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Abstract

Ocean microbes are essential for marine life, forming the base of the ocean food web
and contributing to biogeochemical cycling of essential nutrients. The advent of modern
molecular genetics techniques has revealed a large degree of diversity among these microbial
communities, and metagenomic sequencing allows insight into the total metabolic potential
and phylogeny of its constituent organisms. In this thesis, we develop two new computational
approaches to analysing metagenomic sequencing data in order to advance our understanding
of marine microbes.

Many marine microbes cannot be grown under lab conditions, but methods to obtain
metagenome assembled genomes (MAGs) from metagenomic data have been widely applied
for prokaryotes. However, many of the most abundant and environmentally significant
microbes are eukaryotic, for which few MAGs have been recovered. To address this gap, we
designed and implemented a pipeline for automated recovery of eukaryotic MAGs. From
12 samples, we obtained 21 MAGs from lineages including diatoms and prasinophytes.
Our analysis of these eukaryotes, alongside prokaryotes from the same samples, showed a
demarcation between polar and non-polar communities. The highest quality MAG has been
included in algal genomics resource PhycoCosm as Micromonas sp. AD1.

We also want to understand the functional capability of the whole microbial community,
as well as individual organisms. Functions are known to be shared between organisms
and pathways, so we developed an unsupervised machine learning approach using the Non-
Negative Matrix Factorisation (NMF) decomposition method to identify modules of functions
which reflect this expected sharing of functions. Interpreting the resulting decomposition
is important for exploratory analysis, and we developed the Leave-One-Out Correlation
Decrease (LOOCD) method for this task with good performance identifying shared functions.
Our methods successfully recover modules in simulated sequencing data and in real world
cases studies, both identifying established groups (e.g. surface and mesopelagic ocean) and
having meaningful biological interpretation.
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Chapter 1

Introduction

The ocean covers approximately 70% of the earth’s surface and contains 97% of its water,
and provides one of the planet’s largest habitats for life [5]. While on land plants are largely
responsible for the production of new organic matter utilising energy from sunlight, in the
oceans this role is mostly performed by photosynthetic microbes known as phytoplankton [6].
These phytoplankton form the base of the marine food web as well as being responsible for
approximately 50% of the planets atmospheric oxygen [7], and communities of phytoplankton
and other microbes are essential in the cycling of elements vital to life such as carbon, nitrogen
and phosphorus. Phytoplankton include both bacteria and more complex but still single-
celled eukaryotes. In nutrient rich water, eukaryotes often dominate these communities, with
blooms of such eukaryotic phytoplankton often being visible from space. For example the
calcium carbonate scales of Coccolithophores give waters a characteristic milky blue colour
(Figure 1.1).

The broad aim of this thesis is to expand the tools available for computational analysis
of the ocean microbes and communities which are fundamental to the functioning of the
oceans, and to help understand how these organisms and communities may respond under
conditions of climate change. The geographic distribution and growth rate of marine microbes
is dependent on environmental conditions such as temperature and nutrient concentration.
Human activity is altering these ocean conditions, with consequences for marine microbial
life. Increasing CO2 concentration in the ocean, driven by anthropogenic atmospheric CO2

emission, has led to ocean acidification which threatens calcifying species such as the
widespread Coccolithophore Emiliania huxleyi [8]; the Arctic has warmed 5 ◦C since 1900
with reducing sea-ice cover [9]; nitrogen pollution in coastal regions causes large blooms
and subsequent oxygen depletion, leading to expanding hypoxic ocean dead zones [10].

While these communities of ocean microbes have been studied and monitored for cen-
turies by programmes such as the long-running microscopy based continuous plankton
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Fig. 1.1 Phytoplankton blooms off the south coast of England visible from satel-
lite imaging from 2020. Light blue bloom is likely composed of Coccolithophores,
which appear this colour due to calcium carbonate plates surrounding the organisms.
(https://earthobservatory.nasa.gov/images/146897/channeling-a-bloom)

recorder [11], we study their genomic content through analysis of metagenomic sequenc-
ing data. The introduction of genomics techniques, and high throughput next-generation
sequencing, allowed assembly of genomes for some marine microbes, giving new insight
into their metabolism and traits. Genome assembly techniques were initially limited to
those organisms which could be cultivated in isolation under lab conditions, which represent
only a small proportion of the overall diversity of marine microbes [12]. Metagenomics
encompasses a range of techniques to bypass this bias of culturability, and sequence and
study the community as a whole [13]. At the base of metagenomic analysis is sequencing
data, containing sequences of DNA from all of the organisms present in a sample taken from
the environment. Large scale ocean expeditions performing metagenomic sequencing and
analysis have begun to characterise the structure and function of microbes across the global
ocean [4]. However data remains sparse from inaccessible but environmentally significant
regions such as the Arctic [14], and challenges remain in analysing these data. We break
down our aim of understanding the metagenomes of these microbial communities into two
objectives.

Firstly at the level of individual genomes, we develop methods which allow us to recover
and analyse genomes of uncultured eukaryotic microbes from metagenomic sequencing data.
Reference genomes for eukaryotic marine microbes are currently sparse [15]. Many species
appear unculturable, and some lineages have complex, difficult to assemble genomes. Eu-
karyotic phytoplankton have a complex evolutionary history, believed to have emerged as the
result of endosymbiotic events, when a non-photosynthetic eukaryote engulfed a cyanobac-
terium, part of whose genetic material is retained in current eukaryotic phytoplankton in the
chloroplast; many of the important lineages of such as diatoms originate from further sec-
ondary endosymbiosis, where these organisms were themselves engulfed [16]. This paucity
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of reference data poses challenges for meta-omic analysis; we have few organisms against
which to compare new sequences to identify lineage or function. Metagenome binning
methods have been developed to computationally recover draft genomes from metagenomic
data, helping to grow the range of organisms for which we have genomic information [17].
Bacterial and archaeal metagenome assembled genomes (MAGs) have been generated in
large volume for marine microbes [18], but few for eukaryotes; at the time of commencing
this thesis we were aware of 2 such MAGs [19, 20]. and there were had been no studies specif-
ically targetting automated recovery of multiple eukaryotic MAGs from ocean metagenome
data. Our first objective was to recover eukaryotic MAGs from 12 samples spanning the
Arctic and Atlantic oceans, and hence to expand the range of eukaryotic organisms for which
we have genomic information.

Secondly at the level of the entire community, we aim to develop methods to produce an
interpretable description of the functions and hence metabolic potential of microbial commu-
nities which captures local as well as global patterns. Taxonomic and functional annotations
of meta-omic data results in high dimensional data, with potentially tens of thousands of
functions or taxa identified [21]. For ocean data, while the volume of data is growing rapidly,
the number of samples available for machine learning techniques remains low in comparison
to “big data” fields such as computer vision or satellite remote observation. Unsupervised
methods are beneficial for exploratory analysis of data, where we seek to learn underlying
structures such from meta-omic data, such as groups of functions which share similar patterns
of distribution across geographic space or environmental conditions. Individual functions
may participate in responses to multiple conditions however, so approaches are needed which
can identify local as well as global patterns. To address this we develop methods to apply
the machine learning method Non-Negative Matrix Factorisation (NMF) for metagenomic
analysis, to provide an reduced dimensional description of community function which reflects
this underlying assumption of functions being shared among latent structures.

1.1 Thesis Structure

This thesis is focussed on analysis of ocean meta-omic data using computational tools, and
so opens with two background chapters providing context first on the ocean and its resident
microbes, and second on the computational tools of meta-omics.

In Chapter 2 we provide a broad outline of the global ocean and processes which shape it,
including circulation, stratification, and biogeochemical cycling. A summary of the microbial
life found in the oceans is given next, and salient points about their genetics and community
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assembly processes. The chapter closes with details of the sequencing technologies which
are the source of the data meta-omic techniques seek to process.

Chapter 3 adds bioinformatics background to the preceding environmental and biological
context. Computational steps which have become common in bioinformatics analyses
including assembly, taxonomic classification, gene prediction and functional annotation are
covered. Methods for recovering genomes from metagenome assemblies are introduced here,
along with corresponding methods for assessing their quality, phylogeny and function.

Chapter 4 details the pipeline we developed for automated binning of eukaryotic MAGs.
This was applied to metagenome sequencing from 12 samples spanning from the subtropical
Atlantic to the Arctic Oceans, collected in 2012 by Katrin Schmidt and Klaus Valentin
[22], and sequenced and assembled by Joint Genome Institute (JGI). The pipeline we
developed recovered 21 eukaryotic MAGs from this data. These included organisms from
environmentally significant lineages including prasinophytes and diatoms. Our results add to
the binning of prokaryotes from the same data performed by colleagues at JGI. Our analysis
of these MAGs shows a clear demarcation between polar and non-polar MAGs, in terms
of which organisms are present and the functions they encode. Among these MAGs we
also show an associated eukaryote-prokaryote pair, with functions enriched suggesting a
mutualistic relationship. The results of this research have been published in an article in
Microbiome [23], as well as contributing to a chapter in The Molecular Life of Diatoms
[24], and under review following an invited submission at Data in Brief. Furthermore, one
of the MAGs recovered has since been added to the PhycoCosm algal genomics resource
maintained by JGI as Micromonas sp. AD1 [25]. Additionally I extracted sequences related
to zinc-binding from the same samples studied in this chapter for analysis by colleagues,
which subsequently formed part of an article published in Nature Ecology and Evolution [26].
My contribution was to develop the eukaryotic binning pipeline, performing all analyses of
both prokaryotic and eukaryotic MAGs, and writing the resulting paper. Colleagues at JGI
performed sequencing, assembly, taxonomic and functional annotation prior to binning, and
reviewed paper drafts.

Chapter 5 discusses our results in applying the unsupervised machine learning technique
NMFs to meta-omic data. This chapter opens with a brief background on approaches used
in analysis of meta-omic data, to help illustrate where NMF differs and its potential bene-
fits. Our methods for selecting parameters and interpreting models are detailed, along with
methods of generating simulated data for evaluating our approaches. We show results on two
simulated datasets, followed by three real world case studies illustrating how this method
can be applied to meta-omics data, including large scale studies such as Tara Oceans. My
contribution to this research was conceiving and performing rank selection experiments,
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generating synthetic and simulated data, conception of two new methods to interpret features
in decompositions (permutation and Leave-One-Out Correlation Decrease (LOOCD)), con-
ceiving and performing experiments to evaluate module recovery, implementing methods as
a python package, implementing visualisation methods, and applying these methods to real
world data as case studies. Three public sources of data are use in the case studies, from the
Human Microbiome Project (HMP) [27], a study of a New Zealand river estuary [1], and the
European Bioinformatics Institute (EBI) functional annotation of Tara Oceans data [3, 4].

The thesis closes in Chapter 6 with a summary of our main results. We also propose
future work following on from our work, including further analysis of MAGs, additional
computational tools which could aid eukaryotic binning, additional applications of NMF, and
a potential approach to combining metagenome analysis and earth system models. Finally,
we discuss how our results fit into the broad context and future of the field.





Chapter 2

Biological and Environmental
Background

2.1 Summary

This thesis explores computational methods to understand the wealth of metagenomic data
being generated from oceans microbe communities. Before exploring the computational side,
this chapter will first provide an outline of the oceanic and microbiological context, in order
to frame both the problems and results in later chapters. Section 2.2 provides an overview of
the forces shaping the contemporary ocean and its biogeochemistry. Section 2.3 introduces
the microbial population of the ocean, the basics of their biology and ecology. Section 2.4
covers the distinctive features of the planet’s youngest ocean, the Arctic Ocean, to place into
context the Arctic datasets which have been used in Chapter 4. Section 2.5 looks at some
of the ways in which the Earth’s changing climate could influence the ocean, its microbial
inhabitants, and the Arctic. Finally, 2.6 describes the sequencing technologies which provide
a view into the molecular activity of marine microbes, and which are the source of the data
on which the computational methods of Chapter 3 operate.

2.2 Oceans

Oceans cover 70.8% of Earth’s surface, and contain 97% of the planet’s water. They play an
important role in global processes, including cycling of elements vital to life on Earth such
as carbon, nitrogen and phosphorus, regulating temperature by absorbing the high levels of
equatorial solar irradiance and circulating this energy across the global ocean, and in the
hydrological cycle in which moves water between atmosphere, ocean, and ground [5]. Life in
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the ocean is estimated to account for biomass two orders of magnitude lower than terrestrial
biomass (≈6 Gt C in the ocean, ≈470 Gt C on land), but accounts for approximately 45% of
the planetary primary productivity [28, 6]. This section draws on the textbook of Webb [5] to
provide a broad overview of some well established important characteristics of the world’s
oceans.

2.2.1 Circulation

Two broad systems of currents operate in the oceans; wind driven surface currents (Figure
2.1), and density driven thermohaline circulation which includes deeper waters driven by
differences in temperature and salinity (Figure 2.2).

Surface Currents

The surface currents are driven by global atmospheric circulation which is divided up into
six cells, with three each side of the equator. Either side of the equator are the Hadley cells,
at either poles the polar cells, and between are mid-latitude Ferrel cells. In the Hadley cells,
warm air rises near the equator, cooling as it rises and eventually being forced polewards
by the rising air beneath it. The cooled air eventually sinks at about 30◦ latitude, returning
to the surface and flowing back towards the equator, heating and gaining moisture. The
Coriolis effect from Earth’s rotation gives these winds an easterly direction. Air in the
polar cells circulates in the same easterly direction at the surface. Circulation here is also
driven by convection, air rising at approximately the 60◦ latitude, and descending towards the
poles, with the easterly direction imparted again by the Coriolis effect. Air circulation in the
mid-latitude Ferrel cells moves in the opposite direction to its neighbouring polar and Hadley
cells, having a westerly direction at the surface. Circulation in the Ferrel cells is driven in
large part by the motion in cells to either side of it, rather than heat driven convection.

This movement of air near the surface drives the surface ocean currents. Near the equator,
the easterly winds drive the north and south equatorial currents which flow toward the
west. Similarly at midlatitudes, the westerly winds create currents heading toward the east.
Interactions with continental landmasses and the Coriolis effect create large scale circular
gyres within the oceans, shown in Figure 2.1. Water at the centre of these gyres moves
very little, while water at the edges circulates around it. The Antarctic circumpolar current
circulates continuously eastward around Antarctica, uninterrupted by any landmass. The
Arctic Ocean is more enclosed, but the Beaufort gyre is found in the Canada basin, serving
to collect a growing volume of fresh water at its centre [29].
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Fig. 2.1 Global surface ocean currents. Blue indicates cold currents, red indicates warm
currents. Five of the large ocean gyres are labelled in white. Adapted from Ocean surface cur-
rents, by M. Pidwirny, 2007 (https://commons.wikimedia.org/wiki/File:Corrientes-oceanicas.
png). Public domain image. [30]

Thermohaline Circulation

Thermohaline circulation is the circulation driven by gradients in density resulting from
temperature and salinity conditions, and is slower than these surface currents. These currents
are shown in Figure 2.2. At high latitudes during polar winters with little light, water density
increases due to cooling and incorporation of fresh water into sea ice, increasing salinity of
the water beneath. This dense water sinks to the ocean floor, and there moves slowly towards
the equator. These cold bottom waters collect behind raised areas of the ocean floor, before
spilling over often forming narrow valleys, called gateways. The cold bottom water slowly
becomes less dense due to ocean mixing, and as newer more dense cold water arrives it will
be forced upwards. This upwelling motion is very slow, with upwelling once thought to
be broadly diffused across the oceans, but more recently that a large amount of the global
upwelling occurs in the Southern Ocean [31].

2.2.2 Vertical Structuring

The ocean is vertically stratified, with layers divided by differences in density of water, shown
by the coloured lines in Figure 2.3 [5]. Beneath the surface ocean, the points at which the
change in temperature and salinity are at their greatest define the thermocline and halocline

https://commons.wikimedia.org/wiki/File:Corrientes-oceanicas.png
https://commons.wikimedia.org/wiki/File:Corrientes-oceanicas.png
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Fig. 2.2 Map illustrating thermohaline circulation. Adapted from Map of the world’s "con-
veyor belt", by Asva, 2009 (https://commons.wikimedia.org/wiki/File:Conveyor_belt.svg).
Copyright under Creative Common Attribution-Share Alike 3.0 License. [32]

respectively. The pycnocline is the point of greatest change in density, which is driven by
temperature and salinity, so often occurs at similar depths to the thermo- and halocline. These
layers form barriers to mixing, keeping cold dense waters below the warmer less dense
surface waters in most oceans. The depth of the pycnocline varies across the oceans, from
between 10 to 500 metres, and can be absent in high latitude polar oceans. Strong ocean
stratification prevents the mixing of nutrient rich deep waters into the sunlit ocean, and so
limiting the nutrients available for microbial life. A layer of interest when considering the
activity of photosynthetic microbes is the Deep Chlorophyll Maximum Layer (DCM). This
is the point at which chlorophyll, taken as a measurement of primary productivity, peaks.
Depth of the DCM is influenced by nutrient availability and light penetration, conditions
which also impact the types of phytoplankton present.

A second factor in vertical structuring of the oceans is penetration of sunlight, shown by
the horizontal coloured bands in Figure 2.3. Water rapidly absorbs light, with only 1% of
light remaining at a depth of 100 metres, and no light by 1000 metres. Different wavelengths
of light are absorbed differently, with green and blue light penetrating furthest, and other
colours more readily absorbed. The uppermost layer, the epipelagic zone extends to the depth
where 1% of surface light remains. This depth can vary depending on water conditions, in
clear open oceans the photic zone will extended further than in water rich with phytoplankton.

https://commons.wikimedia.org/wiki/File:Conveyor_belt.svg
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Phytoplankton form the base of the upper ocean food web, as well as exporting organic
carbon to lower layers of the ocean as deceased matter drifts downwards. The mesopelagic
zone extends from the bottom of the epipelagic zone to the depth at which no light remains.
With little to no light, organisms living in this layer utilise matter exported from above.
Organisms move between the epipelagic and mesopelagic ocean, known as diel vertical
migration, contributing to the transport of biomass between these layers. Estimates of how
much life the mesopelagic ocean contains vary. A recent study based on acoustic data gave
a median estimate the biomass of mesopelagic fish to be about 11 Gt [33], and order of
magnitude higher than previous estimates of 1 Gt [34]. In the deep lightless ocean are the
bathypelagic and abyssopelagic zones, from 1000 to 4000 metres and 4000 to 6000 metres
respectively. The bathypelagic contains extremely little or no primary production, reliant on
the small proportion of matter which is transferred from the shallower ocean. Across much
of the ocean this layer meets the ocean floor, and can contain hydrothermal vents whose
heated waters provide a supply of elements such as iron and sulphur.

2.2.3 Ocean Biogeochemisty

Microbial life in the ocean relies on the presence of a variety of critical nutrients, and
understanding their cycling can help understand the biogeography and stresses on microbial
communities. Here we provide and overview of the cycling of three elements important for
primary production by phytoplankton, carbon, nitrogen and phosphorus, as well as some
significant trace elements.

Carbon Cycle

The marine biological carbon pump starts in the surface ocean, where phytoplankton use
dissolved carbon dioxide during photosynthesis, producing glucose and oxygen [5]. These
are further converted into forms of organic carbon such as carbohydrates, lipids and proteins.
Some plankton, such as coccolithophores, also incorporate carbon into calcium carbonate
structures. Larger zooplankton prey on primary producers, transferring their organic carbon
to higher trophic levels of the epipelagic foodweb. Dead phytoplankton and zooplankton fecal
matter form part of the marine snow, which sinks towards the ocean floor. A large proportion
of this matter is decomposed by bacteria, and returned to the oceans pool of inorganic carbon.
However a small proportion, about 1%, will reach the ocean floor sediments where it can
be stored for several million years [5]. This biological pump is an important process in
regulating the amount of atmospheric carbon dioxide, and hence global temperature, as
discussed later in Section 2.5 [35].
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Fig. 2.3 Layers in the open ocean, and example temperature, salinity and density gradients.
The deep chlorophyll maximum is indicated, but the depth can vary, and a chlorophyll
maximum can be absent completely. Example temperature, salinity and density gradients are
given in red, yellow, and orange lines respectively. The regions of greatest change for each
are highlight with dashed lines, the thermocline, halocline, and pycnocline respectively.
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Nitrogen Cycle

Nitrogen is an essential element for ocean life, being incorporated into all amino acids
and hence proteins, nucleic acid, and as a major component of chlorophyll is important
for primary productivity in the oceans. Pajares et al. [36] recently reviewed the state of
knowledge about the marine nitrogen cycle, and summary of their findings is provided below.

Nitrogen is abundant in the atmosphere as gaseous N2, but in this form it is not available
for biological use. Nitrogen fixation is the process of converting dissolved N2 into biologically
usable ammonia (NH3), a reaction catalysed by nitrogenase. Microbes which carry out this
process are known as diazotrophs. Nitrogenase is sensitive to O2, which is produced during
photosynthesis. This leads to photosynthetic organisms carrying out nitrogen fixation at
night, or in some cases creating anoxic environments in heterocysts for nitrogen fixation.
Diazotrophs are known to be abundant in warm, oligotrophic surface oceans; large blooms of
the cyanobacteria Trichodesmium form in the Tropical and North Atlantic Oceans. However,
the distribution of dizaotrophs is not limited to these tropical surface waters, with biological
nitrogen fixation shown to be present in a wide range of environments including the Arctic,
coastal upwelling regions, and hydrothermal vents.

Nitrification is a process which converts ammonia (NH3) to nitrate (NO3
– ). This is often

a two step process with each step being carried out by different organisms; ammonia is
oxidised to nitrite (NO2

– ), then nitrite oxidised to nitrate. Ammonia oxidation is carried out
by species of both bacteria and archaea (AOB/AOA), and nitrite oxidising by bacteria (NOB).
Organisms were recently discovered which carry out both steps of this process, known as
commamox organisms (complete ammonia oxidation), with evidence suggesting a high
relative abundance in coastal regions compared to near absence in the open ocean [37, 38].
Ammonia, nitrite and nitrate can be used by phytoplankton as sources of nitrogen, and their
use by these primary producers introduces nitrogen into the ocean food web. Nitrogen fixed
in the surface ocean can be recycled within the sunlit ocean, but some will be transferred to
layers below by similar processes to carbon transfer; vertical migration, falling dead matter
and excrement, or mixing of layers.

Biologically available nitrogen is returned to inorganic nitrogen through a corresponding
set of processes. Denitrification returns nitrate to N2, though the process is carried out in
several steps where individual organisms may only conduct a subset of them. In the oceans,
denitrification is largely limited to very low oxygen areas such as oxygen minimum zones
(OMZ) and sediments. The anammox process returns ammonium and nitrite to N2, and is
currently only known within the order of bacteria Planctomycetales, and occurs largely in low
oxygen environments such as OMZs. N-Damo (nitrate/nitrite-dependent anaerobic methane
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oxidation) is a more recently discovered process that couples methane (CH4) oxidation to
nitrate or nitrite reduction, resulting in production of N2.

Phosphorus Cycle

Phosphorus is also vital for life, forming the backbone of DNA and RNA, being involved
in energy transmission in ATP, and orthophosphate being used during photosynthesis. The
description of the marine phosphorus cycle given below is based on the review conducted by
Paytan and McLaughlin [39].

Unlike nitrogen, phosphorus cannot be fixed from the atmosphere. Instead, the main
source of phosphorus is continental weathering, reaching the ocean in river inputs or through
deposition of atmospheric dust into the oceans. Riverine input is significant for coastal or
estuarine systems, but further from the coasts dust deposition becomes an important source.
Phosphorus gets removed from the ocean system when it is buried in ocean floor sediment.
In addition to these natural geological sources, human activity provides additional source
of phosphorus; it is a limiting factor in plant agriculture, and the phosphorus fertiliser used
in these industries can end up being washed into coastal systems. Clearing of land for
agriculture can also lead to increases in mineral rich atmospheric dust, known as eolian dust,
which is later deposited in the ocean.

Phosphorus is present in the oceans in dissolved or particulate forms. These can be
divided further into organic and inorganic forms. Inputs arrived as particulate inorganic
phosphorus (PIP) or particulate organic phosphorus (POP). Inorganic phosphorus, usually
in the form of orthophospate, is the form which can be assimilated by phytoplankton,
and subsequently into organic compounds. These phytoplankton are grazed on by larger
zooplankton, and some phosphorus returned to the ocean dissolved organic phosphorus (DOP)
pool by zooplankton excretion. DOP consists of biological products such as carbohydrates,
lipids, and proteins. Microbial activity can return this organic phosphorus to inorganic form,
with bacteria and some phytoplankton producing enzymes which catalyse this process. Both
dissolved inorganic phosphate (DIP) and DOP can be adsorbed into sinking particulate matter,
moving phosphorus between the dissolved and particulate pools.

DIP often shows a gradient with depth, with the surface ocean being depleted in DIP
due to being used up by microbial productivity, and increasing in concentration with depth,
accumulating in old deep waters. The opposing trend is shown by DOP, which is highest in
the surface oceans where it is produced.

The hydrolysis process which converts DOP to DIP is carried out by bacteria throughout
the water column, as well as by phytoplankton in the sunlit layers, resulting in very little DOP
being transferred to lower depths. As DOP is abundant in the surface but not biologically
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available, productivity can be limited by the rate at which DOP can be remineralised to
biologically available DIP. Productivity can also be influenced by variation in the phosphorus
requirements of different lineages of organisms. While the average required ratio of N/P is
stable at about approximately 16 (see Section 2.2.3), individual species can require a higher
or lower availability of phosphorus, between 8.2 and 45. Hence the makeup of the microbial
community can affect when a system become phosphorus limited.

The phosphorus cycle connects to other ocean biogeochemical cycles. For instance
diazotrophic nitrogen fixation requires phosphorus, so the level of bioavailable phosphorus
can limit nitrogen fixation, and hence primary productivity. As the sources and sinks of
phosphorus are driven by geological processes, over long geological timescales phosphorus
has been considered the limiting nutrient for long term ocean productivity. At any given
point, a system may be limited by other nutrients or trace elements, but over a geologic
timescale the limiting factor may be phosphorus.

Redfield Ratio

The Redfield ratio is an observed relationship which links carbon, nitrogen and phosphorus.
The same ratio of carbon, nitrogen and phosphorus was observed in both marine phytoplank-
ton organic matter, and in the water of the deep ocean, across the oceans. The seemingly
static ratio was initially observed between nitrate and phosphate (a ratio between N:P of 16:1)
[40], and later extended to include carbon (ratio C:N:P of 106:16:1) [41]. This ratio appears
on average constant in phytoplankton and deep ocean water. Two mechanisms were initially
proposed explaining this observation. Firstly that phytoplankton N:P reflects the composition
of the water around it, with species having different nutrient requirements competing and the
community eventually coming to reflect the nutrients conditions in the surrounding water.
Second that this is maintained by biological feedback, with the activity of organisms such a
diazoptrophs and denitrifying bacteria moving the nutrient composition of seawater closer
to that of the phytoplankton. This connection has formed an important part of the current
understanding and modelling of marine carbon and nutrient cycling [42].

Trace Elements

A number of less abundant elements also play important roles in marine microbial processes,
and a lack of them can act as limiting factor on productivity. Iron is a vital nutrient for
a range of cellular processes, being used in the respiratory electron transport chain, and
with particular relevance for phytoplankton, in the photosynthetic electron transport chain
(see Section 2.3.2). Phytoplankton growth has been estimated to be iron limited in a large
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area of the surface ocean, between 30% and 50% [43]. Iron limitation of phytoplankton
growth has been observed in cultures under lab conditions, but also demonstrated in situ in
the oceans [44]. Controversial iron fertilisation experiments introduced bioavailable iron
into high nutrient low chlorophyll areas of the ocean, and showed that this could stimulate
phytoplankton blooms in these systems [45].

Some trace elements are more important in specific regions and to specific lineages of
organisms. Recent research suggests that zinc is an important nutrient in polar regions, and
that polar phytoplankton have a raised demand for zinc [26]. Concentration of dissolved zinc
is high in polar oceans, and concentrations of cellular zinc in the phytoplankton which inhabit
them reflects this. Genomic evidence shows families of zinc-finger proteins are expanded
in polar phytoplankton, and co-expressed with genes involved in primary metabolism such
as photosynthesis or fatty acid metabolism. This was supported by metagenomic evidence
as well, with density of zinc domain genes being raised in polar compared to non-polar
metagenomes, and in those genes the ratio of synonymous to non-synonymous mutations
suggesting selection. However the importance of zinc is region and lineage specific, zinc
concentration is low in other ocean regions such as tropical oceans, and the increased
zinc requirement seems specific to those species which have colonised the polar oceans,
particularly the Southern Ocean.

2.3 Marine Microbes and Microbiomes

2.3.1 History

While molecular methods of studying ocean microbial communities are new, the study of
these communities has a much longer history. Antonie van Leeuwenhoek was the first to
observe and count "animalcules" in drops of water as early as 1675, among the many subjects
he studied with his advances in microscopy [46]. From these very first observations, it has
been clear that sample environments contain multiple different types of organisms, living
together as a microbial community. Later Adolphe-Adrien Certes arranged for samples of
deep sea sediment to be collected on the Talisman and Travailleur expeditions of 1880 to
1883, and working in the lab of Louis Pasteur obtained cultures of microbes from these field
samples, demonstrating the near omnipresence of microbial life across even the most extreme
of earth’s environments. An early example of experimental marine microbiology, both Certes
and Paul Regnard sought to study microbial activity under different pressures, studying the
rate of putrefaction of matter in chambers under various pressures [47].
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Marine plankton have since been the subject of one of the worlds longest running biolog-
ical monitoring programs, the Continuous Plankton Recorder (CPR) [11]. This program has
been running since 1931, and using the same methods since 1958, providing multi-decadal
insight into parts of the marine microbial community. Despite the roughly two and half
centuries separating them, the taxonomy of species captured by the CPR is identified by
microscopy, as with Leeuwenhoek’s counts of animalcules. For many decades the ocean
microbial population was thought to be sparse and of little importance to broader ocean
processes, however Azam [48] highlights a series of advances through the 1970s and 1980s
which changed how we understand microbial life in the oceans: studies of microbial respira-
tion suggested microbes formed a large part of the oceans metabolism and were connected
to consumers at higher trophic levels [49]; fluorescence based methods permitted a direct
count of bacteria which was three orders of magnitude greater than previous estimates [50];
and estimates that bacteria utilised between quarter and half of primary production playing a
significant role in the ocean carbon cycle [51, 52].

Molecular methods similarly represented a sea change in the study of marine microbial
communities. Extracting and sequencing genomic material allowed new insight into the
evolutionary history of organisms, and the diversity of microbial communities. Analysis of
genes coding for subunits of ribosomal RNA (rRNA) rearranged the broad understanding
of evolution into three domains, bacteria, archaea, and eukarya [53]. The development of
techniques to obtain sequences from environmental samples without culturing resulted in an
increased understanding of the diversity of organisms present in the ocean, which had not
been evident using microscopy [54, 16].

The introduction of what has become known as next-generation sequencing provided both
increased throughput and reduced cost. Using these new technologies, the range of culturable
marine microbes with full genomes sequenced began to expand. Beyond those organisms
which could be cultured, techniques developed for whole genome shotgun sequencing from
environmental samples [13]. This approach generates reads from the genetic sequences of
organisms in an environmental sample without the need for culturing, allowing insight into
genetic makeup of unculturable members of natural marine communities. These sequencing
and analysis tools make up the field of metagenomics, and the generation of metagenomic
data from the oceans has continued to increase dramatically. High profile globe spanning
expeditions like the Global Oceans Survey and Tara Oceans [55, 4] generated large volumes
of data which are still being analysed and generating new results, and recent expeditions like
the year round Arctic expedition MOSAiC [56] continue to expand the regions and ocean
conditions for which metagenomic data is available.
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As well as expeditions getting larger and reaching more challenging parts of the oceans,
sequencing technology has continued to develop. Third generation sequencing platforms
offer much longer reads, albeit currently with higher error rates, and portability allowing
sequencing in-situ [57]. In parallel, improving techniques for single-cell sequencing are
helping to further expand the range of organisms for which genomes are available, allowing
sequencing of specific organisms from environmental samples without thee need to grow
them in culture [58].

2.3.2 Molecular Microbiology

All known living organisms divide into three domains, bacteria, archaea and eukarya, based
on their evolutionary history, shown on the left of Figure 2.4. Archaea and eukarya are
more closely related to each other than they are to bacteria, though the exact relationship
between these domains remains to be resolved [59]. A further grouping can be made based
on the cell structure of organisms, shown in a highly simplified form on the right of Figure
2.4. Prokaryotes are the archaea and bacteria, whose genomes are organised in a circular
structure in the cell’s cytoplasm. Their genomes tend to be simpler, with sequences coding
for genes close together without much intergenic DNA. Eukaryotes are more complex in
structure, and in the organisation of their genetic material. Eukaryotes have membrane bound
organelles which contain their genetic material. All eukaryotes have a membrane bound
nucleus, which contains their nuclear DNA. This is organised into multiple chromosomes,
which are linear with a start and end rather than circular as in prokaryotes. A much higher
proportion of eukaryotes genetic material is non-coding, with genes interrupted by introns,
portions of sequence which do not code for a protein. In addition to being split across
multiple chromosomes, these chromosomes can be present in one or more copy, known as
the ploidy of the organism. Other organelles in eukaryotic cells, such a chloroplasts and
mitochondria, contain their own separate genome. These genomes are organised in a way
more similar to prokaryotes, being circular and with a high proportion of coding DNA.

Another important division can be made between autotrophs and heterotrophs. Autotrophs
store chemical energy in organic compounds synthesised from inorganic compounds in
the environment such as CO2 and water, a process called primary production. Primary
production requires an energy source, with photosynthetic organisms utilising sunlight, where
chemosynthetic organisms used energy from inorganic chemical reactions. Chemosynthesis
is more common in deep sea organisms where light is scarce or absent, with the light filled
surface ocean home to more photosynthetic organisms. On the land, autotrophs are dominated
by multicellular plants. However in the oceans the bulk of autotrophs and primary producers
are single celled microbial phytoplankton. Heterotrophs rely on other organisms for organic
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Fig. 2.4 Relationship and basic structure of the three domains of life, bacteria, archaea and
eukarya. The tree on the left shows that eukarya are more closely related to archaea than to
bacteria. Cell diagrams on the right show a highly simplified bacteria and phytoplankton cell,
to highlight some high-level structual differences.

carbon, acquiring them by consuming either autotrophs, or other heterotrophs. Ocean
heterotrophs range from microbes from all domains, up to the oceans biggest organisms
like whales. Mixotrophic organisms combine both of these trophic modes and is believed
to be widespread in plankton, with both a diverse range of organisms being mixotrophs
and with mixotrophs being present broadly across the surface oceans [60]. In the Arctic
summer, mixotrophic ciliates make up a large portion of the total chlorophyll outside the
diatom blooms close to sea ice. Zooplankton preferentially feed on these ciliates, making
mixotrophic organisms an important component in transferring nutrient to higher trophic
levels [61].

Nucleic Acids and Proteins

There are three biopolymers of interest to us looking at microbial genetics: DNA, RNA
and proteins. In a broad sense, DNA contains genes; genes encode the sequence of amino
acids in a protein which has a biological function [62]. To synthesise a protein from a gene,
RNA polymerase binds to DNA and creates messenger RNA (mRNA), a process called
transcription. Ribosomes bind to mRNA and assemble amino acids into a protein in the order
contained in the mRNA, known as translation. An overview of the structure and role of these
three biopolymers is given below [63].
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DNA

DNA is a double stranded molecule of two polymers, each strand composed of a sequence
of deoxyribonucleotide triphosphate (dNTP) molecules. Each dNTP contains a nitrogenous
base bound to a deoxyribose sugar, and three phosphate groups bound to this sugar. Four
nitrogenous bases are used in dNTPs: adenine, cytosine, guanine, and thymine, commonly
abbreviated A, C, G, and T. The two strands are joined by hydrogen bonds between pairs
of bases: A with T, and C with G. The sequence of bases in a strand of DNA carries
the genetic information. Each strand stores the same information, and by base pairing
the complimentary strand of a single strand can be synthesised, allowing replication of
DNA. An organism’s genome is composed of one or more chromosomes containing DNA.
Prokaryotic and eukaryotic genomes are organised differently. Bacteria usually have one
circular chromosome containing their genome. Eukaryotes have a nuclear genome of one
or more chromosomes stored in the cell nucleus. Organelles in either type of cell, such
a chloroplasts or mitochondria, contain their own genome. Parts of this genome may be
transferred to the nuclear genome over time.

A genome contains many genes; each gene codes for the production of a molecule which
has a biological function. This coding region is flanked by untranslated regions which
RNA polymerase can bind to in order to read the coding region and synthesise mRNA. The
organisation of a gene is different in prokaryotes and eukaryotes, with a salient difference
being the division of the coding region into introns and exons in eukaryotes. Introns are
sections of the coding region which do not code for amino acids, and must be removed from
the initially synthesised mRNA, leaving only the exons in the mature mRNA. This can make
locating and interpreting genes in eukaryotic genomes more computationally challenging
[64].

RNA

RNA is a single stranded polynucleotide, consisting a chain of nucleoside triphosphate
(NTP) molecules. NTP molecules are similar to dNTPs, but using a ribose sugar instead
of deoxyribose, and the base thymine is replaced with uracil, abbreviated U. Each mRNA
encodes the order of amino acids in a protein. Ribosomes bind to mRNA to synthesise
proteins by assembling amino acids based on the mRNA sequence. Some RNA has a
direct function and is not converted to a protein in order to function. Ribosomes are largely
composed of ribosomal ribonucleic acid (rRNA) which is not translated to a protein. Transfer
Ribonucleic Acid (tRNA) connects amino acids and the codons in mRNA; each tRNA attaches
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to a specific amino acid, and the anticodon region of the tRNA pairs to the complementary
codon in mRNA. The sum of the RNA in a cell is named the transcriptome.

Protein

Proteins are polymers composed of a sequence of amino acids. There are 20 standard amino
acids, with some organisms using additional ones. The order of bases in a gene’s coding
region encodes the order of amino acids in the protein to be synthesised. Synthesis of proteins
by ribosomes from mRNA is known as translation. A block of three nucleotides is a codon,
each codon relates either to one amino acid or is a stop codon which terminates translation.

The relationship between codons and amino acids is called the genetic code. The genetic
code is redundant, meaning more than one codon can code for the same amino acid. Genetic
codes are very similar between organisms but variations exist where a codon codes for a
different amino acid than usual in some organisms. The plastid and mitochondrial genomes
of the recently described class of phytoplankton Chloropicophyceae have such a variant
genetic code [65, 66].

Proteins carry out most of the functions within a cell. Knowing which proteins are coded
for in a genome enables us to make inferences about what functions the organism can carry
out, and how it may interact with its environment.

Phytoplankton

The ocean’s consumers all rely on the primary producers which form the base of the food
web, so next we will give more detail on the phytoplankton which provide 45% of global
primary production [6]. Phytoplankton are a group of autotrophic single-celled organisms
found in aquatic environments which convert light to chemical energy via photosynthesis.
Photosynthesis is believed to have been acquired in a prokaryotic ancestor of contemporary
cyanobacteria by 2.7 Gigayears (Gy) ago. During the Mesozoic era eukaryotic microbes
acquired photosynthesis and became dominant in phytoplankton communities [16]. Photo-
synthetic eukaryotes are believed to have emerged from a single endosymbiotic event when a
eukaryotic cell engulfed a cyanobacterium [67]. Some photosynthetic components of the
cyanobacterium have been retained in the eukaryote host as a plastid, the chloroplast, while
other genes have been transferred to the nuclear genome of the host [68]. This endosym-
biosis resulted in three major groups of photosynthetic algae: red algae, green algae and
glaucophytes. Many contemporary species of eukaryotic phytoplankton such as diatoms
and coccolithophores acquired chloroplasts through secondary endosymbiosis, where a het-
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erotrophic eukaryote engulfed a red alga. Whether this secondary endosymbiosis of a red
plastid occurred once or multiple times is unresolved [69].

The most significant and diverse groups of eukaryotic phytoplankton are diatoms, di-
noflagellates and haptophytes. In terms of number of observed species, dinoflagellates and
Stramenopiles (mainly represented by diatoms) make up a majority of the diversity of all
phytoplankton [16].

Diatoms are a unicellular class of Stramenopiles characterised by a silica cell well called a
frustule. They are a diverse group, with estimates suggesting that over 100,000 contemporary
diatom species exist [70]. Morphologically, diatoms are divided into two broad groups based
on frustule shape; centric, and pennate (Figure 2.5). Centric diatoms are older, with pennate
diatoms evolving more recently and representing most of the species diversity. Diatoms
are abundant in nutrient rich coastal areas, and estimated to account for 20% of global
carbon fixation. In the Southern Ocean diatoms adapted to the fluctuating conditions in light,
temperature and nutrients are the main primary producers [71]. Part of the carbon fixed by
diatoms sinks to the ocean floor and becomes trapped in sediment, contributing about half of
marine carbon sequestration.

(a) Centric diatom (b) Pennate diatom

Fig. 2.5 Diatoms with pennate and centric frustules. Centric diatom image adapted from
CSIRO image by Wikimedia, used under the Creative Commons Attribution 2.5 Generic
license [72, 73]. Pennate diatom adapted from image in Bradbury via Wikimedia Foundation,
used under Creative Commons Attribution 2.5 Generic license [74, 75].

Dinoflagellates are largely found in marine environments, and around half of the contem-
porary species are photosynthetic, and some photosynthetic dinoflagellates are mixotrophs,
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employing multiple strategies for acquiring energy and organic material [76]. They typically
possess two flagella: a ribbon like transverse flagellum and a longitudinal flagellum which
allows the cell some movement within the environment to find locally optimal conditions
[77]. Dinoflagellates are also most abundant in coastal waters, preferring environments with
rich nutrients from land or upwelling deep water. These coastal species will often include
a resting stage, either as cysts or spores on the ocean floor, in their lifecycle, making them
unsuited to open ocean environments. The distribution of dinoflagellates appear similar in
the temperate waters either side of the equator. In polar regions heterotrophic dinoflagellates
feed on summer diatom blooms, though some photosynthetic species are also present [77].
Some groups have harmful effects on other organisms through production of toxins. Large
‘red tide’ blooms of dinoflagellates are potentially harmful to humans who consume toxin
exposed shellfish. In addition to primary production, dinoflagellates may provide a host
environment for symbiont cyanobacteria to efficiently fix nitrogen, contributing to the cycling
of nitrogen [78].

Haptophyta include the calcifying group of Coccolithophores, whose blooms can be
visible from space (Figure 1.1), due to the characteristic chalky light blue colour given to
the blooms by the calcium carbonate scales which cover the cells. Coccolithophores are
estimated to provide 20% of total phytoplankton primary productivity, and the sinking of
their calcium carbonate shells forms part of the ocean’s carbon pump [79]. Emiliania huxleyi
is one of the most abundant and broadly distributed of the Coccolithophores, with its range
having expanded into polar waters since the beginning of the 21st century [80]. Sequencing
of the E. huxleyi genome showed that strains exhibited a high degree of variability, and these
differences in functional potential may explain why the species succeeds in a wide range of
habitats [81].

Chloroplastida is a clade which ranges from the smallest known free-living eukaryote
Ostreococcus tauri to multicellular land plants [82]. The main representatives from this
clade in marine environments are the green algae, and among those only the Prasinophyte
lineage is abundant in the ocean [83]. Prasinophytes show a high degree of diversity, with
variation in cell shape and size, their flagellar apparatus, and their cellular functions. The
largest clade of Prasinophytes is the Mamiellophyceae, which includes species which are
common among the ocean’s picoplankton. Micromonas are a Mamiellophyceae genus with
wide distribution across coastal and open ocean environments. They have been observed to
be dominant in summer Arctic waters, with one study finding Micromonas to be almost the
only organism recovered in the picoplankton size fraction [84]. These polar Micromonas
have recently been described as new species, M. polaris [85], and the known strains of
Micromonas appear to be adapted to specific thermal niches with species M. commoda and
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M. bravo having two distinct thermotypes [86]. The Ostreococcus are a smaller and simpler
genus, lacking the flagellum of many other Prasinophytes. Division of strains of Ostreococcus
into ‘low-light’ and ‘high-light’ ecotypes has been suggested based on lab evidence [87],
though evidence from environmental samples suggests other factors may be driving its global
distribution [88]. Bathycoccus is another comparatively simple genus of Mamiellophyceae
with a similarly wide distribution across the surface ocean. Recently single-cell sequencing
added an additional genome alongside that of Bathycoccus prasinos, and suggested that this
newer Bathycoccus sp. TOSAG39-1 was adapted to deeper waters of the DCM in temperate
regions than B. prasinos which is more prevalent in tropical waters [89].

Photosynthesis

In both bacteria and eukaryotes, photosynthesis occurs in thylakoids, which in eukaryotes are
localised in the chloroplast [90]. The thylakoid membrane contains the pigment molecules
which absorb light energy, and surrounds the thylakoid lumen. Four main components
embedded in the thylakoid membrane take part in the light dependent parts of photosynthesis:
photosystems I and II, cyctochrome b6f and ATP synthase. Water is split into protons, oxygen,
and electrons in the oxygen splitting complex of photosystem II, and these electrons are
transferred to chlorophyll molecules. When chlorophyll in photosystem II absorbs a photon,
the resulting excited electron is moved along the electron transport chain, moving from
photosystem II to cytochrome b6f onto photosystem I where additional energy is imparted
again from an absorbed photon. From photosystem I, electrons are used in either cyclic or
non-cyclic electron transport. Non-cyclic transport moves the electron to an enzyme which
reduces NADP+ to NADPH, a key component of the Calvin cycle reactions which fixes
inorganic carbon to biologically usable glucose. Cyclic transport transports electrons back to
cytochrome b6f, resulting in the movement of protons across the membrane. This creates
a different concentration of protons either side of the membrane, which is used by ATP
synthase for synthesis of ATP, a key energy source for cellular activities.

The Calvin cycle is the portion of photosynthesis which converts inorganic carbon
dioxide and water to biologically available glucose, utilising ATP and NADPH produced
in the thylakoid reactions. This is a three step process. First a carbon dioxide molecule
is combined with RuBP, subsequently splitting into two 3-PGA molecule. This reaction
between RuBP and CO2 is catalysed by the enzyme RuBisCO, sometimes estimated to be
most abundant enzyme on earth though recent research challenges this [91]. The second
step uses ATP and NADPH to convert the 3-PGA to the sugar G3P, resulting in NADP+ and
ADP as byproducts. Some G3P molecules go to be used for synthesis of glucose, some are
regenerated to RuBP to be reused in the cycle.
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2.3.3 Microbial Communities

The characteristics and processes of phytoplankton and other microbial species can be
individually studied and described, with some species being amenable to growing in isolation
under lab conditions. This is far from their usual condition in nature however, where they will
co-exist often with a broad range of microbes from other species. There are a few commonly
used measures to describe the mixture of organisms in a microbial community. Richness is
the number different species present in a community, regardless of their abundance. Two
types of diversity are often used to describe communities, alpha and beta diversity, which seek
to describe local species diversity and difference in diversity between locations respectively.
The total diversity, gamma diversity, was defined as the sum of alpha and beta diversity
[92]. A range of different indices have been used for alpha diversity [93], of which richness
is one, as well as the Shannon Index [94] and Simpson index [95]. Beta diversity is the
differentiation in species between locations, which people have sought to further partition
into different components, such as replacement, richness and nestedness components [96]. A
similar approach to assessing the difference between locations is using measures of similarity
or dissimilarity between samples, based on either binary presence of species or abundances.
The Bray-Curtis dissimilarity, Sørensen similarity and Jaccard similarity have been employed
for this purpose, and more recently approaches which seek to incorporate information about
the relatedness of the taxa observed such as UniFrac distance have been developed [97].

Understanding these natural communities and their diversity necessitates understanding
the processes which shape the microbial communities across environmental gradients, spa-
tially, and temporally. In the oceans, many microbes show a highly cosmopolitan distribution,
appearing widely dispersed, leading to the Baas Becking hypothesis that "everything is
everywhere but the environment selects" [98]. The kind of environmental selection suggested
by this hypothesis plays an important role in determining the composition of communities,
whereby organisms compete given their fitness for the environmental conditions. Other
processes also impact community structure, with some ecologists suggesting the community
assembly process to be shaped by diversification, dispersal, and drift in addition to selection
[99]. Dispersal is the movement of organisms between locations, and can be either active
or passive. Active dispersal, where organisms move themselves to different locations, is
very limited for microbes, with flagellate eukaryotes are estimated to have an average swim
speed of 186.70µms−1 [100] which is dwarfed by typical distances between ocean sampling
locations. Passive dispersal is when external forces act to move organisms, such as ocean
circulation or winds. The Baas Becking hypothesis suggests unlimited dispersal, with all or-
ganisms being dispersed throughout the global ocean. However marine sediments connected
by currents but separated by great geographic distance shared several taxa, where more
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isolated bodies of water did not, suggesting a role for ocean circulation in dispersal [101].
Dormancy strategies, which let an organism be inactive under inhospitable conditions, allow
for increased dispersal. Dormant organisms can transit through hostile environments over
long time scales [102]. Diversification is the action of evolutionary processes in the organ-
isms of a community. The short generation time of individual microbes allow adaptation to
occur on observable timescales, with the Arctic species Micromonas polaris shown to adapt
to increased temperature within 200 generations under lab conditions [103]. Horizontal gene
transfer, the movement of genes between organisms, is believed to be frequent within the
oceans [104], allowing the comparatively rapid spread of beneficial traits between organisms.
This can allow species to enter new environments, such as ice dwelling diatoms which appear
to have acquired genes for ice binding proteins via horizontal gene transfer [105]. Finally,
drift covers stochastic changes in the community. In the oceans, some evidence suggests drift
is more important in structuring prokaryotic communities than eukaroytes [106].

2.4 The Arctic

This section gives an overview of the Arctic Ocean and its dynamics, drawing from the
review if Timmermans and Marshall [107]. The Arctic consists of landmasses including
Greenland, Northern Russia, and Canada, mostly enclosing the shallow Arctic ocean and its
year round sea ice. These terrestrial and marine environments share some unique conditions
due to their high latitude. One way of defining the extent of the Arctic is based on sunlight,
with the Arctic circle being defined as the lowest latitude at which the sun will not rise on
the December solstice, and will not set during the June solstice, which is currently about
66◦33’49.2" N. During polar night the sun does not rise, and the length of this polar night
increases with latitude, extending to approximately 11 weeks near the pole. High latitude
regions additionally receive less solar irradiance outside of the polar night as light must travel
through an increased amount of atmosphere, forming one of the main drivers of the low polar
temperatures, and characterstic regions of permanent ice on land and sea.

The Arctic ocean is quite dissimilar to its neighbouring Atlantic and Pacific oceans.
Rather than wide deep open areas relatively uninterrupted by land masses, the Arctic is
enclosed by land, and characterised by a small number of deep basins surrounded by long
shallow shelves, shown in Figure 2.6a. The Lomonosov ridge divides the two large Amerasian
and Eurasian basins, each of which is further divided by the smaller Alpha and Gakkel ridges.
The shallow Chucki Sea extends from Alaska and Eastern Russia, and the Barents Sea from
Norway and Western Russia, and along with Greenland and Canada almost enclose the
deeper Arctic waters. Stratification in the Arctic Ocean is driven primarily by salinity, in



2.4 The Arctic 27

contrast to primarily temperature driven stratification in the more southern open oceans.
Salinity stratified waters show more limited vertical mixing, contributing to the formation of
large phytoplankton blooms in the Arctic as growing phytoplankton are not mixed out of the
light rich layers of the ocean.

Advection, the movement of water masses into and around the Arctic Ocean, impacts
both the physical and biological process of the Arctic, with broad currents shown in Figure
2.6b. Water is exchanged with two neighbouring oceans: with the Pacific Ocean through
the Bering Strait, and with the Atlantic through the Fram Strait and Barents Sea. Within the
Arctic Ocean, two major currents are the Beaufort Gyre which circulates water of Pacific
origin in the Amerasian Basin, and the Transpolar Drift which transports water and ice from
the East Siberian and Laptev seas towards the Fram Strait. The narrow Fram Strait between
Svalbard and Greenland contains two distinct currents, the West Spitsbergen current which is
warmer Atlantic water flowing into the Arctic ocean, and the East Greenland current where
cold Arctic water flows into the Atlantic. Warmer inflowing Pacific or Atlantic waters can
end up being at depth below colder surface waters due to the strength of the salinity driven
stratification. Both nutrients and biomass are carried along with these inflowing waters, with
some research estimating that a majority of zooplankton are introduced by advection [108].
Changes in advection are impacting Arctic Ocean conditions, with effects differing between
the Eurasian and Amerasian basins. In the past three decades, pulses of warm Atlantic water
entering the Arctic Ocean have raised the average temperature, weakening the halocline in
the Eurasian Basin, such that it no longer poses as strong a barrier to heat flux from warm
Atlantic Water with consequent reduced ice cover. In the Amerasian Basin, warmer inflows
reduce ice cover making the warm surface water more susceptible to wind driven transport
deeper into the basin, extending the warming effect. Overall as a result of changing advection
the Arctic seems to be experiencing a general decrease in nutrients, except in a few areas
such as the Amundsen Basin, North Chuchki Sea and Canada Basin [109].

Carmack and Wassmann [108] divide the Arctic Ocean into four ‘contiguous domains’,
where areas in the same domain share conditions and processes, and as such are likely to have
similar response to changes in climate, which are summarised here. The Seasonal Ice Zone
is the portion that experiences seasonal freezing and thawing. This is a widening region as
multiyear ice retreats, with later freezing and earlier breakup increasing light availability for
microbial communities, and increasing vertical mixing through exposure to autumn storms.
As the Seasonal Ice Zone retreats beyond the edge of shelves, there is the potential for the
upwelling of nutrient rich waters. The Riverine Coastal Domain is characterised coastal
currents that transport of freshwater around the perimeter of the Arctic Ocean. This domain
receives low density freshwater input from rivers into higher density ocean water, and is
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deflected rightward by the Coriolis effect. Atmospheric and terrestrial effects impact this
region, such as increased precipitation over land altering volume and content of runoff into the
ocean waters. The Pacific-Arctic domain covers the Pacific Waters which enter the Amerasian
Basin and circulate within the Beaufort Gyre and Canada basin. In comparison to Atlantic
waters, these are lower salinity, higher in nutrient content, and support a distinct biological
community. Warmer summer water from the Pacific can affect ice cover, as well as supplying
nutrients to support phytoplankton. The pan-Arctic margin domain encompasses the shelf
break which extends around the Arctic Oceans from Spitsbergen to West Greenland. Atlantic
and Pacific circumpolar boundary currents are contained in this domain, and conditions can
vary depending on factors such a shelf depth and width or proximity to river inputs. Despite
the variability they share some climate responses, such the potential for increased nutrient
upwelling as seasonal ice retreats.
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(a) Arctic Ocean bathymetry with major fea-
tures labelled. Adapated from Map of Arctic
Ocean (https://www.usgs.gov/media/images/
map-arctic-ocean-0) based on IBCAO data [110].

(b) Surface currents in the Arctic Ocean. Adapted
from Arctic Ocean circulation map, by Zeimusu,
2012 (https://commons.wikimedia.org/wiki/File:
Arctic_Ocean_circulation_map.svg). Copyright un-
der Creative Common Attribution-Share Alike 3.0 Li-
cense.

Fig. 2.6 Maps of Arctic bathymetry and circulation
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Sea ice plays important roles beyond influencing Arctic Ocean salinity and stratification.
The albedo effect of ice is an important control on both Arctic and global temperature [111].
Ice and snow reflect a high proportion of sunlight, where darker exposed water or land absorb
it and lead to increasing heat. The melting of sea ice exposes more absorbent surfaces,
leading to a positive Ice-Albedo feedback discussed further in Section 2.5. There is a strong
seasonal pattern to sea ice, with the summer sea ice covering approximately a third of the
area of the maximum winter sea ice extent.

As with many of Earth’s seemingly hostile environments, sea ice provides a habitats
for microbial life. Bacteria, archaea and viruses are found in small brine channels in ice,
with a high ratio of viruses to bacteria, possibly providing an environment for horizontal
gene transfer of traits related to ice resistance [112, 105]. Photosynthetic algae are found
at the surface and bottom of sea ice as well as within it. Algal communities differ between
these environments, with autotrophic flagellates typifying the surface, diatoms the bottom
communities, and the ice interior communities being more mixed [113]. Some algae are
incorporated into ice during ice formation, but ice communities differ between surface water
and sea ice, suggesting that they are not simple snapshots of the surface water community at
the time of incorporation [114]. As with sea ice and light availability, microbial communities
in the Arctic show seasonal dynamics. Temperate oceans show two yearly phytoplankton
blooms, in spring and later summer, where Arctic waters were typified by a single spring
growing period; however decreasing ice cover has led to some regions experiencing a
similar pattern of two yearly blooms [115]. Spring blooms are often dominated by diatoms,
and despite their short growing season can account for more than half the annual primary
productivity [116].

2.5 Climate

Natural and anthropogenic changes in the earth’s climate have had, and will continue to have,
significant effects on the global oceans and their inhabitants. Increased atmospheric CO2

is contributing to rising global temperatures, but also to a decrease in ocean pH, known as
ocean acidification [117]. Increased ocean acidity leads to reduced concentration of calcium
carbonate minerals, an important mineral for the abundant group of calcifying phytoplankton
coccoltihophores. A modelling approach showed significant changes in phytoplankton
community composition, with acidification having the largest impact on the ecological
function of the community [118]. Acidification has been cited as a threat to calcification in
species such as the widespread coccolithophore Emiliana huxleyi [8]. Adaptive evolution
may allow such species to respond to shifting environmental conditions; a study found all
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cultures exposed to increased atmospheric CO2 showed decreased calcification, but those
grown under such conditions showed improvement compared to those grown in current
conditions [119].

Eukaryotic phytoplankton groups play important ecological roles in marine ecosystems,
through primary production and cycling of other nutrients. The success and abundance
of these species can change in response to environmental conditions, some of which are
associated with anthropogenic climate change, with a decreasing abundance of dinoflagellates
and rising abundance of diatoms observed over a 50 year period in the North East Atlantic
and North Sea [120]. This analysis found changes in community composition were driven by
the interaction of changing sea surface temperature and increasing wind during summers.

The Arctic is warming more rapidly than midlatitude regions, over twice as fast and the
global average, an effect known as Arctic amplification [14]. A mixture of mechanisms
and effects have been suggested to contribute to and result from Arctic amplification [121].
Reduction in sea ice extent may be both a cause an effect, due to the sea ice albedo feedback
[111]. The year round extent of sea ice is decreasing at an accelerating rate, and the ice is
increasingly younger and thinner compared to multiyear ice [122]. Sea ice and snow are
highly reflective, preventing much of the energy from sunlight reaching the Arctic from
being absorbed. When this ice melts, more absorbent water is exposed, resulting in a greater
amount of energy being absorbed causing heating and further sea ice loss. Sea ice and glacial
melt also represent a source of freshwater input into the Arctic, with models predicting
this will strengthen the salinity based stratification of the central Arctic ocean, limiting the
nutrient supply to surface oceans and hence productivity [123].

With these changes likely to continue occuring, understanding the interactions between
microbial communities and environmental conditions is a important challenge in responding
to anthropogenic climate change.

2.6 Sequencing

Knowing that the genome contains the information vital for cellular function and the mecha-
nism for transfer of traits between organisms or generations, methods to determine the order
of nucleotides within a genome are important for the study of molecular genetics. One of
the first widely used methods was commonly called Sanger sequencing [124]. By 2008
Sanger sequencing could generate reads up to 1,000 bases in length with an accuracy per
base up to 99.99% [125]. Limitations of this sequencing method include the high cost per
base and low throughput. Over 13 years the Human Genome Project assembled the human
genome at an estimated cost of 0.5 to 1 billion dollars [126, 127]. New technologies referred
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to as next-generation or second generation sequencing have been developed with higher
throughput and lower cost, and have seen wide adoption.

Sequencing methods produce reads consisting of a sequence of bases observed on a
piece of genetic material, either DNA or RNA. These reads are often shorter than the area of
interest on the genome, a read may not contain the entirety of a gene we are interested in.
Algorithms have been developed to assemble short reads into longer composite sequence
(contigs), covered in more detail in Section 3.3.

2.6.1 Sanger Sequencing

Sanger sequencing is not commonly used for metagenomic sequencing. We introduce the
Sanger method as a basis from which to explain the high throughput Illumina method used
to sequence the samples used in Chapters 4 and 5.

The double stranded DNA to be sequenced is split apart to single stranded DNA using
heat. In cells, DNA is replicated by DNA polymerases which bind to single stranded DNA
and pairs each base with a corresponding dNTP. Sanger sequencing introduces a small
proportion of chain-terminating dideoxyribonucleotide triphosphate (ddNTP) molecules
into the medium in which replication takes place. The ddNTP molecules lack the group
which allows further nucleotides to be added to the chain, causing replication to terminate.
This results in sequences of different length, but which have all terminated at either the
base corresponding to that in the ddNTP, or at the full length. Measuring the length of
these partially replicated sequences allows us to measure at which positions in the template
sequence the corresponding base occurs.

The length of fragments is measured using gel electrophoresis. DNA fragments are placed
in a gel medium, and an electric field applied. DNA has a negative charge and moves towards
the anode, smaller fragments moving more quickly. Positions at which fragments group can
be visualised using various methods, and the positions where fragments stop indicate the
positions of the corresponding base. The chain termination step must be repeated four times,
once using a ddNTP with each base.

Fluorescent labels were subsequently incorporated into ddNTP, each base fluorescing
a different colour [128]. When a laser is applied to fragments incorporating fluorescently
labelled ddNTPs, peaks in certain wavelengths of light indicate the presence of a base.
Capillary electrophoresis was developed as a miniaturised and parallelised alternative to gel
electrophoresis, and combined with automated base calling using fluorescence to meet the
demand for increased throughput from projects such as the Human Genome Project [129].
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2.6.2 Next-generation Sequencing (NGS)

Next-generation Sequencing (NGS) technologies are a group of sequencing methods which
were developed after Sanger sequencing, allowing rapid high throughput sequencing though
often at the cost of shorter read lengths [125]. A recent review of next generation sequencing
technologies used for sequencing environmental samples found Illumina platforms to be
dominant [130]. Illumina produce a range of machines targeted at different uses: MiSeq,
iSeq, and MiniSeq for targeted sequencing and small genomes; NextSeq and NovaSeq for
high-throughput uses [127]. All of the samples used in this thesis were sequenced using
the now discontinued high throughput Illumina HiSeq platform. Maximising the volume of
sequence output is advised for metagenomic sequencing, in order to obtain sequences for
rare members of the community [130]. The Illumina HiSeq platforms used generate large
volumes of short high-quality reads between 100 and 150 base pairs (bp), giving paired-end
reads up to 300bp. Read length has continued to improve on new platforms, with NovaSeq
generating paired end reads up to 250bp each. The Illumina sequencing method is here
explained in detail, and other next-generation sequencing methods covered more briefly at
the end of this section.

Bently et al. [131] described sequencing using reversible terminators which is the method
used in Illumina devices. Their method shares some principles with Sanger sequencing, using
ddNTPs to terminate replication of single strand templates, and fluorescent markers for base
calling. Reversible terminators are similar to the ddNTPs used in Sanger chain termination
sequencing, except they can be returned to a non-terminating state, allowing DNA synthesis
to continue. A plate with many template strands is created, with strands close to each other
being clones. One end of the template is bound to primers on the plate. Reversible terminators
incorporating all bases are introduced, and will bind to the free end of the template. A single
ddNTP will bind, and then synthesis will be prevented as they are terminators. The plate is
fluoresced and colours observed for different clusters, indicating which base was incorporated
on that cluster of template strands. The plate is washed to remove unbound terminators,
then the bound terminators are reversed and the dye removed, and the process repeated.
This is illustrated for a single strand in Figure 2.7. This introduces a number of efficiencies
compared to Sanger sequencing: terminators for all bases are introduced simultaneously, and
does not require a step equivalent to electrophoresis to separate fragments by size. Read
lengths tend to be shorter, during the human genome sequencing this gave read lengths of
35bp, though this has been improved over time.

Illumina is the most frequently used next generation sequencing platform, but alternative
sequencing platforms are common in earlier metagenomic research. Pyrosequencing was
the first next generation sequencing technology to be commercialised [133, 134] by 454
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Fig. 2.7 Illumina sequencing method, image from EBI training material [132]. From left to
right: A single strand template (grey) has been attached to slide, and fluorescently labelled
ddNTPs introduced and the polymerase has incorporated a green ddNTP; unincorporated
ddNTPs have been washed away, and the incorporated ones are flouresced; the fluorescent
dye and terminator are are cleaved from the ddNTP in position one, ddNTPs are reintroduced
and the polymerase incorporates a corresponding one at position two; unincorporated ddNTPs
are washed away and the new dNTP in position two is fluoresced; this is repeated to the end
of the template sequence. Image used under Creative Commons Attribution 4.0 International
(CC BY 4.0) license.

Life Sciences, later Roche. Amplified clonal fragments are captured on beads, and sequence
bearing beads are deposited in an array of wells which fit a single bead. Nucleotides
are introduced to the array in sequence, with only a single base being introduced at a
time. Pyrophosphate is released as the nucleotide is incorporated, the chemistry present
creates a burst of light when this occurs. Cameras monitor the wells, and changing light
intensity indicates incorporation of a base. The nucleotides are not terminating, so when
homopolymers (more than one consecutive identical base) exist on the template, multiple
nucleotides could be incorporated. Intensity of light is used to determine the number of
bases incorporated, but is prone to errors. The nucleotides are washed away, and a different
nucleotide introduced, and this process repeated. Ion Torrent is a subsequent platform using
a similar method, but observing the incorporation of nucleotides by measuring pH change
due to release of hydrogen ions [135], and is subject to similar homopolymer errors. The
454 pyrosequencing platform has been discontinued, though IonTorrent platforms are still in
production.

Unlike the other next generation sequencing methods discussed here, SOLiD is not a
sequencing by synthesis approach [136]. Instead oligonucleotides of eight bases are ligated
to a template sequence by DNA ligase rather than polymerase. Bases 1 to 3 and 6 to 8 of
the oligonucleotide are degenerate, meaning they will pair with any base on the template
sequence. The middle two bases are labelled with fluorescent dye, each colour corresponding
to a pair of bases, known as two base encoding. After the incorporated oligonucleotide is
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observed, the final three nucleotides are cleaved, removing the dye and allowing ligation
of a subsequent oligonucleotide. After repeating this, bases in position 1, 2, 6, 8... will be
observed. Repeating the process with a different offset from the origin of the template strand
using a different primer allows sequencing the other positions.

Two methods of preparing libraries of DNA for sequencing are common for environmental
samples. whole-genome shotgun sequencing (WGS) sequencing randomly shears the target
sequence into smaller fragments, each fragment is then amplified and sequenced. This
method was applied to sequence isolated genomes, initially small bacterial genomes [137]
and later the large human genome [138, 126]. Environmental samples can be prepared in
the same way, generating fragments from across the genomes of all organisms present in
the sample [139]. Fewer fragments will originate from species which are rare in the sample,
requiring deep sequencing to obtain good coverage of rare species. Amplicon sequencing
uses primers designed to select specific regions of the genome using polymerase chain
reaction (PCR) amplification, so fragments all originate from the same region of the genome
rather than being randomly distributed across the entire genome. Commonly for microbial
communities phylogenetic marker genes are selected, as their use for characterising which
organisms are present is well studied (see Section 3.4.2). Reverse Transcription PCR (RT-
PCR) is a transcriptomics application amplifying target transcripts: the complementary DNA
(cDNA) for transcripts is synthesised, and then the cDNA for target transcripts amplified.
Real-time Quantitative PCR (pPCR) has become an important method in quantifying gene
expression levels, and works by monitoring the RT-PCR amplification reactions, often via
fluorescent labelling, allows quantitative measurements of the level at which transcripts are
present [140].

2.6.3 Third Generation Sequencing

High throughput with short reads characterises next-generation sequencing platforms. Short
read lengths have limitations, for instance making it difficult to resolve repetitive regions
[141]. Amplification of template sequences introduces biases, with some sequences replicated
more frequently than others [142]. A set of technologies sometimes called third generation
sequencing have been developed, producing longer reads without the need for amplification.

Pacific Biosciences Single Molecule Real Time (SMRT) technology [143] is a sequencing
by synthesis method, performing synthesis in small chambers called zero-mode waveguides.
A polymerase is fixed at the bottom of the chamber, and a template strand and fluorescently
labelled nucleotides are introduced. Polymerization occurs continuously, with a camera
observing the polymerase. When a nucleotide is incorporated, the time it dwells near the
polymerase increases, giving a change in fluorescent signal recorded by the camera. The
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fluorescent tag is cleaved off during incorporation, diffusing out of the observed area. This
increased read length reduced the difficulty of assembling reads to a complete genome, allow
assembly of finished genomes for six bacteria using a single library and SMRT sequencing
[144]. Error rates are greater than short read sequencing however, with SMRT displaying an
error rate of 11-14% [141].

Nanopore sequencing feeds a single template strand through a nanopore in a membrane.
As the nucleotides pass through the pore they can be observed [145]. The most success-
fully commercialised version are the Oxford Nanopore devices [146]. An enzyme moves
single stranded DNA through the nanopore, and changes in current across the nanopore as
nucleotides move through is used to determine the sequences of bases. Both strands of DNA
can be sequenced allowing increased accuracy over sequencing a single strand. The MinION
sequencer is a portable device, and has the potential to sequence marine samples in-situ,
without flash-freezing and returning to shore. MinION accuracy has increased over the year,
with a current claimed accuracy of >99%, and is capable of producing reads up to 2.3 Mbp
[147]. Nanopore sequencing has been used for assembly of genomes for eukaryotic microbes
[148] and humans [149]. Hybrid methods to assemble combined short and long reads have
been developed, using higher accuracy short reads to correct the lower accuracy long reads
[150] (Section 3.3.3).

2.6.4 Single Cell Sequencing

Genetic material obtained from environmental samples comes from the whole population
of organisms present, and identifying which of the resulting fragmentary reads originate
from the same source organism presents a challenging computational problem discussed
in Section 3.5. This problem can be bypassed using technologies which allow the sorting
and isolating of individual cells from an environmental sample. Amplifying and sequencing
biological material, DNA or RNA, from these single cells allows insight into the genome and
transcriptional activity of individual organisms from a mixed environmental sample without
the need for culturing. A commonly used cell sorting method is fluorescence-activated cell
sorting (FACS), a flow-cytometry based method which can identify cells based on their
optical properties [151]. Single cells are placed into droplets of fluid which are given a
charge based on whether they have the target properties, and these droplets sorted into target
and non-target cells by attraction to electromagnets. The range of measurements which
can be made from isolated single cells now extends beyond genomic and transcriptomic,
including DNA methylation and cell surface proteins among others [58]. Genomes obtained
using single cell methods are often referred to as a Single-cell Amplified Genome (SAG).
Using these techniques, 30 SAGs were recovered from the Tara Oceans data for eukaryotic
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microbes, one third of which were absent from the metagenomic sequencing efforts from the
same samples, potentially capturing rare taxa other methods may omit [152].





Chapter 3

Bioinformatics Background

3.1 Summary

With the biological and oceanographic scene set in Chapter 2, this chapter turns to the
computational elements of metagenomics. Section 3.2 gives a brief history and outline of
some of the fundamental goals of metagenomics. Section 3.3 reviews methods of assembling
short (or in some cases long) sequence reads into longer, hopefully more informative,
sequences. Section 3.4 explores ways of identifying which organism the anonymous sequence
fragments of metagenomics originated from, and to estimate the taxonomic composition of the
sampled communities. Section 3.5 is about the rapidly developing field of genome-resolved
metagenomics, which aims to recover partial genomes from metagenomic assemblies. Section
3.6 looks at identifying genes in sequence data, the first step in moving from sequences to
their potential function. Finally, Section 3.7 shows that second step, ways of identifying the
potential function of predicted genes.

3.2 Metagenomics

Metagenomics describes a range of techniques used to study the genomes of uncultured
microbial organisms in a sample taken from the environment [13]. Next generation sequenc-
ing of the genomes of all organisms present in an environmental sample results in short
sequence fragments where the species a given sequence originates from is unknown, as
well as its position in the originating genome being unknown. This is in contrast to more
well established single organism genomics techniques, which sequence a clonal culture
consisting of organisms with a single shared ancestor. It is estimated 99% of prokaryotes are
unculturable [153]. Most microbial eukaryote lineages have no cultured representative, and
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51% lack a genome [154]. The difficulty in culturing these organisms makes their genomic
content unavailable to techniques requiring a clonal culture to obtain genomic sequences.

Metagenomic sequencing and analysis allows insight into this unculturable majority, but
presents specific computational problems. A common step for isolate genome sequencing is
to assemble the short reads into longer sequences. Sequence fragments from an environmental
sample cannot be assumed to assemble to single longer genome, having originated from
multiple species (for more details see Section 3.3). There are difficulties in applying isolate
assembly methods to metagenomic data, and even with adapted methods, assemblies will
often remain fragmentary [155]. With or without assembly, identifying which species a
sequence originated from is often difficult, imprecise, or impossible.

Two fundamental goals in metagenomics are obtaining taxonomic and functional profiles
of the sampled community. A taxonomic profile characterises who is there: which organisms
are present and how abundant each is. Functional profiles estimate what the community could
do: which genes are present and their abundance. The functional profile can be separate from
taxonomic profile, a gene can be detected without knowledge of which species it originated
from.

Some studies aim to reconstruct nearly complete or complete genomes from metagenomic
data [156]. Algorithms for inferring which sequences originate from the same species have
been developed, based on characteristics of the sequences [157] or the abundance of the
sequences between samples [158, 159]. Longer third-generation sequencing reads can cover
large portions of a genome in a single read. Methods have been created to combine these long
reads with higher quality short reads to compensate for the increased error rate [150, 148].

The Global Ocean Sampling expedition [139, 55] was the first large scale attempts to
gather metagenomic data from ocean microbe communities. This generated 7.7 million
reads making up 6.3Gbp from 41 samples taken from a transect originating in the North
Atlantic, through the Panama Canal to the South Pacific. Since then, the number of samples
for which metagenome sequencing data is available has continued to increase, as well as
the volume of sequence data for each sample. The Tara Oceans expedition [4] took 243
samples from 68 stations, producing 7.2Tbp of data. Sanger sequencing was used by the
Global Ocean Sampling expedition, so while the overall volume of sequence produced
was much smaller it produced longer high quality reads compared to the short read next
generation sequencing platforms used for most of the Tara Oceans samples. Along with
publicly available metagenome data from projects with smaller scope, the breadth of marine
metagenomic data has continued to increase. The samples analysed in Chapter 4 were
sequenced between 2016 and 2019, the smallest of which generated 311 million reads
containing 46.79 Gbp, approximately seven times larger than the combined GOS data. This
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growing body of data has necessitated the development of bioinformatics algorithms which
can handle larger datasets on a feasible timescale. Several methods of relating post-processing
metagenomic data to environmental parameters are widely used, and discussed in more detail
later in Section 5.2.

Metatranscriptomics studies the mRNA transcripts in cells in an environmental sample.
Marine bacteria typically contain about 200 mRNA transcripts, which degrade within minutes
[160]. Taniguchi et al. [161] found that gene transcripts in a community correlated to the
abundance of corresponding proteins, even though this did not hold within an individual cell.
Sequencing transcripts from an environmental sample allows insight into which processes
are active in a community under the sampling conditions [162]. With both metagenomic and
transcriptomic data, the differing abundance of genes and gene transcripts can be used to
assess which are being under or over expressed, an approach used to study the response of
microbe communities to the Deepwater Horizon oil spill [163].

3.3 Sequence Assembly

Assembling short reads from fragmented DNA into longer sequences, known as contigs,
has been well studied and many tools have been developed. These contigs can be further
arranged into scaffolds, which consist of contigs and gaps of known length but unknown
sequence between the contigs Assembly software developed for use on isolate genomes
have been a.pplied to metagenomic data. More recently, assemblers to deal with specific
problems of metagenomic assembly have emerged. A summary of assemblers for isolate and
metagenome uses is given below, as metagenomic assemblers adapt methods used in isolate
assemblers, and some isolate methods can be used for long read third generation sequencing
data.

3.3.1 Isolate Genome Assembly

Celera [164] was one of the first commonly used assemblers, using what has become known
as the overlap-layout-consensus (OLC) method. OLC compares all pairs of reads, finding
overlaps where the end of one read matches the start of another. Overlapping reads are laid
so that they are aligned on overlapping regions. Many assemblers approach the layout step
by using a graph with a vertex for each read, and edges joining overlapping reads. This
graph is searched for a Hamiltonian path (one which visits each vertex once). Locating a
Hamiltonian path is known to be an NP-hard problem, implying it is hard to find such a
path in practice. There may be positions where bases in overlapping reads do not match; a



42 Bioinformatics Background

consensus sequence is generated by selecting most probable bases at each position. This
method was developed to meet the needs of the Human Genome project [126], which used
Sanger sequencing. Increasing adoption of next generation sequencing produced much
shorter reads in greater volume, making the all against all comparison of reads required in the
OLC approach computationally demanding [165], having at least O(n2) complexity where n
is the number of reads.

Assembly using deBruijn graph (DBG) methods remove the all against all overlap
comparison, and changes the task of finding a path through the graph to the less complex
problem of finding an Eulerian path which visits each edge once. Pevzner et al. [166] describe
the DBG they implement in the assembler EULER. Reads are divided into subsequences
of length k called k-mers. Each (k−1)-mer is represented by a vertex in the graph, and a
directed edge between two vertices (a,b) exists for each k-mer observed in reads which can
be formed by appending the last character of b to a. Genomes contain low complexity or
repeated regions, which cause ambiguities in the DBG. Where a repeated region is longer than
the value of k, multiple possible paths through the graph exist. Real world sequencing data
will contain substitution errors, where the wrong base is called for a position. Substitution
errors create ‘bubbles’ or ‘spurs’ where the graph splits for the duration of k-mers containing
the incorrect base. Assemblers vary in how they construct, simplify, split and traverse the
DBG [167].

EULER implemented several methods of simplifying and resolving graph ambiguities.
Errors in reads are filtered by removing low frequency k-mers from the graph. Reads are
threaded through the graph to identify which areas of possible repeats in the graph exist in
reads. Spurs are removed, and the graph split at boundaries between low and high coverage
areas. Velvet [168] uses a heuristic search for bubbles and removes the lower coverage path.
Unambiguous paths are collapsed to a single node. Read threading is also used to remove
paths representing fewer than a threshold number of reads. Information from paired end reads
are used during assembly, attempting to link long contigs joined by paired reads by finding a
path between the known ends. SAOPdenovo [169, 170] implements a more memory efficient
DBG representation, alongside familiar bubble resolution and spur removal methods. After
contigs have been created from the graph, a scaffolding step is performed to join contigs to
larger scaffolds with undetermined bases between them using information from paired end
reads. The memory requirements for DBG assembly can be high, with greater than 600GB
memory required to assemble a human genome [171]. Methods of reducing the memory
requirement were implemented ABySS 2 and Minia [171, 172] using bloom filters, and in
BCALM2 using minimiser hashing [173].
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3.3.2 Metagenome Sequence Assembly

Biological communities commonly contain species of different relative abundance, from
very abundant dominant species to very rare species. Consequently metagenome assembly
presents a new set of specific problems [155]. Reads from species in a community will be
present at different levels of coverage depending on their abundance, so coverage based
strategies for identifying repeats are more complicated in a metagenomic context. Assembling
reads taken from a community risks creating sequences which originate from the genomes
of multiple taxa, known as chimeric sequences. Identical sections will exist in separate
genomes, in well conserved areas such as regions coding for ribosomal RNA. Paths from
separate genomes will join at these shared regions, giving the possibility for chimeric contigs
to be generated by going from an unambiguous region into a shared repeat and exiting
to region from a different genome. Coverage can distinguish between some taxa, as an
abundant taxon will have greater coverage than a rare one. Rare taxa have similar low
abundances and coverage level is unlikely to be distinguishing for these taxa. Capturing
rare taxa requires generating enough reads that a detectable amount originate from the rare
community members. Greater volumes of sequence data comes with a greater number of
errors, creating large and complex DBGs.

Assembly software specialised for metagenome assembly take differing approaches
to addressing some of these problems. IDBA-UD [174] and Megahit [175] partition the
DBG into separate graphs where neighbouring vertices have significantly different cover-
age. MetaVelvet-SL takes a machine learning approach, using a support vector machine
(SVM) trained to classify chimeric vertices in the graph. Megahit uses the memory efficient
succinct DBG representation [176] to keep the memory requirement manageable given the
increased volume of sequence data. Preprocessing techniques are incorporated in some
pipelines to simplify the assembly problem, Meta-CRAM [177] identifies and removes reads
originating from reference genomes, and assembles only the unclassified reads. SPAdes
[178] is an assembler which was intended for assembling single-cell sequencing data, but the
pipeline metaSPAdes [179] covers metagenomic assembly incorporating heuristic methods
for estimating repeated regions shared between genomes.

Third generation sequencing technologies produce long reads with lower throughput,
making this type of data more amenable to OLC assembly. Canu [144] is a successor to the
Celera assembler adapted to handle the longer lower quality reads generated by current long
read technologies. A popular alternative is Flye and it’s metagenomic counterpart metaFlye,
based on constructing a graph representing repeat sections in misassembled “disjointigs” and
resolving identified repeats in the graph using long reads [180, 181].
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3.3.3 Hybrid Assembly

Long reads are ideal for spanning complex genomic features but can have higher error rates
which has led to hybrid assembly approaches, combining the strengths of long and short
reads. In approaches such as hybridSPAdes [150] short reads are converted to a DBG, and
long reads are mapped to the graph and used for closing gaps and resolving repeats in the
graph. Another hybrid approach is to start by assembling long reads, and subequently using
the higher quality short reads to correct errors in the long read assembly through tools such as
Pilon [182]. While not designed initially for metagenomic use, hybrid assembly approaches
have been integrated into metagenomic analysis pipelines such as the nf-core MAG pipeline
[183] and MUFFIN [182]. Combining long and short read technologies was shown to able to
improve aassembly for difficult to assembly phylotypes in biogas reactor samples, improving
contig length 118% [184].

3.4 Taxonomic Classification

Taxonomy is a discipline dealing with the naming and classification of biological organ-
isms. Species are distinguished using multiple methods, including comparison of biological
sequences or morphological features [185]. Classifications can be unstable and subject to
revision, with researchers in different areas adopting differing ways to delineate species [186].
Several organisations maintain curated hierarchical taxonomies, such as NCBI, SILVA, and
Genome Taxonomy Database (GTDB) [187], though the placement, inclusion and naming
of groups varies between taxonomies [188]. Hierarchical taxonomies are often represented
as trees (Figure 3.1), where some vertices are assigned a named taxonomic rank. These
ranks are ordered groupings of related organisms, going from distant relationships between
members of the same domain to close relationships between members of the same genus.

Taxonomic classification methods aim to estimate which organisms are present and in
what quantities in the sampled community from sequencing data. These approaches can
be broadly divided into two camps: those which compare query sequences to reference
sequences with known origin, and those which look only at query sequences and aim to
group sequences from the same species without assigning a taxonomic label.

3.4.1 Reference Based

Reference based approaches look for similarities between query sequences and those in
a reference database of sequences with a known origin. If the query sequence is similar
enough to a reference sequence, it could be considered as coming from that or a closely
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Fig. 3.1 Subset of the NCBI Taxonomy visualised as a tree by ETE Toolkit [189]. Red labels
are the rank assigned to that node, blue and black labels are names assigned to the node.
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related organism. These methods rely on the availability of well curated reference sequences.
Many general databases exist such as NCBI RefSeq [190] as well as databases for specific
environments such as MarRef and MarDB for marine prokaryotes [191]. GenBank collects
all publicly available nucleotide and protein sequences, and maintain extensive databases
combining these and the more curated RefSeq data, usually referred to as “nt” and “nr”
respectively [192].

There are biases in what is included in these databases. Culturable organisms are
overrepresented, along with organisms from more often studied environments such as the
human gut microbiome [193]. Fewer reference genomes are available for marine eukaryotic
than prokaryotic microbes, it is less likely that a close relative of a eukaryotic query sequence
will be present in a reference database.

3.4.2 Marker Genes

Well studied genes or parts of the genome are often used as reference sequences rather than
complete genomes. Variations in genes shared between species can be used to resolve which
lineage an unknown sequence is most closely related to. These are often referred to as marker
genes. Genes coding for parts of the ribosome are often used as phylogenetic marker genes
[194], and databases of these marker genes are available such as SILVA [195].

The ribosome is mostly composed of rRNA divided up into two parts, the small subunit
(SSU) which reads mRNA and the large subunit (LSU) which assembles amino acids. Protein
synthesis is essential to cell function and so the genes coding for rRNA are ancient and shared
across many organisms, and well conserved between species. Within the SSU, a smaller
rRNA subunit is commonly used as a marker gene, the 16S subunit in prokayotes and 18S
subunit in eukaryotes. We call the gene which codes for an rRNA subunit rDNA.

Hills et al. [196] review reasons rDNA has been widely used in phylogenetics. Genomes
often contain multiple copies of rDNA. Compared to single copy genes, rDNA sequences
vary little within a species, but display difference between species. This means relatively few
samples from a species are required to characterise the rDNA of the species. The 16/18S
SSU rDNA evolves more slowly than the LSU, and contains a combination of well conserved
and hypervariable regions. The well conserved regions make it possible to design primers for
PCR amplification of the desired hypervariable region. The hypervariable regions evolved
more rapidly, at a different evolutionary rate for each region. Varying rates of evolution allow
the evolutionary history between organisms to be discerned at different points in history
using different hypervariable regions. Comparing these hypervariable regions can be used
for taxonomic classification of metagenomic reads.
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Reads from environmental whole-genome shotgun sequencing (WGS) sequencing can
be queried against an rDNA reference database, but a majority of reads will not be from
this region. In short read WGS sequencing data from three marine samples taken by the
Tara Oceans expedition, between 0.01% and 0.1% of reads were 16S SSU [197]. Amplicon
sequencing can target the SSU region of the genome to produce reads mostly from the SSU
rDNA, or specifically from the hypervariable regions in the gene.

Limitations when using SSU amplicons for taxonomic classification of metagenomic
data have been documented. Logares et al. [197] found that while 16S rDNA reads made
up a small portion of the reads in environmental WGS, these fragmented reads identified
61% more OTUs than long read sequences from 16S amplicons. Another study compared
16S SSU sequences assembled from publicly available environmental WGS metagenome
data to amplicon sequences, and found a minimum of 9.6% of sequences assembled from
metagenome data were not present in amplicon data [198]. They found sequences which
were missed by amplification tended to come from newly described baceterial lineages such
as Candidate Phyla Radiation, or in archaea from outside the currently recognised phyla.
These studies suggest the existence of unexplored diversity which is not captured by SSU
amplicon sequencing.

Conversely, other research found that less than 50% of phyla identified in 16S SSU
amplicon sequencing were recovered in metagenomic sequencing data [199]. They compare
metagenomic reads to whole genome reference databases, and they note some phyla have
no reference genome while 16S SSU reference sequences are available. Comparing metage-
nomic reads to a database of 16S rDNA reference sequences was shown to poorly recover the
composition of a synthetic community [199]. They suggest this could be due to the varying
level of taxonomic resolution of the hypervariable region the short reads covered, as well as
observing a bias towards over representation of sequences with low GC content.

3.4.3 Sequence Similarity

Local alignment techniques seek to find subsequences which are similar in a pair of sequences.
Newly obtained query sequences can be compared to a database of reference sequences,
and can be used to infer taxonomic origin of a query sequence. If the query sequence has a
subsequence which is similar enough to one of the reference sequences, the query sequence
may come from an organism closely related to the reference sequence.

Sequences which are similar due to some shared evolutionary history are said to be
homologous. Different terms are used for homologous sequences based on the origin of
the homology [200]. Orthologs are homologous as they evolved from a common sequence
in a shared ancestor. Paralogs are homologous due to duplication of a sequence within a
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genome, which could have evolved since duplication in an ancestral genome. Xeonologs are
homologous due to the transfer of a sequence between species, referred to as horizontal gene
transfer.

The Smith-Waterman algorithm [201] is a dynamic programming algorithm which locates
the highest scoring local alignment. Gaps are allowed, representing positions in the alignment
where a base has been inserted or deleted (indels). The scoring system is defined by a
substitution matrix giving the score for observing a pair of bases in the same position, and a
function for scoring gap length. This approach is computationally expensive and searching
increasingly large sets of sequencing data against increasingly large reference databases has
become impractical, prompting the development of heuristic local alignment methods.

BLAST

Basic Local Alignment Search Tool (BLAST) [202, 203] is one of the most widely used
heuristic local alignment tools. For each query sequence, BLAST starts by looking for words
within the query sequence which score above a threshold value t when compared to words in
a reference sequence, using a similar scoring system to Smith-Waterman algorithm. A word
is a subsequence of characters of a specified length found in a sequence. When two highly
scoring words are within a specified distance, an extension step is triggered. This extension
step uses a heuristically constrained version of the Smith-Waterman algorithm, restricting the
search space by not allowing the score to drop below a threshold during extension. BLAST
provides several metrics of alignment quality: percent identity, bit score and evalue. Percent
identity is the percent of bases which match in the aligned section. Bit score is a normalised
version of the score generated by the scoring system specified for the extension step, taking
into account the statistical properties of the scoring system. The e-value is derived from the
size of the database and the bit score, and is the number of alignments with this bitscore
which would be expected by chance in a database of this size.

BLAST is a family of programs facilitating multiple types of search. BLASTN searches
nucleotide query sequences against nucleotide reference sequences. Nucleotide sequences
can be translated to protein sequences and searched against a protein database using BLASTX,
and the reverse process translating proteins to possible nucleotide sequences via TBLASTX
[202].

Other Heuristic Local Alignment Methods

Large scale sequencing projects have motivated the development of faster local alignment
algorithms. BLAST Like Alignment Tool (BLAT) was developed in response to the need to
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align many short reads against the large human genome [204]. Where BLAST indexes the
query sequence, BLAT indexes the reference sequence, to allow rapid search of many query
sequences against the reference. This is suited to rapid alignment against a small number of
large reference sequences, but creating and keeping many indices incurs high memory usage,
making this less applicable for metagenomics. LAST [205] finds initial matches to extend
based on rarity of sequence rather than a fixed metric such as score or length. This helps
locate seeds within repetitive or low complexity areas which are prevented from participating
in initial matches in BLAST. YASS [206] locates seeds taking into account the observed
proportion of transitions and transversions of related biological sequences.

Short read aligners are intended to align a high volume of short sequencing reads against
longer sequences, either reference genomes or assembled contigs. Aligning reads against
contigs allows an estimate of how many reads originate from the assembled sequence, and
consequently an estimate of the abundance of the taxon or genes on the contig. Bowtie [207]
and BWA-MEM [208] are commonly used, with BWA-MEM showing faster computation
on longer reads than Bowtie. Psuedoalignment originated in the analysis of transcriptomic
data, to calculate which reference transcript a read originated and infer the abundance of
those transcripts from without performing a full alignment. Kallisto [209] implements a fast,
low memory psuedoalignment algorithm, and has been demonstrated to be applicable to
quantification problems in metagenomics [210].

Hidden Markov Models

Detecting homologous sequences can be treated in a probabilistic manner using a Hidden
Markov Model (HMM) [211]. A HMM models a process which creates a sequence of
observable events, such as sequence of amino acids in a protein, by moving through a series
of hidden states over time where each state has a probability of emitting a given symbol.
Time in the context of biological sequences is position in the sequence. Transition between
the model’s hidden states is a Markov process, meaning that the probability distribution of
which hidden state the model is in at time t is dependent only on the state at the previous
time step t−1. A HMM is defined by the following elements: a set of hidden states S; for
each state s ∈ S the emission probability e(x,s) that symbol x will be emitted by state s; for
each s1,s2 ∈

(S
2

)
the transition probability t(s1,s2) of moving from state s1 to s2; the initial

probability i(s) of the model starting in state s for all s ∈ S. This underlying Markov chain
allows the recursive definition of several useful probabilities in terms of these parameters.

Given a HMM H representing a set of sequences from the same group, we may want to
know the probability that model H generated sequence x. This is the observation probability
of x given H. The dynamic programming forward algorithm calculates the observation
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probability in O(ls2) time, where l is the length of the query sequence, and s is the number of
hidden states in the model [211]. Query sequences with a high probability of being generated
by the model are likely homologous to the group of sequences the model represents. A
similar question is which sequence of hidden states has the highest probability to generate
observed sequence x. This can be found using the Viterbi algorithm [212].

Calculating these probabilities requires a model with all the parameters specified. There
are methods available to fit the emission, transition and initial probabilities to a set of observed
sequences. The set of states used varies depending on the model’s intended use, and several
types of HMM are used in analysis of sequences. Profile HMMs use a linear sequence of
states, with three types of state representing a match, insertion, or deletion event [213]. A
state of each type is created for every position in the sequence, and probabilities for emission
and transition can be estimated from a multiple sequence alignment by the frequency of
symbols and gaps at positions in the alignment. Profile HMMs for protein families have
been trained by Pfam [214] and can be searched using HMMER [215, 216] through a web
interface or local installation.

Interpolated Markov Models (IMMs) are used in Phymm [217] for taxonomic classi-
fication. An IMM is trained on genome sequences from the taxonomic group of interest,
which could be species or a higher grouping. Emitted bases are predicted by the IMM based
on a varying k number of preceding bases. The varying number allows prediction based
on preceding k-mers for which reliable probabilities can be generated from the training
data. This approach is useful for metagenomic taxonomic classification, as a model can be
trained on the single or small numbers of possibly fragmented reference genomes. For a
query sequence observation probabilities are generated for each IMM in the database, and
the sequence given the same taxonomy as highly scoring models. Phymm showed results
comparable to BLAST, and a method combining high scoring IMMs and BLAST searches
showed improved performance over either method alone [217].

Exact k-mer Matching

Generating local alignments or finding observation probabilities against a large reference
database is computationally demanding. Wood et al. [218] proposed an algorithm to exactly
match k-mers in metagenomic reads to k-mers found in reference sequences. A database
is created containing each k-mer found in the reference database, and the taxonomic label
of the sequence containing that k-mer. Where a k-mer exists in more than one reference
sequence with different taxonomic labels, the database stores the Lowest Common Ancestor
(LCA) of all the reference sequences in which the k-mer is found. Reads are split into k-mers
and the LCA for each retrieved from the database. A taxonomic label is assigned based on a
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tree formed by restricting the general taxonomic tree to only those nodes contained in the
matching k-mers, and giving each node a weight equal to the number of k-mers which had
this taxonomic label. The path from leaf to root with the greatest sum of weights is assigned
as the taxonomic label for the read.

Fast lookup of the LCA for a k-mer is achieved using minimizers to group similar k-mers
together, as similar k-mers are likely to be queried one after another so may already be in CPU
memory. The complete database needs to be held in memory and can be large, with the default
database being 70gb. Kraken’s accuracy is slightly lower than BLAST when classifying to
genus level, but is between 150 and 240 times quicker than other comparable methods which
attempt to classify all reads [218]. This speed makes k-mer matching approaches appealing
for large metagenomic data.

The k-mer matching approach has been extended to estimate abundance at different
taxonomic levels by Bracken [219], by using probabilistic approaches to distribute reads
assigned above the desired rank to the nodes below. Kaiju [220] translates genomic sequences
to proteins and searches against a database of proteins. Proteins tend to be more conserved
than genome sequences, allowing the detection of more distant homologs. CLARK [221]
implements k-mer matching classification aimed at improving accuracy of assignment at the
genus or species level by removing k-mers shared between groups and classifying only using
the remaining discriminative k-mers.

3.4.4 Assigning Taxonomy from Sequence Similarity

Taxonomy can be assigned in different ways from measures of sequence similarity. Phymm
[217] assigns the query sequence the same taxonomy as the highest scoring reference IMM,
Metaxa 2 [222] considers the top 5 BLAST alignments and their length and percent identity
them to assign a taxonomy with a reliability score. The LCA algorithm assigns a taxonomic
label based on multiple local alignments for a query sequence [223]. In this method, where
local alignments above a user defined threshold are found against reference sequences with
different taxonomies, the query sequence is classified as the first ancestor shared by all
reference sequences. This approach is quite conservative and results in many reads being
assigned at high ranks rather than more specific species or genus ranks. A weighted version
of the LCA algorithm weights each reference sequence based on how many reads have a
significant alignment to the sequence, and then placing each read on the taxonomic node
such that the node and its descendants account for 75% of the significant alignments for the
read [224]. Taxator-tk [225] uses the proportion of matching bases among local alignments
for a query sequence to assign taxonomy.
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3.4.5 Taxonomy Without a Reference Database

Reference free approaches seek to group sequences originating from the same operational
taxonomic unit (OTU), but do not assign a position in a taxonomic ordering to the identified
OTUs. These methods may identify taxa which lack a close relative in reference databases.
The identified OTUs and their abundances can be used to calculate measures of diversity
within and between communities without a taxonomic placement [13]. Mothur [226] clusters
rDNA amplicon sequences to OTUs using several distance based clustering methods on a
sparse matrix of sequence dissimilarities. PhylOTU [227] identifies OTUs from shotgun
metagenomic sequencing rather than amplicon sequencing, their results identified novel taxa
which had been under-represented previously due amplification bias. With the decreasing
error rates of sequencing techniques, some studies have forgone the clustering steps involved
in OTU analysis, and instead used exact amplicon sequence variants (ASVs) [228].

3.4.6 Pipelines

Taxonomic classification methods often requires several steps before arriving at estimates of
abundance, leading to the development of pipelines which incorporate tools to perform each
step targeting different situations. Metaxa [222] uses HMMER & BLAST to locate rDNA
sequences in shotgun metagenomics data and predict their origin at a high level, and assign a
taxonomic classification using BLAST search results against the SILVA database. QIIME
[229] by default uses the RDP naive Bayes classifier [230], as well as providing other options
such as BLAST based assignment. MG-RAST [231] also provides a variety of approaches,
including searches against rDNA databases with BLAST, and phylogenomic reconstruction
using information from the SEED database [232]. SHOGUN [233] is targeted at shallow
metagenome sequencing data, and uses short read aligners and an implementation of the LCA
algorithm to assign taxonomy. The JGI Integrated Microbial Genomes & Microbiomes (IMG)
pipeline [234] which was used to process the data used in Chapter 4 provides taxonomic
classification for each sequence by finding each gene in the sequence and labelling that with
the taxonomy of the top BLAST result for the gene, and labels the sequence with the LCA of
all genes on the sequence.

3.5 Metagenome Assembled Genomes (MAGs)

Assembling metagenomic reads results in contigs originating from a mix of genomes in the
sampled community. Given the difficulty of culturing the majority of microbes, studies have
sought to find ways to group contigs into ‘bins’ where contigs originating from the same
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species are placed in the same bin. Each bin is referred to as a Metagenome Assembled
Genome (MAG). These draft genomes place contigs and their genes into a genomic context,
providing an estimation of the metabolic potential of members of the community, as well as
characteristing the community as collection of genomes in addition to a collection of genes
[21]. Even after binning the genome of an organism from the community is still likely to be
fragmented and incomplete, represented by multiple contigs and missing regions.

Large numbers of prokaryotic MAGs have been recovered from ocean metagenomes
[156, 19]. Prior to publishing our research, there had been no similar large scale recovery
of eukaryotic MAGs from ocean environments, but methods had shown success recovering
eukaryotes from human gut samples [235, 236]. Two studies had recovered single eukaryotic
MAGs for Prasinophytes from ocean data, among other prokaryotic MAGs; the first a species
of Micromonas [237], the second a Bathycoccus [20], both from polar samples. Since then,
research recovering MAGs on a large scale from the TARA Oceans data has been published,
with one study reporting the recovery of 713 genomes from a combination of metagenome
binning and single-cell sequencing techniques [152], another 988 MAGs from binning of
data from multiple depths [238].

3.5.1 Binning Methods

Binning methods can be divided into two broad groups: those looking at the composition of
contigs, and those looking at the coverage of contigs in multiple samples. Frequencies of
tetranucleotides (4-mers) are known to vary in different sections of microbial genomes [239]
and between genomes from different clades [240]. One approach [241] used the unsupervised
learning technique of emergent self-organising maps (ESOM) to group contigs with similar
tetranucleotide frequencies together. This method located 87 bacterial bins, 21 of which
appeared over 90% complete. A different approach combined a k-means like clustering
method with IMMs to bin sequences, using sequences as the data points being clustered,
and an IMM trained on cluster members as the cluster representative [242]. This method
requires specifying the expected number of clusters k before clustering, meaning binning
may have to repeated for different values where estimates of k are not easily obtained, as is
likely to be the case for environmental samples. LikelyBin [243] used a Monte-Carlo Markov
Chain to estimate the master distribution of nucleotide frequencies which generated a read,
and separate reads based on the estimated parameters of the distribution. One limitation
encountered in their results was that more closely related organisms with similar nucleotide
frequencies are poorly separated, with little separation achieved between two species of
Streptococcus.
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Differential coverage uses the coverage of contigs in multiple samples for binning.
Organisms are assumed to be present at different abundance in different samples or samples
from different locations. Coverage of contigs from the same genome can be assumed to
covary between samples. This differential coverage approach was used to obtain 31 bins
based on sequencing the same sample using two different DNA extraction methods, creating
differing patterns of coverage which could be plotted against each other [244]. These bins
were further refined using tetranucleotide frequencies to attempt to separate out species within
these broad bins. Many tools to handle differential coverage binning based on more than two
coverage profiles now exist. CONCOCT [245] bins all contigs using coverage and sequence
composition, potentially creating many small bins requiring manual curation. CONCOCT is
provided as default option in anvi’o, a meta-omics analysis platform [246]. Anvi’o further
includes tools for visualisation of contig coverage in bins generated by CONCOCT or other
tools, and allowing manual refinement based on this. MetaBat [157] seeks to produce fewer,
higher quality bins using coverage information. Using the coverage based binning tool
BinSanity, thousands of draft prokaryote genomes were recovered from coassemblies of the
Tara Oceans data [156]. The consensus based method DAS Tool combines multiple binning
tools, which generated prokaryotic consensus bins with results improved over any single
binning algorithm [247].

Coverage of contigs is generated by aligning reads back to the assembled contigs, often
referred to as short read alignment. The high volume of short reads obtained by next-
generation sequencing (NGS) platforms means local alignment algorithms such as BLAST
would be too slow for solving this alignment problem. Two broad approaches have been
taken: hashing, and Burrows-Wheeler transform (BWT) based methods [248]. Hashing
based methods locate seed alignments where a read and reference sequence have a short
exact or very close match, and these seed alignments are extended. In a simple example,
seeds are k-mers which match in the genome and read. Either the genome or reads can be
indexed for all k-mers, and the locations where each k-mer occurs stored in a hash table.
The other sequences can be scanned for k-mers in the same way, and locations of matching
k-mers looked up in the hash table. These seed alignments can then be extended. BWT
based methods include some of the most commonly used tools, such as Bowtie2 [207] and
BWA [208]. The BWT of a string is a reversible permutation, which has often been used for
compression. Using an FM-index [249] allows quick lookup of substrings as seed matches
with comparatively low memory requirements.

Pseudoalignment tools such as Kallisto [209] have been developed recently, intended
to deal with transciptomics problems. The transcriptome is the total RNA present in a cell,
and when this RNA has been sequenced, a common task it to identifying how many of
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the resulting reads maps to each known gene sequence in that organism. Pseudoalignment
methods seek to identify reference sequences a read could have originated from, without
performing an exact alignment. In a metagenomic context, this allows an estimate of how
many reads map to each contig, but not where on the contig the read aligns. In the case
of Kallisto, this is achieved by creating a DBG representing the transcripts. A read can
be represented as a path in the graph to indentify transcripts which the read is compatible
with. Pseudoalignment coupled with Expectation-Maximization algorithms has been found
to perform quickly and accurately for metagenomic read assignment [210]. The primary
advantage of pseudoalignments for meatagenomic binning is the reduced computational costs
in both time and memory requirements. Estimates of variance in coverage across a contig are
not available from these tools however, which are used in some binning tools, while others
such as Metabat [157] can use this simplified coverage information.

Outputs of these binning tools can vary due to both differences in algorithm, but also
due to tools having slightly different approaches; some seeking to identify only good quality
bins, some binning a greater porportion of the assembly, some aiming to generate potentially
contaminated bins for further manual refinement. Consensus type approaches have been
developed to combine the results of multiple binning algorithms, to harness the strengths and
offset the weaknesses of invidual methods. DAS Tool (Dereplication, Aggregation, Scoring)
scores bins from multiple binning algorithms using a scoring function based on presence
and duplication of single copy genes [247]. Binning_refiner uses BLAST to seek similarity
between contigs of two binning algorithm outputs, seeking to reduce contamination [250].
MetaWRAP uses Binning_refiner as a step, first splitting bins from multiple methods into
low contamination variants, and selecting the best of the variants using completeness and
contamination scores (see Section 3.5.2). The selected bin is then reassembled using the
reads which map back to the bin assmbled using an isolate genome assembler SPAdes [178].
Both DAS_Tool and MetaWRAP use the prokaryote specific quality assessment tool CheckM
as part of their pipeline, so are unsuited to eukaryotic MAGs.

Where individual assemblies are used rather than co-assemblies (see Section 3.5.3), this
can result in a large number of MAGs which are highly similar, representing closely related
strains present in several samples. De-replication seeks to identify MAGs which are the same,
to a certain threshold, and select a single best representative for this group [251]. This steps
reduces the size of data for subsequent analysis steps, but retaining highly similar MAGs can
allow pangenomic and strain levels analyses.
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3.5.2 Quality and Taxonomy

Quality of genome bins is usually expressed in terms of completeness and contamination.
Orthologs to a list of genes which are present in a single copy in nearly all members of a
taxonomic group are sought in the bin, and completeness expressed as a percentage of the
expected single copy genes found. Completeness is assessed by identifying the proportion
of orthologs for these single copy genes present in the bin [252]. Single copy genes for
which more than one ortholog exist in the bin are possible contamination. Contamination
is the percentage of the single copy genes which have two or more orthologs in the bins.
Bins can be both highly complete and highly contaminated, suggesting the bin contains
contigs from more than one genome. The most commonly adopted standard for reporting
quality information about MAGs and Single-cell Amplified Genomes (SAGs) are minimum
information about a metagenome-assembled genome (MIMAG) and minimum information
about a single amplified genome (MISAG) respectively [253]. Under these standards, a
medium quality MAG is one which may be composed of many short fragments, with ≥ 50%
completeness and ≤ 10% contamination. The standards for a high quality MAG are ≥ 90%
completeness and ≤ 5% contamination, but also requires identification of some additional
elements. A high quality MAG requires presence of 23S, 16S and 5S rRNA genes, and
a minimum of 18 tRNAs, though for eukaryotic MAGs the 18S rRNA gene may also be
considered important. In addition to these quality statistics, the standards also suggests
reporting standard assembly statistics such as N50, L50, maximum contig length etc.

For prokaryotic MAGs, CheckM [254] is commonly used to characterise quality. CheckM
selects a suitable gene set specific to the lineage of the MAG rather than a broad universal
set, based on the taxonomic classification it performs. The method also looks for marker sets,
which consist of consistently collocated single copy genes, rather than individual marker
genes. Collocated genes are likely to be retrieved together, and may give an overestimate of
completeness when each genes is counted individually. EukCC [255] provides a tool with a
similar aim as CheckM for eukaryotes, aiming to select a suitable set of marker genes for a
MAG to provide a lineage specific estimate of quality. Lineage in EukCC is estimated based
on set of 55 widely occuring single copy genes. Sequences for these genes from MAGs are
placed on the tree using pplacer [256], and the LCA of all these placements selected as the
appropriate lineage, and a more specific set of marker genes used for quality assessment.
Initially EukCC used ab initio eukaryote specific gene prediction tool Genemark-ES [64],
but has subsequently adopted metagenome specific gene prediction too MetaEuk [257].

Both EukCC and CheckM estimate lineage to select an appropriate marker genes set.
However usually it will be of interest to look for more specific taxonomic identifications,
as well as establish the relationships between recovered MAGs. For prokaryotic MAGs,
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the GTDB and associated Genome Taxonomy Database Toolkit (GTDB-Tk) has become
established as a standard approach for taxonomic identification [187]. The GTDB-Tk uses
sets of marker genes for bacteria and archaea, with matches identifed using HMMER [216].
Domain is decided based on which domains marker genes have the highest number of
matches, and are then placed onto a domain specific reference tree using a concatenated
alignment of the marker genes using pplacer [256]. Using this placement, species level
taxonomies are assigned based on Average Nucleotide Identity (ANI) to references, or where
placed higher in the tree Relative Evolutionary Divergence (RED) [258] is used to resolve
ambiguous placements. A similar standard for eukaryotes has not yet emerged, but tools
are available aiming to taxonomically identify eukaryotic MAGs. EUKulele [259] aims to
provide a straightforward process for taxonomic identification of eukaryotic MAGs, using
similarity search against a user defined database, providing default options including the
Marine Microbial Eukaryote Transcriptome Sequencing Project (MMETSP) database [260].

3.5.3 Assembly and Co-Assembly

Prior to binning, a choice needs to be made on whether to assemble and bin each set of
reads individually, or to pool reads and use a co-assembly. The volume of metagenomic
samples being sequenced is expanding, and handling the resulting sets of reads individually
can be computationally expensive. In particular, aligning reads back to an assembly is time
consuming and generates very large output files, and seeking to align all sets of reads back to
the assemblies grows exponentially. Co-assembly is an approach which pools sets of reads
from similar environments, such as ocean basins, and generates a single assembly from the
pooled reads. This approach has been used for large-scale analyses which cover the global
ocean [2, 238], reducing the computational costs of analysis steps following assembly. There
are concerns that co-assembly collapses strain level variation, as the high proportion of shared
sequence generates complex assembly graphs in which long unambiguous paths cannot be
found [261, 251]. This poses problems for genome resolved approaches, as recovered
genomes may be a combination of related strains. Culturable species of phytoplankton such
as Emiliania huxleyi have been observed to have a large degree of genomic and functional
variability within the species [81]. Co-assembly risks conflating or discarding this species
level variation. Quality of MAGs was observed to be lower for co-assemblies when evaluated
in gut samples [251]. This same study suggested methods for de-replication, a step aiming to
select a single best representative from among highly similar MAGs generated from closely
related organisms in different assemblies. This simplifies downstream analyses, but MAG
based pangenomic analyses are becoming a practical way to examine the variation within
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these similar genomes, with adjustments and tools emerging to compensate for the absence
of genes due to incompleteness or contamination [262–264].

3.5.4 Eukaryotic MAGs

A majority of binning studies have focussed on retrieving prokaryotic genomes. Prior to
beginning this thesis, few studies aimed to retrieve draft eukaryote genomes from metage-
nomic data [236, 235, 20], with some using a preprocessing step to predict eukaryotic contigs
before binning. One approach used a linear SVM trained to predict eukaryotic contigs [235],
implemented in the package EukRep. They retrieved 4 eukaryotic genome bins with greater
than 80% completeness from samples taken from a freshwater geyser. The same techniques
were applied to more complex samples taken from infant gut and neonatal intensive care
unit surface swabs [236]. With deep sequencing and a large number of samples, fourteen
novel eukaryotic genomes were identified with median 91% completeness. Development
of this pre-filtering approach has been continued, with the tool tiara utilising deep learning
techniques, and aiming to both identify eukaryotic sequences, and further classify those into
nuclear, plastidial and mitochondrial origin [265]. This showed similar accuracy to EukRep
for nuclear eukaryotic sequences, but greatly improved identification of organellar sequences,
which are vital to cellular processes of interest in the ocean such as photosynthesis. The
differing gene structure between eukaryotes has also been used a signature to discern the
domain of origin by whokaryote [266], using gene density and intergenic distance as features
for a random forest classifier. This obtained performance slightly lower than tiara, but a
model with the tiara prediction used as an additional feature appeared to perform better.

The first eukaryotic MAGs for an ocean microbe was recovered from binning of metagenomes
from the Amundsen Sea in the Antarctic [237]. This study generated a single eukaryotic
MAG, Micromonas sp. ASP10-01a, of estimated 93% completion, among a much higher
number of prokaryotic MAGs. A second study targetted recovery of Bathycoccus MAGs
from samples taken in the Beaufort Sea, representing the first recovered Arctic eukaryote
MAG [20]. Subsequently, eukaryotic MAGs have been extracted from the TARA Oceans by
two separate efforts with different methodologies, alongside our results in Chapter 4 forming
the first large scale recoveries of eukaryotic MAGs from ocean environments. Delmont et
al. [152] binned the data using anv’io [246], recovering 683 eukaryotic MAGs, as well as
30 SAGs, and reported the first MAG of greater than 1 Gbp in length, capturing a range
of organisms from copepods to picoplankton. These MAGs remain partial compared to
those from culturing efforts, with an average completeness of about 40%, assessed using the
BUSCO v3 eukaryotic core gene set [252]. The MAGs and SAGs recovered represented an
estimated 26% of the reads, based on recruit of reads to contigs adjusted for completeness.
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This illustrates an area in which caution is required, the set of MAGs recovered is only
a partial representation of the community, the majority of sequence data and potentially
community members are not represented among them.

The second study by Alexander et al. [238] took an automated approach to binning,
developing binning pipeline EukHeist which combines metagenomic and metatranscriptomic
data. Binning was performed by MetaBat2 [157], which does not require the manual curation
of bins that is core to the design of anvi’o. Assemblies were binned, and then potential
eukaryotic bins identified using EukRep [236], selecting any bin with ≥ 90% of its length
predicted as eukaryotic. 988 MAGs were recovered in this way, though only 485 were more
than 30% complete, the cutoff which was applied to consider a MAG of sufficient quality
for this study. From the gene content of these MAGs, it was possible to predict whether
organisms were autotrophs or heterotrophs (Section 2.3.2) from their gene content, and to
identify ecological niches for recovered Stramenopiles. Neither eukaryotic binning effort
utilised the pre-filtering approach, i.e. using EukRep or similar tools to identify eukaryotic
contigs prior to binning. Alexander et al. did use EukRep after binning of all sequences to
separate out eukaryotic MAGs from prokaryotes.

An area where the two studies differed quite widely despite using the same data is in how
well marine fungi were recovered. Delmont et al. recovered a single fungal MAG from the
phylum Ascomycota, while Alexander et al. recovered 16 fungal MAGs. More fungal MAGs
were recovered by Alexander et al. from their mesopelagic co-assemblies, where the fungal
community has been observed to be more diverse compared to the epipelagic [267]. Depth
may be the cause for this difference, as Delmont et al. focused on the upper ocean, using
only surface and DCM samples. The marine fungal community is comparatively poorly
understood compared to its terrestrial counterpart, but believed to be broadly dispersed and a
contributor to biogeochemical cycles [268]. Identifying which differences in sampling or
computational methodology lead to improved recovery of fungal MAGs would help expand
the understanding of this portion of the marine environment.

3.6 Gene Prediction

Reads or assembled contigs may contain partial or complete genes coding for production of
proteins. Locating these genes and identifying proteins they code for allows an insight into
the biological functions a community is capable of. Functional annotation can be divided into
two steps: finding genes or partial genes in sequences, and identifying homologous proteins
with known functions.
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Ab initio gene prediction software seeks to locate protein coding genes without comparing
the query sequence to reference sequences. Analysis of the Tara Oceans data found a large
proportion of novel genes in sequencing of prokaryote enriched marine samples, with up
to 90% of genes from the Southern Ocean DCM being novel [4]. Reference based gene
identification would fail to capture many of these novel genes, making ab initio gene
prediction tools important in less well characterised environments.

Many gene prediction tools use HMMs to model the statistical properties of coding genes,
and locate parts of sequences best fitting these models. Linear relationships between the
frequency of nucleotides in codon positions in genes and the nucleotide frequencies in the
whole genome have been demonstrated, and utilised in the program GeneMark.hmm to set
model parameters for new unannotated sequences [269]. Global nucleotide frequencies for
the new sequence are calculated, and parameters for the HMM selected using the established
relationships. Hidden states in the model represent start and stop codons, and coding and
non-coding regions. Locating the most likely sequences of hidden states for a query sequence
can be performed with the Viterbi algorithm, labelling 3-mers as the likely components of
genes. Initial versions of GeneMark.hmm assumed all sequences originate from a single
genome, however the heuristics used to select model parameters have been expanded for use
on metagenomic data [270]. Nucleotide frequencies are predicted based only on GC content,
and non-linear relationships between GC content and specific codons are used.

Errors in sequencing present problems for gene prediction. Substitution errors can create
a spurious start or stop codon, or remove a genuine one. Glimmer-MG [271] accounts for
some of these errors by locating low quality bases in start or stop codons, and considers a
path where the previous possibly spurious stop codon did not exist. Insertion or deletion of
a base during sequencing can cause all bases in the sequence to be shifted by a character,
altering the following codons, known as a frameshift error. FragGeneScan [272] is another
HMM-based gene prediction tool which handles frameshift errors by having hidden states
for insertion and deletion in the submodels for coding regions.

Eukaryotic genomes tend to be larger and more complex, making ab initio gene prediction
more difficult. GeneMark-ES [64] does not require a predetermined training set of genomes
with similar organisation, the unlabelled query sequences are instead used for iterative
unsupervised training of the model, with parameters initialised based on GC content. An
intron submodel is included in the HMM to reflect the division of eukaryote genes into introns
and exons. Prediction algorithms specific to genomes with these more complex organisational
characteristics will be important for eukaryotes, GeneMark-ES includes features which use
characteristics specific to intron splicing in some fungal genomes in the gene prediction
algorithm.
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In addition to tools specifically developed for metagenomic data such as MetaGene [273],
single genome tools have been adapted to handle anonymous and fragmentary metagenome
sequences. Glimmer-MG [271] sets model parameters for each sequence by performing a
taxonomic classification using Phymm [217] rather than GC content. Meta Prodigal [274]
is a pipeline containing the single genome prokaryotic gene predictor Prodigal [275] with
pre-processing clustering steps to handle metagenomic data.

The JGI IMG pipeline [234] which was used to annotate metagenomes in Chapter 4
uses multiple gene predictors and outputs a majority rule consensus of the results. The gene
prediction tools used are GeneMark.hmm, Prodigal, MetaGeneAnnotator, and FragGeneScan.
These tools are suited to the fragemnted nature of metagenomic sequences, but predict based
on simpler prokaryotic gene structure rather than the more complex eukaryotic structures.

MetaEuk [257] bridges that gap, providing a reference based method for predicting
eukaryote genes in metagenomic sequences. Potential protein coding fragments of contigs
(those between stop codons) are searched against a reference database of predicted proteins
(e.g MMETSP [260]), and where fragments on the same contig match against the same
reference sequence are considered potential exons. These exons are assessed for compatability
based on their ordering on the contig, distance between them, and lack of overlapping on the
reference sequence. Dynamic programming is then use to find the optimal set of exons for
the reference sequence. This approach removes the limitation of tools such as GeneMark-ES
which assume all sequences originate from the same genome, allowing prediction of genes
with intron/exon structures in metagenome data, but as a reference based approach is limited
by the extent of available databases.

3.7 Functional Annotation

Function can be assigned to predicted genes by locating similar genes or proteins using
sequence similarity methods discussed in Section 3.4.3.

Individual proteins form part of larger biochemical processes, and different projects seek
to associate genes or proteins with these wider processes. The Kyoto Encyclopedia of Genes
and Genomes (KEGG) provides a curated database of pathways, visualised as networks
showing molecular interactions within a given process such as photosynthesis. Elements
in pathway can be compounds or products of a Kegg Orthology (KO), a group of genes
identified as orthologous and assigned a unique KO identifier [276]. Associating a gene with
a KO allows the presence of pathways in the community to be analysed. A similar pathway
based database is provided by MetaCyc [277]. Cluster of Orthologous Groups (COG) [278]
derived orthologous groups which contain genes from at least three lineages, and assigned
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each COG one of 25 high level functional categories. Sequences with similarity to those in a
COG can be annotated with the specific function of those in the COG and the higher level
grouping. COG is focussed on bacteria and infrequently updated, eggNOG [279] extends
the method to cover a wider range of organisms, and also provide annotations from other
systems such as KO terms for the orthologous groups.

Gene Ontology (GO) [280] organises functions into three directed acyclic graphs, one
each for describing biological processes, molecular function, and cellular components. A
given gene could receive annotations in all three graphs. The GO consortium also maintain
or provide references to mappings from other annotation systems to GO terms. The Pfam
protein families database consists of seed alignments for protein families, from which profile
HMMs are provided [281]. Protein family entries are annotated with functional information,
where this is available in literature. Searching a query protein sequence against the database
of HMMs allows the unidentified protein to be associated with a protein family if high
probability matches are found. InterPro seeks to intergrate a wide range of sources, including
Pfam, into a single database [282]. Entries in the combined InterPro databases have profile
HMMs provided, and the metadata provides links back to their source databases, and cross
references to other resources such as KEGG. In addition, they maintain a tool for performing
annotation using this database, InterProScan [283].

For focussed analyses, specific databases are available, or small sets of curated marker
genes can be selected and identified. The Carbohydrate-Active enZYmes (CAZy) database
is specific to enzymes involved in biological processing of carbohydrates [284]. For well
studied processes such as nitrogen cycling, marker genes indicating the capacity for specific
steps of the process are often used, such as nirsS or nirK genes indicating the presence
of denitrifiers [285]. As well as process specific, environment specific databases can be
utilised. In the marine context, the MMETSP and MarRef [260, 191] provide reference sets
with taxonomic and functional annotation, allowing functional assignment by homology to
annotated sequences in these databases.



Chapter 4

Metagenome Assembled Genomes
Across the Arctic and Atlantic Oceans

4.1 Summary

This chapter first details the methods by which we obtained both eukaryotic and prokaryotic
MAGs from twelve metagenomic samples taken from stations between the Arctic Ocean and
the tropical Atlantic Ocean, collection as part of the Sea of Change project. This chapter
is an adaptation of a paper that has been published in Microbiome [23], and at the time of
being added to bioRxiv [286] represented the first study specifically targeting the recovery of
multiple eukaryotic MAGs from ocean metagenomes.

The chapter begins by covering the methods used for assembly, initial annotation of the
samples, and retrieval of prokaryotic and eukaryotic MAGs (Sections 4.2.2, and 4.2.3). The
remaining methods Sections 4.2.4 to Section 4.2.9 cover the approaches taken to describe
and analyse the recovered MAGs.

Results of these analyses are then presented in Section 4.3. After a summary of the
unbinned data in Section 4.3.1, presentation of MAGs starts with an overview in Section
4.3.2. Analysis of the quality of MAGs is given in Section 4.3.3. Phylogenomic and
taxonomic analysis identifies which organisms are present amongst the MAGs is in Section
4.3.4. In Section 4.3.5, distribution of the MAGs across the sampled stations is evaluated
using coverage, looking at where these organisms are found. Functional analysis of the genes
encoded by MAGs reveals what these organisms are capable of, and how these functions differ
between polar and non-polar climates as explained in Section 4.3.6. Finally, associations
between some pairs of eukaryotic and prokaryotic MAGs suggest some ways in which these
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organisms interact is presented in Section 4.3.7. Section 4.4 brings the chapter to a close
with a discussion of the results.

This project was a collaboration between ourselves and colleagues at JGI. Sequencing,
assembly, initial gene prediction and annotation was performed by JGI. My contribution was
devising and performing eukaryotic binning and read based taxonomic classification. Asaf
Salamov at JGI generated three additional eukaryotic MAGs with different methodology,
as discussed in Section 4.2.8. All subsequent analyses were devised in discussion with my
supervisory team, and carried out by myself. The paper was drafted with my supervisory
team, with much of the discussion placing results in a biological context being contributed
by Thomas Mock.

4.2 Methods

The twelve samples we used to generate the MAGs were collected on two expeditions in 2012
as part of the Sea of Change project, with 6 samples from above the Arctic Circle, and 5 from
the tropical and subtropical Atlantic. Samples were taken from the surface ocean or DCM
layer, and filtered to select for eukaryotic size organisms. Detailed methods for collection
and sequencing of these samples has been described by Schmidt [22] who collected these
samples and by Martin [287], as well as summarised in our published paper [23]. The cruise
and sampling strategy are summarised here.

4.2.1 Collection and DNA Extraction

Samples were collected on two RV Polarstern (Alfred-Wegener Institute for Polar and Marine
Research, Bremerhaven, Germany) expeditions described by Martin et al. and Schimdt
et al. [288, 22] and summarised below. During these campaigns, samples were taken
from forty four stations for 18S and 16S amplicon sequencing, and for metatranscriptomic
sequencing. Eleven samples from the DCM an surface layers of the ocean were selected
for metagenomic sequencing. Six of these were stations within the Arctic circle, five in the
tropical and sub-tropical Atlantic, shown in Figure 4.1. Arctic samples were collected on
ARK-XXVII/1 (PS80) between 17th June and 9th July 2012; Atlantic samples were collected
on ANT-XXIX/1 (PS81) between 1st and 24th November 2012. Samples from the Arctic
were taken from between 10 and 20 metres of depth, where those in the Atlantic were deeper
from between 30 and 80 metres. The sampling plan grouped samples as either surface
(0-10m) or DCM (10-100m), so all the samples selected for metagenome sequencing were
from the DCM group, but still display variation in depth between the two regions. Water
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samples were taken in 12 L Niskin bottles by a rosette sampler with attached Conductivity,
Temperature, Depth (CTD) sensor, providing measurements of salinity and temperature
at the time of sampling. Water samples were pre-filtered with a 100 µm mesh to remove
larger zooplankton. Samples were then distributed into 1.25 l bottles, and those intended for
DNA extraction were filtered with 1.2 µm polycarbonate filters, which were stored in liquid
nitrogen at −80 ◦C until analysis. Phosphorus, nitrogen and silicate analysis was performed
on duplicate samples, filtered with 0.2 µm nitrate cellulose filters and stored at −20 ◦C for
phosphorus and nitrogen analysis, and 4 ◦C for silicate.
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Fig. 4.1 Map showing stations from which samples were collected and sample depth [22].
Colour indicates mean annual sea surface temperature for 2012, taken from remote observa-
tion [289]. The latitude of the Arctic Circle is indicated with labelled line.

Cells were washed off the filter with pre-heated (65 ◦C) solution A from the kit, and the
supernatant was transferred into a new tube with one small spoon of glass beads (425 µm-
600 µm, acid-washed) (Sigma-Aldrich, USA). The samples were then vortexed three times
in intervals of 3 s to break the cells. RNAse A was added to the samples and incubated for
30 min at 65 ◦C. The supernatant was transferred into a new tube, and solution B from the kit
was added followed by a chloroform phase separation and an ethanol precipitation. DNA
was pelleted by centrifugation and washed several times with isopropanol, air-dried, and



4.2 Methods 67

suspended in 100 µL TE buffer. DNA concentration was measured with a Nanodrop (Thermo
Fisher Scientific, Waltman, MA, USA), samples snap-frozen in liquid nitrogen and stored at
−80 ◦C until sequencing. Description of the samples and associated metadata is available
through the GOLD database [290].

As only a small number of the stations sampled on these expeditions were selected for
metagenomic sequencing, in this work each station and associated sample has been relabelled
to simplify referring to them. To easily differentiate between polar and non-polar locations
the stations are labelled either Pn or NPn respectively. Each sample is then assigned a number
roughly following a path starting at the coast of Greenland and heading east and south. The
first polar sample on that path is thus P1, the first non-polar sample NP1, as shown in Figure
4.1. Two duplicate samples from station P3 were selected for sequencing, these are labelled
P3a and P3b. Details of sampling locations and associated metadata, including identifiers for
data in repositories, is provided in Appendix A.2

4.2.2 Sequencing, Assembly and Annotation

These samples were sequenced, assembled and annotated by the JGI IMG pipeline [291],
briefly summarised here. Paired end sequencing was performed on an Illumina HiSeq
platform. BBDuk [292] was used to remove Illumina adapters, then BBDuk filtering and
trimming applied. As a standard part of the quality control in the IMG pipeline, reads
mapping to the human HG19 genome with over 93% identity were discarded. Remaining
reads were assembled with MEGAHIT [175]. The quality controlled reads were mapped
back to the assembly to generate coverage information using seal [293]. Some of these
samples were later reassembled using SPAdes [178].

Genes were predicted by the IMG pipeline [291]. Briefly, genes were predicted from
assembled contigs using prokaryotic GeneMark.hmm, MetaGeneAnnotator, Prodigal, and
FragGeneScan [294, 295, 275, 272]. The number of copies of each gene is estimated
from coverage of contigs generated by mapping back reads using seal [293]. Taxonomy
was assigned to genes based on the top scoring USEARCH [296] result against an IMG
reference database of non-redundant proteins from isolate genomes. Contigs were assigned
the taxonomy of the last common ancestor of all genes on the contig, where more than 30%
of genes have USEARCH hits. Where samples were later reassembled and annotated, as
discussed in the previous paragraph, we use the predicted genes and estimated gene copies
from the most recent assembly.

We performed taxonomic classification and abundance estimation of reads was performed
using Bracken [219] and Kraken2 [297]. A custom Kraken2 database was constructed using
all RefSeq genomes for bacteria, archaea, viruses, protozoa, fungi, as well as plants excluding
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embryophyta. Non-embryophyta plants were included to cover the green algae. Reads were
taxonomically classified using Kraken, and abundance at the level of phylum was estimated
with Bracken.

4.2.3 Binning

The IMG pipeline identified a number of prokaryotic bins. Samples were binned by JGI
as described by Chen et al [291]. Briefly, each assembly was binned separately, using
MetaBat [157] and a minimum contig size of 3,000 bp. As covered in Section 3.5.1, common
forms of evidence used by binning algorithms are tetranucleotide frequencies and differential
coverage. Each assembly was individually binned, differential coverage was not used, so
only tetranucleotide frequency evidence was considered by the binning algorithm. Resulting
bins were assessed for completion and contamination with CheckM [254], and subsequently
assigned a taxonomy using GTDB-Tk [187]. While eukaryotic sequences were not excluded
from this binning, all bins were labelled as archaea, bacteria or unknown by CheckM,
prompting the distinct binning attempt for eukaryotes.

For the eukaryotic binning we carried out, each assembly was binned separately, the
process for binning one assembly is given below, with more background on the approach and
tools available in Section 3.5.4. Eukaryotic contigs were predicted with EukRep [235], which
uses a linear support vector machine to classify sequences as eukaryotic or prokaryotic using
k-mer frequencies. Coverage of the eukaryotic contigs was estimated by pseudoaligning
the reads from each sample to the contigs using Kallisto [209]. Binning was performed
using MetaBat2 [157] with the coverage information, and a minimum contig size of 1,500 bp.
Completeness and contamination of resulting bins were assessed with BUSCO [252], using
the eukaryota_odb9 set of genes. Bins which were less than 50% complete were discarded
from further analysis. Completeness and contamination of bins was later reassessed using
EukCC [255] which takes a similar approach to CheckM, seeking to identify the bin lineage
and select a more specific set of single copy genes. The diagram in Figure 4.2 shows the
binning and analysis pipeline.
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Fig. 4.2 Pipeline for eukaryotic binning. Steps in yellow were performed by the Joint Genome
Institute (JGI) [291]. We performed the binning process shown in green, and analysis steps
in violet.

4.2.4 Phylogenomics

To aid in the taxonomic identification of MAGs, a phylogenomic tree was constructed
from both reference genomes and MAGs. PhyloSift [298] was used to identify sequences
homologous to the mostly-single copy marker genes in bins and reference genomes using
the HMMs provided by PhyloSift. Trees for eukaryotes and prokaryotes were constructed
separately.

For eukaryotic reference genomes, all protists and green algae labelled representative
from NCBI were used. This included only a single diatom genome, Fragilariopsis cylindrus,
so two additional diatom genomes (Thalassiosira pseudonana, Phaeodactylum tricornutum)
taken from JGI were included after initial analysis of MAGs suggested several were potential
diatoms. For prokaryotes, all genomes in the MarRef [299] database were included. Ho-
mologous sequences were located and the best hit retained when there were multiple. The
PhyloSift set of marker genes contains both genes specific to eukaryotes, and genes identified
in bacteria but which have full length homologs in eukaryotes based on searches against the
yeast genome. For eukaryotes, all genes were used, for prokaryotes the eukaryote specific
genes were excluded. Marker genes present in less than 50% of the genomes (reference or
MAG) were not used in future steps of the analysis; MAGs with fewer than 50% of marker
genes which passed this threshold were then excluded. Homologous sequences were aligned
against the PhyloSift models, and alignments for all genes concatenated. FastTree [300]
was used to build initial phylogenomic trees for the eukaryotic and prokaryotic alignments,
using the general time reversible model option. Trees including bootstrap values were sub-
sequently constructed using RAxML [301] using the GTRCAT model approximation with
100 bootstrap replicates. The eukaryotic tree was midpoint rooted, while the prokaryotic
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tree was rooted between the clades containing archaea and bacteria. The resulting trees were
visualized with Interactive Tree of Life Viewer [302].

Following the publication of eukaryotic MAGs generated from Tara Oceans data [152] we
constructed a tree combining putative diatom MAGs from both these results, our results, and
44 reference genomes. This tree was constructed using a concatenated alignment of the genes
from the eukaryota_odb_10 gene set. The same thresholds were applied, with marker genes
present in less than 50% of the genomes were excluded, and genomes with less than 50%
of those genes excluded. Genes were individually aligned using MUSCLE [303], the align-
ments concatenated and trimmed using TrimAL’s -automated1 setting [304]. The tree was
constructed with RAxML using the automatic model selection option PROTGAMMAAUTO
with 100 bootstrap replicates.

As additional evidence for taxonomy, contigs from MAGs were searched against databases
with BLAST [203], and each contig assigned a taxonomy using the MEGAN-LR algorithm
[305]. Eukaryotes were searched against MMETSP [260], prokaryotes against NT. Selected
clades of MAGs with close placement had pairwise ANI and Average Amino Acid Identity
(AAI) calculated, using the pyani [306] BLAST based ANIb method and CompareM [254]
respectively. For AAI comparison, reference protein sequences were retrieved from MarRef
[191] for prokaryotes, and from PhycoCosm [25] for eukaryotes.

4.2.5 Coverage

Coverage for each eukaryotic MAG was generated by aligning reads from each sample back
to the bins using Bowtie2 [207]. Detection and mean coverage were calculated from these
alignments using BedTools [307]. We considered a MAG not present in a sample if the
detection (proportion of bases in MAG with any read aligned) was lower than 0.5, as in Olm
et al [236]. To serve as an estimate of the relative abundance of a MAG, the mean coverage
was divided by the number of million reads in the sample.

Only a fraction of the species truly present will have MAGs recovered. To estimate
the total proportion of the population represented by MAGs, contigs from eukaryotic and
prokaryotic MAGs were concatenated to a single file, and read pairs from each sample were
pseudoaligned back to this set of contigs representing all MAGs using Kallisto [209]. The
proportion of the reads which mapped back to the concatenated contigs was taken as an
estimate of the proportion of the reads represented by the recovered MAGs.
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4.2.6 Gene Prediction

Protein coding genes were predicted as part of the IMG pipeline prior to binning (see Section
3.6). Prediction was performed using an ensemble of prokaryotic gene prediction tools:
Prodigal, prokaryotic GeneMark.hmm, FragGeneScan and MetaGeneAnnotator. Each of
these tools aims to identify genes with prokaryotic gene structure, and are not adapted to the
more complex gene structures of eukaryotes. In addition, non protein coding features like
CRISPR elements and rRNA are predicted. Eukaryotic MAGs had genes predicted using
GeneMark-ES [64] in self training mode with MAKER2 [308]. GeneMark-ES starts from
the assumption that all sequences provided originate from the same genome, so this step had
to be performed on the generated bins, rather than contigs prior to binning.

4.2.7 Functional Annotation

The IMG pipeline annotated genes which were predicted by its ensemble of prokaryotic gene
prediction tools. Protein coding genes are assigned to COG, Pfam, TIGRfam, KO, and a
subset of InterPro families. Further background on function annotation databases is given in
Section 3.7. The proteins are further associated with KEGG and MetaCyc pathways based
on the KO terms and related Enzyme Comission (EC) numbers. GO terms for prokaryotic
genes were generated using the mapping of Pfam accessions to GO terms maintained by
InterPro. Protein coding genes predicted separately for eukaryotic contigs after binning
lacked functional annotation from the IMG pipeline, and were annotated using InterproScan
5 [283].

4.2.8 Additional Eukaryotic MAGs Generated by JGI

Work undertaken by Asaf Salamov at JGI identified three additional eukaryotic MAGs using
different methods. These three MAGs have been included in all analyses in this chapter, and
a summary of their method is given here. Following assembly, contigs were searched against
NR and MMETSP [260] using Mmseqs2 [309] to assign taxonomy, and prokaryotic contigs
discarded. Binning was again performed using MetaBat [157] on the filtered contigs of each
assembly separately. Bins were then filtered to select those with conserved taxonomic origin,
retaining only those with more than 50% of contigs assigned to a single eukaryotic phylum
and a total length of greater than 5 Mbp. Finally bins were filtered to remove contigs from
other taxa. This resulted in recovery of three additional 3 medium quality MAGs.
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4.2.9 Inter-kingdom Species Association

To investigate associations between prokaryotic and eukaryotic MAGs, we looked at the
correlation between coverage of pairs of MAGs. Ordinary least squares regression was
performed between each pair of eukaryote and prokaryote MAGs, and any pair with R2 ≥ 0.7
and p-value ≤ 0.05 retained. Examining plots for the retained pairs suggested that some of
the correlations were driven by single or a small number of highly influential observations.
To address this we used Cook’s distance, which provides a measure of how influential an
individual observation is to the results of a linear regression analysis [310]. We discarded
any pairs where the regression did not did not meet the thresholds mentioned earlier after
points with Cook’s distance greater than 1.25 were removed.

For the pair of MAGs with the clearest association (NP2_2E and NP3_22P), we looked
at the enrichment of functions in each. Enriched GO terms were identified using Fisher’s
exact test, comparing terms found within the MAG to terms in a set of background MAGs.
The selected pair were taxonomically identified as Bathycoccus and Alphaproteobacteria
respectively. For the eukaryote NP2_2E, all Prasinophyte MAGs not involved in any of
identified associations were used as a background set, a total of 2 MAGs. For prokaryote
NP3_22P, all Alphaproteobacteria MAGs not involved in associations were selected as
background set, a total of 12 MAGs. We considered any terms overrepresented in the
associated MAG with p≤ 0.05 in a one-sided test to be enriched in the MAG.

To check whether the identified enriched terms were specific to this associated pair,
or would appear enriched regardless of association, we looked at terms enriched in two
control pairs. The same background sets were retained, and MAGs not involved in any of the
identified associations selected as pairs to investigate for enrichment. The first pair selected
were distantly related to the background sets, the selected eukaryote was Bacilliarophyta
P3a_4E, and prokaryote Gammaproteobacteria NP3_6P. To identify whether enrichments
were taxonomically driven, a second closely related pair were drawn from the background sets.
The selection MAGs was eukaryote Prasinophyte P2_1E and prokaryote Alphaproteobacteria
P3a_15P. These two MAGs were removed from the background set in these enrichment
analyses.

4.3 Results

To provide an overview of the community from which the MAGs are being drawn, this
chapter opens in Section 4.3.1 with a summary of taxonomic and functional annotations
of the reads and assemblies prior to binning. Sections 4.3.2 to 4.3.7 then focus in on
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the community members for which MAGs were recovered, presenting analyses of quality,
taxonomy, distribution, function, and interaction.

4.3.1 Data Summary

Sequencing of the 12 samples resulted in 4.53 billion reads totalling 679.25 Gbp, with each
sample ranging between 46.79 Gbp and 67.37 Gbp. The size of each data at each step of
processing is shown in Figure 4.3. Assembling each station with MEGAHIT resulted in
42.10 million contigs totalling 23.02 Gbp. The MEGAHIT assemblies for three samples,
P3b, P4 and P5 are notably smaller than the rest, being less than 1 Gbp in length. Summary
statistics for reads and assemblies are provided in Appendix A.2. Reads for six samples were
assembled using both MEGAHIT and later SPAdes. Assemblies from SPAdes in all cases
resulted in a smaller overall length of assembly, but with the largest contigs being longer
in SPAdes assemblies and a greater proportion of the assembly being in scaffolds greater
than 50 kbp. While the two duplicate samples from the same station P3a and P3b generated
59.34 Gbp and 46.79 Gbp respectively, the resulting assemblies differ greatly in size, the
MEGAHIT assemblies being 3.12 Gbp and 0.39 Gbp.

Taxonomy

Prior to binning, we looked at the overall taxonomic composition of the community as a
whole, by taxonomically classifying both the reads and assembled contigs. Reads were
taxonomically annotated by IMG for a subset of these samples. This annotation was done
using different versions of the IMG pipeline, and the taxonomic composition based on reads
shows grouping based on pipeline version. Comparison of these IMG read annotations would
be partial and confounded by pipeline version, so we performed a read based taxonomic
classification was using Kraken2 and Bracken [218, 219]. Kraken2 taxonomically classified
365.85 million (15.74%) of the read pairs. Bracken abundance estimation at the levels of
superkingdom and phylum is shown in Figure 4.4.

Distribution of relative abundances at the ranks of superkingdom and phylum for polar
and non-polar samples are shown in Figure 4.4. Generally, eukaryotes are more abundant in
polar stations, contributing between 22% and 27% of the total abundance of reads, whereas
they only contribute between 12% and 19% non-polar stations. In non-polar stations with
lower abundance of eukaryotes, there is a corresponding increase in the abundance of archaea.
This is most pronounced in stations NP1 and NP2, where the most southern non-polar station
NP5 appears to be more similar to polar stations. Mean abundance of eukaryotes in polar and
non-polar samples shows a statistically significant difference (p = 0.000074), assessed using
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Fig. 4.3 Representation of size of data at steps of processing. Widest central bar represents
quality controlled reads. Upper portion is the eukaryotic binning process, lower is the
prokaryotic binning. Polar stations are red, non-polar are blue. Width represents the size of
data at that step, and is log-scaled.

a T-test assuming independent samples. Similarly, abundance of archaea shows a significant
difference between polar and non-polar samples (p = 0.0091). Differences between the other
superkingdoms is not significant at p = 0.05.

At the rank of phylum, Proteobacteria is the most abundant, with Ascomycota the most
abundant eukaryotic phylum. The most abundant species is the Cyanobacteria Prochloro-
coccus marinus with a mean relative abundance of 3.40%; the most abundant eukaryote is
Micromonas commoda with mean relative abundance of 1.24%. The photosynthetic eukary-
otic phyla Chlorophyta and Bacillariophyta generally have higher relative abundance in polar
stations, with Cyanobacteria being more abundant in non-polar stations. The southernmost
non-polar station NP5 appears more similar to the polar stations, with a raised relative
abundance of Bacillariophyta.

Principal Coordinates Analysis (PCoA) of the species level taxonomy of these samples
was performed using the pairwise Bray-Curtis distance between samples. The results in Fig-
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Fig. 4.4 Taxonomic composition of samples estimated by Bracken, summarised to the rank
of superkingdom (top) and phylum (bottom).
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Fig. 4.5 Distribution of relative abundance estimates from Bracken for each superkingdom,
divided up by polar and non-polar. Each pair was tested for differing means using a T-
test assuming independent samples. p-values are Viruses p = 0.72, Archaea p = 0.0091,
Eukaryota p = 0.0000745, Bacteria p = 0.065,

ure 4.6 shows show a clear separation of polar and non-polar samples along the primary axis,
which explains 46.1% of variation, suggesting a clear demarcation between the taxonomic
composition of polar and non-polar communities.

Function

One or more genes were predicted by the IMG pipeline on 36.76 million of the 42.10 million
contigs, with 50.30 million genes predicted in total. Domains homologous to those in the
Pfam database were found in 13.83 million (27.51%) of the predicted genes. Within samples,
this proportion varied from 17.97% to 33%. The two samples from P3 had the lowest ratio of
genes with homologous Pfam domains, both under 20%.
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Fig. 4.6 First and second component of Principal Coordinate Analysis performed using
Bray-Curtis distances between relative taxonomic abundance at species rank, and relative
abundance of Pfam domains in gene annotations. Percent in axis labels is the percentage
of variance explained. Taxonomy shows a clear separation between polar and non-polar
samples, which is less pronounced based on function.

Taxonomic affiliations were assigned to 17.74 million of the genes, of which 28% were
eukaryotic, 66% prokaryotic, 6% viral. The relative estimated gene copies by taxonomy at
the rank of superkingdom and phylum is shown in Figure 4.7. These data do not describe the
distribution of individuals in the sample, as the number of genes encoded in the genome of
an organisms will vary with lineage. However, many of the broad trends observed in the read
based classification and abundance estimates hold for these gene based data as well.

The most abundant genes were of bacterial origin followed by eukaryotes, viruses and
archaea. On the phylum level, genes from Proteobacteria were most abundant with Haptista
being the most abundant eukaryotic phylum followed by Chlorophyta. Generally, eukaryotic
genes are more abundant in polar stations, contributing between 25 and 46% of the total
genes, whereas they only contribute between 10 and 31% in non-polar stations. In non-polar
stations with a lower abundance of eukaryotic genes, there is a corresponding increase in
the abundance of archaea and viruses. Differences between the means of gene counts in
polar and non-polar stations are statistically significant for eukaryotes, viruses and archaea
assessed using a T-test at a significance level set at ≤ 0.05. Genes from photosynthetic
eukaryotes such as Chlorophyta and Bacillariophyta generally have higher relative abundance
in polar stations, whereas those from Cyanobacteria are more abundant in non-polar stations.
The proportion of genes annotated as of fungal origin is much lower than in the read-based



78 Metagenome Assembled Genomes Across the Arctic and Atlantic Oceans

Fig. 4.7 Relative abundance of genes by taxonomic assignment. Data produced by JGI IMG
pipeline [291].

estimated taxonomic abundance, where Ascomycota are estimated as the most abundant
eukaryotic phylum. One possible explanation for this is that fungal genomes can vary greatly
in size, but tend to encode a comparatively small number of genes [311].
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A majority (87%) of the observed Pfam domains are present in both polar an non-polar
samples. The proportion of domains of unknown function is higher in the domains uniquely
found in either polar or non-polar stations than shared between them. Domains of unknown
function constitute 16.55% of the shared domains, but 23.76% and 29.71% of domains
unique to either the polar and non-polar respectively. Among domains unique to the polar
samples, 63.57% were observed in only one sample, and none were in all samples. For the
non-polar samples this was lower at 43% in only one sample, and 8.50% were in all samples.
The domains found in both areas are more well distributed, with 57.55% being ubiquitous
in every sample. The PCoA plot in Figure 4.6 is based on the relative abundance of Pfam
domains in samples. The separation between polar and non-polar samples is less clear than
in the ordination based on taxonomy.

A plot of the 20 GO terms in each namespace with the highest mean abundance each
GO namespace is shown in Figure 4.8. Among this restricted set, terms related to ribosomal
components or activity (GO:0003735, GO:0006412, GO:0005840) show greater abundance
among the polar samples than non-polar. This fits with findings that phytoplankton require a
higher density of ribosomes under cold conditions to meet cellular protein synthesis require-
ments [312]. Samples P2 and P6 show raised values for some parts of the photosynthetic
machinery, those terms related to photosystem I and the thylakoid membrane (GO:0009522,
GO:0009579). Among the polar stations, P2 and P6 are also the pair with high estimated
abundance of Cyanobacteria.
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Fig. 4.8 Relative abundance of GO terms with the highest relative abundance in predicted
genes. Abundance is based on estimated gene copies for genes predicted in each assembly.
GO term counts were based on the mapping from Pfam to GO terms maintained by the GO
Consortium. Relative abundance calculated separately for each GO namespace, as terms
in each namespace can be similar or synonymous, and Pfam domains can map to multiple
terms.
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4.3.2 Bin Summary

Metagenome binning resulted in 143 MAGs of medium or high quality; 122 prokaryotic
MAGs, and 21 eukaryotes. The MAGs total 0.79Gbp of contigs, and 8.1% of all reads
mapped back to the MAGs. For the prokaryotes, these bins total 0.3Gbp, a small proportion
of the assemblies as shown in Figure 4.3.

Prokaryotes were taxonomically identified using GTDB-Tk [187], and 116 were classified
as bacteria, and 6 as archaea. Slightly more prokaryotic MAGs were retrieved from non-polar
samples than polar, 64 and 58 respectively. All prokaryotic MAGs from polar samples were
classified to at least the phylum level, and came from among Bacteroidota, Proteobacteria
and Verrumicrobia. Verrumicrobia were only recovered from polar samples. The prokaryotic
MAGs from non-polar samples come from a wider range of phyla, and included all of the
6 archaea. In addition to Bacteroidota and Proteobacteria, non-polar MAGs included 6
Actinobacteriota, 8 Myxococcota, 2 Patescibacteria, 5 Planctomycetota and 1 Poribacteria,
all of which phyla were unique to the non-polar samples. Summary statistics for prokaryotic
MAGs are provided in Appendix A.3.

Filtering the assembly for each sample to retain only eukaryotic contigs as predicted by
EukRep [235] resulted in 2,151,309 contigs totalling 4.01 Gbp. A much higher proportion of
polar assemblies was predicted as eukaryotic than non-polar, shown in Figure 4.9. From these
we recovered 21 medium quality eukaryotic MAGs. Only four of these eukaryotic MAGs
were retrieved from non-polar samples. Taxonomy was assigned to the eukaryotic MAGs
based on their placement in a phylogenomic tree discussed in detail in Section 4.3.4; 8 placed
with Mamiellophyceae reference genomes, 10 with Bacillariophyta, the placement of the
remaining 3 was less clear. All but one of the Bacillariophyta originated from polar samples.
The Mamiellophyceae break down by genus: all the polar Mamiellophyceae MAGs placed
in a clade with Micromonas, the non-polar with Ostreococcus or Bathycoccus. Summary
statistics for eukaryotic MAGs are shown in Table 4.1.

4.3.3 Quality

Completeness is expressed as the percentage of expected single-copy genes from a selected
gene set observed in the MAG, and contamination as the percentage of single copy genes
observed in two or more copies. For prokaryotes, CheckM [254] selects a suitable gene
set based on the identifying the probable lineage of each MAG. We initially used BUSCO
[252] and the eukaryota_odb9 gene set for eukaryotes. Later we reassessed the eukaryotes
using EukCC [255], a tool taking a similar lineage specific approach to CheckM, which was
published shortly after initial completion of our binning. Following established standards
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Fig. 4.9 Percentage of assembly length which was predicted as eukaryotic by EukRep [235]

[253], medium-quality for a MAG requires at least 50% completion and less than 10%
contamination. The completeness, contamination, size and phyla of MAGs are shown in
Figure 4.10.

Eukaryotic MAGs had a mean completeness of 67.82% and contamination of 2.82%.
Details of the eukaryotic MAGs are shown in Table 4.1. The MAG with the highest com-
pletion is P2_1E at 92.97%. All but one MAG is quite fragmented, with a median L50
of 5,229 bp. The exception is P2_1E which contains many contigs longer than 50 kbp, the
longest being 106 kbp. The number of predicted genes for eukaryotes ranges from 4,808 to
29,691, with a median of 12,301, with a positive correlation between length of sequence in
MAGs and number of genes predicted as shown in Figure 4.11. We discard any eukaryotic
MAGs which did not meet the medium quality completeness and contamination thresholds
when assessed with BUSCO and eukaryota_odb9 gene set. When reassessed with EukCC,
P1_3E fell slightly below the completeness threshold, from 55.8% to 48.72%, but with 0%
contamination. This MAG was retained for all subsequent analyses.

Prokaryotic MAGs have a slightly greater mean completeness of 74.30% and similar
contamination of 2.68%. The prokaryote with the highest completeness was Flavobacteri-
aceae P1_21P at 99.62% and a contamination of 2.81%. Assemblies for prokaryotic MAGs
are slightly less fragmented with a median L50 of 11,402 bp and a median size of 2.23 Mbp.
Part of the reason for this could be that the prokaryotic binning process used a minimum
contig size of 3,000 bp, where 1,500 bp was used during eukaryotic binning. The number
of predicted genes for prokaryotes ranges from 948 to 5,124, with a median of 2,254.5; as
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Fig. 4.10 Completeness, contamination, size and phylum of MAGs. The upper plots show
eukaryote, the lower prokaryotes. The left column is non-polar MAGs, and the right polar.
Area of the point represents size of the MAG. Colour shows the estimated phylum of
each MAG. The vertical axis shows percent contamination, and the horizontal percent
completeness.

with eukaryotes the overall length of a MAG and number of genes recovered show clear
positive correlation (Figure 4.11). Summary statistics for prokaryotic MAGs are provided in
Appendix A.3
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Fig. 4.11 Size of MAG in Mbp plotted against number of predicted genes. The left plot
shows eukaryotes, the right prokaryotes. Colour indicates polar or non-polar origin of MAGs,
blue and red respectively.

4.3.4 Phylogenomics and Taxonomy

Eukaryotes

The phylogenomic tree for eukaryotes in Figure 4.12 was constructed using concatenated
alignments of 57 marker genes, a subset of those included in the PhyloSift package [298].
Representative genomes for protists and green algae were retrieved from National Center
for Biotechnology Information (NCBI) in addition to two diatom genomes from JGI (Tha-
lassiosira pseudonana, Phaeodactylum tricornutum), for a total of 412 reference genomes
in addition to the 21 eukaryotic MAGs. A complete list of taxa included is available in
Appendix A.5.
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Most MAGs placed in two clades, which contain all the Bacillariophyta or Mamiel-
lophyceae reference genomes. Branches within these clades are long, and more specific
identification via this phylogenomic tree construction method seems difficult while there are
still few reference genomes available for eukaryotic marine microbes. Within the Mamiel-
lophyceae clade, three MAGs (P6_3, P5_1 and P3a_3) are closely related to one another, but
relationships to the reference genomes is more distant. The Bacillariophyta clade appear to
have more distant relationships, with no MAGs which appear closely related. P2_2E and
P1_3E are difficult to estimate a taxonomy for, placing close to one another but distant from
any of the included reference genomes.

Mamiellophyceae

Mamiellophyceae are a class of green algae, the largest clade in the Prasinophyte lineage
(see Section 2.3.2). Mamiellophyceae-like MAGs appear to further divide into three clades
containing reference genomes from the three genera: Micromonas, Bathycoccus, and Ostreo-
coccus. Micromonas MAGs were only recovered from the polar samples, and Bathycoccus
and Ostreococcus from non-polar samples.

Among the Micromonas MAGs some have high ANI to each other or reference genomes,
shown in Figure 4.13. MAGs P2_1 and P2_4E have 99% ANI with Micromonas sp. 1001a, a
species reconstructed from an Antarctic metagenome [237]. Three MAGs appear similar:
P6_3, P5_1 and P3a_3. ANI between these MAGs is 98% or higher, and 99% between
P5_1 and P3a_3. This group do not share high ANI with any of the reference genomes
however. For the Mamiellophyceae AAI supports the placements in the phylogenomic trees.
For instance, NP2_1E is placed close to Ostreococcus references in the three and shows the
highest AAI of 73.46% to Ostreococcus lucmarinus.

Assignment of the contigs from Mamiellophyceae-like MAGs based on searching against
MMETSP showed consistency with the taxonomy suggested by the phylogenomic tree.
Summarising to the level of phylum, all but NP2_1 have over 99% of contigs assigned to
Chlorophyta or a descendant. The contigs which were not assigned to Chlorophyta were
either assigned to the Eukaryota node, or had no BLAST hits, and no contigs were assigned
to other phyla. This suggests a consistent taxonomic origin for the sequences in these MAGs
at least at the phylum level, rather than representing sequences which are not biologically
related. Evidence from these BLAST searches also supports the taxonomies suggested by the
phylogenomic tree at the genus level; all Mamiellophyceae MAGs had at least 87% of their
contigs assigned to the genus they placed with in the phylogenomic tree. Less confirmatory
evidence is available for NP2_1. Contigs with no BLAST hits made up 34.12% of the contigs.
For those contigs which did have hits, 96% were assigned to Chlorophyta, with the remaining



88 Metagenome Assembled Genomes Across the Arctic and Atlantic Oceans

Fig. 4.13 Average nucleotide identity of all genomes placed in the Mamiellophyceae clade.
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assigned across Stramenopiles, Alveolata, Haptophyta, Rhodophyta, and Cryptophyta. Trees
showing assignment of contigs for a subset of the Mamiellophyceae are shown in Figure 4.14,
including two with clear assignment at phylum level, and NP2_1 with less clear assignment.

Fig. 4.14 Assignment of contigs in three Mamiellophyceae MAGs based on BLAST search
against MMETSP database, summarised at phylum level. Nodes in red had at least one
contig assigned. Size of node is scaled to number of contigs assigned. On internal nodes, the
number above the branch is contigs assigned directly to that node, below the branch is the
number assigned to that node or any of its descendents.

Bacillariophyta

The largest group of MAGs were those which placed in a clade with Bacillariophyta reference
genomes, accounting for 8 of the 22 eukaryotic MAGs. Bacillariophyta are a phylum of
diatoms, characterised by their silica frustules and estimated to account for 20% of ocean
carbon fixation, which were introduced in Section 2.3.2. Within the Bacillariophyta clade in
our tree, branches are much longer than the Mamiellophyceae clade, both between pairs of
MAGs, and between MAGs and reference genomes. ANI and AAI provide extra evidence
suggesting genus level identification of some of the Bacillariophyta MAGs however.
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P2_3E had an ANI of 85.5% and AAI of 83.15% to Fragilariopsis cynlindrus, supporting
their close placement (Figure 4.15). The next highest AAI among Bacillariophyta MAGs is
much lower, 66.99% between NP5_1E and Pseudo-nitzschia multiseries. MMETSP contains
sequences from Bacillariophyta taxa which currently lack a complete genome, results from
searching sequences in MAGs against this database provided further evidence for taxonomy
which could not be captured by the phylogenomic tree. Apart from MAG P3a_4E, all the
MAGs in the Bacillariophyta clade had 85% or more of their assigned contigs classified at the
level of phylum when searched against MMETSP. For P3a_4E, of the contigs which could
be assigned a taxonomy (35.8%), a majority (23.58%) were classified as Bolidophyceae, a
sister taxa to Bacillariophyta. When selecting reference taxa for the phylogenomic tree, no
Bolidophyceae genomes were available on NCBI, however a genome has since been made
available for Triparma laevis [313]. Additional close placement was obtained for P6_2E
for which ca. 84% of contigs were classified as Leptocylindrus danicus, P3a_2E for which
96.14% of contigs were classified as Minutocellus polymorphus and P1_5E for which ca.
85% of contigs were classified as Chaetoceros neogracilis. P1_1E shows a high ANI to our
potential Chaetoceros MAG P1_5E; however, a lower proportion of contigs in P1_1E (ca.
69%) were assigned to Chaetoceros.

The results of searching these MAGs against MMETSP showed a mean 37.37% percent
of contigs in each MAG with no hits, considerably greater than 4.45% for Mamiellophyceae.
Along with the long branches in the phylogenomic tree, this suggests that the Bacillario-
phyceae are more distant from currently available reference genomes than the green algae
Mamielliophyceae.

A similar eukaryotic binning effort was published shortly after our binning work, recov-
ering over 700 eukaryotic genomes: 683 eukaryotic MAGs along with 30 SAGs [152]. The
genomes total 25.2 Gbp in length with 10,207,450 predicted genes, originating from 280
billion reads from the 798 samples from the Tara Oceans expeditions. Although our dataset is
smaller at approximately 1.5% the size in terms of reads (4.5 billion reads from 12 samples),
we recovered MAGs at a similar ratio of approximately 9 billion reads per Gbp recovered,
compared to 11 billion reads per Gbp recovered in the Tara Ocean dataset. Thus, starting
from a more restricted dataset, it is still possible to recover a comparable volume of MAGs
as exemplified for Bacillariophyta MAGs. Although the number and diversity of retrieved
Bacillariophyta MAGs are higher in the Tara Oceans dataset, our set of MAGs is distributed
over a significant number of clades, as shown in the tree combining MAGs from both studies
in Figure 4.17. Hence, smaller metagenome studies are still providing access to uncultured
genomic microbial diversity and their MAGs.
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Fig. 4.15 Average nucleotide identity of all genomes placed in the Bacillariophyta clade.
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Fig. 4.16 Assignment of contigs in P3a_4, based on BLAST search against MMETSP
database, summarised at phylum level. Nodes in read had at least one contig assigned. Size
of node is scaled to number of contigs assigned. On internal nodes, number above the branch
is contigs assigned directly to that node, below the branch is the number assigned to that
node or any of it’s descendents. The phylum with most contigs assigned is Bolidophycaeae, a
phylum for which no complete genome was available at the time of carrying out the research.
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Haptophyta

Haptophyta is a phylum of algae including the Coccolithophores who are characterised by
their calcium carbonate scales, among which Emiliania huxleyi is one of the most abundant
and broadly distributed, including expanding into polar waters (Section 2.3.2). The MAG
P3a_1 placed closest to the Haptophyta Emiliania huxleyi. E. huxleyi is quite distant from the
other two Haptophyta Chrysocromulina parva and Chrysocromulina sp. CCMP2291, which
are from the Prymnesiales order. These two Prymnesiales placed as neighbouring leaves, and
showed 97% ANI. E. huxleyi and P3a_1 have much lower ANI with each other and the two
Prymnesiales genomes (ca. 73%), shown in Figure 4.18. This MAG showed the highest AAI
with a group of Haptophyta including Phaeocystis and Chrysochromulina species, with the
highest being 62.59% AAI with Phaeocystis antarctica.

Fig. 4.18 Average Nucletotide Identity of Haptophyta reference genomes and MAGs.

Searching contigs from P3a_1 against MMETSP, a majority of contigs with hits were
assigned to a range of Haptophyta taxa which included E. huxleyi among them, with most
being assigned to P. Antarctica, supporting the AAI results. Contigs were also assigned to
several other phyla as well, possibly due to MAG contamination.
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P2_2 & P1_3

The two mags P2_2 and P1_3 are placed close to each other, but distant from any reference
genomes. Searches against MMETSP assigned contigs very widely across multiple phyla,
with less than 10% of contigs assigned to any taxa. Taxonomy for these two is difficult to
assign based on these two forms of evidence.

Prokaryotes

The phylogenomic tree for prokaryotes in Figure 4.19 was constructed using concatenated
alignments of 38 marker genes, a subset of the 40 prokaryotic marker genes included in
PhyloSift gene set. 970 reference genomes for marine prokaryotes were retrieved from the
MarRef database [191], a complete list of reference taxa is available in Appendix A.4. The
tree includes MAGs in which 50% or more of the selected marker genes were identified,
resulting in 88 of the 122 prokaryotic MAG being included. The largest group consists of 31
MAGs which placed within a clade with alpha-, beta-, and Gammaproteobacteria references.
A further 24 placed with Bacteroidota, of which 17 are in clades of Flavobacteriales.



96 Metagenome Assembled Genomes Across the Arctic and Atlantic Oceans

NP4 10PNP3 6P

Alteromonas macleodii ATCC 27126

Alteromonas macleodii str English Channel 673

Alteromonas macleodii str Balearic Sea AD45

Alteromonas macleodii str Black Sea 11Alteromonas sp BL110Alteromonas sp Mex14

NP4 18P
Alteromonas sp SN2

P1 16P

Pseudoalteromonas carrageenovora

Pseudoalteromonas donghaensis

Gallaecimonas sp HK 28

bacterium 2013Arg42i strain 2013Ark11

P5 24P

Thiomicr
osp

ira
 cr

unogena XCL2

P3a 17P

P2 30P

P3b
 3

P

P5 
7P

P1 
20

P
NP5 

9P

M
ar

in
ob

ac
te

riu
m

 s
p 

ST5
81

0
P2

 1
3P

P1
 3

3P
P3

b 
5P

P
3a

 3
1P

O
ce

an
ic

oc
cu

s 
sa

ga
m

ie
ns

is
 N

B
R

C
 1

07
12

5
P

6 
28

P
P

se
ud

om
on

as
 li

to
ra

lis
 s

tr
ai

n 
2S

M
5

N
P

3 
13

P
H

al
om

on
as

 e
lo

ng
at

a 
D

S
M

 2
58

1

C
hr

om
oh

al
ob

ac
te

r 
sa

le
xi

ge
ns

 D
S

M
 3

04
3

N
P

5 
10

P
N

P
3 

7P
A

lc
an

iv
or

ax
 b

or
ku

m
en

si
s 

S
K

2
A

lc
an

iv
or

ax
 s

p 
W

11
5

N
P

3 
5P

P
2 11P

P
3b

 2P
P

3a 15P

Tateyam
aria om

phalii D
O

K
14

S
ulfitobacter sp JL08

N
P

4 22P
P

lanktom
arina tem

perata R
C

A
23

P
3a 21P

D
onghicola sp JLT

3646

R
hodobacteraceae bacterium

 B
A

R
1

P
3a 11P

R
oseovarius sp A

K
1035

N
P

4 8P
N

P
5 8P

M
arinovum

 algicola D
G

 898

N
P2 18P

H
yphom

onas neptunium
 ATC

C
 15444

Hyphom
onas sp M

or2

Hirschia baltica ATCC 49814

M
aricaulis m

aris M
CS10

NP3 20P

Parvularcula berm
udensis HTCC2503

NP5 12P

Magnetospira sp QH2

Magnetococcus marinus MC1

P6 14P

P3a 28P

P5 21P

Coraliomargarita akajimensis DSM 45221

Candidatus Moanabacter tarae

NP1 19P

NP1 17P

NP4 47P

NP3 10P

NP4 16P

NP2 8P

NP5 7P

Verrucomicrobia bacterium L21FruAB

NP3 4P

NP2 10P

NP1 5P

NP1 38P

Phycisphaera mikurensis NBRC 102666

NP1 13P

NP4 26P
NP3 25P
NP1 22P
NP3 36P
NP2 25P
Ilumatobacter coccineum YM16304

Rubrobacter indicoceani

Acidobacteria bacterium Mor1

NP3 14PNP1 14PNP1 9PNP2 13PNP4 9PNP1 11PBradymonas sediminis

Therm
odesulfatator in

dicus DSM 15286

Bdellovibrio
 bacterio

vorus stra
in 109J

NP2 12P
NP4 33P

Croce
ibacte

r a
tla

ntic
us H

TCC2559

NP4 11
P

NP2 14P
P1 21P

NP3 
30

P
Psy

ch
ro

fle
xu

s t
or

qu
is 

ATCC 7
00

75
5

P3b
 8

P

P6 
35

P

P1 
34

P

P3
a 

27
P

Au
re

ita
le

a 
sp

 R
R

43
8 

M
M

P0
85

63
96

0

P6
 1

5PN
P

5 
29

P

Fo
rm

os
a 

sp
 H

el
3 

A
1 

48

Fo
rm

os
a 

sp
 H

el
1 

33
 1

31

Fl
av

ob
ac

te
ria

ce
ae

 b
ac

te
riu

m

K
or

di
a 

sp
 S

M
S

9

P
4 

14
P

F
la

vo
ba

ct
er

ia
ce

ae
 b

ac
te

riu
m

 U
J1

01

P
2 

23
P

P
3b

 6
P

P
3a

 3
0P

P
1 

41
P

P
6 

46
P

P
5 

11
P

O
w

en
w

ee
ks

ia
 h

on
gk

on
ge

ns
is

 D
S

M
 1

73
68

P
2 

12
P

P
4 

19
P

P
3a

 2
5P

P
2 

25
P

P
6 

13
P

N
P

5 11P
N

P
5 15P

P
1 15P

S
aprospira grandis str Lew

in

C
aldithrix abyssi D

S
M

 13497

M
ycoplasm

a phocidae

E
rysipelothrix rhusiopathiae

D
esulfotom

aculum
 reducens M

I1

N
P

4 61P

N
P

3 46P

T
herm

ovirga lienii D
S

M
 17291

C
lostridium

 botulinum
 202F

Ilyobacter polytropus D
S

M
 2926

H
ippea m

aritim
a D

S
M

 10411

N
P2 41P

bacterium
 AB1 strain AB18

uncultured m
arine group II euryarchaeote

M
ethanopyrus kandleri AV19

Nanohaloarchaea archaeon SG9

Candidatus Nitrosopelagicus brevis CN25
NP2 50P

Cenarchaeum symbiosum A

Nanoarchaeum equitans Kin4M

Vibrionales

Gallaecimonas sp HK 28
Enterobacterales

Gammaproteobacteria

Alteromonadales

AlteromonadalesPseudoalteromonas

Pseudoalteromonas
P1 16P

Pseudoalteromonas carrageenovora

Pseduoalteromonas

Pseduoalteromonas

Pseudoalteromonas donghaensis

Pseudoalteromonas

Alteromonadales
Alteromonadaceae

Alteromonas australica

NP3 6P

NP4 10P

Alteromonas macleodii ATCC 27126

Alteromonas macleodii str English Channel 673

Alteromonas macleodii str Balearic Sea AD45

Alteromonas macleodii str Black Sea 11Alteromonas sp BL110Alteromonas sp Mex14
Alteromonas

Alteromonas

Alteromonas sp SN2

NP4 18P

Alteromonas stellipolaris

Alteromonadaceae

Idiomarina

Kangiella

Gammaproteobacte
ria

Francisella

Methylophilales bacterium

bacterium 2013Arg42i strain 2013Ark11

P5 24P

Gammaproteobacteria

Thiomicr
osp

ira
 cr

unogena XCL2

Pisc
iric

ke
tts

ia sa
lm

onis

Moraxe
lla

ce
ae

M
ar

im
on

asP5 
7PP2 30P

P3a 17P

P3b
 3

P

O
ce

an
os

pi
ril

la
ce

ae

P1 
20

P

M
ar

in
ob

ac
te

riu
m

 s
p 

ST5
81

0

NP5 
9P

P1
 3

3P

P2
 1

3P
P3

b 
5P

P
3a

 3
1P

C
el

lv
ib

rio
na

le
s

C
el

lv
ib

rio
na

le
s

P
6 

28
P

O
ce

an
ic

oc
cu

s 
sa

ga
m

ie
ns

is
 N

B
R

C
 1

07
12

5
G

am
m

ap
ro

te
ob

ac
te

ria

S
ac

ch
ar

os
pi

ril
la

ce
ae

P
se

ud
om

on
as

N
P

3 
13

P

P
se

ud
om

on
as

 li
to

ra
lis

 s
tr

ai
n 

2S
M

5

H
al

om
on

ad
ac

ea
e

H
al

om
on

as
 e

lo
ng

at
a 

D
S

M
 2

58
1

H
al

om
on

as

C
hr

om
oh

al
ob

ac
te

r 
sa

le
xi

ge
ns

 D
S

M
 3

04
3

A
lc

an
iv

or
ax

 s
p 

W
11

5

N
P

3 
7P

N
P

5 
10

P
A

lc
an

iv
or

ax
 b

or
ku

m
en

si
s 

S
K

2
A

lc
an

iv
or

ax

G
am

m
ap

ro
te

ob
ac

te
ria

G
am

m
ap

ro
te

ob
ac

te
ria

N
P

3 
5P

S
pi

rib
ac

te
r

G
am

m
ap

ro
te

ob
ac

te
ria

B
etaproteobacteria

Alphaproteobacteria

Parvularcula berm
udensis HTCC2503

M
aricaulis m

aris M
CS10

H
yphom

onas neptunium
 ATC

C
 15444

N
P2 18P

Hyphom
onas sp M

or2

Hirschia baltica ATCC 49814

NP3 20P

R
hodobacteraceae

R
oseobacteraceae

R
oseobacteraceae

A
lphaproteobacteria

Tateyam
aria om

phalii D
O

K
14

S
ulfitobacter

R
oseobacter

P
3b

 2P
P

2 11P

P
3a 15P

S
ulfitobacter sp JL08

C
eleribacter

P
lanktom

arina tem
perata R

C
A

23

N
P

4 22P

O
ctadecabacter

P
3a 21P

D
onghicola sp JLT

3646

R
hodobacteraceae bacterium

 B
A

R
1

R
oseovarius sp A

K
1035

P
3a 11P

S
alipiger

N
P

5 8P

N
P

4 8P
S

alipiger
M

arinovum
 algicola D

G
 898

Rhodospirillales

Thalassospira

NP5 12P
Alphaproteobacteria

Magnetospira sp QH2

Alphaproteobacteria

Magnetococcus marinus MC1

Zetaproteobacteria

Acidobacteria bacterium Mor1

Rubrobacter indicoceani

Actinobacteria

Ilumatobacter coccineum YM16304

NP1 22P
NP3 25P
NP4 26P

NP2 25P

NP3 36P

Firmicutes

Deinococcus-Thermus

Bacteroidetes
Spirochaetes

NP2 10P
NP3 4P

NP1 5P

Phycisphaera mikurensis NBRC 102666
NP1 38P

NP1 13P

Verrucomicrobia bacterium L21FruAB

NP4 47PNP1 17PNP1 19PCandidatus Moanabacter tarae

Coraliomargarita akajimensis DSM 45221

P3a 28PP6 14P

P5 21P

NP4 16PNP3 10P

NP2 8P

NP5 7P

Bradymonas sediminis

NP1 11P

NP1 14P

NP3 14P

NP1 9P

NP4 9P

NP2 13P

Deltaproteobacteria

Deltaproteobacteria

Deltaproteobacteria

Deltaproteobacteria

Deltaproteobacteria

Therm
odesulfatator in

dicus DSM 15286

Bdellovibrio
 bacterio

vorus stra
in 109J

NP4 33P

NP2 12P

B
ac

te
ro

id
et

es

NP4 11
P

Croce
ibacte

r a
tla

ntic
us H

TCC2559

NP2 14P
P1 21P

NP3 
30

P
Psy

ch
ro

fle
xu

s t
or

qu
is 

ATCC 7
00

75
5

Flav
ob

ac
te

ria
ce

ae

Aqu
im

ar
in

a

Ba
ct

er
oi

de
te

s
P1 

34
P

P6 
35

P
P3b

 8
PP3

a 
27

P

Au
re

ita
le

a 
sp

 R
R

43
8 

M
M

P0
85

63
96

0

P6
 1

5P

K
or

di
a 

sp
 S

M
S

9
Fl

av
ob

ac
te

ria
ce

ae
 b

ac
te

riu
m

Fo
rm

os
a 

sp
 H

el
3 

A
1 

48

N
P

5 
29

P

Fo
rm

os
a 

sp
 H

el
1 

33
 1

31

Fl
av

ob
ac

te
ria

ce
ae

B
ac

te
ro

id
et

es

F
la

vo
ba

ct
er

ia
ce

ae

P
4 

14
P

B
ac

te
ro

id
et

es

F
la

vo
ba

ct
er

ia
ce

ae
 b

ac
te

riu
m

 U
J1

01

P
5 

11
P

P
6 

46
P

P
1 

41
P

P
3b

 6
P

P
2 

23
P

P
3a

 3
0P

O
w

en
w

ee
ks

ia
 h

on
gk

on
ge

ns
is

 D
S

M
 1

73
68

P
4 

19
P

P
2 

12
P

P
2 

25
P

P
3a

 2
5P

M
arinilabiliales

N
P

5 11P

P
6 

13
P

N
P

5 15P

B
acteroidetes

S
aprospira grandis str Lew

in
P

1 15P

C
hlorobi

C
aldithrix abyssi D

S
M

 13497

C
yanobacteria

N
P

3 46P
N

P
4 61P

Tenericutes

E
rysipelothrix rhusiopathiae

M
ycoplasm

a phocidae

F
irm

icutes

D
esulfotom

aculum
 reducens M

I1

Ilyobacter polytropus D
S

M
 2926

C
lostridium

 botulinum
 202F

T
herm

ovirga lienii D
S

M
 17291

Therm
otogae

A
quificae

D
eferribacteres

H
ippea m

aritim
a D

S
M

 10411

O
ligoflexia

Epsilonproteobacteria

Alphaproteobacteria

N
P2 41P

bacterium
 AB1 strain AB18

Euryarchaeota

Euryarchaeota

Candidatus Therm
oplasm

atota

M
ethanopyrus kandleri AV19

Euryarchaeota

uncultured m
arine group II euryarchaeote

Nanohaloarchaea archaeon SG9Crenarchaeota

Euryarchaeota
EuryarchaeotaNP2 50P

Candidatus Nitrosopelagicus brevis CN25

Thaumarchaeota

Cenarchaeum symbiosum A

Nanoarchaeum equitans Kin4M

Tree scale: 1

bootstrap

75

81.25

87.5

93.75

100

Taxonomy

Euryarchaeota Oligoflexia Actinobacteria Chlorobi Betaproteobacteria

Gammaproteobacteria Spirochaetes Bacteroidetes Verrucomicrobia Deferribacteres Deltaproteobacteria

Epsilonproteobacteria Cyanobacteria Zetaproteobacteria Aquificae Candidatus Thermoplasmatota Thermotogae

Tenericutes Thaumarchaeota Crenarchaeota Deinococcus-Thermus Alphaproteobacteria

Firmicutes

Gammaproteobacteria

Alph
apro

teob
acte

ria

Ve
rru
co
mi
cro
bia

Bacteroidetes

Arc
hae
a

Actinobacteria

Deltaproteobacteria

Fig. 4.19 Phylogenomic tree including prokaryotic MAGs and MarRef reference genomes.
Inner band colour indicates taxonomy of reference genomes, using the NCBI taxonomy.
MAG labels have a blue background for polar MAGS and a red background for non-polar.
Clades which contained reference genomes all from the same taxonomic group in the legend
have been collapsed; the size of triangle is scaled to the number of leaves in the collapsed
clade. Collapsed clades have been given labels which encompass all the contained leaves.
Bootstrap values are indicated by grey dots on branches.
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The phylogenomic tree is largely in agreement with the taxonomies predicted by GTDB-
Tk at the level of phylum. There are some instances where MAGs have not been placed close
to any of the included references, such as NP34_33P and NP2_12P, where GTDB suggested
a more specific estimate; NP2_12P was assigned to a class of Poribacteria, for which no
reference genomes are included in the MarRef data.

Some MAGs recovered from different stations appear closely related to one another.
NP4_10P and NP3_6P are closely related to each other as well as to multiple Alteromonas
macleodii strains. The reference genomes for A. macleodii can be split into those from
surface and deep ocean [314]. These MAGs have a greater than 95% ANI to three surface
genomes shown in Figure 4.20, suggesting a species level relationship. The ANI between
these MAGs and deep ocean A. macleodii is below 95%. This is supported by the assignment
of contigs within the MAGs based on BLAST searches against the NT database, for both
MAGs at least 89% of contigs are assigned to the A. macleodii node or a strain below it.

Fig. 4.21 Taxonomic placements of contigs from Alteromonas-like MAGs. Number of
contigs assigned to nodes of the NCBI taxonomy by MEGAN-LR based on BLAST results
against the NT database. Size of node is scaled to number of contigs assigned. Number
above each branch gives the number and percentage of contigs assigned to that node, number
below the branch the same but for that node or any descendents.

Other groups of MAGs display similarly close relationships to each other, but are more
distant from reference genomes. Four polar MAGs which placed among Bacteroidetes,
P6_35P, P3b_8P, P1_34P, and P3a_27P, share over 95% identity to each other, but less than
that to their closest reference genome, an unclassified species of genus Aureitalea. The
results of assigning contigs via BLAST searches is similarly mixed, most contigs being
assigned to a mix of Flavobacterieaceae or uncultured bacterium. A representative example
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Fig. 4.20 Average Nucleotide Identity between Alteromonas reference genomes and MAGs
which placed close to them. MAGs show higher ANI with surface than deep sea ecotypes.

of placement of contigs is shown in Figure 4.22. These four MAGs could represent members
of the same novel species of Bacteroidetes.

There are few close relationships between polar and non-polar MAGs evident in the
tree. The median distance from a polar MAGs to the nearest polar MAG is lower than to
the nearest non-polar MAG, and the same for non-polar to non-polar shown in Figure 4.23.
In both cases the difference in medians is significantly different at p < 0.01 using Mood’s
median test. One clade of Bacteroidetes is an exception, where polar MAG P1_21P appears
closely related to NP2_14P, NP3_30P and NP4_11P. The closest reference is Croecibacter
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Fig. 4.22 Taxonomic placement of contigs from P3a_27P, one of the MAGs which placed
closet to an Aureitalea reference genome. Number of contigs assigned to nodes of the NCBI
taxonomy by MEGAN-LR based on BLAST results against the NT database. Size of node
is scaled to number of contigs assigned. Number above each branch gives the number and
percentage of contigs assigned to that node, number below the branch the same but for that
node or any descendents.
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atlanticus which is in different clade. Pairwise ANI between these mags and the C. atlanticus
reference genome is greater than 95%, suggesting these MAGs could represent genomes of
the species C. atlanticus.

Fig. 4.23 Distribution of tree distances from MAGs to the nearest polar or non-polar MAG.
Values between pairs are p-values from Mood’s median test.

Some MAGs had been classified at genus level by GTDB-Tk and species level by CheckM,
but for which the phylogenomic tree does not suggest a similarly specific classification.
MAGs P3a_28P, P6_14P, P5_21P, P2_21P, and P6_33P were classified at genus level as
Puniceicoccaceae by GTDB-Tk. In the phylogenomic tree, the first three placed closest to
Coraliomargarita akajimnesis but with longer branches than observed between taxa from
the same species elsewhere in the tree. The latter two lacked the amount of marker genes
required to be included in the tree. Looking at the ANI shown in Figure 4.24 also suggests
these MAGs and C. akajimensis are not the same species, no pair shares above 95% ANI.
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Fig. 4.24 Average Nucleotide Identity between C. akajimensis and MAGs which placed
close to it. ANI between MAGs and reference genomes is lower than would be expected for
genomes of the same species.

4.3.5 Coverage

Each MAG contains contigs which originate from a single assembly, which in turn was
generated using reads sequenced from a single sample. The organism represented by this
MAG may however be present in other samples, but could not be recovered from that sample’s
assembly due to reasons such as low abundance and hence low coverage preventing good
assembly. To describe the distribution of the identified MAGs across the twelve samples,
reads from each sample were mapped to each MAG and the mean coverage for contigs
calculated. This mean coverage was then adjusted to account for the differing number of
reads from each sample, to obtain mean coverage per million reads, as an estimate of the
relative abundance of MAGs in the sampled locations. Mean coverage per million reads
in each MAG is shown in Figure 4.25. We adopted the criteria from Olm et al. [236] and
considered a MAG not present where less than 50% of bases in the MAG had at least one
read aligned to them.

The binning process uses covarying coverage to group contigs into bins, so for highly
similar MAGs a similar pattern of coverage across samples would be expected. Five closely
related Micromonas MAGs P2_30, P3a_17, P5_7, P3b_3, and P4_17 show this pattern
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strongly, with a very similar rising and falling coverage from stations P3 to P6. Coverage
of MAGs often shows a gradient across geographically close stations. There is a clear
demarcation between polar and non-polar MAGs. Of the 122 prokaryotic MAGs, 116 are
only present in either polar or non-polar samples. MAGs detected in both tend to be detected
in samples P1 and P2 albeit with low coverage.

For eukaryotic MAGs present in a sample, the mean coverage ranged between 0.92 and
87.24, with a mean lower than that of prokaryotes at 17.68. Many of the patterns observed
among the prokaryotes hold for eukaryotic MAGs also. Micromonas MAGs P6_3E, P5_1E
and P3a_3 which appear similar based on the phylogenomic tree show a very similar pattern
of coverage from stations P2 to P6. The demarcation between polar and non-polar stations is
clear among eukaryotes, no MAG was found to be on both sides of the Arctic Circle. This
coverage is limited to describing only the distribution of those members of the community
for which a MAG was recovered. There are phyla which appeared abundant in gene or read
based classification (Figures 4.4 and 4.7) such as Haptista, which no recovered MAG clearly
belongs. These lineages have the potential to contain widespread species which would not
follow the strong demarcation observed.

Approximately half of the Bacillariophyta MAGs were present at only one or two stations
maximum whereas Mamiellophyceae MAGs were generally more widespread. The one non-
polar Bacillariophyta MAG NP5_1 is present only in stations NP4 and NP5, the southernmost
of the non-polar stations. Potential Haptophyte P3a_1E is present in three polar stations, and
most abundant at P3, where the Bacillariophyta MAGs are less abundant.

Most of the Bacillariophyta MAGs have a niche occupancy, being present in one or
two stations. P3a_2 and P3a_4 are more widespread. Based on BLAST searches against
MMETSP, P3a_2 had 96.14% of contigs assigned to picoeukaryote Minutocellus polymor-
phus and Triparma pacifica. M. polymorphus has been observed by in Arctic seas [315] and
sea ice [316]. Our MAG which appears similar to M. polymorphus is spread with coverage
across the eastern stations closer to Svalbard and Norway. The other MAG which placed
with Bacillariophyta with a wider spread with a peak in coverage at P4 is P3a_4, which had
similarity to species of Bolidophyceae when searched against MMETSP, with 51.80% of its
classified contigs classified as Triparma pacifica. Kuawata et al. [317] found high abundance
of some clades of Triparma, including T. pacifica in similar stations between Svalbard and
Greenland.
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Fig. 4.25 Mean coverage of MAGs when reads from each sample mapped back to contigs
in MAGs. Upper heatmaps show prokaryotes, lower show eukaryotes. Left heatmps show
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in polar stations, red shows the coverage in non-polar stations. Where MAGs have a detection
below 0.5 they are considered not to be present in a sample, and no value shown. Very few
MAGs are present in both polar and non-polar stations.
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4.3.6 Gene Prediction and Function

Genes were predicted for each eukaryotic MAG using GeneMark-ES [283], and predicted
genes annotated using InterproScan [283]. Prokaryotic genes were predicted and annotated
by the IMG pipeline prior to binning. We examined the extent to which functions are shared
or unique between polar and non-polar environments, for both the population as a whole
before binning, and for prokaryotic and eukaryotic MAGs separately. First we look at the
Pfam domains, and then at the GO terms associated with these domains, using the mapping
of Pfam to GO terms maintained by the GO Consortium.

The Principal Components Analysis (PCA) plot of the Pfam abundance in each MAG in
Figure 4.26 shows mostly clear separation into taxonomic groups, supporting the broad classi-
fications drawn from the phylogenomic tree. Clustering by taxonomy is clearer in eukaryotes
than prokaryotes. The two large groups of Bacillariophyta and Mamiellophyceae are clearly
separated, with the possible Bolidophyceae P3a_4 closer to P3a_1 the potential Haptophyte.
Some prokaryotic groups form clear clusters, such as Bacteriodetes and Actinobacteria, while
others are more spread such as the Proteobacteria. Most of the MAGs without an assigned
taxonomy cluster to the right of the plot, along with a single Verrumicrobia MAG which is
separate from the main cluster of Verrumicrobia.

MAGs were grouped based on the region the bin originated from, either polar or non-
polar. The number of Pfams observed in these groups is shown in Figure 4.26, for the whole
population before binning, and for eukaryotic and prokaryotic MAGs. The whole population
showed a majority of Pfams were found in all regions, showing a widely distributed shared
core of functions. Among functions unique to one area, prokaryotic MAGs had many more
unique functions in the non-polar stations. This is inverted for eukaryotic MAGs which have
more domains which were unique to polar stations. A majority of the eukaryotic MAGs
were retrieved from polar stations, only 4 of the 21 being from non-polar stations. This
imbalance could partially explain the high number of functions unique to polar eukaryotic
MAGs. Prokaryotic MAGs were more balanced across the two regions, 65 from non-polar
and 58 from polar stations.

Four of the five most abundant Pfam families unique to non-polar prokaryotic MAGs
are PSD1, 3, 4, 5 & C. These are domains of unknown function shared by cytochrome-like
proteins in the planctomycete species Rhodopirellula baltica. Three MAGs classified as
planctomycetes were recovered, all from non-polar stations. These domains were found
in 24 of the 65 non-polar prokaryotic MAGs, which were assigned to a wide taxonomic
range: Acidimicrobiia, Actinobacteria, Alphaproteobacteria, Gammaproteobacteria, Planc-
tomycetaceae, and MAGs which were classified as either Bacteria or unclassified. All five
proteins are typically found together in MAGs only NP2_9 contained one (PSD3) without
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Fig. 4.26 At the top, horizontal stacked bars how the number of Pfam annotations present in
both regions, labelled shared, or only found in polar or non-polar regions. Size of each bar
scaled to the percentage of all domains that accounts for, number of domains in that group
labelled on the bar. One set of bars is shown for the whole population prior to binning, the
eukaryotic MAGs and the prokaryotic MAGs.From left to right. Below, the two shaded areas
related to eukaryotic MAGs (peach, top) and prokaryotic MAGs (pink, bottom). The scatter
plot shows a PCA ordination of the proportion of PFAM annotations in each MAG. Colours
in these plots identify the taxonomy which had been assigned to the MAG. Heatmaps to the
right indicate the 25 most abundant PFAMs which are unique to an area or among those
shared.

the others being present. The three planctomycete MAGs are richer in these domains than
others, accounting for 27.59% of the non-polar unique PSD domains. Along with with the 15
MAGs classified only at the level of Bacteria making up 67.93% these two groups account
for a majority.

Related domains PSCyt2, PSCyt3, PSD2 are shared between polar and non-polar, being
found in four polar MAGs all identified as Puniceicoccaceae. When we mapped from
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Protein Family (Pfam) accessions to GO terms using the mapping maintained by InterPro,
photosynthesis related terms were found only in non-polar MAGs.

Eukaryotic MAGs have more Pfams unique to polar environments. The most abundant of
these is RVT_3, a domain believed to part of a retrotransposon found in plants. RVT_3 was
most abundant in two of the Bacillariophyta MAGs P6_1 with 125 genes with this annotation
and P6_2 with 144. This domain has been observed in complete genomes for Bacillariophyta,
but in lower numbers. The IMG database shows Phaeodactylum tricornutum has 3 genes
containing RVT_3, Thalassiosira pseudonana containing 1. MAGs P6_1 and P6_2 also
contain a high number of of genes with rve_2 domains. This domain is less common among
eukaryotes, the Pfam databases shows homologous sequences only in two species of Metazoa
and Fungi. rve_2 is an integrase catalytic domain, present in transposase proteins as well
as catalysing reactions involved in the integration of viral genomes into host genomes. The
combination of high number of these two domains in P6_1 and P6_2 could suggest they
share a high level of transposase activity.

Mapping to GO terms shows the same broad trends as for Pfams as might be expected.
PCA analysis of the GO term abundance groups MAGs strongly by taxonomy for eukaryotes,
with some clear grouping for prokaryotes; and the same pattern of a widely shared core
functions in the whole population, and greater niche functions for polar eukaryote and
non-polar prokaryote MAGs is evident.

The higher level functional summary available from GO terms showed some additional
functional differences between regions. Terms related to cold exposure are among the
most abundant terms observed only in polar environments. Ice binding (GO:0050825) is
unique to the polar eukaryotic MAGs. Ice binding proteins have been observed in a wide
range of organisms across the biological kingdoms, including diatoms and marine bacteria
[318]. The proteins encompass a range of activities; among polar algae, recrystallisation
inhibition has been suggested to maintain brine pockets which form during the freezing of
seawater, providing a viable habitat in freezing conditions [319]. Among prokaryotes, the
most abundant term unique to polar MAGs is heat shock protein binding (GO:0031072). Heat
shock proteins were observed to be expressed in arctic Rhizobium species in response to heat
stress [320] and in response to suboptimal temperatures in Alicyclobacillus acidoterrestris
[321]. Terms related to photosynthetic activity in prokaryotes are unique to non-polar
MAGs, with photosynthesis and photosystem II (GO:0015979, GO:0009523) among the
most abundant unique terms. Some differences appear driven by the taxonomy of MAGs
recovered in the two areas. Micromonas have flagellum-based motility, and Micromonas
MAGs were only recovered in polar samples. Consequently, some terms related to flagella
such as cilium assembly (GO:0060271), which is considered equivalent to microtubule-based
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Fig. 4.27 At the top, horizontal stacked bars show the number of GO term annotations present
in both regions, labelled shared, or only found in polar or non-polar regions. Size of each bar
scaled to the percentage of all domains that accounts for, number of domains in that group
labelled on the bar. One set of bars is shown for the whole population prior to binning, the
eukaryotic MAGs and the prokaryotic MAGs. From left to right. Below, the two shaded
areas related to eukaryotic MAGs (peach, top) and prokaryotic MAGs (pink, bottom). The
scatter plot shows a PCA ordination of the proportion of GO terms in each MAG. Colours
in these plots identify the taxonomy which had been assigned to the MAG. Heatmaps to
the right indicate the 25 most abundant Pfams which are unique to an area or among those
shared.

flagellum assembly, is unique to the non-polar MAGs. Some of the unique polar terms
are driven by the two unidentified MAGs P2_2E and P1_3E, such as the most abundant
unique polar term “homophilic cell adhesion via plasma membrane adhesion molecules”
(GO:0007156), for which 95% of annotations were observed in genes from these unidentified
MAGs.
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4.3.7 Inter-Kingdom Associations

To identify associations between eukaryotic and prokaryotic MAGs, we looked for pairs
where the coverage per million reads was correlated. We set this threshold as an R2 ≥ 0.7 and
p-value ≤ 0.05. This initially resulted in 38 associations, however plotting these associations
shows that some appear to be driven by a small number of influential high values mixed
with a majority of low or zero values. Influential values were identified as those with a
Cook’s distance of > 1.25, and are indicated by a star in Figures 4.28, 4.29, and 4.30.
Influential points were removed, and associations kept only if they met the same correlation
and significance criteria.
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Fig. 4.29 Coverage of eukaryote/prokaryote pairs which appear associated. Some associations
appear to be driven by a small number of points with high values. Influential points with
Cook’s distance ≥ 1.25 are indicated with stars. Split across multiple figure for legibility,
see Figures 4.28 & 4.30.
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Fig. 4.30 Coverage of eukaryote/prokaryote pairs which appear associated. Some associations
appear to be driven by a small number of points with high values. Influential points with
Cook’s distance ≥ 1.25 are indicated with stars. Split across multiple figures for legibility,
see Figure 4.29 & 4.30.
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This resulted in 17 inter-kingdom species associations (15-positive and 2-negative associ-
ations) between MAGs from eukaryotic phytoplankton and heterotrophic bacteria, shown in
Figure 4.31. The two negative associations were between Bacillariophyta P3a_2E (which
appears similar to Minutocellus polymorphus) and two Gammaproteobacteria MAGs P3a_1P
and P3a_24P. Remaining associations were positive, with the eukaryotic MAGs members
all coming from the Prasinophyte MAGs. Among the polar samples, the eukaryotes were
the three highly similar Micromonas MAGs which placed closet to M. commoda, showing
associations with a range of Flavobacteriia, Gammaproteobacteria, and Puniceicoccaceae
MAGs. While these associations show high (R2 ≤ 0.97), they are driven by high coverage
in the two samples P4 and P5 and low coverage elsewhere. In the non-polar associations,
the eukaryotic MAGs were all three of the Ostreococcus and Bathycoccus. Bathycoccus
NP3_1E and NP2_2E are widely distributed among the non-polar stations, and were associ-
ated with the same Erythrobacter MAG NP3_22P; Ostreococcus NP2_1E was associated
with Alteromonas NP4_18P. These MAGs are widespread among the non-polar samples,
the prokaryotes are observed in all non-polar samples and the eukaryotes in all but the
southernmost NP5.

To further investigate the nature of the association between MAGs, we looked at which
GO terms which were enriched in one pair with the strongest seeming association, NP2_2E
and NP3_22P. Enriched GO terms for associated pair NP2_2E and NP3_22P are shown
in Figure 4.32 as an example. The only enriched cellular components in both were the
membranes: the Golgi membrane for the Bathycoccus MAG and the outer membrane for
the Erythrobacter MAG. Enriched molecular functions in the Bathycoccus MAG included
glycosyltransferase activity and transport of pyrimidine nucleotide sugar. The Erythrobacter
MAG was characterised by a more diverse number of molecular functions with several related
to transmembrane transport, hydrolase, transferase and ligase activity.

Using the same method, we looked at the enrichment of MAGs which did not participate
in associations as a control set. We selected two pairs of eukaryote and prokaryote MAGs:
one pair of Prasinophyceae and Alphaproteobacteria (P2_1E, P3a_15P) which are more
closely related to the associated MAGs shown in Figure 4.33, one pair of Bacillariophyta
and Gammaproteobacteria (P3a_4E, NP3_6P) which are more distant. In the first control set,
no terms were enriched in both the control pair and the associated pair; in the second more
distantly related control set, only a single term of the 82 is enriched in the associated and
control eukaryote MAG, where 11 of 92 shared by the prokaryotes. This suggests that the
enriched terms in the associated pair is driven by the association rather than taxonomy, as
similar taxa do not have the same enriched terms.
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Fig. 4.31 Coverage of eukaryote/prokaryote pairs which appear associated once highly
influential points are removed.
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Fig. 4.32 Enriched GO terms in associated pair of MAGs. Circle is scaled to the log-odds
ratio.
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Fig. 4.33 Visualisation of terms enriched when using control MAGs, as described in Section
4.3.7. Each section of the Venn diagram relates to terms enriched in one of the MAGs. The
top plots show when a distantly related control pair were selectd, the bottom plots a more
closely related pair. In the distant pair, many terms were enriched in selected MAGs as
expected due to being taxonomically distant from the background set. In the closer pair, no
enriched terms were shared between the associated MAGs NP2_2E and NP3_22P and the
controls, suggesting the enriched terms are specific to the association of the two rather than
determined by taxonomy.
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4.4 Discussion

Recovery of MAGs

The scale of ocean metagenomic sampling has grown rapidly, from the 44 samples and
6.25 Gbp from the Atlantic and Pacific Oceans of the Global Ocean Survey in 2007 [55],
to the 243 samples and 7.2 Tbp taken across the non-polar oceans by Tara Oceans in 2015.
The future promises similar growth in sampling and sequencing volume, as well as in
reach through expeditions such as Multidisciplinary drifting Observatory for the Study of
Arctic Climate (MOSAiC) [322] in the central Arctic Ocean (see Section 6.2.4). From
a comparatively small total of 12 samples and 679.25 Gbp, we were able to recover 21
medium quality eukaryotic MAGs using an automated binning approach, coming from
environmentally significant lineages such a diatoms and Prasinophytes. Comparing this to
the recent recovery of 683 eukaryotic MAGs from surface Tara Oceans metagenomes [2],
we recovered MAGs at a similar ratio of approximately 9 billion reads per Gbp recovered,
compared to 11 billion reads per Gbp recovered in the Tara Oceans dataset. Looking at the
diatoms (Figure 4.17), the diversity and volume recovered are higher in the Tara Oceans data
as might be expected given the wider range and size of data used, but our MAGs placed over
a significant number of clades. This demonstrates that metagenomic binning and analysis of
MAGs are viable methods for smaller metagenomic studies, and can provide genomic insight
into ocean eukaryotes in environmental samples.

While these methods allow genomic insight into unculturable microbes, these MAGs are
an incomplete representation of the total community, recruiting 8.1% of the reads when we
mapped reads back to the pooled MAGs. Recovery of MAGs was not always in correspon-
dence with the abundance of reads from specific taxonomic groups, with some taxa which
appear abundant such as Ascomycota and Apicomplexa having few MAGs recovered. This
mismatch is potentially caused by a combination of factors, including sequencing depth, read
length and the quality of reads most likely play a significant role in relation to genome size
and complexity. The latter two factors might be the reason why we did not retrieve any MAGs
from Apicomplexa such as dinoflagellates. Intraphylum diversity in combination with choice
of Metabat may play a role too, as populations with low diversity and high coverage have
been observed to improve the quality of MAGs recovered by Metabat [323, 324]. Green algae
show low diversity, and especially members from the Prasinophytes have small genomes and
are abundant in the surface ocean [325], which might explain why we retrieved several MAGs
from different classes. We recovered no fungal MAGs despite their abundance in terms of
reads and genes, and from the larger Tara Oceans dataset Delmont et al. [2] recovered a
single fungal MAG. Notably, both our research and Delmont et al. used only samples from
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the surface and DCM depths. Alexander et al. [238] also used Tara Oceans data but included
deeper samples, and were able to recover 16 fungal MAGs, of which 11 originated from
mesopelagic co-assemblies. Abundance of fungi has been observed to increase abruptly
in mesopelagic waters in comparison to surface samples [267], possibly explaining the
greater recovery of fungal MAGs, even if the increased abundance is matched with raised
diversity. This taxonomic mismatch extends to the prokaryotic MAGs as well. Similar to
other prokaryotic binning studies [156], we failed to recover any Firmicutes MAGs, although
similar studies using human gut data have done so [326].

Biogeography and Association

The distribution of MAGs between polar and non-polar environments showed a clear distinc-
tion, with very few prokaryotes crossing the Arctic circle, and no eukaryotic MAGs doing
so. These two regions have major climatic differences as discussed in Section 2.4 including
temperature, presence of sea ice, and water stratification. This demarcation seen in MAGs
is congruent with other research, which suggests a boundary at around 15 ◦C mean annual
temperature separating global primary production [327], and shaping microbiome taxonomic
composition in metagenomic and metatranscriptomic data [288]. There is some evidence that
similar pressures in the Southern Ocean result in highly similar organisms being observed
there, despite the geographic distance, as evident in the high similarity (>99% ANI, Figure
4.13) between our Micromonas MAG P2_1E and Micromonas sp. ASP1001a, recovered
from the Amundsen Sea in the Antarctic [19]. A potentially confounding factor is that
our Arctic samples came from shallower samples (10-20m), while the non-Arctic samples
were from deeper in the ocean (30-80m). The intention of sampling was that these depths
represent the DCM at their sampling station, however the potential remains that communities
at these different depths may be under different selective pressures. The depth of the DCM is
known to vary with latitude, occurring at much shallower depths in high Northern latitudes,
and deeper in mid latitudes [328], reflected in the sampling depths during the expedition.
That photosynthetically active lineages were observed, and MAGs recovered suggest that
even with depth differences, samples were both drawn from depths with photosynthetic
activity at least among their functional potential. In the larger set of metatranscriptomic
sequencing collected on the same expeditions, modules associated with cold polar samples
(and hence lower sampling depth) and warm mid-latitude samples were identified, but GO
term enrichment did not show and terms related to primary productivity enriched between
the two modules [288], supporting that these may be comparable DCM samples.

This strong demarcation in taxonomic distribution is reflected in the interkingdom associ-
ations we identified, which were also exclusively between organisms originating from the
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same side of the Arctic Circle, and hence that mean annual temperature boundary, suggesting
co-evolution under different conditions was driving the formation of the associations. The
enrichment of GO terms in the associated pair we investigated showed enrichment of terms
related to membrane processes, and to transport and substrate transformation, suggestive of
a mutualistic relationship with exchange processes across membranes. These relationships
exist between eukaryotic autotrophs and heterotrophic bacteria in phycosphere, a mucus
layer surrounding phytoplankton [329].

Metabolism

The most notable distinction between metabolism in MAGs is driven by taxonomy, as shown
in the visible grouping by taxonomy in the PCA plots in Figures 4.27 and 4.26, though
the grouping is less clear for prokaryotes. Functional annotation of the whole population,
prior to binning, suggests that the bulk of functions are shared between polar and non-polar
environments, with only a small portion being unique to either region (Figure 4.26). Amongst
the MAGs however, greater differences between the regional function of prokaryotes and
eukaryotes, considered separately, was evident. Polar eukaryotes displayed a high number
of unique Pfams, where this trend was inverted for prokaryotes with non-polar prokaryotes
displaying more unique Pfams.

Among polar eukaryotes, the high abundance of transposable elements among the Pfams
suggests that genomes have been forced to diversify, possible to respond to the dynamic
surface ocean environment (formation of sea ice, seasonal mixing). In non-polar eukaryotes,
Pfams related to phosphate acquisition and metabolism in addition to Pfams involved in
iron metabolism and electron transport were among the most enriched domains in non-polar
eukaryotes. The relatively low nutrient concentrations in these stratified waters might only
allow eukaryotes to thrive if they have developed mechanisms for the efficient uptake of nu-
trients [330, 331]. Smaller-sized prokaryotes with streamlined genomes usually outcompete
eukaryotes in these environments as their nutrient demand is lower [330].

The polar prokaryotes however are more challenging to describe, with the most abundant
unique polar functions being typified by a high abundance of domains of unknown function.
Functions unique to prokaryotes in non-polar environments have high abundance for PSD
domains that are shared by chytochrome c-like proteins for electron transport as part of
the respiratory chain in prokaryotes. This potentially suggests that respiratory activity is
enhanced in non-polar prokaryotes compared to their polar counterparts, which would be
expected according to the positive relationship between temperature and metabolic activity
[332].
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In contrasting the metabolism present in MAGs, a note of caution is that the taxonomy
of MAGs recovered between regions shows some important differences, and some of these
distinctions could be confounded by taxonomy. This is particularly the case for eukaryotes,
where only a single non-polar diatom was recovered, and where the Prasinophytes are divide
by genus, with Micromonas being uniquely polar.





Chapter 5

Using Non-Negative Matrix Factorisation
to Identify Functional Modules

5.1 Summary

In this chapter, we move from the genome resolved approach of MAGs to look instead at
ways of understanding the distribution of functions encoded in metagenomic data without
resolving individual genomes. There is evidence that function is more stable in relation to
environmental gradients than taxonomy [333], giving reason to think that underlying structure
in functional data may be more readily computationally recovered than in taxonomic data.
Taxonomic composition of communities also responds to environmental conditions, such as
shifts in beta diversity seen between polar and non-polar taxa [288]. However function can
be decoupled from taxonomy; functions associated with environmental conditions can be
performed by differing taxa across samples driven by processes other than selection [334].
In modelling approaches genes encoded by a community appeared more stable in relation
to environmental conditions than taxonomy [335, 336], and a predictive approach using
all genes from ocean metagenomes, including those lacking annotation, identified 14,585
clusters of proteins strongly related to ocean environmental conditions [337], with a clear
difference between polar and temperate waters. To understand microbial processes shaping
the ocean, recovering patterns from the more stable functional data poses a less complex
problem than the more variable taxonomy.

Differences between polar and temperate function have been identified using methods
which seek a reduced dimensional description: two modules of genes, one each associated
with polar and warmer waters, were identified in metatranscriptomic data collected during
the same cruises as data used in Chapter 4 [288]. These cold and warm associated modules
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provide insight into the molecular functions required under different temperatures, however
the use of a hierarchical clustering method as part of the Weighted Gene Correlation Network
Analysis (WGCNA) [338] method used limits a function to only appearing in one module.
This does not reflect the underlying biology where functions or genes may be shared across
organisms, metabolic pathways, or environmental niches.

Our aim in this chapter is to develop and evaluate a method to identify modules of
functions in metagenomic or metatranscriptomic data which permits for the sharing of
functions between the identified modules, and allows the description of the function in any
sample as a mixture of the identified modules.

We do this using Non-Negative Matrix Factorisation (NMF), a matrix decomposition
method with established uses in fields including computer vision and text analysis, but a
more limited history of application in environmental metagenomics. Section 5.2 gives a
background of approaches often used in analysis of functional data, and provides motivation
for selecting decomposition and specifically NMF as an approach for identifying meaningful
modules of functions and their distribution across the oceans.

The rest of the chapter is then split broadly into two parts. First, evidence is provided
that NMF, and associated interpretative and visualisation methods, are capable of identifying
known groups using synthetic and simulated data. Having established the efficacy of the
selected methods on simulated data, we then apply these methods to illustrative real world
datasets, to both show congruence with previous analyses (i.e. identifying well established
groupings of samples) and to show interpretative benefits of the modules recovered.

Methods used for conducting NMF are covered in Sections 5.3.1 and 5.3.2. Interpret-
ing the resulting matrix decomposition, to identify which features best describe a module
and enriched gene sets, are then covered in Sections 5.3.3 and 5.3.4, along with visual-
isation methods in Section 5.3.5. In establishing that our selected methods can identify
groups of functions, we generated synthetic data and also performed in silico simulation of
metagenomic sequencing data from two communities described in Section 5.3.6.

The results in Section 5.4 provides evidence for the first part of the problem. Using
the synthetic and simulated data, we establish that NMF and our associated methods can
identify an appropriate rank, a key parameter for decomposition, in Section 5.4.1. From
these decompositions, we assess how well recovered groups of functions resemble the true
underlying groups in Section 5.4.2.

In Section 5.5 we apply the methods we developed to a range of real world data as case
studies. Human associated microbiomes from different points on the body from the HMP
are known to be functionally distant [27], providing a simple example dataset where these
communities should be straightforward to separate. Moving to environmental microbiomes,
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we analyse data taken from a river estuary [1] in Section 5.5.1. Prior analysis of this data
had included use of the hierarchical correlation based WGCNA method, allowing us to
compare this and the non-hierarchical NMF results. Scaling up we analyse the well studied
Tara Oceans data from the surface oceans in Section 5.5.3, illustrating application to larger
environmental datasets. We conclude with a discussion of our results in Section 5.6.

5.2 Background

Metagenomic sequencing, followed by taxonomic and functional annotation, results in a
‘parts list’ [339] describing the organisms present and the metabolic potential encoded by
their genomes; metatranscriptomic sequencing describing activity rather than potential. The
total number of features, whether looking for taxa or functions, in meta-omic annotations is
often very large, and growing larger with the continued revelation of previously unknown
microbial diversity and function. Cataloguing genes from Tara Oceans, the Ocean Microbial
Reference Gene Catalog (OM-RGC) contains over 47 million non-redundant genes [4];
annotation of the twelve samples discussed in Chapter 4 resulted in 10,957 Pfam domains
being observed. These high dimensional parts lists are difficult to interpret directly, making
methods to extract biological insight from these data desirable. For human microbiomes many
interesting problems take the form of a supervised learning task, for instance we may wish
to establish whether gut microbiome distinguishes people with inflammatory bowel disease
from those without [340]. In the ocean, and particularly less well understood areas like Arctic
ice communities, such binary phenotypic labels are less clear. In these environments the task
is one of unsupervised learning, where we wish to identify some latent structure within the
data.

While this latent structure itself is unknown, we can make assumptions about its properties
based on biological knowledge. Sequences in a metagenome will originate from a set of
organisms, each of whose genome encodes a set of genes. The genes (and so function) present,
and their proportion, will thus be driven by which organisms (and so genomes) are present in
a sample, and the abundance of these organisms. Each metagenome can be understood as a
mixture of genomes, and each of these genomes can be understood as a mixture of genes.
Any individual gene or function could be present in multiple genomes, with some widely
shared or near universal (i.e. the Benchmarking Universal Single-Copy Orthologs (BUSCO)
genes). Shifting the frame slightly and putting aside taxonomy, metabolic pathways and their
genes have the same properties. Each pathway in an ontology such as Kyoto Encyclopedia
of Genes and Genomes (KEGG) contain many genes (Section 3.7); the genes present in a
metagenomic sample can be considered as a mixture of these pathways; each gene could be
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present in more than one pathway. Pulling back further, the genes in a metagenomic sample
can be phrased as a mixture of underlying groups of genes, and the genes of each module
describing a broad set of functions prevalent under certain ocean conditions. In common
with WGCNA we refer to these computationally generated groups of functions as modules; a
module is a group of functions whose abundance behaves similarly across a number of the
samples studied. These modules are not intended to recover groups equivalent to pre-existing
functional ontologies such as KEGG or GO, but instead the aim is that a module is a group of
functions which describe activity prevalent in an environmental niche. For instance, given the
differing conditions driven by vertical stratification for microbes, we could expect different
modules of functions at different depths, with the mixing of these modules forming a gradient
from surface to benthos.

There is reason to think this structure will be more easily identified for functional rather
than taxonomic annotations, as function has been shown to be more stable across environ-
mental gradients than taxonomy [333, 337, 335, 336]. Possibly this is due to functional
redundancy; two organisms may be taxonomically distant, but both perform the same required
function, leading to factors other than selection driving the local taxonomic composition.
The goal for the work presented in this chapter is to implement and demonstrate that NMF is
capable of identifying such modules of functions, which match this intuitive description of
the underlying biology where genes or functions may be present in multiple modules. This
requires demonstrating which of the proposed methods to identify the appropriate dimension
for the decomposition performs well for overlapping modules (Section 5.4.1), and that from a
decomposition with correct dimensions we can identify which functions belong in a module
(Section 5.4.2).

First we briefly introduce several methods of analysis which have been applied to meta-
omics data, in order to better illustrate the motivation for our selection of NMF as the analysis
method best suited given our assumptions about the underlying structure of the data.

5.2.1 Distance and Dissimilarity

Each metagenomic sample can be expressed as a vector V of length n, where n is the number
of features observed, and Vi is the value for the ith feature. Given m samples, it can be of
interest to know how similar or dissimilar any pair of samples p and q are. When features are
taxonomic units, this is analogous the idea of β -diversity in ecology (the difference between
the taxonomic composition of samples). Various methods of measuring the distance between
sample vectors have been employed, from the Euclidean distance, to more ecology specific
measures among them the Bray-Curtis dissimilarity, UniFrac distance, and Simpson index
[97]. Pairwise dissimilarities between samples are amenable to further analyses, such as
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hierarchical clustering or Multidimensional Scaling (MDS). They are also amenable to a
variety of statistical tests, such as Mantel and partial Mantel tests, which tests the correlation
between two matrices [341, 342]; correlation can be examined between matrices of functional
or taxonomic distances, and potentially explanatory variables such as geographic distance.
These measures of dissimilarity have been widely and productively used, however a downside
is that the difference between samples is compressed to a single value, making interpreting
the contribution of individual features challenging.

5.2.2 Ordination

Ordination methods seek a reduced dimensional representation of a high dimensional dataset,
describing data with n features by positions along k axes, with k≪ n, such that similar
samples are close together on the axes, and dissimilar ones separated. This is often used as a
visualisation technique, allowing the data to be plotted in a readable manner on two or three
dimensions, with an intuitive interpretation of close points being similar, and distant points
dissimilar. Some ordination methods also serve as dimensionality reduction techniques, but
the interpretability of the resulting axes varies. Details of these methods and their application
in ecological contexts is reviewed in Paliy et al. [343].

Principal Components Analysis (PCA) is a statistical method which computes a number
of principal components which best explain the variance in the data, with each principal com-
ponent being a linear combination of the original n features, and such that the first principal
component explains the largest amount of variance possible, the second the most variance not
explained by that, and so on. In practice for ordinations, especially for visualisation, often
only the first few principal components are used provided they explain a sufficient amount
of the variance within the data. These resulting principal components can lack an intuitive
interpretation in the biological context, requiring post-processing to identify features which
contribute to identified groupings [344].

Canonical Correspondence Analsis (CCA) is a conceptually similar method which extends
Correspondence Analysis to allow the incorporation of predictive variables via multiple
regression, to analyse predictor variables for the identified axes [345]. Input for this method
consists of two separate matrices for m samples, one describing the abundance of n taxa
or functions in each sample, another describing values of z environmental measurements
across the same m samples. Results are commonly displayed as triplots, with quantitative
explanatory variables indicated as arrows over a two dimensional plot, with the perpendicular
position of data points along that arrow showing it’s assoication with that explanatory variable
[346]. CCA is a long established tool in community ecology, predating the introduction of
metagenomics methods [345]. This allows identification of similar samples, and significantly
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to directly identify their relationship to environmental gradients, but the contribution of
features to these structure and relationships is less directly identified.

MDS is a group of methods that do not operate directly on the sample vectors, instead
seeking to embed a matrix of pairwise distance measures into a k dimensional space [347].
Classical MDS is equivalent to Principal Coordinates Analysis (PCoA). This embedding
seeks to minimise a loss function, often called strain or stress, and solutions found using
optimisation techniques. Metric MDS assumes that the distances provided are a metric,
however this is not the case for many ecological measures of distances such as Bray-Curtis
dissimilarity. Non-metric MDS methods have been developed and will handle dissimilarity
values which do not satisfy the criteria of a metric. Where the axes of PCA and CCA lack
intuitive meaning in relation to the biological context but do relate to the original m features,
MDS axes lack meaning in relation to the m features, seeking to preserve instead the distances
between points.

t-distributed Stochastic Neighbor Embedding (t-SNE) is a method which can separate
nonlinear data, where methods such as PCA are linear and would perform poorly in these
cases [348]. The method is probability based, first constructing a probability distribution on
pairs of the input data where similar objects are assigned a high probability, then defining
a similar probability distribution for points in the low dimensional space, minimising the
Kullback-Leibler divergence between the two distributions (Kullback-Leibler divergence is a
measure of the difference of two probability distributions). t-SNE embeddings appear to be
sensitive to hyperparameter selection however, and the development of guidelines for how to
select appropriate values is an area of active research [349].

5.2.3 Network Analysis

Relationships between functions can be expressed as a graph, with each feature represented
by a vertex, and an edge placed between related features. These networks are then amenable
to a variety of topological and statistical analyses, such as identifying hub genes which
have a high degree, and could be considered highly important genes among those studied.
Fundamental to this approach is the method by which the network is constructed, meaning
how we decide which vertices to place an edge between, along with whether and how to assign
weight and direction to these edges. Jiang et al. [350] reviewed the construction of networks
from omics data, assessing their applicability to microbiome data. A commonly used and
computationally simple approach is to use a measure of correlation to decide between which
vertices to place edges. A coefficient or significance threshold can be selected beyond which
and edge with exist in the graph, and the coefficient sometimes used as a weight for this
edge [351]. An alternative approach is the use of regression based models, which have the
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advantage of being able to account for covariates. Gaussian graphical modelling approaches
have been adapted to fit the typical high dimensionality of environmental genetics data, where
the number of genes is typically much higher than the number of samples available, and
applied to expression and taxonomic data [352, 353]. These graphical models utilise partial
correlation, the correlation of genes a and b conditioned on all remaining genes, to identify
direct interactions which are not dependent on a separate variable.

5.2.4 Clustering

Grouping features which show similar distribution across samples allows description of
clusters of functions or organisms which commonly exist together, and which can describe
a subset of the samples. Weighted Gene Correlation Network Analysis (WGCNA) is an
established technique which uses a mixture of methods to address this task, using correlation
between feature profiles to define edge weights between features in a network, and using a
matrix of dissimilarities based on topological overlap in this network as input for hierarchical
clustering [354]. This produces a dendrogram which can be cut at a predetermined or
algorithmically selected height to generate modules of genes (as defined in Section 5.1). To
briefly restate, a module is a group of functions whose abundance behaves similarly across
samples studied, and potentially describes microbial activity prevalent in an environmental
niche. These modules are characterised by an ‘eigengene’, describing the weighted average
expression profile of the genes of that module across the samples, allowing the description
of samples in terms of how well the gene abundances for each sample correlate to each
module’s eigengene. The method was originally developed and applied to gene expression
patterns in microarray data [355], but has been applied across environments and types of
data, for instance to marine OTU data [356] and gut metatranscriptome data [357]. Recently
the WGCNA method was used to identify two modules of genes in ocean metatranscriptomes
spanning from pole to pole, one strongly associated with cold, another with warm conditions,
showing a clear demarcation in function between polar and non-polar waters [288].

This method has a lot of properties that we are looking for, providing a description of both
modules of related genes, and the relationship between those modules and samples. However
given the high prevalence of gene sharing expected across modules, the use of correlation
and hierarchical clustering impose some limitations. Correlation of genes abundances across
all samples is used to identify related features; where features are related only in a subset of
samples the correlation will be much lower.

Consider for example gene Ga involved metabolic pathway a, and gene Gab which is
involved in both metabolic pathways a and b. If among our samples we have some in which
either a is expressed or b is expressed, or neither, the profiles of Ga and Gab will appear
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poorly correlated. The assumption of global correlation for related genes does not always
align with assumptions about the underlying biology being modelled, where we might expect
a given gene to be present in multiple modules. Using hierarchical clustering to identify gene
modules also poorly fits situations where a high degree of feature sharing can be assumed,
performing a discrete assignment of each feature to a single cluster. This is addressed
somewhat by using the correlation between module eigengenes and the profile of each gene
in the input data as a “fuzzy membership” measure, although again shared genes are likely to
show lower correlations (Section 5.3.3).

WGCNA is one among many tools in the field of gene expression which seek to iden-
tify modules, but it’s clustering approach is similar to others in being unable to identify
overlapping clusters. A recent review found that the among the gene expression module
identification tools tested, those which are capable of detecting overlap, such as FLAME
[358], performed well compared to other clustering strategies [359]. However, they noted
that decomposition approaches outperformed all clustering and biclustering methods.

5.2.5 Decomposition

Decomposition methods provide a non-hierarchical approach to identifying underlying
modules permitting a more mixed description when applied to metagenomic data. These
methods seek to represent a matrix X as a product of a number of smaller matrices, typically
two, which we call W and H, such that WH ≈X . The rank k of a decomposition is the number
of columns and rows allowed in W and H respectively, and for our work each describes a
module. Decomposition results in a description of how much each module contributes to a
sample (W ) and how much each gene contributes to a module (H). While we use the NMF
decomposition method, we now briefly survey other decomposition methods which have
been successfully applied to biological data for context before introducing NMF in more
detail in Section 5.3.1.

Latent Process Decomposition (LPD) is a Bayesian model approach, which seeks to
describe each sample as a mixture of multiple underlying processes, initially applied to cDNA
microarray data from cancerous cells and yeast [360]. This approach is similar to Latent
Dirichlet Allocation (LDA) which has been used for topic modelling in natural language
processing, which shares analogous assumptions that a given document is a mixture of topics,
and topics a mixture of words, but permitting the use of continuous values rather than counts
[361]. The resulting model is a probabilistic description of each identified process in terms
of the contribution of genes, allowing for an understanding of the roles of both samples and
genes through the identified processes. Applying it to metatranscriptomic data for prostate
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cancers identified a process strongly correlated to prostate-specific antigen failure, a factor
which increases mortality risk among prostate cancer patients [362, 363].

Another matrix factorisation method, Independent Component Analysis (ICA), has shown
utility in analysis of cancer omics data, with interpretability of the identified components
being among the benefits of the method [364], and was shown to perform well in a review
of module detection methods for gene expression data [359]. ICA seeks to maximise the
statistical independence of the components, with multiple measurements of independence
being used (such as Kullback-Leibler divergence and kurtosis), and algorithms taking differ-
ent approaches to maximisation. Comparing ICA, NMF, and PCA in the context of gene
expression data, Stein-O’Brien et al. note that while the methods are comparable, they
identify different types of patterns (see also [365] where ICA and NMF are compared).

5.2.6 NMF

The NMF decomposition method is well established in computer vision and topic modelling,
and has seen some application to metagenomic data. NMF seeks to decompose an input
matrix X containing values of features for samples to two matrices W and H, such that
X ≈WH [366]. For an intuitive description, this often described as learning the parts that
make up objects, aiming to generate both a description of which parts an object has, and
what features contribute to that object. The initial application of this method was to facial
decomposition, to identify basis facial features from images [366], providing a description of
each facial image as a mixture of the basis facial images.

A key constraint in NMF is that no entry in matrices W and H may be negative, which
provides significant benefits when interpreting the resulting model. For instance, in the
facial image context, it would be difficult to interpret the meaning of an image having a
negative weight for a certain type of nose; the non-negativity constraint precludes this, instead
providing more interpretable situations such as a face having a mix of two types of nose.

Extending this to microbial communities, we can assume any sample is a mixture of
underlying communities, and a non-negative model generates a description fitting that; a
community cannot be negatively present. This approach was applied to microarray data [367],
and later metagenomic data from ocean samples from the Global Oceans Survey (GOS)
[368, 369]. This analysis included 45 samples with counts of 8,214 Pfams, finding that
sample similarity based on the decomposition were strongly correlated with environmental
distance. To our knowledge, these two previous studies are the largest application of NMF to
functional profiles of ocean microbial metagenomes, and the technique has not been applied
to new larger datasets such as Tara Oceans. In addition to being smaller than data generated
by contemporary ocean expeditions, interpretation of the functions in identified modules was
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limited to manual inspection of the 100 Pfams which were highly correlated to the modules
profile across sites.

A highly constrained implementation has been used to target discovery of specific
fiber degradation processes in the human gut [370], using graphs of established metabolic
processes to constrain the decomposition. This process relies on the availability of well
founded knowledge about the environment and processes therein being studied, which is less
well suited to the ocean environment where many regions and taxa remain poorly understood.

A supervised approach, aiming to separate labelled classes, was developed and applied
to animal gut and human microbiome data [371], showing improved separation between
classes. The animal gut microbiomes have clearly meaningful labels available (ruminant
vs non-ruminant), as do the human gut (inflammatory bowel disease vs healthy). However
in large scale ocean surveys classification is a less meaningful task, it being unclear what
labels we would seek to separate based upon, and it would instead be preferable to use the
unsupervised, unconstrained versions of NMF to discover latent structures.

Decomposition methods appear well suited to identifying gene modules in contexts with
a high degree of overlap, which we assume the structure underlying metagenomic data to
have. While ICA shows greater performance in gene expression data [372], metagenomic
data does not express the same over-and-underexpression, and so the the negative coefficients
lack as clear an intuitive meaning. These factors combined led us to investigate NMF as a
module recovery tool for metagenomic data.

5.3 Methods

This section provides greater detail on how NMF works, our generation of synthetic and
simulated data, and subsequent evaluation of rank selection methods. Following this, we
describe measures we developed for assessing the importance of features to modules, and
subsequently methods for assigning features to modules. Visualisation tools we developed
are also detailed, as well as methods of looking at functional enrichment within modules. We
implemented rank selection, feature importance, assignment, visualisations, and enrichment
tools as a python module metagenome-nmf [373] with the aim of making them available to
other researchers.

5.3.1 NMF

We now go into detail about how NMF works. X is an m× n matrix of metagenomic
functional annotations, where for each of m samples we have measured how frequently each
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Fig. 5.1 Example of an NMF decomposition for artificial toy data with three underlying
modules. The input data X is shown on the left; in this toy data a given feature can be
presenting in many modules, such as feature_7 which is in modules m0 and m1. The matrix
decomposition with rank 3 is shown to the right. W has a row for each sample, and a column
for each module; H a column for each feature, and a row for each module. The product WH
is approximates input data X . In decomposed matrix H, it can be seen that feature_7 has
non-zero weights in both recovered modules rm0 and rm1. Similarly, a given sample can be
a mix of modules, with sample_6 being a mixture of m0 and m1. In decomposed matrix W
sample_6 has non-zero weights for recovered modules rm0 and rm1.

of n functions was observed. We want to represent each sample as a linear combination of
k underlying functional modules. Additionally, we want to describe each of the k modules
in terms of the functions which contribute to it. To achieve this, we can seek a matrix
decomposition Xm×n ≈Wm×kHk×n, with the constraint that no entry in W or H be negative.
This non-negativity constraint fits our intuitive assumptions; it has no meaning for a module
of functions cannot be negatively present in a sample. A desirable property in the context of
meta-omics is that the resulting description is more amenable to intuitive interpretation than
the high-dimensional source data, so a model with k≪ n is sought.

Relating this back to the biological case, each column in matrix W represents one of
the k modules, where Wi j is the weight of module j in sample i. Correspondingly, each row
in H describes each module as a combination of the n features, where Hi j is the weight of
feature j in module i. Samples in W may have an above 0 weight for more than one module,
rather than a discrete clustering. An example decomposition with overlapping features and
samples is show in Figure 5.1. Much of the NMF literature has these matrices transposed
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in their descriptions, with X having features on rows, and hence W describing feature
weights in modules; we adopt the transposed approach in common with the scikit-learn [374]
implementation of NMF we use.

This decomposition X ≈WH is typically found by iteratively updating W and H min-
imising an objective function. Part of the objective function typically includes a measure of
the distance between X and the decomposition WH. The Frobenius norm is an extension of
the Euclidean distance to the case of matrices. Kullback-Leibler divergence is a statistical
measure of difference between two probability distributions, and has shown to be equivalent
to the initially proposed divergence in Lee and Seung [366]. Itakura-Saito divergence has
shown good performance in audio processing tasks. The two distance measures we consid-
ered are the Frobenius norm and Kullback-Leibler divergence, as the majority of literature
surrounding Itakura-Saito divergence is utilising it on audio spectra rather than data similar
to metagenomics. The objective function for the Frobenius norm takes the form

OF(X ,WH) = 1
2

m

∑
i=1

n

∑
j=1

(
Xi j− (WH)i j

)2
(5.1)

The objective function for the Kullback-Leibler divergence is similar, taking the form

OKL(X ,WH) =
m

∑
i=1

n

∑
j=1

(
Xi j log

(
Xi j

(WH)i j

)
−Xi j +(WH)i j

)
(5.2)

The W and H matrices are initialised with random values, and iterative updates continue
until a local minimum has been reached (i.e. no or very small change in the objective
function) or after a fixed number of iterations. Two commonly used approaches for making
these updates are the multiplicative update and coordinate descent methods. Implementations
of these update methods can vary, and the summary below gives the implementation of NMF
we use which is provided by the python package scikit-learn [374–376]. The multiplicative
update method was initially proposed by Lee and Seung [366], and is generalised by Févotte
et al. [375] to the three different objective functions discussed in the previous paragraph
where parameter β takes a different value: 2, 1, 0 for Euclidean, Kullback-Leibler and Itakura
Saito divergence respectively. Updates are iteratively made to W and H as

H← H.
W T

[
(WH).(β−2) .X

]
W T [WH].(β−1)

] (5.3)
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W ←W.

[
(WH).(β−2) .X

]
HT

[WH].(β−1)HT
(5.4)

where . indicates an element-wise operation, and the division is also element-wise. This
is continued for a fixed number of iterations, or until convergence, where convergence is
defined as en−1−en

e0
< θ , where en is the objective function at iteration n, and θ some threshold

defaulting to 1e−4. While scikit-learn does implement a coordinate descent update method,
it does not include a version which is generalised to β ∈ {0,1,2}, being limited to the FAST
HALS method based on a Euclidean objective function only. Given this limitation we use
the multiplactive update method, as the Frobenius norm is poorly suited to sparse datasets
[377], which is likely to be the case for both microbial taxa and function which have a long
tail of rare taxa or functions.

5.3.2 Rank Selection

One of the key parameters for decomposition is selecting k, the rank of the decomposition.
The process of generating a decomposition requires this to be specified, an appropriate value
cannot be identified during execution. Some contexts may suggest appropriate values for the
number of modules in the decomposition, k. For instance a study looking at samples from
three kinds of leukemia suggests 3 as an appropriate value for k [367]. This is not the case
for environmental metagenome datasets, where we are often starting with few assumptions
about which samples are likely to be functionally similar and how many modules are likely
to be latent in the data. Ocean microbe communities in particular display low functional
distance across large geographic distances, in contrast to much more pronounced distances
between nasal and gut samples from the same individual. Given this, criteria are needed to
identify the most appropriate values of k for a given input X . We implemented a range of
rank selection criteria, to evaluate which appeared most suited to simulated and real world
meta-omic data.

A simple heuristic can be based on the values of the objective function across values of k.
The objective functions will tend to decrease as k increases, so simply looking to optimise
the objective function is inappropriate. An alternative set of approaches look at the stability
of classification of samples resulting from multiple random initialisations. Some papers
have sought an elbow point in this objective function as k increases [378]. Two approaches
[367, 379] are based on the stability of sample classification, where each sample s is assigned
to one of k groups based on the highest weight in Ws,. For each random initialisation, a
consensus matrix C is constructed, where Ci, j = 1 if samples i and j are assigned to the
same group, 0 if not. Matrix C̄ is the average of these connectivity matrices across all
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initialisations, each entry taking a value between 0 and 1 indicating the frequency with
which a pair of samples were assigned to the same group. From C̄ two measures have been
derived to evaluate factorisation stability. Brunet et al. [367] used the cophenetic correlation
between distances induced from C̄, and distances resulting from average linkage hierarchical
clustering of C̄. Kim et al. [379] uses a dispersion measure defined as

p =
1
n2

n

∑
i=1

n

∑
j=1

4
(
C̄i j−1/2

)2

Jiang et al. [369] define the concordance index, an approach which is not based on discrete
classification of samples. This approach intuitively fits the environmental metagenomics
context, where we are seeking to identify subcommunities of genes or taxa which mix in
some proportion to create our observed community; we expect each sample to be a mixture
of these underlying subcommunities rather than a clear representative of one of them. The
index is based on similarity matrix S is given by S = H̄T H̄ where H̄ is H with each column
divided by its Euclidean norm. The concordance index is given by 1−D, where D is mean
squared difference between off-diagonal entries of S from different random initialisations.
To the best of our knowledge, this method has not been evaluated in comparison to other
rank selection criteria.

Muzzarrelli et al. [372] provides a review of rank selection methods. One approach
evaluated is split-half validation, where X is split randomly in half to Xa,Xb and a factorisa-
tions WaHa,WbHb learnt from each half, and the identified subcommunities matched up. We
implement this matching using the Hungarian algorithm [380] based on Euclidean distances
between modules in Ha and Hb. Each feature is assigned to the module for which it has
greatest weight, and the similarity of these assignments assessed using the adjusted Rand
Index [381, 382]. The mean adjusted Rand Index across multiple random initialisations is
used to select rank. A conceptually similar approach starts with randomly permuting each
feature individually, and learns a factorisation from the original and permuted data across
values of k [383]. The slopes of the objective function are compared, and k selected as the
lowest value for which the slope of the original matrix is lower than that of the permuted
matrix.

Muzarelli et al. introduce the idea of imputation based rank selection [372]. This is
based on variants of NMF which can assign weights to entries in X . By setting weights of
some entries to 0, these are effectively held out from the learning process, and the quality
of a factorisation can be evaluated by comparing the imputed values in WH to their values
in X . The two metrics they detail are based on mean square error (MSE) between values
of the held-out entries in X and WH over multiple random initialisations. The median and
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median absolute deviation of the MSE for each value of k can be used as rank selection
criteria. While this criteria performed well in their review, available implementations for
weighted NMF suitable for incorporation in our python package had execution times which
made them impractical for application to data on the scale expected of metagenomic or
metatranscriptomic sequencing, so we omitted these methods from our evaluation [384, 385].

5.3.3 Feature Interpretation

For a given decomposition X ≈WH, matrix H has n columns for each feature, and k
rows, with Hki giving the weight of feature i in underlying module k. For metagenomic
data, in particular functional annotations, the number of features can be very high making
manual inspection of H to identify important features for each module impractical. Simple
approaches looking at the features with highest weight only capture which features are
most abundant – a feature which is highly but equally abundant in all modules may be less
informative than a rare feature which has low abundance in only a few modules. We have
implemented and evaluated several techniques for identifying important features.

Feature Importance

Specificity [369] captures the extent to which a feature i is evenly represented across all
modules, or is represented by only one module, taking a value between 0 and 1 respectively.
Specificity is defined as

σ (H,i) =

√
k−∑ |H ji|/

√
∑H2

ji
√

k−1

This poorly addresses one of the fundamental properties we seek to capture, where features
can be shared by multiple modules, so instead we look for alternatives which can capture
this sharing.

Correlation looks at correlation between the column vector W, j and X,i [368]. This is
similar to the idea of module membership in WGCNA, where correlation between the module
eigengene and the profile of each gene in the input data is used to give a fuzzy idea of how
much a gene belongs to a given module. We used Pearson correlation in our implementation.
This method looks at correlation across all samples, which presents limitations in situations
where features can be present in multiple modules. For example, if feature i is present in
underlying modules a and b, the column vectors W,a and W,b will correlate poorly with a
sample which contains a mix of both modules, illustrated in Figure 5.2.

We developed an alternative method of assessing feature significance in modules which
compares feature weights in the selected model to those learnt from randomly permuted
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Fig. 5.2 Illustration that features which appear in multiple modules can have lower correlation
between distribution in X and module profile in W . Input matrix X (top left) is toy data we
generated with 50 samples and 200 features, and 3 modules. We allowed each feature to be
present in either one or two modules, and each sample could contain one or two modules.
Features and samples are labelled to indicate the modules they are in i.e. gene_66: m0+m1 is
in modules m1 and m2. Each feature in a module is perfectly correlated (Pearson’s r = 1)
to each other feature in the module, for the subset of samples where that module is present.
The sample matrix W resulting from an NMF decomposition of X is shown. Below, two
example genes are selected, one which is present only in module m0 (gene_0), and one
which is present in modules m0 and m1 (gene_66). The scatter plots show the weight for
each sample in recovered module rm0 in W plotted against the weight for the two genes in X
across samples. Gene gene_66 has a number of samples for which there is an above 0 weight
in X (as it is part of module m1 as well), but for which the weight in recovered module rm0
is 0 (as it represents only underlying module m0). On the far right is a box plot showing for
each module the correlation of genes which are unique, shared, or not included in a module,
showing that shared genes have a much lower correlation than thos which are unique.
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data in which the underlying structure has been disrupted. In outline, we learn models from
permuted data, and fit a normal distribution to the module weights in H in these permuted
models, and use the probability of this distribution generating the weight in the selected
model. More precisely, we start with data X with dimensions m× n (m samples and n
features) and define X p as X with values for each feature randomly permuted. H(X p) is the
feature weight matrix learnt from X p, with entry H(X p) j,i the weight for feature i in module
j learnt from X p. We learn H(X p) for r different random permutations, and concatenate the
resulting matrices to Hr, a with dimensions kr×n where k is the rank of the model, with
column Hr

,i containing the weights for all modules for feature i. A normal distribution is
fitted to each column of this matrix, N (Hn

,i), and the probability of observing H(X)m,i taken
as the measure of importance of feature i in module j, perm(i, j).

We also introduce Leave-One-Out Correlation Decrease (LOOCD) as a method of
identifying important features which may be shared among many modules. The basis
of the approach is comparing correlation of feature values across samples in X and the
complete model WH, and correlation between features in X and WH− j where the column
and row corresponding to module j is removed from W and H respectively. We define
LOOCD for feature i in module j as

loocd(i, j) = r(Xi,(WH)
− j
i )− r(Xi,(WH)i)

where r(a,b) is the Pearson correlation coefficient between vectors a and b. Figure 5.3
illustrates this in situations where a feature is and is not important to a module.

We applied these three methods to synthetic data which we generated with known
properties, with results shown in Figure 5.14.
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Fig. 5.3 Example of Leave-One-Out Correlation Decrease (LOOCD) feature importance
method (see Section 5.3.3) for features which are unique and shared between latent modules.
The top shows toy synthetic data we constructed with 5 modules where features and samples
overlap (Section 5.3.6). Features and samples are labelled to indicate the modules they are in
i.e. gene_66: m0+m1 is in modules m1 and m2. The resulting decomposition and LOOCD
values are shown to the right. Scatter plots at the bottom show the relationship between three
example features in X (one on each row) and WH with each module removed. The first
column of scatter plots is relationship between the feature and full WH, other columns are
each with one module removed. Lines show an ordinary least squares line of best fit. Scatter
plots where the feature is part of the left out module are highlighted with background colour.
For these, the correlation decrease is greater than for modules which the feature is not part of.
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Feature Assignment

The underyling module structure in our synthetic data and simulated data is binary, with
each feature either being part of or not part of a given module. Correlation, permutation,
and LOOCD give a continuous measure of the importance of features to each module; from
these we want to determine which features belong to each module, allowing for a feature to
belong to multiple modules. Three methods were evaluated: a simple threshold, a greedy
assignment approach, and a kernel density estimate based method.

From each of the correlation, permutation, and LOOCD, for every feature i we can
generate an ordered list Li, where each entry is a pair identifying the module j and importance
value imp(i, j), ordered by descending importance. From this, we implemented three methods
of determining whether a feature should be assigned to a module.

The threshold approach is to set some value above or below which the feature will be
assigned as part of the module. This relies on being able to identify a threshold value which
will be stable or predictable across data with varying rank.

We developed a simple greedy assignment algorithm which is carried out for each feature,
incrementally adding modules which improve the correlation between the model and X .
This method is conceptually similar to LOOCD, being based around correlation between
X and WH with some dimensions of WH witheld. The algorithm is given in Algortihm 1,
and described below. At each iteration, the feature with the greatest importance value is
added to the set of module features, and the correlation between the restricted model and X
evaluated. If the correlation has not improved beyond a certain threshold d then the previous
set is returned. The rationale is that when including a module in the model is not improving
the relationship between the model and the source data, that and following modules do not
contribute to the description of feature i in the model.

We developed a kernel density estimate method which is based on the observation that
importance measures of correlation and permutation for a module tended to form a two
peaked distribution. Features known to be in the underlying module were more frequently on
one side of the central minima, and those not belonging to the module more frequently on
the other. Where Im is the importance measures of all features for module m, a kernel density
estimate is produced using the gaussian_kde method of the scipy pacakge [386], which
estimates bandwidth using Scott’s Rule [387]. The minima is located using the argrelextrma
function of the scipy package [386], and features on the side of this minima indicating
greater importance assigned to module m. Figure 5.15 shows this method applied to example
synthetic data we generated as explained in Section 5.3.6.

Scoring the recovered modules requires a method which handles the overlapping nature
of the underlying and recovered modules. As such commonly used clustering scores such at
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Algorithm 1: Greedy Module Assignment
Data: X ≃WH, feature index i, threshold d
Result: M, a set of modules feature i is assigned to
begin

Li←− ordered list of module identifier and importance for feature i
M←− /0
c←− 0
for m,s ∈ Li do

M′←−M∪{m}
/* Calculate Pearson correlation between WH restricted to

feature i and modules M′ with values in X for feature i
*/

c′← corr(W,M′HM′,i,X,i)
if c′− c < d then

return M
M←−M′

c←− c′

return M

the Rand index, or classification scores such as precision, recall and the derived F1 score,
are not suitable. Instead we use a scoring method applied to biclustering, relevance and
recovery, to compare recovered and underlying modules [388]. For set of known modules
M and observed modules M′, where for m ∈M, m is a set of the features belong to a single
module, relevance is defined as

relevance =
1
|M′| ∑

m′∈M′
max
m∈M

(
|m′∩m|
|m′∪m|

)

and recovery using the same method with M and M′ reversed. Descriptively, for every
recovered module m′, the true module m is found with which it is most similar by looking the
maximum Jaccard index ( |m

′∩m|
|m′∪m|). The Jaccard index takes a value between 0 and 1, where

0 is no elements in the intersection, and 1 when m′ = m. The sum of these similarities is
divided by the number of recovered modules, giving a mean score for all recovered modules.
Relevance scores how the recovered modules match up to the true modules; if there are
5 true modules, but only 2 modules are recovered with each complete (i.e. containing all
expected elements), the relevance score would be 1. Recovery scores to what extent the true
modules were recovered; in the example above, recovery would be below 1, depending on
the intersection of the true modules.
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5.3.4 Functional Enrichment

For functional metagenomic data, the ability to summarise to a higher level which processes
are enriched or depleted within the modules identified is a useful step in interpreting the
models provided by NMF. We did not develop new approaches for such enrichment analyses,
but as part of the python module implemented the prerank version of the Gene Set Enrichment
Analysis (GSEA) method [389]. We use the Pearson correlation between rows of H and
X as input to the prerank method, using the GSEA implementation provided by GSEApy
[390, 391]. We implemented methods for identifying GO term enrichment in data where
features are Pfam domains and Interpro accessions, and for identifying KEGG pathway
enrichment where the features are KEGG orthologs; the implementation can also accept any
custom sets. The result is a table with each row detailing a feature which either enriched or
purified in a modules, with the normalised enrichment score. GSEA corrects for multiple
testing generating a false discover rate q-value, and we use default significance threshold
to be 0.05. Additionally, we implemented visualisation tools to plot this table of enriched
terms as a heatmap, to output scatter plots of the underlying correlations, and produce GSEA
diagrams for gene sets.

5.3.5 Visualisation

Visualising the model generated by NMF is a helpful interpretative step. The first visualisation
we use is a heatmap triplot simultaneously displaying W , H and either X or WH, with
columns and rows reordered, with the aim of visually revealing overlapping block structures.
Ordering is performed on W and H separately, then applied to the larger matrix X or WH. We
hierarchically cluster W and H based on the affinity matrix using average linkage, although
provide a parameter for specifying alternate linkage methods, and to use Euclidean distances
instead. The leaf list of the resulting dendrogram is used to reorder the relevant matrix.
The optimal leaf reordering method [392] provided by scikit-learn can provide an improved
ordering but is computationally expensive on data with dimensional typical of metagenomic
lists of functions, so we offer it in the python module as a parameter which is disabled by
default. An affinity matrix A is generated as described in Maetschke et al. [393], however
their suggested reordering based on the Fiedler vector derived from the Laplacian of A failed
to result in a visually apparent recovery of the overlapping block structure in our testing.
However, hierarchical clustering of A using average linkage did display recovery of the
structure beyond using Euclidean distances, so we used this method. An example of the
heatmap triplot visualisation is shown in Figure 5.4
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Fig. 5.4 Example of a heatmap triplot for an NMF model (Section 5.3.5). Top left shows
synthetic data we constructed to have 6 overlapping modules (Section 5.3.6). When shuffled
(bottom left), no structure is visible from this data. An NMF model is then learnt from the
shuffled data, and the H and W matrices reordered by hierarchically clustering the affinity
matrix using average linkage, and leaves of the resulting dendrogram ordered using optimal
leaf ordering. Right shows the resulting reordered W , H, and X , visually recovering some of
the underlying overlapping block structure.
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For environmental samples, relating the model back to the sampling location can help
interpret results. We use two methods of presenting the weight of modules in each sample on
a map projection. First is representing each point as a pie chart on a map, with the radius of
each section proportional to the weight of each module at that station. Second is an adaptation
of a method mapping the module weights for each sample to a point on the RGB colourscale
[394]. This provides a high-level sense of functional similarity of sites based on visual colour
similarity as an at-a-glance visualisation. A model with k = 3 could be mapped simply to an
RGB colourscale, selecting one module to correspond to each of red, blue, and green. The
process used in Richter et al. [395] used the first three axes of PCA to provide values for
each colour channel. In brief: data is transformed using the Box-Cox transformation to have
Gaussian-like distributions to mitigate the effect of outliers and scaled to have zero mean
and unit variance; PCA is performed and the first three components taken; each component
is scaled to have 0 mean and unit variance; the scaled components are decorrelated using
the Mahalanobis transform; each component is then mapped to 0-255 on one channel of
the colourscale. Our adaptation is to scale the amount of space on each channel of the
colourscale to match the amount of variance explained by each component of the PCA. If
the third component explained only a small amount of variance, it can perceptually have a
large influence on the resulting colour when using the full range of the channel. If ve(pc1) is
the variance explained by the first component, we allow the first component to always use
the full space 0-255, then permit the second and third components to use a proportion of the
space ve(pc2)

ve(pc1)
and ve(pc3)

ve(pc1)
respectively, centred on the midpoint of the scale.

5.3.6 Datasets and Data Simulation

Synthetic Data

To evaluate rank selection and feature identification methods, we create synthetic data with
a known underlying number of modules. Our assumption about data from environmental
metagenomics is that a some features (genes, taxa) will be present in multiple modules, and
that samples will contain some mixture of modules. Further, we assume that there will be
some features which are present in all samples, in functional terms representing core cellular
functions present in all environments (e.g. translation). Hence in our synthetic data we allow
modules to overlap in both samples (modules can be present in multiple samples) and in
features (a feature can be present in multiple modules), and for a proportion of features to be
ubiquitously present. To reflect this, we create data with an overlapping block structure, with
some proportion of features represented in all samples (Figure 5.5). Each entry which is part
of a module block is filled with a uniform random value between 0 and 1. Functions and taxa
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Fig. 5.5 Heatmaps of synthetic data, all of rank 4 (Section 5.3.6). The coloured outlines
highlight the modules. a) shows discrete modules, with no overlap on samples or features. b)
shows 40% of samples and features overlapping; for c) this value is 60%.

are not equally abundant, some may only be rare or in few copies, so we scale each feature
by multiplying it by a random value between 1 and 10. Normally distributed noise is then
added to each entry, and any resulting negative entries are set to 0. We have used synthetic
data with different parameters, varying: standard deviation of noise applied, proportion of
features in 2 modules, proportion of samples in 2 modules, proportion of ubiquitous features,
number of underlying modules k.

Simulated Data

Synthetic data provides a simple test case, but it is desirable to have a test case closer to
the intended use in ocean meta-omic data. Suitable test data requires that we know the
ground truth of which genes should be placed together in a module, and ideally in what ratio
each module was present in each sample. Real world data which has been sequenced and
annotated lacks this ground truth, we do not know exactly what modules or their abundance
generated Tara Oceans data for example. Instead we seek to simulate similar sequencing
data for which we define the modules and ratio at which they mix in samples. The recovered
modules can then be compared to ground truth used in generating the simulations. With
this objective, we simulated metagenomic sequencing for two communities, each based on
genomes of ocean bacteria. Firstly, a simple community composed of 5 bacteria from among
the KEGG organisms, their name and KEGG abbreviation given below:

• Alteromonas macleodii English Channel 673, amg

• Hydrogenovibrio crunogenus, tcx

• Prochlorococcus marinus subsp. marinus CCMP1375, pma
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• Colwellia psychrerythraea, cps

• Trichodesmium erythraeum, ter

Each of these is a marine bacteria, and the combination, was chosen to provide some functions
which are shared by subset of the organisms, and some which are unique. P. marinus and T.
erythraeum are both autotrophs sharing the capability to carry out photosynthesis, however
P. marinus is a diazotroph responsible for a large amount of nitrogen fixation across the
ocean, while T. erythraeum has a comparatively small genome. H. crunogenus is a sulfur
oxidising bacterium isolated from a hydrothermal vent, and as the only sulfur oxidising
bacterium contain a number of unique functions. A. macleodii is a species divided into
surface and deep ecotypes, with the one we use being among the surface strains; it is a
heterotroph, and so the functions it encodes will differ from the surface autotrophs P. marinus
and T. erythraeum. Finally, C. psychrerythraea is a psychrophile capable of growing in low
temperatures, with adaptations to enable this which would not be expected to be shared by
the other temperate organisms selected. Some organisms share niches or metabolic functions,
while some originate from unique conditions or perform unique functions, providing a mix
of shared and unique functions in the underlying modules for this simulation. For each of
these organisms, the KEGG database provides a list of the KEGG orthologs in the genome,
providing a ground truth for which features should be in each identified module. Results of
rank selection and module recovery methods applied to this community are shown in Figure
5.12 and Figure 5.19 respectively.

The second community simulation is intended to move closer to the focus of this thesis
on Arctic microbial communities, and the data presented and analysed in 4, and to which we
would hope to apply similar methods in future work. This community was based on pilot
data from Arctic samples taken during the recent MOSAiC expedition [56] at four different
depths: ice, sea-ice interface, surface and deep ocean (for more details on MOSAiC data see
Section 6.2.4). We define our underlying modules as a set of KEGG organisms, and assign
each organism an abundance in that community. Each underlying module is based on one of
the Arctic samples; we identified KEGG organisms closest to the taxonomic classification
of MAGs in each sample using the NCBI taxonomy and ANI where there were multiple
candidates. Each KEGG organism in the module was assigned an abundance equal to the
average coverage of the MAG it was similar to. The composition of each community in
terms of genomes is given in Appendix B.1. Results of rank selection and module recovery
methods applied to this community are shown in Figure 5.13 and Figure 5.19 respectively.

In this more complex case, the ground truth we seek to evaluate against is the set of
KEGG orthologs contained in any genome in the module.
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Fig. 5.6 Weights of communities in MOSAiC derived simulation. comm_1 is derived from
surface sea-ice, comm_2 from ice water interface, comm_3 from surface water and comm_4
from the mesopelagic.

Simulation Methodology

For each of these communities we simulated a number of samples, where sequencing for each
sample was simulated using CAMISIM [396], a metagenomic community read simulation
pipeline using ART [397] for read simulation. The default profile for read simulation was
used, generating Illumina 150 bp paired-end reads with a HiSeq 2500 error profile. Reads
were quality controlled and merged using fastp [398]. Genes were predicted from reads using
FragGeneScan [272], and annotated using KofamScan [399]. Counts of KEGG Orthologs
in each sample were produced from this annotation. For this five genome community,
CAMISIM randomly selected the abundance of each genome per sample, and we generated
2 Gbp of reads per sample, for 25 samples. For the MOSAiC derived community, the
abundance of genomes was not determined by CAMISIM in this case, we provided abundance
based on the linearly interpolated abundance of modules multiplied by the abundance of
organisms per module. The relative abundance of communities is shown in Figure 5.6, and
the derived relative abundance of genomes is shown in Appendix B.1. The intention of this
was to provide a simple representation of communities mixing along a depth gradient. Again
2 Gbp of reads were generated per sample. A schematic of the simulation for this simulated
dataset is shown in Figure 5.7.

For both cases, in evaluation NMF models were built using Kullback-Leibler (KL)
divergence, and k equal to the true number of modules, 5 and 4 respectively. KEGG orthologs
were assigned to a module where there was a LOOCD of ≤−0.05, and recovered and true
modules matched up the Hungarian algorithm with Jaccard distance as the cost. For each
pair of recovered and true modules, we calculate precision and recall.

5.3.7 Real World Case Study Data

We used synthetic and simulated data to provide some validation of the NMF methods
we have developed. We then applied NMF to a range of real world case studies, to show
performance on true meta-omics data generated from environmental samples. The selected
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Fig. 5.7 A schematic diagram showing our construction of the simulated data based on pilot
MOSAiC data [56] (Section 5.3.6). We define a), the relative abundance of each module
in each sample as a linear gradient, roughly emulating a transition of communities with
water depth. This is one of the matrices we hope to recover using NMF. For each underlying
community, we define which genomes are present, and in what abundance, based on the
MAGs generated from those MOSAiC samples. Table c) is the abundance of each genome in
each sample derived from a) and b), provided to CAMISIM to determine volume of reads
to be simulated from each genome. We do not seek to recover c). In d), the functions of
each species are shown, with some overlapping. We do not seek a recovery at species level
resolution, instead seeking to recover table e), the functions present in each module, which
the pooled functions in its constituent genomes. Table f) is the counts of functions in the data
simulated by CAMISIM, and is used as our input matrix X .
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datasets span a range of types of meta-omic data, size of dataset, and environment of origin.
Properties of each of the datasets as well as discussion of the reasons for their selection are
as follows.

Human Microbiome Project (HMP)

The Human Microbiome Project has provided a wealth of data on the microbial life associated
with different parts of the human body [400]. With the end goal of assessing the functions of
the global ocean in mind, we chose to use the functional annotation of genes recovered in
samples taken from multiple different points of the body in the HMP1 stage of the project
[27, 400]. It has been well established that human associated microbial communities from
different points on the body are highly functionally distant [27]. This provides us with a
real world dataset, for which each sample can be labelled with a sampling site, where given
the functional distance, we would expect the NMF approach to be able to identify modules
related to these labels and identify a clear separation.

Waiwera River Estuary Water and Sediment

Part of the reason for exploring a matrix decomposition approach is to obtain modules which
permit sharing of features compared to heirarchical clustering approaches. We selected data
taken along the Waiwera river estuary on the South Island of New Zealand [1] primarly as this
data had been previously analysed using WGCNA thus allowing a comparison of modules
generated with NMF. Samples were taken along a salinity gradient from fresh, to brackish,
and eventually marine waters, where we might expect a mixing of underlying functional
modules in response to this gradient. Both sediment and water were sampled, providing
in addition to an environmental gradient two very distinct environments. In comparison to
the Human Microbiome Project Whole-genome Shotgun Sequencing (WGS) sequencing
approach, this data is much smaller through looking at a selected of key marker genes for
biologically important processes in the river environment, such as nitrogen cycling.

TARA Ocean Surface Ocean Metagenomic Data

Metagenomic sequencing of the samples collected during the Tara Oceans expeditions
has expanded our understanding of the genes and functions across the global ocean [4, 2].
Taxonomic and functional annotations of much of the sequencing data has been made
available publically by EBI, annotated using their MGnify pipeline [3]. As a case study,
we selected the functional annotation of metagenomes filtered for prokaryotic size fraction
organisms (MGnify Study MGYS00000410), as functional annotations of the eukaryotic size
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fraction were not publically available. This data represents a step up in scale from the river
estuary data, with 248 samples and abundance of 16,349 InterPro entries for each sample.

Samples in this analysis were taken at multiple depths, providing an additional chance
to validate that NMF can be used to separate environments we expect to be functionally
different. The DCM, characterised by primary production, we expect to be functionally
distant from those of mesopelagic samples. Following this validation, we can use NMF to
analyse the distribution of function across a single ocean layer, here selecting to look at
the surface ocean. To our knowledge, NMF has not been applied to this data previously,
providing an opportunity to demonstrate how NMF can produce interpretible models of large
scale environmental meta-omics data.

5.4 Results

5.4.1 Rank Selection

One of the key tasks in decomposition is to identify an appropriate rank k. Generally the
objective function will continue to decrease as k increases; with the goal of finding a low
dimensional, interpretable model, we want to find the lowest value for k which captures the
latent structure in the data. The methods proposed for evaluating which k best achieves this
were covered in Section 5.3.2. We evaluated how well these methods identified appropriate
values of k for datasets where the true number of underlying modules is known; first on
synthetic data, and then simulated metagenomic sequencing data.

Synthetic Data

Synthetic data was generated which varied along the following parameters:
• k - Number of clusters.
• os, o f - The overlap between clusters in the rows (os) and columns (o f ). This is

expressed as a proportion of the rows or columns which are in two clusters.
• u - Standard deviation of normally distributed noise applied with mean 0. Entries

which are in a module are given a uniformly distributed value between 0 and 10 before
this noise is applied.

Synthetic datasets were generated with the properties shown in Table 5.1, for k = 2..12,
with 100 samples and 500 features, with 50 features being ubiquituous. For each set of
properties, 100 matrices were generated, and model selection run once for each matrix,
searching ranges of k between 2 and 15, using KL divergence and the multiplicative update
solver. For each run, we took as the rank selected for k where the value was highest. The
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label os o f u
discrete_lownoise 0 0 1
lo_f_lownoise 0 0.1 1
lo_sf_lownoise 0.1 0.1 1
lo_s_lownoise 0.1 0 1
mod_f_lownoise 0 0.4 1
mod_sf_lownoise 0.4 0.4 1
mod_s_lownoise 0.4 0 1
discrete_highnoise 0 0 4
lo_f_highnoise 0 0.1 4
lo_sf_highnoise 0.1 0.1 4
lo_s_highnoise 0.1 0 4
mod_f_highnoise 0 0.4 4
mod_sf_highnoise 0.4 0.4 4
mod_s_highnoise 0.4 0 4

Table 5.1 Parameters used for generating synthetic data for rank selection evaluation (Section
5.3.6). 100 matrices were generated for each set of parameters for k = 2..12. Labels are
assigned to each set of 100 matrices to indicate noise level, and which dimensions overlap in
that dataset. Results of model selection experiments on this synthetic data is are shown in
Figure 5.8 and Figure 5.10.

number of times each method selected either the correct value for k in each case is shown in
Figure 5.8, and where it selected a rank ±1 in Figure 5.9.

The permutation based model selection method performed well in both low and high
noise datasets for lower ranks, but with performance declining for higher ranks in the
noisier datasets. Modules which are shared between samples and between features have
the lowest performance, and in the most complex dataset mod_sf_highnoise the correct
rank was not identified in any datasets with rank 9 or above. The permutation method
tended to underestimate the rank of data, shown by the early peaks in Figure 5.10 for
mod_n_highnoise. Among the two methods based on consensus matrices, dispersion and
cophenetic correlation, dispersion shows generally higher performance, though both methods
have uneven performance across ranks in mod_s_highnoise and mod_sf_lownoise datasets.

Examining the plot of dispersion and cophenetic correlation for one of these datasets
shows (Figure 5.10) for k < 5 a downward trend initially with no peak, while for k ≥ 5 there
is a peak visible. This trend is most evident in the synthetic datasets where modules overlap
in both samples and features, suggesting this method of rank selection would be best suited
when domain specific knowledge suggests that samples would form discrete groups.

Split-half validation performs poorly in cases where modules overlap in features and
samples, with the correct rank not identified for any k > 4 in the mod_sf_highnoise dataset.
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Fig. 5.8 Times a given model selection criteria peaked at the true value of k in the synthetic
data we generated (Table 5.1). Vertical axes are the percentage of times correct k was selected.
Horizontal axis is true value of k. Dataset labels are shown at the left of the plots, method
labels at the top of the plots. The rightmost column shows an illustrative example dataset.
Colour indicates low noise (blue) and high noise (red).
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Fig. 5.9 Times a given model selection criteria peaked at ±1 of the true value of k in the
synthetic data we generated (Table 5.1). Vertical axes are the percentage of times correct
k was selected. Horizontal axis is true value of k. Dataset labels are shown at the left of
the plots, method labels at the top of the plots. The rightmost column shows an illustrative
example dataset. Colour indicates low noise (blue) and high noise (red).
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Looking to the plot of values over ranks of k, in the simpler dataset discrete_lownoise the
split half method displayed peaks near the true value of k, however this pattern becomes
much less clear in more overlapping noisier data.

Concordance displays an improved performance in high noise datasets compared to the
low noise ones, seemingly performing poorly even on the simplest discrete_lownoise case.
Examining the plots of the concordance index over values of k however shows that in the
discrete_lownoise case there is a clear elbow point which is easily identified by eye at the
true ranks of k, but for higher rank of k the peak value occurs slightly after this elbow point.
In noisier, more complex data (the example of mod_s_highnoise is shown in Figure 5.10)
there is a peak at the true value of k, with values declining again after. For the concordance
index, selecting an elbow point or peak value appears a better approach rather than solely
looking for the maximum value.

No one rank selection method clearly outperformed the others. However for low values
of k, the permutation method performed well on a wide range of the test datasets, though
performing poorly as k increased. The concordance index did not always assume its maximum
value at the correct rank, but consistently displayed identifiable peaks or elbow points at the
correct rank where other methods show no such signal (such as in mod_s_highnoise in Figure
5.10). For data with an unknown latent rank, consensus between methods would provide
strong evidence for a suitable rank; where consensus is not achieved, peak or elbow points in
the concordance index appear to be the most consistent signal indicating suitable rank.

Visualisation can assist in assessing a suitable rank where there is not clear consensus
among methods. Taking an example of a single synthetic dataset with 6 modules from
mod_sf_hignoise, this is illustrated in Figure 5.11. No clear consensus is available between
the different model selection criteria. However, both consensus based methods peak at
k = 3, permutation peaks at k = 6, and the concordance index has peaks at both. Using the
heatmap triplots and ordering techniques covered in Section 5.3.5, it is visually apparent
that additional structure is recovered in k = 6 compared to k = 3, suggesting k = 6 as a
more appropriate rank. Exploring the values of k near those suggested by the rank selection
methods can help confirm a suitable value of k; for our example data, looking at k = 7 the
additional module m7 has few features with high weight, and the samples with high weight
for the module are scattered. Looking to one module fewer, k = 5, if we retain the ordering
of sample from k = 6, it is evident that two of the modules have been combined; m1 and m4
in the k = 6 model have been combined in m4 in the k = 5 module, the block highlighted
yellow in Figure 5.11. In summary, selecting an appropriate rank for the decomposition can
be aided by a combination of rank selection criteria and visualisation, but requires researcher
investigation and judgement.
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Fig. 5.10 Rank selection criteria over values of k for synthetic data we generated (Ta-
ble 5.1, Section 5.3.6). Two synthetic datasets are shown, discrete_lownoise (top) and
mod_s_highnoise (bottom). Each column is a different true latent rank, each row a different
rank selection method. The vertical grey line indicates the true latent rank, with the grey band
showing∓1. Peaks or elbow points are evident near the correct rank for many methods in the
simpler discrete_lownoise case, but are less clear in mod_s_highnoise for higher ranks, with
only the concordance index showing indication of true rank. Similar plots for all synthetic
datasets are available in Appendix B.1
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Fig. 5.11 Rank selection performed for a single matrix taken from one of the synthetic
dataset we constructed to evaluate rank selection methods, mod_sf_highnoise (Table 5.1,
Section 5.3.6). The central line plots show rank selection criteria across values of k. The
points circled with short or long dashes indicate points at which multiple methods show
peaks, at k = 3 and k = 6 (short and long dashes respectively). Above heatmaps visualise
the decompositions for these ranks, illustrating the recovery of additional structure in the
k = 6 decomposition. Below, the same type of visualisation is shown for one rank either side
of k = 6. In the k = 7 decomposition, the additional module m7 has few features with high
weight and scattered weight in samples. In the k = 5 decomposition, module m4 can be seen
to represent two of the underlying modules (block outlined in yellow).
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Simulated Data

The two simulated datasets detailed in Section 5.3.6 provide a test case closer to a real world
omics dataset, however unlike a real world dataset the true value of k is known.

Model selection was run for the five genome simulated community, using KL beta
divergence, multiplicative update, 100 iterations for each value of k, and searching k = 2..10;
results are shown in Figure 5.12. For the smaller five genome community there is some
consensus displayed: peaks appear at k = 5 for concordance index, permutation and split
half method. The consensus matrix based methods did not agree, with a peak in cophenetic
correlation at k = 7. Visualising k = 7 shows two modules which are highly similar in terms
of feature and sample weights (m3, m7), and one module which is given low weight across a
large number of samples (m1), suggesting it may be too large a rank.

The simulated dataset derived from the MOSAiC pilot samples is more complex, each
sample being a mixture of four communities of genomes; rank selection and accompanying
visualisations are shown in Figure 5.13. Again there was some consensus between model
selection criteria, with peaks at k = 4 in concordance, cophenetic correlation and dispersion.
In this case however, the permutation and split-half methods had no peak after k = 2.
Visualising k = 2, it is appears that among the features on the far right of the plot, there
is more variation than is captured by module m1 alone, the features presents vary from
sample_8 to sample_19. Comparing this to k = 4, in the sample matrix W the previous
two modules have each been split into two, and the features show less immediately obvious
undescribed variation though with the higher number of features this is more difficult to
assess. Going a rank higher to k = 5, again it appears m1 has been split into two modules,
m1 and m2. The features with higher weight in new module m2 appear quite widespread in
X , though whether this additional module is redundant is less clear than in the smaller five
genome community.

In both simulated metagenomic datasets, the concordance index showed a peak at the true
latent rank. Alongside its good performance in synthetic data, this suggests the concordance
index as the more consistent indicator of suitable rank for data expected to have a high
degree of sharing, both features being shared among modules, and modules shared among
samples. While there was agreement between the concordance index and other criteria in
both simulated data, which criteria showed agreement was different between the two. As
the concordance index performed well in both synthetic and simulated data, we adopt the
approach of looking for agreement between the concordance index and another method as a
strong sign of the suitable rank for NMF decomposition.
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Fig. 5.12 Rank selection performed for the 5 genome simulated community (Section 5.3.6).
Line plots in the middle show the value of model selection criteria over values of k searched.
Concordance index, permutation and split half validation showed peaks at k = 5, indicated
by the short dashed circle. The cophenetic correlation has a peak at k = 7, indicating by long
dashed circle. The top heatmap triplot visualises the decomposition for k = 7. Module m1
has low weight across all samples, and few functions with high weight outside those which
appear in all samples; m2 and m7 have have high weight in a similar set of samples and have
a similar set of functions with high weight. The bottom row of heatmap triplots shows plots
for the suggested rank of k = 5 in the centre, and ranks one above and below.
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Fig. 5.13 Rank selection performed for the MOSAiC derived simulated community. This
community has rank 4, with latent communities based on samples from different depths
(Section 5.3.6). Line plots in the middle show the value of model selection criteria over
values of k searched. Concordance index, cophenetic correlation, and dispersion showed
peaks at k = 5, indicated by the short dashed circle. Permutation and split-half had no peak
after k = 2. The top heatmap triplot visualises the decomposition for k = 2, where there
appears to be a block of functions whose variation is undescribed by module m1, highlighted
by the yellow block. Bottom heatmap triplots show the suggested rank k = 4, and one rank
above and below. At k = 5, m1 seems to have been split into two modules m1 and m2, but
functions with high weight in m2 appearing to be mostly those present in most samples.
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5.4.2 Feature Assignment

Identifying which features describe a recovered module is an important step in interpreting
matrix decompositions resulting from NMF. With the assumption that in the underlying
structure of meta-omics data many features will be shared (genes belonging to multiple
modules), we sought measures of feature importance which identified both unique and shared
features. As explained in Section 5.3.3, we evaluated three methods (correlation, LOOCD,
and permutation) in synthetic data to explore which would be most suited in the context of
feature sharing. Figure 5.14 illustrates the performance of these three methods in synthetic
data with overlapping features and samples. In an ideal measure, it would be possible to
identify some point below which features do not belong to the module, and above which
they do, whether unique, shared or ubiquitous. The box plots in Figure 5.14 illustrate that
no measure showed such a clear cutting point, with the tails of the distribution of values for
features not belonging to the underlying module and those unique to the module overlapping
to some extent. However our exploratory analyses showed that typically LOOCD had the
clearest distinction, with a number of outlier features not belonging to the module with high
values, but the majority taking very low values below those typical of the shared and unique
features, and below the upper three quartiles of the ubiquitous features.
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Fig. 5.14 Feature importance measures (Section 5.3.3) for a model learnt on synthetic data we
generated with 5 underlying modules (Section 5.3.6). On the left is the data (X), and model
(W,H), which is transposed to aid visualisation. Features are on the rows, and samples on the
columns. Features and samples are labelled to indicate the modules they are in i.e. feature
f_192: m0|m1 is in modules m1 and m2. To the right are heatmaps showing the values of
the importance measures correlation, Leave-One-Out Correlation Decrease (LOOCD), and
permutation for features matrix H. Colour scales have been chosen so that red indicates a
feature which is more important to a module, blue or white less important. Beneath is a box
plot showing the distribution of values for features in four categories. Firstly, features which
are unique to underlying module m1 (maroon), those shared between m1 and another module
(orange), features in all modules (red), and those features which do not belong in m1 (grey).

Values generated by the permutation and correlation methods tended to be distributed
with two peaks, with features one side of the distribution tending to be those which belonged
to the underlying module. We explored using this property to identify a suitable cutting point,
by estimating a probability density function using kernel density estimation (Section 5.3).
This method showed ability to identify shared and unique genes, but comparatively poor
identification of ubiquitous features, as shown in Figure 5.15.
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Fig. 5.15 Assignment of features based on the permutation importance measure with a
threshold value identified through fitting a Kernel Density Estimate (KDE), as described
in Section 5.3.3. On the left is the data (X), and model (W,H), which is transposed to aid
visualisation. Matrix X is synthetic data with 5 modules we generated as described in 5.3.6.
Features are on the rows, and samples on the columns. To the right are heatmaps showing
the permutation importance values, and second heatmap showing features assigned using the
KDE method, and the true underlying module. Above each of these a plot of the KDE, with
the identified threshold value indicated with a point.
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Two other methods of moving from measures of importance to binary assignment of genes
to modules were explored, a greedy assignment algorithm and establishing a simple threshold
value, evaluating their performance using relevance and recovery. LOOCD tends to show the
highest peaks for relevance and recovery in synthetic data, for instance in example synthetic
data in Figure 5.16 peaking at 0.69, in comparison to 0.59 and 0.62 for correlation and
permutation respectively. Both the greedy algorithm and KDE methods achieved outcomes
lower than would be possible by selecting a suitable static threshold. The KDE approach
performed very poorly in combination LOOCD, as these values did not form a distribution
with two clear peaks, preventing identification of an appropriate cutting point.

For a static threshold value to be useful, it would have to be stable across multiple datasets
and across data with a different underlying number of modules. As LOOCD performed best
in initial analyses, we evaluated performance of LOOCD with a threshold of -0.05, with
results shown in Figure 5.17. For ranks 2 to 10, we generated 50 datasets with 100 samples
and 1500 features, with 20% of samples and features being in multiple modules, with features
randomly scaled and normally distributed noise with a standard deviation of 4 applied (see
methods in Section 5.3.6). Overall relevance and recovery declined as rank increased, but the
peak remained stable around -0.05, suggesting this to be a suitable default value for assigning
features to modules.



5.4 Results 163

0 0.5 1
0

0.2

0.4

0.6

−1 −0.5 0
0

0.2

0.4

0.6

0 0.5 1
0

0.2

0.4

0.6

Truth for m
4

Threshold

K
D

E

G
reedy

Truth for m
1

Threshold

K
D

E

G
reedy

Truth for m
0

Threshold

K
D

E

G
reedy

Truth for m
3

Threshold

K
D

E

G
reedy

Truth for m
2

Threshold

K
D

E

G
reedy

Relevance Recovery Threshold KDE Greedy

Correlation

LOOCD

Permutation

R
el

ev
an

ce
an

d
R

ec
ov

er
y

Fe
at

ur
es

R
el

ev
an

ce
an

d
R

ec
ov

er
y

Fe
at

ur
es

R
el

ev
an

ce
an

d
R

ec
ov

er
y

Fe
at

ur
es

Relevance and
Recovery m4 m1 m0 m3 m2

Fig. 5.16 Module recovery achieved by combinations of importance measures and feature
assignment methods (Section 5.3.3). Each row shows results for a different importance
measure: correlation, Leave-One-Out Correlation Decrease (LOOCD), and permutation
respectively. The leftmost plot shows relevance and recovery on the vertical axis, and
importance value on the horizontal. The curve plots relevance (grey) and recovery (black)
when different threshold values are selected for assigning features to modules. In this case,
relevance and recovery behaved very similarly, so at most points only one line is visible. A
circle indicates the relevance and recovery achieved by using a default threshold value; a
square the performance of the KDE method and the mean values of the thresholds identified
for each module; and a horizontal line indicates the performance of the greedy assignment
method (which does not select a threshold value). The heatmaps to the right show for each
module the ground truth of which features are in each module, then the features assigned by
each of the three methods.



164 Using Non-Negative Matrix Factorisation to Identify Functional Modules

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

−1 −0.5 0
0

0.5

1

−1 −0.5 0 −1 −0.5 0

LOOCD LOOCD LOOCD

R
el
ev
an
ce

R
ec
ov
er
y

R
el
ev
an
ce

R
ec
ov
er
y

R
el
ev
an
ce

R
ec
ov
er
y

k=2 k=3 k=4

k=5 k=6 k=7

k=8 k=9 k=10

Fig. 5.17 Relevance and recovery of modules obtained using Leave-One-Out Correlation
Decrease (LOOCD) and a threshold of -0.05. For each rank, 50 synthetic matrices (Section
5.3.6) were used with scores for each plotted as an individual line. The dashed line at -0.05
LOOCD is the proposed default threshold. A box plot shows the score achieved by the
greedy assignment method, though there is not much variation in the scores so the box is
quite compressed.



5.4 Results 165

This combination of LOOCD with a threshold of -0.05 was applied to the two commu-
nities which were simulated in silico, the five genome and MOSAiC based communities
(Section 5.3.6). In the five genome community, relevance and recovery again peaked at a
low threshold value of approximately -0.005 with relevance and recovery 0.79. Using the
proposed default threshold of -0.05 obtained a relevance and recovery of 0.73, shown in
Figure 5.18.

For visual inspection of the feature assignment, we matched each recovered module to an
underlying genome using the Hungarian algorithm with the Jaccard distance as costs. Each
of these matched pairs had their precision and recall calculated, and the results shown in
Figure 5.19. For comparison, WGCNA was also run for each dataset. WGCNA has a number
of options and parameters; for our analysis of the simulated data we used the option to create
a signed network, a soft power threshold of 10 for the five genome community, and 16 for
the MOSAiC based community, a minimum module size of 30, and dynamic tree cutting.

Figure 5.19 shows strong correspondence between our assignments and the underlying
genomes. Looking at the simpler five genome simulated community, for each genome, there
are some false negatives (functions which should be present but were not identified), but
fewer false positives. Across the five module and genome pairs, features are classified with a
mean precision of 0.94 and mean recall 0.77. Comparing this to the modules identified by
the hierarchical WGCNA method, it performs similarly well in areas with unique functions
(turquoise, pink and blue modules), but shared genes are often split across multiple WGCNA
modules. A group of functions shared by three of the genomes (amg, cps, tcx) is split across
9 different modules in by WGCNA. However, in the NMF modules the functions are assigned
55.9% to all three, 21.8% to two, and 20.7% to only one of the corresponding modules. For
this group in the WGCNA modules, a large proportion (55.3%) are assigned to the red module.
These red module functions are similar to those assigned to all 3 NMF modules, so the two
approaches capture some of the same information. However, the WGCNA red module
contains functions originating from the other two genomes (pma, ter), making intuitive
interpretation of this module more challenging. In the area of ubiquitous functions, those
which are present in all the underlying genomes, our function assignment method performs
similarly well, with 50.4% being assigned to all 5 modules, and 16.5% to 4 modules. The
modules of functions identified using NMF and LOOCD are partial, but offer an interpretive
benefit, particularly in regions of high sharing, over a hierarchical approach.

We also simulated a more complex community based on pilot MOSAiC sampling, with
four underlying modules. Each of these modules is a mix of genomes, and each simulated
sample is a mixture of these modules. As with the simpler community, we evaluate the
correspondence between the functions assigned to the recovered modules, and those present



166 Using Non-Negative Matrix Factorisation to Identify Functional Modules

−1 −0.5 0

0.2

0.3

0.4

0.5

0.6

0.7

0.8

−1 −0.5 0

-0.05

LOOCD LOOCD

R
el
ev
an
ce

R
ec
ov
er
y

Fig. 5.18 Recovery and relevance scores for the 5 genome simulated community (Section
5.3.6) across different Leave-One-Out Correlation Decrease (LOOCD) thresholds. The
default threshold of -0.05 is indicated by a red point, slightly beyond the points of peak score.

in the genomes of the latent modules. This simulated community is characterised by a
much smaller proportion of unique functions; 68.9% of functions are found in all of the
latent modules, and only 7.8% are unique to one. For the ubiquitous functions, fewer were
assigned to all recovered modules than in the simpler community; 23.7% to all four recovered
modules, 37.9% to three, 24.3% to two, and 13.9% to only one. The reduced proportion
of shared functions assigned to all modules is reflected in the recall, with a mean recall of
0.68. However, the precision remains similarly high as it was in our simpler community, with
mean precision of 0.98. The functions unique to one latent module are more well identified
than those shared. For latent module comm_4, 94.4% of the unique functions are correctly
identified. This compares favourably to the WGCNA classification, where only 55% of the
unique functions are grouped together in the same module M3. Overall fewer functions were
assigned a module by WGCNA, with many unassigned, represented by the grey module M0.
In this more complex simulated community, the recovered modules remain partial. The high
precision suggests that confidence can be merited that those functions assigned to a module
belong together.

For our simulated communities, we know for each sample the ratio at which the latent
modules are mixed to generate the sample. Another way to evaluate our results is by
comparing the correlation between these known mixing ratios, and the relative weights for
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Fig. 5.19 Comparison of modules recovered by NMF (peach background) and WGCNA
(blue background). The 5 genome simulated community is on the left, the MOSAiC derived
community on the right. For the NMF recovered modules, each recovered module is paired
up with one of the underlying modules, and heatmap showing the ground truth of which
features should be in the module in tan versus those which are assigned in the recovered
module in colour. A scatter plot also shows the correlation between the relative weight of the
module in W and the relative abundance used in generating the underlying simulations. The
WGCNA modules are not paired up as there isn’t a 1:1 relationship between underlying and
recovered modules. Again tan represents the true underlying modules, and coloured strips
the recovered modules. The grey M0 module is features which have not been assigned to
a module. The heatmap to the right shows the correlation between each recovered module
eigengene and the abundance of each underlying module used in generating the simulated
data.
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each module in each sample. For the five genome community, r ≥ 0.97 for all modules.
Recovered modules correlate poorly with latent modules other than the one they were
matched with, with the mean off-pairing correlation being -0.23, with a maximum of 0.47.
The MOSAiC derived community also showed strong correlation with r ≥ 0.96 for all
modules, and off-pairing correlations were again weaker, with a mean -0.31 and maximum
of -0.0038.

The WGCNA modules can be evaluated in a similar way, by relating the module eigengene
to latent module mixing ratios. Some recovered modules show similar correlations with an
intuitive relationship to the underlying genomes; for example, in the five genome community
the turquoise module M6 largely consists of functions unique to the cps genome, and it’s
strongly positively correlated to the mixing ratio of cps. Outside of unique functions, the
correlations are poorer; the red module M1 contains many functions shared between the
genomes pma and ter, however it has a negative correlation to the mixing ratio of ter, as it
also contains more functions shared by the other 3 genomes, amg, cps & tcx. In the MOSAiC
derived community, latent module comm_2 has only a strong positive correlation to the
unassigned functions in the grey module M0, and no significant correlation to the recovered
modules. The opposite is found in comm_4, being significantly positively correlated to 5 of
the recovered modules.

The modules identified by NMF give a comparatively straightforward description of the
distribution of the underlying modules across samples for our simulated data.

5.5 Real World Case Studies

5.5.1 HMP

Microbiomes from different parts of the body are known to be taxonomically distinct,
though their function is more stable with a consistent core of housekeeping functions [27],
with site specific functionality being consistent between individuals even where taxonomic
composition varied [401]. Given these established, stable diferences in function between
sampling locations on the body, we should be able to recover modules representing these
functions and indicating a clear separation between sampling locations. We used data
collected during the HMP1 stage of the HMP, where samples were collected from different
locations on the body from healthy individuals. Each of the 686 samples is labelled with a
precise location (e.g tongue dorsum, anterior nares), which can be further grouped into four
broad groups of oral, skin, gut, and vaginal samples.
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HMP functional data has been investigated previously using NMF, however this is often
with the goal of distinguishing between binary classes. Cai et al. [371] applied a supervised
modification of NMF to distinguish between two individuals who were sampled over a time
series in a different part of the HMP, as well as between gut samples of healthy and diseased
individuals in a different set of data from the MetaHIT project [402]. A constrained approach
incorporating experimentally established expert curated knowledge about metabolic pathways
was applied to study fiber degradation in the gut [370], focusing on a single environment
rather than broad functional differences between environments. Extending NMF to allow
joint analysis of taxonomic and functional data provided clear separation between the broad
sampling locations [403]. Given that function appears more stable across sampling location
that does taxonomy, we would hope to be able to achieve the same using only functional
data.

As input data we used the relative abundance of KO terms in each sample, a total of 13,325
functions. Figure 5.20 shows results for rank selection, relationship of the decomposition to
the sampling locations, and functional enrichment analysis performed on this data. Model
selection showed a clear peak of the concordance index at k = 4, remaining high for k = 5
before declining. Inspecting the decompositions for both of these ranks, rank 4 shows a
clear separation into the four broad groupings. At rank 5, the oral samples split into two
modules, one highly weighted in mostly buccal mucosa samples, and the other representing
mostly the remaining oral samples. This clear separation between known classes suggests
the techniques we have selected are able to identify highly distinct underlying communities,
as was shown by joint decomposition of taxonomic and functional data [403]. Additionally,
enrichment analysis reveals biologically meaningful information based on the indentified
modules; for example pathways related to biofilm formation are enriched in oral samples,
fitting with the surface associated communities which form in the oral cavity.

We investigated whether NMF could further split a single of these broad environments
into the specific sampling locations, when the input data is restricted to only samples from
that group. Oral samples were selected, as other groups are more imbalanced with a large
majority of samples originating from one of the specific locations (anterior nares for skin;
posterior fornix for vagina). Samples from the oral cavity originate from 9 different specific
locations, with the 123 from the tongue dorsum, 115 from supragingival plaque (teeth above
the gum), 109 from the buccal mucosa (cheek), and less than 10 from all other locations.
Results are shown in Figure 5.21. Rank selection showed peaks in cophenetic correlation
and dispersion at k = 4, and similarly the concordance index peaks at k = 2 and k = 4
before declining, with the split-half method also showing a peak at k = 4. Inspecting the
decomposition for k = 4, W has module m1 mostly associated with the buccal mucosa
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Fig. 5.20 NMF methods applied to the Human Microbiome Project (HMP) functional data
[27, 400], described in Section 5.3.7. Top shows model selection, where all methods other
than permutation showed a peak at k = 4, and remaining high for k = 5 in most methods.
Below are shows sample matrices W for decompositions with k = 4 and k = 5. The coloured
ribbon indicates the location the sample was taken from. The four broad categories of gut,
vaginal, skin, and oral are indicated by blues, greens, greys, and reds respectively. The
more detailed locations are shown by shades within those colours. It is evident that each
recovered module relates strongly to one of the broad categories; for k = 5, the additional
module mostly represents the buccal mucosa samples. The mixed group of oral samples in
the k = 4 decomposition, represented m4, is highlighted by a striped green box; in the k = 5
decomposition, the largely buccal mucosa and other oral sample groups are highlighted by
light and dark green boxes respectively. At the bottom, a GSEA enrichment for k = 4 for
module m4, associated with oral samples, shows enrichments for biologically meaningful
pathways such as biofilm formation.
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samples, and m4 mostly associated with supragingival plaque. The final large group, tongue
dorsum samples, appears to be represented by two modules, m2 and m3, where only a subset
of the tongue dorsum samples has high weight for module m3. KEGG pathways for biofilm
formation are enriched in module m3, suggesting this module may be a module of functions
from more established surface associated coatings. The extent of tongue coating can vary
between individuals, and is associated with different microbial communities, and can be
influenced temporarily by activities such as brushing of teeth or use of a tongue scraper [404].
Examining the KO terms which are assigned to m4 after using the LOOCD method with
the default -0.05 threshold, module m3 has 2,104, smaller than the other tongue dorsum
module m2 which has 4,875. Approximately half of the functions in m3 (1,040) are not
assigned to m2, and 540 are unique to m3, suggesting m3 represents accessory functions
active in a subset of the oral samples. This is supported by looking at the decompositions
for k = 3, which produce a module with high weight for a mix of supragingival plaque and
tongue dorsum samples, and a separate module with high weight in a small number of tongue
dorsum samples, suggesting a subset of tongue dorsum samples with distinct function.

Using the HMP as a case study, we have shown the ability of NMF to recover well
established groupings from functional data. Additionally, applying this to the less distinct
oral samples illustrated a strength of the non-hierarchical approach of NMF in describing
tongue dorsum samples as a mixture of two modules of functions, allowing a more clear
separation of tongue and supragingival plaque samples.
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Fig. 5.21 NMF methods applied to the Human Microbiome Project (HMP) functional data for
oral samples only [27, 400], described in Section 5.3.7. Top shows model selection, where
all methods other than permutation showed a peak at k = 4. Below shows sample matrices
W for decomposition with k = 4. The coloured ribbon indicates the location the sample was
taken from. Each module associates with one of the larger classes, though the grouping is
less clear than observed in earlier results on the broad categories of gut, skin etc. At the
bottom right is and enrichment for the two buccal mucosa associated modules m2 and m3,
showing for m3 many terms depleted and a few terms such as biofilm formation enriched.
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5.5.2 Waiwera River Estuary Water and Sediment

We analysed the data presented in Tee at al. [1] using these NMF techniques. This data comes
from a 5km portion along the Waiwera estuary, with samples taken from both sediment and
water. These microbiomes are thus separated into two distinct groups (sediment, water),
and along a salinity gradient from fresh to marine waters, which would be expected to drive
the functional composition of the communities. There are 30 samples in total, 9 water
and 21 sediment, and functional annotation is against a set of 83 genes which participate
in important metabolic processes. Compared to the human microbiome data presented
previously, the number of samples is much smaller, which is typically to be expected for
environmental data. Tee et al. [1] analysed this functional data using several methods
including applying WGCNA to the metatranscriptomes, finding 6 modules, and based on
these module eigengenes a separation observable between sediment and water, and within
each a separation by salinity.

We used log-scaled transcripts per million mapped reads for each marker gene as input
data, and repeated the WGCNA analysis of Tee at al. using parameters stated in the paper
[1]. NMF decompositions were performed using the multiplicative update method with KL
divergence. Genes were assigned to each module using the LOOCD method with the default
threshold of −0.05. During rank selection, shown in Figure 5.22, cophenetic correlation,
dispersion and the concordance index were highest at k = 2; inspecting these decompositions
showed modules corresponding to the material sampled (sediment and water). To identify
modules within each of these materials sampled, we looked at higher ranks indicated by the
model selection methods. The cophenetic correlation and dispersion have lower peaks at
k = 4 followed by k = 7, and the concordance index at k = 7.

Inspecting the decomposition for rank k = 7, where there is some agreement between three
of the model selection methods, shows a distinction between sediment and water samples,
with three and four modules representing each respectively. The NMF decomposition and
WGCNA modules are shown in Figure 5.23. The three water modules split up between fresh
water samples (m1) and those from brackish & marine waters (m2 and m3). The sediment
samples have one module with high weight in fresh water samples (m4), and the remaining
brackish samples are described by a mix of two modules (m5 and m6). The final module, m7,
appears largely spread with low weight across the sediment samples. Some samples have a
mixed description in terms of module weights. The sediment samples from station 3 are a
mixture of modules m5 and m6; water samples from stations 3 to 6 are a mixture of m2 and
m3.

Both WGCNA and NMF identify a separation between sediment and water, and fresh
and marine or brackish samples within those. However, the overlapping assignment of
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Fig. 5.22 Rank selection for k = 2..20 for the Waiwera river estuary data. Cophenetic
correlation, dispersion, concordance, and split-half methods all took their highest values at
k = 2. Subsequent peaks occurred again at k = 4 for cophenetic correlation, dispersion and
permutation methods, and k = 7 for concordance.

genes allows us to identify some functional differences which are not apparent from the
hierarchically recovered WGCNA modules. Below we look in detail at some of the additional
information visible through the NMF modules and how it can suggest biologically meaningful
interpretations.

In the input data, some genes appear ubiquitous, such as TrkA. The hierarchical approach
places this gene in the yellow module, where LOOCD assignment on the NMF modules
assigns it to 6 of the 7 recovered modules. This illustrates the potential for NMF to provide an
intuitive description in cases of high gene sharing. The assignment of genes involved in nitri-
fication to the recovered modules highlight some metabolic differences among the sediment
microbiomes. Nitrification is commonly a two-step process, oxidation of ammonia to nitrite
carried out by ammonia oxidising archaea or bacteria (AOA or AOB), and subsequently
oxidation of nitrite into nitrate by nitrite-oxidising bacteria. Some Commamox organisms
incorporate both steps. Nitrogen cycling was presented in more detail in Section 2.2.3. The
nitratation genes nxrAB are assigned to modules m4 and m5, but absent in module m6.
Samples from station 7, the sediment closest to the marine waters, have very high weights
for module m6, suggesting reduced nitrification activity in these samples. In the WGCNA
modules, these genes are assigned to the brown module, whose eigengene has even positive
values across the brackish samples, which does not highlight the reduced transcription of
nitrification genes in samples from station 7.

The gain or loss of genes in components can describe differing strategies. Na+/H+ an-
tiporter genes mnhBEFG related to osmoregulation are assigned to our modules representing
brackish samples, modules m3, m5, and m6. These functions are absent in the freshwater
modules m1 and m4. These genes are all assigned to the yellow WGCNA module, whose
eigengene has negative values for the brackish sediment samples from station 3. In the
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NMF decomposition, these stations 3 sediment samples are described mostly by mixtures of
modules m5, m6, and m7, where m5 and m6 both have both the mnhBEFG genes assigned
assigned, suggesting this as a function shared across all brackish sediments sampled. Local
patterns can be identified among the NMF modules, such as the presence of nitrate reduction
genes narGH genes in fresh water samples, albeit it at low abundance, in addition to their
abundance in sediment. These genes are not assigned to the brackish and marine water
associated modules m2 and m3, but are found in the sediment and fresh water associated
modules; however the same genes are in the brown WGCNA module, whose eigengene is
negative for the fresh water samples, not capturing the increased transcription of these genes
in the fresh water environments sampled.
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This case study illustrates two broad points. Firstly that NMF separates samples in a
way that is congruous with both biological expectation and results of other methods such
as WGCNA, identifying modules associated with sediment and different salinity conditions.
Secondly, that the non-discrete assignment of genes can produce additional functional insight
into the environments being studied otherwise not evident, such as reduced nitrification
activity in the sediment of station 7, or the ubiquity of osmoregulation related activity in
brackish samples.

5.5.3 TARA Oceans Surface Ocean Metagenomic Data

Our first approach to the TARA Oceans data was to use data from different depths as an
additional validation that the approaches we have selected could distinguish environments
known to be functionally distinct. We selected all samples from the deep chlorophyll
maximum layer (DCM) and mesopelagic, as the former is characterised by raised primary
productivity and photosynthesis, while the low light conditions in the mesopelagic mean
these processes are not expected to be present at this depth, making the communities at
the two depths quite functionally different. Where there were multiple samples from the
same station and depth, one was randomly retained, due to our preliminary work showing
models with replicates could end up producing modules representing only the replicates; a
module only describing one sampling point is not particularly informative. This resulted
in 69 samples, with 39 DCM and 30 mesopelagic samples, from stations shown in Figure
5.24. The expectation is that the models built from data relating to these two distinct ocean
regions will identify modules whose weights are clearly divided between the two layers, and
for which weights of features support the expected divided in metabolism between the two
regions.

The data was log scaled so entry yi = ln(yi +1), to maintain the approximately 30% of
values which are 0. Features in this data are the relative abundance of InterPro entries. A
model was trained using the KL beta loss function, model selection performed using 100
iterations for each method, for k = 2..20 with 100 iterations for each value of k, results
are shown in Figure 5.24. Most of the methods peak at k = 2, with further peaks at k = 6.
Inspecting the W matrix for k = 2 (Figure 5.25) shows a majority of mesopelagic samples
assigned a high weight for module m1 with very low weight for m2, and the inverse for DCM
samples. Using this model as a simple classifier, assigning each sample to the component it
has the highest weight for and assigning m1 to be mesopelagic and m2 to be DCM, results
in 97% accuracy. We also identify functional differences in the two modules which fit with
this distinction between the light filled DCM and the dark mesopelagic. GSEA analysis
showed m2 to be enriched for a number of photosystem components, reflecting the absence
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Fig. 5.24 Top: Location of samples selected from the EBI annotation of Tara Oceans
expedition for inclusion [3, 4]. Bottom: Model selection values for k = 2..20, showing peaks
at k = 2 and k = 6 for all methods but permutation, which peaks at k = 4. Dispersion has a
peak at k = 6 but continues to rise after this.
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Fig. 5.25 Results of decomposition of Tara Oceans data [3, 4] from DCM and Mesopelagic
depths. Left: W matrix and coloured ribbon indicating the depth the sample originates from,
showing module m2 associated with DCM samples and m1 with the mesopelagic. Right:
Gene Set Enrichment Analysis (GSEA) results showing DCM associated m2 enriched for
photosynthetic components, reflecting an expected functional difference between the two
depths.

of photosynthesis in the mesopelagic. Our model appears to distinguish between the two sets
of samples we expected to be quite distinct.

There were also peaks at k = 6 in most model selection criteria, so we inspected the
decomposition at this rank to see if it contained additional useful information (Figure 5.26).
Again, most modules are associated with a given depth. The mesopelagic samples are
associated with m1 and m4. Most DCM samples are a mixture of m2, m3, and m5. Plotting
the module weights in two dimensions using PCA shows three groups mainly separating by
depth, with three samples which are out of place. Enrichment analysis of this decomposition
again shows some photosystem components enriched in all these DCM modules. Module m3
appears to represent eukaryote specific functions not found in the other DCM modules, such
as endoplasmic reticulum, nucleus, and MCM complex. This module has high weight in the
two southernmost samples (green on maps in Figure 5.25). Samples were size fractionated
to select for prokaryotes, being filtered for either 0.22−1.16 µm or 0.22−3 µm, however
some eukaryotic picoplankton such as species of Micromonas or Bathycoccus still fall within
this larger cell size range. Module m3 appears to reflect samples where a greater portion
of picoplankton community is eukaryotic. The two mesopelagic modules m1 and m4 are
again characterised largely by depletion of terms, with only one term appearing enriched
(chromosome). The final module m6 has high weight in a mixture of depths, and is enriched
mainly for membrane related terms. This six module decomposition offers some additional
insight, separating out eukaryotic function to a separate module, while still separating the
depth mostly as expected.
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Fig. 5.26 Results of decomposition of Tara Oceans data from DCM and Mesopelagic depths
[3, 4]. Top left: W matrix and coloured ribbon indicating the depth the sample originates
from, Top right: GSEA enrichment analysis of modules, showing m3 enriched for eukaryotic
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proportion of each module in each station, separated by depth, with left being DCM and right
mesopelagic.
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Having demonstrated recovery of a meaningful separation between samples expected to
show clear functional difference, we applied the same methods to analyse only surface ocean
samples from the same dataset. As previously, where duplicate samples existed we discarded
one sample at random. Three samples which had been sequenced using pyrosequencing
rather than Illumina sequencing were also removed. Only samples labelled as surface water
were included, all of which were taken at a depth of 5 m. The two southernmost stations were
excluded as outliers, as based on the two depth decomposition and preliminary analyses these
two stations were highly functionally distinct, causing problems identifying an appropriate
rank for the decomposition. This resulted in a total of 58 samples, originating from 22
Longhurst provinces, with the largest number from the South Pacific subtropical gyre (11
samples). Each sample has been labelled with the Longhurst province it originates from in
addition to the sample identifier. Relative abundances of InterPro entries were used as input
data.

Rank selection was performed for k = 2..20, using the multiplicative update solver and
KL divergence, with 100 iterations for each value of k, with results shown in Figure 5.27.
Both consensus based methods show peaks at k = 3 and k = 9, though dispersion continues
to climb after this point. The concordance index also shows a peak at k = 3 and after this as
k = 6 and k = 9. Permutation similarly shows a peak nearby at k = 8 and remaining high for
k = 9. The split-half selection method appears less clear, with similarly high values between
k = 8 and k = 18.

Looking at the modules for k = 9, some geographic patterns are apparent in Figure 5.28.
Module m3 has high weight throughout the North Atlantic; m8 taking a high weight in the
South Atlantic; and m4 similarly high through the South Pacific and Indian Ocean. Not
all modules have such geographic grouping: module m2 has high weight in two Southern
samples which are closer to land, off the western coasts of Chile and South Africa; and
module m9 has high weight in both the Mediterranean and more southern samples from the
Pacific.

Fig. 5.27 Rank selection for Tara Oceans surface data [3, 4]
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Fig. 5.28 Map of module weights for Tara Oceans surface modules for k = 9 [3, 4]

GSEA enrichment of these nine modules is shown in Figure 5.29 for the biological
process namespace of the Gene Ontology (GO). Three of the modules (m3, m4, and m5)
are enriched for photosynthesis, and this the most widely shared enriched term, other terms
being enriched in at most 2 modules. Module m2 which has high weight in two samples
closer to coasts has only a single term enriched for transpositional recombination which
occurs via a DNA intermediate.

Weights of model components can be related to environmental measurements such as
temperature, or measurements of activity such as chlorophyll-a concentration. Correlation of
the weight of each component to in-situ measurements are shown in Figure 5.30. Modules
m4, m5, and m6 each have a positive correlation with temperature individually; however
the sum of these three modules is strongly correlated to temperature, suggesting that heat
response could be a mixture of these modules functions (Figure 5.31). Of these modules
positively correlated with temperature, only m4 is also positively correlated with chlorophyll-
a concentration. Module m3 is also positively correlated with chlorophyll concentration, but
has a negative correlation with temperature. Again, the sum of modules m3 and m4 is more
strongly correlated than either individually, allowing a separation of functions associated
with primary production into cold (m3) and warm (m4) modules. Correlation of these module
combinations are shown in Figure 5.31
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Fig. 5.29 Enrichment of GO terms in modules for Tara Ocean surface decomposition with
k = 9 [3, 4]. Limited to the GO biological process namespace.
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Fig. 5.31 Correlation of combinations of Tara Ocean surface modules and environmental
conditions taken in situ. Line of best fit based on ordinary least square regression.

The weights of modules can also provide useful input for predictive models. We per-
formed a multiple linear regression using the ordinary least squares method with chlorophyll
a concentration as the dependent variable and module weights as explanatory variables,
with a resulting R2 = 0.744. Chlorophyll a concentration is often used an estimate of the
activity of a microbial community,specifically the primary production being carried out, as
chlorophyll a is a distinctively pigmented component of the photosynthetic machinery. As a
simple measure of how well this model would fit to new data, we used the duplicate samples
which had not been included as part of the decomposition learning. Module weights were
determined from the InterPro abundances of the duplicate samples, and then chlorophyll a
concentration predicted using these module weights and the linear regression, with results
shown by red points in Figure 5.32. Chlorophyll a concentration was predicted well for all
duplicate stations except one, which had an in-situ measurement far outside the range of
those included in the decomposition learning, measuring 1.55 where the maximum among
stations included was 0.39. These duplicate samples collected simultaneously with those
from which the decomposition was learnt are not a robust test set, but it shows that the
reduced dimensions of NMF could be further explored as inputs for predictive methods
connecting function more directly to microbial activity.
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Fig. 5.32 Chlorophyll a concentration (mg/m3) predicted by linear regression is shown on
the vertical axis, with in-situ observation of chlorophyll a concentration on the horizontal
axis. An ordinary least square regression was carried out using module weights from NMF
decomposition of the Tara Oceans surface data [3, 4] as predictor variables. Blue points are
samples included in learning the decomposition; red are duplicate samples which were not
included in decomposition learning. The top plot includes one duplicate which had an in-situ
observation far outside the range included in the training samples; bottom shows the same
plot with this point excluded.
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5.6 Discussion

5.6.1 Rank Selection

Selecting an appropriate rank is an important task in NMF decomposition for which a variety
of methods have been proposed. Several methods were compared in a previous study [372]
however this analysis did not include a method proposed to be well suited to data with
overlapping latent modules, the concordance index [369]. Additionally, this review evaluated
performance on synthetic datasets with either discrete latent modules, or datasets generated
from randomly filled W and H matrices. We started from the assumption that the underlying
structure in meta-omic data would have a structure of overlapping blocks, which is not
covered by these two synthetic datasets. Additionally to our best knowledge, an evaluation
of the concordance index has not been previously performed for any data, and the other
methods have not been evaluated on simulated sequencing data. Our evaluation found that
on synthetic data many of the methods tested had peaks or elbow points one above or below
of the true rank, however in datasets with more overlap and noise the concordance index
retained this signal more clearly than the other methods tested. The permutation method
performed well for data with low noise, but more poorly in data with more overlap and noise,
terminating the search at too small a rank. Rank selection criteria thus approximately locate
the true rank of the data, with the concordance performing best across data with different
properties. In application to real world data, decompositions either side of the suggested rank
identified by the rank selection criteria should be inspected to identify the most suitable value.
Further visualisation of matrices can identify whether added modules are informative, such
as refining or splitting a module in comparison to a lower rank, or whether uninformative,
such as low weight across all samples or weight for only a single sample, and should form a
vital step in identifying a suitable decomposition rank.

To support these results in synthetic data, we simulated metagenomic sequencing of two
different communities and evaluated the model selection performance on this data which is
closer to a natural community. Between these two simulations we observed that while the
maximum value of the concordance index occurs before the true rank, in both cases it showed
a peak at the true rank. No other method had a peak at the correct rank in both simulations.
Based on these results, for application to real world data in Section 5.5 we suggest a
strategy of seeking agreement between the concordance index and any of the other methods
when selecting an appropriate rank, or if only using one criteria to use the concordance
index. We demonstrated in these case studies that this rank selection approach identified
ranks corresponding to known meaningful groupings in three different real world scenarios.
Additionally, exploring other ranks with high values provided informative refinement the
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decompositions in the Tara Oceans case study (Section 5.5.3) separating out the contribution
of eukaryote specific function in a subset of surface samples.

5.6.2 Feature Importance

Given an NMF decomposition, it is desirable to be able to know which features are important
to each module. The weight of a feature may be a poor indication of this however, as an
abundant but uninformative feature may have higher weight than a rare interesting feature.
Similarly we illustrated issues with correlation between module weights over samples and
feature abundances in input data as a way of assessing feature importance. Where features are
shared between latent modules they were shown to have lower correlation even in data where
within a latent module the features have perfect correlation (Figure 5.2). We introduced two
new ways to assess the importance of features, aiming to improve identification of shared
features: permutation based and LOOCD. All methods assigned lower values to shared
and ubiquitous features, however LOOCD showed the lowest crossover between values for
features not in a module and those which are (Figure 5.14).

In real world applications, it is necessary to know what value for each of these importance
measurements distinguishes relevant features. Testing the three methods we developed (a
greedy algorithm, a KDE method, and a simple threshold) in combination with the three
feature importance measures we found that LOOCD performed best in identifying which
features belong to a module if a correct threshold can be identified. However the KDE
method failed to identify suitable thresholds, and the greedy assignment (which does not
work by selecting a threshold) performed worse than the KDE method. We demonstrated
that a threshold of value of −0.05 for LOOCD gave close to the maximum recovery and
relevance scores across multiple synthetic datasets with a range of latent ranks, providing a
stable default threshold. Together this provides a new method of identifying which features to
consider important when interpreting the features of an NMF decomposition which is more
robust in data with high feature sharing. This was supported by analysis of the simulated data,
in which recovery of the underlying functional modules, including shared and ubiquitous
function, was demonstrated using LOOCD and the default threshold.

We began from the assumption that in the ocean and other natural microbial environments,
many functions would be shared across latent modules; the LOOCD method we developed
showed the best performance in recovering modules in synthetic and simulated data with
such overlapping. In combination with a threshold of −0.05 beyond which to consider a
feature as important to a module, we suggest this method is well suited to interpret features
in decompositions of real world data metagenomic data.
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5.6.3 Summary

In this chapter we have developed and illustrated techniques for applying NMF to metagenome
data from microbial communities, showing it’s applicability both in computationally simu-
lated data and real world data from multiple environments. While the NMF decomposition
method itself is not new, its application in metagenomics has been infrequently explored. We
have developed approaches suited to data where features, in our case functions of microbes,
will be widely shared between the latent modules we seek to recover. To our best knowledge,
the concordance index [369] had not been evaluated, either in isolation or in comparative
studies. Further, comparative studies had not used data with overlapping module structures.
We showed that the concordance index to be the best performing rank selection method in our
experiments, and suggest this an appropriate tool for identifying suitable ranks of NMF de-
composition. The feature weight matrix H of NMF decompositions remain high dimensional,
and biological interpretation requires methods which can identify features important to each
module. We developed the new LOOCD method, which better identifies which features
which are important to a module including those which are shared or ubiquitous, in contrast
to other methods such as correlation which less well capture shared features.

In three real world case studies we showed that these methods represents a promising
technique for exploratory analysis of the growing volume of environmental metagenomic data.
We were able to show in Section 5.5.1 the identification of functional modules corresponding
to communities with established differences in HMP data, where samples from different
locations on the body are shown to be functionally distinct. We further illustrated that within
oral samples, where functional distance between sample location is less distinct, the methods
identified modules relating to the locations within the mouth and functional terms enriched
within those modules (Figure 5.21). Similar applicability was shown in data from a study
of the Waiwera river estuary [1], and we showed interpretive benefits in comparison to
the discrete WGCNA methods of identifying modules. Analysis of EBI annotation of the
Tara Oceans data in Section 5.5.1 showed that our methods can handle large scale, ocean
metagenome data analysis, describing the functional modules characterising the DCM and
mesopelagic ocean. We present an initial analysis of surface ocean samples from the same
data, and show it has promise as a method for relating function and environmental conditions
through correlations of module weights and in-situ measurements, and through regression
analysis of primary productivity measured via chlorophyll concentration. More work is left
to do in interpreting this surface ocean analysis in collaboration with biologists, but we have
demonstrated the potential of our methods for understanding ocean metagenome data.

A recent study used NMF for a similar purpose, analysing Arctic metagenomic and
metatranscriptomic data [405]. Identifying k = 4 as a suitable rank for both metagenomic
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and -transcriptomic data, the four sub-metagenomes (or modules in the terminology used
in this thesis) were shown to correspond to a vertical region from surface to deep waters,
and enzymes related to aromatic compound degradation found to be highly specific to
humic-rich fluorescence DOM maximum samples. Rank selection was performed based
on cophenetic correlation and dispersion, two methods as discussed in Section 5.3.2 are
based on assigning each sample to a single class, and evaluating stability of clustering
between random initialisations. Where strong separation is expected this may be a suitable
method, and the Arctic Ocean may fit this assumption, displaying strong vertical stratification.
While this is clear in the metagenomic data, with visualisations of the consensus matrix
showing clear stable groups, this is less apparent in metatranscriptomic data. For the
metatranscriptomic profiles, cophenetic correlation and dispersion indicate different suitable
ranks, with dispersion taking it’s lowest value at k = 4, and visualisation of the consensus
matrix showing less consistent clustering than in the metagenomic data, suggesting an
alternative rank selection such as the concordance index method may be applicable to this
data. Biological interpretation of the decomposition used an approach explicitly inspired
by specificity [369], and showed interesting insight into which functions were unique to
a particular module. Visualisations of the function matrix suggest patterns of features
shared between two or three modules, so there may be additional biological insight possible
through methods such as those explored here which better capture these shared features. This
application of NMF to Arctic data demonstrates both that there is a desire for methods which
produce interpretable models of ocean microbial function which can be served by NMF, and
that techniques which are suited to overlapping underlying structures may be beneficial when
strong separation is not observed.





Chapter 6

Discussion and Future Work

6.1 Summary

In this thesis we have developed two methods for analysing meta-omic sequencing of
environmental samples, with a focus on marine microbes. Firstly we developed a pipeline to
generate MAGs for eukaryotic microbes from metagenomic sequencing of marine microbial
communities, providing draft genomes for uncultured members of these natural communities.
Secondly, we developed methods based on NMF decomposition for describing the distribution
of functions across the ocean which permits functions to be shared among modules, and
demonstrated the applicability of these methods in simulated and real world data.

More specifically in Chapter 4 we described the methods used to recover eukaryotic
MAGs from 12 sets of metagenomic reads from the Atlantic and Arctic oceans, generating
in total 21 eukaryotic MAGs. The methods we used were similar to those employed for
prokaryotic binning, but incorporating a step separating out eukaryotic contigs using EukRep
[235]. Additionally, we showed that use of psuedo-alignment tools such as Kallisto [209]
can provide a sufficient coverage estimate for metagenomic binning tools, with reduced
computational cost compared to short read alignment tools. We also presented analysis of
both these eukaryotes and the 122 prokaryotes, showing their quality, taxonomy, distribution,
function, and association between MAGs from the two kingdoms.

These analyses showed a clear distinction between the MAGs recovered from polar and
non-polar samples, with no eukaryotes crossing the Arctic circle, supporting breakpoints
identified in 16S/18S and metatranscriptome beta diversity at approximately 9.5 ◦C and 13 ◦C
respectively in samples from the same expeditions [288]. Functional annotation of these
MAGs showed a greater number of unique functions in polar eukaryotes, suggesting that a
dynamic surface ocean with seasonal mixing and sea-ice formation requires these genomes
to diversify. An associated eukaryote and prokaryote pair we identified were enriched for
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membrane processes related to transport, suggesting exchange between the two organisms,
fitting with a mutualistic relationship.

In Chapter 5 we described methods of applying NMF to environmental meta-omics data.
While this method itself is not new, having a history of applications in other domains such as
computer vision and document analysis, its application to environmental meta-omics data
has been limited; the last application to ocean data we are aware of was to Global Oceans
Survey (GOS) data. A key problem in decomposition methods is selection of an appropriate
rank; we evaluated the performance of several rank selection methods on both synthetic and
simulated sequencing data with features which appear in multiple modules. Our evaluation
identified the Concordance Index, which had not been included in previous comparisons, as
the most consistent of the measures tested. Having obtained a decomposition of appropriate
rank, we developed new methods of evaluating how relevant each feature is to a module
in a context of shared features, and from these to classify whether a feature is in a module
or not. Our LOOCD measure of feature importance showed improved performance over
the other two tested (correlation and permutation based), particularly for shared features.
Alongside this we identified a suitable value to use as a cut-off for classification of features
using LOOCD, which appeared stable across ranks in synthetic data and performing well
in simulated sequencing data. This chapter concluded with three cases studies, showing
application of these techniques to meta-omics data of increasing complexity.

6.2 Future Work

6.2.1 Pangenomic Analysis of Micromonas MAGs

Eukaryotic MAGs for ocean microbes are now being generated on a large scale [2, 238, 23],
and recovering closely related genomes. Our results in Chapter 4 recovered 5 Micromonas
MAGs, with 20 and 26 in two binning analyses of Tara Oceans data [152, 238]. We found
a high similarity (>98% ANI) between our Arctic Micromonas MAG P2_1E and a MAG
previously recovered from the Antarctic Micromonas sp. ASP10-01a [19].

Species of picoeukaryotes in the genus Micromonas span a very wide latitudinal and
thermal range, including the polar adapted Micromonas polaris, for which no complete
genome is yet available [85]. The genus appears to divide into thermotypes, with temperature
determining their distribution [86]. Changing ocean conditions in the Arctic such as warming
and ocean acidification have been predicted to increase the role of Micromonas in this
region, and experiments showed that Micromonas are capable of adapting to shifting thermal
conditions [103].
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The growing volumes of MAGs provide the potential to explore the existing functional
diversity among Micromonas beyond those cultured strains. MAGs are incomplete, posing
difficulties for pangenomic analyses: an absent gene could be a false negative, where it is
absent due to the MAG’s incompleteness, or truly absent. Tools and methods taking this into
consideration have been developed and applied for prokaryotic MAGs [263], where large
numbers of closely related MAGs have been available for a longer time. Extending these
approaches to Micromonas, and hence eukaryotes, will help reveal environment specific
traits among a genus with global importance.

6.2.2 Superkingdom Prediction of Metagenomic Reads

Current PhD student William Boulton and colleagues at JGI have begun generating eukaryotic
MAGs from the Multidisciplinary drifting Observatory for the Study of Arctic Climate
(MOSAiC) metagenomics data (Section 6.2.4). This is a much larger set of data than our
12 samples, making techniques for reducing the size of data at steps valuable. Part of the
process they have adopted is to identify potentially eukaryotic reads, which can then be
assembled separately from the prokaryotic reads. This can be achieved using reference based
methods, however for classification of reads this can be time or memory intensive. A tool like
Kraken [218] intended for taxonomic classification of reads is rapid but with high memory
requirement, and aims for a level of taxonomic resolution not required for separation at the
superkingdom level. For assembled contigs, tools such as EukRep and Tiara [235, 265]
provide rapid classification into a small number of classes (eukaryotic, prokaryote, plastid)
through machine learning techniques (support vector machines and neural networks), but
require a minimum length of contig for classification. Taking a similar machine learning
approach to train a model for superkingdom level classification of metagenomic reads has the
potential to provide a computationally cheaper way to filter eukaryotic metagenomic reads
prior to assembly, reducing the volume of data to be handled at an early point in eukaryotic
binning efforts.

6.2.3 NMF Modules as a Feature Extraction Method

The case study of the surface Tara Oceans data in Section 5.5.3 showed that a linear regression
model fitted to the module weights explained approximately 74% of variation among in-
situ chlorophyll-a concentration. We propose that the explanatory power of this reduced
dimension representation could be used as a feature extraction method when applying
other machine learning techniques to meta-omic data. Feature extraction methods seek to
construct a reduced number of features derived from original high dimensional data, seeking
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to provide a lower dimension input with reduced redundancy for a subsequent machine
learning technique. Ordination approaches such as PCA have been commonly employed as
feature extraction methods [406].

Deep learning methods such as Convolutional Neural Networks (CNNs) have led to signif-
icant advances in applications where the number of samples is much greater than the number
of features, including in Earth systems science [407]. However while ocean metagenome
sampling and sequencing is expanding rapidly, the number of features (taxa, genes, functions)
seems set to remain greater than the number of samples for the near future. Extracting a lower
dimensional representation of high dimensional structures such as metagenome taxonomy
has shown improved performance in metagenome classification tasks [408], and NMF has
been used for this purpose in classification of images of medical diagnosis [409]. NMF
modules could provide value as an interpretable feature extraction method for deep learning
regression models aiming to relate metagenomic profiles to measures of microbial activity
(e.g. chlorophyll-a, CO2 flux).

6.2.4 Meta-omics Informed Earth Systems Modelling in the Central
Arctic

Metagenomic and metatranscriptomic data from large scale ocean expeditions such as the
Global Ocean Survey [55], Tara Oceans [4] and Sea of Change [312] have provided insight
into the traits of ocean communities which underlie transformation of matter and energy
in their environments. This trait information has been used to develop in silico models
linking microbial activity and ocean biogeochemical cycles, allowing predictions to be made
under different conditions of warming [250, 312]. However the smaller number of studies of
polar microbiomes, including ours in Chapter 4, have shown distinct differences between
polar microbes and function and their non-polar counterparts [23, 288]. Existing models
are therefore difficult to apply to polar environments, as they do not reflect the observed
evolutionary novelty and associated traits of polar organisms.

Recently, the Multidisciplinary drifting Observatory for the Study of Arctic Climate
(MOSAiC) expedition has radically expanded the amount of data available for the central
Arctic Ocean [56]. This year-round expedition used ‘RV Polarstern’ as a drifting research
platform frozen into the ice and was completed in October 2020, linking observations across
the climate of the highly inaccessible central Arctic Ocean with an estimated 10 Tbp of
sequence data from marine microbes. Microbial communities from both ice and water
were sampled at multiple depths. From this expedition, we have access to ≥400 genomic
and transcriptomic samples each from across the Arctic Ocean with linked physical (e.g.
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Fig. 6.1 Application of NMF methods to MOSAiC pilot sequencing [56]. On the left is an
indication of depths from which samples were collected. a) shows the W matrix giving the
weight of modules for each sample. A clear separation is visible between the two depths
of ice. Water samples are similarly represented by two modules, one shallower one deeper,
with the samples at 51 metres being a mixture of the two. b) shows the H feature matrix,
illustrating a mix of widely shared and unique features in modules. c) is GSEA enrichment
of GO terms based on the H matrix, showing a high level view of the processes enriched or
depleted in each module, such a photosynthesis being enriched in the upper ice samples.

temperature, salinity, currents) and biogeochemical measurements (e.g., nutrients, carbon
export). This linked meta-omic and physical data over a whole year provides a unique
opportunity for developing a cell model tailored to polar microbes of the Arctic Ocean,
allowing simulation of how warming may affect the Arctic ecosystem including its food web
and associated biogeochemical cycles. Our preliminary analysis of metagenomic sequencing
of 14 pilot samples shows that the NMF approach discussed in Chapter 5 can identify modules
associated with different sample depths from ice to the bathypelagic ocean, and the traits
within these modules (Figure 6.1)

In collaboration with Professor Tim Lenton at the University of Exeter, we have written a
Leverhulme Trust proposal to develop a novel polar cell model, building on the EVolutionary
Ecosystem (EVE) cell model that links omics-informed traits with biogeochemical cycles.
This model was informed by a transcriptomic-derived relationship between temperature and
the biosynthesis rate of proteins across major latitudinal zones of the oceans [410, 312].
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Based on the elemental composition of ribosomes, the EVE model reproduced phytoplankton
growth strategies, cell size and N:P stoichiometry based on a representation of fundamental
cellular and biophysical constraints. However, the existing EVE model does not represent
polar-specific traits and their plasticity including their ability to evolve under conditions of
selection. Furthermore, it only represents photoautotrophic microbes. Consequently, the
underpinning cell model will need to be modified to reflect the strategies and mechanisms
(e.g. storage strategies of eukaryotic algae, mixotrophy, heterotrophy) of a wide range of
organisms (bacteria, archaea, protists) in divergent conditions (in ice, protracted darkness) as
they were encountered during the MOSAiC expedition.

6.3 Outlook

Advances in metagenomic and metatranscriptomic sequencing have allowed access to the
genetic material of natural microbial communities, including their unculturable majority.
A wide range of computational methods have been developed to generate insight into the
taxonomy, function and activity represented in this genetic data. Some steps have started to
become standard in metagenome analysis, such as assembly, and taxonomic and functional
annotation. The output of these remains complex however, analysis techniques are required
to help interpret the information within and between samples.

Obtaining genomes for the unculturable majority of organisms is a problem being tackled
using multiple approaches. Some of these address issues which are presented by recovering
MAGs from short read sequencing. Single-cell sequencing reduces the risk of contamination
and chimeric sequences within the genomes recovered [58]. Third generation long read
sequencing technologies can produce long sequences of a genome without need for assembly
and binning (Section 2.6.3). Projects such as 100 Diatom Genomes [411] are focussed on
using new and existing techniques to expand the diversity of organisms for which we have
reference genomes. Do sometimes fragmented and highly incomplete MAGs have a role
in light of these developing techniques? There exists a huge amount of second generation
sequencing data from environmental samples, and automated metagenome binning is a
comparatively inexpensive method through which genomic information can be obtained
from this already existing data. There is reasonable caution about the inclusion of MAGs
into reference databases [412, 413], and in light of this manual curation and validation of
MAGs is a time consuming but valuable step. Of our eukaryotic MAGs, only one has been
added to JGI’s PhycoCosm genomes as Micromonas sp. AD1 and labelled as a metagenome
extracted assembly; this was the most complete genome we recovered, with clear taxonomic
identification of a majority of contigs; the genes predicted were also assessed independently
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by JGI and were highly similar to our initially gene models. Many of the lower completeness
MAGs with less confirmatory evidence for lineage would be unsuitable for inclusion in such
a resource, but there is a role for high quality MAGs in contributing to these public database.

Recovery of eukaryotic MAGs is a significant advance in metagenomics, as eukaryotic
plankton play vital roles in ocean processes. However the proportion of the community
recovered in the current set of studies remains low, with 8.1% of reads in our data mapping
back to the eukaryotic MAGs and 11.8% of the total reads in Delmont et al. [2], limiting the
extent to which metagenomic binning can describe the overall community. Coverage has
been cited as a key limitation in eukaryotic MAGs recovery [235], and increasing sequencing
depth to obtain sufficient coverage of rarer taxa could prove cost-prohibitive. Computational
tools to simplify the difficult of individual steps of the binning process, such as we suggested
for assembly in Section 6.2.2 may play role in advancing the proportion of the community
we can describe with these methods. Recovery of prokaryotic MAGs has become a common
part of metagenome analysis and integrated as a step in some pipelines such as IMG [291].
With the importance of eukaryotic plankton in the oceans, it seems likely that eukaryotic
MAGs will also become a common step in analysis of ocean metagenome data. This will
however require settling on some tools and databases as standard, to make results more
easily comparable between studies; EukCC [255] seems to have been adopted for quality
estimation, but methods of taxonomic identification and estimating MAG abundance vary
between studies currently.

Methods for combining analysis of species, trait and environmental data such as joint
species distribution models have been successfully developed and applied in ecology [414];
MAGs represent a method of providing a species-trait link which can allow such analyses in
metagenomic data. Genetic data tends to described the presence or absence of thousands of
genes or functions rather than a smaller number of traits, so ways to infer traits from genomes
will be valuable in this application. Some studies have already done this, such as predicting
trophic mode from genomic content of a MAG [238] or growth rate from MAG codon
usage bias [415], and it may be possible to infer broad environmentally linked traits like
freezing resistance from genes involved such as those coding for ice-binding proteins. While
characterising the pangenome is difficult using MAGs, the increasing volume of eukaryotic
MAGs has started to permit to a limited extent the analysis of population genomics for those
MAGs sharing a lineage, such as as identifying population structure and which genes are
under selection in Arctic Chaetoceros [416], and the recovery of further MAGs will allow
this approach to be applied more broadly.

Analysis of functional metagenomic data presents its own unique challenges, but looking
to methods applied in other dissimilar fields can suggests ways to overcome these. We



200 Discussion and Future Work

applied NMF, a method more commonly used for parts-based analysis in fields such as
document analysis and computer vision to obtain a similar description of metagenomic
data; as mentioned above joint species distribution models could provide a powerful way
to analyse MAG data. Looking to a related field, a recent model utilising eDNA amplicon
sequencing estimated changes in organisms abundances, accounting for covariates and error
in sampling and sequencing [417]. This could be adapted to metagenomics to offer a way of
understanding the seasonal dynamics in full-year metagenome studies such as MOSAiCs’s.
In fields other than metagenomics this cross-domain influence has been impactful: in artificial
intelligence research, game-playing agents have been incorporated in searching for improved
matrix multiplication algorithms [418]. Established methods such as CCA or correlation
based network analysis and clustering remain useful and have proven to be powerful tools, as
well as having the benefit of familiarity and a wide range of well supported implementations.
However with the growing volume of functional data and MAGs, novel or adapted tools will
need to be introduced to best harness the potential of these data. We propose that NMF is
one such tool among others such as statistical network models or joint species distribution
models.

Application of NMF in this thesis focussed largely on metagenomic data, describing the
functional potential of the whole community. Some of this overall functional repertoire may
not represent metabolism which is active under the conditions during sampling. Organisms
may be present but dormant, with some studies suggesting widespread seed banks of dormant
organisms which may thrive given shifts in conditions [419], or more local processes such
as a small number of cells surviving through unfavourable seasonal dynamics [420]. Some
evidence supports functional potential being stable across environmental conditions in
comparison to taxonomic composition [333], and looking at the abundance of functions
rather than presence/absence may avoid the potentially ’noisy’ functions contributed by
low abundance dormant organisms. Metatranscriptomic sequencing captures the activity of
the community at the time of sampling, revealing which parts of the functional potential
were being transcribed. Many functions encoded in dormant or otherwise less inactive cells
will not contribute to this data, removing a source of potentially uninformative features.
Saelens et al. [359] note that gene expression data tends to be characterised by local as
well as global patterns, and by functions which play roles in multiple pathways. In a
recent study of Arctic metagenome and metatranscriptome data using NMF [405] discussed
in Section 5.6.3, the consensus matrix constructed for rank selection showed consistent
clustering for metagenomic data, but was less stable in metatranscriptomic data from the
same samples. Metatranscriptomic data may eliminate some of the background noise of low
inactive functions, but contain a greater degree of overlapping and local patterns. As such
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decomposition approaches such as NMF may be well suited to analysis of metatranscriptomic
data, but benefit from associated rank selection and interpretive techniques which capture the
local and overlapping patterns.

Our work in Chapter 4 included only seven samples from the Arctic ocean, and from this
small set of samples generated 16 medium quality MAGs. Within these MAGs we replicated
the observation of Martin et al. [288] from analysis of the metatranscriptomic sequencing of
samples taken during the same expeditions that there is a strong demarcation between Arctic
and temperate and subtropical microbial communities, both in terms of taxa and functions.
Other metagenomic analyses show that the Arctic is home to considerable genetic novelty,
with a recent study of the Tara Ocean Arctic samples identifying 441 prokaryotic MAGs from
novel species [421]. The Arctic ocean is among the planet’s most inaccessible environments,
and consequently our understanding of the microbial communities and their activity are
incomplete. Human driven climate change affects the Arctic at an accelerated rate, with the
possibility for tipping points triggering abrupt non-linear change in the Arctic and beyond
[121, 422]. Data from the recently completed MOSAiC expedition covers the Central Arctic
Ocean across a full season including the Arctic winter, complementing the Tara Ocean Arctic
collected during a circumnavigation of the Arctic from May to October. Analysis of this
influx of Arctic data is undoubtedly a complex undertaking given the established novelty, but
will advance our understanding of the unique functioning of polar and Arctic microbes, and
their interactions with broader ocean processes. In the longer term, feeding this knowledge
forward into predictive climate and earth systems models as discussed in Section 6.2.4 can
help in evaluating and planning around the impact of continued climate change.
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Sample Assembler Contigs Total
Gbp

N50 L50 Max Contig
Kbp

Scaffolds
>50Kbp

% in scaf.
>50Kbp

P2 MEGAHIT 3059358 1.943396 724724 669 127.604 95 0.32
P2 SPADES 1933411 1.145116305 364784 658 524.554 118 0.9
P3a MEGAHIT 4536098 3.120726 1076012 716 147.864 59 0.14
P3a SPADES 3353304 1.983904784 703210 645 311.607 92 0.43
P1 MEGAHIT 3524824 2.504409 805269 757 991.905 149 0.53
P1 SPADES 2557771 1.590622916 494293 686 1057.628 243 1.55
NP2 MEGAHIT 5501464 3.015199 1486442 566 1107 66 0.25
NP1 MEGAHIT 6177919 3.515052 1609672 588 899.176 139 0.43
P6 MEGAHIT 3448017 2.345505 785850 697 259.275 101 0.32
P6 SPADES 2221927 1.423805502 377529 748 310.762 264 1.44
P5 MEGAHIT 1034413 0.562281 206977 567 115.416 36 0.43
P4 MEGAHIT 879176 0.50267 149007 624 95.796 22 0.28
NP5 MEGAHIT 3387596 2.075333 921231 615 517.097 129 0.6
NP5 SPADES 2895169 1.473653634 727696 497 517.111 145 0.89
P3b MEGAHIT 791494 0.391017 186459 497 101.069 5 0.27
NP3 MEGAHIT 5072980 3.145297 1364176 620 497.503 239 0.73
NP3 SPADES 5181937 2.618668657 1364985 490 576.479 199 0.75
NP4 MEGAHIT 4681656 2.917293 1268050 623 360.328 98 0.31

Table A.2 Summary statistics for metagenomic assemblies
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MAG ID IMG Bin ID Quality GTDB-Tk Lineage CheckM Lineage
Complete-

ness

Contami-

nation
Bases Genes

Contigs

NP4_26P 3300009790_26 HQ Bacteria; Actinobacteriota; Acidimi-
crobiia; Microtrichales; TK06;
MedAcidi-G3; GCA_002434645.1

Bacteria ; Actinobacteria 97.01 2.99 2255374 2325 66

NP4_41P 3300009790_41 MQ Bacteria; Proteobacteria;
Gammaproteobacteria; Legionel-
lales; Legionellaceae; None; None

93.6 1.16 1580637 1615 83

NP4_8P 3300009790_8 MQ Bacteria; Proteobacteria; Alphapro-
teobacteria; Rhodobacterales;
Rhodobacteraceae; Pelagibaca;
Pelagibaca bermudensis

Bacteria ; Proteobacteria ; Al-
phaproteobacteria ; Rhodobacterales
; Rhodobacteraceae ; Pelagibaca ;
Pelagibaca bermudensis

92.47 0.45 4518587 4559 58

NP4_9P 3300009790_9 HQ Bacteria; Myxococcota; UBA796;
UBA796; UBA796; UBA796; None

Bacteria 91.68 2.02 4258701 3898 237

NP4_16P 3300009790_16 MQ Bacteria; Verrucomicrobiota; Verru-
comicrobiae; Verrucomicrobiales;
Akkermansiaceae; Roseibacillus;
None

Bacteria 89.12 1.02 3501992 2981 397

NP4_10P 3300009790_10 MQ Bacteria; Proteobacteria;
Gammaproteobacteria; Enter-
obacterales; Alteromonadaceae; Al-
teromonas; Alteromonas macleodii

Bacteria ; Proteobacteria ;
Gammaproteobacteria ; Alteromon-
adales ; Alteromonadaceae ; Al-
teromonas ; Alteromonas macleodii

86.58 0.79 4200884 3950 367

NP4_11P 3300009790_11 MQ Bacteria; Bacteroidota; Bacteroidia;
Flavobacteriales; Flavobacteriaceae;
Croceibacter; Croceibacter atlanti-
cus

82.6 3.92 3873269 4431 569

NP4_33P 3300009790_33 MQ Bacteria; SAR324; SAR324;
SAR324; NAC60-12; Arctic96AD-
7; Arctic96AD-7 sp4

Bacteria ; Proteobacteria 63.17 0 1763599 1742 282

NP4_40P 3300009790_40 MQ Archaea; Thermoplasmatota; MGII;
MGII; MGIIA; UBA562; UBA8160

59.87 0.8 1519318 1415 201

NP4_61P 3300009790_61 MQ Bacteria; Patescibacteria; Paceibac-
teria; UBA9983; Kaiserbacteraceae;
OLB19; None

Bacteria 59.51 0.99 816027 956 91

NP4_47P 3300009790_47 MQ Bacteria; Verrucomicrobiota; Ver-
rucomicrobiae; Pedosphaerales;
UBA1100; UBA1100; None

Bacteria 52.69 0.72 1263197 1334 257

NP4_22P 3300009790_22 MQ Bacteria; Proteobacteria; Al-
phaproteobacteria; Rhodobac-
terales; Rhodobacteraceae; GCA-
002705045; GCA_002725175.1

Bacteria ; Proteobacteria ; Alphapro-
teobacteria

50.67 8.68 2021848 2219 370

NP4_18P 3300009790_18 MQ Bacteria; Proteobacteria;
Gammaproteobacteria; Enter-
obacterales; Alteromonadaceae;
Alteromonas; None

Bacteria ; Proteobacteria ;
Gammaproteobacteria ; Alteromon-
adales ; Alteromonadaceae ;
Alteromonas ; Alteromonas sp. SN2

50.3 0.76 2850860 2796 399

P3b_2P 3300002154_2 MQ Bacteria; Proteobacteria; Alphapro-
teobacteria; Rhodobacterales;
Rhodobacteraceae; Sulfitobacter_C;
None

Bacteria ; Proteobacteria ; Al-
phaproteobacteria ; Rhodobacterales
; Rhodobacteraceae

94.83 2.42 2928419 3272 207

P3b_6P 3300002154_6 MQ Bacteria; Bacteroidota; Bacteroidia;
Flavobacteriales; Cryomorphaceae;
UBA10364; None

Bacteria ; Bacteroidetes ; Flavobac-
teriia ; Flavobacteriales

92.13 2.31 1754849 1821 221

P3b_3P 3300002154_3 MQ Bacteria; Proteobacteria;
Gammaproteobacteria; Pseudomon-
adales; Nitrincolaceae; ASP10-02a;
ASP10-02a sp1

Bacteria ; Proteobacteria ;
Gammaproteobacteria

92 2.65 2565387 2664 210

P3b_5P 3300002154_5 MQ Bacteria; Proteobacteria;
Gammaproteobacteria; Pseudomon-
adales; Porticoccaceae; HTCC2207;
None

Bacteria ; Proteobacteria ;
Gammaproteobacteria ; unclas-
sified ; unclassified ; unclassified ;
gamma proteobacterium HTCC2207

90.48 3.8 2226673 2286 210

P3b_8P 3300002154_8 MQ Bacteria; Bacteroidota; Bacteroidia;
Flavobacteriales; Flavobacteriaceae;
HC6-5; None

Bacteria ; Bacteroidetes ; Flavobac-
teriia ; Flavobacteriales

78.33 2.28 1579624 1674 235

NP5_10P 3300027859_10 MQ Bacteria; Proteobacteria;
Gammaproteobacteria; Pseu-
domonadales; Alcanivoracaceae;
Alcanivorax; GCA_002726155.1

Bacteria ; Proteobacteria ;
Gammaproteobacteria ; Oceanospir-
illales ; Alcanivoracaceae ; Al-
canivorax ; Alcanivorax sp. DG881

93.59 2.48 3336769 3400 304
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NP5_15P 3300027859_15 MQ Bacteria; Bacteroidota; Bac-
teroidia; Flavobacteriales; UA16;
UBA11663; None

Bacteria ; Bacteroidetes 92.74 0.54 1996931 1784 134

NP5_12P 3300027859_12 HQ Bacteria; Proteobacteria; Alphapro-
teobacteria; Micavibrionales; Micav-
ibrionaceae; UBA2705; None

Bacteria ; Proteobacteria ; Alphapro-
teobacteria

91.89 3.7 2436683 2376 38

NP5_7P 3300027859_7 MQ Bacteria; Verrucomicrobiota; Ver-
rucomicrobiae; Verrucomicrobiales;
Akkermansiaceae; SW10; None

Bacteria 90.71 0.94 3734917 3322 409

NP5_9P 3300027859_9 MQ Bacteria; Proteobacteria;
Gammaproteobacteria; Pseu-
domonadales; Nitrincolaceae;
Neptunomonas; Neptunomonas
phycophila

Bacteria ; Proteobacteria ;
Gammaproteobacteria ; Oceanospir-
illales ; Oceanospirillaceae

89.39 0.21 3510332 3328 46

NP5_11P 3300027859_11 MQ Bacteria; Bacteroidota; Bacteroidia;
Flavobacteriales; UA16; UBA8752;
None

Bacteria ; Bacteroidetes 88.71 7.65 2557483 2279 281

NP5_3P 3300027859_3 MQ Bacteria; Proteobacteria;
Gammaproteobacteria; Enter-
obacterales; Alteromonadaceae;
Alteromonas; None

Bacteria ; Proteobacteria ;
Gammaproteobacteria ; Alteromon-
adales ; Alteromonadaceae ;
Alteromonas ; Alteromonas naph-
thalenivorans

71.55 1.72 4479979 4249 351

NP5_8P 3300027859_8 MQ Bacteria; Proteobacteria; Alphapro-
teobacteria; Rhodobacterales;
Rhodobacteraceae; Pelagibaca;
Pelagibaca bermudensis

Bacteria ; Proteobacteria ; Al-
phaproteobacteria ; Rhodobacterales
; Rhodobacteraceae ; Pelagibaca ;
Pelagibaca bermudensis

60.38 1.91 3663361 4053 643

NP5_29P 3300027859_29 MQ Bacteria; Bacteroidota; Bacteroidia;
Flavobacteriales; Flavobacteriaceae;
UBA3537; None

Bacteria ; Bacteroidetes ; Flavobac-
teriia ; Flavobacteriales ; Flavobac-
teriaceae ; Formosa ; Formosa sp.
Hel3_A1_48

55.58 4.7 1088070 1148 156

NP5_26P 3300027859_26 MQ Archaea; Thermoplasmatota;
MGII; MGII; MGIIB; UBA11751;
GCA_002504845.1

Archaea ; Euryarchaeota ; unclassi-
fied ; unclassified ; unclassified ; un-
classified ; uncultured marine group
II euryarchaeote

54 0 1047207 1000 85

NP5_19P 3300027859_19 MQ Bacteria; Proteobacteria;
Gammaproteobacteria; Pseu-
domonadales; Halomonadaceae;
Halomonas; None

Bacteria ; Proteobacteria ;
Gammaproteobacteria ; Oceanospir-
illales ; Halomonadaceae ;
Halomonas

53.45 0 1548523 1705 292

NP1_13P 3300012953_13 MQ Bacteria; Planctomycetota;
UBA1135; UBA2386; UBA2386;
GCA-2684655; None

Bacteria 95.83 1.14 3699837 3051 48

NP1_38P 3300012953_38 MQ Bacteria; Planctomycetota; Phycis-
phaerae; Phycisphaerales; SM1A02;
GCA-002718515; None

Bacteria 90.91 0 1686369 1589 70

NP1_9P 3300012953_9 MQ Bacteria; Myxococcota; UBA796;
UBA796; None; None; None

Bacteria 87.11 0.05 4491777 4197 460

NP1_22P 3300012953_22 MQ Bacteria; Actinobacteriota; Acidimi-
crobiia; Microtrichales; TK06;
MedAcidi-G3; GCA_000817105.1

Bacteria ; Actinobacteria 85.47 2.14 2181758 2305 159

NP1_5P 3300012953_5 MQ Bacteria; Planctomycetota; Plancto-
mycetes; Pirellulales; Pirellulaceae;
GCA-2723275; None

Bacteria ; Planctomycetes ; Plancto-
mycetia ; Planctomycetales ; Planc-
tomycetaceae

85 6.58 6056143 5124 760

NP1_17P 3300012953_17 MQ Bacteria; Verrucomicrobiota; Ver-
rucomicrobiae; Pedosphaerales;
AAA164-E04; AAA164-E04;
AAA164-E04 sp1

Bacteria 79.31 5.39 3278878 2892 313

NP1_11P 3300012953_11 MQ Bacteria; Myxococcota; UBA796;
UBA9615; UBA9615; UBA6601;
None

Bacteria 77.11 2.8 4231802 3889 628

NP1_14P 3300012953_14 MQ Bacteria; Myxococcota; UBA796;
UBA796; None; None; None

Bacteria 76.74 1.68 3563224 3355 340

NP1_23P 3300012953_23 MQ Bacteria; Bacteroidota; Bacteroidia;
Flavobacteriales; Flavobacteriaceae;
Croceibacter; Croceibacter atlanti-
cus

69.39 0.68 2188858 2085 26

NP1_31P 3300012953_31 MQ Archaea; Thermoplasmatota;
MGII; MGII; MGIIB; UBA496;
GCA_002713585.1

Archaea ; Euryarchaeota ; unclassi-
fied ; unclassified ; unclassified ; un-
classified

63.69 8.8 1722331 1525 163

NP1_19P 3300012953_19 MQ Bacteria; Verrucomicrobiota;
Verrucomicrobiae; Opitu-
tales; Opitutaceae; UBA5691;
GCA_002420265.1

Bacteria 61.33 3.11 2630549 2610 488

NP1_39P 3300012953_39 MQ Archaea; Thermoplasmatota;
MGII; MGII; MGIIB; UBA501;
GCA_002701965.1

Archaea ; Euryarchaeota ; unclassi-
fied ; unclassified ; unclassified ; un-
classified

60 0 1443393 1290 143
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NP2_8P 3300012952_8 MQ Bacteria; Verrucomicrobiota; Verru-
comicrobiae; Verrucomicrobiales;
Akkermansiaceae; Roseibacillus;
None

Bacteria 95.92 0.52 4113173 3503 384

NP2_25P 3300012952_25 MQ Bacteria; Actinobacteriota;
Acidimicrobiia; Microtrichales;
MedAcidi-G1; MedAcidi-G1;
GCA_002697965.1

Bacteria ; Actinobacteria ; Acidimi-
crobiia ; unclassified ; unclassified ;
unclassified

76.92 7.26 1645047 1910 241

NP2_18P 3300012952_18 MQ Bacteria; Proteobacteria; Al-
phaproteobacteria; Caulobacterales;
Hyphomonadaceae; Hyphomonas;
GCF_000682775.1

Bacteria ; Proteobacteria ; Alphapro-
teobacteria ; Rhodobacterales ; Hy-
phomonadaceae ; Hyphomonas ; Hy-
phomonas sp. L-53-1-40

75.16 0.32 2405472 2379 9

NP2_10P 3300012952_10 MQ Bacteria; Planctomycetota; Plancto-
mycetes; Pirellulales; Pirellulaceae;
UBA11883; UBA11883 sp1

Bacteria ; Planctomycetes ; Plancto-
mycetia ; Planctomycetales ; Planc-
tomycetaceae

73.52 1.28 3567095 3098 568

NP2_9P 3300012952_9 MQ Bacteria; Proteobacteria;
Gammaproteobacteria; Enter-
obacterales; Alteromonadaceae;
Pseudoalteromonas; Pseudoal-
teromonas marina

Bacteria ; Proteobacteria ;
Gammaproteobacteria ; Alteromon-
adales ; Pseudoalteromonadaceae ;
Pseudoalteromonas

72.49 1.72 3894124 3750 239

NP2_11P 3300012952_11 MQ Bacteria; Myxococcota; UBA796;
UBA796; UBA796; None; None

Bacteria 69.69 2.58 3471424 3434 524

NP2_41P 3300012952_41 MQ Bacteria; UBP7; UBA6624;
UBA6624; UBA6624; UBA6624;
GCA_002501535.1

Bacteria 68.18 1.72 879918 1021 135

NP2_14P 3300012952_14 MQ Bacteria; Bacteroidota; Bacteroidia;
Flavobacteriales; Flavobacteriaceae;
Croceibacter; Croceibacter atlanti-
cus

Bacteria ; Bacteroidetes ; Flavobac-
teriia ; Flavobacteriales ; Flavobacte-
riaceae ; Croceibacter ; Croceibacter
atlanticus

63.54 2.2 2493551 2801 349

NP2_12P 3300012952_12 MQ Bacteria; Poribacteria; WGA-4E;
WGA-4E; UBA9662; TMED15;
GCA_002714785.1

Bacteria 61.5 7.09 3238826 3177 615

NP2_50P 3300012952_50 MQ Archaea; Crenarchaeota; Ni-
trososphaeria; Nitrososphaerales;
Nitrosopumilaceae; Nitrosopumilus;
None

Archaea ; Thaumarchaeota ; unclas-
sified ; Nitrosopumilales ; Nitrosop-
umilaceae ; Candidatus Nitrosop-
umilus

54.98 5.99 705983 951 115

NP2_13P 3300012952_13 MQ Bacteria; Myxococcota; UBA796;
UBA796; UBA796; GCA-2683315;
None

53.17 0.28 2951437 2977 596

NP2_26P 3300012952_26 MQ Bacteria; Actinobacteriota; Acidimi-
crobiia; Microtrichales; UBA11606;
UBA8592; None

Bacteria ; Actinobacteria 50.29 8.97 1619219 1990 302

NP3_5P 3300027906_5 HQ Bacteria; Proteobacteria;
Gammaproteobacteria; Nevskiales;
Algiphilaceae; None; None

Bacteria ; Proteobacteria ;
Gammaproteobacteria

98.91 3.61 4558824 4269 66

NP3_6P 3300027906_6 MQ Bacteria; Proteobacteria;
Gammaproteobacteria; Enter-
obacterales; Alteromonadaceae; Al-
teromonas; Alteromonas macleodii

Bacteria ; Proteobacteria ;
Gammaproteobacteria ; Alteromon-
adales ; Alteromonadaceae ; Al-
teromonas ; Alteromonas macleodii

98.8 3.14 4479563 3996 118

NP3_20P 3300027906_20 HQ Bacteria; Proteobacteria; Al-
phaproteobacteria; Caulobacterales;
Caulobacteraceae; Brevundimonas;
None

Bacteria ; Proteobacteria ; Al-
phaproteobacteria ; Caulobacterales
; Caulobacteraceae ; Brevundimonas

97.08 3.55 2609799 2813 152

NP3_7P 3300027906_7 MQ Bacteria; Proteobacteria;
Gammaproteobacteria; Pseu-
domonadales; Alcanivoracaceae;
Alcanivorax; GCA_002726155.1

Bacteria ; Proteobacteria ;
Gammaproteobacteria ; Oceanospir-
illales ; Alcanivoracaceae ; Al-
canivorax ; Alcanivorax sp. DG881

96.65 8.62 4122650 4064 208

NP3_4P 3300027906_4 HQ Bacteria; Planctomycetota; Plancto-
mycetes; Pirellulales; Pirellulaceae;
UBA721; None

Bacteria ; Planctomycetes ; Plancto-
mycetia ; Planctomycetales ; Planc-
tomycetaceae

92.87 2.46 4467928 3738 344

NP3_10P 3300027906_10 MQ Bacteria; Verrucomicrobiota; Verru-
comicrobiae; Verrucomicrobiales;
Akkermansiaceae; Roseibacillus;
None

Bacteria 84.67 0 3495999 3044 432

NP3_13P 3300027906_13 MQ Bacteria; Proteobacteria;
Gammaproteobacteria; Pseu-
domonadales; Pseudomonadaceae;
Pseudomonas_D; Pseudomonas_D
sabulinigri

Bacteria ; Proteobacteria ;
Gammaproteobacteria ; Pseu-
domonadales ; Pseudomonadaceae
; Pseudomonas ; Pseudomonas
sabulinigri

81.47 1.72 3387632 3226 25

NP3_25P 3300027906_25 MQ Bacteria; Actinobacteriota; Acidimi-
crobiia; Microtrichales; TK06;
MedAcidi-G3; GCA_002434645.1

Bacteria ; Actinobacteria 78.4 2.14 1817413 1920 144

NP3_14P 3300027906_14 MQ Bacteria; Myxococcota; UBA796;
UBA796; None; None; None

Bacteria 77.68 3.85 3341013 3416 471
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NP3_22P 3300027906_22 MQ Bacteria; Proteobacteria; Alphapro-
teobacteria; Sphingomonadales;
Sphingomonadaceae; Erythrobac-
ter_A; None

Bacteria ; Proteobacteria ; Alphapro-
teobacteria ; Sphingomonadales ;
Erythrobacteraceae ; Erythrobacter

75.17 7.25 2238345 2522 401

NP3_46P 3300027906_46 MQ Bacteria; Patescibacteria; Saccha-
rimonadia; Saccharimonadales;
Saccharimonadaceae; UBA10027;
None

Bacteria 64.67 0 1168482 1287 23

NP3_30P 3300027906_30 MQ Bacteria; Bacteroidota; Bacteroidia;
Flavobacteriales; Flavobacteriaceae;
Croceibacter; Croceibacter atlanti-
cus

Bacteria ; Bacteroidetes ; Flavobac-
teriia ; Flavobacteriales ; Flavobacte-
riaceae ; Croceibacter ; Croceibacter
atlanticus

64.66 9.33 1656548 1688 155

NP3_55P 3300027906_55 MQ Archaea; Crenarchaeota; Ni-
trososphaeria; Nitrososphaerales;
Nitrosopumilaceae; Nitrosopumilus;
None

Archaea ; Thaumarchaeota ; unclas-
sified ; Nitrosopumilales ; Nitrosop-
umilaceae ; Nitrosopumilus

55.28 9.71 904614 1260 162

NP3_36P 3300027906_36 MQ Bacteria; Actinobacteriota; Acidimi-
crobiia; Microtrichales; MedAcidi-
G1; MedAcidi-G1; None

Bacteria ; Actinobacteria 54.43 6.84 1557760 1743 227

NP3_11P 3300027906_11 MQ Bacteria; Myxococcota; UBA4248;
UBA7976; UBA1532; None; None

52.98 3.23 3453122 3164 690

NP3_40P 3300027906_40 MQ Bacteria; Proteobacteria;
Gammaproteobacteria; Pseu-
domonadales; Moraxellaceae;
Psychrobacter; Psychrobacter sp5

Bacteria ; Proteobacteria ;
Gammaproteobacteria ; Pseu-
domonadales ; Moraxellaceae ;
Psychrobacter ; Psychrobacter sp.
TB15

51.44 0.64 1365662 1396 272

P1_21P 3300027849_21 HQ Bacteria; Bacteroidota; Bacteroidia;
Flavobacteriales; Flavobacteriaceae;
Croceibacter; Croceibacter atlanti-
cus

Bacteria ; Bacteroidetes ; Flavobac-
teriia ; Flavobacteriales ; Flavobacte-
riaceae

99.62 2.81 3112211 2921 18

P1_16P 3300027849_16 MQ Bacteria; Proteobacteria;
Gammaproteobacteria; Enter-
obacterales; Alteromonadaceae;
Pseudoalteromonas; Pseudoal-
teromonas marina

Bacteria ; Proteobacteria ;
Gammaproteobacteria ; Alteromon-
adales ; Pseudoalteromonadaceae ;
Pseudoalteromonas

97.31 1.97 4173936 3941 64

P1_20P 3300027849_20 MQ Bacteria; Proteobacteria;
Gammaproteobacteria; Pseu-
domonadales; Saccharospirillaceae;
Bermanella; None

Bacteria ; Proteobacteria ;
Gammaproteobacteria ; Oceanospir-
illales ; Oceanospirillaceae ;
Bermanella ; Bermanella marisrubri

96.55 6.43 3429227 3269 125

P1_24P 3300027849_24 MQ Bacteria; Proteobacteria; Alphapro-
teobacteria; Rhodobacterales;
Rhodobacteraceae; Planktomarina;
None

Bacteria ; Proteobacteria ; Al-
phaproteobacteria ; Rhodobacterales
; Rhodobacteraceae ; Roseobacter ;
Roseobacter sp. LE17

92.65 1.98 2530500 2668 151

P1_15P 3300027849_15 MQ Bacteria; Bacteroidota; Bacteroidia;
Chitinophagales; Saprospiraceae;
None; None

Bacteria ; Bacteroidetes 81.56 2.23 4219346 3664 553

P1_25P 3300027849_25 MQ Bacteria; Proteobacteria;
Gammaproteobacteria; Pseudomon-
adales; Nitrincolaceae; ASP10-02a;
None

Bacteria ; Proteobacteria ;
Gammaproteobacteria

71.84 0 2420077 2421 153

P1_41P 3300027849_41 MQ Bacteria; Bacteroidota; Bacteroidia;
Flavobacteriales; Cryomorphaceae;
UBA10364; None

Bacteria ; Bacteroidetes ; Flavobac-
teriia ; Flavobacteriales

69.09 0 1172628 1200 143

P1_23P 3300027849_23 MQ Bacteria; Proteobacteria; Alphapro-
teobacteria; Rhodobacterales;
Rhodobacteraceae; Loktanella;
None

Bacteria ; Proteobacteria ; Al-
phaproteobacteria ; Rhodobacterales
; Rhodobacteraceae ; Loktanella

67.44 1.37 2625479 2988 335

P1_30P 3300027849_30 MQ Bacteria; Proteobacteria;
Gammaproteobacteria; Pseudomon-
adales; Nitrincolaceae; ASP10-02a;
ASP10-02a sp3

Bacteria ; Proteobacteria ;
Gammaproteobacteria

66.48 3.53 1701074 1838 266

P1_34P 3300027849_34 MQ Bacteria; Bacteroidota; Bacteroidia;
Flavobacteriales; Flavobacteriaceae;
HC6-5; None

Bacteria ; Bacteroidetes ; Flavobac-
teriia ; Flavobacteriales ; Flavobacte-
riaceae

63.99 3.07 1396029 1429 206

P1_33P 3300027849_33 MQ Bacteria; Proteobacteria;
Gammaproteobacteria; Pseudomon-
adales; Porticoccaceae; HTCC2207;
None

Bacteria ; Proteobacteria ;
Gammaproteobacteria ; Cel-
lvibrionales ; Porticoccaceae ;
unclassified

61.44 1.48 1411191 1382 62

P1_17P 3300027849_17 MQ Bacteria; Bacteroidota; Bacteroidia;
Chitinophagales; Saprospiraceae;
None; None

Bacteria ; Bacteroidetes 55.17 1.72 4035185 3453 317

P1_26P 3300027849_26 MQ Bacteria; Proteobacteria;
Gammaproteobacteria; Pseudomon-
adales; Porticoccaceae; HTCC2207;
None

Bacteria ; Proteobacteria ;
Gammaproteobacteria ; Cellvib-
rionales

55.17 3.45 2199280 2081 271
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P1_31P 3300027849_31 MQ Bacteria; Proteobacteria;
Gammaproteobacteria; Pseudomon-
adales; Nitrincolaceae; ASP10-02a;
None

Bacteria ; Proteobacteria ;
Gammaproteobacteria

54.62 0 1550253 1590 152

P1_36P 3300027849_36 MQ Bacteria; Proteobacteria;
Gammaproteobacteria; Pseudomon-
adales; UBA7434; UBA7434;
None

Bacteria ; Proteobacteria ;
Gammaproteobacteria

52.05 0 1354030 1326 172

P2_13P 3300027810_13 MQ Bacteria; Proteobacteria;
Gammaproteobacteria; Pseudomon-
adales; Porticoccaceae; HTCC2207;
None

Bacteria ; Proteobacteria ;
Gammaproteobacteria ; Cel-
lvibrionales ; Porticoccaceae ;
unclassified

93.21 3.4 2493520 2471 199

P2_11P 3300027810_11 MQ Bacteria; Proteobacteria; Alphapro-
teobacteria; Rhodobacterales;
Rhodobacteraceae; Sulfitobacter_C;
None

Bacteria ; Proteobacteria ; Al-
phaproteobacteria ; Rhodobacterales
; Rhodobacteraceae

90.45 1.11 2844391 3134 258

P2_7P 3300027810_7 MQ Bacteria; Proteobacteria;
Gammaproteobacteria; Enter-
obacterales; Alteromonadaceae;
Colwellia; Colwellia polaris

Bacteria ; Proteobacteria ;
Gammaproteobacteria ; Alteromon-
adales ; Colwelliaceae ; Colwellia

87.37 1.33 3914611 3475 65

P2_12P 3300027810_12 MQ Bacteria; Bacteroidota; Bacteroidia;
Flavobacteriales; UA16; ASP10-
05a; None

Bacteria ; Bacteroidetes 86.45 4.91 2610970 2445 319

P2_16P 3300027810_16 MQ Bacteria; Proteobacteria;
Gammaproteobacteria; Pseudomon-
adales; Nitrincolaceae; ASP10-02a;
None

Bacteria ; Proteobacteria ;
Gammaproteobacteria

65.52 0 2074814 2230 313

P2_30P 3300027810_30 MQ Bacteria; Proteobacteria;
Gammaproteobacteria; Pseudomon-
adales; Nitrincolaceae; ASP10-02a;
ASP10-02a sp1

Bacteria ; Proteobacteria ;
Gammaproteobacteria

62.2 1.07 1133751 1148 65

P2_23P 3300027810_23 MQ Bacteria; Bacteroidota; Bacteroidia;
Flavobacteriales; Cryomorphaceae;
UBA10364; None

Bacteria ; Bacteroidetes 60.61 7.45 1300054 1591 265

P2_25P 3300027810_25 MQ Bacteria; Bacteroidota; Bacteroidia;
NS11-12g; UBA9320; UBA9320;
None

Bacteria ; Bacteroidetes 56.68 0 1263188 1358 241

P2_20P 3300027810_20 MQ Bacteria; Proteobacteria;
Gammaproteobacteria; Pseudomon-
adales; Porticoccaceae; HTCC2207;
None

Bacteria ; Proteobacteria ;
Gammaproteobacteria ; Cel-
lvibrionales ; Porticoccaceae ;
unclassified

54.31 0 1507785 1621 261

P2_21P 3300027810_21 MQ Bacteria; Verrucomicrobiota; Verru-
comicrobiae; Opitutales; Puniceic-
occaceae; BACL24; None

Bacteria ; Verrucomicrobia ; Opitu-
tae ; Puniceicoccales ; Punice-
icoccaceae ; Coraliomargarita ;
Coraliomargarita akajimensis

50 0 1503876 1409 70

P3a_15P 3300027883_15 MQ Bacteria; Proteobacteria; Alphapro-
teobacteria; Rhodobacterales;
Rhodobacteraceae; Sulfitobacter_C;
None

Bacteria ; Proteobacteria ; Al-
phaproteobacteria ; Rhodobacterales
; Rhodobacteraceae

94.76 3.53 2939519 3214 175

P3a_17P 3300027883_17 MQ Bacteria; Proteobacteria;
Gammaproteobacteria; Pseudomon-
adales; Nitrincolaceae; ASP10-02a;
ASP10-02a sp1

Bacteria ; Proteobacteria ;
Gammaproteobacteria

92.2 1.97 2755864 2701 118

P3a_11P 3300027883_11 MQ Bacteria; Proteobacteria; Alphapro-
teobacteria; Rhodobacterales;
Rhodobacteraceae; HIMB11;
GCA_002336405.1

Bacteria ; Proteobacteria ; Al-
phaproteobacteria ; Rhodobacterales
; Rhodobacteraceae

88.6 1.24 3466324 3669 438

P3a_30P 3300027883_30 MQ Bacteria; Bacteroidota; Bacteroidia;
Flavobacteriales; Cryomorphaceae;
UBA10364; None

Bacteria ; Bacteroidetes 88.01 5.43 1692652 1661 216

P3a_28P 3300027883_28 MQ Bacteria; Verrucomicrobiota; Verru-
comicrobiae; Opitutales; Puniceic-
occaceae; BACL24; None

Bacteria ; Verrucomicrobia ; Opitu-
tae ; Puniceicoccales ; Punice-
icoccaceae ; Coraliomargarita ;
Coraliomargarita akajimensis

85.14 0.71 1744461 1588 16

P3a_25P 3300027883_25 MQ Bacteria; Bacteroidota; Bacteroidia;
NS11-12g; UBA9320; UBA9320;
UBA10404

Bacteria ; Bacteroidetes 82.06 1.71 1907560 1871 164

P3a_27P 3300027883_27 MQ Bacteria; Bacteroidota; Bacteroidia;
Flavobacteriales; Flavobacteriaceae;
HC6-5; None

Bacteria ; Bacteroidetes 80.14 2.34 1747367 1771 209

P3a_26P 3300027883_26 MQ Bacteria; Proteobacteria;
Gammaproteobacteria; Pseudomon-
adales; Porticoccaceae; HTCC2207;
None

Bacteria ; Proteobacteria ;
Gammaproteobacteria ; Cel-
lvibrionales ; Porticoccaceae ;
unclassified

62.07 3.45 1801705 1871 254
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P3a_31P 3300027883_31 MQ Bacteria; Proteobacteria;
Gammaproteobacteria; Pseudomon-
adales; Porticoccaceae; HTCC2207;
None

Bacteria ; Proteobacteria ;
Gammaproteobacteria ; Cel-
lvibrionales ; Porticoccaceae ;
unclassified

59.28 4.05 1488021 1577 284

P3a_21P 3300027883_21 MQ Bacteria; Proteobacteria; Alphapro-
teobacteria; Rhodobacterales;
Rhodobacteraceae; Loktanella;
None

Bacteria ; Proteobacteria ; Al-
phaproteobacteria ; Rhodobacterales
; Rhodobacteraceae

58.91 2.16 2276430 2591 364

P3a_24P 3300027883_24 MQ Bacteria; Proteobacteria;
Gammaproteobacteria; Enter-
obacterales; Alteromonadaceae;
Colwellia; None

Bacteria ; Proteobacteria ;
Gammaproteobacteria ; Alteromon-
adales ; Colwelliaceae ; Colwellia

56.94 5.72 1900294 1968 342

P6_13P 3300027833_13 MQ Bacteria; Bacteroidota; Bacteroidia;
Flavobacteriales; UA16; UBA8752;
None

Bacteria ; Bacteroidetes 98.12 0.54 2515496 2162 113

P6_22P 3300027833_22 MQ Bacteria; Bacteroidota; Bac-
teroidia; Flavobacteriales; Flavobac-
teriaceae; GCA-002733185;
GCA_002713705.1

Bacteria ; Bacteroidetes ; Flavobac-
teriia ; Flavobacteriales ; Flavobacte-
riaceae

81.03 0 1722552 1648 108

P6_15P 3300027833_15 MQ Bacteria; Bacteroidota; Bacteroidia;
Flavobacteriales; Flavobacteriaceae;
GCA-002733185; None

Bacteria ; Bacteroidetes ; Flavobac-
teriia ; Flavobacteriales ; Flavobacte-
riaceae

80.17 2.48 1908748 1920 116

P6_14P 3300027833_14 MQ Bacteria; Verrucomicrobiota; Verru-
comicrobiae; Opitutales; Puniceic-
occaceae; BACL24; None

Bacteria ; Verrucomicrobia ; Opitu-
tae ; Puniceicoccales ; Punice-
icoccaceae ; Coraliomargarita ;
Coraliomargarita akajimensis

78.6 4.05 2306538 2092 86

P6_28P 3300027833_28 MQ Bacteria; Proteobacteria;
Gammaproteobacteria; Pseudomon-
adales; UBA7434; UBA7434;
UBA7434 sp2

Bacteria ; Proteobacteria ;
Gammaproteobacteria

78.19 1.11 1401065 1419 220

P6_12P 3300027833_12 MQ Bacteria; Bacteroidota; Bacteroidia;
Chitinophagales; Saprospiraceae;
UBA1994; GCA_002335865.1

Bacteria ; Bacteroidetes 77.85 5.28 2792486 2636 382

P6_33P 3300027833_33 MQ Bacteria; Verrucomicrobiota; Verru-
comicrobiae; Opitutales; Puniceic-
occaceae; BACL24; None

Bacteria ; Verrucomicrobia ; Opitu-
tae ; Puniceicoccales ; Punice-
icoccaceae ; Coraliomargarita ;
Coraliomargarita akajimensis

53.69 0.34 1102244 1162 195

P6_46P 3300027833_46 MQ Bacteria; Bacteroidota; Bacteroidia;
Flavobacteriales; Cryomorphaceae;
UBA10364; UBA10364 sp1

Bacteria ; Bacteroidetes ; Flavobac-
teriia ; Flavobacteriales

51.08 1.42 942690 1027 181

P6_35P 3300027833_35 MQ Bacteria; Bacteroidota; Bacteroidia;
Flavobacteriales; Flavobacteriaceae;
HC6-5; None

Bacteria ; Bacteroidetes ; Flavobac-
teriia ; Flavobacteriales ; Flavobacte-
riaceae

50.72 0.71 1121342 1224 178

P5_11P 3300002186_11 MQ Bacteria; Bacteroidota; Bacteroidia;
Flavobacteriales; Cryomorphaceae;
UBA10364; UBA10364 sp1

Bacteria ; Bacteroidetes ; Flavobac-
teriia ; Flavobacteriales

94.22 4.95 1912866 1895 157

P5_7P 3300002186_7 HQ Bacteria; Proteobacteria;
Gammaproteobacteria; Pseudomon-
adales; Nitrincolaceae; ASP10-02a;
ASP10-02a sp1

Bacteria ; Proteobacteria ;
Gammaproteobacteria

91.09 2.86 2440954 2462 128

P5_9P 3300002186_9 MQ Bacteria; Proteobacteria;
Gammaproteobacteria; Pseudomon-
adales; Porticoccaceae; HTCC2207;
None

Bacteria ; Proteobacteria ;
Gammaproteobacteria ; unclas-
sified ; unclassified ; unclassified ;
gamma proteobacterium HTCC2207

79.12 5.54 2037789 2096 234

P5_24P 3300002186_24 MQ Bacteria; Proteobacteria;
Gammaproteobacteria; SAR86;
D2472; D2472; None

Bacteria ; Proteobacteria ;
Gammaproteobacteria ; unclas-
sified ; unclassified ; unclassified ;
SAR86 cluster bacterium SAR86E

53.86 8.33 796012 948 139

P5_21P 3300002186_21 MQ Bacteria; Verrucomicrobiota; Verru-
comicrobiae; Opitutales; Puniceic-
occaceae; BACL24; None

Bacteria ; Verrucomicrobia ; Opitu-
tae ; Puniceicoccales ; Punice-
icoccaceae ; Coraliomargarita ;
Coraliomargarita akajimensis

52.36 2.3 886404 983 169

P4_19P 3300002153_19 MQ Bacteria; Bacteroidota; Bacteroidia;
Flavobacteriales; BACL11; None;
None

Bacteria ; Bacteroidetes 63.44 1.08 945481 972 64

P4_14P 3300002153_14 MQ Bacteria; Bacteroidota; Bacteroidia;
Flavobacteriales; Flavobacteriaceae;
MAG-121220-bin8; None

Bacteria ; Bacteroidetes ; Flavobac-
teriia ; Flavobacteriales ; Flavobacte-
riaceae

58.17 2.03 982604 1060 92

P4_17P 3300002153_17 MQ Bacteria; Proteobacteria;
Gammaproteobacteria; Pseudomon-
adales; Nitrincolaceae; ASP10-02a;
ASP10-02a sp1

Bacteria ; Proteobacteria ;
Gammaproteobacteria

51.92 2.53 1109978 1261 224
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Table A.3 Sample identifiers and metadata

A.4 Reference Taxa in Prokaryotic Tree
Name Phylum Class NCBI Taxid

Vibrio fischeri ES114 Proteobacteria Gammaproteobacteria 312309
Altererythrobacter sp. ZODW24 Proteobacteria Alphaproteobacteria 1872480
Pseudoalteromonas atlantica ECSMB14104 Proteobacteria Gammaproteobacteria 342610
Corynebacterium sphenisci DSM 44792 Actinobacteriota Actinobacteria 1437874
Pseudomonas aeruginosa Ocean-1155 Proteobacteria Gammaproteobacteria 287
Rhodococcus ruber P14 Actinobacteriota Actinobacteria 1830
Nocardia seriolae UTF1 Actinobacteriota Actinobacteria 37332
Halopenitus persicus CBA1233 Halobacterota Halobacteria 1048396
Synechococcus sp. WH 8102 Cyanobacteria Cyanobacteriia 1131
Alteromonas sp. SN2 Proteobacteria Gammaproteobacteria 232
Vibrio harveyi strain QT520 Proteobacteria Gammaproteobacteria 669
Oscillibacter valericigenes Sjm18-20 Firmicutes_A Clostridia 351091
Alteromonas macleodii str. ’English Channel 673’ Proteobacteria Gammaproteobacteria 28108
Streptomyces sp. HNM0039 Actinobacteriota Actinobacteria 1931
Desulfococcus multivorans strain DSM 2059 Desulfobacterota Desulfobacteria 897
Pseudomonas fluorescens PF08 Proteobacteria Gammaproteobacteria 294
Thermotoga maritima MSB8 Thermotogota Thermotogae 243274
Pseudoalteromonas sp. SM9913 Proteobacteria Gammaproteobacteria 53249
Edwardsiella tarda strain KC-Pc-HB1 Proteobacteria Gammaproteobacteria 1027364
Olleya sp. Bg11-27 Bacteroidota Bacteroidia 1906788
Thermococcus gammatolerans EJ3 Euryarchaeota Thermococci 593117
Marinobacter similis A3d10 Proteobacteria Gammaproteobacteria 1420916
Vibrio natriegens strain CCUG 16373 Proteobacteria Gammaproteobacteria 691
Gramella sp. SH35 Bacteroidota Bacteroidia 1931228
Pelolinea submarina strain MO-CFX1 Chloroflexota Anaerolineae 913107
Vibrio gazogenes ATCC 43942 Proteobacteria Gammaproteobacteria 687
Euzebya sp. DY32-46 Actinobacteriota Actinobacteria 1971409
Bacillus sp. Alg07 Firmicutes Bacilli 1409
Phaeobacter inhibens P78 Proteobacteria Alphaproteobacteria 999548
Methanococcus voltae A3 Euryarchaeota Methanococci 456320
Hydrogenophaga sp. LPB0072 Proteobacteria Gammaproteobacteria 1904254
Rhodococcus erythropolis PR4 Actinobacteriota Actinobacteria 234621
Alteromonas macleodii str. ’Ionian Sea U8’ Proteobacteria Gammaproteobacteria 28108
Tenacibaculum maritimum strain NCIMB 2154 Bacteroidota Bacteroidia 107401
Phaeobacter piscinae P36 Proteobacteria Alphaproteobacteria 1580596
Cycloclasticus sp. P1 Proteobacteria Gammaproteobacteria 2024830
Vibrio anguillarum 178/90 Proteobacteria Gammaproteobacteria 882102
Psychrobacter sp. YP14 Proteobacteria Gammaproteobacteria 56811
Shewanella baltica OS185 Proteobacteria Gammaproteobacteria 402882
Campylobacter peloridis LMG 23910 Campylobacterota Campylobacteria 1388753
Pseudoalteromonas haloplanktis TAC125 Proteobacteria Gammaproteobacteria 326442
Streptomyces sp. GBA 94-10 Actinobacteriota Actinobacteria 378518
Plantactinospora sp. BB1 Actinobacteriota Actinobacteria 2071627
Kangiella profundi strain FT102 Proteobacteria Gammaproteobacteria 1561924
Candidatus Nitrosopumilus sp. AR2 Crenarchaeota Nitrososphaeria 1027373
Vibrio parahaemolyticus 20130629002S01 Proteobacteria Gammaproteobacteria 670
Pseudoalteromonas sp. R3 Proteobacteria Gammaproteobacteria 1709477
Sulfitobacter sp. D7 Proteobacteria Alphaproteobacteria 1903071
Muricauda ruestringensis DSM 13258 Bacteroidota Bacteroidia 886377
Lacinutrix venerupis DOK2-8 Bacteroidota Bacteroidia 420889
Vibrio anguillarum S2 2/9 Proteobacteria Gammaproteobacteria 989499
Paraglaciecola psychrophila 170 Proteobacteria Gammaproteobacteria 1129794
Maribacter sp. B1 Bacteroidota Bacteroidia 1897614
Piscirickettsia salmonis strain EM-90 Proteobacteria Gammaproteobacteria 1435375
Marinovum algicola DG 898 Proteobacteria Alphaproteobacteria 988812
Shewanella piezotolerans WP3 Proteobacteria Gammaproteobacteria 225849
Desulfovibrio desulfuricans ND132 Desulfobacterota_A Desulfovibrionia 876
Thermosipho sp. 1063 Thermotogota Thermotogae 1968895
Pseudoalteromonas sp. OCN003 Proteobacteria Gammaproteobacteria 53249
Phaeobacter inhibens P70 Proteobacteria Alphaproteobacteria 383629
Phaeobacter piscinae P42 Proteobacteria Alphaproteobacteria 1580596
Pseudomonas xanthomarina strain LMG 23572 Proteobacteria Gammaproteobacteria 271420
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Vibrio sp. dhg Proteobacteria Gammaproteobacteria 678
Oceanobacillus iheyensis HTE831 Firmicutes Bacilli 221109
Chlorobium phaeovibrioides DSM 265 Bacteroidota Chlorobia 290318
Synechococcus sp. KORDI-49 Cyanobacteria Cyanobacteriia 1131
Phaeobacter inhibens P10 Proteobacteria Alphaproteobacteria 383629
Aquimarina sp. BL5 Bacteroidota Bacteroidia 1872586
Tenacibaculum jejuense KCTC 22618 Bacteroidota Bacteroidia 584609
Streptococcus thermophilus APC151 Firmicutes Bacilli 1308
Pyrodictium delaneyi strain Su06 Crenarchaeota Thermoprotei 1273541
Methanocaldococcus sp. FS406-22 Euryarchaeota Methanococci 2152917
Deferribacter desulfuricans SSM1 Deferribacterota Deferribacteres 639282
Moritella viscosa 06/09/139 Proteobacteria Gammaproteobacteria 80854
Bdellovibrio bacteriovorus strain 109J Bdellovibrionota Bdellovibrionia 959
Hyphomonas neptunium ATCC 15444 Proteobacteria Alphaproteobacteria 228405
Arthrospira sp. TJSD092 Cyanobacteria Cyanobacteriia 2153484
Croceicoccus naphthovorans strain PQ-2 Proteobacteria Alphaproteobacteria 1348774
Maricaulis maris MCS10 Proteobacteria Alphaproteobacteria 2774595
Nitrosococcus oceani ATCC 19707 Proteobacteria Gammaproteobacteria 323261
Vibrio alginolyticus J207 Proteobacteria Gammaproteobacteria 314288
Erythrobacter sp. YH-07 Proteobacteria Alphaproteobacteria 1042
Shewanella algae KC-Na-R1 Proteobacteria Gammaproteobacteria 38313
Aeromonas salmonicida S68 Proteobacteria Gammaproteobacteria 645
Methanopyrus kandleri AV19 Euryarchaeota Methanopyri 190192
Gillisia sp. Hel1_33_143 Bacteroidota Bacteroidia 2018084
Bacillus anthracis MCCC 1A01412 Firmicutes Bacilli 1396
Flavobacterium arcticum SM1502 Bacteroidota Bacteroidia 1784713
Vibrio alginolyticus K09K1 Proteobacteria Gammaproteobacteria 663
Thermococcus eurythermalis A501 Euryarchaeota Thermococci 1505907
Colwellia sp. Arc7-D Proteobacteria Gammaproteobacteria 2161872
Pusillimonas sp. T7-7 Proteobacteria Gammaproteobacteria 1979962
Synechococcus sp. RCC307 Cyanobacteria Cyanobacteriia 1131
Belliella baltica DSM 15883 Bacteroidota Bacteroidia 866536
Phaeobacter inhibens P59 Proteobacteria Alphaproteobacteria 999548
Nitrosococcus watsonii C-113 Proteobacteria Gammaproteobacteria 473531
Phaeobacter inhibens P51 Proteobacteria Alphaproteobacteria 383629
Alteromonas macleodii str. ’Ionian Sea U7’ Proteobacteria Gammaproteobacteria 28108
Halorhabdus tiamatea SARL4B Halobacterota Halobacteria 1033806
Bacillus anthracis MCCC 1A02161 Firmicutes Bacilli 1396
Lactococcus garvieae strain 122061 Firmicutes Bacilli 999552
Halorubrum trapanicum CBA1232 Halobacterota Halobacteria 29284
Flavobacterium psychrophilum strain VQ50 Bacteroidota Bacteroidia 96345
bacterium 2013Arg42i strain 2013Ark11 Proteobacteria Gammaproteobacteria 1561003
Paracoccus sp. BM15 Proteobacteria Alphaproteobacteria 267
Sulfurimonas denitrificans DSM 1251 Campylobacterota Campylobacteria 326298
Shewanella sp. ANA-3 Proteobacteria Gammaproteobacteria 50422
Saccharospirillum mangrovi HK-33 Proteobacteria Gammaproteobacteria 2161747
Mycobacterium rhodesiae NBB3 Actinobacteriota Actinobacteria 710685
Salinibacter ruber RM158 Bacteroidota Rhodothermia 761659
Gramella sp. MAR_2010_102 Bacteroidota Bacteroidia 1931228
Thermosediminibacter oceani DSM 16646 Firmicutes_A Thermovenabulia 555079
Phaeobacter inhibens P88 Proteobacteria Alphaproteobacteria 999548
Aciduliprofundum sp. MAR08-339 Thermoplasmatota Thermoplasmata 2060325
Stappia sp. ES.058 Proteobacteria Alphaproteobacteria 1870903
Alteromonas macleodii str. ’Balearic Sea AD45’ Proteobacteria Gammaproteobacteria 28108
Vibrio cholerae strain Env-390 Proteobacteria Gammaproteobacteria 1093790
Hippea maritima DSM 10411 Campylobacterota Desulfurellia 760142
Draconibacterium orientale strain FH5 Bacteroidota Bacteroidia 1168034
Sulfitobacter sp. AM1-D1 Proteobacteria Alphaproteobacteria 1903071
Prauserella marina DSM 45268 Actinobacteriota Actinobacteria 530584
Vibrio anguillarum 601/90 Proteobacteria Gammaproteobacteria 105261
Alteromonas mediterranea strain RG65 Proteobacteria Gammaproteobacteria 314275
Marinomonas sp. MWYL1 Proteobacteria Gammaproteobacteria 1904862
Pseudoalteromonas phenolica strain KCTC 12086 Proteobacteria Gammaproteobacteria 161398
Prochlorococcus marinus str. MIT 9312 Cyanobacteria Cyanobacteriia 45397
Vibrio anguillarum PF4 Proteobacteria Gammaproteobacteria 990314
Enterococcus faecalis TY1 Firmicutes Bacilli 1351
Francisella halioticida DSM 23729 Proteobacteria Gammaproteobacteria 549298
Candidatus Nitrosopumilus sp. NF5 Crenarchaeota Nitrososphaeria 1027373
Simiduia agarivorans SA1 Proteobacteria Gammaproteobacteria 1117647
Pseudorhodoplanes sinuspersici RIPI110 Proteobacteria Alphaproteobacteria 1235591
Actinoalloteichus hymeniacidonis strain HPA177(T) (=DSM 45092(T)) Actinobacteriota Actinobacteria 340345
Synechococcus sp. CC9902 Cyanobacteria Cyanobacteriia 1131
Streptomyces sp. S063 Actinobacteriota Actinobacteria 1931
Shewanella halifaxensis HAW-EB4 Proteobacteria Gammaproteobacteria 271098
Candidatus Thioglobus singularis strain GG2 Proteobacteria Gammaproteobacteria 1427364
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Pseudomonas libanensis strain DMSP-1 Proteobacteria Gammaproteobacteria 75588
Piscirickettsia salmonis strain PM37984A Proteobacteria Gammaproteobacteria 1238
Candidatus Nitrosopumilus koreensis AR1 Crenarchaeota Nitrososphaeria 1229908
Halolamina sediminis strain halo7 Halobacterota Halobacteria 1480675
Siansivirga zeaxanthinifaciens CC-SAMT-1 Bacteroidota Bacteroidia 762954
Vibrio anguillarum ATCC-68554 Proteobacteria Gammaproteobacteria 55601
Vibrio parahaemolyticus R14 Proteobacteria Gammaproteobacteria 1394561
Flavobacterium psychrophilum FPG3 Bacteroidota Bacteroidia 1452724
Aquimarina sp. AD1 Bacteroidota Bacteroidia 1872586
Sulfitobacter sp. SK025 Proteobacteria Alphaproteobacteria 1903071
Pseudoalteromonas aliena EH1 Proteobacteria Gammaproteobacteria 247523
Morganella morganii KC-Tt-01 Proteobacteria Gammaproteobacteria 1239989
Thiobacimonas profunda JLT2016 Proteobacteria Alphaproteobacteria 1229727
Sphingorhabdus sp. Alg231-15 Proteobacteria Alphaproteobacteria 1922222
Thermovirga lienii DSM 17291 Synergistota Synergistia 580340
Desulfobacula toluolica Tol2 Desulfobacterota Desulfobacteria 651182
Flavobacteriaceae bacterium MAR_2010_188 Bacteroidota Bacteroidia 572194
Pelobacter carbinolicus DSM 2380 Desulfuromonadota Desulfuromonadia 338963
Halomonas sp.R57-5 unclassified unclassified 1610576
Phaeobacter piscinae P18 Proteobacteria Alphaproteobacteria 1580596
Winogradskyella sp. PG-2 Bacteroidota Bacteroidia 1883156
Synechococcus sp. KORDI 52 Cyanobacteria Cyanobacteriia 1131
Octadecabacter arcticus 238 Proteobacteria Alphaproteobacteria 391616
Oceanithermus profundus DSM 14977 Deinococcota Deinococci 670487
Piscirickettsia salmonis AY3864B Proteobacteria Gammaproteobacteria 1238
Oceanicoccus sagamiensis NBRC 107125 Proteobacteria Gammaproteobacteria 716816
Marinomonas mediterranea MMB-1 Proteobacteria Gammaproteobacteria 119864
Alteromonas macleodii str. ’Ionian Sea UM7’ Proteobacteria Gammaproteobacteria 28108
Desulfovibrio africanus str. Walvis Bay Desulfobacterota_A Desulfovibrionia 1262666
Mehyloceanibacter caenitepidi Gela4 Proteobacteria Alphaproteobacteria 1384459
Bacillus sp. Pc3 Firmicutes Bacilli 1409
Corynebacterium maris DSM 45190 Actinobacteriota Actinobacteria 1224163
Piscirickettsia salmonis strain PM49811B Proteobacteria Gammaproteobacteria 1238
Alcanivorax borkumensis SK2 Proteobacteria Gammaproteobacteria 393595
Erythrobacter litoralis strain DSM 8509 Proteobacteria Alphaproteobacteria 39960
Staphylococcus aureus SJTUF_J27 Firmicutes Bacilli 1280
Vibrio natriegens strain CCUG 16371 Proteobacteria Gammaproteobacteria 1219067
Aliivibrio salmonicida LFI1238 Proteobacteria Gammaproteobacteria 316275
Synechococcus sp. CC9605 Cyanobacteria Cyanobacteriia 1131
Synechococcus sp. WH 8103 Cyanobacteria Cyanobacteriia 1131
Rhodovulum sulfidophilum DSM 1374 Proteobacteria Alphaproteobacteria 1188256
Halomonas venusta strain MA-ZP17-13 Proteobacteria Gammaproteobacteria 44935
Tessaracoccus flavescens SST-39 Actinobacteriota Actinobacteria 399497
Candidatus Atelocyanobacterium thalassa isolate ALOHA Cyanobacteria Cyanobacteriia 1453429
Edwardsiella tarda 080813 Proteobacteria Gammaproteobacteria 636
Filomicrobium sp. W1 Proteobacteria Alphaproteobacteria 2024831
Corynebacterium stationis strain 622=DSM 20302 Actinobacteriota Actinobacteria 1705
Marinobacter sp. BSs20148 Proteobacteria Gammaproteobacteria 50741
Thermococcus onnurineus NA1 Euryarchaeota Thermococci 523850
Formosa sp. Hel3_A1_48 Bacteroidota Bacteroidia 2018467
Flavobacterium psychrophilum OSU THCO2-90 Bacteroidota Bacteroidia 96345
Bathymodiolus thermophilus thioautotrophic gill symbiont EPR9N Proteobacteria Gammaproteobacteria 2360
Pyrococcus furiosus DSM 3638 Euryarchaeota Thermococci 186497
Nitrosococcus halophilus Nc 4 Proteobacteria Gammaproteobacteria 472759
Vibrio coralliilyticus OCN014 Proteobacteria Gammaproteobacteria 190893
Photobacterium gaetbulicola Gung47 Proteobacteria Gammaproteobacteria 658445
Phaeobacter inhibens P80 Proteobacteria Alphaproteobacteria 383629
Arcobacter sp. PSE-93 Campylobacterota Campylobacteria 1872629
Mycobacterium chubuense NBB4 Actinobacteriota Actinobacteria 710421
Roseobacter denitrificans OCh 114 Proteobacteria Alphaproteobacteria 375451
Maribacter sp. MAR_2009_60 Bacteroidota Bacteroidia 394221
Ferrimonas balearica DSM 9799 Proteobacteria Gammaproteobacteria 550540
Prochlorococcus sp. MIT 0604 Cyanobacteria Cyanobacteriia 1220
Chlorobium phaeobacteroides BS1 Bacteroidota Chlorobia 331678
Vibrio anguillarum A023 Proteobacteria Gammaproteobacteria 55601
Woeseia oceani strain XK5 Proteobacteria Gammaproteobacteria 1548547
Shewanella japonica KCTC 22435 Proteobacteria Gammaproteobacteria 93973
Sediminicola sp. YIK13 Bacteroidota Bacteroidia 2511163
Vibrio anguillarum MVAV6203 Proteobacteria Gammaproteobacteria 55601
Synechococcus sp. KORDI-100 Cyanobacteria Cyanobacteriia 1131
Haloferax mediterranei ATCC 33500 Halobacterota Halobacteria 523841
Erythrobacter gangjinensis strain JCM 15420 Proteobacteria Alphaproteobacteria 502682
Arcanobacterium phocae strain DSM 10002 Actinobacteriota Actinobacteria 131112
Hyphomonas sp. Mor2 Proteobacteria Alphaproteobacteria 87
Owenweeksia hongkongensis DSM 17368 Bacteroidota Bacteroidia 926562
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Yersinia ruckeri YRB Proteobacteria Gammaproteobacteria 29486
Parvularcula bermudensis HTCC2503 Proteobacteria Alphaproteobacteria 314260
Alteromonas macleodii str. ’Deep ecotype’ Proteobacteria Gammaproteobacteria 28108
Shewanella baltica OS155 Proteobacteria Gammaproteobacteria 325240
Alteromonas sp. MB-3u-76 Proteobacteria Gammaproteobacteria 232
Vibrio parahaemolyticus strain FORC_018 Proteobacteria Gammaproteobacteria 670
Alteromonadaceae bacterium 2141T.STBD.0c.01a Proteobacteria Gammaproteobacteria 650235
Alteromonas mediterranea strain AR43 Proteobacteria Gammaproteobacteria 314275
Thalassolituus oleivorans strain K188 Proteobacteria Gammaproteobacteria 187493
Silicimonas algicola strain KC90 Proteobacteria Alphaproteobacteria 1826607
Haloplanus sp. CBA1112 Halobacterota Halobacteria 1961696
Amycolatopsis albispora WP1 Actinobacteriota Actinobacteria 1804986
Thermodesulfatator indicus DSM 15286 Desulfobacterota Thermodesulfobacteria 667014
Granulosicoccus antarcticus IMCC 3135 Proteobacteria Gammaproteobacteria 1192854
Methanosarcina siciliae C2J Halobacterota Methanosarcinia 1434118
Piscirickettsia salmonis strain CGR02 Proteobacteria Gammaproteobacteria 1238
Brucella ceti TE10759-12 Proteobacteria Alphaproteobacteria 120577
Phaeobacter gallaeciensis 2.10(Roseobacter gallaeciensis) Proteobacteria Alphaproteobacteria 383629
Hahella sp. KA22 Proteobacteria Gammaproteobacteria 1628392
Ignicoccus islandicus DSM 13165 Crenarchaeota Thermoprotei 940295
Aquimarina sp. AD10 Bacteroidota Bacteroidia 1872586
Synechococcus sp. WH 8020 Cyanobacteria Cyanobacteriia 1131
Rhodobacter sp. LPB0142 Proteobacteria Alphaproteobacteria 633146
Brucella pinnipedialis B2/94 Proteobacteria Alphaproteobacteria 120576
Vibrio scophthalmi strain VS-05 Proteobacteria Gammaproteobacteria 190895
Micromonospora sp. WMMA2032 Actinobacteriota Actinobacteria 1876
Pseudoalteromonas piscicida DE1-A Proteobacteria Gammaproteobacteria 43662
Bacillus subtilis subsp. spizizenii SW83 Firmicutes Bacilli 909461
Vibrio chagasii strain ECSMB14107 Proteobacteria Gammaproteobacteria 170679
Methanococcus maripaludis S2 Euryarchaeota Methanococci 267377
Yersinia aldovae 670-83 Proteobacteria Gammaproteobacteria 29483
Acidobacteria bacterium Mor1 Acidobacteriota Mor1 1660251
Gramella flava JLT2011 Bacteroidota Bacteroidia 1229726
Streptococcus iniae SF1 Firmicutes Bacilli 1318633
Vibrio alfacsensis CAIM 1831 Proteobacteria Gammaproteobacteria 1074311
Haliangium ochraceum DSM 14365 Myxococcota Polyangia 502025
Alcanivorax sp. W11-5 Proteobacteria Gammaproteobacteria 1872427
Kordia sp. SMS9 Bacteroidota Bacteroidia 1965332
Celeribacter baekdonensis LH4 Proteobacteria Alphaproteobacteria 1208323
Haloplanus sp. CBA1113 Halobacterota Halobacteria 1961696
Agrococcus jejuensis strain DSM 22002 Actinobacteriota Actinobacteria 399736
Shewanella baltica OS223 Proteobacteria Gammaproteobacteria 407976
Methanococcus maripaludis X1 Euryarchaeota Methanococci 1053692
Aliivibrio salmonicida strain VS224 Proteobacteria Gammaproteobacteria 40269
Streptomyces violaceoruber S21 Actinobacteriota Actinobacteria 1935
Erythrobacter litoralis HTCC2594 Proteobacteria Alphaproteobacteria 314225
Tenacibaculum sp. LPB0136 Bacteroidota Bacteroidia 1906242
Candidatus Pelagibacter ubique HTCC1062 Proteobacteria Alphaproteobacteria 335992
Alcanivorax dieselolei B5 Proteobacteria Gammaproteobacteria 930169
Kangiella sediminilitoris strain KCTC 23892 Proteobacteria Gammaproteobacteria 1144748
Vibrio anguillarum NB10 Proteobacteria Gammaproteobacteria 55601
Celeribacter indicus P73 Proteobacteria Alphaproteobacteria 1208324
Thalassococcus sp. SH-1 Proteobacteria Alphaproteobacteria 2017482
Shewanella baltica OS678 Proteobacteria Gammaproteobacteria 693973
Francisella sp. FSC1006 Proteobacteria Gammaproteobacteria 2047875
Fibrella aestuarina strain BUZ 2 Bacteroidota Bacteroidia 1166018
Methylophilales bacterium MBRSF5 Proteobacteria Gammaproteobacteria 1623448
Corynebacterium phocae strain M408/89/1 Actinobacteriota Actinobacteria 161895
Pseudomonas sp. MT-1 Proteobacteria Gammaproteobacteria 306
Devosia sp. I507 Proteobacteria Alphaproteobacteria 2083786
Thermosipho melanesiensis BI429 Thermotogota Thermotogae 391009
Thermosipho melanesiensis strain 431 Thermotogota Thermotogae 46541
Lacinutrix sp. 5H-3-7-4 Bacteroidota Bacteroidia 1937692
Pyrococcus abyssi GE5 Euryarchaeota Thermococci 272844
Sulfurovum sp. NBC37-1 Campylobacterota Campylobacteria 1969726
Planococcus kocurii strain ATCC 43650 Firmicutes Bacilli 1374
Vibrio fischeri MJ11 Proteobacteria Gammaproteobacteria 388396
Sulfitobacter sp. JL08 Proteobacteria Alphaproteobacteria 1903071
Bacillus subtilis subsp. subtilis BS155 Firmicutes Bacilli 909461
Thiomicrospira sp. S5 Proteobacteria Gammaproteobacteria 1803865
Vibrio parahaemolyticus 160807 Proteobacteria Gammaproteobacteria 670
Rubrobacter indicoceani SCSIO 08198 Actinobacteriota Rubrobacteria 2051957
Vibrio mediterranei strain 117-T6 Proteobacteria Gammaproteobacteria 689
Mariprofundus aestuarium strain CP-5 Proteobacteria Zetaproteobacteria 1921086
Photobacterium profundum SS9 Proteobacteria Gammaproteobacteria 298386
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Indioceanicola profundi SCSIO 08040 Proteobacteria Alphaproteobacteria 2220096
Pyrococcus horikoshii OT3 Euryarchaeota Thermococci 70601
Calothrix parasitica NIES-267 Cyanobacteria Cyanobacteriia 1973486
Aeromicrobium sp. A1-2 Actinobacteriota Actinobacteria 1743116
Palaeococcus pacificus DY20341 Euryarchaeota Thermococci 1343739
Haloferax gibbonsii strain ARA6 Halobacterota Halobacteria 35746
Zunongwangia profunda SM-A87 Bacteroidota Bacteroidia 398743
Prochlorococcus marinus bv. HNLC1 Cyanobacteria Cyanobacteriia 1219
Rhodobacter sphaeroides strain AB29 Proteobacteria Alphaproteobacteria 1063
Geobacillus sp. 12AMOR1 Firmicutes Bacilli 1891658
Methyloceanibacter sp. wino2 Proteobacteria Alphaproteobacteria 2170729
Shewanella marisflavi EP1 Proteobacteria Gammaproteobacteria 260364
Rhodothermaceae bacterium MEBiC09517 Bacteroidota Rhodothermia 2026787
Phaeobacter gallaeciensis P129 Proteobacteria Alphaproteobacteria 60890
Paraoerskovia marina strain DSM 22126 Actinobacteriota Actinobacteria 545619
Pseudomonas stutzeri strain 19SMN4 Proteobacteria Gammaproteobacteria 316
Sulfurimonas autotrophica DSM 16294 Campylobacterota Campylobacteria 563040
Corynebacterium marinum DSM 44953 Actinobacteriota Actinobacteria 1224162
Piscirickettsia salmonis strain PM51819A Proteobacteria Gammaproteobacteria 1238
Marinobacter sp. es.042 Proteobacteria Gammaproteobacteria 225847
Maritalea myrionectae HL2708#5 Proteobacteria Alphaproteobacteria 454601
Nitratiruptor sp. SB155-2 Campylobacterota Campylobacteria 2081525
Fervidobacterium pennivorans strain DYC Thermotogota Thermotogae 93466
Spirochaeta sp. L21-RPul-D2 Spirochaetota Spirochaetia 28185
Thalassolituus oleivorans R6-15 Proteobacteria Gammaproteobacteria 187493
Ilyobacter polytropus DSM 2926 Fusobacteriota Fusobacteriia 572544
Sphingopyxis sp. LPB0140 Proteobacteria Alphaproteobacteria 1908224
Alteromonas sp. Mex14 Proteobacteria Gammaproteobacteria 232
Streptococcus agalactiae Firmicutes Bacilli 1311
Alteromonas stellipolaris strain PQQ-44 Proteobacteria Gammaproteobacteria 233316
Desulfotomaculum reducens MI-1 Firmicutes_B Desulfotomaculia 59610
Kosmotoga olearia TBF 19.5.1 Thermotogota Thermotogae 651457
Polaribacter sp. ALD11 Bacteroidota Bacteroidia 1920175
Ilumatobacter coccineum YM16-304 Actinobacteriota Acidimicrobiia 467094
Streptomyces spongiicola HNM0071 Actinobacteriota Actinobacteria 1690221
Phaeobacter gallaeciensis DSM 26640 Proteobacteria Alphaproteobacteria 1423144
Ruegeria sp. TM1040 Proteobacteria Alphaproteobacteria 1879320
Roseibacterium elongatum DSM 19469 Proteobacteria Alphaproteobacteria 1294273
Desulfovibrio hydrothermalis AM13 Desulfobacterota_A Desulfovibrionia 1121451
Vibrio anguillarum 4299 Proteobacteria Gammaproteobacteria 55601
Marinobacter hydrocarbonoclasticus ATCC 49840 Proteobacteria Gammaproteobacteria 1902815
Flavobacterium psychrophilum v4-33 Bacteroidota Bacteroidia 96345
Methanococcus maripaludis C7 Euryarchaeota Methanococci 426368
Streptomyces sp. CC0208 Actinobacteriota Actinobacteria 1931
Prochlorococcus marinus str. MIT 9313 Cyanobacteria Cyanobacteriia 45397
Pyrobaculum aerophilum str. IM2 Crenarchaeota Thermoprotei 178306
Vibrio anguillarum 6018/1 Proteobacteria Gammaproteobacteria 882102
Nonlabens sp. MB-3u-79 Bacteroidota Bacteroidia 1888209
Salinimonas sp. N102 Proteobacteria Gammaproteobacteria 1929415
Vibrio alginolyticus K04M5 Proteobacteria Gammaproteobacteria 663
Methanoplanus petrolearius DSM 11571 Halobacterota Methanomicrobia 679926
Reinekea forsetii Hel1_31_D35 Proteobacteria Gammaproteobacteria 1336806
Flexibacter litoralis DSM 6794 Bacteroidota Bacteroidia 880071
Erythrobacter flavus VG1 Proteobacteria Alphaproteobacteria 95172
Hoeflea sp. IMCC20628 Proteobacteria Alphaproteobacteria 1940281
Vibrio anguillarum PF4 Proteobacteria Gammaproteobacteria 990314
Microbacterium sp. LKL04 Actinobacteriota Actinobacteria 51671
Desulfovibrio piezophilus strain C1TLV30 Desulfobacterota_A Desulfovibrionia 879567
Marinobacter aquaeolei VT8 Proteobacteria Gammaproteobacteria 1163748
Thermotoga sp. Cell2 Thermotogota Thermotogae 28240
Trichodesmium erythraeum IMS101 Cyanobacteria Cyanobacteriia 203124
Sedimenticola sp. SIP-G1 Proteobacteria Gammaproteobacteria 1940285
Shewanella psychrophila WP2 Proteobacteria Gammaproteobacteria 225848
Maribacter sp. HTCC2170 Bacteroidota Bacteroidia 1897614
Salinibacter ruber DSM 13855 Bacteroidota Rhodothermia 309807
Francisella sp. FDC440 Proteobacteria Gammaproteobacteria 2047875
Gramella forsetii KT0803 Bacteroidota Bacteroidia 411154
Phaeobacter sp. LSS9 Proteobacteria Alphaproteobacteria 1902409
Psychrobacter sp. P11G3 Proteobacteria Gammaproteobacteria 56811
Candidatus Endolissoclinum patella L2 Proteobacteria Alphaproteobacteria 1263978
Planococcus donghaensis strain DSM 22276 Firmicutes Bacilli 414778
Prochlorococcus marinus subsp. marinus str. CCMP1375 Cyanobacteria Cyanobacteriia 142554
Rhodococcus sp. 008 Actinobacteriota Actinobacteria 1831
Vibrio shilonii QT6D1 Proteobacteria Gammaproteobacteria 45658
Enterobacter cloacae E3442 Proteobacteria Gammaproteobacteria 550
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Tamlana sp. UJ94 Bacteroidota Bacteroidia 1969468
Mycobacterium chelonae CCUG 47445 Actinobacteriota Actinobacteria 1460372
Celeribacter ethanolicus strain TSPH2 Proteobacteria Alphaproteobacteria 1758178
Pseudoalteromonas translucida KMM 520 Proteobacteria Gammaproteobacteria 1315283
Prochlorococcus marinus str. MIT 9215 Cyanobacteria Cyanobacteriia 45397
Aliivibrio wodanis 06/09/139 Proteobacteria Gammaproteobacteria 80852
Polaribacter sp. Hel1_33_78 Bacteroidota Bacteroidia 1920175
Cellulophaga baltica NN016038 Bacteroidota Bacteroidia 1348585
Shewanella violacea DSS12 Proteobacteria Gammaproteobacteria 637905
Plantactinospora sp. BC1 Actinobacteriota Actinobacteria 1928616
Pseudomonas stutzeri strain 273 Proteobacteria Gammaproteobacteria 316
Streptomyces sp. CNQ-509 Actinobacteriota Actinobacteria 1931
Phycisphaera mikurensis NBRC 102666 Planctomycetota Phycisphaerae 1142394
Thiolapillus brandeum Hiromi 1 Proteobacteria Gammaproteobacteria 1076588
Pseudoalteromonas rubra strain SCSIO 6842 Proteobacteria Gammaproteobacteria 43658
Dinoroseobacter shibae DFL 12 Proteobacteria Alphaproteobacteria 398580
Oceanisphaera profunda SM1222 Proteobacteria Gammaproteobacteria 1416627
Kushneria marisflavi SW32 Proteobacteria Gammaproteobacteria 157779
Bacillus amyloliquefaciens SH-B74 Firmicutes Bacilli 1390
Phaeobacter gallaeciensis strain JL2886 Proteobacteria Alphaproteobacteria 60890
Shewanella sp. W3-18-1 Proteobacteria Gammaproteobacteria 50422
Pseudoalteromonas espejiana ATCC 29659 Proteobacteria Gammaproteobacteria 1314869
Nanohaloarchaea archaeon SG9 Nanohaloarchaeota Nanosalinia 1737403
Kyrpidia sp. EA-1 Firmicutes_K Alicyclobacillia 478801
Bacillus safensis strain KCTC 12796BP Firmicutes Bacilli 561879
Rhodovulum sp. P5 Proteobacteria Alphaproteobacteria 34009
Thermotoga maritima strain Tma200 Thermotogota Thermotogae 2336
Yersinia ruckeri NHV_3758 Proteobacteria Gammaproteobacteria 29486
Methanococcus maripaludis DSM 2067 Euryarchaeota Methanococci 267377
Prochlorococcus marinus str. NATL1A Cyanobacteria Cyanobacteriia 1219
Lysobacter maris HZ9B Proteobacteria Gammaproteobacteria 1605891
Vibrio coralliilyticus SNUTY-1 Proteobacteria Gammaproteobacteria 190893
Polaribacter reichenbachii 6Alg 8 Bacteroidota Bacteroidia 996801
Synechococcus sp. CC9311 Cyanobacteria Cyanobacteriia 1131
Celeribacter manganoxidans strain DY25 Proteobacteria Alphaproteobacteria 1411902
Piscirickettsia salmonis strain AY6297B Proteobacteria Gammaproteobacteria 1238
Vibrio parahaemolyticus BB22OP Proteobacteria Gammaproteobacteria 696485
Moorea producens JHB Cyanobacteria Cyanobacteriia 1454205
Agarivorans gilvus strain WH0801 Proteobacteria Gammaproteobacteria 680279
Vibrio vulnificus strain 93U204 Proteobacteria Gammaproteobacteria 672
Streptococcus parauberis SPOF3K Firmicutes Bacilli 1348
Alteromonas macleodii str. ’Ionian Sea UM4b’ Proteobacteria Gammaproteobacteria 28108
Flavobacteriaceae bacterium AU392 Bacteroidota Bacteroidia 1871037
Pyrococcus yayanosii CH1 Euryarchaeota Thermococci 529709
Nitrosopumilus maritimus SCM1 Crenarchaeota Nitrososphaeria 436308
Pseudoalteromonas donghaensis HJ51 Proteobacteria Gammaproteobacteria 621376
Methanotorris igneus Kol 5 Euryarchaeota Methanococci 880724
Kangiella koreensis DSM 16069 Proteobacteria Gammaproteobacteria 523791
Streptomyces sp. PVA 94-07 Actinobacteriota Actinobacteria 594563
Methanobacterium sp. MO-MB1 Euryarchaeota Methanobacteria 2164
Vibrio anguillarum PF4 Proteobacteria Gammaproteobacteria 990314
Altererythrobacter atlanticus strain 26DY36 Proteobacteria Alphaproteobacteria 1267766
Cenarchaeum symbiosum A Crenarchaeota Nitrososphaeria 414004
Vibrio anguillarum T265 Proteobacteria Gammaproteobacteria 55601
Piscirickettsia salmonis strain PM21567A Proteobacteria Gammaproteobacteria 1238
Cyclobacterium marinum DSM 745 Bacteroidota Bacteroidia 880070
Hahella chejuensis KCTC 2396 Proteobacteria Gammaproteobacteria 349521
Salegentibacter sp. T436 Bacteroidota Bacteroidia 1903072
Phaeobacter inhibens P66 Proteobacteria Alphaproteobacteria 999548
Thalassotalea sp. LPB0090 Proteobacteria Gammaproteobacteria 1897616
Pseudoalteromonas tunicata D2 Proteobacteria Gammaproteobacteria 314281
Vibrio anguillarum M3 Proteobacteria Gammaproteobacteria 882944
Nonlabens sp. MIC269 Bacteroidota Bacteroidia 1888209
Gramella sp. MAR_2010_147 Bacteroidota Bacteroidia 1931228
Mycoplasma phocidae 105 Firmicutes Bacilli 142651
Krokinobacter sp. 4H-3-7-5 Bacteroidota Bacteroidia 2024995
Thermococcus sp. EXT12c Euryarchaeota Thermococci 35749
Denitrovibrio acetiphilus DSM 12809 Deferribacterota Deferribacteres 522772
Ruegeria sp. AD91A Proteobacteria Alphaproteobacteria 1879320
Thermococcus sp. ES1 Euryarchaeota Thermococci 35749
Flavobacterium psychrophilum strain MH1 Bacteroidota Bacteroidia 96345
Persephonella marina EX-H1 Aquificota Aquificae 309805
Vibrio anguillarum 91-8-178 Proteobacteria Gammaproteobacteria 55601
Rhodobacteraceae bacterium BAR1 Proteobacteria Alphaproteobacteria 1904441
Piscirickettsia salmonis strain AY6532B Proteobacteria Gammaproteobacteria 1238
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Haloarcula sp. CBA1115 Halobacterota Halobacteria 44098
Marinobacter adhaerens HP15 Proteobacteria Gammaproteobacteria 351348
Dokdonia sp. PRO95 Bacteroidota Bacteroidia 2024995
Aquiflexum balticum DSM 16537 Bacteroidota Bacteroidia 758820
Alcanivorax xenomutans P40 Proteobacteria Gammaproteobacteria 1094342
Acaryochloris marina MBIC11017 Cyanobacteria Cyanobacteriia 329726
Vibrio alginolyticus strain ZJ-T Proteobacteria Gammaproteobacteria 663
Vibrio anguillarum PF430-3 Proteobacteria Gammaproteobacteria 55601
Mesorhizobium sp. B7 Proteobacteria Alphaproteobacteria 1871066
Thermococcus litoralis DSM 5473 Euryarchaeota Thermococci 523849
Altererythrobacter namhicola strain JCM 16345 Proteobacteria Alphaproteobacteria 645517
Thermotoga neapolitana DSM 4359 Thermotogota Thermotogae 309803
Helicobacter cetorum MIT 99-5656 Campylobacterota Campylobacteria 138563
Renibacterium salmoninarum ATCC 33209 Actinobacteriota Actinobacteria 288705
Paraphotobacterium marinum NSCS20N07D Proteobacteria Gammaproteobacteria 1009845
Phaeobacter inhibens 2.10 Proteobacteria Alphaproteobacteria 221822
Mycobacterium pseudoshottsii JCM 15466 Actinobacteriota Actinobacteria 1136880
Vibrio coralliilyticus RE98 Proteobacteria Gammaproteobacteria 190893
Lacinutrix sp. Bg11-31 Bacteroidota Bacteroidia 1486034
Kytococcus sedentarius DSM 20547 Actinobacteriota Actinobacteria 1526571
Staphylothermus hellenicus DSM 12710 Crenarchaeota Thermoprotei 591019
Vibrio campbellii 1114GL Proteobacteria Gammaproteobacteria 680
Prochlorococcus marinus str. MIT 9301 Cyanobacteria Cyanobacteriia 45397
Salinibacter ruber M8 Bacteroidota Rhodothermia 761659
Methylophilales bacterium MBRSG12 Proteobacteria Gammaproteobacteria 1623449
Flavobacterium psychrophilum strain CSF259-93 Bacteroidota Bacteroidia 96345
Piscirickettsia salmonis strain PM22180B Proteobacteria Gammaproteobacteria 1238
Vibrio anguillarum PF7 Proteobacteria Gammaproteobacteria 55601
Thioflavicoccus mobilis 8321 Proteobacteria Gammaproteobacteria 765912
Alteromonas macleodii AltDE1 Proteobacteria Gammaproteobacteria 1004786
Vibrio anguillarum 775 Proteobacteria Gammaproteobacteria 882102
Vibrio parahaemolyticus R13 Proteobacteria Gammaproteobacteria 1288784
Idiomarina sp. OT37-5b Proteobacteria Gammaproteobacteria 2100422
Tessaracoccus sp. NSG39 Actinobacteriota Actinobacteria 1971211
Formosa haliotis strain LMG 28520 Bacteroidota Bacteroidia 1555194
Phaeobacter inhibens P72 Proteobacteria Alphaproteobacteria 999548
Rhodobacter sphaeroides strain AB27 Proteobacteria Alphaproteobacteria 1063
Methanococcoides methylutens MM1 Halobacterota Methanosarcinia 1434104
Piscirickettsia salmonis strain PM58386B Proteobacteria Gammaproteobacteria 1238
Photobacterium damselae Phdp Wu-1 Proteobacteria Gammaproteobacteria 38293
Colwellia sp. PAMC 20917 Proteobacteria Gammaproteobacteria 56799
Piscirickettsia salmonis strain PM23019A Proteobacteria Gammaproteobacteria 1238
Weissella ceti strain WS74 Firmicutes Bacilli 759620
Methanosarcina sp. MTP4 Halobacterota Methanosarcinia 2213
Dokdonia sp. Dokd-P16 Bacteroidota Bacteroidia 2173169
Mariprofundus ferrinatatus strain CP-8 Proteobacteria Zetaproteobacteria 1921087
Geobacillus kaustophilus HTA426 Firmicutes Bacilli 235909
Rhodococcus sp. B7740 Actinobacteriota Actinobacteria 1831
Streptococcus iniae strain YSFST01-82 Firmicutes Bacilli 1346
Pseudoalteromonas luteoviolacea strain S4054 Proteobacteria Gammaproteobacteria 1129367
Synechococcus sp. NIES-970 Cyanobacteria Cyanobacteriia 1131
Pyrolobus fumarii 1A Crenarchaeota Thermoprotei 694429
Formosa agariphila KMM 3901 Bacteroidota Bacteroidia 1347342
Sphingopyxis alaskensis RB2256 Proteobacteria Alphaproteobacteria 317655
Lactococcus garvieae ATCC 49156 Firmicutes Bacilli 420890
Prochlorococcus sp. MIT 0801 Cyanobacteria Cyanobacteriia 1220
Marinitoga piezophila KA3 Thermotogota Thermotogae 1545835
Arcticibacterium luteifluviistationis SM1504 Bacteroidota Bacteroidia 1784714
Salinibacter ruber P18 Bacteroidota Rhodothermia 761659
Pseudoalteromonas issachenkonii strain KCTC 12958 Proteobacteria Gammaproteobacteria 152297
Phaeobacter inhibens P57 Proteobacteria Alphaproteobacteria 999548
Acinetobacter venetianus VE-C3 Proteobacteria Gammaproteobacteria 52133
Streptomyces sp. ADI95-16 Actinobacteriota Actinobacteria 1244134
Salinigranum rubrum GX10 Halobacterota Halobacteria 755307
Phaeobacter inhibens P74 Proteobacteria Alphaproteobacteria 999548
Marinitoga sp. 1137 Thermotogota Thermotogae 225937
Epibacterium mobile strain EPIB1 Proteobacteria Alphaproteobacteria 379347
Methanocaldococcus fervens AG86 Euryarchaeota Methanococci 573064
Vibrio parahaemolyticus UCM-V493 Proteobacteria Gammaproteobacteria 670
Sulfitobacter sp. SK012 Proteobacteria Alphaproteobacteria 1903071
Haloplanus aerogenes strain JCM 16430 Halobacterota Halobacteria 660522
Streptomyces sp. 452 Actinobacteriota Actinobacteria 271448
Geoglobus acetivorans SBH6 Halobacterota Archaeoglobi 565033
Candidatus Ruthia magnifica str. Cm (Calyptogena magnifica) Proteobacteria Gammaproteobacteria 386487
Nonlabens marinus S1-08 Bacteroidota Bacteroidia 930802
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Synechococcus sp. WH 7803 Cyanobacteria Cyanobacteriia 1131
Alteromonas sp. RW2A1 Proteobacteria Gammaproteobacteria 232
Tenericutes bacterium MZ-XQ Firmicutes Bacilli 2231116
Alcaligenes faecalis J481 Proteobacteria Gammaproteobacteria 511
Pseudoalteromonas sp. 1_2015MBL_MicDiv strain 15DKN1 Proteobacteria Gammaproteobacteria 1720343
Thermococcus sp. CDGS Euryarchaeota Thermococci 35749
Vibrio campbellii 20130629003S01 Proteobacteria Gammaproteobacteria 680
Carnobacterium sp. 17-4 Firmicutes Bacilli 48221
Erythrobacter sp. Alg231-14 Proteobacteria Alphaproteobacteria 1922225
Glaciecola nitratireducens FR1064 Proteobacteria Gammaproteobacteria 1085623
Vibrio furnissii NCTC 11218 Proteobacteria Gammaproteobacteria 903510
Vibrio anguillarum 87-9-117 Proteobacteria Gammaproteobacteria 55601
Marinobacter sp. Arc7-DN-1 Proteobacteria Gammaproteobacteria 50741
Chromohalobacter salexigens DSM 3043 Proteobacteria Gammaproteobacteria 290398
Celeribacter marinus strain IMCC12053 Proteobacteria Alphaproteobacteria 1397108
Candidatus Nitrosopelagicus brevis CN25 Crenarchaeota Nitrososphaeria 1410606
Prochlorococcus marinus str. MIT 9211 Cyanobacteria Cyanobacteriia 45397
Alteromonas mediterranea strain CP49 Proteobacteria Gammaproteobacteria 314275
Vibrio anguillarum VIB12 Proteobacteria Gammaproteobacteria 55601
Muricauda lutaonensis strain CC-HSB-11 Bacteroidota Bacteroidia 516051
Erysipelothrix rhusiopathiae KC-Sb-R1 Firmicutes Bacilli 1648
Nanoarchaeum equitans Kin4-M Nanoarchaeota Nanoarchaeia 160232
Pelobacter acetylenicus DSM 3247 Desulfuromonadota Desulfuromonadia 29542
Chromobacterium sp. IIBBL 112-1 Proteobacteria Gammaproteobacteria 306190
Phaeobacter gallaeciensis P75 Proteobacteria Alphaproteobacteria 60890
Methylomonas methanica MC09 Proteobacteria Gammaproteobacteria 857087
Echinicola vietnamensis DSM 17526 Bacteroidota Bacteroidia 926556
Pseudoalteromonas agarivorans Hao 2018 Proteobacteria Gammaproteobacteria 176102
Phaeobacter gallaeciensis P63 Proteobacteria Alphaproteobacteria 60890
Methanosarcina siciliae HI350 Halobacterota Methanosarcinia 1434119
Pseudoalteromonas tunicata D2 Proteobacteria Gammaproteobacteria 87626
Serratia marcescens KS10 Proteobacteria Gammaproteobacteria 615
Magnetococcus marinus MC-1 Proteobacteria Magnetococcia 1288970
Methanohalobium evestigatum Z-7303 Halobacterota Methanosarcinia 2322
Roseobacter denitrificans FDAARGOS_309 Proteobacteria Alphaproteobacteria 2434
Methanocaldococcus infernus ME Euryarchaeota Methanococci 573063
Flavobacteriaceae bacterium UJ101 Bacteroidota Bacteroidia 1150389
Desulfurobacterium thermolithotrophum DSM 11699 Aquificota Desulfurobacteriia 868864
Helicobacter cetorum MIT 00-7128 Campylobacterota Campylobacteria 138563
Alteromonas sp. BL110 Proteobacteria Gammaproteobacteria 232
Vibrio owensii V180403 Proteobacteria Gammaproteobacteria 696485
Vibrio rotiferianus B64D1 Proteobacteria Gammaproteobacteria 670
Pelagibacterium halotolerans B2 Proteobacteria Alphaproteobacteria 1082931
Halobacteriovorax sp. BALOs_7 Bdellovibrionota Bacteriovoracia 2109558
Synechococcus sp. PCC 7002 Cyanobacteria Cyanobacteriia 2269060
Lactococcus garvieae Lg2 Firmicutes Bacilli 1363
Alteromonas australica DE170 Proteobacteria Gammaproteobacteria 589873
Bacillus sp. Y-01 Firmicutes Bacilli 385524
Rhodobacter sphaeroides strain AB24 Proteobacteria Alphaproteobacteria 1063
Candidatus Nitrosopumilus sp. D3C Crenarchaeota Nitrososphaeria 1027373
Pseudodesulfovibrio profundus 500-1 Desulfobacterota_A Desulfovibrionia 57320
Bacillus cereus CC-1 Firmicutes Bacilli 1396
Arthrobacter sp. PAMC25486 Actinobacteriota Actinobacteria 1667
Photobacterium angustum LC1-200 Proteobacteria Gammaproteobacteria 661
Psychrobacter sp. G Proteobacteria Gammaproteobacteria 56811
Dokdonia sp. MED134 Bacteroidota Bacteroidia 2024995
Clostridium botulinum 202F Firmicutes_A Clostridia 1415774
Serratia marcescens EL1 Proteobacteria Gammaproteobacteria 615
Methylophaga nitratireducenticrescens GP59 Proteobacteria Gammaproteobacteria 754476
Pseudomonas aeruginosa Ocean-1175 Proteobacteria Gammaproteobacteria 287
Colwellia sp. MT41 Proteobacteria Gammaproteobacteria 56799
Jannaschia sp. CCS1 Proteobacteria Alphaproteobacteria 1966345
Spiribacter salinus M19-40 Proteobacteria Gammaproteobacteria 1335746
Rhodococcus sp. WMMA185 Actinobacteriota Actinobacteria 1831
alpha proteobacterium HIMB59 Proteobacteria Alphaproteobacteria 744985
Ignicoccus hospitalis KIN4/I Crenarchaeota Thermoprotei 453591
Pseudoalteromonas carrageenovora IAM 12662 strain ATCC 43555 Proteobacteria Gammaproteobacteria 1314868
Psychrobacter sp. PRwf-1 Proteobacteria Gammaproteobacteria 56811
Shewanella sp. MR-4 Proteobacteria Gammaproteobacteria 50422
Vibrio anguillarum 51/82/2 Proteobacteria Gammaproteobacteria 882944
Spirochaeta thermophila DSM 6578 Spirochaetota Spirochaetia 869211
Alteromonas australica H 17 Proteobacteria Gammaproteobacteria 589873
Coraliomargarita akajimensis DSM 45221 Verrucomicrobiota Verrucomicrobiae 583355
Octadecabacter temperatus strain SB1 Proteobacteria Alphaproteobacteria 1458307
Sulfitobacter sp. SK011 Proteobacteria Alphaproteobacteria 1903071



A.4 Reference Taxa in Prokaryotic Tree 261

Pseudomonas stutzeri CCUG 29243 Proteobacteria Gammaproteobacteria 1196835
Pyrococcus sp. ST04 Euryarchaeota Thermococci 33866
Ruegeria pomeroyi DSS-3 Proteobacteria Alphaproteobacteria 89184
Novosphingobium sp. PP1Y Proteobacteria Alphaproteobacteria 1874826
Thermotoga maritima strain Tma100 Thermotogota Thermotogae 2336
Piscirickettsia salmonis strain AY3800B Proteobacteria Gammaproteobacteria 1238
Psychrobacter sp. AntiMn-1 Proteobacteria Gammaproteobacteria 56811
Shewanella baltica OS117 Proteobacteria Gammaproteobacteria 693970
Pontimonas salivibrio CL-TW6 Actinobacteriota Actinobacteria 1159327
Shewanella sp. MR-7 Proteobacteria Gammaproteobacteria 50422
Flavobacterium sp. LPB0076 Bacteroidota Bacteroidia 239
Microbulbifer agarilyticus GP101 Proteobacteria Gammaproteobacteria 260552
Vibrio alginolyticus ATCC 33868 Proteobacteria Gammaproteobacteria 663
Salinibacter ruber SP73 Bacteroidota Rhodothermia 761659
Altererythrobacter dongtanensis strain KCTC 22672 Proteobacteria Alphaproteobacteria 692370
Shewanella amazonensis SB2B Proteobacteria Gammaproteobacteria 326297
Vibrio nigripulchritudo str. SFn1 Proteobacteria Gammaproteobacteria 691
Robiginitalea biformata HTCC2501 Bacteroidota Bacteroidia 313596
Nodularia spumigena CCY9414 Cyanobacteria Cyanobacteriia 313624
Phaeobacter gallaeciensis P128 Proteobacteria Alphaproteobacteria 60890
Vibrio campbellii BoB-90 Proteobacteria Gammaproteobacteria 680
Vibrio anguillarum HI610 Proteobacteria Gammaproteobacteria 55601
Streptomyces sp. SCSIO 03032 Actinobacteriota Actinobacteria 1931
Euzebyella marina RN62 Bacteroidota Bacteroidia 1761453
Gallaecimonas sp. HK-28 Proteobacteria Gammaproteobacteria 1972664
Vibrio campbellii LA16-V1 Proteobacteria Gammaproteobacteria 680
Yersinia ruckeri strain Big Creek 74 Proteobacteria Gammaproteobacteria 29486
Piscirickettsia salmonis strain AY6492A Proteobacteria Gammaproteobacteria 1238
Erythrobacter sp. s21-N3 Proteobacteria Alphaproteobacteria 1042
Magnetospira sp. QH-2 Proteobacteria Alphaproteobacteria 1897614
Polaribacter reichenbachii KCTC 23969 Bacteroidota Bacteroidia 996801
Colwellia psychrerythraea 34H Proteobacteria Gammaproteobacteria 167879
Staphylococcus delphini strain NCTC12225 Firmicutes Bacilli 53344
Pseudoalteromonas issachenkonii KMM 3549 Proteobacteria Gammaproteobacteria 1315274
Caldithrix abyssi DSM 13497 Calditrichota Calditrichia 880073
Hyphomicrobium nitrativorans NL23 Proteobacteria Alphaproteobacteria 1029756
Shewanella baltica BA175 Proteobacteria Gammaproteobacteria 693974
Phaeobacter inhibens P83 Proteobacteria Alphaproteobacteria 999548
Thermotoga sp. RQ2 Thermotogota Thermotogae 28240
Prochlorococcus marinus str. MIT 9515 Cyanobacteria Cyanobacteriia 45397
Alteromonas stellipolaris LMG 21856 Proteobacteria Gammaproteobacteria 1160720
Shewanella sediminis HAW-EB3 Proteobacteria Gammaproteobacteria 271097
Geoglobus ahangari strain 234 Halobacterota Archaeoglobi 113653
Teredinibacter turnerae T7901 Proteobacteria Gammaproteobacteria 377629
Shewanella denitrificans OS217 Proteobacteria Gammaproteobacteria 318161
Prochlorococcus marinus bv. HNLC2 Cyanobacteria Cyanobacteriia 1219
Pseudovibrio sp. FO-BEG1 Proteobacteria Alphaproteobacteria 1909297
Nocardia seriolae strain EM150506 Actinobacteriota Actinobacteria 37332
Vibrio anguillarum DSM 21597 Proteobacteria Gammaproteobacteria 882102
Hermovibrio ammonificans HB-1 Aquificota Desulfurobacteriia 228745
Prochlorococcus marinus subsp. pastoris str. CCMP1986 Cyanobacteria Cyanobacteriia 142479
Marinobacter psychrophilus strain 20041 Proteobacteria Gammaproteobacteria 330734
Mollicutes bacterium (Candidatus Izimaplasma ) HR1 Firmicutes Bacilli 37628
Phaeobacter inhibens P48 Proteobacteria Alphaproteobacteria 999548
Vibrio campbellii (harveyi) ATCC BAA-1116 Proteobacteria Gammaproteobacteria 314289
Vibrio anguillarum 90-11-287 Proteobacteria Gammaproteobacteria 55601
Halogeometricum borinquense DSM 11551 Halobacterota Halobacteria 469382
Halanaeroarchaeum sulfurireducens strain M27-SA2 Halobacterota Halobacteria 1604004
Shewanella woodyi ATCC 51908 Proteobacteria Gammaproteobacteria 392500
Methanosarcina siciliae T4/M Halobacterota Methanosarcinia 1434120
Bacillus infantis NRRL B-14911 Firmicutes Bacilli 324767
Rhodobiaceae bacterium SMS8 Proteobacteria Alphaproteobacteria 2026785
Campylobacter insulaenigrae strain NCTC12927 Campylobacterota Campylobacteria 1031564
Gammaproteobacteria bacterium DM2 Proteobacteria Gammaproteobacteria 1738444
Yangia sp. CCB-MM3 Proteobacteria Alphaproteobacteria 2078585
Microbulbifer sp. A4B17 Proteobacteria Gammaproteobacteria 359370
Ferroglobus placidus DSM 10642 Halobacterota Archaeoglobi 589924
Marinobacter salarius strain HL2708#2 Proteobacteria Gammaproteobacteria 1420917
Pseudoalteromonas piscicida DE2-A Proteobacteria Gammaproteobacteria 43662
Pseudoalteromonas atlantica T6c Proteobacteria Gammaproteobacteria 342610
Aureitalea sp. RR4-38 Bacteroidota Bacteroidia 1872661
bacterium symbiont of Cryptopsaras couesii Proteobacteria Gammaproteobacteria 1927128
Flammeovirga sp. MY04 Bacteroidota Bacteroidia 1978526
Vibrio owensii XSBZ03 Proteobacteria Gammaproteobacteria 28173
Piscirickettsia salmonis strain PM25344B Proteobacteria Gammaproteobacteria 1238
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Thalassospira sp. CSC3H3 Proteobacteria Alphaproteobacteria 1912094
Yangia pacifica YSBP01 Proteobacteria Alphaproteobacteria 311180
Altererythrobacter ishigakiensis strain NBRC 107699 Proteobacteria Alphaproteobacteria 476157
Salinibacter ruber M1 Bacteroidota Rhodothermia 761659
Cellulophaga lytica DSM 7489 Bacteroidota Bacteroidia 867900
Vibrio sp. Ex25 Proteobacteria Gammaproteobacteria 678
Methanocaldococcus jannaschii DSM 2661 Euryarchaeota Methanococci 243232
Kosmotoga pacifica strain SLHLJ1 Thermotogota Thermotogae 1330330
Candidatus Thioglobus sp. EF1 Proteobacteria Gammaproteobacteria 2026721
Confluentimicrobium sp. EMB200-NS6 Proteobacteria Alphaproteobacteria 1872125
Prochlorococcus marinus str. MIT 9303 Cyanobacteria Cyanobacteriia 45397
Streptomyces sp. CMB-StM0423 Actinobacteriota Actinobacteria 1931
Nocardiopsis dassonvillei strain NOCA502F Actinobacteriota Actinobacteria 2015
Halomonas sp. SF2003 Proteobacteria Gammaproteobacteria 2136172
Myroides profundi D25 Bacteroidota Bacteroidia 480520
Shewanella baltica OS195 Proteobacteria Gammaproteobacteria 399599
Vibrio jasicida 090810c Proteobacteria Gammaproteobacteria 1280002
Aeromonas salmonicida S121 Proteobacteria Gammaproteobacteria 645
Hirschia baltica ATCC 49814 Proteobacteria Alphaproteobacteria 582402
Thermococcus barophilus CH5 Euryarchaeota Thermococci 55802
Salinicoccus sp. BAB 3246 Firmicutes Bacilli 1871624
Cyclobacterium amurskyense strain KCTC 12363 Bacteroidota Bacteroidia 320787
Luteimonas sp. JM171 Proteobacteria Gammaproteobacteria 1124597
Cellulophaga algicola DSM 14237 Bacteroidota Bacteroidia 688270
Vibrio vulnificus FORC_053 Proteobacteria Gammaproteobacteria 672
Nitratifractor salsuginis DSM 16511 Campylobacterota Campylobacteria 749222
Thiomicrospira crunogena XCL-2 Proteobacteria Gammaproteobacteria 39765
Bradymonas sediminis FA350 Myxococcota Bradimonadia 1548548
Anoxybacter fermentans strain DY22613 Firmicutes_F Halanaerobiia 1323375
Novosphingobium pentaromativorans US6-1 Proteobacteria Alphaproteobacteria 205844
Salinibacter ruber P13 Bacteroidota Rhodothermia 761659
Nonlabens sediminis NBRC 100970 Bacteroidota Bacteroidia 323273
Archaeoglobus veneficus SNP6 Halobacterota Archaeoglobi 693661
Paenibacillus durus DSM 1735 Firmicutes_I Bacilli_A 44251
Alteromonas mediterranea strain CP48 Proteobacteria Gammaproteobacteria 314275
Haloarcula hispanica ATCC 33960 Halobacterota Halobacteria 634497
Actinoalloteichus sp. GBA129-24 Actinobacteriota Actinobacteria 1872128
Bordetella sp. HZ20 Proteobacteria Gammaproteobacteria 28081
Hyperthermus butylicus DSM 5456 Crenarchaeota Thermoprotei 415426
Massilia sp. YMA4 Proteobacteria Gammaproteobacteria 1882437
Bacillus velezensis strain 9912D Firmicutes Bacilli 492670
Pseudomonas pohangensis strain DSM 17875 Proteobacteria Gammaproteobacteria 364197
Alteromonas macleodii ATCC 27126 Proteobacteria Gammaproteobacteria 529120
Pseudanabaena sp. PCC 7367 Cyanobacteria Cyanobacteriia 1153
Lacimicrobium alkaliphilum strain KCTC 32984 Proteobacteria Gammaproteobacteria 1937692
Desulfobacterium autotrophicum HRM2 Desulfobacterota Desulfobacteria 177437
Methanobacterium sp. MZ-A1 Euryarchaeota Methanobacteria 2164
Maribacter sp. 1_2014MBL_MicDiv Bacteroidota Bacteroidia 1897614
Vibrio anguillarum VIB43 Proteobacteria Gammaproteobacteria 55601
Paenibacillus sp. LPB0068 Firmicutes_I Bacilli_A 58172
Saprospira grandis str. Lewin Bacteroidota Bacteroidia 1008
Methanohalophilus halophilus strain Z-7982 Halobacterota Methanosarcinia 2177
Methanococcus vannielii SB Euryarchaeota Methanococci 406327
Vibrio alginolyticus strain ATCC 33787 Proteobacteria Gammaproteobacteria 674977
Micromonospora krabiensis strain DSM 45344 Actinobacteriota Actinobacteria 307121
Methanoculleus marisnigri JR1 Halobacterota Methanomicrobia 368407
Catenovulum sp. CCB-QB4 Proteobacteria Gammaproteobacteria 2172099
Cycloclasticus zancles 78-ME Proteobacteria Gammaproteobacteria 1329899
Methanococcus aeolicus Nankai-3 Euryarchaeota Methanococci 42879
Candidatus Thioglobus singularis NP1 Proteobacteria Gammaproteobacteria 1427364
Methanocaldococcus vulcanius M7 Euryarchaeota Methanococci 579137
Methanothermococcus okinawensis IH1 Euryarchaeota Methanococci 647113
Shewanella pealeana ATCC 700345 Proteobacteria Gammaproteobacteria 398579
Zobellella denitrificans F13-1 Proteobacteria Gammaproteobacteria 347534
Candidatus Vesicomyosocius okutanii HA Proteobacteria Gammaproteobacteria 412965
Vibrio campbellii BoB-53 Proteobacteria Gammaproteobacteria 680
Candidatus Endolissoclinum faulkneri L5 Proteobacteria Alphaproteobacteria 1401328
Candidatus Nitrosoarchaeum limnia SFB1 Crenarchaeota Nitrososphaeria 886738
Erythrobacter sp. KY5 Proteobacteria Alphaproteobacteria 1042
Vibrio coralliilyticus Proteobacteria Gammaproteobacteria 190893
Methanosarcina sp. WH1 Halobacterota Methanosarcinia 2213
Thermotoga sp. RQ7 Thermotogota Thermotogae 28240
Altererythrobacter epoxidivorans CGMCC 1.7731 Proteobacteria Alphaproteobacteria 361183
Marinobacter sp. CP1 Proteobacteria Gammaproteobacteria 50741
Vibrio vulnificus FORC_037 Proteobacteria Gammaproteobacteria 672
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Wenzhouxiangella marina strain KCTC 42284 Proteobacteria Gammaproteobacteria 1579979
Halioglobus japonicus NBRC 107739 Proteobacteria Gammaproteobacteria 930805
Paenibacillus sp. CAA11 Firmicutes_I Bacilli_A 1532905
Aeromonas salmonicida S44 Proteobacteria Gammaproteobacteria 645
Vibrio cholerae Sa5Y Proteobacteria Gammaproteobacteria 666
Archaeoglobus fulgidus DSM 4304 Halobacterota Archaeoglobi 224325
Methanosarcina acetivorans C2A Halobacterota Methanosarcinia 188937
Vibrio campbellii Proteobacteria Gammaproteobacteria 680
Shewanella loihica PV-4 Proteobacteria Gammaproteobacteria 359303
Marinobacterium sp. ST58-10 Proteobacteria Gammaproteobacteria 1902815
Alteromonas macleodii str. ’Aegean Sea MED64’ Proteobacteria Gammaproteobacteria 28108
Psychromonas sp. CNPT3 Proteobacteria Gammaproteobacteria 1884585
Phaeobacter inhibens P92 Proteobacteria Alphaproteobacteria 999548
Psychroflexus torquis ATCC 700755 Bacteroidota Bacteroidia 313595
Nonlabens sp. Hel1_33_55 Bacteroidota Bacteroidia 1888209
Thermococcus nautili strain 30-1 Euryarchaeota Thermococci 195522
Flavivirga eckloniae ECD14 Bacteroidota Bacteroidia 1803846
Weissella ceti strain WS08 Firmicutes Bacilli 759620
Desulfovibrio salexigens DSM 2638 Desulfobacterota_A Desulfovibrionia 526222
Roseobacter litoralis Och 149 Proteobacteria Alphaproteobacteria 391595
Alteromonas macleodii str. ’Ionian Sea U4’ Proteobacteria Gammaproteobacteria 28108
Marinobacter salarius R9SW1 Proteobacteria Gammaproteobacteria 1420917
Pseudoalteromonas piscicida DE2-B Proteobacteria Gammaproteobacteria 43662
Halolamina aestuarii strain Hb3 Proteobacteria Gammaproteobacteria 1480675
Thermotoga maritima MSB8 Thermotogota Thermotogae 243274
Vibrio anguillarum JLL237 Proteobacteria Gammaproteobacteria 55601
Prosthecochloris sp. GSB1 Bacteroidota Chlorobia 290513
Altererythrobacter sp. B11 Proteobacteria Alphaproteobacteria 1872480
Brucella ceti TE28753-12 Proteobacteria Alphaproteobacteria 120577
Vibrio cholerae FORC_055 Proteobacteria Gammaproteobacteria 666
Vibrio alginolyticus K06K5 Proteobacteria Gammaproteobacteria 663
Vibrio breoganii strain FF50 Proteobacteria Gammaproteobacteria 553239
Citromicrobium sp. JL477 Proteobacteria Alphaproteobacteria 2024827
Polaribacter sp. LPB0003 Bacteroidota Bacteroidia 1920175
Bacteriovorax marinus SJ Bdellovibrionota Bacteriovoracia 862908
Rhodococcus sp. H-CA8f Actinobacteriota Actinobacteria 1831
Spiribacter sp. UAH-SP71 Proteobacteria Gammaproteobacteria 1930901
Actinoalloteichus sp. ADI127-17 Actinobacteriota Actinobacteria 1872128
Rhodothermus marinus SG0.5JP17-172 Bacteroidota Rhodothermia 29549
Edwardsiella tarda EIB202 Proteobacteria Gammaproteobacteria 498217
Salinimonas sp. HMF8227 Proteobacteria Gammaproteobacteria 1929415
Glaciecola sp. 4H-3-7+YE-5 Proteobacteria Gammaproteobacteria 983545
Thermaerobacter marianensis DSM 12885 Firmicutes_E Thermaerobacteria 644966
Campylobacter lari strain Slaughter Beach Campylobacterota Campylobacteria 201
Nonlabens spongiae JCM 13191 Bacteroidota Bacteroidia 331648
Alteromonas macleodii str. ’Black Sea 11’ Proteobacteria Gammaproteobacteria 28108
Cellulophaga baltica 18 Bacteroidota Bacteroidia 1348584
Olleya aquimaris DAU311 Bacteroidota Bacteroidia 639310
Staphylothermus marinus F1 Crenarchaeota Thermoprotei 399550
Cycloclasticus sp. PY97N Proteobacteria Gammaproteobacteria 2024830
uncultured marine group II euryarchaeote Thermoplasmatota Poseidoniia 274854
Thiocystis violascens DSM 198 Proteobacteria Gammaproteobacteria 765911
Kangiella geojedonensis strain YCS-5 Proteobacteria Gammaproteobacteria 914150
Tistrella mobilis KA081020-065 Proteobacteria Alphaproteobacteria 171437
Vibrio sp. EJY3 Proteobacteria Gammaproteobacteria 689
Piscirickettsia salmonis PSCGR01 Proteobacteria Gammaproteobacteria 1238
Vibrio anguillarum 425 Proteobacteria Gammaproteobacteria 882102
Verrucosispora maris AB-18-032 Actinobacteriota Actinobacteria 1003110
Halomonas sp. A3H3 Proteobacteria Gammaproteobacteria 1486246
Vibrio alginolyticus K04M3 Proteobacteria Gammaproteobacteria 663
Paenibacillus donghaensis KCTC 13049 Firmicutes_I Bacilli_A 414771
Archaeoglobus profundus DSM 5631 Halobacterota Archaeoglobi 572546
Rivularia sp. PCC 7116 Cyanobacteria Cyanobacteriia 2047365
Thermococcus barophilus MP Euryarchaeota Thermococci 391623
Halobacteriovorax marinus BE01 Bdellovibrionota Bacteriovoracia 97084
Thermococcus sp. AM4 Euryarchaeota Thermococci 35749
Pyrococcus sp. NA2 Euryarchaeota Thermococci 33866
Planktomarina temperata RCA23 Proteobacteria Alphaproteobacteria 666509
Croceibacter atlanticus HTCC2559 Bacteroidota Bacteroidia 216432
Vibrio anguillarum VA1 Proteobacteria Gammaproteobacteria 55601
Phaeobacter gallaeciensis P73 Proteobacteria Alphaproteobacteria 60890
Nonlabens dokdonensis DSW-6 Bacteroidota Bacteroidia 328515
Thermotoga maritima MSB8 Thermotogota Thermotogae 243274
Vibrio anguillarum Ba35 Proteobacteria Gammaproteobacteria 55601
Echinicola strongylocentroti MEBiC08714 Bacteroidota Bacteroidia 1795355
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Helicobacter sp. MIT 01-6242 Campylobacterota Campylobacteria 218
Vibrio anguillarum 91-7154 Proteobacteria Gammaproteobacteria 55601
Flavobacterium psychrophilum strain PG2 Bacteroidota Bacteroidia 96345
Edwardsiella tarda Proteobacteria Gammaproteobacteria 636
Aciduliprofundum boonei T469 Thermoplasmatota Thermoplasmata 439481
Streptomyces niveus SCSIO 3406 Actinobacteriota Actinobacteria 193462
Alcanivorax sp. E4 Proteobacteria Gammaproteobacteria 1799644
Flexistipes sinusarabici DSM 4947 Deferribacterota Deferribacteres 717231
Moritella yayanosii DB21MT 5 Proteobacteria Gammaproteobacteria 69539
Nautilia profundicola AmH Campylobacterota Campylobacteria 598659
Vibrio alginolyticus K01M1 Proteobacteria Gammaproteobacteria 663
Roseovarius sp. AK1035 Proteobacteria Alphaproteobacteria 1486281
Vibrio scophthalmi strain VS-12 Proteobacteria Gammaproteobacteria 45658
Myxococcus fulvus HW-1 Myxococcota Myxococcia 33
Vibrio owensii 1700302 Proteobacteria Gammaproteobacteria 696485
Dokdonia donghaensis DSW-1 Bacteroidota Bacteroidia 326320
Flavobacterium sp. MEBiC07310 Bacteroidota Bacteroidia 239
Microcella alkaliphila JAM AC0309 Actinobacteriota Actinobacteria 279828
Methanocaldococcus sp. JH146 Euryarchaeota Methanococci 2152917
Aeropyrum camini SY1 = JCM 12091 Crenarchaeota Thermoprotei 1198449
bacterium AB1 strain AB1-8 UBP7 UBA6624 1898108
Brucella sp. 141012304 Proteobacteria Alphaproteobacteria 52132
Synechococcus sp. WH 8109 Cyanobacteria Cyanobacteriia 1131
Vibrio anguillarum 261/91 Proteobacteria Gammaproteobacteria 990314
alpha proteobacterium HIMB5 Proteobacteria Alphaproteobacteria 859653
Prochlorococcus marinus str. NATL2A Cyanobacteria Cyanobacteriia 1219
Pelagibaca abyssi JLT2014 Proteobacteria Alphaproteobacteria 1250539
Salinibacter ruber SP38 Bacteroidota Rhodothermia 761659
Sphingorhabdus flavimaris YGSMI21 Proteobacteria Alphaproteobacteria 266812
Desulfocapsa sulfexigens DSM 10523 Desulfobacterota Desulfobulbia 1167006
Candidatus Puniceispirillum marinum IMCC1322 Proteobacteria Alphaproteobacteria 488538
Octadecabacter antarcticus 307 Proteobacteria Alphaproteobacteria 391626
Flavobacterium psychrophilum V3-5 Bacteroidota Bacteroidia 96345
Moorea producens PAL-8-15-08-1 Cyanobacteria Cyanobacteriia 1155739
Endosymbiont of unidentified scaly snail isolate Monju Proteobacteria Gammaproteobacteria 1248727
Vibrio vulnificus CECT 4999 Proteobacteria Gammaproteobacteria 1051646
Gramella sp. LPB0144 Bacteroidota Bacteroidia 1931228
Planococcus maritimus strain DSM 17275 Firmicutes Bacilli 192421
Flavobacterium psychrophilum FPG101 Bacteroidota Bacteroidia 1452725
Vibrio vulnificus FORC_036 Proteobacteria Gammaproteobacteria 216895
Halomonas elongata DSM 2581 Proteobacteria Gammaproteobacteria 768066
Idiomarina loihiensis L2TR Proteobacteria Gammaproteobacteria 283942
Thermococcus sp. 4557 Euryarchaeota Thermococci 35749
Thermococcus sp. CL1 Euryarchaeota Thermococci 35749
Micromonospora tulbaghiae CNY-010 Actinobacteriota Actinobacteria 479978
Klebsiella pneumoniae subsp. pneumoniae KC-Pl-HB1 Proteobacteria Gammaproteobacteria 573
Shewanella frigidimarina NCIMB 400 Proteobacteria Gammaproteobacteria 318167
Archaeoglobus fulgidus DSM 8774 Halobacterota Archaeoglobi 1344584
Aeropyrum pernix K1 Crenarchaeota Thermoprotei 272557
Leisingera methylohalidivorans DSM 14336 Proteobacteria Alphaproteobacteria 1246
Phaeobacter inhibens P54 Proteobacteria Alphaproteobacteria 999548
Verrucomicrobia bacterium L21-Fru-AB Verrucomicrobiota Kiritimatiellae 2026799
Phaeobacter piscinae P13 Proteobacteria Alphaproteobacteria 1580596
Vibrio anguillarum S3 4/9 Proteobacteria Gammaproteobacteria 882944
Desulfotalea psychrophila LSv54 Desulfobacterota Desulfobulbia 177439
Cyanothece sp. ATCC 51142 Cyanobacteria Cyanobacteriia 2649277
Oleiphilus messinensis ME102 Proteobacteria Gammaproteobacteria 141451
Shewanella benthica DB21MT-2 Proteobacteria Gammaproteobacteria 43661
Altererythrobacter marensis strain KCTC 22370 Proteobacteria Alphaproteobacteria 543877
Pseudomonas litoralis strain 2SM5 Proteobacteria Gammaproteobacteria 797277
Saccharophagus degradans 2-40 Proteobacteria Gammaproteobacteria 86304
Vibrio anguillarum CNEVA NB11008 Proteobacteria Gammaproteobacteria 55601
Thermotoga maritima MSB8 Thermotogota Thermotogae 243274
Flavobacterium psychrophilum V4-24 Bacteroidota Bacteroidia 96345
Nautilia profundicola strain PV-1 Campylobacterota Campylobacteria 244787
Clostridiales bacterium 70B-A Firmicutes_A Clostridia
Tateyamaria omphalii DOK1-4 Proteobacteria Alphaproteobacteria 299262
Salinispora tropica CNB-440 Actinobacteriota Actinobacteria 168695
Marinifilaceae bacterium SPP2 Bacteroidota Bacteroidia 869210
Alteromonas stellipolaris strain PQQ-42 Proteobacteria Gammaproteobacteria 233316
Algibacter sp. HZ22 Bacteroidota Bacteroidia 1872428
Methanococcus maripaludis C6 Euryarchaeota Methanococci 444158
Francisella sp. TX077310 Proteobacteria Gammaproteobacteria 2047875
Chromobacterium sp. IIBBL 274-1 Proteobacteria Gammaproteobacteria 306190
Vibrio natriegens strain CCUG 16374 Proteobacteria Gammaproteobacteria 691
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Weissella ceti strain WS105 Firmicutes Bacilli 759620
Streptococcus iniae QMA0248 Firmicutes Bacilli 1346
Phaeobacter inhibens DOK1-1 Proteobacteria Alphaproteobacteria 221822
Vibrio anguillarum strain 90-11-286 Proteobacteria Gammaproteobacteria 55601
Cellulophaga lytica strain HI1 Bacteroidota Bacteroidia 979
Psychromonas ingrahamii 37 Proteobacteria Gammaproteobacteria 357804
Oleispira antarctica RB-8 Proteobacteria Gammaproteobacteria 188908
Methylocaldum marinum S8 Proteobacteria Gammaproteobacteria 1432792
Polaribacter sp. MED152 Bacteroidota Bacteroidia 1920175
Neorickettsia helminthoeca str. Oregon Proteobacteria Alphaproteobacteria 33994
Tenacibaculum dicentrarchi strain AY7486TD Bacteroidota Bacteroidia 669041
Spongiibacter sp. IMCC21906 Proteobacteria Gammaproteobacteria 2024860
Vibrio anguillarum 87-9-116 Proteobacteria Gammaproteobacteria 55601
Donghicola sp. JLT3646 Proteobacteria Alphaproteobacteria 1929294
Serinicoccus sp. JLT9 Actinobacteriota Actinobacteria 1871625
Chloroherpeton thalassium ATCC 35110 Bacteroidota Chlorobia 517418
Candidatus Thioglobus singularis PS1 Proteobacteria Gammaproteobacteria 1125411
Wenyingzhuangia fucanilytica strain CZ1127 Bacteroidota Bacteroidia 1790137
Rhodoferax ferrireducens T118 Proteobacteria Gammaproteobacteria 338969
Rhodovulum sp. MB263 Proteobacteria Alphaproteobacteria 34009
Mycobacterium stephanolepidis NJB0901 Actinobacteriota Actinobacteria 1520670
Vibrio tubiashii ATCC 19109 Proteobacteria Gammaproteobacteria 678
Vibrio natriegens NBRC 15636 = ATCC 14048 = DSM 759 Proteobacteria Gammaproteobacteria 1219067
Bacterioplanes sanyensis NV9 Proteobacteria Gammaproteobacteria 1249553
Alteromonas sp. RKMC-009 Proteobacteria Gammaproteobacteria 232
Pontibacter actiniarum DSM 19842 Bacteroidota Bacteroidia 323450
Phaeobacter piscinae P71 Proteobacteria Alphaproteobacteria 1580596
Jeotgalibacillus sp. D5 Firmicutes Bacilli 1898383
Pseudomonas plecoglossicida XSDHY-P Proteobacteria Gammaproteobacteria 70775
Thalassolituus oleivorans MIL-1 Proteobacteria Gammaproteobacteria 187493
Actinoalloteichus sp. AHMU CJ021 Actinobacteriota Actinobacteria 2072503
Shewanella livingstonensis strain LMG 19866 Proteobacteria Gammaproteobacteria 150120
Pseudoalteromonas agarivorans DSM 14585 Proteobacteria Gammaproteobacteria 1312369
Vibrio anguillarum PF4 Proteobacteria Gammaproteobacteria 55601
Prochlorococcus marinus AS9601 Cyanobacteria Cyanobacteriia 1219
Vibrio coralliilyticus strain 58 Proteobacteria Gammaproteobacteria 909421
Phaeobacter gallaeciensis P11 Proteobacteria Alphaproteobacteria 60890
Piscirickettsia salmonis strain PM31429B Proteobacteria Gammaproteobacteria 1238
Formosa sp. Hel1_33_131 Bacteroidota Bacteroidia 2018467
Methylophilales bacterium MBRSH7 Proteobacteria Gammaproteobacteria 2546201
Vibrio parahaemolyticus strain CHN25 Proteobacteria Gammaproteobacteria 1211705
Vibrio alginolyticus K08M3 Proteobacteria Gammaproteobacteria 663
Marinobacter sp. Hb8 Proteobacteria Gammaproteobacteria 50741
Planococcus plakortidis strain DSM 23997 Firmicutes Bacilli 1038856
Halobacillus mangrovi KTB 131 Firmicutes Bacilli 402384
Vibrio campbellii DS40M4 Proteobacteria Gammaproteobacteria 680
Erythrobacter seohaensis strain SW-135 Proteobacteria Alphaproteobacteria 266951
Haloquadratum walsbyi DSM 16790 Halobacterota Halobacteria 362976
Marivirga tractuosa DSM 4126 Bacteroidota Bacteroidia 643867
Thermoplasma volcanium GSS1 Thermoplasmatota Thermoplasmata 273116
Phaeobacter inhibens BS107 Proteobacteria Alphaproteobacteria 221822
Psychrobacter sp. P11F6 Proteobacteria Gammaproteobacteria 56811
Vibrio anguillarum 9014/8 Proteobacteria Gammaproteobacteria 990314
Candidatus Pelagibacter sp. IMCC9063 Proteobacteria Alphaproteobacteria 2024849
Marinithermus hydrothermalis DSM 14884 Deinococcota Deinococci 443254
Streptococcus parauberis KCTC 11537 Firmicutes Bacilli 936154
Aeromonas salmonicida subsp. salmonicida A449 Proteobacteria Gammaproteobacteria 29491
Cellulophaga lytica strain DAU203 Bacteroidota Bacteroidia 979
Thermotoga sp. 2812B Thermotogota Thermotogae 28240
Tenacibaculum mesophilum strain DSM 13764 Bacteroidota Bacteroidia 104268
Rhodothermus marinus DSM 4252 Bacteroidota Rhodothermia 518766
Salinispora arenicola CNS-205 Actinobacteriota Actinobacteria 168697
Vibrio alginolyticus K08M4 Proteobacteria Gammaproteobacteria 663
Halorubrum sp. PV6 Halobacterota Halobacteria 634157
Nodularia spumigena UHCC 0039 Cyanobacteria Cyanobacteriia 1914872
Rhodobacter sphaeroides strain AB25 Proteobacteria Alphaproteobacteria 1063
Cellvibrionaceae bacterium 017 Proteobacteria Gammaproteobacteria 2026723
Vibrio alginolyticus K10K4 Proteobacteria Gammaproteobacteria 663
Alteromonas macleodii str. ’English Channel 615’ Proteobacteria Gammaproteobacteria 28108
Vibrio natriegens NBRC 15636 Proteobacteria Gammaproteobacteria 1889773
Prosthecochloris sp. CIB 2401 Bacteroidota Chlorobia 290513
Haloquadratum walsbyi C23 Halobacterota Halobacteria 768065
Alcaligenes aquatilis QD168 Proteobacteria Gammaproteobacteria 323284
Candidatus Moanabacter tarae TARA_B100001123 Verrucomicrobiota Verrucomicrobiae 2200854
Thalassospira indica PB8B Proteobacteria Alphaproteobacteria 1891279
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Flagellimonas sp. HME9304 Bacteroidota Bacteroidia 2058762
Cohaesibacter sp. ES.047 Proteobacteria Alphaproteobacteria 2026570
Streptomyces luteoverticillatus strain CGMCC 15060 Actinobacteriota Actinobacteria 66425
Thermosipho sp. 1070 Thermotogota Thermotogae 1968895
Marinomonas posidonica IVIA-Po-181 Proteobacteria Gammaproteobacteria 936476
Micromonospora aurantiaca 110B(2018) Actinobacteriota Actinobacteria 47850
Sulfobacillus acidophilus TPY Firmicutes_E Sulfobacillia 1051632
Anderseniella sp. Alg231-50 Proteobacteria Alphaproteobacteria 1922226

Table A.4 Reference taxa included in prokaryotic phylogenomic tree construction (Figure
4.12).

A.5 Reference Taxa in Eukaryotic Tree
Name Taxonomy Assembly Source

Emiliania huxleyi CCMP1516 Eukaryota;Protists;Other Protists GCA_000372725.1 NCBI
Leishmania major strain Friedlin Eukaryota;Protists;Kinetoplasts GCA_000002725.2 NCBI
Trypanosoma brucei gambiense DAL972 Eukaryota;Protists;Kinetoplasts GCA_000210295.1 NCBI
Trypanosoma cruzi Eukaryota;Protists;Kinetoplasts GCA_000209065.1 NCBI
Giardia lamblia ATCC 50803 Eukaryota;Protists;Other Protists GCA_000002435.1 NCBI
Entamoeba histolytica HM-1:IMSS Eukaryota;Protists;Other Protists GCA_000208925.2 NCBI
Eimeria tenella Eukaryota;Protists;Apicomplexans GCA_000499545.1 NCBI
Cryptosporidium parvum Iowa II Eukaryota;Protists;Apicomplexans GCA_000165345.1 NCBI
Plasmodium chabaudi chabaudi Eukaryota;Protists;Apicomplexans GCA_900002335.1 NCBI
Toxoplasma gondii ME49 Eukaryota;Protists;Apicomplexans GCA_000006565.2 NCBI
Plasmodium berghei ANKA Eukaryota;Protists;Apicomplexans GCA_900002375.1 NCBI
Plasmodium knowlesi strain H Eukaryota;Protists;Apicomplexans GCA_000006355.1 NCBI
Plasmodium vivax Eukaryota;Protists;Apicomplexans GCA_000002415.2 NCBI
Babesia bovis Eukaryota;Protists;Apicomplexans GCA_000165395.1 NCBI
Theileria annulata Eukaryota;Protists;Apicomplexans GCA_000003225.1 NCBI
Theileria parva Eukaryota;Protists;Apicomplexans GCA_000165365.1 NCBI
Plasmodium falciparum 3D7 Eukaryota;Protists;Apicomplexans GCA_000002765.2 NCBI
Dictyostelium discoideum AX4 Eukaryota;Protists;Other Protists GCA_000004695.1 NCBI
Plasmodium yoelii Eukaryota;Protists;Apicomplexans GCA_900002385.1 NCBI
Phytophthora sojae Eukaryota;Protists;Other Protists GCA_000149755.2 NCBI
Tetrahymena thermophila SB210 Eukaryota;Protists;Other Protists GCA_000189635.1 NCBI
Phytophthora ramorum Eukaryota;Protists;Other Protists GCA_002968915.1 NCBI
Plasmodium reichenowi Eukaryota;Protists;Apicomplexans GCA_001601855.1 NCBI
Neospora caninum Liverpool Eukaryota;Protists;Apicomplexans GCA_000208865.2 NCBI
Leishmania infantum JPCM5 Eukaryota;Protists;Kinetoplasts GCA_000002875.2 NCBI
Trichomonas vaginalis G3 Eukaryota;Protists;Other Protists GCA_000002825.1 NCBI
Naegleria gruberi Eukaryota;Protists;Other Protists GCA_000004985.1 NCBI
Physarum polycephalum Eukaryota;Protists;Other Protists GCA_000413255.3 NCBI
Paramecium tetraurelia Eukaryota;Protists;Other Protists GCA_000165425.1 NCBI
Acanthamoeba castellanii str. Neff Eukaryota;Protists;Other Protists GCA_000313135.1 NCBI
Perkinsus marinus ATCC 50983 Eukaryota;Protists;Other Protists GCA_000006405.1 NCBI
Phytophthora infestans T30-4 Eukaryota;Protists;Other Protists GCA_000142945.1 NCBI
Blastocystis hominis Eukaryota;Protists;Other Protists GCA_000151665.1 NCBI
Cyanophora paradoxa Eukaryota;Protists;Other Protists GCA_004431415.1 NCBI
Euglena gracilis Eukaryota;Protists;Other Protists GCA_900893395.1 NCBI
Ichthyophthirius multifiliis Eukaryota;Protists;Other Protists GCA_000220395.1 NCBI
Sterkiella histriomuscorum Eukaryota;Protists;Other Protists GCA_001273305.2 NCBI
Entamoeba invadens IP1 Eukaryota;Protists;Other Protists GCA_000330505.1 NCBI
Entamoeba dispar SAW760 Eukaryota;Protists;Other Protists GCA_000209125.2 NCBI
Aureococcus anophagefferens Eukaryota;Protists;Other Protists GCA_000186865.1 NCBI
Monosiga brevicollis MX1 Eukaryota;Protists;Other Protists GCA_000002865.1 NCBI
Leishmania braziliensis MHOM/BR/75/M2904 Eukaryota;Protists;Kinetoplasts GCA_000002845.2 NCBI
Capsaspora owczarzaki ATCC 30864 Eukaryota;Protists;Other Protists GCA_000151315.2 NCBI
Ascogregarina taiwanensis Eukaryota;Protists;Apicomplexans GCA_000172235.1 NCBI
Cryptosporidium muris RN66 Eukaryota;Protists;Apicomplexans GCA_000006515.1 NCBI
Cavenderia fasciculata Eukaryota;Protists;Other Protists GCA_000203815.1 NCBI
Hyaloperonospora arabidopsidis Emoy2 Eukaryota;Protists;Other Protists GCA_000173235.2 NCBI
Saprolegnia parasitica CBS 223.65 Eukaryota;Protists;Other Protists GCA_000151545.2 NCBI
Dictyostelium firmibasis Eukaryota;Protists;Other Protists GCA_000277485.1 NCBI
Dictyostelium citrinum Eukaryota;Protists;Other Protists GCA_000286055.1 NCBI
Dictyostelium intermedium Eukaryota;Protists;Other Protists GCA_000277465.1 NCBI
Polysphondylium violaceum Eukaryota;Protists;Other Protists GCA_000277445.1 NCBI
Astrammina rara Eukaryota;Protists;Other Protists GCA_000211355.2 NCBI
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Thecamonas trahens ATCC 50062 Eukaryota;Protists;Other Protists GCA_000142905.1 NCBI
Dictyostelium purpureum Eukaryota;Protists;Other Protists GCA_000190715.1 NCBI
Gregarina niphandrodes Eukaryota;Protists;Apicomplexans GCA_000223845.4 NCBI
Leishmania donovani Eukaryota;Protists;Kinetoplasts GCA_000227135.2 NCBI
Phytophthora cinnamomi Eukaryota;Protists;Other Protists GCA_001314365.1 NCBI
Plasmodium fragile Eukaryota;Protists;Apicomplexans GCA_000956335.1 NCBI
Paramecium caudatum Eukaryota;Protists;Other Protists GCA_000715435.1 NCBI
Plasmodium gallinaceum Eukaryota;Protists;Apicomplexans GCA_900005855.1 NCBI
Tetrahymena malaccensis 436 Eukaryota;Protists;Other Protists GCA_000231845.2 NCBI
Proteromonas lacertae Eukaryota;Protists;Other Protists GCA_002245135.1 NCBI
Tetrahymena borealis Eukaryota;Protists;Other Protists GCA_000260095.1 NCBI
Tetrahymena elliotti 4EA Eukaryota;Protists;Other Protists GCA_000231825.2 NCBI
Trypanosoma congolense Eukaryota;Protists;Kinetoplasts GCA_002287245.1 NCBI
Trypanosoma vivax Y486 Eukaryota;Protists;Kinetoplasts GCA_000227375.1 NCBI
Sarcocystis neurona Eukaryota;Protists;Apicomplexans GCA_000727475.1 NCBI
Mastigamoeba balamuthi ATTC 30984 Eukaryota;Protists;Other Protists GCA_000765095.1 NCBI
Entamoeba moshkovskii Eukaryota;Protists;Other Protists GCA_002914575.1 NCBI
Trypanosoma rangeli Eukaryota;Protists;Kinetoplasts GCA_003719475.1 NCBI
Sphaeroforma arctica JP610 Eukaryota;Protists;Other Protists GCA_001186125.1 NCBI
Plasmopara viticola Eukaryota;Protists;Other Protists GCA_001695595.3 NCBI
Theileria equi strain WA Eukaryota;Protists;Apicomplexans GCA_000342415.1 NCBI
Reticulomyxa filosa Eukaryota;Protists;Other Protists GCA_000512085.1 NCBI
Crithidia mellificae Eukaryota;Protists;Kinetoplasts GCA_002216565.1 NCBI
Nannochloropsis limnetica Eukaryota;Protists;Other Protists GCA_001614225.1 NCBI
Nannochloropsis oculata CCMP525 Eukaryota;Protists;Other Protists GCA_004335455.1 NCBI
Nannochloropsis gaditana CCMP526 Eukaryota;Protists;Other Protists GCA_000240725.1 NCBI
Nannochloropsis granulata CCMP529 Eukaryota;Protists;Other Protists GCA_004335405.1 NCBI
Entamoeba nuttalli P19 Eukaryota;Protists;Other Protists GCA_000257125.1 NCBI
Babesia microti strain RI Eukaryota;Protists;Apicomplexans GCA_000691945.2 NCBI
Phytophthora parasitica INRA-310 Eukaryota;Protists;Other Protists GCA_000247585.2 NCBI
Chromera velia Eukaryota;Protists;Other Protists GCA_000585135.1 NCBI
Pseudoperonospora cubensis Eukaryota;Protists;Other Protists GCA_000252605.1 NCBI
Hammondia hammondi Eukaryota;Protists;Apicomplexans GCA_000447165.1 NCBI
Phytomonas serpens 9T Eukaryota;Protists;Kinetoplasts GCA_000331125.1 NCBI
Eimeria maxima Eukaryota;Protists;Apicomplexans GCA_000499605.1 NCBI
Bremia lactucae Eukaryota;Protists;Other Protists GCA_004359215.1 NCBI
Eimeria acervulina Eukaryota;Protists;Apicomplexans GCA_000499425.1 NCBI
Fonticula alba Eukaryota;Protists;Other Protists GCA_000388065.2 NCBI
Nannochloropsis oceanica Eukaryota;Protists;Other Protists GCA_004519485.1 NCBI
Leishmania amazonensis Eukaryota;Protists;Kinetoplasts GCA_005317125.1 NCBI
Vitrella brassicaformis CCMP3155 Eukaryota;Protists;Other Protists GCA_001179505.1 NCBI
Oxytricha trifallax Eukaryota;Protists;Other Protists GCA_000711775.1 NCBI
Plasmodium vinckei vinckei Eukaryota;Protists;Apicomplexans GCA_000709005.1 NCBI
Blastocystis sp. subtype 4 Eukaryota;Protists;Other Protists GCA_000743755.1 NCBI
Symbiodinium sp. clade A Y106 Eukaryota;Protists;Other Protists GCA_003297005.1 NCBI
Plasmodium sp. gorilla clade G2 Eukaryota;Protists;Apicomplexans GCA_900097015.1 NCBI
Endotrypanum monterogeii Eukaryota;Protists;Kinetoplasts GCA_000333855.2 NCBI
Leishmania panamensis Eukaryota;Protists;Kinetoplasts GCA_000755165.1 NCBI
Plasmodium cynomolgi strain B Eukaryota;Protists;Apicomplexans GCA_000321355.1 NCBI
Saprolegnia diclina VS20 Eukaryota;Protists;Other Protists GCA_000281045.1 NCBI
Angomonas deanei Eukaryota;Protists;Kinetoplasts GCA_001659865.1 NCBI
Pythium iwayamai DAOM BR242034 Eukaryota;Protists;Other Protists GCA_000387465.2 NCBI
Pythium aphanidermatum DAOM BR444 Eukaryota;Protists;Other Protists GCA_000387445.2 NCBI
Pythium arrhenomanes ATCC 12531 Eukaryota;Protists;Other Protists GCA_000387505.2 NCBI
Pythium irregulare DAOM BR486 Eukaryota;Protists;Other Protists GCA_000387425.2 NCBI
Achlya hypogyna Eukaryota;Protists;Other Protists GCA_002081595.1 NCBI
Thraustotheca clavata Eukaryota;Protists;Other Protists GCA_002081575.1 NCBI
Leishmania aethiopica L147 Eukaryota;Protists;Kinetoplasts GCA_000444285.2 NCBI
Leishmania tropica L590 Eukaryota;Protists;Kinetoplasts GCA_000410715.1 NCBI
Leishmania mexicana MHOM/GT/2001/U1103 Eukaryota;Protists;Kinetoplasts GCA_000234665.4 NCBI
Spironucleus salmonicida Eukaryota;Protists;Other Protists GCA_000497125.1 NCBI
Stylonychia lemnae Eukaryota;Protists;Other Protists GCA_000751175.1 NCBI
Phytophthora capsici LT1534 Eukaryota;Protists;Other Protists GCA_000325885.1 NCBI
Theileria orientalis strain Shintoku Eukaryota;Protists;Apicomplexans GCA_000740895.1 NCBI
Crithidia fasciculata Eukaryota;Protists;Kinetoplasts GCA_000331325.2 NCBI
Strigomonas culicis Eukaryota;Protists;Kinetoplasts GCA_000482145.1 NCBI
Babesia bigemina Eukaryota;Protists;Apicomplexans GCA_000981445.1 NCBI
Plasmodium inui San Antonio 1 Eukaryota;Protists;Apicomplexans GCA_000524495.1 NCBI
Phytophthora lateralis MPF4 Eukaryota;Protists;Other Protists GCA_000318465.2 NCBI
Phytophthora kernoviae Eukaryota;Protists;Other Protists GCA_000448265.2 NCBI
Aphanomyces astaci Eukaryota;Protists;Other Protists GCA_000520075.1 NCBI
Aphanomyces invadans Eukaryota;Protists;Other Protists GCA_000520115.1 NCBI
Pythium splendens Eukaryota;Protists;Other Protists GCA_006386115.1 NCBI
Phytophthora cambivora Eukaryota;Protists;Other Protists GCA_000443045.1 NCBI
Phytophthora cryptogea Eukaryota;Protists;Other Protists GCA_000468175.2 NCBI



268 Appendices for Chapter 4

Phytophthora pinifolia Eukaryota;Protists;Other Protists GCA_000500225.2 NCBI
Leishmania enriettii Eukaryota;Protists;Kinetoplasts GCA_000410755.2 NCBI
Plasmodium relictum Eukaryota;Protists;Apicomplexans GCA_900005765.1 NCBI
Naegleria fowleri Eukaryota;Protists;Other Protists GCA_000499105.1 NCBI
Angomonas desouzai Eukaryota;Protists;Kinetoplasts GCA_000482185.1 NCBI
Leishmania guyanensis Eukaryota;Protists;Kinetoplasts GCA_003664525.1 NCBI
Cryptosporidium meleagridis Eukaryota;Protists;Apicomplexans GCA_001593445.1 NCBI
Eimeria necatrix Eukaryota;Protists;Apicomplexans GCA_000499385.1 NCBI
Eimeria brunetti Eukaryota;Protists;Apicomplexans GCA_000499725.1 NCBI
Eimeria mitis Eukaryota;Protists;Apicomplexans GCA_000499745.1 NCBI
Eimeria praecox Eukaryota;Protists;Apicomplexans GCA_000499445.1 NCBI
Salpingoeca rosetta Eukaryota;Protists;Other Protists GCA_000188695.1 NCBI
Strigomonas galati Eukaryota;Protists;Kinetoplasts GCA_000482125.1 NCBI
Strigomonas oncopelti Eukaryota;Protists;Kinetoplasts GCA_000482165.1 NCBI
Herpetomonas muscarum Eukaryota;Protists;Kinetoplasts GCA_000482205.1 NCBI
Crithidia acanthocephali Eukaryota;Protists;Kinetoplasts GCA_000482105.1 NCBI
Leishmania turanica Eukaryota;Protists;Kinetoplasts GCA_000441995.1 NCBI
Leishmania gerbilli Eukaryota;Protists;Kinetoplasts GCA_000443025.1 NCBI
Albugo candida Eukaryota;Protists;Other Protists GCA_001306755.1 NCBI
Hyphochytrium catenoides Eukaryota;Protists;Other Protists GCA_900088475.1 NCBI
Leishmania sp. AIIMS/LM/SS/PKDL/LD-974 Eukaryota;Protists;Kinetoplasts GCA_000981925.2 NCBI
Leishmania arabica Eukaryota;Protists;Kinetoplasts GCA_000410695.2 NCBI
Heterococcus sp. DN1 Eukaryota;Protists;Other Protists GCA_000498555.1 NCBI
Plasmodium gaboni Eukaryota;Protists;Apicomplexans GCA_001602025.1 NCBI
Phytophthora fragariae Eukaryota;Protists;Other Protists GCA_000686205.4 NCBI
Phytophthora rubi Eukaryota;Protists;Other Protists GCA_000687305.2 NCBI
Trypanosoma grayi Eukaryota;Protists;Kinetoplasts GCA_000691245.1 NCBI
Plasmodium coatneyi Eukaryota;Protists;Apicomplexans GCA_001680005.1 NCBI
Paramecium sexaurelia Eukaryota;Protists;Other Protists GCA_000733375.1 NCBI
Paramecium biaurelia Eukaryota;Protists;Other Protists GCA_000733385.1 NCBI
Phytophthora pisi Eukaryota;Protists;Other Protists GCA_000751395.2 NCBI
Phytomonas sp. isolate EM1 Eukaryota;Protists;Kinetoplasts GCA_000582765.1 NCBI
Pythium insidiosum Eukaryota;Protists;Other Protists GCA_001029375.1 NCBI
Cyclospora cayetanensis Eukaryota;Protists;Apicomplexans GCA_002999335.1 NCBI
Acytostelium subglobosum LB1 Eukaryota;Protists;Other Protists GCA_000787575.2 NCBI
Phytopythium vexans Eukaryota;Protists;Other Protists GCA_003413675.1 NCBI
Schizochytrium sp. CCTCC M209059 Eukaryota;Protists;Other Protists GCA_000818945.1 NCBI
Babesia divergens Eukaryota;Protists;Apicomplexans GCA_001077455.2 NCBI
Acanthamoeba polyphaga Eukaryota;Protists;Other Protists GCA_001567625.1 NCBI
Acanthamoeba royreba Eukaryota;Protists;Other Protists GCA_000826365.1 NCBI
Acanthamoeba rhysodes Eukaryota;Protists;Other Protists GCA_000826385.1 NCBI
Acanthamoeba divionensis Eukaryota;Protists;Other Protists GCA_000826405.1 NCBI
Acanthamoeba lugdunensis Eukaryota;Protists;Other Protists GCA_000826425.1 NCBI
Acanthamoeba quina Eukaryota;Protists;Other Protists GCA_000826445.1 NCBI
Acanthamoeba mauritaniensis Eukaryota;Protists;Other Protists GCA_000826465.1 NCBI
Acanthamoeba pearcei Eukaryota;Protists;Other Protists GCA_000826505.1 NCBI
Eimeria nieschulzi Eukaryota;Protists;Apicomplexans GCA_000826945.1 NCBI
Acanthamoeba lenticulata Eukaryota;Protists;Other Protists GCA_002179805.1 NCBI
Acanthamoeba healyi Eukaryota;Protists;Other Protists GCA_000826305.1 NCBI
Acanthamoeba palestinensis Eukaryota;Protists;Other Protists GCA_000826325.1 NCBI
Acanthamoeba astronyxis Eukaryota;Protists;Other Protists GCA_000826245.1 NCBI
Acanthamoeba culbertsoni Eukaryota;Protists;Other Protists GCA_000826265.1 NCBI
Cryptosporidium sp. chipmunk LX-2015 Eukaryota;Protists;Apicomplexans GCA_000831705.1 NCBI
Lotmaria passim Eukaryota;Protists;Kinetoplasts GCA_000635995.1 NCBI
Plasmodiophora brassicae Eukaryota;Protists;Other Protists GCA_003833335.1 NCBI
Balamuthia mandrillaris Eukaryota;Protists;Other Protists GCA_001185145.1 NCBI
Perkinsela sp. CCAP 1560/4 Eukaryota;Protists;Kinetoplasts GCA_001235845.1 NCBI
Urostyla sp. PUJRC_G1 Eukaryota;Protists;Other Protists GCA_001272955.2 NCBI
Laurentiella sp. PUJRC_G5 Eukaryota;Protists;Other Protists GCA_001272975.2 NCBI
Paraurostyla sp. PUJRC_G6 Eukaryota;Protists;Other Protists GCA_001272965.2 NCBI
Tetmemena sp. SeJ-2015 Eukaryota;Protists;Other Protists GCA_001273295.2 NCBI
Chrysochromulina sp. CCMP291 Eukaryota;Protists;Other Protists GCA_001275005.1 NCBI
Leptomonas pyrrhocoris Eukaryota;Protists;Kinetoplasts GCA_001293395.1 NCBI
Leptomonas seymouri Eukaryota;Protists;Kinetoplasts GCA_001299535.1 NCBI
Phytophthora multivora Eukaryota;Protists;Other Protists GCA_001314345.1 NCBI
Phytophthora taxon totara Eukaryota;Protists;Other Protists GCA_001314375.1 NCBI
Phytophthora pluvialis Eukaryota;Protists;Other Protists GCA_001314425.1 NCBI
Phytophthora agathidicida Eukaryota;Protists;Other Protists GCA_001314435.1 NCBI
Leishmania peruviana Eukaryota;Protists;Kinetoplasts GCA_001403675.1 NCBI
Peronospora tabacina Eukaryota;Protists;Other Protists GCA_002099245.1 NCBI
Pseudocohnilembus persalinus Eukaryota;Protists;Other Protists GCA_001447515.1 NCBI
Trypanosoma equiperdum Eukaryota;Protists;Kinetoplasts GCA_001457755.2 NCBI
Aurantiochytrium sp. T66 Eukaryota;Protists;Other Protists GCA_001462505.1 NCBI
Bodo saltans Eukaryota;Protists;Kinetoplasts GCA_001460835.1 NCBI
Phytophthora nicotianae Eukaryota;Protists;Other Protists GCA_003328465.1 NCBI
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Plasmopara halstedii Eukaryota;Protists;Other Protists GCA_900000015.1 NCBI
Pythium oligandrum Eukaryota;Protists;Other Protists GCA_005966545.1 NCBI
Sphaeroforma sirkka Eukaryota;Protists;Other Protists GCA_001586965.3 NCBI
Cryptosporidium baileyi Eukaryota;Protists;Apicomplexans GCA_001593455.1 NCBI
Pilasporangium apinafurcum Eukaryota;Protists;Other Protists GCA_001600495.1 NCBI
Tieghemostelium lacteum Eukaryota;Protists;Other Protists GCA_001606155.1 NCBI
Haemoproteus tartakovskyi Eukaryota;Protists;Apicomplexans GCA_001625125.1 NCBI
Monocercomonoides sp. PA203 Eukaryota;Protists;Other Protists GCA_001643675.1 NCBI
Prorocentrum minimum Eukaryota;Protists;Other Protists GCA_001652855.1 NCBI
Uroleptopsis citrina Eukaryota;Protists;Other Protists GCA_001653735.1 NCBI
Diplonema papillatum Eukaryota;Protists;Other Protists GCA_001655075.1 NCBI
Eukaryota sp. EH-2015 Eukaryota;Protists;Other Protists GCA_001655205.1 NCBI
Plasmodium ovale Eukaryota;Protists;Apicomplexans GCA_900090025.2 NCBI
Plasmodium malariae Eukaryota;Protists;Apicomplexans GCA_900090045.1 NCBI
Halocafeteria seosinensis Eukaryota;Protists;Other Protists GCA_001687465.1 NCBI
Rhizaria sp. SCN 62-66 Eukaryota;Protists;Other Protists GCA_001724265.1 NCBI
Fonticula-like sp. SCN 57-25 Eukaryota;Protists;Other Protists GCA_001724245.1 NCBI
Paramoeba pemaquidensis Eukaryota;Protists;Other Protists GCA_002151225.1 NCBI
Phytomonas francai Eukaryota;Protists;Kinetoplasts GCA_001766655.1 NCBI
Cryptosporidium andersoni Eukaryota;Protists;Apicomplexans GCA_001865355.1 NCBI
Phytophthora x alni Eukaryota;Protists;Other Protists GCA_000439335.1 NCBI
Cryptosporidium ubiquitum Eukaryota;Protists;Apicomplexans GCA_001865345.1 NCBI
Tritrichomonas foetus Eukaryota;Protists;Other Protists GCA_001839685.1 NCBI
Moneuplotes crassus Eukaryota;Protists;Other Protists GCA_001880385.1 NCBI
Euplotes focardii Eukaryota;Protists;Other Protists GCA_001880345.1 NCBI
Plasmodium brasilianum Eukaryota;Protists;Apicomplexans GCA_001885115.2 NCBI
Sclerospora graminicola Eukaryota;Protists;Other Protists GCA_002933675.1 NCBI
Stramenopiles sp. TOSAG23-2 Eukaryota;Protists;Other Protists GCA_900128395.1 NCBI
Stramenopiles sp. TOSAG23-6 Eukaryota;Protists;Other Protists GCA_900128565.1 NCBI
Pythium periplocum Eukaryota;Protists;Other Protists GCA_001922765.1 NCBI
Symbiodinium microadriaticum Eukaryota;Protists;Other Protists GCA_001939145.1 NCBI
Stentor coeruleus Eukaryota;Protists;Other Protists GCA_001970955.1 NCBI
Spongospora subterranea Eukaryota;Protists;Other Protists GCA_900404475.1 NCBI
Creolimax fragrantissima Eukaryota;Protists;Other Protists GCA_002024145.1 NCBI
Acanthamoeba comandoni Eukaryota;Protists;Other Protists GCA_002025285.1 NCBI
Phytophthora cactorum Eukaryota;Protists;Other Protists GCA_003287315.1 NCBI
Protostelium mycophagum Eukaryota;Protists;Other Protists GCA_002081555.1 NCBI
Trypanosoma theileri Eukaryota;Protists;Kinetoplasts GCA_002087225.1 NCBI
Entodinium caudatum Eukaryota;Protists;Other Protists GCA_002087855.2 NCBI
Babesia sp. Xinjiang Eukaryota;Protists;Apicomplexans GCA_002095265.1 NCBI
Thraustochytrium sp. ATCC 26185 Eukaryota;Protists;Other Protists GCA_002154235.1 NCBI
Plasmodium gonderi Eukaryota;Protists;Apicomplexans GCA_002157705.1 NCBI
Rostrostelium ellipticum Eukaryota;Protists;Other Protists GCA_900092235.1 NCBI
Synstelium polycarpum Eukaryota;Protists;Other Protists GCA_900092255.1 NCBI
Coremiostelium polycephalum Eukaryota;Protists;Other Protists GCA_900092265.1 NCBI
Cavenderia deminutiva Eukaryota;Protists;Other Protists GCA_900092275.1 NCBI
Acytostelium leptosomum Eukaryota;Protists;Other Protists GCA_900092245.1 NCBI
Phytophthora megakarya Eukaryota;Protists;Other Protists GCA_002215365.1 NCBI
Crithidia bombi Eukaryota;Protists;Kinetoplasts GCA_900240985.1 NCBI
Peronospora effusa Eukaryota;Protists;Other Protists GCA_003843895.1 NCBI
Phytophthora plurivora Eukaryota;Protists;Other Protists GCA_002247145.1 NCBI
Lagenidium giganteum Eukaryota;Protists;Other Protists GCA_002286825.1 NCBI
Phytophthora colocasiae Eukaryota;Protists;Other Protists GCA_002288995.1 NCBI
Eimeria falciformis Eukaryota;Protists;Apicomplexans GCA_002271815.1 NCBI
Besnoitia besnoiti Eukaryota;Protists;Apicomplexans GCA_002563875.1 NCBI
Cystoisospora suis Eukaryota;Protists;Apicomplexans GCA_002600585.1 NCBI
Ichthyophonus hoferi Eukaryota;Protists;Other Protists GCA_002751075.1 NCBI
Corallochytrium limacisporum Eukaryota;Protists;Other Protists GCA_002811645.1 NCBI
Ichthyosporea sp. XGB-2017a Eukaryota;Protists;Other Protists GCA_002811675.1 NCBI
Abeoforma whisleri Eukaryota;Protists;Other Protists GCA_002812265.1 NCBI
Pirum gemmata Eukaryota;Protists;Other Protists GCA_002812295.1 NCBI
Phytophthora litchii Eukaryota;Protists;Other Protists GCA_002812785.1 NCBI
Peronospora belbahrii Eukaryota;Protists;Other Protists GCA_002864105.1 NCBI
Chrysochromulina parva Eukaryota;Protists;Other Protists GCA_002887195.1 NCBI
Babesia ovata Eukaryota;Protists;Apicomplexans GCA_002897235.1 NCBI
Phytophthora palmivora var. palmivora Eukaryota;Protists;Other Protists GCA_002911725.1 NCBI
Paratrypanosoma confusum Eukaryota;Protists;Kinetoplasts GCA_002921335.1 NCBI
Heterostelium album PN500 Eukaryota;Protists;Other Protists GCA_000004825.1 NCBI
Crithidia expoeki Eukaryota;Protists;Kinetoplasts GCA_900240875.1 NCBI
Paralagenidium karlingii Eukaryota;Protists;Other Protists GCA_002980425.1 NCBI
Planoprotostelium fungivorum Eukaryota;Protists;Other Protists GCA_003024175.1 NCBI
Aphanomyces stellatus Eukaryota;Protists;Other Protists GCA_900243725.1 NCBI
Aphanomyces euteiches Eukaryota;Protists;Other Protists GCA_900312765.1 NCBI
Naegleria lovaniensis Eukaryota;Protists;Other Protists GCA_003324165.1 NCBI
Globobulimina sp. Eukaryota;Protists;Other Protists GCA_003354225.1 NCBI
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Hondaea fermentalgiana Eukaryota;Protists;Other Protists GCA_002897355.1 NCBI
Kipferlia bialata Eukaryota;Protists;Other Protists GCA_003568945.1 NCBI
Goniomonas avonlea Eukaryota;Protists;Other Protists GCA_003573635.1 NCBI
Plasmopara obducens Eukaryota;Protists;Other Protists GCA_003640625.1 NCBI
Leishmania lainsoni Eukaryota;Protists;Kinetoplasts GCA_003664395.1 NCBI
Trypanosomatidae sp. JR-2017a Eukaryota;Protists;Kinetoplasts GCA_003671325.1 NCBI
Heterostelium multicystogenum Eukaryota;Protists;Other Protists GCA_003667245.1 NCBI
Speleostelium caveatum Eukaryota;Protists;Other Protists GCA_003667305.1 NCBI
Plasmopara muralis Eukaryota;Protists;Other Protists GCA_003676415.1 NCBI
Nothophytophthora sp. Chile5 Eukaryota;Protists;Other Protists GCA_001712635.2 NCBI
Polymyxa betae Eukaryota;Protists;Other Protists GCA_003693705.1 NCBI
Trypanosoma conorhini Eukaryota;Protists;Kinetoplasts GCA_003719485.1 NCBI
Pythium guiyangense Eukaryota;Protists;Other Protists GCA_003730235.1 NCBI
Pseudoperonospora humuli Eukaryota;Protists;Other Protists GCA_003991265.1 NCBI
Breviolum minutum Mf 1.05b.01 Eukaryota;Protists;Other Protists GCA_000507305.1 NCBI
Nannochloropsis salina CCMP537 Eukaryota;Protists;Other Protists GCA_004335465.1 NCBI
Globisporangium ultimum DAOM BR144 Eukaryota;Protists;Other Protists GCA_000143045.1 NCBI
Cryptosporidium cuniculus Eukaryota;Protists;Apicomplexans GCA_004337835.1 NCBI
Cryptosporidium viatorum Eukaryota;Protists;Apicomplexans GCA_004337795.1 NCBI
Perkinsus sp. BL_2016 Eukaryota;Protists;Other Protists GCA_004369235.1 NCBI
Nephromyces sp. ex Molgula occidentalis Eukaryota;Protists;Apicomplexans GCA_004523865.1 NCBI
Hydrurus foetidus Eukaryota;Protists;Other Protists GCA_900617105.1 NCBI
Aurantiochytrium acetophilum Eukaryota;Protists;Other Protists GCA_004332575.1 NCBI
Amoebophrya sp. AT5.2 Eukaryota;Protists;Other Protists GCA_005223375.1 NCBI
Halteria grandinella Eukaryota;Protists;Other Protists GCA_006369765.1 NCBI
Stentor roeselii Eukaryota;Protists;Other Protists GCA_006503475.1 NCBI
Diophrys appendiculata Eukaryota;Protists;Other Protists GCA_006510565.1 NCBI
Pseudokeronopsis carnea Eukaryota;Protists;Other Protists GCA_006510595.1 NCBI
Giardia muris Eukaryota;Protists;Other Protists GCA_006247105.1 NCBI
Stramenopiles sp. TOSAG23-3 Eukaryota;Protists;Other Protists GCA_900128585.1 NCBI
Aurantiochytrium sp. KH105 Eukaryota;Protists;Other Protists GCA_003116975.1 NCBI
Cryptosporidium sp. 37763 Eukaryota;Protists;Apicomplexans GCA_004936735.1 NCBI
Schizochytrium sp. TIO01 Eukaryota;Protists;Other Protists GCA_004764695.1 NCBI
Phytomonas sp. isolate Hart1 Eukaryota;Protists;Kinetoplasts GCA_000982615.1 NCBI
Leishmania sp. MAR LEM2494 Eukaryota;Protists;Kinetoplasts GCA_000409445.2 NCBI
Plasmodium sp. DRC-Itaito Eukaryota;Protists;Apicomplexans GCA_900240055.1 NCBI
Symbiodinium sp. clade C Y103 Eukaryota;Protists;Other Protists GCA_003297045.1 NCBI
Blastocystis sp. subtype 2 Eukaryota;Protists;Other Protists GCA_000963365.1 NCBI
Cryptosporidium hominis Eukaryota;Protists;Apicomplexans GCA_000006425.1 NCBI
Blastocystis sp. subtype 3 Eukaryota;Protists;Other Protists GCA_000963385.1 NCBI
Plasmodium sp. gorilla clade G1 Eukaryota;Protists;Apicomplexans GCA_900095595.1 NCBI
Stramenopiles sp. TOSAG41-1 Eukaryota;Protists;Other Protists GCA_900128575.1 NCBI
Plasmodium sp. gorilla clade G3 Eukaryota;Protists;Apicomplexans GCA_900097035.1 NCBI
Blastocystis sp. subtype 6 Eukaryota;Protists;Other Protists GCA_000963415.1 NCBI
Blastocystis sp. subtype 8 Eukaryota;Protists;Other Protists GCA_000963455.1 NCBI
Blastocystis sp. subtype 9 Eukaryota;Protists;Other Protists GCA_000963465.1 NCBI
Blastocystis sp. ATCC 50177/Nand II Eukaryota;Protists;Other Protists GCA_001651215.1 NCBI
Chlamydomonas reinhardtii Eukaryota;Plants;Green Algae GCA_000002595.2 NCBI
Ostreococcus tauri Eukaryota;Plants;Green Algae GCA_000214015.2 NCBI
Ostreococcus lucimarinus CCE9901 Eukaryota;Plants;Green Algae GCA_000092065.1 NCBI
Volvox carteri f. nagariensis Eukaryota;Plants;Green Algae GCA_000143455.1 NCBI
Micromonas pusilla CCMP1545 Eukaryota;Plants;Green Algae GCA_000151265.1 NCBI
Chlorella variabilis Eukaryota;Plants;Green Algae GCA_000147415.1 NCBI
Chlorella vulgaris Eukaryota;Plants;Green Algae GCA_008119945.1 NCBI
Micromonas sp. ASP10-01a Eukaryota;Plants;Green Algae GCA_001430725.1 NCBI
Coccomyxa subellipsoidea C-169 Eukaryota;Plants;Green Algae GCA_000258705.1 NCBI
Botryococcus braunii Eukaryota;Plants;Green Algae GCA_002005505.1 NCBI
Prototheca wickerhamii Eukaryota;Plants;Green Algae GCA_003255715.1 NCBI
Parachlorella kessleri Eukaryota;Plants;Green Algae GCA_001598975.1 NCBI
Dunaliella salina Eukaryota;Plants;Green Algae GCA_002284615.1 NCBI
Tetradesmus obliquus Eukaryota;Plants;Green Algae GCA_900108755.1 NCBI
Bathycoccus prasinos Eukaryota;Plants;Green Algae GCA_002220235.1 NCBI
Helicosporidium sp. ATCC 50920 Eukaryota;Plants;Green Algae GCA_000690575.1 NCBI
Nannochloris sp. RS Eukaryota;Plants;Green Algae GCA_004335565.1 NCBI
Ulva prolifera Eukaryota;Plants;Green Algae GCA_004138255.1 NCBI
Auxenochlorella pyrenoidosa Eukaryota;Plants;Green Algae GCA_001430745.1 NCBI
Chlamydomonas sp. WS7 Eukaryota;Plants;Green Algae GCA_004335715.1 NCBI
Gonium pectorale Eukaryota;Plants;Green Algae GCA_001584585.1 NCBI
Auxenochlorella protothecoides Eukaryota;Plants;Green Algae GCA_000733215.1 NCBI
Chlorella sorokiniana Eukaryota;Plants;Green Algae GCA_003130725.1 NCBI
Mychonastes homosphaera Eukaryota;Plants;Green Algae GCA_009193075.1 NCBI
Coccomyxa sp. LA000219 Eukaryota;Plants;Green Algae GCA_000812005.1 NCBI
Trebouxia gelatinosa Eukaryota;Plants;Green Algae GCA_000818905.1 NCBI
Picochlorum sp. SENEW3 Eukaryota;Plants;Green Algae GCA_000876415.1 NCBI
Monoraphidium neglectum Eukaryota;Plants;Green Algae GCA_000611645.1 NCBI
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Cymbomonas tetramitiformis Eukaryota;Plants;Green Algae GCA_001247695.1 NCBI
Micromonas commoda Eukaryota;Plants;Green Algae GCA_000090985.2 NCBI
Coelastrella sp. M60 Eukaryota;Plants;Green Algae GCA_001630525.1 NCBI
Chlamydomonas applanata Eukaryota;Plants;Green Algae GCA_001662365.1 NCBI
Chlamydomonas asymmetrica Eukaryota;Plants;Green Algae GCA_001662385.1 NCBI
Edaphochlamys debaryana Eukaryota;Plants;Green Algae GCA_001662405.1 NCBI
Chlamydomonas sphaeroides Eukaryota;Plants;Green Algae GCA_001662425.1 NCBI
Bathycoccus sp. TOSAG39-1 Eukaryota;Plants;Green Algae GCA_900128745.1 NCBI
Yamagishiella unicocca Eukaryota;Plants;Green Algae GCA_003116995.1 NCBI
Trebouxia sp. TZW2008 Eukaryota;Plants;Green Algae GCA_002118135.1 NCBI
Micractinium conductrix Eukaryota;Plants;Green Algae GCA_002245815.2 NCBI
Scenedesmus quadricauda Eukaryota;Plants;Green Algae GCA_002317545.1 NCBI
Chlamydomonas eustigma Eukaryota;Plants;Green Algae GCA_002335675.1 NCBI
Prototheca stagnorum Eukaryota;Plants;Green Algae GCA_002794665.1 NCBI
Monoraphidium sp. 549 Eukaryota;Plants;Green Algae GCA_002814315.1 NCBI
Prototheca cutis Eukaryota;Plants;Green Algae GCA_002897115.1 NCBI
Tetrabaena socialis Eukaryota;Plants;Green Algae GCA_002891735.1 NCBI
Chlorella sp. A99 Eukaryota;Plants;Green Algae GCA_003063905.1 NCBI
Haematococcus lacustris Eukaryota;Plants;Green Algae GCA_003970955.1 NCBI
Eudorina sp. 2006-703-Eu-15 Eukaryota;Plants;Green Algae GCA_003117195.1 NCBI
Raphidocelis subcapitata Eukaryota;Plants;Green Algae GCA_003203535.1 NCBI
Trebouxiophyceae sp. KSI-1 Eukaryota;Plants;Green Algae GCA_003568905.1 NCBI
Ulva mutabilis Eukaryota;Plants;Green Algae GCA_900538255.1 NCBI
Picocystis sp. ML Eukaryota;Plants;Green Algae GCA_003665715.1 NCBI
Mamiellophyceae sp. 2017MT Eukaryota;Plants;Green Algae GCA_004115355.1 NCBI
Haematococcus sp. NG2 Eukaryota;Plants;Green Algae GCA_004335575.1 NCBI
Chloroidium sp. CF Eukaryota;Plants;Green Algae GCA_004335625.1 NCBI
Dunaliella sp. M2 Eukaryota;Plants;Green Algae GCA_004335885.1 NCBI
Chloromonas sp. AAM2 Eukaryota;Plants;Green Algae GCA_004335635.1 NCBI
Characiochloris sp. AAM3 Eukaryota;Plants;Green Algae GCA_004335845.1 NCBI
Scenedesmus sp. ARA3 Eukaryota;Plants;Green Algae GCA_004335835.1 NCBI
Scenedesmus vacuolatus Eukaryota;Plants;Green Algae GCA_004764505.1 NCBI
Chloropicon primus Eukaryota;Plants;Green Algae GCA_007859695.1 NCBI
Tetraselmis striata Eukaryota;Plants;Green Algae GCA_006384855.1 NCBI
Desmodesmus armatus Eukaryota;Plants;Green Algae GCA_007449985.1 NCBI
Chlorophyta sp. Eukaryota;Plants;Green Algae GCA_007760615.1 NCBI
Messastrum gracile Eukaryota;Plants;Green Algae GCA_008037345.1 NCBI
Prototheca bovis Eukaryota;Plants;Green Algae GCA_003612995.1 NCBI
Prototheca ciferrii Eukaryota;Plants;Green Algae GCA_003613005.1 NCBI
Scenedesmus sp. ARA Eukaryota;Plants;Green Algae GCA_004335915.1 NCBI
Dunaliella sp. WIN1 Eukaryota;Plants;Green Algae GCA_004335645.1 NCBI
Chloroidium sp. JM Eukaryota;Plants;Green Algae GCA_004335615.1 NCBI
Chlorella sp. ArM0029B Eukaryota;Plants;Green Algae GCA_002896455.3 NCBI
Trebouxia sp. A1-2 Eukaryota;Plants;Green Algae GCA_008636185.1 NCBI
Coelastrella sp. UTEX B 3026 Eukaryota;Plants;Green Algae GCA_002588565.1 NCBI
Picochlorum sp. ’soloecismus’ Eukaryota;Plants;Green Algae GCA_002818215.1 NCBI
Coccomyxa sp. SUA001 Eukaryota;Plants;Green Algae GCA_001244535.1 NCBI
Chlamydomonas sp. WS3 Eukaryota;Plants;Green Algae GCA_004335755.1 NCBI
Nannochloris sp. X1 Eukaryota;Plants;Green Algae GCA_004335555.1 NCBI
Chlamydomonas sp. 3222 Eukaryota;Plants;Green Algae GCA_004335795.1 NCBI
Chlorella sp. KRBP Eukaryota;Plants;Green Algae GCA_004335735.1 NCBI
Dunaliella sp. YS1 Eukaryota;Plants;Green Algae GCA_004335685.1 NCBI
Dunaliella sp. RO Eukaryota;Plants;Green Algae GCA_004335775.1 NCBI
Chlorella sp. Dachan Eukaryota;Plants;Green Algae GCA_006782975.1 NCBI
Chlamydomonas sp. AIC Eukaryota;Plants;Green Algae GCA_004335895.1 NCBI
Chlamydomonas sp. 3112 Eukaryota;Plants;Green Algae GCA_004335865.1 NCBI
Thalassiosira pseudonana CCMP1335 Eukaryota;Protists;Other Protists Project ID 16452 JGI
Phaeodactylum tricornutum CCAP 10551 Eukaryota;Protists;Other Protists Project ID 16244 JGI
Fragilariopsis cylindrus Eukaryota;Protists;Other Protists Project ID 16035 JGI

Table A.5 Reference taxa included in eukaryotic phylogenomic tree (Figure 4.12). Taken
from NCBI and JGI, identifiers as assembly accession or project ID respectively.





Appendix B

Appendices for Chapter 5

B.1 Model Selection Criteria Plotted for Synthetic Data
This appendix gives rank selection criteria over values of k for all synthetic data we generated
(Table 5.1, Section 5.3.6). Each column is a different true latent rank, each row a different
rank selection method. The vertical grey line indicates the true latent rank, with the grey
band showing ∓1.
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Fig. B.1 Relative abundance of genomes in MOSAiC derived simulated community. Vertical
axis is genome, horizontal is sample. Genomes given as KEGG organism code.
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B.3 Waiwera River Estuary Gene Details

Gene Group Subgroup

rubisco_form_I Carbon fixation Rubisco
rubisco_form_II Carbon fixation Rubisco
rubisco_form_III Carbon fixation Rubisco
aclA Carbon fixation reverse TCA cycle
aclB Carbon fixation reverse TCA cycle
codhC Carbon fixation wood_lungdahl_pathway
codhD Carbon fixation wood_lungdahl_pathway
codh_catalytic Carbon fixation wood_lungdahl_pathway
amoA_AOA Nitrogen Ammonia oxidation
amoA_AOB Nitrogen Ammonia oxidation
amoA_AOB_like Nitrogen Ammonia oxidation
amoA_comammox Nitrogen Complete ammonia oxidization
cphA Nitrogen Cyanophycin metabolism
cphB Nitrogen Cyanophycin metabolism
nrfA Nitrogen DNRA
nrfH Nitrogen DNRA
nifA_Mo Nitrogen N_fixation
nifB_Mo Nitrogen N_fixation
nifH Nitrogen N_fixation
napA Nitrogen nitrate_reduction
napB Nitrogen nitrate_reduction
narG Nitrogen nitrate_reduction
narH Nitrogen nitrate_reduction
ndma Nitrogen nitrate_reduction
norB Nitrogen nitric_oxide_reduction
norC Nitrogen nitric_oxide_reduction
nxrA Nitrogen nitrite_oxidation
nxrB Nitrogen nitrite_oxidation
nirB Nitrogen nitrite_reduction
nirD Nitrogen nitrite_reduction
nirK Nitrogen nitrite_reduction
nirS Nitrogen nitrite_reduction
nosD Nitrogen nitrous_oxide_reduction
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nosZ Nitrogen nitrous_oxide_reduction
mnhB Osmoregulation Na+_H+ antiporter Mnh
mnhE Osmoregulation Na+_H+ antiporter Mnh
mnhF Osmoregulation Na+_H+ antiporter Mnh
mnhG Osmoregulation Na+_H+ antiporter Mnh
NhaA Osmoregulation Na+_H+ antiporter Nha
NhaB Osmoregulation Na+_H+ antiporter Nha
TrkA Osmoregulation Potassium transport_TrkA
kdpA Osmoregulation Potassium transport_kdp
kdpB Osmoregulation Potassium transport_kdp
kdpC Osmoregulation Potassium transport_kdp
kup Osmoregulation Potassium transport_kup
nqrF Osmoregulation Sodium-translocating_dehydrogenases_nqrF
OpuAC/proX Osmoregulation glycine betaine transport
bcct Osmoregulation glycine betaine transport
proV Osmoregulation glycine betaine transport
aphA Phosphorus Acid Phosphatase
phoN Phosphorus Acid Phosphatase
phoA Phosphorus Alkaline Phosphatase
phoD Phosphorus Alkaline Phosphatase
phoB Phosphorus PhoR PhoB Phosphate Regulon
phoR Phosphorus PhoR PhoB Phosphate Regulon
phoU Phosphorus PhoU phosphate regulon
pit Phosphorus Phosphate Inorganic Transporter
pstA Phosphorus Phosphate Specific Transport System
pstB Phosphorus Phosphate Specific Transport System
pstC Phosphorus Phosphate Specific Transport System
pstS Phosphorus Phosphate Specific Transport System
pufL Photosynthesis Anoxygenic photosynthesis
pufM Photosynthesis Anoxygenic photosynthesis
psaA_psaB protein Photosynthesis Photosystem I
psaF Photosynthesis Photosystem I
psaL Photosynthesis Photosystem I
PII Photosynthesis Photosystem II
psbA Photosynthesis Photosystem II
psbI Photosynthesis Photosystem II
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psbZ Photosynthesis Photosystem II
aprA Sulfur Sulfate_reduction
cysN Sulfur Sulfate_reduction
sat Sulfur Sulfate_reduction
sqr Sulfur Sulfide_oxidation
asrB Sulfur Sulfite_reduction
dsrA Sulfur Sulfite_reduction
dsrB Sulfur Sulfite_reduction
dsrD Sulfur Sulfite_reduction
rdsrA Sulfur Sulfur_oxidation
rdsrB Sulfur Sulfur_oxidation
soxB Sulfur Thiosulfate_oxidation
soxC Sulfur Thiosulfate_oxidation
soxY Sulfur Thiosulfate_oxidation

Table B.1 Grouping of genes in the Waiwera River Estuary case study (Section 5.5.2) [1].
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