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In a time of rapid global change, the question of what determines patterns in species abundance 
distribution remains a priority for understanding the complex dynamics of ecosystems. The 
constrained maximization of information entropy provides a framework for the understanding of such 
complex systems dynamics by a quantitative analysis of important constraints via predictions using 
least biased probability distributions. We apply it to over two thousand hectares of Amazonian tree 
inventories across seven forest types and thirteen functional traits, representing major global axes 
of plant strategies. Results show that constraints formed by regional relative abundances of genera 
explain eight times more of local relative abundances than constraints based on directional selection 
for specific functional traits, although the latter does show clear signals of environmental dependency. 
These results provide a quantitative insight by inference from large‑scale data using cross‑disciplinary 
methods, furthering our understanding of ecological dynamics.
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Drivers of species distributions and their predictions have been a long-standing search in ecology, with 
approaches varying from deterministic to neutral (i.e. stochastic) and almost everything in between (e.g. near-
neutral, continuum or emergent-neutral1,2). Most models are based on prior assumptions of processes that drive 
community dynamics. The Maximum Entropy Formalism (hereafter called MEF) makes no such, potentially 
unjustified, a-priori assumptions in generating predictions of species abundance distributions, as such it is a use-
ful construct to infer processes driving community dynamics given the constraints imposed by prior knowledge 
(e.g. functional traits or summed regional abundances)3. Quantifying the relative importance of these distinct 
constraints can thus provide additional answers to understand the complexity of community dynamics (see 
Supporting Materials SM: boxes S1–S3). This is especially so because, although many different tests are available 
that link variation in taxon abundances to (1) trait variation, (2) taxon turnover between habitats or environ-
ments and (3) the distance decay of similarities between samples, none quantify the importance of these relative 
to each other. The MEF as applied here, however, is capable of and designed to do exactly this by decomposing 
variation to separate information explained by each of these aspects in a four-step model (Fig. 1 and Box S2). 
Its application to an unprecedented large tree inventory database on genus level taxonomy consisting of > 2,000 
1-ha plots distributed over  Amazonia4 and a genus trait database of 13 key functional traits representing global 
axes of plant  strategies5 allows us to advance the study of Amazonian tree community dynamics from a new 
cross-disciplinary perspective.

Results
Principles from information  theory6–8 can be used in an ecological setting to predict the most likely abundance 
state for each taxon while simultaneously maximizing entropy based on constraints. Maximization of entropy 
allows quantifying the information yield for each constraint and therefor identifies which constraints reduce 
entropy the most. Here we specifically use Shipley’s mathematical framework (CATS) for the MEF calculations, 
similar to earlier  studies9–11.

Predictive power of the four‑step model. Using a uniform prior and CWM values (Community 
Weighted Means) as constraints accounted for 23% on average of total deviance between observed and pre-
dicted relative abundances (measured by  R2

KL values, see Box S2 Eq. 5). Filtered by forest type this was 34% for 
podzol forests, várzea 25%, igapó 23%, swamp forests 34%, 21% and 24% for Guyana Shield and Pebas terra 
firme respectively and 20% for Brazilian Shield terra firme forests (see Table S1 for detailed decomposition). 
Using observed metacommunity relative abundances as prior regardless of functional traits accounted for on 
average 56% for the combined dataset with for all forest types between 51 and 55%, except for the Guyana 
Shield terra firme with 62%. The hybrid model (including both traits as constraints and the metacommunity 
prior) performed slightly better for the combined dataset (average 60%) with a minimum of 57% for swamp and 
várzea forests and a maximum of 66% for Guyana Shield terra firme forests. To compensate for spurious relation-
ships between regional abundances and local trait constraints, regardless of selection, explanatory power was 
regarded relative to model bias yielding the pure trait and metacommunity effects (Box S3, Fig. 2 and Table S1). 
This lowered the proportion of information accounted for and yielded average pure metacommunity effects of 
40% for the overall dataset ranging between 26 and 45% for each forest type separately with pure trait effects 
explaining only 5% of information for the combined dataset on average with for each forest type between 3 and 
9%. Although the latter was lowered substantially, the explanatory power did appear to be strongly dependent 
on forest type. The online supplementary material provides additional results relating to the predictive power of 
each model as well as the spatial gradient of the pure trait and metacommunity effects (Figs. S2–S3).

Direction and strength of selection of trait‑based constraints. Each trait showed significant dif-
ferences in lambda when compared between forest types (Fig. S1, see methods for a definition of lambda). Scat-
terplots of CWM trait values versus lambda show that, in general, higher lambda values correspond with higher 
CWM trait values (Fig. S7). A number of functional traits associated with low nutrient conditions (e.g. ectomy-
corrhiza) and life history strategies suited for protection against herbivores (e.g. latex, resin and high leaf C con-
tent) were clearly positively associated with abundance in nutrient poor environments (podzols), indicated by 
the positive lambda values. In contrast, having fleshy fruits and high leaf N and P content were clearly negatively 
associated with abundance on these soils. Nodulation was also negatively associated with abundance on poor 
soils. The ability to accumulate aluminium was positively associated with abundance on those soils commonly 
associated with higher aluminium content such as igapó (strong positive effects). In contrast, it was strongly 
negatively associated with abundance on other soils, with negative lambda values for podzol and várzea forests. 
Traits such as SLA or winged fruits also showed patterns dependent on forest type, although less pronounced.

Effect of regional metacommunity prior. There was a remarkable similar mean 22% decrease of the 
information explained purely by the metacommunity prior for each forest type (Fig. S3). For the separate forest 
types, although the initial pure metacommunity effect varied, the decline appeared remarkably similar with a 
mean 25% decrease in pure metacommunity effect for podzol, 23% for várzea, 26% for igapó and 27% for swamp 
forests with terra firme forests having a smaller decline of approximately 21%, averaged over the three subre-
gions. It should be noted there is an obvious risk that when sampling size is increased, this also includes more 
environmental heterogeneity as samples are coming from a variety of localities potentially leading to changing 
composition. If this were the case, however, the regional prior  (qi from Fig. 1 and Box S2) would also change, 
as taxa might be abundant in some places but rare or absent in others. As the metacommunity effect is the 
explained information that remains relative to any trait effects (i.e. information unique to the neutral prior) and 
the pure trait effects are the explained information remaining after correcting for pure metacommunity effects 
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(Box S3) this effect should then be accompanied by an increase in pure trait effect for each sample. This was not 
observed, not even within the different forest types. Instead, the trait effect gradually went up and then remained 
constant (Fig. S4).

Discussion
The MEF emerges from a well-founded theoretical and empirical body of ecology and evolutionary biology, 
regarding natural selection, migration and population dynamics. From an ecological point of view, it can be 
used to quantify the relative association between directional or stabilizing selection for functional traits versus 
the importance of relative regional abundance regardless of these traits by imposing these as constraints. Our 
results show that pure trait effects, on average, explained only 5% of the information when all forest types were 
taken together whereas the pure metacommunity effect, however, explained eight times more taken all forest 
types together (40%). Greater trait dissimilarity was positively associated with higher pure trait effects, indicating 
trait-based selection, although the assumed influence of dispersal regardless of these traits appeared to confer 
more information explaining tree genus composition of the Amazon rainforest. The strength and direction of 
selection indicated clear directional selective pressure for life history strategies of either growth or protection, 
depending on forest type (see supplementary online material S-A for a more detailed exploration of ecological 
interpretation). Including community weighted variance as reflective of potential stabilizing selection did not 
provide additional information. Although this could be interpreted as indicative of weak or absent stabilizing 
selection, it is more likely to be an artefact of many genera not being shared among localities due to the sheer 
geographical scale resulting in a strong mismatch between observed, predicted and uniform relative abundances 
resulting in a model bias higher than information yielded by including these constraints (see also box S2).

Despite showing clear patterns in environmental selection and dispersal effects, there was a large proportion 
of information left unexplained (44% on average). Potentially, local demographic stochasticity could weaken 
any link between functional traits measured and regional abundances of genera. This would, however, mean that 
almost half of the information contained in relative abundances are the result of random population dynamics 
and are not structurally governed. Alternatively, this could be due to functional traits reflective of processes not 
taken into account in this study, such as traits reflective of interactions between trophic levels (e.g. traits influenc-
ing specific plant-pathogen interactions). Another and at least equally likely hypothesis for (local) unexplained 
information is that when scaling up, the ratio of genus richness to total abundance decreases rapidly initially 
but stabilizes again as relatively non-overlapping habitats are included in the regional abundance distributions 

Figure 1.  Schematic depiction of the MEF procedure. Left panel shows a genus abundances per site and a 
functional trait matrix per genus, bottom half outlines calculations. Middle and right panel show different 
scenarios of neutral and deterministic dynamics under infinite or limited migration. Figure was custom made 
using Adobe Illustrator (Adobe Inc., 2019. Adobe Illustrator).
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and more genera are included again due to the different habitats. This would result in a change of the regional 
abundance distribution (i.e. the prior) to which each local community is compared, resulting in higher local 
unexplained information. Further study into these aspects could provide additional insight, though the data 
necessary for these scales is lacking for Amazonian trees.

Metacommunity importance. Although the initial explanatory power of the metacommunity prior dif-
fered between forest types, the decay pattern was very similar. As the effects of either traits or the metacom-
munity are measured in the goodness-of-fit predictions on local relative abundances, this implies that at small 
spatial scales the surrounding regional abundances provide better estimators than functional traits, while at 
larger spatial scales this shifts to the traits. The ecological translation would be that on small spatial scales, 
local communities share similar environmental conditions leaving dispersal and drift acting predominantly in 
changing community composition, at least for genus level taxonomy. As the potential regional pool is increased, 
more and more environmental heterogeneity and non-overlapping regions are likely to be introduced. The more 
gradual decline of terra firme forests can then arguably be attributed to these forests having the largest relative 
surface area of Amazonia (even for the separate subregions), potentially giving these forests an almost continu-
ous metacommunity without gaps, resulting in a more gradual transition from metacommunity to trait relative 
importance. The fact that metacommunity effects do not change anymore after certain distances would indicate 
the effect of dispersal potentially occurs over very large distances. It should be noted that as these calculations are 
done at community and genus level, they do not measure single dispersal events but rather the effect of dispersal 
on community composition much deeper in time. In other words, this effect suggests more than a dispersal 
event every now and then. Instead, it argues for prolonged mixing of forests on large geographical and temporal 
scales, supported by recent findings demonstrating a lack of geographical phylogenetic structure of lineages for 
Amazonian tree  genera12.

Figure 2.  Visual representation of pure trait, pure metacommunity, hybrid model and the remaining 
unexplained information for each separate forest type. Abbreviations indicate different types: igapó (IG), podzol 
(PZ), swamp (SW), Brazilian shield terra firme (TFBS), Guiana Shield terra firme (TFGS), Pebas terra firme 
(TFPB) and várzea (VA). Boxplots show median value of pure effects over all samples, with lower and upper 
hinges corresponding to 25th and 75th percentiles. Whiskers extends from hinge to largest or smallest value no 
further than 1.5 * IQR from hinge. Points beyond this range are plotted individually and only positive values 
were plotted.
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Conclusion. Using an unprecedented scale of data and applying the Maximum Entropy Formalism from 
information theory we show that constraints formed by regional relative abundances of genera explain eight 
times more of local relative abundances then constraints based on directional selection for specific functional 
traits, although the latter does show clear signals of environmental dependency. There is, however, still much to 
be explored due to the large unexplained effects and analyses on finer taxonomic (i.e. species level) and envi-
ronmental (e.g. microhabitat) scales could resolve these issues. The relatively large effects of the regional pool 
of genera over great distances does suggest an important role for long term dispersal and mixing of Amazonian 
trees, especially for the Amazonian interior.

Methods
Empirical data. The  ATDN4,13,14 consists of over 2000 tree inventory plots distributed over the Amazon 
basin and the Guiana Shield, collectively referred to as Amazonia (a map of all current plots can be found at 
https:// atdn. myspe cies. info/). Only those plots with trees ≥ 10 cm diameter at breast height were used, leaving 
2011 plots with a mean of 558 individuals per plot identified to at least genus level. Most plots used are 1 ha in 
size (1414) with 492 being smaller (minimum size of 0.1 ha) and 105 larger (maximum size of 80 ha). Genera 
have been standardized to the W3 Tropicos  database15 using the Taxonomic Name Resolution Service (TNRS, 
 see16). After filtering based on above criteria and solving nomenclature issues, 1,121,935 individuals belonging 
to over 828 genera remained. Plots were distributed over seven abiotically different forest types: Podzol forests 
(PZ), Igapó (IG, black water flood forests), Várzea (VA white water flood forests), Swamp (SW) and Terra firme 
forests (TF) with subregions BS (Brazilian Shield), GS (Guyana Shield) and PB (Pebas) (see  also17 for details 
regarding these forest types). Trait data were extracted from several sources. Wood density was mostly derived 
 from18. Traits related to leaf characteristics mostly came from four large  datasets19–24, including additional data 
from other  sources25–27 as well as unpublished data (J. Lloyd, A.A. de Oliveira, L. Poorter, M. van de Sande & 
Mazzei, M. van de Sande & L. Poorter). Data on seed mass came  from28–30 as well as different flora’s and tree 
guides. As this particular trait can vary over several orders of magnitude, this was included on a log-scale29,31. 
Ectomycorrhizal aspects were derived from  literature32, the same applies to  nodulation33,34. Traits involved in 
aluminum accumulation were based  on35,36 and references therein. For binary traits (yes/no), a genus was con-
sidered having a certain trait only when > 50% of the genus was positive for that specific trait.

Functional traits and trait imputation. Constraints were formed by Community Weighted genus 
Means (CWM) of functional traits (Table 1), related to key ecological life history aspects. According to prin-
ciples of natural selection, CWM values will likely be biased towards favourable trait values for that particular 
environment in the case of directional selection, as taxa with these traits will be more abundant due to envi-
ronmental selection. Previous studies included community weighted variance (CWV) as well as indicative of 
potential stabilizing  selection11,37. In our case, however, including CWV as constraints resulted in a model bias 
that was consistently higher than information including trait or metacommunity aspects, CWV was therefore 
not included as constraints in the final analysis. As for many traits it has been shown earlier that the interspecific 
variability was larger than the intraspecific variability, this allowed the use of data from different sources to at 
least calculate a mean species trait value. Genus trait values were subsequently computed as genus-level means of 
species values if known within the genus and considered constant for each genus. Genus level of taxonomy was 
used as the available trait database had the most information on this taxonomic level (see Table 1). Unknown val-
ues for traits were estimated by Multiple Imputation with Chained Equations (MICE,  see15) by delta adjustment, 
subtracting a fixed amount (delta), with sensitivity of this adjustment to the imputations of the observed versus 
imputed data analysed using density plots (Fig. S8) and a linear regression model. This procedure was done using 
the mice  package38, available on the R repository, under predictive mean matching (pmm setting, 50 iterations). 
Results showed imputations were stable and showed near identical patterns with each imputation scenario (see 
Figs. S5–S6 and Table S2). After imputation, all trait values were transformed to Community Weighted Means 
(CWM) of each trait (J) for each plot (K) ( TJK ) as TJK =

∑S
i=1

tijraik with ra the relative abundance of the ith 
genus in the kth plot following earlier  uses37.

MEF procedure predictions and ecological inference. Figure 1 provides a schematic procedure over-
view, box S1 provides an overview of important terms and Boxes S2–S3 further mathematical details. Initially, a 
maximally uninformative prior is specified, where  qi (Box S1 Eq. 1) equals 1/S, indicative of each species having 
equal abundances, and trait constraints are randomly permuted multiple times (n = 50) among genera to test 
whether inclusion of specified constraints significantly changes derived probability distributions (see  also39). 
Subsequently, the same prior is used but now observed trait CWM values belonging to specific genera are used as 
constraints (following earlier applications using simulated  communities11). Third, observed regional abundances 
are used as prior with permutated trait constraints and finally both observed regional abundances and observed 
trait CWM are used as prior and constraints. Maxent2, an updated version of the maxent function currently in 
the FD library of R provided the computational platform. Proportions of uncertainty explained by each model 
are given by the Kullback–Leibler divergence  R2

KL, a generalization of the classic  R2 goodness of fit. In contrast 
with standard linear regression models having squared goodness-of-fits measurements, the  R2

KL is much more 
related to the concept of relative entropy, quantifying the information lost when one distribution is compared to 
another by means of quantifying the statistical distance between two  distributions40. Pure trait, pure metacom-
munity, joint metacommunity-trait and unexplained effects are calculated as proportions of total biologically 
relevant information (Box S1 and Box S2). Data was rarefied to smallest sample size (swamp forests; 28) and 
calculations bootstrapped 25 times. Results indicated no significant change compared to using all data, hence 
the total dataset was used for all analyses.

https://atdn.myspecies.info/
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Strength and direction of selection. Predictions of genus relative abundances are computed as a func-
tion of traits reflected in the CWM values and a series of constants (λjk: the Lagrange Multipliers). Each multi-
plier quantifies the association between a unit of change for a particular trait j and a proportional change in 
predicted relative abundance pik (the ith genus in the kth community) considering all other traits are constant, 
formally described as: ∂pik

/

∂tij = �jkpik
(

1− pik
)

 (see appendix 1  from41). Positive values indicate larger trait 
values associated with higher abundances (positive selection), negative values indicate the opposite (negative 
selection) with changes proportional to lambda. Values approximating zero indicate no association between 
specific traits and relative abundances of species. Decomposing λjk and comparing by means of a One-Way 
Analysis of Variance for each trait separately between forest types allows studying both the strength and direc-
tion of selection in different habitats. Note that this is done for the same constraint between forest types, as 
lambda values for each constraint do not scale linearly between different constraints.

Estimation of metacommunity size. Iteratively increasing the regional species pool considered as prior 
in concentric circles of a fixed radius of 50 km allows estimating the spatial effect of metacommunity size. Due 
to computational limits, the number of permutations for the MEF calculations (see above) was reduced to two, 
shuffling the combinations of genera and traits at least once. Comparison of results from the analyses using 
all plots indicated small effects of a smaller perturbations (average of 5% difference for metacommunity effect 
between 5 and 50 permutations). The relationship between pure metacommunity effect and radius of meta-
community size was fitted using a smoothing loess regression (function loess and predict; R-package stats with 
span set at 0.1). Fits subsequently were used to predict values of metacommunity effect based on geographical 
distance to visualize general patterns for each forest type. Exponential decay of pure metacommunity effect was 
described using a self-start asymptotic regression function (SSasymp) of the form y(t)∼yf + (y0 − yf)e−exp(log(α))t (nls 
from stats42. A list of all packages used in R in addition to those preloaded can be found in the supplementary 
online material (SA2).

Data availability
R scripts are available on the github repository of E.T. Pos (EdwinTPos). The data that support the findings of 
this study are available from The Amazon Tree Diversity Network (ATDN) upon reasonable request.
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