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Abstract

Ribonucleic acid (RNA) is a polymeric molecule essential in various biological

processes. In the past two decades, extensive research effort has been devoted

to short non-coding regulatory RNAs called small RNAs (sRNAs). In particular,

micro RNAs (miRNAs), 20–22 nucleotide in length, have emerged as an important

class of gene regulators. In plants, miRNAs function at post-transcriptional level

by suppressing the translation of their target messenger RNAs (mRNAs) through

cleavage and degradation, leading to their participation in larger regulatory networks.

In recent years, developments in next generation sequencing (NGS) technologies

have enabled the large-scale sequencing of sRNAs and cleaved mRNA fragments,

called the degradome. Consequently, multiple computational methods have been

developed for the identification of miRNAs and their targets.

The advance in regulatory miRNA discoveries relies on understanding their

biogenesis and function. Recently, a newly updated plant miRNA biogenesis criteria

has been reported, which benefited in identifying more validated miRNAs compared

to the old criteria. The new criteria bring the possibility of recommending a further

update to the miRNA annotation rules. Moreover, the function of miRNAs is inter-

preted through their targets that could be determined and validated using degradome.

The interactions between miRNAs and their target mRNAs contribute to biological

regulatory networks.

In this thesis, we demonstrate a degradome-assisted approach that employs a

hill-climbing algorithm to explore miRNAs with extreme biogenesis features in a



controlled manner. We apply this approach on Arabidopsis thaliana, evaluate its

performance using differential expression analysis, and identify a potentially novel

miRNA that has been previously missed by the existing miRNA prediction tools.

The approach is presented within PAREfirst tool. Furthermore, we present PAREnet

tool that utilises a degradome analysis tool to assist the simplifying, construction,

and visualisation of sRNA-mediated regulatory networks on a genome-wide scale.

Analysing the constructed simplified sRNA-mRNA network shows the possibility of

unraveling the implications of sRNA-mediated regulation in biological processes.

In conclusion, the research focuses on identifying miRNAs, particularly condition

specific miRNAs, with unique biogenesis, predicting their targets using degradome

analysis, and presenting their interactions by constructing simplified sRNA-mRNA

networks with retrievable biological reality. Through these efforts, the study could

contributes towards enhancing our understanding of the biogenesis and function of

plant miRNA, and the complexity of genes networks in plants.
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Chapter 1

Introduction

Nucleic acids are bio-molecules that play major roles in all cells and viruses. The

main two classes of nucleic acid are deoxyribonucleic acid (DNA) and ribonucleic

acid (RNA) [192]. RNA is synthesised by the DNA in a process called transcrip-

tion to produce coding RNA, messenger RNA (mRNA), that is responsible for

protein synthesis through a process called translation, or non-coding RNA such as

small RNA. Small RNAs (sRNAs) are short, non-coding RNA molecules that have

been found to regulate the expression of genes which are known to be involved

in many diverse plant biological processes such as growth and development, en-

vironmental adaptation, disease resistance, and stress response [17, 44, 89]. They

mainly regulate the expression of plant genes at the post-transcriptional level by

targeting mRNA molecules and silencing them through cleavage and degradation

[18, 56, 117, 179]. The sRNAs in turn could then initiate further production of

sRNAs to form cascades and networks of sRNA-mRNA interactions [124]. Recent

advances in next-generation sequencing (NGS) technologies have made it possible

to sequence sRNA datasets on a genome-wide scale from a variety of organisms, tis-

sues, conditions, and developmental stages [58]. In addition, NGS have been used to

capture sRNA mediated cleavage fragments, that are resulted from cleaving mRNAs,

1



using a high-throughput sequencing technique called degradome sequencing, which

can then be used to identify functional sRNAs. [72].

Micro RNAs (miRNAs) are probably the most understood class of sRNA and

typically have a sequence length in the range of 20-24 nucleotides (nt). They are

derived from longer, single stranded hairpin-like structure called precursor. Figure

1.1 illustrates the secondary structure, the mature miRNA, and the miRNA* that

is derived from the opposing arm of the hairpin. The understanding of miRNAs

and their functions has been a subject undergoing intense study for the last decade

[214]. Exciting progress has been made on the biogenesis and functions of miRNA,

including a recent study that suggested new criteria for plant miRNA annotation

[20], and various studies that identified regulatory cascades that have large effect on

plant development, and responses to environmental stress conditions [22, 138, 151].

The work that we have carried out and presented in this thesis is primarily focused

on exploring a wider range of computational miRNA prediction parameters in a

controlled manner, which allows us to capture miRNAs that were not detected before.

Moreover, we present a method that enable the identification and elucidation of

potential miRNA cascades represented within a visualised sRNA-mediated regulatory

network. Before we proceed, we give a brief overview of each chapter in this thesis.

Figure 1.1 An example of miRNA hairpin-like secondary structure.

Chapter 2. In this chapter, we provide biological background information

related to RNA silencing in plants. We focus on the most studied sRNA class,

miRNAs, along with their biogenesis and functions in plant cells. We also give a

brief description of other common sRNA classes, which have similar biogenesis to
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miRNA. We then introduce high-throughput sequencing techniques that were used

to retrieve sequencing data from different organisms. Finally, we introduce some

RNA annotation databases that have greatly facilitated RNA studies.

Chapter 3. In this chapter, we provide a computational background on topics

that are important and relevant to later chapters of this thesis. We present an overview

on general bioinformatics tools that are necessary to this work. This is followed by a

description of the most recent and commonly used computational miRNA prediction

tools. In addition, we present a review of the available degradome-supported tools

that are used to identify sRNA targets on a genome-wide scale using configurable

targeting rules.

Chapter 4. In this chapter, we investigate the effect of applying the newly

updated plant miRNA annotation criteria [20], and a more permissive criteria on

miRNA prediction in Arabidopsis thaliana (A. thaliana) using existing miRNA

prediction tools. In particular, we use an algorithm that was initially developed by

Dr. Christopher Applegate to explore permissive miRNA parameters for miRCat,

and we update it so it can be used to produce miRCat2 parameters. We also develop

a new approach to miRNA prediction which is assisted by the functional information

extracted from the analysis of degradome sequencing. We then demonstrate the

improved performance of degradome-assisted miRNA prediction approach compared

to the traditional prediction method. We evaluate the approach by applying sRNA

differential expression analysis. Moreover, we observe how the miRNA predictions

fit under the different criteria and show a potential novel miRNA that have been

missed within Arabidopsis thaliana. We then present novel mature miRNA and

miRNA* along with their predicted precursor. Finally, we introduce a new software

tool, called PAREfirst, that can be used to perform degradome-assisted miRNA

prediction using configurable parameters for miRCat2 and PAREsnip2.

Chapter 5. In this chapter, we introduce PAREnet, a tool for constructing

sRNA-mRNA networks using degradome sequencing data. This tool was developed
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to combine sRNA target predictions from PAREsnip2 with related information

containing valid miRNA annotations. The output of this tool assist the user when

visualising sRNA-mediated regulatory networks though the network visualisation

software, Cytoscape. We then compare the Arabidopsis thaliana sRNA-mRNA

network produced using degradome data alone, with the network produced by

applying further filtration methods. Then, we analyse the network components and

elucidate the sRNA-mRNA modules presented within the network. We then present

how the miRNA candidates from Chapter 4 fit within the network. Finally, we

perform transcript coverage analysis to determine if it can provide an element of

validation to the target predictions.

Chapter 6. In this final chapter, we present suggestions of future extensions

and improvements to this work. We conclude the chapter by presenting the overall

conclusions of the work presented in the thesis and its implications for sRNA

research.

The overall aim of this project is to explore sRNAome to identify miRNAs

with extreme biogenesis and enhance the identification of meaningful sRNA-mRNA

networks by incorporating flexible miRNA annotation criteria and utilizing the

degradome for validation. The objectives include developing a novel combination

method that integrates miRNA predictions using miRCat2 with degradome analysis

using PAREsnip2, allowing for the identification of miRNAs with extreme biogenesis

while minimizing the rate of false positive predictions that resulted from relaxing

the miRNA annotation criteria. Additionally, we employ degradome analysis to

simplify the wide-scale complex regulatory networks by reducing false positives in

sRNA target predictions, leading to the construction of a simplified sRNA-mRNA

network. The constructed network structural features will be analyzed to determine

their relevance to other biological networks, and the interactions within the networks

will be investigated for their biological significance.
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Chapter 2

Small RNA Background

2.1 Summary

This chapter includes an introduction to the RNA biology relevant to the work

presented within this thesis. First, it starts with a description of RNA silencing,

as it is fundamental to this work, and includes a summary of the biogenesis and

functional roles of different types of small RNAs. We then describe an introduction

to sequencing techniques and production of sequencing data samples. Finally, we

provide a brief account of the currently available small RNA annotation databases.

2.2 DNA and RNA

Nucleic acids are one of the major molecules that are essential for living beings.

One of their major roles is gene expression which is a process that uses information

from a gene to synthesise functional gene product that enables it to produce protein

or non-coding RNA. One main class of nucleic acid is DNA, or deoxyribonucleic

acid, which is a long molecule that contains genetic information for the development,

functioning, and growth of all organisms. It is composed of two strands of nucleotide

coiled around each other forming a double-helix structure. The DNA strands are
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made up of four nucleotide bases: cytosine (C), guanine (G), adenine (A), and

thymine (T), and are bound together according to complementary Watson-Crick

base pairing rules forming C-G and A-T base pairs. As a result of the base pairing

rules, DNA can replicate using one strand as a pattern to create a copy of the genetic

material. The strands run in opposite directions of each other, these directions are

represented by five-prime (5’) end and three-prime (3’) end carbons. The DNA can

be duplicated using one strand and an enzyme called DNA polymerase [192].

Another type of nucleic acid is RNA, or ribonucleic acid. Unlike DNA, RNA

is single stranded that is folded onto itself to form secondary structures depending

on its required function. It also substitutes the nucleic base uracil (U) with the

base thymine (T) (see Figure 2.1). RNA molecules are synthesised from DNA

in a process called transcription. The resulting product of transcription is either

coding RNA, also known as messenger RNA (mRNA), or non-coding RNA, such as

transfer RNA (tRNA), ribosomal RNA (rRNA), and microRNA. The mRNA serves

as a pattern for protein synthesis in a process called translation where mRNA is

decoded into specific amino acids, tRNA delivers the amino acids to the ribosome,

and then rRNA link amino acids together to help decode the information in mRNA

into proteins. Basically, non-coding RNAs are not translated into coded proteins.

Beside translation, non-coding RNA is involved in RNA processing and other gene

regulation roles [57]. According to the length of RNA strands, RNA contains two

types: long RNAs and small RNAs [55]. Long RNA strands are longer than 200

nt and mainly include long non-coding RNA (lncRNA) and mRNA. Small RNAs

(sRNAs) mainly include microRNA, small interfering RNA (siRNA), small nucleolar

RNA (snoRNAs), Piwi-interacting RNA (piwiRNA) [55].

The prediction of RNA secondary structure is an important step towards de-

termining the function of RNA [53]. Several methods of the secondary structure

prediction are based upon finding the folding structure with the minimum free energy

(MFE) using dynamic programming algorithms [128]. In general, the free energy is
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the amount of energy that is released upon folding an RNA sequence. Accordingly,

the minimum free structure of nucleotides sequence is predicted by calculating the

lowest possible energy needed to fold that structure. Moreover, the folding structure

motifs such as: mismatches, hairpins, bulges, and loops are considered to give more

understanding and enhance the prediction of the secondary structure [127].

Figure 2.1 An example of an RNA secondary structure. The RNA secondary structure
is a stem-loop structure that is formed by the complementary pairing of nucleotide
bases (stem) and the non-paring of bases (loop) [129].

2.3 RNA silencing

RNA silencing, or RNA interference, is a mechanism where gene expression is

negatively regulated by non-coding RNAs and, it is evolutionary conserved in most

of eukaryotes [33]. In 1990, RNA silencing was first described in a plant model,

where extra copies of flower pigmentation genes were introduced, which led to

endogenous RNA and transgene suppression [139, 182]. There are at least three

RNA silencing pathways in plants, the silencing of the mRNA by microRNA, the

cytoplasmic siRNA silencing, and the DNA methylation [25]. All of the three

pathways result in forming a double-stranded RNA (dsRNA), and this is called the
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initiation step. The dsRNA is then cleaved by enzyme Dicer that has RNaseIII and

produce 20-26-nt non-coding sRNAs [28, 33].

Moreover, in the effector step, the double-stranded sRNA duplex is then incor-

porated into an ribonucleoprotein complex, the RNA-induced silencing complex

(RISC), by binding to a member of the Argonaute (AGO) protein family [128]. One

strand of the sRNA duplex guides the RISC to its target and slices its complementary

mRNA, while the rest of the duplex is removed [203]. After the targeting process,

the complex can silence the target mRNA either by cleavage and degradation, or

translational repression [40]. However, in plants, target degradation is more common

due to the high complementarity between sRNAs and mRNAs in plant tissues [128].

The AGO protein that is bound with sRNA usually slices the mRNA between the

tenth and eleventh position of the sRNA [117].

2.4 Small RNAs

sRNAs are an important class of non-coding RNAs. sRNAs play important roles in

posttranscriptional gene regulation via target messenger RNA (mRNA) degradation

or translation inhibition [109, 205], including antiviral defence, developmental

timing, and genome adjustment [39, 62, 136]. The double-stranded sRNAs are

excised from longer dsRNA by Dicer enzymes. Following that, one of the sRNA’s

strands is attached to an AGO protein forming a part of RISC complex molecule,

which then targets a transcript. There are several classes of sRNAs that have roles

in gene expression, such as microRNA, small interference RNA, natural antisense

transcript siRNAs (nat-siRNAs) [32], and piwiRNAs [15]. The first two are the

well known types and they have similar roles in RNA regulation. However, they are

differentiated by their biogenesis, the miRNAs are extracted from a single strand

hairpin, while siRNAs are derived from dsRNA [73] (see Figure 2.2).
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Figure 2.2 An overview of miRNA biogenesis and function in plants.

2.4.1 Micro RNAs

MicroRNAs (miRNAs) are about 20-24 nt small non-coding RNAs that play an

important role in the gene expression regulating networks [24]. Recent studies have

provided an explosive amount of information on miRNA regulation involvement

in various biological processes, including organ development, phase transitions,

and stress responses [37, 88, 209]. They were first discovered in 1993 within the

developmental timing pathway in C. elegans, where instead of the production of the

protein, two sRNAs were extracted from the developmental timing regulator. The

shorter one with 22 nt, targeted another gene in the developmental timing pathway

causing reduction in its protein level [107]. Again, another miRNA was found in C.
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elegans, which was also discovered in fly and human genes. This discovery led to

the investigation of the regulatory role of the miRNAs [153].

The first discovery of the existence of miRNAs in plants was in Arabidopsis.

The approach that was used to identify miRNAs was the isolation through cloning

of sRNAs from RNA biological samples [117]. This approach mostly identified

miRNAs that are conserved in several tissues or plants, or with high expression levels

[199]. As shown in Figure 2.2, the biogenesis of miRNAs in plants begins with

the miRNA encoding gene being transcribed into primary miRNA (pri-miRNA), a

long single stranded, by RNA polymerase II [108]. The pri-miRNA is processed by

DCL1, a Dicer-like protein, and folds into a stem-loop structure called precursor

miRNA (pre-miRNA) [176]. The Dicer cleaves the hairpin loop and generates a

double stranded duplex miRNA/miRNA* with two-nucleotide 3’ overhangs. The

miRNA is the mature sequence, and miRNA* is its complementary, however, the

pairing between miRNA and miRNA* is imperfect [154]. Plant miRNA precursors

contain structural features that are important for Dicer recognition and precise

processing [20, 29, 49]. These biogenesis features include the length of the precursor

sequence, mismatches and bulges within the miRNA/miRNA* duplex, and the size

of the hairpin loop (see Figure 2.3). After DCL1-mediated processing, the duplex

is transported to the cytoplasm where one strand of the miRNA/miRNA* duplex,

called guide miRNA, is incorporated with the Argonaute (AGO) protein and loaded

into an RNA induced silencing complex (RISC), and the other strand is degraded

[145, 184]. The miRNA then guides the RISC complex to target the mRNAs and

prevent their translation through cleavage or translation repression [25].

2.4.2 miRNA-like RNAs

Recent work has shown a sRNA species of phased and half-phased miRNA-like

RNAs are aligned to miRNA precursors beside the canonical miRNAs [206]. Most
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Figure 2.3 An example of miRNA hairpin-structure precursor that shows biogenesis
features.

of these miRNA-like RNAs form pairing duplexes with high abundance similar to the

miRNA/miRNA* duplexes [211]. It is also found that they have the same biogenesis

pathway and functional roles as the known miRNAs. These miRNA-like RNAs were

reported earlier in some plant and animal studies, but they were not examined as

they were initially considered to be byproducts of Dicer activities. Moreover, some

of these miRNA-like RNAs have been found to be real miRNAs as observed with

miR477a and miR319b.2 [166].

2.4.3 Small interfering RNA

Small interfering RNAs (siRNAs) are 20-26 nt in length [32]. Their biogenesis is

similar to miRNAs except that siRNAs originate from multiple sources and derived

from double-stranded RNA sequences [45]. Both siRNAs and miRNAs biogenesis

involve Dicer enzyme, which cleaves their precursors into small fragments that are

incorporated into RNA-induced silencing complexes (RISCs) to regulate the gene

expression. Four types of siRNAs are known in plants. First, trans-acting siRNA

(tasiRNA) class, which its precursor derived from microRNA-mediated cleavage

of tasiRNA-generating loci (TAS genes). The second type comprises the natural

antisense transcript siRNA (nat-siRNA) which normally arises from cis-natural anti-

sense transcripts [32]. The third type of siRNAs includes long siRNA (lsiRNA),
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which are normally 30 to 40 nucleotides in length. The last class includes the

heterochromatic siRNAs (hc-siRNAs), this class normally arise from transposon and

repeat regions of the genome [18].

2.4.4 Other small RNAs

There are several further sRNA classes that will not concern us in this thesis [15, 18,

40]. These classes include:

• Small nucleolar RNAs (snoRNAs): these guide the modifications of RNAs

and they are highly involved in RNA nucleotide modification.

• Small nuclear ribonucleic acids (snRNAs): these are involved in transcrip-

tion, splicing, and formation of precursor mRNAs.

• Piwi-interacting RNAs (piRNAs): these interact with Piwi proteins and

silence genes. Recent studies suggest that they protect the genome from

invasive transposable elements.

2.5 Next generation sequencing

DNA sequencing is a technology that enables the collection of the specific order of

the four nucleotides: cytosine (C), guanine (G), adenine (A), and thymine (T), within

the DNA strand [80]. Rapid sequencing has accelerated the research and discovery

in a wide variety of research applications as in biological and medical fields [165].

Sequencing technology evolved massively when it became able to process complete

DNA genomes from different species. The beginning of the DNA sequencing was

in 1953 when Watson and Crick discovered the 3-dimensional structure of DNA

[193]. Following that, researchers were able to produce RNA sequences, however,

the RNA sequencing techniques failed in sequencing the long DNA molecule [86].
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The first known DNA sequencing, or the first-generation sequencing methods, were

presented in the 1970’s [14], when Maxam and Gilbert developed chemical cleavage

method [130], in addition to the chain termination method that was presented by

Sanger, Nicklen, and Coulson [160]. These two techniques succeeded in producing

complete DNA sequences. The Sanger method was widely adopted in improving the

sequencing techniques, due to its reliability and simplicity [147].

In the 2000’s, there was focused development on new sequencing techniques that

contributed high-throughput sequencing technologies [14]. These techniques are

capable of performing a massive amount of sequencing in parallel. This rapid tech-

nology is usually called next-generation sequencing (NGS) [126]. There are several

platforms for the NGS, and below, we briefly describe some of these technologies:

• Roche/454 sequencing, which was presented in 2004 as the first NGS platform

to achieve commercial introduction. This technology can generate relatively

long reads and uses a picotiter plate to increase sequencing throughput. It

applies pyrosequencing approach, which detects the release of pyrophosphate

when additional nucleotides are added to a complementary strand of DNA

being synthesized from a template sequence, allowing the sequence of the

DNA fragment to be determined [141]. The Roche/454 sequencing technology

is also called sequencing by synthesis.

• Illumina/Solexa sequencing technology, which uses sequencing by synthesis

approach. It was released in 2006 and is currently the most common NGS

system. The Illumina sequencing technique involves fragmenting the libraries

randomly and attaching adaptors to both ends of each fragment. The fragments

are then amplified through a process called bridge amplification to form

clusters on a flow cell. Next, the sequencing process detects light signals

emitted from the addition of a single nucleotide, where computer algorithms

translate the signals into a nucleotide sequence. The first Illumina sequencing
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machine was able to produce very short reads, roughly 35 nt in length. More

recently, the output of the Illumina sequencing machines was improved to

increase the read lengths to roughly 100 base pair in length [155]. Although

Illumina has different sequencer models for short and long read sequencing, it

is best known for short read sequencing. In this thesis, we focus exclusively

on data obtained from Illumina sequencing techniques.

• Oxford Nanopore Technology (ONT), which enables direct and real-time

sequencing of long DNA or RNA molecules. It is distinguished from previous

sequencing approaches, in that it directly detects the nucleotides without active

DNA synthesis. It works by monitoring changes to an electrical current as

individual nucleotides are passed through a protein nanopore. As the molecule

passes through the pore, the unique electrical signal is recorded and used to

identify the specific DNA or RNA sequence. This technology allows for a

whole-genome sequencing with fast speed and cost-effective performance

when compared to other sequencing methods. This long read sequencing

technology allows for longer read lengths than other sequencing methods, with

some reads extending over tens of thousands of base pair. However, ONT

sequencing can have higher error rates with long read sequencing compared to

short read sequencing [122].

There are more recent NGS platforms that were not described here, such as:

Applied Biosystems sequencing by oligonucleotide ligation and detection (SOLiD)

[185], Heliscope sequencer [178], and Pacific Biosciences SMRT technology [132].

Overall, the choice of sequencing method will depend on the specific research

question and available resources. In the case of sRNA sequencing, short read length

sequencing methods provide more comprehensive and accurate data than long read

sequencing. Although, short read sequencing methods suffer from a relatively long

sequencing time, the recent sequencer models, such as the latest Illumina models
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(NextSeq 1000 and NextSeq 2000), reduce the run time while maintaining the

accuracy and quality of the produced data [96, 84].

2.6 Annotation databases

There are various databases that are used for sRNA annotation such as miRBase [97],

Rfam [75, 91], PMRD [212], and PMiREN [78]. Here, we describe the ones that are

most important to this work:

• miRBase repository: is an online repository for all validated miRNAs with

their assigned annotations. It was first established in 2002 as MiRNA Registry

service [74, 76]. The primary aim of miRBase is assigning consistent names

for novel miRNA sequences prior to their publications. In the nomenclature

scheme, the name of a miRNA sequence should contain a species initial prefix

and numeric suffix that is assigned sequentially, e.g., for Arabidopsis thaliana,

the miRNA named ath-mir-166 [77]. Moreover, miRBase is searchable and fa-

cilitates bulk download of the published and annotated miRNAs. The miRNA

annotations are human-readable and computer-parsable. It also provides a

link to the evidence and resources that support the miRNA annotations [98].

Another function is the miRBase Target, a new database for predicted target

genes for the miRNAs, although, not all validated miRNAs have predicted

targets [76] due to a variety of challenges in the miRNA target prediction

methods. Although computational methods have been developed to predict

miRNA targets, these predictions are not always accurate due to different

factors, including the complexity of miRNA-mRNA interactions and the pres-

ence of multiple potential target sites for each miRNA. Another factor is the

tissue-specific and species-specific nature of miRNA regulation. Some miR-

NAs may only be expressed in specific tissues or organism, and their targets

may be correspondingly restricted. This can make it difficult to predict targets
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for miRNAs that have not been extensively studied in a particular tissue or

organism.

Since its establishment, miRBase has rapidly and continuously grown, mainly

due to the sRNA NGS technologies. The annotated miRNA loci increased from

15,172 loci in 142 species (release 16, 2010) to 24,521 loci in 206 species

(release 20, 2013) [99], and later in 2014, the loci in release 21 increased

to 28,645 entries, and lastly, to 38,589 entries in release 22 (v22), 2019

[97]. With the rapid growth in miRBase database, the quality of the miRNA

sequences must be maintained. Hence, a new system was developed where

it uses NGS sequencing datasets to annotate the levels of confidence for the

miRNAs by assessing the pattern of reads that map to the locus of each miRNA

annotation. The user can download miRNA sequences after filtering based on

their confidence levels. miRBase is commonly used as a guide for researchers

to predict novel miRNAs and assess the performance of miRNA prediction

tools. Baohong Zhang et al. [207] investigated the miRNAs in miRBase

and they observed that the mature sequences range from 19 to 24 nt in length,

where the vast majority were 22-23 nt, however, 1.5% of miRNAs were outside

that range [208].

• Rfam: is a database containing a collection of ncRNA families represented by

multiple sequence alignments, covariance models, and other structured RNA

elements, which include secondary and tertiary structures of RNA molecules,

stem-loop or hairpin structures, hairpin loops, internal loops, and hairpin

bulges. These structured RNA elements are crucial for the function of ncRNAs

and they can facilitate the classification and identification of ncRNA classes

in Rfam database. The current release is Rfam 14.7 containing 4,069 ncRNA

families. Rfam is collaborating with miRBase to provide a comprehensive

collection of miRNA families, where 1,246 miRNA families were created and
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updated in Rfam. The ncRNA sequences within Rfam can be used to filter out

known ncRNAs before identifying novel miRNAs.

2.7 Discussion

In this chapter, we provided an overview of DNA and RNA, and introduced RNA

silencing pathways and secondary structures. We then discussed miRNAs, together

with their biogenesis features and functioning mechanisms and introduced some

other common sRNA classes. We then gave a brief background of next generation

sequencing technologies. Finally, we described one of the most popular miRNA

annotation databases.
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Chapter 3

Computational Background

3.1 Summary

This chapter includes an introduction to the bioinformatics techniques relevant to the

work presented within this thesis. We begin with a description of several tools and

algorithms for processing DNA and RNA sequences. We then overview the miRNA

detection methods that we use in this thesis. Finally, we provide a brief overview

of sRNA target validation and introduce some sRNA target prediction tools that are

important for this thesis.

3.2 Bioinformatics tools

We first briefly describe the bioinformatics tools that we shall use later in this thesis:

• PaTMaN: Pattern Matching in Nucleotide databases, is an alignment tool that

identifies all occurrences for a short sequence within a genome-sized reference.

To begin, the algorithm constructs a tree of all the query sequences. Each short

read is included in the tree as a path starting from the root node and ending at

a leaf node that carries the identifier for the corresponding query sequence. It
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then searches the tree for matches between the reads and the reference, taking

into account any mismatches or gaps in the alignment [148].

• Bowtie2: is an alignment tool for aligning short sequencing reads to a large

genome reference. It first generates an index of the reference sequences using

a Burrows-Wheeler transform, which creates a compressed representation of

the reference genome. The short reads are then aligned to the index using a

series of alignment steps, taking into account any mismatches or gaps in the

alignment. The indexing technique used in Bowtie is the key to its speed and

memory efficiency. Bowtie2 is an improved version that can process longer

reads faster and more sensitive than Bowtie [103, 104].

• SAMtools: is a suite of programs that is widely used for processing and

analysis NGS datasets. It also used for file format conversion and other file

manipulation methods. It consists of three repositories: SAMtools, BCFtools,

and HTSlib [51].

• Genome browsers: a genome browser is a graphical interface to display the

graphical information of a biological database for genomic data. Among the

best known are the Ensembl Genome Browser [82], UCSC Genome Browser

[106], and NCBI Genome Data Viewer [195].

• Basic Local Alignment Search Tool (Blast): is the most widely used tool for

biological sequences comparing and searching [9].

• Vienna RNA Package: provides RNA secondary structure related compu-

tational tools. There are several tools that are frequently used for miRNA

detection. RNAfold computes a minimal MFE secondary structure for an RNA

sequence. In addition, RNALfold calculates all locally stable secondary struc-

tures of a long RNA sequence with a maximal base pair span. It is a practical

way of scanning very large genomes for short RNA structures. Moreover,
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RNAplot can be used to generate secondary structure graph of an input RNA

sequence. the input format is produced by RNAfold program. Forna is one of

the Vienna Web Services, it is a web interface that is used to visualise RNA

secondary structure [120].

3.3 Computational miRNA prediction

Due to the importance of miRNA in gene expression regulation, its detection has

become a major research area over the last decade [194]. The beginning of identify-

ing the miRNAs in plants was in Arabidopsis using a powerful strategy, where the

sRNAs from the biological samples were isolated and cloned [101, 117]. However,

this strategy was not efficient for identifying miRNAs with low expression levels,

neither for miRNAs that were not present in different tissues [199]. The emergence

of NGS technologies produced a massive amount of data with high speed and low

cost [165]. The hairpin structure of a miRNA precursor along with the biogenesis

features that are shown in Figure 2.3 are key components of miRNA identification

algorithms. Many computational tools were developed to detect miRNAs at tran-

scriptome level, especially the ones with low-abundance [110]. However, these

computational methods still suffer from high false positives, and many functional

miRNAs are missed in the prediction [92]. A review of miRNA prediction tools can

be found in [143]. We now describe two tools that are used in this thesis.

3.3.1 miRDeep

miRDeep was introduced in 2008 as one of the first miRNA prediction tools for

animals NGS datasets [64]. miRDeep algorithm’s starts by mapping the sequenced

sRNAs to the genome and discards reads that map to other types of non-coding

RNAs, such as tRNA and rRNA. The remaining reads are then used to identify the
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secondary structure of potential miRNA precursors. Next, the algorithm examines

the hairpin structure and the aligning of sRNA sequences for each potential precursor.

This is performed as follow: for each precursor, the algorithm identifies the positions

and the abundance of the sequences corresponding to a mature miRNA, a miRNA*,

and a loop sequence within the hairpin, where the statistics of the reads positions

and abundance within the precursor is referred to as the signature. The mature

miRNA is defined as the sequence with the highest abundance, as it is sequenced

more frequently , in the sRNA libraries, than other sequences within the precursor.

The miRNA* is defined as the sequence aligned to the opposite arm of the hairpin

from the mature miRNA with 2-nt 3’ overhangs. The loop region is defined as

the sequence between the mature miRNA and the miRNA*. After identifying the

miRNA-loop-miRNA* hairpin structure, miRDeep ensure its reliability by requiring

at least 14 nt pairings between the mature and star miRNAs. The potential precursors

that did not pass these filters are considered inconsistent with miRNA biogenesis and

are discarded. After that, it applies a probabilistic scoring on the candidate miRNA

precursors by computing a probabilistic score for the frequencies of reads, positioning

in correspondence with Dicer processing, and other features that contribute to the

score. The results of miRDeep is scored potential miRNAs with their precursors,

beside an estimation of the false positive rate of the results. An improved version,

miRDeep2 [65], added more features and packages, and it provides an option to

annotate known miRNAs if miRBase files for mature miRNAs and their precursors

was provided. It also uses RNAfold to generate secondary structures of the miRNAs

by calculating the minimum free energy (MFE). In addition, it gives the option for

the user to compute the MFE of miRNA precursor using RANDfold [31]. There are

other versions of miRDeep: miRDeep* [12], miRDeep-P [201], miRPlant [13], and

miRDeep-P2 [100].

miRDeep* is an improved version of miRDeep and has a graphical user interface

that integrates third party computational tools, such as genome alignment and RNA
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secondary structure prediction, into a Java library. miRDeep-P was developed to

identify plant miRNA by modifying miRDeep algorithm to adapt miRNA biogenesis

in plants. Similar to miRDeep*, miRPlant was developed to extend miRDeep-

P by providing a user-friendly interface that does not require any pre-installed

computational tools. miRPlant dynamically plots miRNA hairpin structure with

small reads for identified novel miRNAs. miRDeep-P2 (miRDP2) is an updated

version of miRDeep-P, which was improved by employing a new filtering strategy

and overhauling the algorithm. miRDP2 was shown to have better speed when tested

on miRNA transcriptomes in plants with increasing genome sizes that included

Arabidopsis thaliana, Oryza sativa (rice), Solanum lycopersicum (tomato), Zea mays

(maize), and Triticum aestivum (wheat). By incorporating the newly updated plant

miRNA annotation criteria [20] and developing a new scoring system, the accuracy

of miRDP2 outperformed other programs [100].

3.3.2 miRCat and miRCat2

In 2012, Stocks et al. [170] introduced the UEA small RNA Workbench suite of tools

that analyse and visualise NGS sRNA data. The suite was a successor to the UEA

Small RNA Workbench web-based toolkit that was launched in 2008 [137]. The

Java-based Workbench tools are interactive and user-friendly and were developed to

provide more features comparing to the toolkit. One of the analysis tools is miRCat,

which is a tool that uses plants or animals NGS datasets to predict miRNA precursor.

miRCat searches for miRNA loci on the genome based on the locus criteria that

were defined in previous study [184]. In brief, miRCat attempts to identify the loci

that have two peaks of sRNA reads that map to one strand of the gene. The mature

miRNA and miRNA* are expected to have distinct expression levels, resulting in

two peaks in the sRNA read distribution on the same genomic strand. miRCat uses

PatMaN [148] to map the sRNAs to the genome, in addition to RNAfold [120] and
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RANDFOLD [31] programs, which investigate the secondary structure for each

locus strand.

Unfortunately, most of the implemented prediction methods, including miRCat,

suffer from high false positive rate. Therefore, a new approach called miRCat2 was

introduced [143]. Although it is based on its predecessor, it incorporates several

new features and improvements to increase the accuracy of miRNA identification.

Some of the key differences between miRCat and miRCat2 is that the latter is

optimised for large-scale genome analysis. For predicting secondary structures of

candidate miRNA precursors, miRCat2 incorporates RNALfold algorithm [120], a

modified version of RNAfold. It also incorporates a selection of miRDeep2 features,

such as the scoring system for candidate precursors, that were briefly described in

the previous subsection. As an input, miRCat2 requires at least one FASTA file

containing sRNA sequences , in addition to a genome file for mapping the sequences

with PatMaN. The tool generates results as a table for miRNA prediction candidates

with their details. It has a user-friendly interface that allows the user to interact with

the results by doing further analysis or visualizing the secondary structure for each

candidate. Moreover, the user can export the candidates table, the analysis reports,

and the secondary structure results.

3.4 sRNA target prediction and validation

sRNAs are involved in post-transcriptional gene regulation by binding and silencing

specific mRNAs causing their degradation or inhibiting their translation. By iden-

tifying sRNA targets, researchers can gain insights of the sRNA-mRNA complex

regulatory networks and how interactions between sRNAs and mRNAs contribute

to the regulation of various biological processes such as cells development, organ-

isms growth, and resistance to disease or stress. In plants, there is a high sequence

complementarity between sRNAs and mRNA sequences [157]. Consequently, com-
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putational tools were developed to predict plant sRNA target by using techniques

that search for complementarity between a sRNA sequence and a potential target se-

quence [168, 204]. The majority of these tools use stringent targeting rules inferred

from experimental observations. These rules are implemented within a position

dependent scoring system based on the number of mismatches and target-bulged

bases within the duplex. To the best of our knowledge, there are two sets of targeting

rules for plants. The first set of rules was performed by Allen et al. [6] on a set

of 94 validated sRNA target duplexes in A. thaliana. The second set of rules was

performed by Fahlgren and Carrington on 155 validated target duplexes using a

similar approach to the former rules, yet, a mismatch or G:U wobble at position 10

or 11 of the sRNA is permitted [59]. The difference between the two sets of rules is

that the Fahlgren and Carrington rules permit a mismatch or G:U wobble at position

10 or 11 of the sRNA. Several computational tools and web servers are available for

predicting plant sRNA targets including: psRNATarget [50], TargetFinder [60], and

TAPIR [30]. However, these tools suffer from the rate of false positive predictions,

thus, further experimental validation is required.

As mentioned above, sRNA targets a mRNA transcript and silences it at a

post-transcriptional level through cleavage and degradation. The cleavage usually

occurs between positions 10 and 11 of the sRNA [117]. The examination of mRNA

cleavage fragments is an important step for sRNA targets validation. One method

that is used to validate the putative targets of sRNAs is 5’ rapid amplification of

cDNA ends (RACE), which is used to identify cleavage products for a particular

mRNA [66]. This method is time consuming as it needs to be performed for every

predicted cleavage site on each mRNA. The advances of NGS techniques led to

developing a new approach called Parallel Analysis of RNA Ends (PARE) protocol,

or degradome sequencing, that is used to identify mRNA degradation products on a

genome-wide scale [72]. The protocol is a modified 5’RACE combined with high-

throughput sequencing methods. After mRNA cleavage, the downstream sequence
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of the cleavage site, unlike the upstream sequence, does not degrades. The remaining

mRNA sequences are not capped with an altered nucleotide known as a 5’ cap. The

PARE protocol selectively clones the 5’ uncapped mRNA fragments, and following

that, these fragments are subject to deep sequencing. The mRNA degraded fragments

obtained using this method are called the degradome. When aligned to mRNA

transcript, degradome sequences can provide evidence for a sRNA-mRNA interaction

by showing clear peaks at the cleavage site that is corresponding to the targeting

site of a sRNA. As a consequence, computational tools have been developed to

use sRNA and degradome datasets to identify the interactions between sRNA and

mRNA sequences. CleaveLand [2] was the first tool to analyse degradome data,

other common tools in order of their first appearance, are SeqTar [213], PAREsnip

[63], sPARTA [90], and PAREsnip2 [177]. We now review the degradome analysis

tools that are important to this thesis.

3.4.1 CleaveLand

CleaveLand [2] was the first tool developed specifically to analyse degradome

data, and it has been successfully used to identify sRNA targets in a variety of

organisms. The first stage of the CleaveLand algorithm is to align the degradome

data to the reference transcriptome using Bowtie. The alignments between mRNA

and degradome fragments are processed to quantify the strength of the cleavage

signal at each alignment site using a category system. Specifically, a category system

is defined as follows where Category 0 interaction have the highest confidence:
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• Category 0: There is more than one read at the cleavage site, the abundance

is the maximum on the transcript, and there is only one maximum.

• Category 1: There is more than one read at the cleavage site, the abundance

is the maximum on the transcript, and there is more than one maximum, i.e.

there are two or more targeting signals with the same abundance.

• Category 2: There is more than one read at the cleavage site, the abundance

is above the average fragment abundance but less than the maximum.

• Category 3: There is more than one read at the cleavage site, the abundance

is less or equal to the average fragment abundance.

• Category 4: There is only one read at the cleavage site.

After that, CleaveLand reports potential target sites of a given sRNA with a Perl

script called GStar that is a wrapper and parser for RNAplex [175]. Next, the resulted

potential target sites are combined with those from the degradome read alignment

stage to identify any matches opposite the position 10 of the sRNA. The selected

sRNA-mRNA target interactions are then processed by calculating a p-value, and

interactions that pass the p-value filter are reported.

3.4.2 PAREsnip

PAREsnip was introduced as the first tool that was able to perform a degradome anal-

ysis for the enormous sRNA datasets in a reasonable time [63]. It was introduced as

a part of the UEA sRNA Workbench toolkit mentioned above [170]. For performing

degradome analysis on a given organism, PAREsnip takes the following input files:

sRNAome (sRNA dataset), degradome,

and a reference transcriptome, where the transcriptome contains the set of all

cDNA sequences including coding sequences of mRNA and non-coding untranslated
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regions (UTRs). A transcriptome library can be constructed using the transcriptomics

technique, RNA sequencing (RNA-Seq) [102, 191]. Moreover, PAREsnip accepts

a reference genome as an optional input. The tool uses PatMaN tool for sequence

alignment if genome file is provided, where it only keeps the sRNA sequences

that map to the genome. It also filters out the sequences that do not match to a

user-configurable parameters such as sequence abundance and sequence complexity.

The first step of the PAREsnip pipeline is categorizing the potential cleavage

positions based on the degraded fragments abundance on each site on the transcript.

The five categories system that were implemented in CleaveLand was adopted for

doing this. The PAREsnip algorithm constructs a 4-way search tree structure since

there are four alphabets for the sRNA sequences (A, T, C, and G). This data structure

enables PAREsnip to map the sequences faster and improved its computation rate.

To search the encoded tree, the tool uses Allen et al. targeting rules [6]. The output

file from PAREsnip is a list of a detailed interactions between sRNAs and their target

mRNAs.

3.4.3 PAREsnip2

PAREsnip2 employs a search algorithm and sequence encoding technique to process

the genome-wide scale datasets [177]. It shows a vast reduction in computation

time and resource requirement compared to the previously implemented degradome

analysis tools. The tool accepts the following input files: one or more sRNAome

replicates, one or more degradome replicates, transcriptome (FASTA or GFF3 for-

mat), and a genome (optional unless using GFF3 as transcriptome). PAREsnip2

provides user-configurable targeting rules where the user can choose between the

default Allen et al. rules or the Fahlgren and Carrington rules described above, this

feature enables the users to search for non-canonical targets that would be missed by

the existing targeting rules [34, 90]. Prior to the analysis, the tool provides optional
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filtering techniques that can be used to discard the following sequences: sequences

with ambiguous bases, low complexity sequences, sequences that are not conserved

among replicates, and sRNA sequences that do not align to the genome.

A core part of PAREsnip2 algorithm is the binary encoding of sequence input

into a number system by representing each nucleotide base (see Chapter 2) using

two bits of computer memory. This process reduces the computation time and

memory required to perform the analysis. The next stage of PAREsnip2 algorithm is

the generation of target-sequence candidates by aligning the degradome fragments

to the transcriptome using the binary encoding. The generated target candidates

are then sorted into a 5-category system that is similar to the system defined in

CleaveLand. A three-stage candidate filtering technique was developed to reduce the

target-sequence candidates. Each target candidate that pass the three-stage filtering

method is then aligned to the sRNA sequence by using the pre-chosen targeting

rules. Once a potential target has been identified, two optional filtering methods, a

minimum free energy (MFE) ratio filter and a p-value filter, can be performed to

improve the confidence level of each target prediction.

The results of PAREsnip2 are provided in comma separated value (CSV) format

where they include information about the sRNA-mRNA interaction, such as the

category of the interaction and the cleavage position. It is also possible to produce

target plots (t-plots) from PAREsnip2 results using the T-plot tool contained within

the UEA Small RNA Workbench. A t-plot shows the degradation activity for a

transcript where the cleavage site could be highlighted. The x axis gives nt positions

along the transcript. The y axis gives the abundance of cleavage fragments.
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3.5 Discussion

In this chapter, we have introduced several bioinformatics tools that are related

to miRNA prediction methods. We discussed various computational tools used to

identify different classes of sRNA from NGS data. We then introduced methods for

predicting plant sRNA targets. Also, we introduced PARE, an NGS technique that

identifies the mRNA cleavage products, degradome. Finally, we discussed several

tools that apply the degradome analysis to predict sRNAs targets. In the next chapter,

we will present a new method for identifying miRNAs using the degradome analysis,

which will use some of these tools.
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Chapter 4

Degradome Assisted miRNA

Prediction

4.1 Summary

In this chapter, we present a new approach for miRNA detection based on the

functional information provided by degradome. This work [11] was published in

IEEE/ACM Transactions on Computational Biology and Bioinformatics and this

chapter is an adapted version of that article. The parameter-search algorithm was

initially developed by CA for miRCat, and SA modified it to comply with miRcat2.

The parameter-search experiments were carried out by SA for miRCat2, and by CA

for miRCat. CA, DS, TD, LF and VM analysed and interpreted the data produced

using miRCat and PAREsnip. SA, TD, LF and VM analysed and interpreted the

data produced using miRCat2 and PAREsnip2. SA took the lead in writing the

chapter with input and critical feedback from LF and VM. In this chapter, we start

by introducing the shortcomings of the current miRNA prediction methods, followed

by recently suggested miRNA annotation criteria. We then investigate the effect of

using more permissive parameters for miRNA prediction, in particular, we develop

an algorithm to explore and evaluate different parameter combinations. Moreover,
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we present a new combination approach to miRNA prediction, which uses the

functional information extracted from a genome-wide degradome-assisted sRNA

target analysis.

4.2 Background

As mentioned in Chapter 2, miRNAs are a class of non-coding sRNA that typically

have a sequence length in the range of 20 to 24 nt [24]. The defining feature of a

miRNA is the precise excision of a duplex from an RNA hairpin precursor structure

by a Dicer like-enzyme. The duplex contains both a mature miRNA and a miRNA*

sequences with a 2 nt overhang at the 3‘ ends. However, a pairing between a mature

miRNA and a miRNA* within a duplex is often imperfect, including variation in the

number of nt mismatches, bulges, and the number of nt within a bulge [154, 207].

The full-length precursor of a miRNA also exhibits variation in features such as its

stem-loop folding composition as well as its length [49]. Such variability of features

within both a miRNA stem-loop precursor and a mature miRNA duplex in plants

can present a challenge for the accurate computational annotation of miRNAs within

a genome-wide sRNA profile and in particular the correct attribution of sRNAs to

the class of miRNAs [133].

In plants, it is typical for a high degree of complementarity between the sRNA

and its target mRNA, often resulting in its translational silencing through cleavage

and degradation [44, 117]. As discussed in Chapter 3, in recent years, NGS tech-

nologies have been used to capture an organism’s entire sRNAome profile in a single

experiment on a genome-wide scale. Such a profile contains many classes of sRNA

which are grouped based on their biogenesis and function.
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4.2.1 Shortcomings of current miRNA prediction tools

The methods used within most tools for predicting plant miRNAs from the sRNAome,

such as miRPlant, miRCat2, and miRDeep-P as discussed in Chapter 3, use dated

annotation criteria from 2008 which employ a set of suggested miRNA biogenesis

features. These features are comprised of a set of stringent criteria that have been

used to model a miRNA. However, these criteria were published over a decade ago

[133] and do not describe, or account for, a growing number of validated miRNAs

that follow a model composed of a less stringent criteria. Therefore, the currently

available tools risk discarding bona fide miRNAs. Moreover, in spite of using a

stringent biogenesis model underpinning their prediction algorithms, some of these

tools still tend to generate a large number of false positive predictions [76].

4.2.2 miRNA annotation criteria

Recently a new set of miRNA annotation criteria has been reported [20], suggesting

that more flexibility is required in several of the criterion of the miRNA annotation

model in order to identify validated miRNAs that were previously missed using the

former criteria. The newly suggested model also applies some restrictions on the

length of the miRNA, miRNA* and precursor. It also requires biological replication

of the sRNA profile and suggests that further experimental validation beyond NGS

of the sRNA profile is not required. In addition, the authors have suggested that their

updates could contribute to the reduction of false positives. Even so, a more flexible

choice of a less stringent set of parameters, e.g. allowing more mismatches within a

duplex and increasing the size of gaps within a duplex, is likely to result in capturing

more validated and verifiable miRNAs, and therefore to increase the total number of

miRNA predictions overall.

We hypothesised that using more flexible miRNA annotation criteria could

identify miRNAs with extreme biogenesis that would be missed using the current
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criteria. However, allowing this flexibility in computational miRNA prediction

methods may run the risk of increasing the rate at which false positives are predicted.

To overcome this, we proposed utilising the degradome, which can be used to validate

sRNA targets (see Chapter 3), in order to minimize the identification of false positives

in the miRNA predictions. The degradome is useful to identify miRNA mediated

cleavage [144], and the defined category system within degradome analysis tools,

which were discussed in Chapter 3, ranks the confidence level of miRNA-mRNA

interactions, and hence, it could support the miRNA identification.

In order to test our hypothesis, we introduced a novel combination method to

predict miRNAs using miRCat2 by allowing some flexibility in the miRNA annota-

tion criteria while utilising targeting information obtained from degradome analysis

using PAREsnip2. In particular, our new approach using degradome data helps in the

sRNA annotation effort in several ways. Firstly, by conceptually reducing the number

of sRNA candidates to those that are potentially functional and cleavage capable.

Secondly, the use of less-stringent miRNA secondary structure prediction parameters

for miRNA candidates within the functional sRNA subset becomes feasible when

modulating by their function. And thirdly, the predicted miRNA mediated cleavage

signal and biogenesis information can be examined simultaneously to derive a final

consensus miRNA candidate set that can be computationally filtered and ranked by

confidence information for further experimental validation. Below we shall demon-

strate that even though a greater number of candidate miRNAs tend to be generated

with more flexible parameters, our combination method is able to reduce this number

by employing degradome information. Our combination approach is made freely

available in user-friendly software called ‘PAREfirst’ [11] that can be downloaded

from: https://github.com/sRNAworkbenchuea/UEA_sRNA_Workbench.
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4.3 Methodology

We begin by describing our approach to investigate the effect of allowing more per-

missive parameters on miRNA prediction. This approach is novel in that it explores

the effect of more permissive parameters on miRNA prediction and degradome

analysis. The method uses degradome analysis for miRNA prediction, which is a

departure from the conventional use of degradome analysis for target prediction.

While PAREsnip2 has been previously used for degradome analysis to identify

sRNA targets, this method utilizes functional information obtained from degradome

analysis to computationally filter and rank candidate miRNAs. Our approach uses

the miRCat2 [143] tool for miRNA prediction and the PAREsnip2 [177] tool for

degradome analysis. Recall that, in brief, miRCat2 is a miRNA prediction method

that uses an entropy-based approach to detect miRNAs within a genome. As inputs,

the method requires a reference genome and sRNAome. The method first identifies

potential miRNA candidates based on sRNA abundance and then applies a number

of filters such as mapping locus, size class distribution and miRNA-like alignment

patterns on the candidates before calculating their miRNA secondary structures.

The method outputs miRNA predictions in a tabular format and was selected for its

improved accuracy when compared to similar tools.

PAREsnip2 is a degradome analysis method that can be used to identify sRNA

targets. As discussed in Chapter 3, PAREsnip2 requires sRNAome, degradome, and

transcriptome. The method first performs several optional quality filtering steps on

the input sequences. The method’s algorithm then encodes input sequences into

a decimal number which is then used to make exact match sequence alignments

and subsequently identify potential sRNA-target pairs. The tabular output contains

information on the sRNAs and their potential target sites along with abundance

and degradome assisted confidence metrics. PAREsnip2 was selected because it
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shows a more efficient performance in term of computation time and resources,

such as memory usage, compared to previously developed target prediction tools.

The tool enables users to perform degradome analysis on large-scale datasets using

configurable targeting rules. Both of miRCat2 and PAREsnip2 are implemented in

the UEA sRNA workbench, and have the advantage that they can be easily configured

and have been shown to perform comparatively well compared with other tools [169].

First, we implemented a parameter-search algorithm that is described in detail

in the next subsection to produce a collection of roughly 150 exploratory parameter

sets (denoted EPS), see Appendix A Table 1 for the complete list of the EPS. We

then produced an updated miRCat2 parameter set (denoted UPS) based on the new

criteria presented in [20]. For comparison, we present the main criteria for EPS and

UPS in Table 4.1, together with the default miRCat2 parameter set (denoted DPS).

Then, for each wild-type sRNA sample we obtained three sets of miRNA predictions

using the miRCat2 tool with the DPS, UPS, and EPS.

Next, we performed a target analysis with PAREsnip2 and used its outcome to

control the false positive miRNA predictions that could result from relaxing the

biogenesis parameters without losing the majority of the validated miRNAs. The

analysis was performed using the wild-type sRNA replicates, degradome replicates,

the transcriptome, and the genome. In addition, we used Fahlgren and Carrington

[59] targeting rules, allowed categories 0-3, disabled MFE and p-value filters, sRNA

length from 18-25 nt, and disabled the core region multiplier. These more permissive

parameters were used to capture validated sRNA-target interactions that would have

been missed using the default settings [35].

Moreover, we used Dicer-like1 enzyme (DCL1) mutant sRNA data sets to val-

idate the predicted functional miRNAs. In particular, we performed a differential

expression (DE) analysis using DESeq2 [121] within iDEP9 [71] between the three

wild-type sRNA replicates and the three DCL1-mutant sRNA replicates. The pre-

dicted miRNAs that were two-fold down-regulated in the DCL1-mutant were con-
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miRCat2 parameter DPS value UPS value EPS ranges
min_length (a) 20 20 18, 19, 20
max_length (b) 23 24 23, 24, 25, 26
min_fold_len (c) 45 40 40, 45
max_fold_len (d) 250 300 250, 300, . . . , 400
max_amfe (e) -22 -22 -32, -27, . . . , -2
Complex (f) 0.90 0.90 0.50, 0.60, . . . , 0.90
clear_cut_perc (g) 0.92 0.90 0.52, 0.62, . . . , 0.92
gaps_mirna (h) 4 5 4, 5, . . . , 8
no_loop (i) 3 3 3, 4, . . . , 7
Repeats (j) 25 25 25, 30, . . . , 40
p-val (k) 0.05 0.05 0.05
RANDfold (l) false false false
complex_loop (m) true true true

Table 4.1 The miRCat2 parameters for DPS, UPS, and the ranges for EPS parameters.
Parameters are labelled as follows: (a) minimum length of miRNA, (b) the maximum
length of miRNA, (c) minimum length of precursor, (d) maximum length of precursor,
(e) maximum value for the adjusted MFE for a miRNA precursor, (f) complexity
of sequence, (g) percent of incident reads that should fall between the same start
and end positions as the miRNA, (h) maximum number of consecutive gaps on
the precursor on the miRNA location, (i) Maximum number of bulges in the loop
area of the precursor, (j) maximum number of times a sRNA can map to a genome,
(k) RANDfold computation, (l) threshold for the RANDfold value, and (m) if a
precursor with multiple loops between miRNA and miRNA* is allowed.

sidered as enriched candidate miRNAs. Additionally, we performed a similar DE

analysis between the wild-type replicates and DCL4-mutant triplicates. We show the

results of DE analysis for WT_DCL1 in Appendix A Table 2, and for WT_DCL4 in

Appendix A Table 3.

To further investigate the enriched miRNA candidates, we aligned the candidates

to all the plant species miRNAs that were retrieved from miRBase using PatMaN

[148], allowing one mismatch to allow for isomiRs. We also discarded the candidates

that align to other RNA classes such as tRNAs, rRNAs, snoRNAs and snRNAs that

were described in Chapter 2.
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4.3.1 Generating permissive miRCat2 parameter sets

To generate exploratory parameter sets (EPS), we designed an iterative local parameter-

search tool that uses a hill-climbing algorithm [158] to explore more permissive EPS

combinations. More specifically, ranges were set for each configurable miRCat2

parameter (Table 4.1), which were provided to the algorithm as a technique to reduce

the size of our parameter-space. The algorithm starts with a random selection of

parameters within the given ranges. For each iteration, a check is made to each

neighbouring EPS in which each parameter value is incremented or decremented.

Predictions using miRCat2 were then made for each of the neighbouring EPS and

the algorithm chooses a new EPS based on the score function described below. This

process is repeated until there is no further improvement on the score and the highest

scoring EPS is retained, a diagram illustrating this series of steps is presented in

Figure 4.1. The algorithm was performed 100 times, using a randomly selected

starting EPS for each run, of which we selected the highest scoring 50 EPS. The

search was applied on each wild-type sRNA replicate, and we combined the top

scoring 50 EPS to generate our final collection of 150 EPS that are listed in Appendix

A Table 1.

The score of each EPS was calculated based on three sets: the set of miRCat2

predictions using the EPS being evaluated denoted by m, the set of predicted func-

tional sRNAs from PAREsnip2 denoted by p, and the set of validated miRNAs

from miRBase denoted by mb. For the purpose of the parameter search method, we

obtained the set p for each replicate from PAREsnip2 using Allen targeting rules [6]

and the default parameters with the exclusion of weak cleavage signals summarised

as PAREsnip2 categories 2, 3 and 4 interactions to generate high confidence results.

The score that we used is given by:
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Figure 4.1 An overview of the parameter-search algorithm used to explore more
permissive miRCat2 parameter sets (PSs). Solid rectangles represent processes,
arrowed lines represent inputs and data flow, and round rectangles represent output.

score(EPS) = a+b+(1.5∗a/(a+b))+(c/(c+d)) (4.1)

where a = | m∩ p∩ mb |, b = | m∩ p∩ mb′ |, c = | m∩ p′∩ mb |, and d = |

m∩ p′∩ mb′ |, where ′ denotes the set complement.

In particular, the score in 4.1 was mainly calculated based on the intersection

between the predictions of m and p, in addition to the ratio of mb in that inter-

section multiplied by 1.5. The factor 1.5 was chosen randomly as we found that

the multiplication by a number greater than 1 would emphasise the score of EPS

with an improved number of validated functional miRNA predictions in a. We also

considered the non-functional validated predictions in m, hence, we added the ratio

of non-functional predicted mb to the total non-functional predictions in m.

Retrieving the less stringent parameters using the parameter-search method

requires running miRCat2 multiple times. However, the miRCat2 version that
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was available at the time we started using the search method was depending on

the database module within the UEA sRNA Workbench. Running this version

multiple times on large sRNA datasets was imposing considerable computation time

and memory resource constraints. Therefore, we contributed to the inclusion of

a standalone version of miRCat2 that does not require the database module and

performs the analysis within reasonable time frame compared to the main miRCat2

version. Moreover, we enabled additional features in miRCat2, such as including

miRBase annotation in the results. The standalone miRCat2 version has been

incorporated into the UEA sRNA Workbench and can only be executed through the

command-line interface (CLI), allowing it to be integrated in other bioinformatics

pipelines. The source code of the standalone miRCat2 version can be found in:

https://github.com/sRNAworkbenchuea/UEA_sRNA_Workbench.

4.3.2 PAREfirst implementation

PAREfirst is a user-friendly, cross-platform (Windows, Linux and MacOS) tool that

has been implemented in Java programming language (version 8) and is incorporated

into the UEA sRNA Workbench [169]. This enables the users to utilize the existing

pre-processing tools (e.g. Filter tool) of the Workbench to perform the PAREfirst

analysis. The workflows within the Workbench are implemented via following the

Model View Controller (MVC) framework and they can be connected together to

form a workflow, which allows the flow of data between them and the ability to fully

configure the workflows prior to runtime. Workflows in the Workbench are initiated

by either the Database or FileManager module. The Database module creates a

database on disk to store data during analysis. The FileManager module, on the other

hand, serves as the input module that stores paths for input files. Both modules share a

common GUI interface. Figure 4.2 presents a pipeline for PAREfirst, which combines

miRCat2 and PAREsnip2 workflows into a tool within the UEA sRNA Workbench.
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The user can perform a highly configurable analysis in a JavaScript graphical user

interface (GUI) that produces an easily interpreted list of predicted miRNAs along

with a visual representation of the prediction secondary structure and confidence

metrics. Further validation of PAREfirst predictions can be achieved through several

techniques including: sRNA-seq replication [20], laboratory experiments, and DE

analysis [135].

PAREfirst accepts as an input the following files in FASTA format: a sRNA

dataset file in redundant or non-redundant format, a degradome file in redundant

format, a transcriptome file, and a genome file. The sRNA and degradome library files

must be pre-processed, if they were not in the required format, to have the redundant

or non-redundant format, and the adapters trimmed, this can be done using the filter

ad adapter removal tools within the UEA sRNA Workbench [170]. Additionally, the

user can configure the parameters for both PAREsnip2 and miRCat2 before starting

the analysis. The tool performs the PARE analysis first using PAREsnip2 to produce

the functional sRNAs that are stored by the database module in the Workbench. After

that, it generates the miRNA predictions with miRCat2, which are also stored by

the database module. The tool then retrieve all the stored predictions and combines

the results to gain a set of functional miRNA predictions. Importantly, this method

allows the use of less stringent rules for miRCat2, since the outcome of miRCat2 is

controlled by the PARE analysis results.

As an output, PAREfirst exports and displays a table within a GUI interface

containing information for the predicted functional miRNAs (Figure 4.3). In addition,

the user is able to visualise and export target-plots (t-plots) [72] that are useful to

distinguish true miRNA-mediated transcript cleavage sites from background noise,

and the secondary structures for the predicted miRNA precursor using RNAplot

[120] to visualise the hairpins. The computational efficiency of PAREsnip2 and

miRCat2 allows PAREfirst to run on a desktop computer. Moreover, PAREfirst

can be performed through command-line, which allows it to be used with other
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Figure 4.2 Schematic of the PAREfirst workflow used to perform a large-scale
investigation of miRNAs and their targets evidenced through the degradome, along
with parameter-search algorithm that provides less stringent parameter set (PS) for
miRCat2 analysis. Solid rectangles represent processes, arrowed lines represent
inputs, data flow, and output. The modules within PAREfirst are enclosed within
dotted lines.

bioinformatics workflows. The PAREfirst source code, tutorial data, and manual files

can be found on: https://github.com/sRNAworkbenchuea/UEA_sRNA_Workbench.

The availability of the UEA sRNA Workbench on Github enables the community

to to make modifications to current tools and create new ones that can be easily

integrated into the existing framework. PAREfirst documentation can be found in

Appendix A File 1.
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To assess the performance of PAREfirst, we ran it on our data sets and bench-

marked the results against other commonly used miRNA detection tools, miRCat2

and miRDeep-P2 [100]. To produce PAREfirst predictions, we used the EPS for

miRCat2 analysis and the permissive PAREsnip2 parameters that were described

above. The miRNA predictions for each of the other tools were obtained using

the UPS for miRCat2 and the default miRDeep-P2 parameters (described in the

user manual) for miRDeep-P2. We aligned the predictions to the mature miRNAs

from miRBase to identify the validated miRNAs. Also, we excluded the miRNA

candidates that aligned to other non-coding RNA classes.

4.3.3 Data sets

The organism that we considered for this study is A. thaliana. We used three wild-

type and three DCL1-mutant A. thaliana sRNA biological replicates that are publicly

available (GSE90771) [143], we called the wild-type sRNAome WTA, WTB, and

WTC, and the DCL1 mutant samples: DCL1A, DCL1B, and DCL1C. Table 4.2

gives a summary of the three wild-type replicates and the three mutant replicates.

Additionally, we used three A. thaliana DCL4-mutant datasets that were obtained

from GEO (GSM4061704, GSM4061705 and GSM4061706) [87]. The PARE

analysis was performed using the corresponding degradome for each wild-type

replicate that are also available on GEO (GSE113958) [177]. For evaluation, we

used the 326 unique mature miRNAs, which are excised from 426 precursors for A.

thaliana from miRBase registry (v22) [76], and for the sake of this thesis, we refer

to them as the validated miRNAs. The reference A. thaliana genome TAIR10 [174]

was used, in addition to the transcriptome TAIR10 cDNA 20110103 representative

gene model updated [27]. The DCL mutant raw data was processed using tools

within the UEA sRNA Workbench.
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Datasets Redundant sequences Unique sequences

WTA 6 698 044 1 362 057
WTB 4 514 396 1 107 617
WTC 5 173 806 1 121 816
DCL1A 12 296 993 3 042 828
DCL1B 11 234 476 2 548 906
DCL1C 15 347 268 3 132 360

Table 4.2 Total number of sRNAs in wild-type (WT) and Dicer (DCL1) mutant A.
thaliana biological replicates.

We trimmed the adaptor sequences using the adapter trimming tool. Next, we

aligned the sequences to the genome (TAIR10) with no mismatches allowed and

discarded sequences with ambiguous bases using the Workbench Filter tool.

We further investigated the applicability of our method on other plants. Here we

followed a similar approach for the data preparation and the target analysis parame-

ters, however, we excluded the DE analysis due to the lack of DCL1-mutant data.

The investigated species were the commonly studied tomato, Solanum lycopersicum

(S. lycopersicum), and rice, Oryza sativa (O. sativa). For S. lycopersicum analysis,

we used the publicly available sRNA data sets from GEO [180] (leaf GSM803579,

flower GSM803580, and fruit GSM803581), and performed the target analysis

with the corresponding tissue degradome data from a different study [119] (leaf

GSM553688, flower GSM553689, and fruit GSM553690). The reference genome

(SL3.0) and transcriptome (ITAG3.0) were downloaded from the Sol Genomics

Network [61]. For O. sativa data, we used four sRNAome libraries [167] (Indica

rice seedling and panicle, GSM562942 and GSM562943, Japonica rice seedling and

panicle, GSM562946 and GSM562947). Also, we used two degradome libraries

from another study [197] (seedling GSM455938 and panicle GSM455938), where

we performed the target analysis on one tissue of the degradome data with the two

corresponding tissue sRNA data sets. The reference genome and transcriptome were

obtained from the Rice Annotation Project Database [93, 159]. The annotation for
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both S. lycopersicum and O. sativa were performed using all plant mature miRNAs

from the miRBase registry (v22).

4.4 Results

4.4.1 Comparison of miRCat2 analysis using different parameter

sets

We hypothesised that using more flexible miRNA criteria would improve the predic-

tion of valid and novel miRNAs. To test our hypothesis, we applied our method on

the well-studied genome A. thaliana, as the objective of this analysis is to prove this

concept, rather than to present a method that predict more valid miRNAs.

To compare the effect of applying more flexible alternative annotation criteria

to miRNA prediction, we ran miRCat2 on wild-type sRNA data sets: WTA, WTB,

and WTC, using the three parameter sets: DPS, UPS and EPS. For the purpose

of improved confidence in predicted miRNAs, those having fewer than 10 reads

were discarded from further analysis. We also filtered read counts by excluding

isomiRs (sequences that are one or two nt shorter or longer than the canonical mature

miRNAs), thus providing a clear quantification of the mature miRNA for each

prediction. In addition, we considered conservation of the mature miRNA sequence

across the three biological replicates in an attempt to provide a higher degree of

confidence based upon multiple observation of the sequence [63]. For this thesis,

we define a miRNA as conserved if it was expressed in at least two out of the three

wild-type replicates. Furthermore, we used the validated miRNAs from miRBase as

a reference to evaluate the results, even though we acknowledge its limitations with

regards to the quality of miRNA annotations [20, 161]. We split the candidates into

two groups: C and P; the reason for this categorization is that multiple miRNAs and

miRNA-like RNAs can originate from one miRNA precursor [206, 211].
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Figure 4.4 UpSets plots show the number of (a) validated miRNAs and (b) candidate
miRNAs that are shared between miRCat2 predictions using DPS, UPS, and EPS
parameter sets.

In Figure 4.4, we present the number of miRNAs that are shared between the

miRCat2 predictions using DPS, UPS and EPS. We also present the number of

miRCat2 predictions using the three parameter sets in Table 4.3(a). The table

includes the number of all validated miRNAs within a sRNA replicate as well as the

validated miRNAs predicted by miRCat2 using the three parameter sets. Comparing

the results produced using each of the parameter sets, we observe that the UPS

succeeded in predicting one or two more of the validated miRNAs in each replicate,

and only predicted several new candidates when compared to DPS. Hence, it is

likely that the false positive rate is still low and the performance of UPS is overall

sufficient. Yet, using the EPS with miRCat2 performed slightly better in predicting

more of the validated miRNAs. In particular, four more validated miRNAs that are

conserved were predicted compared to DPS. However, it generated a high number of

new candidate predictions that may include a number of false positives. To that end,

increasing the flexibility increases the false positives in comparison to the updated

criteria.
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DPS UPS EPS
Filter Replicate AV V C P V C P V C P

(a)
None
(all
predictions)

WTA 132 87 8 33 89 29 33 92 129 43
WTB 126 85 6 28 87 25 31 89 97 39
WTC 127 90 6 26 91 27 28 95 106 37
Conserved 136 87 6 31 88 28 33 91 103 42

(b)
PAREsnip2
filter

WTA 127 85 5 31 87 13 31 90 61 40
WTB 109 74 4 25 75 9 28 77 35 33
WTC 83 55 3 18 55 4 19 59 34 26
Conserved 121 78 3 29 78 9 31 81 39 38

(c)
PAREsnip2
and
DCL1 filters

WTA 91 63 3 27 64 8 26 67 33 34
WTB 78 55 2 22 56 6 24 58 26 29
WTC 59 41 2 18 41 3 19 45 17 26
Conserved 85 58 1 26 58 6 27 61 23 34

(d)
Only DCL1
filter

WTA 95 65 5 29 66 17 28 69 77 37
WTB 92 63 3 25 65 16 27 67 57 34
WTC 93 67 3 25 68 17 26 72 57 34
Conserved 97 65 3 28 66 18 29 69 63 37

(e)
PAREsnip2
and
DCL4 filters

WTA 79 54 4 19 56 21 20 56 44 26
WTB 79 46 4 17 57 19 21 48 28 23
WTC 79 39 3 11 57 21 18 41 17 15
Conserved 79 49 3 17 56 21 21 50 27 24

(f)
Only DCL4
filter

WTA 77 55 6 20 56 21 20 57 92 28
WTB 66 55 6 19 57 19 21 58 75 28
WTC 55 56 6 16 57 21 18 59 78 27
Conserved 70 55 6 19 56 21 21 57 78 28

Table 4.3 The number of validated miRNAs that were found in our sRNA data sets,
miRCat2 predictions using default parameters (DPS), updated parameters (UPS), and
exploratory parameters (EPS) from the parameter-search method. AV: all validated
miRNAs within a sRNA replicate, V: validated miRNAs predicted by miRCat2, C:
candidate miRNAs predicted by miRCat2 and do not map to miRBase validated
precursor loci, P: candidate miRNAs predicted by miRCat2 that map to a validated
precursor but do not map to the canonical miRNA site. The conservation level used
is between two or three replicates. All validated and candidate miRNAs have a read
count above 10 reads.

We now present the results of applying the PAREsnip2 filter on the miRCat2 pre-

dictions. Although using less-stringent parameters for predicting miRNAs and their
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precursors can introduce an increase in false positive predictions, we only consider

the intersection between PAREsnip2 and miRCat2 predictions. Table 4.3(b) presents

the number of miRNA predictions that are involved in a mRNA targeting interaction.

It appears to be that the PAREnip2 filter kept a similar number of the validated

miRNAs in each of the miRCat2 results across the three parameter sets, as true

miRNAs are more likely to have a target. On the other hand, it discarded one-third

or more of the non-validated candidates predicted by DPS and UPS. The functional

filter reduced the majority of the EPS candidates, and upon manual inspection, we

found that these candidates had secondary structures that were grossly inconsistent

with miRNA biogenesis, hence, we consider this group to contain the highest number

of potential false positive miRNA candidates. Accordingly, a function-first approach

using degradome-assisted functional-filtering shows promising results, where we

reduced the miRNA candidates to a list of 39 potential conserved functional miRNAs

that can be carried forward for further investigation.

To validate the functional miRNA predictions, we performed a DE analysis

between the wild-type and DCL1-mutant samples. Since the DCL1 has an important

role in the miRNA biogenesis pathway in A. thaliana, knocking down its activity

causes reduction in the expression of the miRNAs [95]. The outcome of applying the

DCL1 validation filter was a set of predicted functional miRNAs that are enriched

in the wild-type samples. The validation step discarded a number of the functional

miRNAs and the results are shown in Table 4.3(c). The outcome shows a further

reduction in the candidate predictions, where these remaining candidates could have

a higher degree of confidence. Full details for all functional miRNA candidates

and the conserved enriched functional miRNA candidates are found in Appendix A,

Tables 4 and 5.

We also present the results for applying the DCL1 validation on all predictions

in Table 4.3(d). It seems that several validated miRNAs were not down-regulated in

the mutant samples. This could be because of a DCL1-independent pathway, and, in
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some cases in A. thaliana, miRNAs are sometimes processed by a different Dicer

family member such as DCL4 [25]. To investigate this hypothesis, we applied the DE

analysis between wild-type and DCL4-mutants. The outcome of applying the DCL4

validation filter on the predicted functional miRNAs are presented in Table 4.3(e)

and (f). The comparison between the up- and the down-regulation that occurred in

WT_DCL1 and in WT_DCL4 is shown in Figure 4.5, which shows an overlap of

seven validated miRNAs that were Down_WT_DCL1 and Up_WT_DCL4, and this

could indicate a major involvement of DCL4 in some miRNA biogenesis pathways.

Furthermore, we investigated whether there is a need for applying more flexible

criteria on other plant species, and assessed the applicability of the functional analysis

filter on those species. To do that, we selected two plants genomes, including tomato

and rice , based on the availability of a set of validated miRNAs and the availability

of degradome datasets for each species. In Table 4.4, we present the number of

predictions produced using both DPS and UPS, and the effect of applying the

functional analysis filter on these predictions. As for S. lycopersicum results, the

numbers of mature miRNAs that are present within the datasets were low, which

explains the low numbers of miRCat2 predicted validated miRNAs. Also, we

observed that the number of validated miRNA predictions did not increase in UPS

compared to DPS. Hence, S. lycopersicum miRNA might benefit from applying more

flexibility in miRCat2 parameters, which could improve the prediction of validated

miRNAs, as observed in A. thaliana predictions. The application of functional

analysis filter kept around half of the validated miRNAs across all replicates. On

the other hand, majority of candidate miRNAs that were produced using both DPS

and UPS, were filtered. Similarly to A. thaliana, the functional filter narrowed down

the number of miRNA candidates, which supports the applicability of this filter

on tomato datasets, however, further validation of these remaining candidates is

required. Likewise, in order to enhance the prediction of validated miRNAs, further

flexibility in the tomato miRNA biogenesis might be needed.
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Figure 4.5 Schematic of the overlap between the number of the enriched miRNA
predictions in wild-type vs DCL1-mutant, and in wild-type verses DCL4-mutant
is shown in Venn diagrams for (a) the validated miRNAs and (b) the candidate
miRNAs.

In O. sativa, there is a slight increment in the number of predicted validated

miRNAs in the UPS results compared to the DPS, majority of the validated miR-

NAs that are present in the sRNA datasets were not reported with both DPS and

UPS, thus, as observed in A. thaliana and S. lycopersicum, miRNA prediction in

O. sativa may benefit from exploring more flexible biogenesis rules. The results

also show that the functional filter excluded a minority of the predicted validated

miRNAs in the seedling samples, with a reduction of 18% in GSM562943 and 27%

in GSM562947. Yet, high proportion of the validated miRNA were excluded in

panicle samples GSM562942 (48%) and GSM562947 (93%). Additionally, the filter

excluded a majority of the candidates across all datasets. Correspondingly, these

results suggest that our method might be applicable to other plant species, however,

further investigation and validation are required.

4.4.2 Investigation of the miRNA annotation criteria

Further investigation on A. thaliana was applied to find whether the predicted

secondary structures produced by miRCat2 with DPS, UPS, and EPS fit under the
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2008 criteria, 2018 criteria, both criteria, or do not fit any of them. where the category

of both criteria does not intersect with the 2008 or the 2018 criteria. The results are

presented in Table 4.5. In this table we refer to the category where the precursor

does not fit any criteria as ‘Undefined’. In the following, we only consider miRNA

precursors rather than the unique mature miRNA sequences, since the annotation

is based on both the miRNA/miRNA* duplex and precursor structure features. We

observed that most of the miRNAs that were predicted exclusively from any single

replicate do not fit any criteria, hence, they were discarded since the conservation

between replicates supports the confidence of the miRNA. Therefore, Table 4.5 only

includes the grouping of the precursors that were predicted by miRCat2 in two or

three sRNA replicates.

We observed that a few validated miRNAs do not fit any of the criteria, and

a similar case was addressed by Axtell and Meyers [20] where some entries in

miRBase may need to be revised. In addition, we looked into the validated miRNA

precursor structures that are shown in miRBase and we observed that some of them

have 1-nt overhangs at the 3’ ends of the miRNA/miRNA* duplex instead of 2-nt as

the annotation criteria suggested. Interestingly, even with the 2018 criteria included

via the UPS for miRCat2, some of the predictions are still categorised as ‘Undefined’

criteria. As explained before, Table 4.5 also shows that the EPS predicts a higher

number of all prediction candidate precursors than the DPS and UPS, and it seems

that the majority of these candidates fit under the ‘Undefined’ category, and these

candidates were considered to contain a high number of the false positives. Using

the degradome assisted sRNA targets as a filter has discarded the majority of these

false positives, while keeping most of the validated miRNA precursors.
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Furthermore, the majority of DPS predictions were kept during this step, where

these predictions provide confidence through their strict miRNA features. As with

the PAREsnip2 filter, applying the DE analysis validation, the DCL1 filter, also

excluded the majority of the EPS candidate miRNAs that fit under the ‘Undefined’

category, and only excluded a minority from the rest of the results.

4.4.3 New miRNA and miRNA* candidates

We carried out an investigation of the miRNA candidates that are involved in a

mRNA-target interaction and enriched in the wild-type samples. Before doing so,

we excluded miRNAs that map to mature miRNAs, mature miRNA isomiRs, and

the other RNA classes. As a result, we identified a potential novel miRNA with

its miRNA* that map to one unannotated locus in the genome. To check if these

candidates have already been annotated in other species, we performed a local

alignment on all plant mature miRNAs from miRBase, and we found that the miRNA

and miRNA* are not present in other genomes. Additionally, we aligned the enriched

miRNA candidates to sequence databases using BLASTN algorithm within BLAST

web interface, and we found no match with other plant species. The mature candidate

was predicted along with its miRNA* and hairpin structure using UPS and EPS for

miRCat2. The secondary structure of the candidate precursor with the highlighted

miRNA/miRNA* duplex is shown in Figure 4.6(a). In addition, the majority of reads

in the precursor align to the miRNA/miRNA* duplex as shown in Figure 4.6(b). This

candidate precursor falls under the 2018 miRNA annotation criteria.

The abundance of the mature miRNA appears to be low (less than 100 reads)

compared to most of the known miRNAs in our samples. Additionally, the mature

abundance is double the miRNA*, which is a requirement for a well formed ‘bona

fide’ miRNA duplex [20]. As shown in the WT_DCL1 DE analysis results in Ap-

pendix A Table 2, both the mature and the star sequence are differentially expressed
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with Log2(fold-change) of 4.48 and adjusted p-value < 0.05. We present the t-plots

for the most confident predicted mRNA-target interactions for the mature miRNA in

Figure 4.6(c) and the miRNA* in Figure 4.6(d). It seems that the mature sequence

does not show a strong signal in its t-plot compared to the miRNA*, which shows a

higher peak. According to PAREsnip2 results, the mature miRNA is predicted to

be involved in targeting interactions of category 2 with three different genes, while

the miRNA* have six different targeting interactions of category 2. We discussed in

detail potential functions of the mature miRNA and the miRNA* in Chapter 5. Also,

details about the candidate precursor and the miRNA/miRNA* target interactions

can be found in Appendix A, Table 5. Additionally, we explored alternative four A.

thaliana data sets (flower GSM707678, leaf GSM707679, root GSM707680, and

seedling GSM707681), and the potential novel miRNA and its star sequence were

present in flower, leaf, and seedling samples. We performed miRCat2 analysis on

these three data sets using UPS and the potential novel miRNA secondary structure

was predicted with its miRNA/miRNA* duplex. The miRCat2 results for these new

samples are presented in Appendix A, Table 6.

Furthermore, there are a number of miRNA candidates that derived from validated

precursors in miRBase. These miRNAs are predicted with their complementary

miRNA* (Appendix A Table 7), however, these miRNA* sequences are not registered

in miRBase. Moreover, there are other studies that acknowledge these miRNA*

[131, 190].

4.5 PAREfirst benchmarking

To investigate how PAREfirst compares to the existing traditional miRNA prediction

tools, we ran our data sets through PAREfirst, miRCat2 and miRDeep-P2. We

present the output of each tool in Appendix A Tables 8, 9 and 10, respectively.
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Figure 4.7 Venn diagram showing the intersection between the number of (a) val-
idated miRNAs, and (b) candidate miRNAs that were predicted by PAREfirst,
miRDeep-P2 (miRDP2), and miRCat2 in the three sRNA replicates.

Figure 4.7 shows the overlap of the number of validated and candidate predictions

among the three tools, where these predictions are conserved between two or three

out of three replicates. Figure 4.7(a) indicates that PAREfirst captures the majority of

the other tool’s validated miRNA predictions, in addition to other three miRNAs that

were not identified using the updated miRNA annotation criteria. Figure 4.7(b) also

shows that PAREfirst allows the identification of candidate miRNAs that as observed

in this study, do not necessarily conform with the standard model.

4.6 Discussion

Axtell and Meyers [20] argued that a change in miRNA annotation criteria is neces-

sary since some validated miRNAs are missed by the former criteria and some novel

miRNAs might be missed too. Accordingly, there is a need to update the parame-

ters used within the existing prediction tools, or design new tools that incorporate

less stringent rules. In this chapter, we sought to investigate the effect of applying

further flexibility to the miRNA annotation rules within a controlled method that
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is assisted by functional analysis. By systematically exploring different parameter

sets, it is clear that flexible parameters have an impact on miRNA prediction, and

we should keep the balance between predicting miRNAs with novel features and an

overestimation of the miRNA profile. We showed that using the updated and the less

stringent criteria increases the capture of validated miRNAs while keeping a similar

number of potential candidates through filtering with the degradome analysis. We

applied our method to several publicly available A. thaliana sRNA data sets and we

were able to identify a potentially novel miRNA candidate that has been previously

missed by tools that are dependent on outdated miRNA-rule sets.

A. thaliana is a well-studied genome, and we can expect that the miRNA profile

is well characterised, yet, we have been able to identify a potential novel miRNA.

Applying our approach on less well annotated plant genomes could capture not only

the miRNAs that are easily identified through existing methods but also the miRNAs

that would otherwise be missed due to their extreme biogenesis characteristics.

With this in mind, the variance within the parameters that identify novel miRNAs

in A. thaliana may not be the most suitable in all cases, and we hypothesise that

improvements in annotation results could be obtained from investigating species-

specific parameter sets, however, due to time limitation, we were unable to pursue

this hypothesis. To this end, we have provided some software to enable researchers

to take this forward in the model species of their choice.

The degradome analysis is an NGS approach to identify miRNA mediated cleav-

age [144], and the defined category system within degradome analysis tools ranks

the confidence level of miRNA-mRNA interactions. A degradome sequencing exper-

iment offers many advantages when compared to low-throughput methods typically

used for miRNA target validation, such as 5’ RACE [117]. The advantages are not

only present in time-cost savings, but also the global nature of the degradome profile

being captured in a single experiment can reveal multiple miRNA-target interac-

tions, useful for building miRNA-mediated gene regulatory networks [72, 188]. In
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addition, when compared to traditional sequence similarity approaches for target

prediction [204], using a degradome assisted miRNA target prediction approach

provides valuable quantitative confidence values based on experimental evidence

[2, 63, 177, 213]. Our results show that most of the enriched known and candidate

miRNAs are predicted to be functional, which suggests that the degradome analysis

provides useful supporting evidence for identifying functional miRNA candidates

without using further validation steps. Be that as it may, a degradome assisted

approach is somewhat limited by its dependence on the expression and tandem

capture of the miRNA and miRNA mediated cleavage signal within the sRNAome

and degradome data sets. The expression of many miRNAs and their targets are

localized both temporally and spatially, specific to factors such as tissue, growth,

and environment. However, testing for condition specific miRNA candidates and

their targets is a common goal in sequencing experiments that investigate within

and for such factors [54, 123, 151, 210]. Also, generating the degradome data re-

quired by our method can be challenging and is not necessarily straightforward [112].

However, new and optimized degradome protocols are regularly becoming available

[38, 112, 113]. As NGS techniques become more accessible, we envisage more

degradome libraries will become available, enabling the use of our approach with

more varieties of species.

Prior NGS and miRNA computational prediction methods, biologist would

have to assess possibly hundreds of genuine miRNAs, which was not possible

without considerable time and resource constraints. Therefore, the development of

bioinformatics methods has became essential to identify a selection of potential novel

miRNA that could undergo further experimental validation. Experimental validation

is the most direct and reliable method to assess the accuracy of computational

predictions of genuine miRNAs. RNA gel blotting, such as northern and western

blotting, has been widely used in molecular biology research to study gene expression

in a biological sample, yet, it has become less common due to the continuous
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advancement in NGS and high-throughput sRNA-seq techniques. Besides, Axtell and

Meyers [20] argued that using sRNA-seq techniques to validate miRNA prediction

in plants should alternate experimental validation, as RNA gel blotting accumulate

sRNA expression but does not distinguish between miRNAs from other sRNA

classes.

Another method to assess computational prediction is the use of mutant data

to perform differential expression analysis. The differential expression is a strong

indicator that the analysed sequences are interacting with the mutated genes. In

particular, if the predicted miRNAs are significantly down-regulated in mutant data,

it can provide evidence that the computational prediction is biologically relevant.

In our results, we performed differential expression using Dicer-mutant datasets to

further validate the predictions obtained from our method.

Furthermore, detection of the same novel miRNA in multiple biological samples

could present evidence of it being a true miRNA. Replicates that come from the same

condition, such as species, tissue, or developmental stage, could provide evidence

for the expressed miRNAs to be specific to that condition [118]. We demonstrated

in our results how the candidates mature miRNA/miRNA* were conserved across

multiple A. thaliana sRNA datasets, which suggest that these candidate could be

species-specific miRNAs. A further miRNA computational prediction assessment

method is the benchmarking against other computational tools in the area by using

a set of validated miRNAs to compare the performance of the different tools. The

problem with benchmarking our method directly against other tools is that they

use different parameters and they are not designed to be used in the way that we

propose, i.e. find miRNAs that do not necessarily conform with the standard miRNA

model, making it difficult to compare them directly and fairly with our approach.

However, we have presented some results from miRDeep-P2 and miRCat2 to give

some indication on how they compare.
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The identification of biogenesis and function of a miRNA is important to under-

stand its role within biological pathways and networks. Researchers and miRNA

databases, such as miRBase, are enabling the provision of a reliable set of functional

information that will enhance the advancement of the microRNA research field. In

particular, miRBase is being improved not only by providing miRNA annotation

entries, but by also including the functional information of these miRNAs [97].

Our functional approach moves toward the aim of identifying miRNAs and their

target mRNAs, and we hope that it will have an impact on enriching the literature of

miRNA functions.

In conclusion, our degradome-assisted method for miRNA prediction appears

to provide broader predictions for plant miRNAs in a controlled manner. We have

implemented it in PAREfirst, a freely available software that can be used to predict

functional miRNAs. As more sequenced genomes of different species become

available, we hope that our tool will play an important role in the understanding of

biology and evolution through the annotation of novel miRNAs and their functions.
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Chapter 5

sRNA Network Construction Using

Degradome

5.1 Summary

Recent research provides evidence for the presence of large complex sRNA-mRNA

networks that are involved in biological regulation. These networks can be predicted

using computational sRNA target prediction tools. However, with previous com-

putational methods, the predicted networks were difficult to interpret due to the

rate of false positives. We hypothesised that with the advance in NGS technologies

and computational methods, we could construct more informative sRNA-mRNA

networks on a genome-wide scale. In the previous chapter, we introduced an miRNA

prediction method to identify functional miRNAs using the degradome to support

the findings. In this chapter, we utilise the degradome to generate easier to interpret

sRNA networks which aims to seek more confident interactions.

We start by introducing some background about networks and biological net-

works. Next, we describe our newly implemented tool, PAREnet, that we used to

construct sRNA networks. After that, we generate the sRNA networks for Arabidop-

sis thaliana using the interactions that are retrieved from PAREsnip2 results, and
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we visualise the network using Cytoscape. We then compare different networks

based on the used PAREsnip2 parameters, using strict and less strict parameters. We

then assess the regulatory contribution of the sRNA-regulated network that was con-

structed by the strict parameters by looking closely into the individual sub-networks.

Finally, we determine the contribution of the miRNA/miRNA* candidates (predicted

in Chapter 4) to the constructed regulatory network.

5.2 Background

As we have seen, sRNAs are abundant molecules that carry out a variety of gene

regulation functions within the cell, giving them a strong influence on the mRNA

profile [26]. This influence results from sRNA molecules, mostly miRNAs, targeting

and silencing multiple mRNAs, which in turn produce further sRNAs forming what

tends to be cascades and networks of interactions between sRNAs and mRNAs

[43, 124, 202]. The first step in these cascades requires an RNA-dependent RNA

polymerase (RDR) to convert the targeted RNA into long, double-stranded RNA

[83]. There are three cases when miRNAs could initiate the cascades: the miRNA

duplex structure is asymmetrical [125], the miRNA is 20-24 nt in length [42], or if

there are two target sites for miRNA within the mRNA [19]. Once the cascade is

initiated, a high proportion of 21 nt siRNAs are generated which associate with AGO

proteins [43].

Recent studies support the existence of sRNA networks of interactions in plants,

and show that these networks are involved in the regulation of the biological pathways

at the level of transcription. In particular, it has been found and verified in A. thaliana

that an sRNA network is initiated by miR173 cleavage of the TAS genes TAS1 and

TAS2 [43]. This cleavage is then followed by the production of tasiRNAs, which

in turn target a group of pentatricopeptide repeat (PPR) genes that are involved in

RNA processing [6, 162]. A network of miR173-tasiRNAs-PPR/TPR interactions is
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shown in Figure 5.1. Moreover, another regulatory cascade is initiated by miR390

targeting TAS3, then followed by producing tasiRNAs that are involved in auxin

response regulation, plant growth, and leaf morphology [3, 68]. It was also found that

miR398 participates in stress adaption by regulating the expression of superoxide

dismutase (SOD) enzyme related genes [172, 173].

Figure 5.1 Visualisation of the miR173-tasiRNAs-PPR/TPR network. Yellow squares
are mRNAs, red circles are sRNAs. Blue edges are sRNA to mRNA target, the green
edge is RNA to sRNA source. The large red circle is miR173. Figure from MacLean
et al. [124].

Networks are often described in terms of a mathematical entity called graph. It

contains nodes and edges, and in the case of biological networks, the interacting

molecules (e.g. sRNAs and mRNAs) are the nodes and the interactions between

them the edges. The edges between those nodes are directed when the interactions

only follow one direction such as sRNA-mRNA targeting interactions, however,
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edges could be undirected when the link follows either way as in protein-protein

interactions [171]. The term that describes the number of edges that are linked to a

node, whether they come in or out, is called the degree of the node. The distribution

of node degree is a commonly used feature for network analysis [21, 215].

Complex real-world networks, such as internet, protein interaction networks,

and social networks, have power-law scale-free degree distribution. Also, there are

mathematical features that are important to characterise such networks including high

clustering coefficient, and assortativity or disassortativity. Random networks are used

to model these complex networks in order to help understand their characteristics, as

they largely un-clustered and have distinct characteristics from real-world networks.

Generating a random network starts with a set of nodes where the connections

between nodes are chosen randomly based on a probability distribution.

Biological networks, including sRNA networks, have mathematical graph char-

acteristics that are more similar to real-world networks than random networks [124]

(see also [10]). They have the characteristic of the power-law degree distribution

where the majority of nodes have low degree and very few nodes, called hubs, have

the highest range of node degree [4]. Real-world networks show behaviours of

assortativity or disassortativity [140, 152]. In assortative networks, nodes with high

degree tend to link to nodes with similar degree, while in disassortative networks,

high degree nodes link to a greater number of low degree nodes. Biological networks

tend to show a disassortative pattern. Moreover, real-world networks are highly

clustered and have relatively short path lengths between nodes. These characteristics

are common in biological networks, and they contribute to network resilience to

failure [21, 146].

Recent studies support the evidence of the existence of regulatory sRNA networks

[124, 70, 111], the associated sRNA experiments provide hints for the richness and

complexity of the networks. It also became apparent that to identify changes in the
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plant sRNA response to stress, a network of interactions between sRNAs and mRNA

targets was required in order to serve as reference for mapping changes [183].

The investigation of sRNA regulatory networks relies on identifying the inter-

actions between sRNAs and their target mRNAs. Those interactions have often

been predicted by using sequence similarities methods, such as psRNATarget [50]

and TAPIR [30], between sRNAs and and their target transcripts. An important

downside of these methods is the rate of false positives, which leads to enlarged and

complicated networks and makes them difficult to interpret [124]. As we have seen

in Chapter 3 , the advance in NGS knowledge and computational methods, together

with degradome sequencing, has made it possible to identify the interactions more

reliably, and therefore, helped to clarify the sRNA regulatory network [2, 115, 177].

Moreover, current sRNA target prediction tools could enable the construction of

sRNA networks on a genome-wide scale. However, the constructed networks tend

to be large and complex, and hence, difficult to determine whether they reflect bio-

logical reality. One way to simplify the regulatory networks is to reduce the rate of

false positives in the predictions, this can be achieved through adjusting the tools

configuration in order to produce predictions with high confidence levels.

We hypothesised that using computational methods for degradome analysis to

obtain a set of high confident predicted sRNA-mRNA interactions, could allow for

the construction of a simplified sRNA-mRNA network, and thus, the possibility to

retrieve meaningful biology from such a network. In this chapter, we present a tool,

PAREnet, that we developed within the UEA sRNA Workbench that allows us to

explore this hypothesis by enabling the construction of sRNA networks systemati-

cally from interactions predicted using the output from PAREsnip2 software. The

constructed network characteristics are then analysed to test weather they are relative

to other biological networks. Also, the interactions in the networks are investigated

to assess if they provide biological meaning.
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5.3 Methods

In this section, we introduce our sRNA-mRNA network construction method that

uses PAREsnip2 to perform target prediction and output sRNA-mRNA interactions.

We designed it to post process PAREsnip2 results and output a table of interactions

that can be used as an input for Cytoscape [164]. We chose PAREsnip2 for this

method because it had shown to generate more confident interactions using the

degradome [177], and hence, less false positives interactions, which is an important

factor to construct simpler networks. Additionally, PAREsnip2 shows improvement

in computation performance, i.e. required computation time and memory usage,

when compared to previously developed degradome analysis tools.

5.3.1 Network construction

We implemented a freely available and open source software tool, called PAREnet,

for sRNA-mRNA network construction using the Java programming language (ver-

sion 8). The cross-platform tool is incorporated into the UEA sRNA Workbench and

it can only be performed through the command-line interface, allowing PAREnet to

be used in other bioinformatics pipelines. PAREnet integration into the Workbench

provides the ability to utilise other incorporated helper tools for PAREnet analysis,

such as PatMaN aligment tool. Contrary to PAREfirst (see 4.3.2), PAREnet uses the

FileManager module to store the absolute path of the input files in order to reduce

memory usage during runtime. The source code for PAREnet can be found on:

https://github.com/sRNAworkbenchuea/UEA_sRNA_Workbench, and also can be

found in Appendix B File 1.

PAREnet accepts as an input the following mandatory files: sRNAome in re-

dundant FASTA format, degradome in redundant FASTA format, and transcriptome

in FASTA format. Alternatively, the user can provide PAREsnip2 results file and
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transcriptome. Also, the user has the option to provide the following files: a genome

in FASTA format, mature miRNAs from miRBase in FASTA format [99], and ex-

perimentally validated interactions from miRTarBase [85]. Although, miRBase file

is optional, it is required only when providing the validated interactions. When

providing a genome, sRNAs are aligned using PaTMaN [148] and the sequences

that do not align to the genome are discarded prior the analysis. For the target

prediction analysis, the user can configure the parameters for PAREsnip2 as they

require. The stringency of the parameters determines the complexity of networks

and as a consequence the ability to extract meaningful biology from them.

The tool performs the target prediction using PAREsnip2 to produce predicted

functional sRNAs with their mRNA targets, we refer to the interactions between

sRNA and mRNAs by target interactions. The interactions are stored in Hash Table

data structure, which can speed up the search and access to its elements and provides

better synchronization than other data structures. Next, the tools parses PAREsnip2

output to extract the functional sRNA reads that are then searched against the RFam

database [69, 75] for tRNA, rRNA, and snoRNA-derived sequences using PaTMaN

with exact match, and the aligning reads are discarded. Moreover, the identification

of sRNA source gene is required to uncover the regulatory cascades of sRNAs, thus,

the tool aligns the filtered functional sRNAs, using PatMaN with exact match, to the

set of transcripts that were predicted to have cleavage sites for these sRNAs, we refer

to the interactions between sRNAs and their source genes by source interactions.

After that, if known miRNAs are provided, the known miRNAs and their isomiRs are

annotated by aligning the unique sRNA reads to the known miRNA reads allowing

up to two mismatches. Then the tool updates the miRNA annotation details for the

aligned reads. Moreover, if validated interactions from miRTarBase are provided, the

tool parses the validated interactions, and then it checks the stored interactions for the

validated interactions within the predicted results and update their details. The tool

also extracts the gene ontology terms of each transcript given within the PAREsnip2
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results to be used as node labels. The information obtained from PAREsnip2 results

(e.g. interaction category), known miRNAs, validated interactions, source genes,

and transcripts’ annotations are then used to construct network visual components

such as labels, colors, and shapes of nodes and edges. For example, the interaction

category and the type of interaction (target or source) specify the edge color, and the

predicted known miRNA nodes are labeled with miRID and have distinguished color

from other sRNAs. An overview of PAREnet workflow is shown in Figure 5.2.

The output of PAREnet is provided in comma-separated value (CSV) format that

can be viewed in any CSV file viewer. The CSV file can be used as an input for

Cytoscape in order to build sRNA-mRNA networks. The table includes information

about the sRNA-mRNA interactions such as genes annotation, type of interaction

(target or source), targeting categories, the known miRNAs annotation, and the

validated interactions. In Cytoscape, the user can customise and highlight the nodes

and edges within the constructed network using Style features [164].

5.3.2 Datasets

We carried out genome-wide degradome analysis and creation of sRNA networks

were using three A. thaliana sRNA replicates (WTA, WTB, and WTC), which were

previously published by Dalmya’s lab at UEA (GEO accession number GSE90771)

[143], and the corresponding degradome datasets (DegA, DegB, and DegC), which

are also available on GEO (GSE113958). The transcriptome used in our analysis

was obtained from the Arabidopsis Information Resource (TAIR) containing the

cDNA for the updated representative gene model, in addition to the reference genome

TAIR10 [174]. For the purpose of miRNA annotation, we used A. thaliana mature

miRNA sequences obtained from miRBase (v22) [76]. To validate the predicted

interactions, we used a set of experimentally validated A. thaliana interactions that

we obtained from miRTarBase [85].
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Figure 5.2 Schematic of the PAREnet workflow to construct sRNA-mRNA networks
using degradome analysis. Solid rectangles represent processes, dotted rectangles
represent sub-processes that are dependant on input data, solid arrows represent
inputs and data flow, dashed arrows represent optional inputs, and lines represent
output.

5.3.3 Network visualization and analysis

The constructed networks visualization and structural analysis were performed using

Cytoscape (version 3.9.1) [164]. Statistical analysis for degree distribution and

assortativity were carried out using R statistical package (version 4.3.0) [149] and

NetworkX (version 3.1) [79].
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5.4 Results

PAREsnip2 allows configurable parameters in order to determine the confidence

level of predicted targeting interactions. We expected that using less strict parameters

could produce a high number of false positives, and thus, lead to constructing a

large complex network that are difficult to elucidate. On the other hand, using

strict configuration could discard a proportion of false positives, hence, a simpler

and more informative network could be constructed. To compare the effects of

varying PAREsnip2 filters and category system on the sRNA networks construction,

we first performed the degradome analysis through PAREsnip2 by using a less

strict configuration. In particular, we used Carrington targeting rules [39], allowed

categories 0-3, disabled core region multiplier, disabled p-value filter, and disabled

MFE filter. We present the number of predicted interactions, along with number

of sRNAs and genes that are involved in them, using the less strict parameters in

Table 5.1 . We visualised the interactions using Cytoscape (version 3.9.1), which

generated a large and complex network for each replicate. In Figure 5.3, we show

the generated network of replicate WTA_vs_DegA, similar visualised networks were

generated for the other replicates.

Less strict PS2 parameters Strict PS2 parameters
Replicates sRNAs Genes Interactions sRNAs Genes Interactions
WTA_DegA 27235 194636 194636 16301 8530 20932
WTB_DegB 17078 12760 100830 9710 6072 12821
WTC_DegC 20231 14055 171223 14847 8650 21533

Table 5.1 Summary of the number of the target analysis predictions that were
produced using PAREsnip2 (PS2) on three A. thaliana sRNA replicates against their
corresponding degradome replicates.

Further analysis was performed using more strict PAREsnip2 configuration in

order to produce a higher rate of high confidence interactions. In particular, we used
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Figure 5.3 A visual construction of large and complex network of sRNA-mRNA
interactions that were produced by PAREsnip2 using less strict parameters.

Carrington targeting rules, the default PAREsnip2 parameters, and only allowed

interactions with the strongest signal on the transcripts, i.e. categories 0-2. We

disabled the core region score multiplier as this step contributes to the identification

of more experimentally validated interactions [177]. The numbers of predicted

interactions, and sRNAs/genes corresponding to these interactions are presented in

Table 5.1, which shows a reduction in the number of interactions in each replicate

compared to the less strict configuration. For network construction and in-depth
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assessment of the network, we used the set of interactions obtained from PAREsnip2

using the strict parameters. Specifically, we only included the interactions that are

conserved among the three replicates, in order to construct a network with more

confident interactions. The set of conserved interactions (see Appendix B Table 1)

were then utilised by PAREnet to generate a sRNA-mRNA network that is presented

in Figure 5.5.

Moreover, we evaluated and compared between the results of each parameters set,

the less strict and the strict parameters. We used the set of experimentally validated

interactions that we obtained from miRTarBase [85] to construct three validation

classes. First, the true positives (TP) that consists of the predicted interactions

with experimental validation. Second, the false positives (FP), which is the set of

predicted interactions that has no current experimental validation. Third, the class of

positive (P) data that included the total experimentally validated interactions present

in the dataset. We provide the sensitivity and precision for each set of parameters,

where sensitivity is calculated as TP/P, which is the proportion of predicted validated

interactions, and precision is calculated as TP/(TP+FP), which is the proportion of

predicted validated interactions among the total number of reported interactions.

When evaluating the performance of each parameters set, we did not use specificity

as a performance metric because it is challenging to accurately determine the class

of true negatives. We show the differences in sensitivity and precision between

the two sets in Table 5.2. The table shows that the strict parameters set provides

increased precision compared to the less strict parameters set, whilst also maintaining

sensitivity on most datasets. Over all datasets, the PAREsnip2 less strict parameters

with a mean sensitivity of 49% versus 48.33% for the strict parameters. The mean

precision for the less strict parameters was 95.67% versus 98.33% for the strict

parameters.

A more detailed analysis of the network structure allows us to study the presented

sRNA-regulated network and identify features that could be compared to related
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Dataset P LS. V LS. NV S. V S. NV LS. TPR LS. PPV S. TPR S. PPV

WTA 367 184 11 171 4 50% 94% 47% 98%
WTB 364 175 6 170 2 48% 97% 47% 99%
WTC 337 165 7 174 4 49% 96% 51% 98%

Table 5.2 Comparison of sensitivity and specificity between the less strict and the
strict PAREsnip2 parameters on the A. thaliana datasets. P: positives, LS.: less strict
parameters, S.: strict parameters, V: validated, NV: non-validated, TPR: true positive
rate or sensitivity, and PPV: positive predictive value or precision.

complex biological networks. To better understand the properties of the regulatory

networks presented here, structural features were analysed using the Cytoscape plu-

gin, NetworkAnalyzer [16]. The results in Table 5.3 illustrate the network structural

features for the networks constructed using the less strict parameters and the network

constructed using the strict parameters. However, for simplicity, we shall refer to

the former network as complex network, and to the latter as simplified network,

for the rest of this analysis. The complex network consisted of 158 components,

or sub-networks, while the simplified network consisted of 488 components. The

average number of neighbours decreased from 9.072 in the complex network, to

3.487 in the simplified network. The path length in this analysis increased from

4.740 in the complex network, to 4.812 in the simplified network, which shows

consistence with other complex biology where the path length is usually around

6. Contrary to biological networks, the clustering coefficient in both, complex and

simplified networks, was extremely low. Network density, represents the proportion

of the edges in the network to the all possible edges, was very low in both networks,

consistent with results from other studies [105], however, the density in the simplified

network was greater than the complex network.

Furthermore, we observed a significant relationship between node degree and

the frequency of nodes of that degree (Figure 5.4). In totality, the heavy-tailed total

degree distribution for both for in and out degrees, indicated that a small number of

74



Structural feature Less strict Strict and conserved
Number of nodes 42809 1655
Number of edges (target interactions) 194636 1546
Connected components (sub-networks) 158 488
Average number of neighbours 9.072 3.487
Path length 4.740 4.812
Clustering coefficient 0 0
Network density 0 0.015

Table 5.3 Summary statistics generated by Cytoscape Network Analyser, of the
network produced using PAREsnip2 with the less strict parameters on one of the
A. thaliana (WTA vs DegA), and the network produced using PAREsnip2 with
the strict parameters and conservation approach (interactions that predicted in all
three replicates) on three A. thaliana sRNA replicates against their corresponding
degradome replicates.

high-degree nodes, while the majority have low degree. Due to the directed nature of

sRNA networks, degree distribution for sRNAs and mRNAs were analysed separately,

which also showed a heavy-tailed distribution reflecting a power-law distribution.

Additionally, we observed a dissortativity pattern where high-degree nodes tend to

connect with low-degree nodes, as demonstrated by the negative correlation observed

in Figure 5.4. These characteristics indicate the presence of very few and highly

connected nodes, hubs, which provide networks a higher robustness towards random

disruption [4]. The observed heavy-tailed node degree distribution and dissortativity

characteristics are phenomenon found in various biological networks. These results

are consistent with previous studies in A. thaliana [124, 183].

We now focus on the simplified network for an in-depth assessment of the

underlying regulatory interactions. As mentioned above, the simplified network

consisted of 488 sub-networks, where the largest sub-network composed of 230

nodes and the remainder sub-networks are composed of less than 66 nodes, which

implies uneven distribution of the number of nodes per sub-network. The sub-

networks were ordered based on the number of nodes involved within them. On
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Figure 5.4 Degree distribution and assortativity in the simplified A. thaliana sRNA-
mRNA network. The top row shows the degree distribution for all nodes in the
network (left) and the individual nodes, i.e. sRNAs and mRNAs (right). The bottom
row shows the assortativity for mRNAs and sRNAs respectively. K: node degree,
p(K): the number of nodes with degree K divided by total nodes, and KNN: the
average degree of the nearest neighbour for nodes with degree K.

the upper half appear the sub-networks with higher number of nodes, and higher

number of validated interactions. On the other hand, the sub-networks on the lower

half have less than three nodes and lower number of validated interactions. We

also looked more closely at some of these sub-networks to investigate whether they

were constructed randomly or if they had biological significance i.e they contain

interactions that contribute to biological pathways. To do so, we selected the sub-
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networks that are composed of 20 or more nodes, and involved known miRNAs

and validated edges (interactions), and then manually identified if they contained

previously published biological pathways. For clarification, we removed isoforms

of sRNAs from the selected sub-networks below. This step was carried out through

closer inspection into the cluster of sRNAs that target the exact gene or group

of genes, discarding the sRNAs that have an exact match to a shorter sequence

within the cluster. We first selected the largest sub-network that appears on the

top-left of Figure 5.5. This sub-network was uncovered when using PAREsnip2 and

conservation filtering methods and it is shown in Figure 5.6. It involves miRNAs and

sRNAs that contribute to the previously described TAS network that was verified

in A. thaliana [43]. The degradome analysis supports that miR173 cleaves primary

transcripts of the TAS1 family (TAS1A, TAS1B, and TAS1C) and TAS2 genes,

which then leads to the cleavage of AT5G16640 and AT1G63080, pentatricopeptide

repeat (PPR) transcripts, and AT1G63130, tetratricopeptide repeat (TPR) transcript,

by TAS2-derived tasiR2140. Recent studies suggest that PPRs are loci for PPR-

derived secondary siRNAs and they participate in post-transcriptional regulation

of chloroplast and mitochondrial genes, this role might be a consequence of their

importance to the sRNA network [81, 189]. Our sub-network also shows further 18

TAS2-derived sRNAs target PPR and TPR transcripts leading to PPR/TPR-derived

sRNAs directed against PPR and TPR gene transcripts. Most of the targeted PPR

members were validated as targets of sRNAs in the computational analysis and

experimental validation that was performed in [7, 157]. This TAS2 cascade suggests

that these sRNAs could be new potential tasi-RNAs and siRNAs. Moreover, within

the same sub-network (Figure 5.6), we also find previously validated interactions

including miRNAs targeting the PPR and TPR transcripts that are involved in the

TAS2 cascade, these interactions are mediated by both forms of miR161 (miR161.1

and miR161.2) and miR400. There are also potential new interactions involving two

members of the miR158 family, miR158a miR158b, targeting a PPR (AT1G62860)
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and a TPR (AT3G15130) genes. The miR158-AT1G62860 categoty-2 interaction

was previously predicted using psRNATarget [50] and was validated by modified 5’

RLM-RACE in [181]. Finally, the sub-network shows three of the miR159 family

members (miR159a, miR159b, and miR159c) target MYB33 and MYB65 genes,

where these interactions were validated in [8]. miR159b was also predicted to target

TCP24, which is a validated target for the miR319 family that is closely related in

sequence with the miR159 family [138]. Also, in [163], they confirmed that several

TCP genes in A. thaliana were regulated by miR319, and in our results, we have

TCP2 and TCP24 cleaved by three members of miR319 family (miR319a, miR319b,

and miR319c). The network interactions that we obtained in this work are consistent

with the results published in [183]. For simplicity, we have omitted isomiRs and

duplicate interactions from Figure 5.6, the detailed interactions of miR173/TAS

cascade are shown in Appendix B Figure 1.

A visualisation of another large sub-network, presented in Figure 5.7, shows 10

targets that were identified for the highly similar miRNAs, miR156 and miR157.

These targets are genes from the SQUAMOSA promoter binding protein-like (SPL)

genes, which represent a family of transcription factors that are defined by a plant-

specific DNA-binding domain. They have important regulatory roles in plant devel-

opment, growth, and stress responses. The interactions between miR156/miR157

and 11 (out of 17) SPL genes have been verified in previous studies [67, 157].

Also, we predict that miR391 targets four of the SPL genes and to the best of our

knowledge, these interactions were not identified in other studies, hence, these could

be potentially new targets for miR391 as two of them show high confidence level

(Category-0). miR391 was validated to target TAS3 in A. thaliana [6, 60], PRS3

(AT1G10700) in A. thaliana, but both genes could not be identified as targets for

miR391 in this work. Furthermore, the sub-network in Figure 5.7 involves miR396,

encoded by miR396a and miR396b, targeting six growth-regulating factor (GRF)

genes and the basic helix–loop–helix transcription factor bHLH74 (AT1G10120).
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Figure 5.7 A visual representation of two sub-networks presented in Figure 5.5
and represent regulatory networks that involve: (a) validated mediated-interactions
of miR156 and miR157 (controls proper development of lateral organs), and (b)
validated mediated-interactions of miR396 (controls leaf development). Orange
circles are validated miRNAs. Green, and purple rectangles/triangles represent
annotated genes and genes with no previous annotations, respectively. Rectangles
represent targeted genes. Blue, brown, and green solid edges are target interactions
of categories 0, 1, and 2, respectively. Dashed edges are validated target interactions.
Details for all of the nodes and interactions can be found in Appendix B Figures 2
and 3 and Appendix B Table 1.

In A. thaliana, miR396 plays an important role in regulating cell proliferation ac-

tivity during leaf development by repression of the GRF genes, and regulating root

growth by repression the expression of the bHLH74 gene [22, 52, 89]. Seven out

of nine GRF genes (GRF1-4 and GRF7-9), and bHLH74 were validated as targets

for miR396 in A. thaliana. Two other potential miR396 targets were AT5G43060,

that encodes ESPONSIVE TO DEHYDRATION 21B (RD21B, also referred to

by MMG4.7), and FLUORESCENT IN BLUE LIGHT (FLU), these targets were

previously validated in [46, 200]. However, the miR396-FLU interaction does not

appear as validated in Figure 5.7 due to the lack of this interaction from the list of

experimentally validated interactions described in the previous section. Moreover,

the potential interaction between miR396 and GAUT13 (AT3G01040), encodes a pu-

tative galacturonosyltransferase, was previously characterised in [115]. Furthermore,
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there remain new five potential miR396 category-0 interactions and an interaction of

category-2, which to the best of our knowledge have not previously identified.

Figure 5.8 A visual representation of a sub-network that does not involve validated
miRNAs nor validated interactions. Blue circles are sRNAs. Green, and purple
rectangles/triangles represent annotated genes and genes with no previous annota-
tions, respectively. Rectangles represent targeted genes and triangles are targeted and
source genes. Blue, brown, and green solid edges are target interactions of categories
0, 1, and 2, respectively.

To further assess the regulatory contribution of the resulting sRNA mediated

networks, further analysis can be performed on a sub-network that does not involve

validated miRNAs or validated interactions (Figure 5.8). We performed functional

enrichment analysis using g:profiler [150] for the gene group within the sub-network.

In particular, we input the list of candidate genes that are shown in Figure 5.8

into g:GOSt tool (available on g:profiler web server) to determine if they map to

known functional information sources and detects statistically significantly enriched

biological processes and used the Benjamini–Hochberg False Discovery Rate as

a correction method with significance threshold of 0.05. The enrichment analysis

results are shown in Figure 5.9, which could indicate potential biological functions

for the candidate genes. The candidate genes could then be investigated further and

selected for experimental validation.
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Figure 5.9 Gene Ontology (GO) enrichment analysis performed by g:profiler [150]
on the gene candidates involved in the sub-network that is shown in Figure 5.8.

In Chapter 4, we identified miRNA and miRNA* candidates and their predicted

targets that were conserved among multiple A. thaliana biological replicates. The

candidates were predicted by PAREsnip2 to have multiple Category 3 targeting

signals. We investigated whether these candidates contribute to regulatory networks.

The candidates’ interactions were predicted using the less strict parameters that

are described above. Through close inspection into the complex network in Figure

5.3, we extracted the candidates nodes manually from the network along with

their second neighbour nodes. We also extracted the first neighbours of the gene

nodes, the other sRNA nodes that target the same genes as the candidates. The

extracted nodes and edges are disconnected from the main network and are shown

in Figure 5.10. The mature miRNA shows two target sites of category-3 signal on

two different genes. The first target is a novel chloroplast protein, SAFEGUARD

1 (SAFE1), which was shown to suppress singlet oxygen-induced stress responses

in A. thaliana [187]. There are no studies suggest miRNA-mediated regulation of
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SAFE1 protein, however, recent studies are exploring the link between miRNA

biogenesis, particularly miRNA expression, and oxygen signaling pathways, which

are suppressed by SAFE1 [23, 134]. The other target, encodes a receptor-like protein

kinase (RLK4) that is expressed in roots [186]. In [198], they concluded that miRNAs

mediate the regulation of leaf senescence in maize. On the contrary, the miRNA*

have category-3 interactions with five genes, two of which are annotated. The first

target gene is SYTF, a member of synaptotagmin-like (SYT) genes family that have

been identified in A. thaliana [36, 47]. To the best of our knowledge, no studies

were conducted for the interactions between sRNAs and SYT genes in A. thaliana.

The other annotated gene is the ribosomal protein (RP) S6, which is involved in

regulating growth processes in A. thaliana as suggested in previous studies [41, 48].

RPS6 has another potential category-3 interaction involving miR162, although the

interactions between sRNAs and RPs have not been studied in plants, several studies

in mammals suggested that RP targeted by miRNAs [5, 142, 156].

Finally, we investigated the t-plots that we produced for transcript genes within

the network and we observed that transcripts with high confidence target interactions

(category-0) tend to have lower degradome coverage than transcripts with lower

confidence interactions (category-2) (see Figure 5.12). Consequently, we hypothesise

that there could be a relation between the transcript coverage, represented by the

number of degraded fragments that map to a transcript, and interaction confidence.

We further pursued this observation by comparing the transcript degradation coverage

with the number of interactions reported (Figure 5.11) and we found that using

the PAREsnip2 p-value and MFE filters reduces the number of interactions while

retaining experimentally validated interactions. We also found that using interaction

conservation between PAREsnip2 analysis of biological replicates further reduce

the number of hits per transcript while retaining most of validated interactions. This

approach could provide a further validation layer for the degradome analysis results.
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Figure 5.10 A visual representation of the partial network that involved the predicted
miRNA/miRNA* candidates. Large yellow circle is the candidate miRNA, large
purple circle is the candidate miRNA*, orange circle is validated miRNA, and blue
circles are sRNAs. Green squares are targeted genes. Orange and grey solid edges
are target interactions of categories 0 and 3, respectively.

5.5 Discussion

Prior to the introduction of PARE analysis [1, 72], sequence complementarity be-

tween the sRNA and the mRNA was used to identify cleavage sites within the

transcripts. The NGS techniques has advanced tremendously over the last decade

and using the degradome allowed us to obtain a higher level of confidence in the

predicted interaction. Although the degradome provide an element of validation

to the target prediction, using the degradome alone was not enough to reveal the

biological functions of the massive cloud of sRNA regulatory interactions. It is

increasingly recognized that the need of additional methods of filtration is necessary

to construct networks that are easier to interpret [183].
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Figure 5.11 Transcript/degradome coverage analysis. Plots show a progressive
reduction in the number of retained interactions from PAREsnip2 analysis after using
filtering techniques and replicate conservation. a) Shows analysis without the use of
p-value and MFE filtering or conservation. b) Shows analysis with p-value and MFE
filtering and no conservation. c) Shows analysis with p-value and MFE filters and
conservation of interactions obtained from two degradome analyses of A.thaliana
biological replicates. For all plots, data points represent transcripts. A red circle data
point contains a validated sRNA/mRNA interaction.

To investigate this, we performed degradome analysis using PAREsnip2 to

compare the output of applying less strict parameters with the output of applying

strict parameters. The less strict parameters produce interactions with weak cleavage

signals on the transcripts, i.e. category-3, in addition to applying filtration steps

provided by PAREsnip2, such as MFE and p-value filters. On the other hand, the
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Figure 5.12 Example transcript t-plots showing (a) low transcript coverage, and (b)
high transcript coverage.

strict parameters generate interactions with strong cleavage signals on the transcript,

i.e. categories 0,1 and 2, with the application of MFE and p-value filters. We then
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evaluated the performance of each of the parameter sets and calculated the sensitivity

and precision for all the predictions using A. thaliana datasets. We presented how

the sensitivity of the output was maintained for the less strict and strict parameters

across all the datasets, while the precision increased in the interactions set that was

resulted from using the strict parameters. To that end, using degradome data and

applying PAREsnip2 filters results in a higher precision output that could facilitate a

more detailed overview of regulatory interactions and an in-depth assessment of the

underlying sRNA regulatory networks.

The complex network constructed from the sRNA-mRNA interactions, that

were produced using the less strict parameters, was large, complex and difficult

to elucidate. We speculate that the cause of this complexity is due to the higher

proportion of putative false positive predictions, i.e. the Category-3 interactions

consist of both genuine cleavage sites and random degradation, which is evidenced by

the low abundance of the degradation signals on the transcript. Conversely, the set of

interactions that we obtained from using the strict parameters allowed us to construct

a simpler sRNA-mediated regulatory network with higher precision of predicted

interactions, which could help to understand and elucidate the biological information

within the network. Accordingly, as observed in our results, PAREsnip2 filtration

methods and a conservation approach facilitated the identification of previously

validated sRNAs regulatory cascade, such as TAS, PPR, GRF, and SPL networks,

that were hidden within the unfiltered complex network.

The representation of sRNA-mediated regulatory networks enables the examina-

tion of its mathematical structural properties. Analysing the topology and structural

characteristics of such networks has uncovered intriguing similarities among diverse

biological systems. In the results, we compared between the complex and the simpli-

fied A. thaliana networks using the structural features. We observed that the number

of sub-networks in the simplified network was increased when compared to the

complex network, this could be due to the reduced number of predicted interactions
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in the simplified network, which led to disconnecting the ’hairball’ component that

was present in the complex network. Also, there was a reduction of the average

number of neighbours in the simplified network, this might also be related to the

reduction of predicted interactions, which led to the reduction in the nodes degree.

Although the clustering coefficient in other biological networks tends to be higher

than the random networks, the sRNA networks presented in the results showed an

extremely low value. Perhaps one reason for this may be to do with the nature of

interactions between the nodes, i.e. an sRNA node interacts with multiple gene nodes

(neighbours), however, the neighbour nodes have no interactions between them. To

that end, some of the proprieties of the simplified sRNA-mRNA network may not be

relative to other biological networks, yet, the network tends to show a real biological

entity and that its interactions were not assigned randomly.

Degradome sequencing enabled the development of a variety of computational

methods to identify sRNA-mRNA interactions on a genome-wide scale. In this

work, we chose PAREsnip2 as it showed improved prediction performance when

compared to other computational methods in the area, including: CleaveLand4,

sPARTA, and PAREsnip. The accuracy of the output of a sRNA target prediction

tool can be assessed through benchmarking against other tools’ predictions. One way

to benchmark different prediction tools is using a set of experimentally validated

miRNA-mRNA interactions to perform comparative approach based on metrics, such

as sensitivity, specificity, precision, and accuracy. Correspondingly, computational

performance benchmarking can lead to the development of more accurate and reliable

sRNA-mRNA prediction methods, which could help to advance our understanding

of sRNA-mediated regulatory networks.

Furthermore, the inclusion of differential expression analysis can be used to

assess the performance of a prediction method. It may also provide further indication

into the function of specific sRNAs when combined with degradome analysis. For

instance, if a sRNA is determined to be up-regulated in a given sample, a targeted
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mRNA for this sRNA is identified using degradome analysis, and the mRNA is

determined be down-regulated, this may support the prediction of sRNA target as

sRNAs act as negative regulators for the genes.

The wide scale studies of sRNA regulatory networks are limited due to the

challenges posed by the high false positive rate in the sRNA target predictions

produced by the computational tools. PAREnet, utilise degradome analysis to

provide an approach into generating more confident sRNA-mRNA and easier to

elucidate networks. Beside A. thaliana, the tool could be used to construct networks

for various plant genomes, such as rice, tomato, potato, maize, and wheat. Due to

time constraint and the limited availability of degradome datasets for some plant

genomes, network analysis was not performed on these species datasets. However,

with the advance in NGS, degradome datasets are becoming more available, and

thus, future work will focus on more comprehensive analysis using exploration and

comparative approach on more plant datasets networks. In conclusion, our approach

enables the identification of potentially new interactions that might be of interest to

investigate and experimentally validate, and it may open new directions of research

towards sRNA mediated regulation of mRNAs in plants.
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Chapter 6

Future Work and Conclusion

6.1 Summary

In this thesis, we have provided an introduction into sRNA biology and RNA si-

lencing in plants. We then presented an overview of the computational methods

used for analysing sRNA, including the important class of miRNA, and degradome.

We developed a new tool that is based on a new approach for miRNA classification

that combines biogenesis and functional criteria. We also introduced a tool that

enable the visualisation and analysis of sRNA-meditated regulatory networks using

degradome. In this chapter, we shall discuss some possible extensions to this work.

6.2 Future work

6.2.1 Micro RNA prediction

The miRCat2 parameter search algorithm that was described in Chapter 4 was used to

explore less stringent miRCat2 parameters to detect miRNAs with extreme biogenesis

characteristics in A. thaliana, and we succeeded in identifying candidate novel

miRNAs. Due to their low abundance (compared to known miRNAs), we assumed
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these miRNA candidates are species-specific, and the non-conserved miRNAs are

typically less expressed than conserved miRNAs. Also, some miRNAs are condition-

specific that are specifically expressed in a particular developmental stage, tissue, or

stress response condition [54, 123, 151, 210]. We hypothesise that these miRNAs

could have extreme biogenesis features, such as high number of mismatches and

bulges within miRNA/miRNA* duplex, particularly in less-studied genomes. Further

parameter search experiments, such as those detailed in Chapter 4, could be applied

to investigate if our algorithm behaves differently on different genomes, tissues, or

stress conditions. Candidate miRNAs might be detected and they could be analysed

as with the methods described in Chapter 4.

Furthermore, the intense study of miRNAs has led to a steady increase in available

miRNA repositories that archive miRNA biogenesis and functional information.

miRbase is one of the most common repositories and it was used to annotated

miRNAs in this work. A recent miRNA repository was introduced, PmiREN, which

accepts miRNA entries based on the newly suggested miRNA biogenesis criteria.

PmiREN presents 16 more miRNAs in A. thaliana than miRBase, which is a high

number considering the well studied genome model. However, not all miRNA entries

in miRBase were present in PmiREN due to their filtering criteria. Accordingly, the

parameter search algorithm in Chapter 4 could be performed using the PmiREN

miRNAs, or even combine miRNAs from both repositories.

6.2.2 sRNA-mediated regulatory networks

• Network construction for other species: A. thaliana is a heavily studied plant,

therefore, the majority of the components in the constructed network included

previously described interactions. Further work could be performed on less

annotated plant genomes that have sequenced degradome data, such as rice and

tomatoes [119, 197]. It would be interesting to see if the constructed network
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of a less annotated genome would have similar structural features to the

network in Chapter 5 (e.g. the composition of sub-networks). If unknown sub-

networks were consistent between multiple networks from different replicates,

regulatory functions could be suggested for the un-annotated sRNAs/genes

involved, thus, the sub-networks could be investigated further and some could

be selected for experimental validation.

• Network construction for samples under stress condition: The complex

regulatory networks of sRNAs in response to stress need to be elucidated.

Therefore, our work could also be extended by constructing networks for

control and stress treated samples and applying GO and KEGG enrichment

analysis. In [70, 114, 196], they performed a comprehensive integrated analy-

sis to provide better insights into the regulatory network components associated

with stress conditions. The samples that were analysed in the studies could

be analysed through PAREnet in order to visualise their networks, which

could provide a different approach into comparing between the samples by

addressing the differences in the networks components.

• Annotation of other sRNA classes: For our analysis in Chapter 5, we focused

exclusively on miRNA annotations within the predicted interactions. Thus, we

ignored investigating other important sRNA classes, such as phasiRNA and

tasiRNA, that have been identified as components of the reguolatory networks

associated with biological processes [1, 116, 183]. Future work could involve

the annotation of other sRNA classes, which in turn would provide a more

complete picture of the sRNA networks.

6.2.3 UEA sRNA Workbench

The UEA sRNA Workbench source code is available on GitHub, enabling the

bioinformatics community to make their contribution to the software package. Here

93



we suggest some future amendments that could be implemented to improve the

performance of the tools that we have developed to make most of the Workbench

package:

• Potential improvements to PAREfirst: Currently, PAREfirst analysis can

only be performed on one replicate at a time. Using multiple datasets as input

for PAREfirst and applying conservation approach between these datasets

would enhance the confidence level within the predicted results. Moreover,

PAREfirst enables the prediction of miRNAs with extreme biogenesis due

to its degradome-assisted approach that allow to explore less strict miRNA

biogenesis in a controllable manner. Therefore, PAREfirst could be improved

to allow it to identify potential miRNA-like miRNAs that are derived from

known miRNA precursors, and provide this information within the results.

• Potential improvements to PAREnet: Similar to PAREfirst, PAREnet only

accepts one sRNA and one degradome datasets, or one PAREsnip2 results

file at a time to generate the network interactions. Enabling the input of

multiple datasets of a single genome will help provide additional confidence

to the predicted interactions. Moreover, we observed in Chapter 5 that the

network involved sRNA nodes that have multiple isoforms and filtering the

isoforms will make the network components simpler. Therefore, a new step

could be implemented to filter the isoforms. The suggested feature could be

implemented to filter the set of sRNAs that have the same target or set of

targets and map them to the genome. If the reads aligned to one locus in

the genome, one read with the longer sequence is selected and the other are

discarded. A further addition that could be implemented into the tool would

be the annotation of other sRNA classes such as tasiRNAs. Other technical

features that we could improve include allowing PAREnet to be accessible

for many users by enabling input files from other degradome-assisted target
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prediction methods, such as CleaveLand and sPARTA. Additionally, a GUI

version of PAREnet could be developed and Cytoscape.js, an open-source

graph library, could be implemented as a plug-in to visualise the networks in

the GUI interface where PAREnet could provide a JSON file as an output that

could be used for visualising networks via Cytoscape.js. Finally, t-plot viewer

feature could be implemented within the GUI version of PAREnet where users

could view t-plots of the genes within the visualised network.

• Parameter-search method: The less-strict miRNA parameters that were

produced for Chapter 4 analysis were chosen based on A. thaliana datasets

and miRBase v22 entries. As the understanding of miRNA is continuously

evolving and changing, the parameter-search method (described in Chapter 4)

could be implemented into the UEA sRNA Workbench as a new feature that

enables the users to extract new miRNA features based on their datasets and

updated set of validated miRNA entries.

6.3 Thesis conclusion

With the development and advancement of NGS technology, a wide range of species,

tissues and conditions sequencing datasets have become available for degradome

analysis. For this reason, broad scale studies of sRNA mediated regulation in

less-studied genomes, other than the model organism A. thaliana, are becoming

possible. Also, the study of sRNAs and their regulatory roles within the biological

networks became more accessible due to the availability of a variety of bioinformatics

techniques that can process the enormous sequencing data with lower resources.

However, the scope of these studies is limited due to challenges posed by the high

false positive rate of bioinformatics predictions of sRNA activities.
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A significant body of research is dedicated to understanding the complexity of

miRNA biogenesis and mechanism of functioning, to which new discoveries are

still being added. The expression of many miRNAs and their targets are localized

both temporally and spatially, specific to factors such as species, tissue, growth,

and stress conditions, yet, testing for species-specific or condition-specific miRNAs

is a challenge and a common goal in this field. We showed here that we could

systematically explore a wider range of miRNA biogenesis features and define

less strict parameters that would have an impact on miRNA prediction. However,

we should keep the balance between predicting miRNAs with novel features and

predicting overestimated miRNAs. This balance was achieved by utilising degradome

data, which added a further element of validation into the miRNA prediction.

The development of bioinformatics tools enabled the processing of large-scale

biological datasets. Evaluating these tools and validating their predictions are cru-

cial steps in assessing the accuracy of their predictions and determining whether

they reflect biological reality. There are several methods to validate and assess the

predictions of bioinformatics tools, including experimental validation, differential

expression analysis, and benchmarking against other computational methods. In

the case of miRNA prediction, experimental validation, such as RNA gel blotting,

is the most direct and reliable method to assess the accuracy of miRNA predic-

tions. On the other hand, experimental validation for sRNA target predictions is

carried out through 5’ RACE. By confirming the computational predictions using

experimental techniques, we can gain insights into the underlying mechanisms of

miRNA-mediated gene regulation and improve our understanding of biological sys-

tems. Another performance assessment method is the differential expression analysis

between wild-type and mutant datasets. To validate miRNA predictions the fold

change is calculated to determine if predicted miRNAs have increased expression in

the wild-type data when compared to the expression in the mutant dataset. Similarity,

if the sRNA, within a sRNA-mRNA interaction, is significantly up-regulated in
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a sRNA dataset, and the predicted target of that particular sRNA is significantly

down-regulated in gene expression data, it may provide evidence that the prediction

method is biologically relevant. Further performance assessment method, is the

benchmarking against other computational methods, which is a useful approach to

assess the accuracy of a bioinformatics tool. Comparing the performance of different

tools can help identify the strengths and weaknesses of each method and provide

insight into how well they can generate predictions. One way to benchmark the

different tools is to use an experimentally validated data, i.e. a set of validated

miRNAs (can be obtained from miRBase) and a set of experimentally validated

sRNA-mRNA interactions (can be obtained from miRTarBase). The performance of

these methods can then be compared based on metrics such as sensitivity, specificity,

precision, and accuracy.

Our work moves toward the aim of identifying miRNAs, their target mRNAs,

and their contribution to the regulatory biological networks. We developed an

exploratory approach of identifying underestimated miRNAs, and the construction

of a genome-level network of interactions between sRNAs and transcripts, which

allowed a visualization of high-level interactions of sRNA regulatory cascades. We

hope that the methods described in this thesis will have an impact on enriching the

literature of miRNA biogenesis and function and enable us to get closer to understand

the complexity of genes networks in plants. This could have applications to areas

that have potentially important implications for agriculture such as improving crop

production and resistance to plant stress conditions.
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Appendix A

Some of the tables referenced within Chapter 4 contain a large number of rows, such

as predicted miRNAs, that are not practical to include within this thesis. However,

for completeness, a brief description of each table is provided below, and the actual

data can be found on the Computer Society Digital Library at the following url:

https://doi.org/10.1109/TCBB.2021.3115023.

Appendix A File 1 PAREfirst tool documentation.

Appendix A Table 1 contains the 150 parameter sets (denoted as EPS) that were

obtained from the parameter search method.

Appendix A Table 2 contains the differential expression analysis results between

wild-type and DCL1-mutants sRNA libraries using DESeq2 within iDep9.0.

Appendix A Table 3 contains the differential expression analysis results between

wild-type and DCL4-mutants sRNA libraries using DESeq2 within iDep9.0.

Appendix A Table 4 contains the functional miRNA with hairpin predictions.

The hairpins in this table were predicted by miRCat2 using EPS.

Appendix A Table 5 contains the enriched predicted functional miRNAs with

hairpins that were predicted in at least two out of three wild-type replicates. The

miRNA hairpins were predicted by miRCat2 using EPS. Also, included are the

PAREsnip2 targeting interaction predictions for the novel miRNA and miRNA*

candidates.
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Appendix A Table 6 contains the output of running miRCat2 with the UPS

parameters on the flower sample GSM707678, leaf sample GSM707679, root sample

GSM707680, and the seedling sample GSM707681.

Appendix A Table 7 contains the suggested annotation for miRNA* sequences

in miRBase.

Appendix A Table 8 contains the output of running PAREfirst with the EPS

parameters on wild-type replicates.

Appendix A Table 9 contains the output of running miRCat2 with the UPS

parameters on wild-type replicates.

Appendix A Table 10 contains the output of running miRDeep-P2 with the

default settings on wild-type replicates.
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Appendix B

The tables referenced within Chapter 5 contains a large number of rows, representing

the sRNA-mRNA interactions, that are not practical to include within this thesis.

However, for completeness, a brief description of each table is provided below and

the actual data is provided as supplementary information included with the thesis.

Appendix B File 1 Source code (in Java) for the implemented PAREnet tool,

which is a part of the UEA sRNA Workbench.

Appendix B Table 1 The results from PAREnet analysis on three A. thaliana

wild-type replicates using strict PAREsnip2 parameters.
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Appendix B Figure 1 A visual representation of detailed miR173/TAS regulatory
network, the largest hub viewed in Figure 5.5. Blue circles are sRNAs, orange circles
are validated miRNAs, the large orange circle is miR173, and the large yellow circle
is ta-siR2140. Green and purple circles represent annotated and un-annotated target
genes, respectively. Green and purple triangles represent annotated and un-annotated
source genes, respectively. Large green triangles are TAS1A, TAS1B, TAS1C, and
TAS2. Grey edges are source interactions. Orange, green, and blue solid edges are
target interactions of categories 0, 1, and 2, respectively. Dashed edges are validated
target interactions.
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Appendix B Figure 2 A visual representation of the detailed sub-network presented
in Figure 5.7(a) and represent a regulatory network that involves validated mediated-
interactions of miR156 and miR157 (controls proper development of lateral organs).
Blue circles are sRNAs, and orange circles are validated miRNAs. Green and purple
circles represent annotated and un-annotated target genes, respectively. Green and
purple triangles represent annotated and un-annotated source genes, respectively.
Grey edges are source interactions. Orange, green, and blue solid edges are target
interactions of categories 0, 1, and 2, respectively. Dashed edges are validated target
interactions.
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Appendix B Figure 3 A visual representation of a sub-network presented in Fig-
ure 5.7(b) and represent a regulatory network that involves validated mediated-
interactions of miR396 (controls leaf development). Blue circles are sRNAs, and
orange circles are validated miRNAs. Green and purple circles represent annotated
and un-annotated target genes, respectively. Green and purple triangles represent
annotated and un-annotated source genes, respectively. Grey edges are source inter-
actions. Orange, green, and blue solid edges are target interactions of categories 0, 1,
and 2, respectively. Dashed edges are validated target interactions.
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