by

[ϕ,ψ]G0(R) the class of a pp-pair (ϕ,ψ) in this group.

An R-module M is of finite endolength if it is of finite length as a module over its

endomorphism ring. By [18, Proposition 4.4.25], M ∈ R-Mod is of finite endolength

if and only if pp1
R(M) is of finite length. Again, by [18, Proposition 4.4.25], when
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M is of finite endolength every End(M)-submodule L of M is pp-definable, i.e.

there exists ϕ ∈ pp1
R such that L = ϕ(M) . Viewing Mk as an End(M)-module

also of finite endolength [18, Lemma 4.4.26], the same argument shows that if L is

an End(M)-submodule of Mk then there exists ϕ ∈ ppkR such that L = ϕ(M).

Given pp-formulas ϕ,ψ where ϕ ≥ ψ and M ∈ R-Mod, define the pp-length

lR(ϕ,ψ,M) of (ϕ,ψ) at M to be the length of [ψ,ϕ]M as a lattice or equivalently

(see [18, Proposition 4.4.25]) the endolength of ϕ(M)/ψ(M), that is its length as

an End(M)-module. Note that if (ϕ,ψ) and (ϕ′, ψ′) are isomorphic in Leq+
R then

lR(ϕ,ψ,M) = lR(ϕ′, ψ′,M), because ϕ(M)/ψ(M) and ϕ′(M)/ψ′(M) are isomor-

phic as End(M)-modules.

We can give an explicit description of K0(R-mod, ⊕) when R is a Dedekind

domain based on 2.2.

Proposition 2.12. Let R be a Dedekind domain. Then K0(R-mod, ⊕) is iso-

morphic to Z ⊕ Cl(R) ⊕ Z(κ) where Cl(R) is the ideal class group of R and κ :=

sup{|Spec R|,ℵ0}.

Proof. Let G′ be the free abelian group on the isomorphism types of the finitely

presented indecomposable torsion R-modules, i.e. modules of the form R/P l where

P is a maximal ideal of R and l ∈ N. Let G := Z ⊕ Cl(R) ⊕ G′. We will define

an isomorphism π : G → K0(R-mod, ⊕). This is enough to prove the proposition

because κ is equal to the size of the set of finitely presented indecomposable torsion

R-modules. Every element of Cl(R) is the class of an ideal. So elements of G are

of the form (n, J,
∑m
i=1Mi −

∑l
j=1 Lj) where n ∈ Z, J is an ideal of R and Mi, Lj

are finitely presented indecomposable torsion R-modules. Define

π(n, J,

m∑
i=1

Mi −
l∑

j=1

Lj) := (n− 1)[R] + [J ] +

m∑
i=1

[Mi]−
l∑

j=1

[Lj ].

It follows from [1, 6.1.4] that π is a group homomorphism. By Theorem 2.2, π

is surjective. By [23, Theorem 1.10 p. 73], [A] = [B] in K0(R,⊕) if and only if

A⊕C ∼= B⊕C for some C ∈ R-mod. With a bit of work it follows from [1, 6.3.23],

which describes the isomorphism types of finitely presented modules over Dedekind

domains, that π is injective. �

2.6. Extensions of Dedekind domains. We recall some basic facts on this topic,

see [11] and [16] for much more on it.

Let R be a Dedekind domain but not a field, R̃ its integral closure in some finite

dimensional extension L of its field of fractions Q.

Let P be a non-zero prime ideal of R. Then PR̃ is a non-zero proper ideal of R̃

and so decomposes in R̃ as

PR̃ =

g∏
j=1

Mej
j
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where the Mj are the distinct prime ideals of R̃ containing PR̃, that is, satisfying

Mj ∩ R = P. For all j = 1, . . . , g there is a ring embedding of R/P into R̃/Mj ,

given by a+ P 7→ a+Mj for every a ∈ R.

The positive integer ej is called the ramification index ofMj in R̃ over R (with

respect to P).

The degree of the field extension [R̃/Mj : R/P] (denoted from now on by fj)

is called the inertial degree of Mj in R̃ (with respect to P).

When L is separable over Q (in particular, in the characteristic 0 case), the

degree [L : Q] coincides with
∑g
j=1 ejfj (see [11, Corollary 6.7 p. 31]).

If L is a (finite) Galois extension of Q, then ej = e, fj = f are constant for all

j, and so [L : Q] = efg ([11, Theorem 6.8 p. 32]).

The ideal P is said to split completely if ej = fj = 1 for all j, whence [L : Q] = g,

and to totally ramify if g = 1 = f1 (then there is a unique non-zero prime ideal of

R̃ extending it, and e1 = [L : Q]).

The following very simple and familiar example will be useful later.

Example 2.13. The ring Z[i] of Gaussian integers is the integral closure of Z in

Q(i).

• Let P = 2Z. Then PZ[i] = 2Z[i] is the square of the prime ideal generated

by 1 + i. Therefore g = 1, e1 = 2 and P totally ramifies. Moreover

Z[i]/(1 + i)Z[i] is isomorphic to Z/2Z, whence f1 = 1.

• Next let P = pZ with p prime, p ≡ 3 (mod 4). Then pZ[i] is also prime,

whence g = 1, e1 = 1. Moreover it is easily seen that f1 = 2.

• Finally let P = pZ with p prime, p ≡ 1 (mod 4). Then p can be expressed in

Z as a sum a2 +b2 = (a+ ib)(a− ib) of two squares and pZ[i] decomposes in

Z[i] as the product of the prime ideals generated by a± ib (both irreducible

since their common norm is prime). These ideals are different from each

other. Therefore g = 2, e1 = e2 = 1, f1 = f2 = 1 and P splits completely.

Part 1. SINGLE DEDEKIND DOMAINS

In this part we deal with a single Dedekind domain R which is not a field and

we denote by Q its field of fractions.

3. CB-rank and locally bounded pp-pairs

We give two equivalent characterizations of the pp-pairs (ϕ,ψ) over R such that

the corresponding open set (ϕ/ψ) of Zg(R) has CB-rank at most 1.

First let us put, for every commutative ring R and pp-pair (ϕ,ψ) over R, (ϕ :

ψ)R = {r ∈ R : rϕ(N) ⊆ ψ(N) ∀N ∈ R-Mod}. Note that, if rϕ(U) ⊆ ψ(U) for

all U ∈ Zg(R), then r ∈ (ϕ : ψ)R. It is straightforward to prove:

12



Lemma 3.1. For every pp-pair (ϕ,ψ), the set (ϕ : ψ)R is an ideal of R, and it

is proper if and only if ϕ > ψ. Moreover, for every N ∈ R-Mod, ϕ(N)/ψ(N) is

naturally equipped with the structure of a module over R/(ϕ : ψ)R.

Indeed rϕ(N) itself can be regarded as a pp-subgroup of a given R-module N .

Just define, for any pp-k-formula ϕ = ϕ(x) and r ∈ R\{0R},

• r−1ϕ(x) to be the pp-formula ∃w (rx = w ∧ ϕ(w)),

• rϕ(x) to be ∃z (x = rz ∧ ϕ(z)).

Similar notions ϕ(x)r−1, ϕ(x)r can be introduced among pp-formulas over right

R-modules. However, as R is commutative, left modules can be naturally regarded

as right, and conversely. Therefore we freely view modules from both sides.

For all R-modules N , r ∈ R and pp-formulas ϕ, ϕ(N) ⊇ r(r−1ϕ(N)). However

ϕ(N) is not necessarily equal to r(r−1ϕ(N)). For example, take R := Z, r := 2

and ϕ(x) to be x = x. Then 2−1ϕ(x) is x = x, but 2(2−1ϕ(x)) is 2 | x.

Remark 3.2. Let R be an integral domain, r ∈ R\{0} and ϕ a pp-formula. If N

is a divisible R-module then ϕ(N) = r(r−1ϕ(N)).

Proof. Take m ∈ ϕ(N). Since N is divisible, m = r · m1 for some m1 ∈ N . So

m1 ∈ r−1ϕ(N). Therefore m = r ·m1 ∈ r(r−1ϕ(N)). �

A pp-pair (ϕ,ψ) over R is said to be locally bounded if and only if there is a

positive integer n such that for every U ∈ Zg(R), the pp-length of (ϕ,ψ) at U is

≤ n. Let nR(ϕ,ψ) denote the minimal positive integer n with this property.

The main result of this section is the following.

Proposition 3.3. Let (ϕ,ψ) be a pp-pair over a Dedekind domain R. Then the

following are equivalent.

(1) Q 6∈ (ϕ/ψ), equivalently, the basic open set (ϕ/ψ) has CB-rank ≤ 1 in the

Ziegler topology.

(2) (ϕ : ψ)R 6= {0R}.
(3) (ϕ,ψ) is locally bounded.

The proof of Proposition 3.3 needs some preparatory work.

Let D denote elementary (Prest) duality, see [18, 1.3.1, pp. 30-32]. In particular

recall that D determines an anti-isomorphism between the lattices of left and right

pp-formulas ([18, Proposition 1.3.1 p. 31]) and exchanges a divisibility formula like

r | x with the annihilator formula xr = 0, and vice versa.

Lemma 3.4. Let ϕ(x) be a (right) pp-formula and r ∈ R\{0R}. Then D(ϕr−1) is

equivalent to rDϕ (where both D(ϕr−1) and Dϕ are left pp-formulas).

Proof. Suppose ϕ is ∃y (xA = yB) where A and B are matrices with entries in R

and suitable sizes. Then ϕr−1 is equivalent to ∃y (x(r ·A) = yB), whence D(ϕr−1)
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is equivalent to ∃z (x = (r · A)z ∧ Bz = 0). On the other hand Dϕ is equivalent

to ∃z (x = Az ∧ Bz = 0). Therefore rDϕ is equivalent to ∃w∃z (x = rw ∧ w =

Az ∧Bz = 0), and consequently to ∃z (x = (r ·A)z ∧Bz = 0) as required. �

A definable subcategory D of R-Mod is a full subcategory of R-Mod such that

there exists a set of pp-pairs Ω such that M ∈ D if and only if ϕ(M) = ψ(M) for all

(ϕ,ψ) ∈ Ω. The dual of the definable subcategory D is the full subcategory of Mod-

R exactly those M ∈ Mod-R with Dϕ(M) = Dψ(M) for all (ϕ,ψ) ∈ Ω. Note that,

an arbitrary intersection of definable subcategories is a definable subcategory. For

M ∈ R-Mod, the definable subcategory generated by M is the smallest definable

subcategory containing M .

Lemma 3.5. Let R be a coherent integral domain and Q its field of fractions. Let

ψ ≤ ϕ be a pair of pp-formulas over R. The following are equivalent:

(1) ϕ(Q) = ψ(Q);

(2) There exists r ∈ R\{0} such that rϕ(R) ⊆ ψ(R);

(3) There exists r ∈ R\{0} such that for all indecomposable pure-injective mod-

ules U in the definable subcategory generated by RR, rϕ(U) ⊆ ψ(U).

Moreover all these propositions imply:

(4) There exists r ∈ R\{0} such that for all indecomposable pure-injective mod-

ules U in the dual of the definable subcategory generated by RR, rϕ(U) ⊆
ψ(U).

Proof. (1) ⇔ (2) For any pp-formula α, Qα(R) = α(Q). Suppose rϕ(R) ⊆ ψ(R).

Then ϕ(Q) = Qϕ(R) ⊆ Qψ(R) = ψ(Q).

Suppose ϕ(Q) = ψ(Q). Since R is coherent, by [17, Theorem 14.16] ϕ(R) is

a finitely generated ideal of R. Let a1, . . . , an generate ϕ(R). Then each ai is in

ϕ(Q) = ψ(Q). Hence there is ri ∈ R\{0} such that airi ∈ ψ(R). Set r =
∏n
i=1 ri.

Then r 6= 0 and rϕ(R) ⊆ ψ(R).

(2)⇔ (3) Obvious.

(1) ⇒ (4) Since R is a domain, for all r ∈ R\{0}, | (rx = 0 / x = 0) (R) | = 1.

Therefore, if U is in the dual of the definable subcategory generated by R, then

| (x = x / r | x) (U) | = 1 for all r ∈ R\{0}, i.e. U is a divisible module.

Note that ϕ(Q) = ψ(Q) if and only if Dϕ(Q) = Dψ(Q). As in the first equiva-

lence, this is true if and only if Dϕ(R) ⊇ rDψ(R) for some r ∈ R\{0}. By Lemma

3.4, D(ψr−1) is equivalent to rDψ. So ϕ(Q) = ψ(Q) if and only if ψ(U)r−1 ⊇ ϕ(U)

for all indecomposable pure-injective U in the dual of the definable subcategory gen-

erated by R (as a right, or also left module). Since U is divisible, ψ(U)r−1 ⊇ ϕ(U)

implies ψ(U) ⊇ ϕ(U)r. So we have proved that (1) implies (4).

�

Remark 3.6. Let R be a Dedekind domain. Then (ϕ : ψ)R 6= 0 implies (ϕ,ψ)

locally bounded. In this case nR(ϕ,ψ) is less than or equal to the highest exponent
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in the decomposition of (ϕ : ψ)R as a product of powers of pairwise different non-

zero prime ideals in R.

Proof. If (ϕ : ψ)R = R then ϕ = ψ and so clearly (ϕ,ψ) is locally bounded.

Therefore suppose that (ϕ : ψ)R is a non-zero proper ideal. Let P1, . . . ,Pm be

non-zero prime ideals of R and h1, . . . , hm positive integers such that (ϕ : ψ)R =∏m
j=1 P

hj

j . So for all indecomposable pure injective R-modules U , ϕ(U)/ψ(U) is

a module over R/(ϕ : ψ)R ∼=
∏m
j=1R/P

hj

j . Therefore, if P(U) is the attached

maximal ideal of U (see Lemma 2.8), and P(U) is not among P1, . . . ,Pm, then

ϕ(U)/ψ(U) = 0 while, if P(U) = Pj for some j, then ϕ(U)/ψ(U) is a uniserial

R/Phj

i -module and hence has finite length.

The final claim is straightforward. �

The support of a pp-pair (ϕ,ψ) over R is the (finite!) set of non-zero prime

ideals of R factoring the ideal (ϕ : ψ)R.

Therefore the support of (ϕ,ψ) is {P1, . . . ,Pm} according to the notation of

Remark 3.6. Note that (ϕ/ψ) is closed on all indecomposable pure-injective modules

U with attached maximal ideal P(U) /∈ {P1, . . . ,Pm}. If (ϕ,ψ) is locally bounded,

then for every U ∈ Zg(R) \ {Q} such that P(U) is in the support of (ϕ,ψ), the

chain of the pp-subgroups between ϕ(U) and ψ(U) is of the form

ϕ(U) ⊃ P ϕ(U) ⊃ . . . ⊃ Pn ϕ(U) = ψ(U)

for some natural n ≤ nR(ϕ,ψ).

Remark 3.7. Let S be a ring. Suppose U,U ′ ∈ Zg(S) are topologically distinguish-

able and U is in the closure of U ′. Then for all pp-pairs (ϕ,ψ), if ϕ(U)/ψ(U) is

open then ϕ(U ′)/ψ(U ′) has infinite pp-length.

Proof. It follows from [24, 8.12]. �

We are finally able to show Proposition 3.3.

Proof. (1)⇒ (2) Let r ∈ R\{0R} be such that rϕ(R) ⊆ ψ(R). Since R is commuta-

tive noetherian, the pure-injective hull of R is
∏
RP where P ranges over non-zero

prime ideals of R. Therefore rϕ(RP) ⊆ ψ(RP). The Prüfer modules over R are

the duals of the adics, so by Lemma 3.5, (1) ⇒ (4), there exists s ∈ R\{0R} such

that sϕ(E(R/P)) ⊆ ψ(E(R/P)) for all non-zero prime ideals P. Now (rsϕ/ψ) is a

compact subset of Zg(R) and contains only finite length points which are isolated

points. Hence it is finite. Take t 6= 0R in the intersection of the annihilators of the

modules in (rsϕ/ψ). Then rstϕ(U) ⊆ ψ(U) for all indecomposable pure-injective

R-modules U .

(3) ⇒ (1) Since Q is in the closure of all infinite length indecomposable pure-

injective R-modules, by Remark 3.7, ϕ(Q) = ψ(Q).

(2)⇒ (3) This is Remark 3.6.

�
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4. The Poincaré series: the local case

Throughout, let V be a discrete valuation domain, π a generator of its unique

maximal ideal and Q its field of fractions. We assign to every pp-pair (ϕ,ψ) of V

a series in Z[[t]] with constant term 0, denoted by PV (ϕ,ψ)(t), called the Poincaré

series of the pp-pair (ϕ,ψ) with respect to V . We put

PV (ϕ,ψ)(t) =

∞∑
n=1

`V (ϕ,ψ, V/πnV ) tn.

Note that, according to the classification of indecomposable pure-injective mod-

ules over V given in Theorem 2.9, if U is such a module and has finite length,

then the pp-length of [ψ,ϕ]U , that is, the endolength of ϕ(U)/ψ(U), is also equal

to the length of ϕ(U)/ψ(U) as a V -module. For this reason we will often write

in the remainder of the paper “pp-length of ϕ(U)/ψ(U)” instead of “pp-length of

[ψ,ϕ]U”.

Example 4.1. (1) PV (x = x, x = 0) (t) =
∑∞
n=1 nt

n = t ·
∑∞
n=1 n = t

(t−1)2 .

In view of future applications, we put for simplicity W := t
(t−1)2 .

(2) PV (πx = 0, x = 0) (t) =
∑∞
n=1 t

n =
∑∞
n=0 t

n−1 = 1
t−1−1 = −t

t−1 . Similarly

PV (x = x, π | x) (t) = −t
t−1 . As before we put for simplicity U1 := −t

t−1 .

(3) PV (π | x, x = 0) (t) =
∑∞
n=1(n−1) tn = t2 · (

∑∞
n=2(n−1) tn−2) = t2

(t−1)2 =

t2 + 2t−1
(t−1)2 .

(4) For every positive integer K, PV (πK−1 | x∧πx = 0, πK | x∧πx = 0) (t) =

tK . In fact it is straightforward to see that the open set (πK−1 | x ∧ πx =

0 / πK | x ∧ πx = 0) isolates V/πKV in Zg(V ).

(5) Similarly, for every positive integer K, PV (πKx = 0, πKx = 0∧ π | x) (t) =

t+ t2 + . . .+ tK .

(6) Finally let us extend (2) and prove that, for every positive integer K,

PV (πKx = 0, x = 0)(t) = (1 + t+ . . .+ tK−1)
−t
t− 1

.

This will be used, together with (1) and (2), in the proof of one of the

main results of this section. Let us put for simplicity, for every K, UK =

PV (πKx = 0, x = 0)(t). We proceed by induction on K. The case K = 1 is

just (2), saying U1 = −t
t−1 . Next we prove for all K that UK+1 = UK+tK U1,

which implies UK+1 = (1 + t+ . . .+ tK)U1. By the definition of PV ,

UK+1 = PV (πKx = 0, x = 0)(t) + PV (πK+1x = 0, πKx = 0)(t) =

= UK + PV (πK+1x = 0, πKx = 0)(t).

Now the quotient group of the pp-subgroups defined by πK+1x = 0 and

πKx = 0 in V/πlV is 0 for l ≤ K and isomorphic to V/πV for l > K. So

PV (πK+1x = 0, πKx = 0)(t) =

∞∑
n=K+1

tn = tK ·
∞∑
n=1

tn = tK U1
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as required.

The main results of this section are the following.

• First we see that the Poincaré series define an injective group homomor-

phism from the Grothendieck group G0(V ) to the additive group Z[[t]].

• Then we provide a description of the Poincaré series PV (ϕ,ψ)(t) based on

the CB-rank of (ϕ/ψ), for (ϕ,ψ) a pp-pair.

Theorem 4.2. Let V be as before. The function mapping, for every pp-pair (ϕ,ψ)

over V , the class [ϕ,ψ]G0(V ) to PV (ϕ,ψ) (t) induces an injective group homomor-

phism of the Grothendieck group G0(V ) into the additive group Z[[t]].

Proof. First of all, the function sending any pp-pair (ϕ,ψ) to its Poincaré series

defines a group homomorphism from the free abelian group of pp-pairs to Z[[t]].

In fact, for every choice of pp-pairs (ϕ(x), ψ(x)) and (ϕ′(y), ψ′(y)) of V (with x, y

disjoint tuples of length k, k′ respectively) and for every positive integer n,

`V (ϕ(x) ∧ ϕ′(y), ψ(x) ∧ ψ′(y)), V/πnV ) = `V (ϕ,ψ, V/πnV ) + `V (ϕ′, ψ′, V/πnV ).

Next take pp-formulas (ϕ,ψ), (ϕ′, ψ′), (ϕ′′, ψ′′) forming in each V -module N a short

exact sequence as described in § 2. Then, for N a V -module of finite pp-length, in

particular for N = V/πnV with n a positive integer,

`V (ϕ,ψ,N) = `V (ϕ′, ψ′, N) + `V (ϕ′′, ψ′′, N).

We get in this way the required homomorphism of G0(V ) to Z[[t]].

Now let us deal with injectivity. We view pp-pairs as objects of the category (V -

mod,Ab)fp (as in § 2). Finitely presented modules over V are finite direct sums of

V and V/πnV where n ranges over positive integers. Since (M,−) preserves direct

sum up to isomorphism, it follows from the result about projective resolutions that

G0(V ) is generated by (V,−), (V/πnV,−), again for n a positive integer. Note that

(V,−) corresponds to (x = x, x = 0) and (V/πnV,−) to (πnx = 0, x = 0). For

F ∈ (V -mod, Ab)fp, let PV (F )(t) denote the Poincaré series of the corresponding

pp-pair.

Now in order to obtain injectivity it is enough to prove that

{PV ((V,−))(t), PV ((V/πnV,−))(t) : n ∈ N, n 6= 0}

is linearly independent over Z in Z[[t]]. Using notation from Example 4.1, we have

to show that {W, Un : n ∈ N, n 6= 0} is linearly independent over Z. Let h be a

positive integer and a0, a1, a2, . . . , ah ∈ Z. First observe that

a0W + a1 U1 + a2 U2 + . . .+ ah Uh = 0

if and only if

a0
t

(t− 1)2
+ a1

−t
t− 1

+ a2 (1 + t)
−t
t− 1

+ . . .+ ah (1 + t+ . . .+ th−1)
−t
t− 1

= 0,
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that is (after multiplying by (t− 1)2), if and only if

a0 t− a1 t (t− 1)− a2 t (t2 − 1)− . . .− ah t (th − 1) = 0.

Suppose a0, a1, . . . , ah ∈ Z satisfy the above equation. Comparing the coefficients

of the highest degree power of t gives ah = 0. Inductively, this implies ai = 0 for

1 ≤ i ≤ h. So a0 t = 0, and hence a0 = 0. �

Now recall Ziegler’s result [24, Theorem 8.6] that, for every pp-pair (ϕ,ψ) over V ,

the CB-rank of (ϕ/ϕ), viewed as an open subset of Zg(V ), equals the m-dimension of

(ϕ,ψ) (that is, of the interval [ϕ,ψ] in the lattice of pp-formulas). Note that Ziegler

just says ”dimension”. The m-dimension of (ϕ,ψ) coincides also with its Krull-

Gabriel dimension, KG(ϕ/ψ), where (ϕ,ψ) is viewed as an object of the functor

category (V -mod, Ab): see [6] for an introduction to the Krull-Gabriel dimension

and [18, Proposition 13.2.1] for a proof of the equality of the two dimensions. Over a

discrete valuation domain V , the m-dimension of a pp-pair is ≤ 2, as a consequence

of the description of Zg(V ) provided by [24] and recalled in § 2. Indeed this is true

over any Dedekind domain (for the same reasons).

Proposition 4.3. For every pp-pair (ϕ,ψ) over V , the Poincaré series PV (ϕ,ψ)(t)

is a rational function f(t)
(t−1)m , where f(t) is a polynomial over the integers whose

only pole is at t = 1 and has multiplicity m = KG(ϕ/ψ) ≤ 2. Furthermore,

(1) if m = 0 then (ϕ,ψ) is of finite length given by f(1),

(2) if m = 1 then (ϕ,ψ) is locally bounded and `V (ϕ,ψ, U) ≤ f(1) for all but

finitely many U ∈ Zg(V ),

(3) if m = 2 then Q ∈ (ϕ/ψ) and

f(1) = `V (ϕ,ψ,Q) = dimQ ϕ(Q)/ψ(Q).

Proof. Recall that the Poincaré series of (ϕ,ψ) is a Z-linear combination of the

Poincaré series denoted

W :=
t

(t− 1)2
= PV (x = x, x = 0)(t) = PV ((V,−))(t),

U1 :=
−t
t− 1

= PV (πx = 0, x = 0)(t) = PV (V/V π,−)(t) and

Un+1 := Un + tnU1 = PV (πn+1x = 0, x = 0)(t) = PV ((V/V πn+1,−))(t)

for n a positive integer.

(1) The isolated points in Zg(V ), which are exactly the finite length indecom-

posable pure-injective V -modules, are dense in Zg(V ). Suppose m = 0. Then there

is a positive integer n such that V/πiV /∈ (ϕ/ψ) for all i > n. Take n minimal.

Therefore the Poincaré series PV (ϕ,ψ)(t) is a polynomial f(t) of degree n with

integer coefficients. Moreover the pp-length of (ϕ,ψ) is equal to the pp-length of

ϕ(M)/ψ(M) where M := ⊕ni=1V/π
iV . The pp-length of ϕ(M)/ψ(M) is finite since

M is of finite length as a V -module.
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For the claim about f(1), we need to show that the pp-length of (ϕ,ψ) is equal

to the sum of the pp-lengths of ϕ(V/πiV )/ψ(V/πiV ) for 1 ≤ i ≤ n. It follows from

[18, Lemma 4.4.31] that the pp-length of ϕ(⊕ni=1V/π
iV )/ψ(⊕ni=1V/π

iV ) is equal

to the sum of the pp-lengths of ϕ(V/πiV )/ψ(V/πiV ) for 1 ≤ i ≤ deg f .

Next, in order to prove (2) and (3), suppose that (ϕ,ψ) has a projective resolution

0 // (M2 ⊕ V r2 ,−) // (M1 ⊕ V r1 ,−) // (M0 ⊕ V r0 ,−) // ϕ/ψ // 0

where M0,M1 and M2 are finite length modules and r0, r1, r2 ∈ N. Now PV (ϕ,ψ)(t)

equals a0W +
∑n
i=1 aiUi where a0 = r0 − r1 + r2 and ai ∈ Z for i ≥ 1.

(3) The pp-length of ϕ(Q)/ψ(Q) is equal to its dimension as a Q-vector space,

which is equal to a0 = r0 − r1 + r2 since (M,Q) = 0 for all finite length modules

M . Now a0 6= 0 if and only if m = 2. Moreover, if m = 2 then f(1) = a0. So

Q ∈ (ϕ/ψ) if and only if m = 2; furthermore f(1) = `V (ϕ,ψ,Q).

(2) If m = 1 then a0 = 0 and hence Q /∈ (ϕ/ψ). By Proposition 3.3, (ϕ,ψ) is

locally bounded. For the final part, write f(t) = q(t)(t− 1) + r where q ∈ Z[t] and

r = f(1) ∈ Z (note this can be done since the leading coefficient of t−1 is 1). Then

f(t)

t− 1
= q(t) +

r

t− 1
= q(t)− r ·

∞∑
i=1

ti.

�

5. The Poincaré series: the global case

We extend the definition of the Poincaré series to pp-pairs over arbitrary Dedekind

domains R. For every pp-pair (ϕ,ψ) of R we define

PR(ϕ,ψ) =
∑
P
PRP (ϕ,ψ)(tP) =

∑
P

∞∑
n=1

lRP (ϕ,ψ,RP/π
n
PRP) tnP

where P ranges over the non-zero prime ideals of R and, for all P, tP is a corre-

sponding variable and πP is a generator of the maximal ideal of the localization of

R at P. Thus PR(ϕ,ψ) is in the additive group Z[[(tP)P ]] (where the P are the

non-zero prime ideals of R), and indeed in its subgroup formed by the series with

only summands corresponding to single powers tnP with P as before and n a positive

integer, so having constant term 0 and excluding monomials like tP tP′ with P, P ′

different non-zero prime ideals. Let us denote by Z0[[(tP)P ]] this subgroup.

When P is principal, generated by p say, we also write tp instead of tP .

Recall that, if (ϕ,ψ) is a locally bounded pp-pair in LR, then there are only

finitely many non-zero prime ideals P of R such that the associated Poincaré series

(over the localization RP) is not zero (see the proof of Remark 3.6). The collection

of these ideals – the ones factoring (ϕ : ψ)R – is the support of the pp-pair (ϕ,ψ).

So in this case PRP (ϕ,ψ) is 0 for almost all P.

Theorem 5.1. Let R be a Dedekind domain that is not a field. Then the function

mapping, for every pp-pair (ϕ,ψ) of R, the class [ϕ,ψ]G0(R) to PR(ϕ,ψ) induces
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a group homomorphism of the Grothendieck group G0(R) into the additive group

Z[[(tP)P ]].

Proof. The family of additive homomorphisms G0(R)→ G0(RP)→ Z[[tP ]] coming

from Theorem 4.2 sums into a homomorphism G0(R)→ ⊕PZ[[tP ]], which naturally

maps into Z[[(tP)P ]]. �

Since the modules R/Pn are pp-uniserial (that is the lattice of pp-subgroups

is totally ordered [5, § 3]), for pp-1-formulas ϕ,ψ, ϕ ≥ ψ if and only if `R(ϕ, x =

0, R/Pn) ≥ `R(ψ, x = 0, R/Pn) for all non-zero prime ideals P and positive integers

n. Therefore, whether ϕ ≥ ψ or not can be read off the Poincaré series. Moreover

ϕ and ψ are equivalent as pp-formulas if and only if ψ ∼= ψ in (R-mod,Ab)fp, hence

if and only if ϕ and ψ coincide in G0(R).

Notably this is not true for general pp-formulas. Moreover, for Dedekind do-

mains, the homomorphism of G0(R) into the Poincaré series is not necessarily

injective.

Proposition 5.2. Let R be a Dedekind domain. If the homomorphism from the

Grothendieck group of R to the Poincaré series is an embedding then R is a PID.

Proof. Suppose J is a non-principal ideal of R. For each non-zero prime ideal P and

positive integer n, the length of HomR(J,R/Pn) is equal to the length of J⊗R/Pn

because J⊗R− is the Auslander-Gruson-Jensen dual of HomR(J,−) (see [18, 10.3];

in terms of pairs of pp-formulas taking the Auslander-Gruson-Jensen dual is just

Prest’s duality). Now, J ⊗R/Pn ∼= J/JPn, which has length n as an R-module.

On the other hand, the length of HomR(R,R/Pn) as an R-module is also n for all

non-zero prime ideals P and positive integers n, but HomR(J,−) is not isomorphic

to HomR(R,−) since J is not isomorphic to R.

In terms of pp-formulas, HomR(J,−) is (isomorphic to) the pp-2-formula freely

realized by (a, b) where a, b generate J (recall that each non-principal ideal of a

Dedekind domainR is 2-generated, see [11, Proposition 3.19 p. 15]) and HomR(R,−)

is (isomorphic to) the pp-2-formula x = x ∧ y = 0. �

Part 2. EXTENSIONS OF DEDEKIND DOMAINS

In this part we deal with pairs of Dedekind domains R ⊆ R̃ that are not fields,

with R a subring of R̃. Unless otherwise stated we assume throughout that R

is a Dedekind domain (and not a field) and R̃ is the integral closure of R in a

finite dimensional (proper) separable field extension L of the field of fractions Q

of R, which ensures that R̃ is a Dedekind domain, too. Under the separability

assumption, R̃ is finitely generated as a module over R (see [11, proofs of Theorem

6.1 p. 26 and Corollary 6.7 p. 31]).
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6. Restriction of scalars

First of all, a useful premise.

Remark 6.1. Let R be an arithmetical ring and S a subring of R. If U is an

indecomposable pure-injective R-module, then the reduct S-module SU realises only

irreducible pp-1-types, and in particular is the pure-injective envelope of a direct

sum of indecomposable pure-injective S-modules (with no superdecomposable sum-

mands).

Note that in general the reduct SU of a pure-injective R-module U is also pure-

injective (over S), but is not necessarily indecomposable when U is indecomposable

pure-injective. Observe also that the previous remark becomes trivial when S is a

Dedekind domain, because then S possesses no superdecomposable pure-injective

modules. However recall that the domain of algebraic integers, which is arithmeti-

cal but not Dedekind, admits superdecomposable pure-injective modules, see for

example [19, Proposition 6.2 and Example 6.3].

Proof. An indecomposable pure-injective module U over an arithmetical ring is pp-

uniserial and remains so when restricted to S. But then all pp-1-types realised

in SU are irreducible, and consequently SU cannot admit any superdecomposable

direct summand (see for instance [17, Theorem 10.2 p. 202] and [24, § 7]). �

Remark 6.2. As a module, L is indecomposable over R̃ but decomposes as Qn over

R where n = [L : Q].

Recall (see Lemma 2.6) that all pp-1-formulas over R are a lattice combination

of formulas of the form xPi = 0 and Pj |x with i, j positive integers, P a non-zero

prime ideal of R.

Lemma 6.3. Let P be a non-zero prime ideal of R, i > j positive integers. If

R/Pi ⊕R/Pj is pp-uniserial then i = j + 1.1

Proof. Note that P|x < xPj = 0 in R/Pj . So if R/Pi ⊕R/Pj is pp-uniserial then

P|x ≤ xPj = 0 in R/Pi. This happens if and only if Pj+1 annihilates R/Pi, i.e.

i ≤ j + 1. �

Proposition 6.4. Let M be a non-zero prime ideal of R̃ and let P = R ∩ M.

Let e denote the ramification index of M and f be the inertial degree of M. Let

λ, µ, s ∈ N, s > 0, 0 ≤ µ < e, s = eλ + µ. Then, if viewed as an R-module, the

indecomposable pure-injective R̃-module R̃/Ms decomposes as

• (R/Pλ)ef−µf ⊕ (R/Pλ+1)µf when λ ≥ 1 and

• (R/P)sf when λ = 0.

1The next Proposition 6.4 implies that the converse is also true.
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Proof. The annihilator of R̃/Ms as an R-module is Ms ∩ R = Meλ+µ ∩ R =

(M∩R)λ+1 = Pλ+1. Since R̃/Ms is pp-uniserial as an R̃-module it is pp-uniserial

also as an R-module. So, by Lemma 6.3, R̃/Ms is of the form (R/Pi)a⊕(R/Pi+1)b

for some non-negative integers a, b and i = λ. In the case λ = 0 we may set a = 0.

As an R̃-module, R̃/Ms has a composition series of length s with factors iso-

morphic to R̃/M. Since R̃/M has composition series of length f as an R-module,

R̃/Ms has a composition series of length sf as an R-module. Therefore aλ+ b(λ+

1) = sf . So, if λ = 0 then b = sf as required. Now assume λ ≥ 1.

Let M =M1, . . . ,Mg be the distinct non-zero prime ideals of R̃ lying over P,

with ramification indexes e1, . . . , eg respectively. Then PλR̃ =
∏g
j=1M

ejλ
j . In any

R̃-module,
∏g
i=1M

eiλ
i |x is equivalent to Pλ|x. The length of Meλ · (R̃/Ms) =∏g

i=1M
eiλ
i · (R̃/Ms) is µ as an R̃-module and hence µf as an R-module. The

length of Pλ · [(R/Pλ)a ⊕ (R/Pλ+1)b] is b. Therefore b = µf . It now follows from

aλ+ b(λ+ 1) = sf that a = ef − µf . �

Example 6.5. (See Example 2.13). Take R = Z, L = Q(i), so that R̃ = Z[i] is the

ring of Gaussian integers. A non-zero prime ideal M of Z[i] is either

• M = pZ[i] where p ∈ Z is a prime ≡ 3 (mod 4), or

• M = (a+ ib)Z[i] where a, b are integers and (a+ ib) · (a− ib) = a2 + b2 is

a prime p (hence either p = 2 = (1 + i) · (1− i) or p ≡ 1 (mod 4)).

First let us assume s = 1. In the former case Z[i]/M is decomposable over Z,

as isomorphic to (Z/pZ)2, in fact the inertial degree f ofM is 2. In the latter case

Z[i]/M' Z/pZ is indecomposable over Z, in fact f = 1.

On the other hand, if p = 2 andM = (1 + i)Z[i], then Z[i]/M2 has order 4 but

no element of period 4, so is isomorphic to (Z/2Z)2 and is decomposable over Z (in

fact s = e = 2, so that λ = 1 and µ = 0). Note that Z[i]/M3 is also decomposable

over Z but this time as Z/4Z ⊕ Z/2Z, so as the direct sum of two non-isomorphic

summands (as now s = 3, whence e = 2 implies λ = µ = 1).

Proposition 6.6. Let M be a non-zero prime ideal of R̃ and let P = R ∩M. Let

e denote the ramification index of M and f be the inertial degree of M. Then,

viewed as an R-module, E(R̃/M) decomposes as E(R/P)ef and R̃M decomposes

as RP
ef

.

Recall that E(−) denotes injective hull, see Theorem 2.9.

Proof. Since E(R̃/M) is a divisible R̃-module, E(R̃/M) is a divisible R-module

and hence injective because R is Dedekind [21, Theorem 4.24]. So, since R is

noetherian, it decomposes as a direct sum of indecomposable injective R-modules

[7, 5.24]. Since P ⊆ M, every element of E(R̃/M) is annihilated by some power

of P. Therefore, as an R-module, E(R̃/M) is a direct sum of copies of E(R/P).

It is now enough to compute the dimension, as an R/P-vector space, of the socle

of E(R̃/M) as an R-module. The socle of E(R̃/M) is equal to the union of the
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socles of R̃/Ms for all s ∈ N. It follows from Proposition 6.4 that the socle has

dimension ef and hence E(R̃/M) is isomorphic to E(R/P)ef .

If we complete the field L at the valuation induced by R̃M on L to get LM

and similarly Q at the valuation induced by RP then LM is a finite dimensional

separable extension of QP but R̃M may not be the integral closure of RP . The

ramification index of M is e and the inertial degree of M is f [11, Chapter II,

Theorem 3.8]. Now R̃M is equipped in a unique way with the structure of a R̃M-

module. As an RP -module, R̃M is torsion-free. We claim that it has a minimal

generating set of size ef . In fact, let π generate the maximal ideal of R̃M. Then

πe generates the maximal ideal of RP . Let u1, . . . , uf ∈ R̃M be such that the

residues of u1, . . . , uf are linearly independent over the residue field of RP . Then

{ujπi | 1 ≤ j ≤ f, 0 ≤ i ≤ e − 1} is a basis for LM over QP . If we denote the

valuation on LM by v and identify its value group with Z then for all α ∈ QP ,

v(α) ∈ eZ. By [4, proof of Proposition 3.19],

v(
∑

1≤j≤f, 0≤i≤e−1

ujπ
iαij) = min

i,j
{i+ v(αij)}.

So
∑
ujπ

iαij ∈ R̃M if and only if i+ v(αij) ≥ 0 for 0 ≤ i ≤ e− 1 and 1 ≤ j ≤ f .

Since v(αij) ∈ eZ, this implies αij ∈ RP . Then R̃M is generated by {ujπi | 1 ≤
j ≤ f & 0 ≤ i ≤ e− 1}.

Therefore R̃M is isomorphic to RP
ef

as an R-module. �

7. Comparing Poincaré series, and more

For every pp-pair (ϕ,ψ) of L(R), we compare its behavior over R and R̃ in light

of § 3. In fact (ϕ,ψ) can be viewed as a pp-pair also of L(R̃).

Proposition 7.1. Let R ⊆ R̃ be Dedekind domains that are not fields, Q ⊆ L

denote their fields of fractions, with L a finite dimensional separable extension of

Q. Let (ϕ,ψ) be a pp-pair of L(R). Then the following statements hold:

(1) (ϕ,ψ) is locally bounded over R if and only if it is over R̃.

(2) Under this assumption the support of (ϕ,ψ) over R̃ consists of the non-zero

prime ideals M of R̃ such that M∩R is in the support of (ϕ,ψ) over R.

(3) Assume again (ϕ,ψ) locally bounded. Let M be a non-zero prime ideal in

the support of (ϕ,ψ) over R̃ with ramification index e over P =M∩R (a

non-zero prime ideal in the support of (ϕ,ψ) over R). Let s be a positive

integer such that nR(ϕ,ψ) ≤ s, λ, µ ∈ N such that λe < s ≤ (λ+ 1)e. Then

nR(ϕ,ψ) ≤ λ+ 1.

Proof. (1) As a vector space over Q, L decomposes as L ' Qt for some finite

cardinal t, which implies that ϕ(L) = ϕ(Q)t and ψ(L) = ψ(Q)t. Then Condition

(1) in Proposition 3.3 is true over R if and only if it is true over R̃, whence (ϕ,ψ)

is locally bounded over R if and only if it is over R̃.
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(2) Assume now (ϕ,ψ) locally bounded.

Clearly (ϕ,ψ)R ⊆ (ϕ,ψ)R̃. For, let r ∈ R satisfy rϕ(N) ⊆ ϕ(N) for every

R-module N . Then the same is true for R̃-modules (when restricted to R).

Moreover (ϕ,ψ)R̃ ∩R = (ϕ,ψ)R. The inclusion ⊇ is clear. Conversely, let r ∈ R
be such that rϕ(U) ⊆ ψ(U) in every indecomposable pure-injective R̃-module U .

Remark 6.2 and Propositions 6.4 and 6.6 transfer this property to indecomposable

pure-injective R-modules.

Now letM be a non-zero prime ideal containing (ϕ,ψ)R̃ in R̃. Then P =M∩R
is a non-zero prime ideal of R and contains (ϕ,ψ)R = (ϕ,ψ)R̃ ∩R.

(3) Use again Proposition 6.4. �

Note that (still keeping the notation in Statement (3) of Proposition 7.1) Propo-

sition 6.4 also relates at least in principle `R̃(ϕ,ψ, R̃/Ms) and `R(ϕ,ψ,R/Ps) when

s is a positive integer. For a more precise connection we have to specify ϕ and ψ.

Remark 7.2. (ϕ,ψ) is of finite length over R if and only if it is over R̃ (as it is

straightforward to check).

Now let P be a non-zero prime ideal of R. Then every power tKP , with K a

positive integer, can be expressed as the Poincaré series of a suitable pp-pair over

R, see Example 4.1, (4). We wonder which is the Poincaré series of the same pp-pair

over R̃. So our goal reduces to find the representation of tKP over R̃.

We denote by t̃M the variables over R̃, when M ranges over non-zero prime

ideals of R̃.

Coming back to our P, let PR̃ =
∏g
j=1M

ej
j where g is a positive integer, the

Mj are the (pairwise distinct) maximal ideals of R̃ containing PR̃ and the positive

integers ej are their ramification indexes. We will see that each power tKP can be

represented as a formal sum, with suitable coefficients, of powers of the t̃Mj .

Example 7.3. (See Example 2.13.) Let R = Z, R̃ = Z[i].

(1) Let P = 2Z. Then 2Z[i] is in Z[i] the square of the prime ideal generated

by 1 + i. The variable t2 equals PZ2(2x = 0, 2 | x ∧ 2x = 0) and even

PZ(2x = 0, 2 | x ∧ 2x = 0). Over the Gaussian integers the latter pp-pair is

equivalent to ((1 + i)2x = 0, (1 + i)2 | x ∧ (1 + i)2x = 0), which is mapped

by PZ[i] to t̃1+i + 2t̃ 2
1+i + t̃ 3

1+i.

(2) Next let P = pZ with p prime, p ≡ 3 (mod 4). Then pZ[i] is still prime. In

this case tp coincides with PZ(px = 0, p | x ∧ px = 0) and just corresponds

to t̃p when passing to Gaussian integers.

(3) Finally let P = pZ with p prime, p ≡ 1 (mod 4) and so p = a2 + b2 for

some suitable integers a, b. Then pZ[i] is in Z[i] the product of the prime

ideals generated by a ± ib. Recall tp = PZ(px = 0, p | x ∧ px = 0). Over

the Gaussian integers the latter pp-pair is equivalent to ((a+ ib)(a− ib)x =
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0, (a+ ib)(a− ib) | x ∧ (a+ ib)(a− ib)x = 0), which is mapped by PZ[i] to

t̃a+ib + t̃a−ib.

Now we generalize the preceding example, in particular its item (1).

Proposition 7.4. Each power tKP , K a positive integer, is expressed over R̃ as

g∑
j=1

(

ej−1∑
i=1

i t̃
ej(K−1)+i
Mj

+ ej t̃
ejK
Mj

+

ej−1∑
i=1

(ej − i) t̃
ejK+i
Mj

),

in more detail as
g∑
j=1

(t̃
ej(K−1)+1
Mj

+ 2t̃
ej(K−1)+2
Mj

+ . . .+ (ej − 1)t̃
ej(K−1)+ej−1
Mj

+

+ej t̃
ejK
Mj

+ (ej − 1)t̃
ejK+1
Mj

+ . . .+ t̃
ejK+ej−1
Mj

).

In particular tP itself is given by

g∑
j=1

(

ej−1∑
i=1

i t̃ iMj
+ ej t̃

ej
Mj

+

ej−1∑
i=1

(ej − i) t̃
ej+i
Mj

),

that is

=

g∑
j=1

(t̃Mj + 2t̃ 2
Mj

+ . . .+ (ej − 1)t̃
ej−1
Mj

+

+ej t̃
ej
Mj

+ (ej − 1)t̃
ej+1
Mj

+ . . .+ t̃
2ej−1
Mj

).

Note that Proposition 7.4 defines a function from the tP , with P a non-zero prime

ideal of R, to the additive group Z0[[(t̃M)M]] where M ranges over the non-zero

prime ideals of R̃. When extended by linearity to the additive group Z0[[(tP)P ]],

this function determines a group homomorphism from it to Z0[[(t̃M)M]]. Recall

that Z0[[−]] was introduced at the beginning of Section 5.

Proof. Let π be a generator of the (principal) non-zero prime ideal PRP of RP ,

and similarly, for every j = 1, . . . , g, let πj denote a generator of the non-zero prime

ideal MjR̃Mj
of R̃Mj

. We can assume π ∈ R and πj ∈ R̃ for all j.

For every j = 1, . . . , g, the embedding of RP into R̃Mj
sends PRP into PR̃Mj

=

Mej
j R̃Mj . Therefore π is associated to π

ej
j in R̃Mj .

Now recall that tKP equals PRP (πK−1 | x ∧ πx = 0, πK | x ∧ πx = 0). Passing

to R̃Mj
we are led to consider the pp-pair (π

ej(K−1)
j | x ∧ π

ej
j x = 0, π

ejK
j |

x ∧ π
ej
j x = 0) and the corresponding lengths ln = lR̃Mj

(π
ej(K−1)
j | x ∧ π

ej
j x =

0, π
ejK
j | x ∧ πejj x = 0, R̃Mj

/πnj R̃Mj
) when n ranges over positive integers.

• If n ≤ ej(K − 1), then this pp-pair is equivalent to (x = 0, x = 0) in

R̃Mj/π
nR̃Mj , whence ln = 0.

• Similarly, if n ≥ ej(K + 1), then the pp-pair is equivalent to (π
ej
j x =

0, π
ej
j x = 0) in R̃Mj

/πnR̃Mj
and ln is again 0.

• If n = ej(K− 1) + i with i = 1, . . . , ej − 1, then similar computations prove

ln = i.
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• Also, if n = ejK + i with again i = 1, . . . , ej − 1, then one gets ln = ej − i.
• Finally it turns out lejK = ej .

The equality stated in the theorem is now straightforward to prove. �

8. Galois groups and pp-formulas

Throughout, let R be a Dedekind domain with field of fractions Q, L a finite

dimensional Galois extension of Q and R̃ the integral closure of R in L. Let G =

Gal(L,Q) be the Galois group of the extension L ⊇ Q. Then G acts on R̃, and

indeed there is a one-to-one correspondence between G and the group Aut(R̃) of

automorphisms of R̃, given by the restriction of any σ ∈ G to R̃ (see [14, Proposition

2.19 p. 15]). Every σ ∈ G fixes R pointwise, whence, for every non-zero prime ideal

P of R, G acts on the set of non-zero prime ideals of R̃ that extend P. Moreover

G acts transitively on these ideals, that is, for any choice of two of themM 6=M′,
there is some σ ∈ G such that σ(M) = M′, see [11, Theorem 6.8 p. 32] or [16,

§1, 9.1]. Let us say that two such ideals M,M′ are conjugate if and only if there

exists σ ∈ G such that σ(M) =M′.
The decomposition group of a maximal ideal M is the subgroup

GM := {σ ∈ G : σ(M) =M},

so the stabilizer of M.

Define M to be the product of the distinct non-zero prime ideals which are

conjugate to M. Written another way M :=
∏
σ∈Γ(M) σ(M) where Γ(M) is a set

of coset representatives of the decomposition group of M in G.

Then (see [16, p. 55]), for P a non-zero prime ideal of R andM⊇ P a non-zero

prime ideal of R̃ with ramification index e,

PR̃ =
∏

σ∈Γ(M)

σ(M)e =Me
.

Let again σ ∈ G. For every pp-formula ϕ(x) of L(R̃), σ defines a new pp-formula

over R̃, denoted σ(ϕ)(x), where the scalars of R̃ occurring in ϕ(x) are replaced by

their images under σ.

In this section we wish to examine how the automorphisms σ ∈ G act on the

pp-formulas ϕ(x) of L(R̃) (up to logical equivalence with respect to TR̃). We focus

on pp-1-formulas ϕ(x). It is easy to see that the ones over R̃ fixed by G are a

lattice. We want to determine

• this lattice, so that of pp-1-formulas over R̃ fixed by G,

• the subgroup of the automorphisms of G fixing every pp-1-formula over R̃.

First a straightforward premise (valid not only for pp-1-formulas). Let σ ∈ G, ϕ

and ϕ′ pp-formulas of L(R̃). Then ϕ and ϕ′ are logically equivalent (in TR̃) if and

only if their images σ(ϕ) and σ(ϕ′) are.
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Let pp1,G

R̃
denote the lattice of (logical equivalence classes) of pp-1-formulas fixed

by every σ ∈ G. Clearly pp1,G

R̃
contains the lattice pp1

R of pp-1-formulas over R.

But this inclusion could also be proper as illustrated by the following example.

Example 8.1. Let R = Z, so Q = Q. Take L = Q(i), whence R̃ = Z[i]. Then

G consists of two elements, that is the identity map and the restriction of complex

conjugation to L. Both preserve (1 + i) | x up to logical equivalence. In particular

this is true of complex conjugation, because 1− i = −i ·(1+ i) is associate with 1+ i

(i.e. they mutually divide each other), so that (1− i) | x is equivalent to (1 + i) | x.

However there is no way to represent (1 + i) | x as a pp-formula over Z. Note also

that (2 + i) | x is not equivalent to (2 − i) | x even if 2 + i, 2 − i are conjugate,

because they are not associate in Z[i].

The following remark provides a generalization of this example, valid for every

L and R̃.

Remark 8.2. Let J be an ideal of R̃. Then, for every σ ∈ G,

• σ fixes the pp-1-formula J | x if and only if σ(J) = J ,

• similarly σ fixes the pp-1-formula Jx = 0 if and only if σ(J) = J .

Consequently J |x (respectively Jx = 0) is fixed by G if and only if J is fixed by G

as an element of the lattice of ideals of R̃.

Lemma 8.3. Let S be any Dedekind domain. If I, J are non-zero coprime ideals

of S, h, h′, l, l′ are non-negative integers, l, l′ 6= 0, then

(Ih | x ∧ I lx = 0) + (Jh
′
| x ∧ J l

′
x = 0) is equivalent to IhJh

′
| x ∧ I lJ l

′
x = 0

and

(Ihx = 0 + I l | x) ∧ (Jh
′
x = 0 + J l

′
| x) is equivalent to IhJh

′
x = 0 + I lJ l

′
| x.

Proof. It is enough to check that these pp-formulas define the same set on modules

of the form S/Pn for P a non-zero prime ideal and n a positive integer.

Since I and J are coprime, for all non-zero prime ideals P either P does not divide

I or P does not divide J . Without loss of generality, suppose P does not divide

I. Then (Ih | x ∧ I lx = 0)(S/Pn) = 0, (IhJh
′ | x)(S/Pn) = (Jh

′ | x)(S/Pn)

and (I lJ l
′
x = 0)(S/Pn) = (J l

′
x = 0)(S/Pn) because (S/Pn) · I = S/Pn and

annS/Pn I = 0. So the two pp-formulas define the same sets in S/Pn as required.

The second statement follows by using Prest’s duality. �

Lemma 8.4. A non-zero proper ideal I of R̃ is fixed by G if and only if it is a

product of ideals of the form M for some non-zero prime ideal M.

Proof. The reverse direction is clear since each ideal M is fixed by all σ ∈ G.

Conversely, suppose that σ(I) = I. Let X be a set of representatives of the

conjugacy classes of non-zero prime ideals M such that M ⊇ I. For every non-

zero prime ideal M, let kM(I) be the maximal non-negative integer such that
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MkM(I) ⊇ I. Recall that I =
∏
MMkM(I). Now observe that, for every non-

negative integer k,Mk ⊇ I if and only if σ(M)k ⊇ σ(I) = I. So kM(I) = kσ(M)(I).

Therefore I =
∏
M∈XM

kM(I)
. �

Proposition 8.5. The lattice pp1,G

R̃
of pp-1-formulas fixed by the Galois group G

is the lattice generated by the formulas of the form I | x and Ix = 0 where I ranges

over the ideals of R̃ such that σ(I) = I for all σ ∈ G.

Proof. Remark 8.2 implies that the lattice generated by formulas of the form I|x
and Ix = 0 where I is an ideal of R̃ such that σ(I) = I for all σ ∈ G is a subset of

pp1,G

R̃
.

We now show that if ϕ ∈ pp1,G

R̃
then ϕ is equal to a lattice combination of

formulas of the form I|x and Ix = 0 where I ranges over the ideals of R̃ such that

σ(I) = I for all σ ∈ G. Note that if ϕ is fixed by G then ϕ is equal to
∑
σ∈G σ(ϕ).

By Lemma 2.6 and Corollary 2.7 ,

ϕ = ϕ(R̃)|x+
∑
M∈Ω

ϕM

for some finite subset Ω of non-zero prime ideals of R̃ and ϕM a sum of formulas

of the form Mh|x ∧Mlx = 0 (with h, l nonnegative integers, l > 0).

Fix a non-zero prime ideal M of R̃, h, l nonnegative integers, l > 0. Let Γ(M)

be a set of coset representatives of GM. By Lemma 8.3,

∑
σ∈G

σ(Mh | x ∧ Mlx = 0) =
∑

σ∈Γ(M)

(σ(M)h | x ∧ σ(M)lx = 0)

= Mh | x ∧ Ml
x = 0.

If σ(ϕ) and ϕ are equivalent, then σ(ϕ(R̃)) = σ(ϕ)(R̃) = ϕ(R̃). Therefore∑
σ∈G

σ(ϕ(R̃)|x) = ϕ(R̃)|x.

So ϕ =
∑
σ∈G σ(ϕ) is a lattice combination of formulas of the required form. �

Remark 8.6. Let P be a non-zero prime ideal of R and M ⊇ P be a non-zero

prime ideal of R̃ with ramification index e (so M∩ R = P). Then the following

hold:

(1) PR̃ =Me
;

(2) M = rad(PR̃).

Proof. (1) Recall that G acts transitively on the set of non-zero prime idealsM of

R̃ such that M∩ R = P and that PR̃ =
∏
σ∈Γ(M) σ(M)e = Me

where M is a

non-zero prime ideal of R̃ such thatM∩R = P and Γ(M) is a set of representatives

of the cosets of GM in G.

(2) Since PR̃ = Me
, the non-zero prime ideals containing PR̃ are exactly those

conjugate to M. Therefore rad(PR̃) =M. �
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Theorem 8.7. The lattice pp1,G

R̃
of pp-1-formulas fixed by the Galois group is iso-

morphic to pp1
R via the function induced by sending Pk|x to rad(PR̃)k|x and

P lx = 0 to rad(PR̃)l x = 0 when P ranges over non-zero prime ideals of R, k over

non-negative integers and l over positive integers.

It is often conceptually difficult to prove directly that lattice homomorphisms

defined on generators are well-defined or injective. For this reason, we instead

define a surjective spectral map from Spec pp1
R̃

to Spec pp1
R and check that the

embedding from pp1
R to pp1

R̃
given by Stone duality indeed does what we claim in

Theorem 8.7 on generators.

Recall (see [3] for more on these topics) that the spectrum, Spec L, of a bounded

distributive lattice L is defined as the set of prime filters of L with the topology

given by the basis of (compact) open sets

O(a) := {F ∈ SpecL | a ∈ F}, where a ∈ L.

The space Spec L is spectral and all spectral spaces occur in this way. Recall that

a spectral space is simply a (quasi-)compact T0-space which is sober and has a basis

of compact open sets which is closed under finite intersections. In particular, the

set of compact open sets, K̊(T, τ), of a spectral space (T, τ), ordered by inclusion,

is a bounded distributive lattice.

Moreover a spectral map f : X → Y between spectral spaces X,Y is a continuous

map such that the preimage of every compact open subset is compact. Note that,

in order to see whether a map is spectral, it is enough to check this condition on a

subbasis.

Stone duality is an anti-equivalence between the category of bounded distribu-

tive lattices Dist with bounded lattice homomorphisms and the category of spec-

tral spaces Spectral with spectral maps. The anti-equivalence is given by functors

Spec : Dist → Spectral and K̊ : Spectral → Dist, as defined before, and natural

isomorphisms ν : IdDist → K̊ Spec and ε : IdSpectral → Spec K̊ which are defined as

follows.

Let L1, L2 be bounded distributive lattices and f : L1 → L2 be a bounded lattice

homomorphism. Then Spec f : Spec L2 → Spec L1 denotes the function sending

any p ∈ Spec L2 to f−1(p) ∈ Spec L1.

Let (T1, τ1), (T2, τ2) be spectral spaces and let g : (T1, τ1)→ (T2, τ2) be a spectral

map. Then it is given K̊(g) : K̊(T2, τ2)→ K̊(T1, τ1) sending any O ∈ K̊(T2, τ2) to

g−1(O) ∈ K̊(T1, τ1).

The natural isomorphism ν : IdDist → K̊ Spec is defined by νL(a) := O(a) and

the natural isomorphism ε : IdSpectral → Spec K̊ is defined by ε(T,τ)(x) := {U ∈
K̊(T, τ) | x ∈ U}.
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Coming back to a Dedekind domain R, we are in the lucky position of already

knowing the prime filters of pp1
R because they are exactly the irreducible pp-1-types,

as listed in the following definition.

Definition 8.8. Let R be a Dedekind domain with field of fractions Q.

• For each maximal ideal P of R, l,m ∈ N, l > 0, let pRl,m(P) denote the

pp-type of a+ P l+m ∈ R/P l+m where a ∈ Pm\Pm+1.

• For each maximal ideal P of R and l ∈ N, l > 0, let pRl,∞(P) denote the

pp-type of a+RP ∈ Q/RP such that a ∈ P−lRP\P−l+1RP .

• For each maximal ideal P of R and m ∈ N, let pR∞,m(P) denote the pp-type

of a ∈ RP such that a ∈ PmRP\Pm+1RP .

• Let pR∞,∞ be the pp-type of a non-zero element of Q.

Remark 8.9. Let R be a Dedekind domain. For each maximal ideal P,

O(Pkx = 0) := {pRl,m(P) | k ≥ l} ∪ {pRl,∞(P) | k ≥ l}

and

O(Pk|x) := {pRl,m(P) | m ≥ k} ∪ {pR∞,m(P) | m ≥ k}∪⋃
Q6=P

{pRl,m(Q) | 1 ≤ l ≤ ∞ and 1 ≤ m ≤ ∞} ∪ {pR∞,∞}.

That being said, let us prove now Proposition 8.7.

Proof. Define Ω : Spec(pp1
R̃

)→ Spec(pp1
R) by

Ω(pR̃l,m(M)) := pRl,m(M∩R)

Ω(pR̃l,∞(M)) := pRl,∞(M∩R)

Ω(pR̃∞,m(M)) := pR∞,m(M∩R)

Ω(pR̃∞,∞) := pR∞,∞

for M a maximal ideal of R̃, l,m ∈ N and m > 0.

Let P a maximal ideal of R and k ∈ N, k > 0. Let M1, . . . ,Mg be the pairwise

distinct prime ideals of R̃ such that Mi ∩R = P for i = 1, . . . , g. Then

Ω−1(O(Pk|x)) =

g⋂
i=1

O(Mk
i |x) =

= O(

g∧
i=1

Mk
i |x) = O(

g∏
i=1

Mk
i |x) = O(rad(PR̃)k|x)

and

Ω−1(O(Pkx = 0)) =

g⋃
i=1

O(Mk
i x = 0) = O(

g∑
i=1

Mk
i x = 0) =

= O(

g∏
i=1

Mk
i x = 0) = O(rad(PR̃)k x = 0).
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In both sequences of equations, the first equalities are simple observations using

Remark 8.9 and the second equalities follow from the definition of the spectrum of

a distributive lattice. The penultimate equalities follow from Lemma 8.3. The final

equalities are Remark 8.6.

Because the open sets of the form O(Pkx = 0) and O(Pk|x) are a subbasis of

Spec pp1
R these equations imply that Ω is a spectral map.

Let P be a non-zero prime ideal of R. Since Ω−1(O(Pk|x)) = O(rad(PR̃)k|x),

ν−1
pp1

R̃

◦ K̊Ω ◦ νpp1
R

(Pk|x) is rad(PR̃)k|x

and, since Ω−1(O(Pkx = 0)) = O(rad(PR̃)kx = 0),

ν−1
pp1

R̃

◦ K̊Ω ◦ νpp1
R

(Pkx = 0) is rad(PR̃)kx = 0.

So the lattice homomorphism

ν−1
pp1

R̃

◦ K̊Ω ◦ νpp1
R

: pp1
R → pp1

R̃

is induced by sending Pk|x to rad(PR̃)k|x and Pkx = 0 to rad(PR̃)kx = 0 as

required. Moreover, it is injective, since Ω is surjective. �

Now let us deal with the subgroup Gpp1
R̃ consisting of the automorphisms σ ∈ G

preserving every pp-1-formula of L(R̃) up to logical equivalence.

Indeed, for every pp-formula ϕ(x) of L(R̃) we can introduce the subgroup Gϕ

of the σ ∈ G preserving ϕ(x). For instance, when L = Q(i) and R̃ = Z[i], we have

already implicitly seen that G(1+i)|x = G while G(2+i)|x includes only the identity

function. When we consider the whole Gpp1
R̃ the following holds.

Proposition 8.10. Let σ ∈ G. Then σ ∈ Gpp1
R̃ if and only if σ fixes (setwise)

every non-zero prime ideal of R̃. In particular, if there is some non-zero prime

ideal P of R that completely splits over R̃, then Gpp1
R̃ is the trivial group.

Note that the latter statement applies to R = Z, or also when Q is a number

field, see for example [15, Exercise 30(d) p. 63].

Proof. The first claim follows easily from Lemma 2.6 and Remark 8.2.

So let us deal with the second claim. Let P be a non-zero prime ideal of R that

completely splits over R̃. Then PR̃ decomposes in R̃ as
∏g
j=1Mj , where eachMj

is a non-zero prime ideal with both ramification index and inertial degree 1. Hence

g = [L : K] = |G| and, by transitivity, for every j there is exactly one σj ∈ G

sending M1 to Mj . So the only σ ∈ G fixing M1 is the identity. Any σ different

from the identity moves M1 and so corresponds to the first case. �

We provide an example of a Galois field extension L ⊇ Q such that G = Gpp1
R̃ ,

that is every σ in the Galois group G = Gal(L,Q) fixes every pp-formula over R̃.
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Example 8.11. Let Q = Q3 the 3-adic completion of Q. So R is a complete

discrete valuation ring with a unique maximal ideal P. Let L = Q(
√

3), or also

Q(
√

6). Then L is a quadratic extension of Q defined by an Eisenstein polynomial,

x2−3 and x2−6 respectively. Therefore Gal(L,Q) has order 2. Moreover L totally

ramifies (see [22, Lecture 11, Example 11.6 p. 2]), the unique maximal ideal M of

R̃ extends P and PR̃ is a power ofM. Therefore even the non-identity σ ∈ G fixes

M.
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