
Exploring how technical and social

advances can overcome the hurdles of

reproducibility in the life sciences

A thesis submitted to the School of Biology at the University

of East Anglia in partial fulfilment of the requirements for

the degree of Doctor of Philosophy

Evanthia Kaimaklioti Samota

August 2022

© This copy of the thesis has been supplied on condition that anyone who consults it is

understood to recognise that its copyright rests with the author and that use of any

information derived there from must be in accordance with current UK Copyright Law.

In addition, any quotation or extract must include full attribution.





Abstract

Reproducibility is an important element of robust science. Reproducibility is

vital for the better understanding, validation, and re­use of research. For the past

three decades, literature on the reproducibility crisis has increased, highlighting

how researchers cannot rerun the analysis of other researchers and reach the

same results.

To achieve research reproducibility, there is a need for the raw data, the

analysed data (including negative data), the code and complete methodology,

the detailed analysis protocol, the standardised data and metadata annotation,

to be well documented, and shared so they can be easily accessed by other

researchers who wish to reproduce the work. However, with the increasing

volume of data, given the advances in life sciences technology, there are still

issues with reproducibility, despite the many tools, data and code­sharing

mandates created to manage the irreproducibility problem.

This thesis explores how technical and cultural advancements can address

irreproducibility issues. The study aims to understand how tools and cultural

factors (e.g., training, incentives and rewards for reproducible research

practices) promote research reproducibility.

A survey of 251 researchers from various backgrounds reported their knowledge

of reproducibility issues in the life sciences, their ability and motivation to

reproduce research studies and their opinions on the interactive representation



Abstract 3

of research results (in interactive figures instead of static figures) within journal

articles.

Additionally, this thesis investigates how interactive figures could reproduce

computational experiments presented in the figures and their benefits and

limitations in improving research reproducibility.

Lastly, this thesis presents a software prototype, Deus ex machina, which

automatically annotates articles and their metadata with standardised semantic

information (plant ontology terms and IDs). Deus ex machina computes a

reproducibility metric score that evaluates the reproducibility status of papers,

ultimately recognising reproducible research. The software can thereby serve as

a means of promoting a more reproducible research culture.
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1

Introduction

1.1 Motivation

The Cambridge Crystallographic Data Centre, the main repository for

small­molecule crystal data, will soon remove almost 1,000 deposited crystal

structures as they seem to have been falsified (Lowe, 2022).

A report from the journal Science documented fabricated images in prominent

neuroscience papers on Alzheimer’s disease and beta­amyloid peptides (Piller,

2022), undermining decades of research based on the falsified findings.

Hundreds of people suffered heart attacks and heart failures over severalmonths

whilst taking the diabetes drug Avandia, which was linked to 304 deaths during

the third quarter of 2009 before it was removed from the market. This issue

arose because themanufacturing pharmaceutical company failed to report safety

studies to the FDA (Gardiner, 2010).

In 2011, social psychologist Diederik Stapel admitted having published

fraudulent data in 30 peer­reviewed papers (Gardiner, 2012).

Twenty­seven per cent of childhood disease mutations cited in literature were

later discovered to be misannotated or common polymorphisms, underpinning

the necessity for data to be reproduced before mutation databases are populated

(Colhoun et al., 2003).
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The US $1.6­million Reproducibility Project for Cancer Biology attempted to

reproduce 50 high­impact published cancer research studies. However, given

the difficulties, they terminated their efforts at 23 papers (Morrison, 2014).

These are just some examples of how science has experienced issues regarding

reproducibility, where reproducibility is believed to be a core aspect of scientific

research. Research reproducibility is defined as achieving the same findings

using the same data and analysis when the experiment is performed by

researchers other than the original researchers (Claerbout and Karrenbach,

1992). Despite the importance of reproducibility, research across many

disciplines ranging from the Life Sciences (LSs), to computer science, to

economics, is riddled with irreproducible studies (Begley and Ellis, 2012;

Christensen and Miguel, 2018; Crick et al., 2017; Fraser et al., 2018; Ioannidis,

2005; Ioannidis et al., 2017).

Given these seemingly wide­ranging problems across all disciplines, many

technologies have been developed to facilitate and improve research

reproducibility (or to enhance certain aspects). Similarly, policies have been

developed explicitly to mandate better research reproducibility from

researchers and publishing journals.

Research reproducibility issues have many facets. It is difficult to find a remedy

using a single technological solution, hence why most technologies address

research irreproducibility one aspect at a time. Neither one technology, one

social advance, or one approach can be the panacea to research reproducibility.

We must understand how it is best to overcome the hurdles of reproducibility

so that technological solutions can exist to facilitate the work of researchers and

publishers to produce and disseminate research reproducibly and so that,

importantly, we recognise, reward and incentivise reproducible research. In

other words, while we explore technological solutions, we must also consider

how these can operate synergistically with social advances to tackle research

irreproducibility more efficiently, generating a holistic approach that would be

https://www.cos.io/rpcb
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valuable to the scientific community. This is not a small undertaking, however,

thus my research focuses on two main elements: assessing the use of

technological solutions to improve reproducibility and; using a

proof­of­concept tool to demonstrate the difficulties with solving problems in

reproducibility, as many stem from social issues surrounding typical article and

data publishing practices. I aim to reinforce the notion that technological and

social solutions are required to ensure that research is more reliable, robust,

reproducible and reusable.

1.2 Contribution

Within this thesis, I propose that there needs to be an integrated approach to

tackling research reproducibility issues, whereby both technical and social

solutions need to be implemented in tandem to address the difficulties

currently faced with research reproducibility.

With the research survey I conducted (Samota and Davey, 2021), I strive to show

how scientists view the reproducibility issue, record their opinions on potential

solutions, and quantify and qualify for the first time the knowledge and opinions

of researchers on interactive figures (compared to traditional static figures) as a

means of enabling reproducibility of experiments within research articles.

With the presentation of prototypes of interactive figures, I endeavour to

demonstrate how such technological solutions could help with certain aspects

of research reproducibility and highlight the limitations of interactive figures,

especially in terms of scaling up and maintaining the technology.

I aim to present a software prototype demonstrating researchers’ issues when

mining literature for information through automatic semantic annotation of

publications and their associated data and metadata files in crop

transcriptomics. Using this approach, with the computation of the
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Reproducibility Metric Scores (RMSs) and a comparison of how different

papers perform, I aim to propose an assessment mechanism for the

reproducibility of research papers and related data artefacts in the hope of

demonstrating practically how research can become more reproducible. Using

this tool prototype, I will exhibit how such technological solutions can help

researchers and journals present research more reproducibly and reduce the

time researchers need to access information and related data.

Lastly, I aim with the overall discussion components and conclusions of this

thesis to inspire the scientific community and associated policymakers to see

the value in conducting and presenting research reproducibly and, with the use

of the proposed technologies and social factors, to create a more sustainable

research culture that has reproducibility at its core, and that rewards and

recognises reproducible research.

1.3 Structure of the Thesis

Chapter 2 depicts a more thorough discussion of the field of reproducibility, its

importance to LSs, and a review and discussion of existing work on

reproducibility and other aspects related to this thesis.

Chapter 3 presents my published survey that assesses researchers’ opinions

about reproducibility and their perceptions of interactive figures within journal

articles as a solution to reproducing computational experiments.

Chapter 4 includes a more thorough explanation of interactive figures and

presents a prototype figure framework, as well as a review and discussion of

other projects in interactively presenting experiments within journal articles. I

discuss the technical and social limitations of interactive representation of

figures or experiments within journal articles in being able to address the

research reproducibility issue.
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Chapter 5 explores the issue of the lack of standardised terminologies in

research articles and repositories such as databases and how this negatively

impacts reproducibility. Furthermore, I present a software prototype that

addresses some of the aforementioned issues, using real­world use cases from

researchers in crop transcriptomics. Moreover, I propose the concept of an

RMS as a means of assessing how reproducible a study is and how RMS could

be used as a new, additional scoring mechanism to assess the value of a

published research study beyond the existing traditional published research

metrics (such as citation scores).

Chapter 6 concludes this thesis and discusses the field of reproducibility in more

broad ways in topics that were not directly investigated here. Aspects of Chapter

6, in the form of a commentary, bring together the topics discussed in this thesis

and additional important notions related to research reproducibility, including

the limitations and difficulties in achieving reproducibility. Finally, I indicate

areas that can be further explored through future research.
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Figure 2.0.1: Concept Map for Chapter 2: Reproducible Science

Synopsis

This chapter aims to describe the causes of the irreproducibility

of experiments in LSs; delineate the most important technologies

addressing the irreproducibility of experiments in LSs and discuss

the gaps in the current efforts addressing the reproducibility crisis.
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2.1 Introduction

Reproducibility is a key concept in scientific research for producing reusable

software and better datasets. It refers to the ability of other researchers to

produce the same findings without altering the original data and analyses

(Claerbout and Karrenbach, 1992). Research suggests that the irreproducibility

of experiments is a significant problem (Baker, 2016; Stupple et al., 2019;

Miyakawa, 2020). It is hypothesised that reproducible science leads to robust

and quality­oriented scientific work.

Various technologies are available for promoting and enabling reproducible

science, with a variable uptake by the LS community. The technologies will be

discussed in more detail later in this chapter.

2.1.1 Definitions of Reproducibility

The terms repeatability, replicability and reproducibility are commonly

confused (Peng et al., 2006; Liberman, 2015), thus it is imperative to

differentiate these terms from each other. Definitions of the terms were

included in my published paper of which I was the first author, and I have

reproduced these below with permission (Samota and Davey, 2021):

1. Repeatability The original researchers using the same data, running

precisely the same analysis and getting the same results, on multiple runs

(Drummond, 2009).

2. Replicability Different teams performing different experimental setups

and using independent data, achieving the same results as the original

researchers, on multiple trials (Peng et al., 2006; Peng, 2011; Stodden

et al., 2013a).

3. Reproducibility Different teams re­running the same analysis with the
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same data and getting the same results (Claerbout and Karrenbach, 1992;

Peng et al., 2006; Peng, 2011; Stodden et al., 2013a).

For the purposes of this chapter, I will present these terms with respect to the

concept of computational reproducibility.

2.2 Computational Reproducibility

Computational reproducibility, or reproducible computational research, is the

term used to describe the reproducibility of Computational Experiments (CEs).

CEs involve steps that require computer(s), and the inputs and outputs are

represented digitally. These experiments are performed in disciplines such as

bioinformatics, computational biology, systems biology and many others. In

this chapter, and in line with the scope of this thesis, the term CEs refers to

computational experiments in the LSs. Therefore, computational

reproducibility is achieved when an independent team creates the same results

using the computational methods and data of the original authors (Donoho,

2010; Stodden et al., 2013a; Stodden and Miguez, 2013; Stodden et al., 2018;

Leipzig et al., 2020).

2.2.1 Causes of Irreproducibility of Computational

Experiments

Research shows that the irreproducibility of Computational Experiments (CEs)

is a significant problem that requires appropriate solutions (Schwab et al.,

2000; Peng, 2011; Bechhofer et al., 2013). Irreproducible CEs fail to preserve

all factors that ensure computational reproducibility, including the

independent replication and validation of the experiments (Müller et al., 2003).

Statistical analyses, including incorrect statistical tests and an underpowered

number of control and test samples, can lead to incorrect or misleading results
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and false conclusions that further impede the reproducibility of CEs (Stodden,

2015). Whilst conventions exist to encourage researchers to share their code

and data, and documentation standards exist for describing code or analytical

methodology, problems still arise as many computational and data­enabled

experiments do not have corresponding standards for code and data quality

that are fit for purpose. Demarcations such as results’ verification, error

quantification and validation are not precisely defined in scientific computing

analyses (Stodden et al., 2013b).

Science in this field has to be transparent to ensure the reproducibility of CEs

(Iqbal et al., 2016). Cherry­picking, fabricating, falsifying and altering data,

although rare, could be considered scientific misconduct (Fanelli, 2009) and

lead to irreproducibility issues and increased retraction rates (Cokol et al.,

2008). Beyond these factors, and given the critical use of computation in

modern LSs, the lack of proper data documentation and standards for metadata

(the data about the data) annotation or the lack of metadata availability

contribute to the irreproducibility of CEs (Teixeira da Silva, 2015; Huang and

Gottardo, 2013). The extent to which these problems arise at the publishing

stage will be discussed later in this thesis.

2.3 Open Data

Data is a term used inconsistently in science; however, it is important to state

that data sharing in science can include raw and processed data (also referred

to as computed or simulated data/data after analysis). Computationally

reproducible experiments require datasets that reflect the original author’s

work. Reports have stressed that open, publicly available data are vital for

reproducible science (Molloy, 2011). Data publicly available and reproducible

allow for an assessment of whether the data are suitable to address a hypothesis

or power analysis, thus leading to reproducible science. Published data should
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be robust, stable, and distributed in a way that allows the data and experiments

to be reproducible (Pulverer, 2015). The persistent identifiers and standardised

descriptions of the methods and tools used to produce those datasets lead to

more reproducible CEs (Teytelman and Stoliartchouk, 2015; Teytelman et al.,

2016). Papers which publish their data and analyses are cited more,

independent of the journal’s impact factor or other factors such as the date of

publication (Piwowar et al., 2007). Initiatives such as DataCite (Brase, 2009),

which acts as a centralised resource for generating persistent identifiers and

thereby promote consistent and globally recognised citation and attribution of

data, can encourage data sharing (Bechhofer et al., 2013). Tracking data

provenance can also help find errors or the source of unexpected results within

a workflow (Buneman et al., 2000).

Data and Metadata Sharing

By itself, therefore, Open Data is not strictly sufficient to produce reproducible

CEs. Associated contextual informationmust be provided and be well described,

i.e. in the form of metadata. Metadata is data that gives information about other

data.

Nevertheless, several factors dissuade authors from sharing their data.

Annotating a dataset with metadata is time­consuming since the data must be

appropriately formatted and annotated. Other complexities include not

knowing the most suitable place to publish the metadata, as both the

supplementary information cited and the websites of the laboratories may only

be temporarily available (Santos et al., 2005). Moreover, the re­analysis of the

data by scientists other than the authors could lead to different conclusions

from those published by the authors, possibly owing to mistakes in the study

(Ioannidis, 2005). For some scientists, publishing their data is perceived as

losing competitiveness in the field, or they fear that their intellectual property

could be used for profit­making (Pitt and Tang, 2013; Piwowar et al., 2007).

Fecher et al. (2015) investigated six categories (and their subcategories) of

https://datacite.org/
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factors that can influence academic data sharing through a survey and mining

of 630 research articles. They concluded that a range of factors, such as

socio­demographic status, degree of control over data sharing, resources

needed and returns for sharing, affect data, metadata and code sharing

decisions.

Databases as Open Data Repositories

Are databases able to hold and maintain data in ways that are always

retrievable? Disciplines such as systems biology, which depends on acquiring

data from many heterogeneous molecular biology experiments, involve

searching through several databases (Pennisi, 2005), which can be

time­consuming, difficult to homogenise due to differences in data structure

and metadata, and therefore difficult to analyse. In certain cases, one cannot

query all database fields nor fully download the database contents (Philippi and

Köhler, 2006). Database information needs to be stored and organised in

accessible ways (Attwood et al., 2009) and databases should preferably hold

raw and processed data (Anon, 2013) so that it can be better curated and

understood.

Data in databases must be associated with good descriptive metadata to be able

to understand the data fully. Metadata could be information about the format

and the contents of the database, the methods used to produce the data before

entry into the database, any recommendations for its curation, the structures in

which data are stored, any information about the management of the database

once released, and the database version used (Gehani et al., 2011).

Understanding the data in databases is further complicated when

non­informative names do not comply with consensus nomenclature and

ontology standards (Ashburner et al., 2000). This issue is covered in detail in

the Chapter 5. Invalid data and errors can be propagated between databases

(Karp, 1998). A solution is to use evidence codes to track how annotations were
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created and prevent the automatic inference of annotations unless they were

manually curated (Philippi and Köhler, 2006). Arguably, evaluating the quality

and correctness of data in databases is difficult.

2.3.1 Big Data

Big Data (BD) is the term used to describe the increasingly large, complex and

difficult­to­process datasets generated by the current research (not only in the

LSs). However, this thesis will be referring exclusively to BD in the LSs). As a

result of the aforementioned characteristics, challenges arise with processing,

storing and distributing BD datasets, e.g. excessive costs and the need for

appropriate infrastructures are contributing to the CEs irreproducibility (Marx,

2013).

Big Data has become somewhat of a“buzzword” in recent years, with academia

and industry using it as a proxy for five key aspects of data life cycles: volume,

velocity, variety, veracity and value. These are the five key elements that make

Big Data a huge business. Based on these definitions, and given that nowadays,

most data is shared or published on the internet, the issues surrounding the scale

and complexity of BD provide additional issues for reproducibility.

2.3.2 Data Management

Because BD is now commonplace, and CEs are somewhat universal, the

importance of managing data effectively is not underestimated. Data

management defines the policy, processes and techniques that determine how

data should be generated, stored, analysed and shared. Researchers often need

guidance in understanding their data management responsibilities, either from

a project or funding perspective, i.e. to determine what a project investigator

expects from data generation or analysis experiments or what a funder expects

from the projects they fund.
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Each grant application should include Data Management Plans (DMPs), as set

by the National Science Foundation in January 2011, the Research Councils UK

in 2011 and the FAIR Guiding Principles (Wilkinson et al., 2016). Below are

some DMP rules, proposed by Michener (2015), that can facilitate

reproducibility. DMPs should determine:

The nature of the data to be gathered

• Type The type defines whether it is a spreadsheet, software, code, and the

experiment parameters.

• Data Sources Sources include human observation, a laboratory, and the

volume of the data.

• Data and file formats The best suggestions are open source,

non­proprietary, and Comma Separated Values (CSV) files instead of

Excel files.

• How metadata will be used Provide information to explain how data

were discovered, captured, made sense of, and suitably cited; explain how

files were named, constructed and stored; and document the experimental

details.

• Metadata managing software tools For example, Metavist is a

potential management tool.

• Means that assure data quality Data Quality Assurance and Quality

Control involve computation, appraisal and regulation of a study’s

products (e.g., data, software). Quality Assurance and Quality Control

might involve calibrating instruments or using statistical and visualisation

methods to reveal errors.

• Data storage plan A storage plan considers the length of time the data

will be available, the storage means, and whether data will be secured and

accessible for the future. URLs break, disks fragment, and papers get lost.
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Thus, backing up data using remote storage services such as Amazon or

data repositories such as Figshare andDryad is good practice. I will explain

more about databases anddata repositories later in the chapter (see Section

Databases and Data Repositories).

It is also suggested as good practice for DMPs to be produced by researchers for

their projects outside the remit of a funder. This can help those researchers

maintain good practice for their data reproducibility and for any staff they

employ (Jagadish and Olken, 2004). There are efforts to bring together

communities that work on data management practices as part of initiatives

such as The Turing Way.

2.3.3 Data Issues in the Life Sciences

The three most important data issues in LS, as identified by Thessen and

Patterson (2011), are as follows: 1) lack of standards; 2) lack of incentives for

scientists to share data; 3) lack of adequate (technological) infrastructure and

support.

Given the matters around BD and Open Data, and with the motives of sharing

data reproducibly, for the research results to be shared and reused effectively,

the data needs to be structured in a specific manner (Jagadish and Olken, 2004;

Hollmann et al., 2018). Data should be created, formatted and deposited in

data repositories in line with DMPs and Standard Operating Procedures

(General Secretariat of the Council, 2016; Hollmann et al., 2018). For effective

and reproducible data sharing, appropriate cyber­infrastructure is necessary,

and scientists must be motivated to share data openly and reproducibly.

Sociological issues affect the data acquisition, curation, preservation, sharing

and reuse of data. To facilitate reproducible data practices, LS researchers and

computer programmers must collaborate effectively to produce tools to

encourage a high uptake by the community.

https://figshare.com/
https://datadryad.org/stash
https://www.turing.ac.uk/research/research-projects/turing-way-handbook-reproducible-data-science
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The FAIR Guidelines

Scientific data management can benefit from guidelines and standardised

processes that attempt to harmonise best practices around implementing

reproducible tool development and data sharing policy.

The principles of Findability, Accessibility, Interoperability, and Reusability

(FAIR) (Wilkinson et al., 2016) have been developed as a framework for

improving the reuse of scholarly data, as they provide measurable standards.

They have been adopted (to various degrees) by various key players from

academia, industry, funding agencies, and scholarly publishers. Implementing

the FAIR principles when developing scientific software and generating data is

assumed to improve the retrieval, search and use of the data by machines, in

addition to helping data producers and publishers (Wilkinson et al., 2016).

The FAIR Guiding Principles apply to all “scholarly digital research objects

from data to analytical pipelines”, computational tools and software (Wilkinson

et al., 2016). They are summarised in Box 2.1, reproduced with permission from

Wilkinson et al. (2016).

The absence of suitable technology means it can take several weeks or months

to use specialised tools to collect the necessary data to answer difficult research

questions. Instead, a better means of economising time and resources would be

to create and preserve digital research objects.

The FAIR guidelines aim to set out a policy for all types of scholarly digital

objects to become important elements in scientific publications, where the

value of a publication and its impact is determined by how precisely it is found,

re­utilised, and cited by all stakeholders, both human and machine.
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To be Findable:
F1. (meta)data are assigned a globally unique and persistent identifier
F2. data are described with rich metadata (defined by R1 below)
F3. metadata clearly and explicitly include the identifier of the data it describes
F4. (meta)data are registered or indexed in a searchable resource

To be Accessible:
A1. (meta)data are retrievable by their identifier using a standardized
communications protocol
A1.1 the protocol is open, free, and universally implementable
A1.2 the protocol allows for an authentication and authorization procedure,
where necessary
A2. metadata are accessible, even when the data are no longer available

To be Interoperable:
I1. (meta)data use a formal, accessible, shared and broadly applicable language
for knowledge representation.
I2. (meta)data use vocabularies that follow FAIR principles
I3. (meta)data include qualified references to other (meta)data

To be Reusable:
R1. meta(data) are richly described with a plurality of accurate and relevant
attributes
R1.1. (meta)data are released with a clear and accessible data usage license
R1.2. (meta)data are associated with detailed provenance
R1.3. (meta)data meet domain­relevant community standards

InfoBox 2.1: The FAIR Guiding Principles, reproduced from (Wilkinson et al.,
2016).

Databases and Data Repositories

Specialised repositories have been produced through many iterations of

computational and/or manual curation and therefore form a “gold standard”.

They tend to hold significant digital objects such as species reference datasets

and be easily accessible by humans and computers. In some cases, they seek to

integrate or harmonise the uploaded data so that it can be compared directly

with other datasets, e.g. the Ensembl database. Such repositories include:

• Ensembl is a genome database project at the European Bioinformatics

Institute that was started in response to the Human Genome Project

nearing completion in 1999. Ensembl intends to be a central resource for

https://www.ensembl.org/index.html
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geneticists, molecular biologists, and other academics and researchers

working with human genomes and the genomes of other vertebrates and

model organisms.

• Uniprot is a publicly available protein sequence database with a large

number of entries obtained from genome sequencing studies. It provides

extensive information about the biological function of proteins collected

from the research literature.

• Genbank contains all publicly accessible nucleotide sequences and their

protein translations in an openly accessible format. The National Center

for Biotechnology Information (NCBI) is part of the International

Nucleotide Sequence Database Collaboration and provides sequence data

for this organisation.

• Worldwide Protein Data Bank (wwPDB) is an organisation that

archives macromolecular structural data, i.e. information about the 3D

structure of nucleic acids, proteins and complex assemblies. The Protein

Data Bank archive aims to maintain a single central repository of

macromolecular structural data, which is provided to the global science

community freely and publicly.

Unfortunately, not all repositories and databases in the LSs hold well­curated,

annotated with the correct metadata and properly deposited data, which hinders

reproducibility of the data involved (Attwood et al., 2009).

Certain LS databases have been designed to hold specific data types from

specific data generation technologies, e.g. DNA sequencing. More

general­purpose data repositories attempt to capture the wider scope of data

collected within LS experiments. Specifically, some examples of general

purpose data repositories are Figshare, Zenodo, Dataverse, Dryad, Mendeley

Data and DataHub. Such repositories hold various data types and formats, so

they impose minimal constraints on the data descriptors (metadata) because

https://www.uniprot.org/
https://www.ncbi.nlm.nih.gov/genbank/
http://www.wwpdb.org
http://figshare.com
http://zenodo.org/
https://dataverse.org
https://datadryad.org/stash
https://data.mendeley.com/
https://data.mendeley.com/
http://datahub.io
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their core aim is to store data, unstructured or otherwise. Therefore, these

repositories help by providing large­scale data storage and extra services such

as Digital Object Identifier (DOI) allocation. Still, their lack of structure and

standardisation makes them more diverse and less interconnected. Thus they

exacerbate the problem with Big Data issues such as data discovery and reuse.

2.4 Technologies and Projects addressing the

Reproducibility Problem

Reproducibility is inherently linked with the quality of data analysis methods

and their accurate description. Established projects, software and

infrastructures are working towards supporting accessible, reproducible, and

transparent computational research in LSs (Goecks et al., 2010). The

technologies available to group the data, software and dependencies of

experiments include Virtual Machines (VMs), Workflow Management Systems

(WMSs) and container systems such as Docker and Singularity. Such

technologies will be described and compared in the following sections.

Workflows include the chain of actions in a CE. Workflows can be expensive

and difficult to design, involving many development hours and skilled

personnel to implement and optimise. This difficulty is compounded by

scientific software that often undergoes rapid development and, therefore, may

require the implementation of workflow changes. That said, workflows are

useful as they can be reused, re­purposed and recycled so that other scientists

can execute them with their data and possibly extend the workflow to perform

their experiments, thus rendering workflows as repeatable and potentially

reproducible tools. They typically enable the execution of one or more pieces of

scientific software via a user interface. Certain workflows demand local

installation of software infrastructures, such as the R statistical tool or Python,

which can sometimes be difficult to achieve for scientists with limited
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programming skills. Thereafter, it is not enough to simply publish and share

workflow specifications (Bechhofer et al., 2013): having good WMSs is vital for

supporting CE reproducibility.

2.4.1 WorkflowManagement Systems

Figure 2.4.1: Workflow of the computational approach followed to identify
miRNAs. The overall procedure for miRNA, target and homologous regions
identification. The figure and its original caption are reproduced verbatim from
(Catalano et al., 2012)

Figure 2.4.1 shows an example workflow of the computational approach followed

to identify miRNAs. The image reproduced here with permission from (Catalano



Chapter 2: Reproducible Science 38

et al., 2012).

De Roure et al. (2011) presented a concept of preserving scientific workflows by

using Research Objects (ROs) asWMSs. ROsmake CEsmore reproducible since

pieces of data, files or database entries possess individual identifiers that can be

utilised in subsequent experiments. The need for ROs was brought about from

the observation that workflows and their data description decay over time. ROs

include: (1) the“nodes of operation”, representing the local or remote analysis

steps, and (2) the“edges”, referring to the dependencies amongst the operations.

Ultimately, with ROs, workflows can be better understood, preserved and re­

purposed, and the workflows’additional resources can be more easily accessed.

ROs allow for the adding of background metadata information and the scientist’

s explanation of the results, as well as the tracking of the ROs’evolution with

ontologies (Belhajjame et al., 2015).

Running the workflow (in silico) produces final and intermediate results, any

provenance information around the services used, and metadata describing the

RO structure and the relationships between its containing objects. Ultimately,

the creators of ROs admit that this technology cannot guarantee complete

reproducibility, but it is another approach to facilitating it.

Galaxy

Galaxy is an open Web­based scientific workflow management system that aims

to make computational research in the LSs accessible to researchers without

programming or systems administration experience (Giardine et al., 2005).

These systems typically provide a graphical user interface that enables users to

specify what data to collect and what steps they should take. The Galaxy

workflow systems are typically used for multi­step computational analyses (see

Figure 2.4.2).

Galaxy is mainly used for genomics research, such as next­generation

sequencing, but it is a domain­agnostic system used in many scientific areas,
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Figure 2.4.2: Illustration of a MGEScan workflow in the Galaxy workflow
editor. Image source: https://mgescan.readthedocs.io/en/latest/workflow.
html

not just in the LSs. It supports data provenance (also referred to as data

lineage, i.e. the data’s origin), the maintenance of computational workflows and

a variety of widely used text manipulation utilities, allowing users to perform

their customised interaction with the workflow system.

Workflows can be re­purposed, manipulated, extended and reused by the

workflow creators or others. Galaxy is widely accepted within the

bioinformatics community, receiving thousands of computational jobs per day

alone on the main public server (Goecks et al., 2010), and with many other

interactions on public and private installations around the globe. Through the

Bioconda software package manager, Galaxy provides access to computational

analysis tools, bypassing the common problems experienced when installing

tools locally. Galaxy then supports the combining of individual tools within

larger analysis workflows and the modification of parameter values.

Through its History system, Galaxy supports reproducibility and enables

transparent research as reusable descriptions of data and software can be

exported and shared. Galaxy automatically generates metadata for each

investigation step, allowing the identical repetition of each workflow (Giardine

https://mgescan.readthedocs.io/en/latest/
https://mgescan.readthedocs.io/en/latest/workflow.html
https://mgescan.readthedocs.io/en/latest/workflow.html
https://bioconda.github.io
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et al., 2005). Users can annotate their analysis steps with optional tags to

explain their necessity and importance. Galaxy’s workflow editor tool

determines whether the outputs or tools in a workflow are compatible and

allows users to easily see if a tool’s output can be used as the input of another

through a clear user interface. Galaxy enables LS databases and large datasets

held within cloud­based systems to be accessed, such as the NCBI Sequence

Read Archive (SRA) data held on Amazon Web Service’s servers. Nevertheless,

with the way Galaxy currently operates, there are still certain reproducibility

traps. For example, the user might not know the details and specifications of

the program within the Web service, or the Web services might be unavailable.

Rather than performing the analyses on remote Galaxy servers using the Galaxy

Web version, scientists can download and run Galaxy instances and perform

their analyses on local machines, which can speed up the time for completing a

job, especially for large datasets (Afgan et al., 2011). Nonetheless, local Galaxy

instances are often difficult to operate as installing certain tools can be

complicated; if used at the institutional level alongside High­Performance

Computing environments, their maintenance is expensive as it requires the

support of the appropriate infrastructure.

Taverna

Taverna is another freely available bioinformatics WMSs, which acts as an

interface for linking molecular biology software, databases and particularly

Web services (Hull et al., 2006; Oinn et al., 2004; Wolstencroft et al., 2013).

Specifically, Taverna addresses the lack of communication between databases

and bioinformatics applications, which can provide novel insights when

integrated. Belonging to the myGrid project (Goble et al., 2003), Taverna

allows the user, with or without programming skills, to create and run

workflows (see Figure 2.4.3).

Taverna workflows can be deposited and downloaded for reuse from the myGrid
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Figure 2.4.3: Taverna workflow example. Image taken from: http://www.
mygrid.org.uk/files/2008/09/dragon­workflow.png?.

workflow repository (Goble et al., 2003). Taverna bypasses the tedious activity

of copying and pasting data between online tools and databases and the need to

compose scripts for this action to be performed automatically, where scripts can

sometimes be vulnerable and break when websites become obsolete or change

format.

A valuable feature of Taverna is that the workflow metadata (the status, start

and end time of a task, the kind of processor utilised and descriptions of the

analysis) can be saved independently from the workflow and be retrieved using

a Life Science Identifier, where the user is obliged to provide metadata to this

Life Science Identifier (Oinn et al., 2004).

2.4.2 CyVerse

The iPlant Collaborative launched in 2008 to develop and implement a national

US cloud­based cyberinfrastructure for plant biology research (Goff et al.,

2011). In 2013 iPlant expanded to cover the whole of the LSs and was renamed

CyVerse. CyVerse offers high­performance computing, data storage and

cyberinfrastructure, including virtual cloud platforms that integrate software,

http://www.mygrid.org.uk/files/2008/09/dragon-workflow.png?
http://www.mygrid.org.uk/files/2008/09/dragon-workflow.png?
https://cyverse.org


Chapter 2: Reproducible Science 42

databases, hardware and analysis provenance tracking to power virtual

collaborations around shared analysis tools and data. Moreover, CyVerse has a

mission to train scientists to use the platform for enabling Big Data science

(Goff et al., 2011). These characteristics, i.e. the sharing of workflows and

experiments being recorded and replayed, support the reproducibility of

bioinformatics analyses.

2.4.3 Virtualisation Software

Below is a description of some of the most popular virtualisation technologies

that can help with research reproducibility.

Virtual Machines

Virtual Machines (VMs) encapsulate an Operating System (OS) and software

with the software dependencies all configured. A VM is built and run by

virtualisation software, such as VirtualBox and VMware. VMs of different OSs

can be run parallel to the computer’s OS. The whole VM can be exported as a

binary file (file comprised of a series of sequential bytes, each being eight bits in

length). The benefit of this feature is the ability to save time in reproducing the

operating environment and most of the computational conditions of any CEs.

From the scientist’s perspective, they only need to record the installation and

configuration steps of an OS, and other scientists only need to install the

virtualisation software (not all software components) so analyses can be

repeated. This is provided the virtualisation software is compatible with the

computer’s systems (Smith and Nair, 2005).

Nonetheless, VMs are not always the best solution for helping with

computational reproducibility. VM files are typically many gigabytes in size,

which means that sharing them becomes difficult. However, cloud computing

services (e.g., Amazon) can be more efficient (Piccolo and Frampton, 2016) in

sharing snapshots of the VMs (Dudley and Butte, 2010). Depending on the

https://www.virtualbox.org
https://www.vmware.com/
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provider, these cloud services are liable to fee charges. Another downside of

VMs is that the software components and the specifics of each analysis may not

be documented and distributed adequately by the creators of the VM, making it

more challenging to extend the analysis (Piccolo and Frampton, 2016). A

solution to this problem would be to have all of the constituents of the VM in a

public repository that would then be imported for running the analysis (Piccolo

and Frampton, 2016), in addition to using prepacked VMs, such as

CloudBioLinux (Krampis et al., 2012).

The building of VMs can be automated using open source VM management

tools like Vagrant (explained further in section 2.4.4 below) or Vortex. The

advantage of using these tools is that users can compose text­based

configuration files that instruct the construction of the VMs and assign

computational resources to them. Given that these files are small (a few

kilobytes), they can be easily version­tracked and shared, which is

advantageous.

2.4.4 Containerisation Software

Docker

Docker was released in 2013, and it is a popular open source technology that

enables the reproducibility of experiments (Boettiger, 2015) by encapsulating a

whole computing environment within a shareable container.

A Docker container is a running instance of a Docker image, and many Docker

containers can be created from the same image, each with its own unique data.

Docker images are built using commands from a Dockerfile (Docker Docs, nd)

which are lightweight, which means Dockerfiles can be shared easily (via

DockerHub) and allow for the tracking of versions in the source control

repositories –or for the tracing of only the components in the image that have

changed between the different versions (Boettiger, 2015; Vase, 2015; Piccolo

https://www.npmjs.com/package/vortex/v/0.8.1
https://hub.docker.com/
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and Frampton, 2016); this is more advantageous to VMs, as for any change

made in VMs one has to update the complete machine. Given their above

features, Docker containers can support reproducible research (Chamberlain

and Schommer, 2014).

Vagrant

Vagrant is a tool for building and managing VM environments (enabling the

host’s OS to encapsulate and run a guest OS with software dependencies

preinstalled and configured) in a single workflow. With an easy­to­use

workflow and a focus on automation, Vagrant lowers the development of a

reproducible environment setup time and makes the“it works on my machine”

excuse a relic of the past (Vagrant, nda).

Vagrant isolates projects’ dependencies and configuration in a single

environment and can be shared as a Vagrantfile. The Vagrantfiles can be easily

shared as they are lightweight. When performing a ”vagrant up” command on

the Vagrantfile, a guest Vagrant machine can be created and configured

according to the Vagrantfile (Vagrant, nda).

Vagrant integrates with Ansible, a tool for “server configuration and

automation”. More explanation on Ansible is given below. Vagrant, Ansible and

Salt technologies are mentioned here as they were used in the project described

in Chapter 4 of this thesis (see Section 4.3.3).

Ansible Ansible is a simple and robust Information Technology IT automation

tool, which enables the acceleration of managing complex IT environments

(Ansible, nd).

Ansible models IT infrastructure not just by managing one system at a time, but

by giving an outline of how all systems in a virtual environment inter­relate

(Ansible, nd). Ansible is written in YAML. Ansible represents the machines it

manages using a simple initiation file. Ansible connects the nodes of the IT

https://www.vagrantup.com
https://www.ansible.com
 http://www.yaml.org/about.html
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infrastructure used and produces a small program called an“Ansible module”,

which is then pushed to compute nodes. These modules can serve as a

human­readable data serialisation language and are commonly used for

configuration files. Ansible modules can also serve as resource modules when

executed remotely on a server, supporting the system’s preferred configuration.

Salt or SaltStack is a Python­based open­source software for IT infrastructure

automation, configuration management and remote task execution (SaltStack,

nd).

The advantage of using SaltStack is that it can be configured and run quickly

(within minutes). It allows communication between the systems in the network

within seconds and can be scaled to tens of thousands of servers (?). SaltStack

can be used for data­driven computational activities, as it can execute tasks

remotely for any infrastructure and provide configuration management for any

application type (SaltStack, nd).

According to the site Technopedia, “Virtual provisioning is a virtual storage

network­based technology in which storage space is allocated on demand to

devices. This process allows virtualised environments to control the allocation

and management of physical disk storage connected with VM” (Technopedia,

nd). The Vagrant Salt provisioner permits provisioning using Salt states

(Vagrant, ndb). Salt states are YAML files which define what packages should

be installed, which services should be running and what files should be

included in a Vagrant machine (Vagrant, ndb).

There are several other open­source containerisation software applications,

such as Linux Containers and lmctfy. Describing the aforementioned

technologies further is beyond the scope of this thesis because they were not

explored as potential tools in any of the projects described in this thesis. In

contrast, Docker and Vagrant have been investigated in more detail, and

Vagrant was used as mentioned previously as part of the project described in

https://www.techopedia.com/
 http://www.yaml.org/about.html
https://linuxcontainers.org/
https://github.com/google/lmctfy
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Chapter 4 (see Section 4.3.3).

2.4.5 Python Compatible Tools andWidgets

IPython Notebook Interactive Widgets and Jupyter Notebook

IPython was created by Fernando Pérez (Pérez and Granger, 2007) and

provides an improved interactive environment above the basic Python

interpreter. Its features include data visualisation, which, when implemented

appropriately, can aid CE reproducibility. Due to the interactivity that IPython

offers, scientists can visualise the data, assess ideas and interpret their results

more easily.

Some IPython features are graphical interface tool kits and packages for 3D

plotting and visualisation. It runs under Unix, Apple OS X and Microsoft

Windows. Apart from IPython, there are other tools, such as myBinder and

Shiny by R studio, that offer interactive visualisation.

Jupyter Notebook is “web­based interactive computing platform” (Jupyter

Project, nd). With Jupyter Notebook, one can create and share documents with

live code (executable code), “equations, visualisations and explanatory text”

(Jupyter Project, nd). Jupyter Notebooks support over 100 programming

languages and offer several uses, including statistical modelling, numerical

simulation, machine learning”and using interactive widget code can produce

rich output (videos, images and JavaScript), which can be manipulated and

visualised in real­time (?). Jupyter Notebooks can be easily shared via email,

GitHub, Dropbox and the Jupyter Notebook Viewer.

JupyterLab is the (latest) Next­Generation web­based Notebook interface for

Project Jupyter. In addition to the Jupyter Notebook functionalities explained

above, JupyterLab allows configuring workflows in data science, machine

learning, scientific computing and computational journalism (?).

https://ipython.org
https://mybinder.org/
https://shiny.rstudio.com
http://jupyter.org/
https://nbviewer.org/
https://jupyter.org/try-jupyter/lab/
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2.4.6 myExperiment

The initiative serves as a public repository of workflows. myExperiment’s users

can discover, share, re­purpose, curate and comment about workflows and

other artefacts, exchange knowledge and collaborate within a virtual research

environment (Goble and De Roure, 2007; Goble et al., 2010). The workflows

are scientific objects which can be exchanged and reused irrespective of the

workflow system (e.g. Taverna and Galaxy (Goble and De Roure, 2007).

myExperiment gives credit to the workflow creators by allowing their citation.

With all the above activities that can be fostered within the myExperiment

environment with a Web 2.0 approach, myExperiment enables reproducible

research, or at least repeatable research, incorporating input data, results and

logs.

2.4.7 UTOPIA

UTOPIA is a User­friendly Tool for OPerating Informatics Applications

composed of interactive and interoperable graphical tools giving access to data,

databases and Web services (Pettifer et al., 2004, 2009). This allows users to

examine the validity and quality of the data presented in papers, visualise it

interactively, thus understanding it better, update data in situ and validate the

accuracy of tables, all with great real­time performance. UTOPIA links papers

and their figures (and underlying data) interactively whilst interacting with

remote resources. UTOPIA comprises reusable software components. It

provides tools such as the CINEMA sequence aligner and a 3D­structure viewer

for large molecules. Given the above, the UTOPIA PDF interactive viewer offers

applications that reduce the needless technical hurdles for performing

bioinformatics analyses and facilitates the reproducibility of results.

https://www.myexperiment.org
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2.4.8 Whole Tale

Whole Tale is a Data Infrastructure Building Block project for designing,

publishing and executing Tales i.e. executable research objects. It is funded by

the National Science Foundation in the United States. Whole Tale is an open

source, Web­based, multi­user research platform that captures data, code,

computational workflows, the full research­related software environment and

narrative (traditional science story). The system’s beta version can be seen at

https://dashboard.wholetale.org.

Tales are recorded with metadata in a standardised manner. In the Tale, the

data and code for CE are expressly referenced for reproducibility reasons and

the citations of the particular versions are utilised for later studies. An external

research repository can be used to store or publish the Tale, and the repository

can issue a persistent identifier. The Whole Tale platform enables users to

create and amend Tales interactively and to re­run a Tale to recreate and verify

the outcomes produced by the original maker.

It is important to state that the interaction provided by Whole Tale is not

interacting with the presented figures but rather the code behind the figures,

which can be amended by interacting with Python Jupyter. It is then possible to

run that code again to see how the figure changes. In other words, it is not a

user interface interaction where the user clicks buttons, moves sliders, or zooms

into the image.

2.5 Discussion

With the advent of faster internet networks and more accessible computational

power, more researchers are undertaking CE with larger datasets, either on

their systems or within high­performance computing or cloud environments.

Still, it comes at a cost in that there is huge variability in data, tools, methods,

https://wholetale.org
https://dashboard.wholetale.org


Chapter 2: Reproducible Science 49

computing environments and expertise. Moreover, the current culture in

science for career progression is mostly based on the number of publications

and projects are undertaken, which can pressure researchers to perform

research that is not always focused on being done in a robust and reproducible

way.

Regardless, scientists have a responsibility in that the research they produce is

reproducible. Otherwise, scientists producing irreproducible research are

adding further chaos to the sea of data (and research) produced, given the

current low costs of performing research in the LSs. However, research

reproducibility is a fundamental element of creating reusable software, better

datasets, validating and building upon previous research, and ultimately

rigorous and high­quality science that can be trusted by the scientific

community and the public.

Even though there are many technological solutions to help improve LSs

research reproducibility, each comes with different features and variable uptake

by the scientific community. However, all are somewhat detached from the

scientific paper because they are not immediately usable from within the

publication environment where the consumer of scientific research reads the

paper.

The benefit of being able to assess the data, code and other research artefacts

within the publication are discussed in the next chapter, as well as the

contribution and responsibility of publishing journals in relation to the

reproducibility crisis.

The next chapter presents the survey conducted to evaluate the knowledge and

attitudes of LSs scientists toward research reproducibility, their opinions

around interactive figures versus the traditional static figures in research

articles, and their perceived benefit in enabling research reproducibility within

journal articles.
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The work contained in this chapter was used towards an open access
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publication, reported in Frontiers in Research Metrics and

Analytics doi:10.3389/frma.2021.678554 of which I am the first

author. Moreover, the work in this chapter was carried out as part

of a collaboration between my PhD iCASE industrial partner, eLIFE

Sciences Publications, Ltd, and myself at the Earlham Institute. All

findings reported in this chapter are directly derived frommy work.

A copy of this paper is provided in Appendix A.1, Chapter 3.

3.1 Introduction

In this chapter, I will explain the motivation behind conducting a survey to

canvass life scientists’ knowledge and attitudes around reproducibility and

assess their opinions on having access to interactive figures as a potential

solution for the reproducibility of experiments within articles. The survey was

framed by the development of interactive figures as a model to serve a richer

and more accessible underlying means to the results of a given study or

analysis.

3.1.1 Current Views on Reproducibility

In this section, I describe other studies and surveys that canvassed the opinions

of scientists about reproducibility and the issues they experience in attempting

to reproduce published research.

A number of recent surveys have assessed the attitude and opinions of

researchers about reproducibility in disciplines other than the LSs (Baker,

2016; Feger et al., 2019; Stodden, 2010). However, not many surveys have

examined the knowledge and attitude of researchers around reproducibility in

LSs. In particular, the LSs community has undertaken only rudimentary

investigations (especially in the form of surveys that qualify and quantify the

https://doi.org/10.3389/frma.2021.678554
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reproducibility issue) into the incidence of problems encountered with

reproducibility, assess researchers’ perceptions of the significance of

reproducibility, the frequency of difficulties experienced when attempting to

reproduce published research and the opinions and preferences concerning

possible remedies to research irreproducibility in the LSs.

The current literature (Pulverer, 2015) highlights that issues accessing the data

presented in research articles are one of the major reasons leading to the

irreproducibility of published studies. For example, Federer et al. (2015)

investigated the differences in data practices between clinical and non­clinical

scientists and found that the majority of respondents had no prior experience

uploading biomedical data to a repository. The majority mentioned various

sociological reasons for not doing so, including concerns and motivations about

data sharing and the workload required to prepare the data for submission.

Barone et al. (2017) conducted a survey in the US of 3,987 principal

investigators from the National Science Foundation’s Directorate of Biological

Sciences who reported their biggest unmet training requirements by their

respective institutions. Specifically, the deficiencies were in the areas of

integration of various data sources (89%), data management and metadata

(78%), and scaling analysis to the cloud/high­performance computing (71%).

A number of survey studies have explored the attitudes and knowledge of

researchers in other disciplines about reproducibility to some extent (Stodden,

2010; Baker, 2016; Feger et al., 2019). Still, few studies have explored the

attitudes and knowledge of researchers in the LSs about reproducibility (Baker,

2016). The LSs community, in particular, has undertaken only rudimentary

investigations into the incidence of problems encountered with reproducibility,

the perception of its significance, and preferences concerning possible remedies

in the field.

This chapter presents the results of a survey designed to evaluate researchers’

knowledge of the principles of reproducibility and to aid future efforts by
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enabling researchers to reproduce published research results. Producing and

consuming life science research may be better served by creating technologies,

such as interactive figures inside journal articles, which may be used better to

fulfil the requirements of both producers and consumers. The survey study

described in this chapter does not compare open­access tools for creating

reproducible research outputs; instead, the survey is restricted to comparing

how open­access tools are viewed for the consumption of research material via

interactive methods.

We designed the poll in order to gain a better understanding of how the

respondents felt about the following topics:

• Issues with data access, code and technique parameters, and how

solutions such as interactive figures might improve reproducibility from

inside an article are all technical variables influencing computational

reproducibility. These factors are grouped under the term

technical or technological factors. An overview description of

interactive figures is depicted in the following section.

• Attitudes toward reproducibility, societal issues that impede

reproducibility, and interest in how research results may be consumed

through interactive figures and their feature preferences are all explored

in this section. These factors are grouped under the term cultural

or sociological factors.

When discussing each factor, the two defining terms ­ technical and

technological, and cultural and sociological ­ will be used

interchangeably in this thesis.
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3.1.2 Interactive Figures

The survey study in addition to canvassing the knowledge and attitudes of LS

researchers around reproducibility, aimed to assess their opinions around

interactive figures. In particular, whether they have previously encountered

interactive figures in literature, what features they deem favourable and

whether they believe interactive figures can improve the reproducibility of

experiments within research articles.

As discussed in Chapter 2, a growing number of tools exist and are being

developed to assist researchers in performing reproducible research by making

code, data, and analyses accessible to the community for reuse. Static plots and

figures play an important role in interpreting the scientific outcomes described

in research papers.

Static figures are often presented in line with the text of a publication, but they

are images with no interactive elements that can represent underlying

information dynamically. Interactive figures provide an alternative to static

figures in research articles. Interactive figures are technically more complex, as

they are developed using image generation systems to form animated figures to

visualise data, code, parameters and other details that can be queried, selected

and accessed by the user by various means. This might include ”mousing over”

data points to show actual values, resizing or zooming the display, or clicking on

individual plot elements to display underlying dataset information.

Consequently, interactive figures within research articles can be designed to

incorporate information from various sources, including data, code, and

graphics, so that when a user interacts with the figure, for example, by selecting

an area of data points within a graph, they are presented with the information

underlying those data points. Similar to this, a user may alter the fundamental

parameters of the analysis, such as changing a filter threshold, which would

result in changes to the visualisation of a figure (Barnes and Fluke, 2008;
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Barnes et al., 2013; Grossman et al., 2016; Newe, 2016; Perkel, 2018;

Weissgerber et al., 2016). A more detailed description and discussion of

interactive figures are presented in Chapter 4.

3.2 Survey Methodology

The methodology employed to conduct and analyse the survey is described in

my first author paper (Samota and Davey, 2021) and is included here with

permission.

Sample Size and Population

Although the data were analysed anonymously, we obtained ethical approval.

This survey research was authorised by the University of East Anglia Computing

Sciences Research Ethics Committee (CMPREC/1819/R/13).

Our participants’ sample was chosen to represent all segments of the LSs

community at various degrees of seniority, discipline, and expertise with the

problems we sought to examine. The first poll was performed in November

2016 and sent to 750 researchers at the Norwich BioScience Institutes (NBI)

who were at post­doctoral or above job level. We decided to poll scientists with

a post­doctoral degree or above since they are more likely to have had the

chance to publish in a scientific journal. The NBI is a collaboration between

four leading UK research institutions: the Earlham Institute (previously The

Genome Analysis Centre), the John Innes Centre, The Sainsbury Laboratory,

and the Institute of Food Research (now Quadram Institute Bioscience).

Participants were invited through email and provided with a link to the survey.

The second survey, identical to the first but included additional questions, was

sent in February 2017 to a random sample of 1,651 academics who had

published articles in the eLIFE magazine. eLIFE employees sent invitations to

their authors to join through email. We received a 15% response rate (n=112)
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from NBI researchers and an 8% response rate (n=139) from the eLIFE survey.

The eLIFE sample was randomly selected by an eLIFE member of staff that had

access to the pool of email addresses of eLIFE all authors who had published

articles (not only corresponding authors) from 2012 (the year eLIFE was

founded) to 2017 (the date of the survey distribution). Every author

participating in the survey has published at least once between 2012 and 2017.

The eLIFE sample was randomly selected from the journal’s email pool,

whereby the authors were contacted at random based on their last names

alphabetically. The survey was sent via an email invitation in two waves, with

the first wave targeting 852 scientists and the second involving 841 scientists.

From the first email, 11 addresses bounced. We cannot say exactly how many

eLIFE authors the sample was selected from as we did not collect that

information at the time. However, a month before the survey was distributed

(i.e. January 2017), an author newsletter was sent out to the list of accepted

authors, and the list comprised 12,040 authors. The decision not to distribute

our survey to the complete cohort of 12,040 authors was made by the eLIFE

staff member. Under the 2017 General Data Policy Regulations (GDPR),

implemented within the EU in May 2018, eLIFE would only have been able to

contact corresponding authors. However, at the time of the survey (2017), it

was still possible for all authors to be contacted.

The questions asked in the surveys were as shown in Table 3.1. The questions

were designed to elicit qualitative and quantitative responses on the

technological (technical) and sociological (cultural) elements of repeatability.

The questionnaire evaluated the frequency with which respondents experienced

problems obtaining data, the causes for these issues, and the current method by

which respondents acquire the data underlying published papers. They

assessed participants’ comprehension of what comprises research

reproducibility, interactive figures, and computationally reproducible data.

Finally, we assessed the perceived value of interactive figures as a potential

solution to computational reproducibility and the desired characteristics of
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interactive figures.

The survey questions were designed whereby some required respondents to

make choices from a set of pre­defined options, some allowed a free response

and others required participants to rank their experience or knowledge on a

scale. One example of an options question is question 3: “What difficulties

have you encountered in accessing the data described in published papers?

Select all that apply to you.” The answer options for this question were: (a)

privacy reason (patients’ medical data); (b) commercial sensitivity around the

data (e.g. pharmaceutical companies’ data that could lead to the production of a

drug; (c) data not available at publication; (d) authors cannot be reached or are

unresponsive to data provision requests; (e) data is too large to be transferable

and (f) not applicable (N/A). The answer options to the survey questions are

shown in Appendix A2 for Chapter 3.

Table 3.1: Questions used to survey the knowledge of respondents about research
reproducibility and interactive figures within publications.

1 How often do you encounter difficulties working with bioinformatic

analysis tools (that are not your own)? (Problems such as: installing,

configuring, running, and working with command­line software)?

2 How difficult is it to source (or access) the data presented in published

papers?

3 What difficulties have you encountered in accessing the data described

in published papers?

4 How are you currently sourcing the data (if applicable)? Select all that

apply to you.

5* What is your current understanding of the reproducibility of

experiments? Please select any that apply. Should you wish to add

any additional information, please add it to the“Other”box.

6* Have you ever tried reproducing any published results? Please select the

answer that applies best to you.
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7* In your opinion, what could be done to make published research more

reproducible? Other, please specify (free text answer).

8 When thinking about interactive figures, what comes to your mind?

(Please describe what you understand as an interactive figure, its

features, and where you have seen such a feature before, if applicable).

9 An interactive figure is a figure within a paper that is dynamic and

becomes “live”when the user interacts with it and where the data

displayed changes according to various parameter options. Which of the

following features of an interactive figure tool would be good to have?

Please rank them in the order of preference, where 1 is themost preferred

feature, and 11 is the least preferred feature.

10 What other features could an interactive figure have that were not

mentioned in the previous question?

11 Do you perceive a benefit in being able to publish interactive figures?

12 Does the provision or option of an interactive figure in the paper affect

your decision in choosing the publishing journal or publisher?

13 Have you heard of the term computationally reproducible data, and do

you understand what the termmeans? If answered yes or unsure, please

explain what you understand from the term.

14 Would you benefit from being able to automatically reproduce

computational experiments or other analyses (including statistical tests)

described within a paper?

15 How often do you work with bioinformatic analysis tools (e.g.

assemblers, aligners, structure modelling)?

16 Have you received any of the following training? Training, whether

formal or informal (training through a colleague etc.).

17 Which of the following type(s) of data do you work with?

Table 3.1: * Questions indicated with an asterisk were only available to the eLIFE
survey. Answer options to the questions are shown in Appendix A2 for Chapter
3. This table has also been published in (Samota and Davey, 2021) and appears
here with permission.
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3.2.1 Statistical Analysis

Typically, results are given as a percentage of those who responded, and

stratified by the respondent’s field of work, training received, and survey

version. Chi­square independence tests were performed to see if there were

connections between answers to particular questions or whether responses

changed across samples. R (version 3.5.2; R Core Team, 2018) and Microsoft

Excel were used for the analysis. The R script is available via Figshare from this

link: https://doi.org/10.6084/m9.figshare.11291453.v1 and the survey raw data

is available via Figshare from this link:

https://doi.org/10.6084/m9.figshare.7855592.v1.

We examined whether there was a significant discrepancy in the ability and

willingness to reproduce published studies between the cohort of eLIFE

respondents who understood the term ”computationally reproducible data” and

those who did not, as well as the effect of training (bioinformatics, computer

science, statistics, or no training). Given the wide range of responses in the

“unsure” group regarding their understanding of the term ”computationally

reproducible data,” we excluded the data from those who responded “unsure”

from our analysis (see Section Understanding of reproducibility, training

received and achieving reproducibility). The respondents who selected“yes, I

attempted reproducing results, but unsuccessfully,” “have not attempted

reproducing results,” and “it is not necessary to replicate results” were all

classified as“unsuccessfully.” Free text responses are available in Appendix A3

for Chapter 3.

3.2.2 Validation of the Questionnaire Design

We conducted a two­stage survey, beginning with the NBI participants and

concluding with the eLIFE cohort survey that included further questions. To

evaluate the appropriateness and flow of the first survey, we tested it on a small

https://doi.org/10.6084/m9.figshare.11291453.v1
https://doi.org/10.6084/m9.figshare.7855592.v1
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cohort of researchers. The qualitative findings from the surveys were presented

in line with the Standards for Reporting Qualitative Research (SRQR) (O’

Brien et al., 2014).

The survey questions were not developed in accordance with any particular

cultural theory but rather with our knowledge of the area of reproducibility,

namely human variables and researcher attitudes toward reproducibility, as

well as the process of doing science. We presume that these factors affect the

reproducibility and robustness of the research and, therefore, the published

work. As a result, we use the phrase“culture of reproducibility” to refer to the

attitudes of life scientists toward science and reproducibility as they pertain to

research publications rather than human demography. The purpose of

assessing the reproducibility culture (sociological factors) was to determine

how the attitudes of researchers or how they communicate their work in

research publications might influence reproducibility.

It is critical to emphasise that no one survey question assessed simply the

technological issues influencing reproducibility or just the sociological factors.

For example, the reader’s ability to obtain data is influenced by cultural and

technological factors, e.g., data accessible through permanent identifiers and

Application Programming Interface (APIs) versus“data available on request.”

Whereas when an author is not publishing the underlying data associated with

their research is solely a cultural issue, as it may be interpreted that they are not

conducting and presenting their research in a reproducible manner or that they

lack support or knowledge regarding reproducible and open data publishing

practices.

Additionally, we analysed the opinions held around interactive figures as part of

our study. They are, in and of themselves, a technological element that we

believe may contribute to reproducibility. However, readers’ interest in finding

interactive figures valuable for improving computational reproducibility,

including which characteristics they believe are advantageous, may vary based
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on the respondent’s social background or demography (for example, the

training received, the data they work with, or the discipline they work in).

We recognise that many human variables influence how reproducibility is

accomplished, most notably the attitude of life scientists toward reproducibility.

The reproducibility of their work is affected by how robust, open­source, and

open­access their study is in terms of how it is conducted and shared. In this

respect, we may analyse, assess, and quantify the problem by measuring and

qualifying how difficult it is to obtain data and code provided in publications

and comprehend the techniques described in a study. Our study complements

previous surveys that also emphasise the problem of reproducibility.

We obtained consistent answers, indicating that all or most respondents

understood the questions similarly, allowing for cross­comparison. The NBI

research findings were similar to the eLIFE study results, despite the surveys

being conducted at separate periods and with distinct survey groups. To

develop our construct validity, we mainly relied on published surveys, findings

drawn from the existing literature, and the outcomes of conversations with

different researchers investigating reproducibility in our local institutions. The

questions we posed met our criteria for gaining a deeper understanding of the

qualitative character of respondents’ responses and being able to conduct

empirical analysis (Chi­squared) to demonstrate connections.

We used the same procedure to evaluate content validity. We attempted to

include questions that covered the breadth of the area we were evaluating while

casting a broad net over possible respondents, who represented a diverse range

of skills, disciplines and other demographics. Lastly, our hypothesis of how

researchers perceive reproducibility was included in our questionnaires’

translation validity, and two practical surveys were created based on our

theoretical evaluations from prior literature.
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3.2.3 Rationale behind the Survey Questions

The survey questions were designed to assess the survey participants’

understanding of the meaning of the concept of reproducibility of experiments

and scientific results. The objective was to determine whether they understand

the importance, value and worth of the reproducibility of experiments and how

devising a process that enables reproducibility would benefit their research and

science in general.

A primary goal was to collect information concerning the problems that

scientists are currently facing in reproducing experiments. The questions were

phrased to discover the problems that users are currently facing. For example,

are scientists experiencing difficulty collecting the data presented in the

published research? The survey was designed to obtain quantitative

measurements of the percentages for each category of hurdle experienced in

reproducing experiments. Gathering such information would allow focusing on

building features for the interactive figures that would primarily focus on and

prioritise the most popular issues surrounding the reproducibility of

experiments.

The survey was also conducted to gather from the user which features of an

interactive figure would be desirable and useful for them and resonate more

with them, and receive further suggestions on other features to be developed.

In addition to the above, a qualitative assessment of the perceived value of each

of these features was also included to establish how, in the respondents’ minds,

these added features would solve their current problems with the

irreproducibility of experiments within journal articles.
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3.3 Results

These results have been published in Samota and Davey (2021) and appear here

with permission.

Features of the Samples

Figure 3.3.1 depicts the distribution of respondents’ fields of work, which has

been stratified based on the survey sample. When comparing the NBI and

eLIFE populations, the most often involved topic areas of the whole sample

were genomics (22%), biochemistry (17% of the whole sample), and

computational biology (15%). When asked how often they utilise bioinformatics

tools, 25% said they never do so, 39% said they rarely do so, and 36% said they

do so often; (number of responses to question 15, n=136). In addition, (43%)

obtained statistical training, (31%) bioinformatic training and (20%) computer

science training; (number of responses to question 16, n=136).

Data and Bioinformatics Tools

In both groups, 90% of individuals who answered question 2 said they had

attempted to gain access to data underlying a previously published scientific

paper (see Fig. 3.3.2; the number of respondents to question 2, n=221).

Of those who attempted accessing data described in published papers, only a

small percentage found this “easy” (14%) or ”very easy” (2%). Whereas 41%

described it as “difficult” and 5% described it as “very difficult.” The most

common reasons for difficulty were sociological, as outlined in Fig. 3.3.2, such

as the fact that the data was unavailable with the publication (as discovered by

75% of those who attempted to access data) or that authors could not be

contacted or did not respond to requests for data (52%). Only a small number

of people discovered that data was inaccessible due to technical factors such as
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35% 25% 15% 5% 5% 15%

Genomics

Biochemistry

Computational Biology

Epidemiological

Other

Biophysics

Epigenetics

Proteomics

None

Immunology
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eLIFE

Figure 3.3.1: Data types NBI and eLIFE respondents work with; (number of
respondents to question 17, n=136). Responses were not mutually exclusive.
The data type options were the same as those accessible in the eLIFE article
categorisation system, providing a familiar experience. This figure has also
been published in Samota and Davey (2021) and appears here with permission.

data size (21%), commercial sensitivity (13%), or confidentiality (12%). The

number of respondents to question 3, was 218 (n=218).

For data sources, 57%of the overall sample reported using openpublic databases,

48% stated that data was accessible via a link in the article, and 47% claimed that

they had to contact the paper authors to be provided with the data (number of

respondents to question 4, n=219.Responses were not mutually exclusive).

Only a small percentage did not experience difficulties operating, installing, or

configuring bioinformatics software. Those who answered either“never” (2%)

or“rarely” (8%) encountered issues. Problems with software were reported as

occurring“often” (23%) or“very often” (12%), indicating that almost half of those

who answered the survey reported regularly encountering technical obstacles to

achieving reproducibility. The respondents who answered question 1, N=251.
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Figure 3.3.2: Left panel: Difficulties faced in obtaining data
underpinning previously published study. When asked if they had tried
to gain access to data underlying prior publications, respondents said they had
and described the difficulty they usually experienced. Responses to question 2,
n=221. Right panel: The reasons for the inability to access data are
explained. The reasons cited by respondents for not being able to obtain data
(restricted to those who have attempted to access data). Responses to question
3, n=218.

Understanding of Reproducibility, Training Received and

Achieving Reproducibility

The vast majority of respondents (to question 5) said that they understood the

phrase “the reproducibility of experiments” and that they chose the

explanation for the term as accepted in this thesis and described in Chapter 2

Section 2.1.1 (different teams re­running the same analysis with the same data

and getting the same results), which conforms to the most widely accepted

definitions of reproducibility in scientific research (Claerbout and Karrenbach,

1992; Peng et al., 2006; Peng, 2011; Stodden et al., 2013a). Question 5 was only

available to the eLIFE cohort with 54 respondents to this question, N=54.

Respondents were able to choose more than one answer from the available

options for question 5. The answer options to question 5, were the following:

• (a) If the experiment was performed by another laboratory, the same or

similar results are produced

• (b) Using similar materials, reagents, and methods, reaching the same
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conclusions

• (c)Running and analysing similar datawith the sameworkflow, and getting

similar results

• (d) The original authors or others running the same data with precisely the

same workflow and getting the same results

• Other (please specify) as an open comment box.

It is important to note that respondents were able to selectmore than one answer

for this question because we recognised the limitations of the fact that there is

no standard and accepted definition for reproducibility, as well as the fact that

scientists fromdifferent backgroundsmayhave different levels of familiaritywith

the term. The first three answer options given to question 5 (see Appendix A2 for

Chapter 3), were reasonable definitions of research reproducibility.

We infer from the findings that some of the respondents selected definitions

that were both correct and incorrect at the same time. However, the definition

of reproducibility as defined in this thesis was included in the vast majority of

responses (77%). However, when we looked at the individual answers (n=54),

we found that 11.1% (n=6) of respondents selected just option A, indicating that

they understood that this corresponded to the concept of reproducibility as

stated in Chapter 2 (see Section Definitions of Reproducibility). Only option D

was selected by 5.5% (n=3), which is a wrong definition for research

reproducibility.

The vast majority of people (57%; n=23) chose one of the options A, B, or C

rather than D, indicating that they understand that reproducibility is not the

same as replicability. However, they were still unsure of the exact definitions,

which corresponds to the general lack of consensus on the subject as noted by

other literature (Drummond, 2009; Liberman, 2015; Plesser, 2018). The fact

that just over a third (37%, n=20) chose one or all of A, B and C, and chose D,

suggests that they did not understand or care about the difference between
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reproducibility and replicability and that they believed any form of repeating a

process could be classified as “the reproducibility of experiments” (see

Supplementary Table 4, available on Figshare via this link).

Understanding of the term “computationally reproducible

data”

While there is no official definition for “computationally reproducible data,”

several sources and studies have discussed the concept of data that contributes

to computational reproducibility (Baranyi and Greilhuber, 1999; Weinländer

et al., 2009; de Ruiter, 2017; Tait, 2017; Perkel, 2017; Pawlik et al., 2019). This

thesis defines the term as the result (data outputs) generated when reproducing

computational experiments.

The majority of participants (52%) gave a different meaning to the phrase

“computationally reproducible data”, with just 26% understanding the term

and 22% uncertain. The number of respondents to this question (Question 13),

was 137 (N=137). We obtained several explanations (from the free text answers)

for the term, the vast majority of which were correct (see Appendix A.3, free

responses to question 13). We divided the“unsure” answers (n=30) into three

categories: those who understood the term (70%, n=21; see Appendix A.3, free

responses to question 13), those who did not comprehend the term, and those

who did not provide any free text answer. The majority of respondents who

selected “unsure” and provided a free text answer (71%, n=15) correctly

identified the term “computationally reproducible data.” Six people could not

grasp the phrase properly in the remaining 29% (n=6).

Willingness and Success in Reproducing Published Research

Some respondents (18%) said that they did not make an effort to reproduce

previously published findings. Only a small percentage of the sample (6%)

agreed with the statement that“it is not important to reproduce other people’s

https://doi.org/10.6084/m9.figshare.12782546.v1
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published results” (see Supplementary Figure 1 in Appendix A.4). Even though

the vast majority of respondents (60%) reported having successfully

reproduced published findings, almost a quarter of those who responded

indicated that their attempts to replicate any results were fruitless (23%). The

number of respondents to this question (question 6), was 92, (N = 92). This

question was only available in the eLIFE cohort of the survey.

Table 3.2, displays how well the respondents were able to reproduce

experiments based on their comprehension of the term “computationally

reproducible data” and the training they have received (bioinformatics,

computer science, statistics). The connection between the capacity to reproduce

published experiments and understanding of what is meant by

“computationally reproducible data” was investigated using a Chi­square test of

independence, whereby no significant relationship was found.

The connection between these factors was statistically significant, with a

p­value of χ2(1, N = 75) = 3.90, p = .048. The ability to replicate published

experiments was much higher among those who understood the meaning of

“computationally reproducible data.” Considering that their previous training

did not reveal any statistically significant differences. The responses“yes tried

reproducing results, but unsuccessfully”,“have not tried to reproduce results”,

and “it is not important to reproduce results” were all grouped under

”unsuccessfully” to get an indication of how willingness and success together

differed between the training groups. This revealed a statistically significant

difference between the two training groups (see Supplementary Table 1

Appendix A.5). The distribution of the training variable differed substantially

between individuals who had received computer science training and those who

had not (Fisher exact test for independence, p = .018). It appeared that

individuals who had computer science training were less likely to have

attempted to reproduce an experiment but were more likely to have been

successful when attempting to reproduce it.
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There was no evidence of a difference in the ability and willingness to reproduce

published results between respondents who used bioinformatics tools

frequently and those who used them“rarely” or“never”, χ2(3, N = 90) = 0.53,

p = .91 (see Supplementary Table 2, Appendix A.6). Those who utilise

bioinformatics tools often came from various scientific backgrounds, mostly

biophysics, biochemistry, computational biology, and genomics. Those who

responded that “reproducibility is not essential” and “haven’t attempted

reproducing experiments” were mostly scientists from fields that used

computational or bioinformatics tools “rarely” or “never” in their research

(Supplementary Table 3, Appendix A.7).
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Increasing the Reproducibility of Previously Published

Research

The vast majority of respondents (91%) agreed that authors detailing all

methodology steps, including any formulas and parameters used to analyse the

data, may help to make published research more reproducible and thus more

valuable. About half (53%) agreed that authors should share the source code of

any custom software used to examine the data and that the code should be

properly documented. Similarly, 49% said authors should provide a link to the

raw data (see Supplementary Figure 2, Appendix A.8). Two respondents stated

that improving scientific reproducibility would be simpler if funds were more

easily accessible for reproducing the findings of others and if there were more

chances to publish the reproduced results (see Appendix A.3 free responses to

question 7).

Within the same context, some respondents acknowledged that the current

scientific culture does not provide sufficient incentives for publishing

reproducible papers (or even negative findings papers). Instead, researchers

are rewarded for publishing as many papers as possible in high­impact factor

journals (see Appendix A.3 free responses to question 7).

Interactive Figures

The results from question 9 regarding the respondents’ preference for

interactive figure features are shown in Fig. 3.3.3. Participants were asked to

rate their preferences for interactive figure elements included in a research

paper. “Simple to manipulate” was the most desired characteristic of

interactive figures, followed by “easy to specify parameters” (Fig. 3.3.3). The

responses to both the eLIFE and NBI questionnaires generally followed a

similar pattern.

Additionally, free text answers were gathered, and most respondents indicated
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import data

many parameters to select from
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display changed figure with different

colours and fonts

export data option

symbol linking to raw data, metadata

and supplementary data

easy to define parameters

easy to manipulate (play around with)

Figure 3.3.3: Preferences for the interactive figure’s characteristics. In Question 9,
respondents were asked to rate the above characteristics in preference, with 1 being the
most desired characteristic and 11 being the least liked characteristic. The average score
for each feature was computed in the order in which respondents from the NBI and the
eLIFE surveys chose their top three choices for each feature. The lower the average score
value (on the x­axis), the more desirable the feature is perceived by users (y­axis). The
number of responses to this question was 136 (N = 136).

that methods that would aid them in comprehending the data provided in the

figure, such as zooming in on data, would be helpful (see Appendix A.3 free

responses to question 8).

The overwhelming majority of respondents believed that interactive figures in

published papers would help readers and authors (see Fig. 3.3.4). Examples of

insights include the following: the interactive figure would enable readers to

visualise additional points on the plot from the supplementary section, as well

as alter the data presented in the figure; having an interactive figure, such as a

movie or displaying protein 3D structures, would benefit readers. The

remainder of the answers were classified as software related and included

recommendations for tools that might be used to create an interactive figure,
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such as R Shiny.

We received 114 free text answers about the respondents’ perceptions of

interactive figures, and a quarter (25%) said that they had never seen or

engaged with one before, with no indication that an interactive figure would aid

their work (see Appendix A.3 free responses to question 9).

0%

10%

20%

30%

40%

definitely yessomewhat yesneither yes or nosomewhat notdefinitely not

in yourself to your paper readers in the papers you read

Figure 3.3.4: Perceptions on the value of being able to publish research papers
including interactive figures. The advantage to the author, the author’s readers,
and the papers that the author reads. The answers to question 11 come from both
the NBI and eLIFE surveys.

Additionally, most respondents find value in automatically reproducing

computational experiments and modifying and engaging with parameters in

computational analytic processes. Equally advantageous was the ability to

reproduce statistical analyses computationally (see Fig. 3.3.5).

Despite this apparent advantage, the majority of respondents (61%, n=85; those

who answered“just as likely”) stated that the option to add an interactive figure

would have no impact on their choice of journal for publication. The number of

responses to this question (question 12), was 140. The responses that expressed

that having interactive figureswould impact their choice of a journal“negatively”

https://shiny.rstudio.com
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Figure 3.3.5: Perceived usefulness of automatically reproducing computational
experiments or other analysis (including statistical tests). Responses from both NBI and
eLIFE.

were 4%and“less likely” at 11%. Thosewhoperceived the provision of interactive

figures would have a positive impact on their choice of the journal to publish with

were“likely” 19%, and“positively” 4%.

3.4 Discussion

This research emphasises the challenges that scientists presently face in

reproducing experiments, as well as the favourable views that scientists have
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about enabling and encouraging the reproducibility of previously published

studies, including using interactive figures. Our survey respondents were active

researchers in the LSs when the survey was conducted, and our eLIFE cohort

included researchers who had published at least once in the eLIFE journal.

Therefore, the opinions collected should be representative of researchers in the

LSs who were routinely reading and publishing research when the survey was

conducted.

The respondents’ views mirror previously reported problems of the publishing

processes (Müller et al., 2003; Marx, 2013; Stodden, 2015; Tenopir et al., 2011),

although improvement has been achieved in publication standards across all

LSs scientific fields. There is a lack of data and code provision; there are no

storage standards; and there is no requirement for a detailed description of the

methods and code structure (i.e. code scripts and algorithms, full software

packages, the programming language used, the versions of any libraries

required, the organisation of any modular components, or configuration and

deployment options) in the published papers. However, the degree of interest

in incentives for reproducing published research is still in its early stages, or it

is not a top concern for most academics (Collins and Tabak, 2014; Nosek et al.,

2015).

A significant finding of this chapter is that the vast majority of respondents

recognised that science becomes implicitly more reproducible if techniques

(including data, analysis, and code) are well­described and made accessible to

other researchers. Tools that make data, techniques, and code available and

automatically replicate computational experiments detailed in the article are

seen as advantages by those who responded. The use of interactive figures in

publications can be such tools that allow for the automatic reproducibility of

computational experiments or other analyses described in a paper. This would

include the interaction and manipulation of parameters within the

computational analysis workflow, the provision of additional insights, and a

detailed view of the data displayed in the figure. Although technologies exist to
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assist reproducibility (Crick et al., 2014), and even though writers are aware of

their benefits, many scientific papers fail to satisfy the most basic criteria for

reproducibility.

The results are consistent with other literature (Pulverer, 2015), which indicate

that a lack of access to the publication’s associated data is one of the most

significant factors contributing to the irreproducibility of published research.

Other surveys have corroborated how various factors influence data practices,

including fear of being scooped, fear of other researchers using data for their

papers, technical difficulties and fear of mistakes being discovered in data or

analyses (Stodden, 2010; Tenopir et al., 2011, 2015; Federer et al., 2015).

Through our survey, we found that (57%) of the respondents expressed that

data is either not accessible upon publication or that authors cannot be

reached/are unresponsive to demands for data supply (44%). However, this is

still a cultural artefact associated with referring to methods sections in papers

as a description of steps to reproduce analysis rather than a fully reproducible

solution that includes easy access to public data repositories, open­source code

and comprehensive documentation.

To complicate matters, authors often leave projects and institutions, or they can

no longer access the data, meaning that“data accessible on request”no longer

serves as a realistic alternative for obtaining data. Requiring paid memberships

to view material from a publication, and restricted access to an article may also

negatively impact reproducibility. Although there has been a precedence for

obtaining specific articles via cross­library loan systems or directly contacting

the relevant author(s), this option, as with asking for access to data, is not

without its difficulties. In recent years, pre­print servers such as bioRxiv have

gained popularity, particularly in the genomics and bioinformatics fields. This

development has the potential to reduce publication delays while also providing

a “line in the sand”with a Digital Object Identifier (DOI) and meeting the

requirements for FAIR data (Abdill and Blekhman, 2019; Figueiredo, 2017;

https://www.biorxiv.org/
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Hollis, 2016). Some respondents stated that the sensitivity of their data has

discouraged them from sharing it, although this was only noted by a tiny

percentage of respondents in our survey. Even when there are initiatives that

try to apply the FAIR principles to clinical data, such as the OpenTrials

database (Chen and Zhang, 2014), they are by no means universally adopted.

In some cases, data in publicly accessible repositories with specific deposition

requirements (such as the EMBL­EBI European Nucleotide Archive,

https://www.ebi.ac.uk/ena) may not be associated or annotated with

standardised metadata that accurately describes it but rather with only the bare

minimum for deposition (Attwood et al., 2009). Training scientists to

successfully apply data management principles will likely result in more data

reuse due to better metadata. The topic of data and metadata annotation

standards and their effect on reproducibility will be discussed in Chapter 5.

3.4.1 Limitations

The NBI cohort is composed of researchers solely based in the United Kingdom,

with potentially knowledge, attitudes and incentives around reproducibility as

well as infrastructure to support reproducibility that varies from the rest of the

world. Moreover, it is fair to speculate that researchers working at academic

institutions (such as those at NBI) may have divergent incentives and attitudes

than government agencies and private sector researchers.

The eLIFE cohort were researchers who have published at least once in the

eLIFE journal. Given how eLIFE is an open­access data journal, it is logical to

infer that the attitudes of the eLIFE researchers were more likely to support and

engage in reproducible practices. Nevertheless, the eLIFE respondents’

demographics are from academia, in public or private scientific institutions all

over the world. Moreover, given how NBI researchers come from various

countries and research backgrounds and received training from institutions

internationally and both cohort samples were randomly selected, we are

https://opentrials.net
https://www.ebi.ac.uk/ena
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confident that the NBI and eLIFE respondents’ views represent the views of the

LSs community.

The participants’ responses were gathered by survey self­reporting methods,

although this is the most common means by which to conduct surveys and

entails many advantages, it may also be subject to certain disadvantages and

limitations. Self­reported answers can be exaggerated, various biases may

affect the results. For instance, we cannot be certain that respondents have

successfully reproduced published results, even if they reported to have done

so.

Question 5, asked respondents (“what is your current understanding of

reproducibility of experiments, select any that apply, please add additional

information in the free text box”). Potentially, if respondents were confused

about the exact meaning of reproducibility, it could have affected their ability to

respond to question 6 (“have you tried reproducing any published results?”;

respondents were able to select only one answer option) and 7 (“What could be

done to make published research more reproducible, select all that apply, add

additional information in the free text box). However, the responses showed

that the questions were sufficiently articulated to give us confidence in the

validity of the results, and to divide respondents into 2 groups (successful vs not

successful in reproducing published experiments) for our analyses.

Questions 8 (“When thinking about interactive figures, what comes to your

mind? Please describe what you understand as an interactive figure, its

features, and where you have seen such a feature before, if applicable”) and 9 (

“An interactive figure is a figure within a paper that is dynamic and becomes

“live”when the user interacts with it and where the data displayed changes

according to various parameter options. Which of the following features of an

interactive figure tool would be good to have? Please rank them in the order of

preference, where 1 is the most preferred feature, and 11 is the least preferred

feature”) were displayed on the same page in the questionnaire. This could
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have biased their responses. However, given how question 8 responses

included answers which were not available as question 9 answer options; we

can deduce (given the lack of evidence to denote otherwise) that displaying

questions on the same page did not bias the answers to either question (see

Appendix A.3 free responses to question 8).

We did not provide monetary incentives to the survey participants. Should we

have provided monetary incentives for our survey and sent email reminders to

the same or bigger pool of participants we may have improved our response

rate (James and Bolstein, 1990; Shettle and Mooney, 1999; Jobber et al., 2004).

Nonetheless, our response rates were typical of or higher than surveys of such

nature (Koschke, 2003; Snell and Spencer, 2005; Federer et al., 2015;

Schneider et al., 2016; Barone et al., 2017), our survey paper that published the

results presented in this Chapter (Samota and Davey, 2021) has already gained

traction, received positive feedback from the scientific community and been

cited by other publications.

3.4.2 FutureWork

Empirical Testing of Knowledge and Attitudes Toward

Reproducibility of Life Scientists

A means to have empirically assessed the attitudes of respondents on

questions such as question 6 (“Have you ever tried reproducing any

published results?”) would have been insightful, in order to actually have

had tests (short preferably) for the respondents to prove that they know

how to reproduce or not reproduce published experiments. In our case,

we would have focused on computational experiments, as this would

have been more efficiently measured. This choice is influenced by the

fact that anything needing to conduct bench­level science would take too

long or be too expensive to conduct. Hence, the empirical assessment
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would be limited to computational experiments.

Our survey questions not only try to assess whether the respondents have

the skills to reproduce computational experiments, but also whether the

published computational experiments are reproducible. In other words,

the success of a computational experiment being reproduced does not rely

solely on the person trying to reproduce it and their skills and expertise in

a specific scientific domain, but also onwhether the scientists (in this case,

the paper authors) have published the paper in a reproduciblemanner. As

discussed in the Chapter 2 section the reproducibility elements required

are a detailed description of themethodology and provision of the raw and

processed data.

What kind of computational test could we give the participants to test

their ability to reproduce CEs? This is not a straightforward question. It

requires factoring in various elements that can affect the results, which

explains why there is no such study of this kind to my knowledge. There

are various difficulties in manifesting such an experiment. For example,

there is the question of where to find people from the same domain, who

are willing to participate in the study, and who is also variable in terms

of demographics (gender, age, educational background), so that we are

able to adjust for such variable factors, and recruit two groups without

introducing any demographic biases. This would be quite difficult and

would need quite a large collection of possible participants. It is possible

that a collection of possible participants could be found from subscribers

in specific domains of research. What we would not normalise between

the two groups would be the training received, as we would want to see

how training can affect results.

However, the problem is more complex than it is described above. The

ideal way of approaching this question would be to ask respondents to
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try to reproduce published computational studies. However, this is

complex in the sense that we would need to find participants who would

be willing to take time away from their own research in order to attempt

to reproduce published research. There have been studies investigating

the reproducibility rate of published research in particular domains,

such as the Reproducibility Project: Cancer Biology run by the Center for

Open Science, whose publishing partner is eLIFE. However, this was not

an observational study of the same sort as the one we are describing. The

cancer reproducibility project run by eLIFE was conducted by paid

personnel whose job was to attempt to reproduce the cancer studies in

question.

As explained above, trying to attempt an evidence­based study with

volunteers to reproduce published research is not trivial. That is why, for

the most part, we see research of this nature to be in the form of

self­assessment questions to survey participants.

https://www.cos.io
https://www.cos.io
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The work contained in this chapter contributed toward an

open access article, published in Frontiers in Research

Metrics and Analytics [doi:10.3389/frma.2021.678554], of

which I am the first author. Moreover, the work in this

chapter was carried out as part of a collaboration between my

PhD iCASE industrial partner, eLIFE Sciences Publications,

Ltd, and myself at the Earlham Institute. All findings reported

in this chapter are directly derived from my work. A copy of

this paper is provided in Appendix A.

Synopsis

With many tools available for enabling the reproducibility

of CEs, one might think that this issue would be a problem of

the past. However, given the integral part that research

articles play in the state of science today, where despite the

move from paper to electronic journals, they are still the

leading route in the dissemination of science, more focus

needs to be placed on the role of publications and scientific

journals in ensuring and promoting reproducible science.

In this chapter, I will:

• discuss the role of publication standards and

reproducibility

• describe the efforts of particular scientific journals

working in promoting reproducibility through certain

technologies

• argue how interactive figures can promote reproducibility

of CEs within journal articles

• present prototypes of interactive figures I have developed

https://www.frontiersin.org/articles/10.3389/frma.2021.678554/full
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• explain the constraints and limitations of interactive

figures with regards to promoting reproducibility within

journal articles

4.1 Introduction

“Publish or perish”is a well­used term to describe the academic

publishing lifecycle, where researchers need to be producing papers as a

measure of success. This phenomenon has also been discussed in my

first author paper (Samota and Davey, 2021). Perhaps unsurprisingly, it

has been suggested that the majority of authors are most interested in

publishing their results rather than preparing data for sharing

(Seringhaus and Gerstein, 2007). To what extent is the publishing sector

responsible for good quality, well­annotated data and metadata to be

provided in articles?

Research papers ideally should deposit data within LS databases and

comply with specific standards and prerequisites before publication that

relate to the quality and availability of their data. Do journals ensure

that any software presented in the papers is shared openly,

well­described, reproducible and deposited in appropriate repositories?

All these questions relate to the problems contributing to the

irreproducibility of CEs that could be addressed at the publishing stage.

Given that the journal article is still the main currency of LSs, arguably,

journals should be providing infrastructure and support to researchers

so that their work becomesmore reproducible. For example, journals can

better serve their readership by having improved quality control checks to

ensure that the following elements are shared before accepting a paper:

• data (including the raw data)
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• well­described metadata (including using standardised

terminologies)

• data deposited in appropriate databases and repositories

• well­documented software publicly available in appropriate

repositories such as GitHub

• well­described methodology for analysis, including the software

used and chosen parameters

For brevity, these elements will be referred to as reproducibility

elements.

As the research described in this chapter is in collaborationwith the eLIFE

journal, the following section discusses eLIFE’s reproducibility efforts.

4.1.1 eLIFE and Reproducible Publications

eLIFE is an open­access journal, a supporter of openly sharing data and

concerned with the problems of irreproducible research. eLIFE is the

publishing partner for the Reproducibility Project: Cancer Biology run

by the Center for Open Science, where high­impact cancer studies are

assessed to evaluate those which are easily reproducible. Before starting

the project, the journal identified that there would be certain limiting

factors, namely the expertise, experience, and motivation of the

laboratories undertaking investigations specifically to replicate

complicated experiments. Ultimately, the project’s scope is to define

steps promoting robust science, reproducibility and the advancement of

this field that would benefit patients.

Moreover, eLIFE emphasises the critical role that publishing journals

play in reproducibility (Morrison, 2014). False, incorrect or imprecise

https://www.cos.io/rpcb
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conclusions are not only dangerous on their own but also contribute to

the perpetuation of false evidence as other laboratories, by the power of

suggestion, produce the same results that are false (Wagers et al., 2002).

Within its peer­reviewing practices, and review of the papers’statistical

analyses, eLIFE aims to identify unclear and possibly erroneous claims

before publication.

4.1.2 Journals and their Efforts in Reproducible Publications

Scientific journals are responsible for ensuring that what they publish

meets specific standards and is reproducible. The minimum

requirement is that the methodology and results, including data and

software, are shared publicly and openly in public repositories or

databases. The exception is where studies produce embargoed data,

concerns about commercial and clinical or pharmaceutical benefits, or

privacy and sensitivity.

Since the introduction of FAIR data requirements, more journals are

requesting data to be provided openly. However, open data is only one

aspect of FAIR, and indeed, how much are the FAIR data guidelines

followed in the publication cycle of journals? We still see papers stating

“data available upon request”. This can be an issue, especially when

authors move from institutions and cannot be reached via email or other

correspondence. Similarly, any code or software should be shared

openly in a public repository such as Github. An exception may be code

protected with patenting or commercial interest, but sensible software

licensing can provide security as well as flexibility for reuse.

Ensuring that code shared in publications is reproducible is more

difficult, however. Editors and reviewers cannot guarantee

reproducibility unless they devote the time to download, install, and take
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the necessary steps to ensure the code works on their system and then

run it with the available data, validating any interpretation made in the

paper. Even if this were common practice, this approach does not come

without pitfalls. The task is inevitably time and labour­intensive, and

editors and reviewers cannot usually spare this level of time because they

are involved with their research and typically provide their time for free.

There has been a strong movement towards open access and

reproducible science in the past 3 decades. However, there are still many

problems that hinder research reproducibility. One such problem is the

availability of graphical solutions to aid the interpretation of research

findings within journal articles. In the following section, I present

prototypes of interactive figures residing inside a research article that

can serve as a platform for reproducing CEs in situ to improve the

reproducibility of experiments.

4.2 Interactive Figures as a Potential Solution in

Reproducing Computational Experiments

within Publications

Conceptually, an interactive figure within journal articles, as an

alternative to static figures, is a technical solution to allow access to raw

or processed data, data analysis steps (including the open source code

underlying the analysis), and allow readers to examine the results

depicted in the interactive figure dynamically (interactively). As such,

the reader would be able to see the effects of changing the analysis steps

in real­time and modifying code and see how the presentation of the

results will be altered.
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Gentleman (2005), proposed that the reproducibility of research could

be improved by authors publishing the list of activities they followed to

produce their figures and plots. This description of methods would

usually be in a methods section of an article. Still, interactive figures aim

to push this idea further by representing that methodology in the figure

itself. In this way, interactive figures aim to make the results described

in an article more understandable to the reader, as the reader can

interact with the computations and make decisions on the steps. The

innovation is that the user could have access to the data, run the

workflow and visualise the results interactively within the online article,

all whilst reading the paper itself.

4.2.1 A Summary of Projects Representing Efforts in

Reproducible Publications

Numerous initiatives have sought to solve some of the technological

challenges associated with reproducibility by making it simpler for

authors to distribute reproducible data and workflows. Such examples

are the F1000 Living Figure (Colomb and Brembs, 2014) and

re­executable publications (Ingraham, 2017; Perkel, 2017) using Plotly

(plot.ly) and Code Ocean widgets (codeocean.com); the Whole Tale

Project (Brinckman et al., 2019); the ReproZip project (Chirigati et al.,

2016); and Python­compatible tools and widgets (e.g., interactive

widgets for Jupyter Notebooks with Binder).

There seems to be a mismatch between the creation of reproducibility

enabling tools and their adoption by the broader scientific and

publishing communities. Some examples of open­access repositories for

scientific material (including datasets, code, figures, workflows and

reports) are Zenodo (zenodo.org); Figshare (figshare.com); CyVerse

https://plotly.com
https://codeocean.com
https://zenodo.org/
https://figshare.com
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(formerly the iPlant Collaborative) (Goff et al., 2011); myExperiment

(Goble et al., 2010); Galaxy (Afgan et al., 2018); UTOPIA (Pettifer et al.,

2004, 2009); GigaDB (Sneddon et al., 2012); and Taverna (Hull et al.,

2006; Oinn et al., 2004; Wolstencroft et al., 2013). Some workflow

description projects are the Common Workflow Language (Amstutz

et al., 2016), and container systems include Docker (docker.com) and

Singularity (sylabs.io) (Kurtzer et al., 2017). While these technologies

are readily available and appear to solve many obstacles related to

technical reproducibility and reproducibility culture, they have not yet

become an integral part of the LSs experimental and publishing life

cycle.

Therefore, it may be useful to consider the question,“how do scientists

see their position in the creation and consumption of scientific outputs?”

A figure or graph is an often­used method for researchers to convey their

data, analysis, and conclusions, and scientific figures are frequently

presented in publications as static pictures. Static images do not include

access to data (including raw and/or processed data), investigation

design, code, or a description of how the software used to create the

figure was configured (Barnes and Fluke, 2008; Grossman et al., 2016;

Newe, 2016; Perkel, 2018; Rao et al., 2017; Weissgerber et al., 2016). For

paper readers to examine in detail and reproduce the published results,

they must download a complete copy of the data, code, and any

associated analysis methodologies (data pre­processing, filtering, and

cleaning, for example) and replicate it locally. This is, of course,

provided that all of those elements are available and accessible (Stodden

et al., 2016).

Increasingly, LS studies involve the execution of specific software, which

may require configuration and parameterisation, and operating system

and library dependencies. This is a potentially lengthy process, and

https://www.docker.com/
https://sylabs.io/
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reproducibility of computing studies is not always feasible as a result

(Kim et al., 2018; Stodden et al., 2016). Thus, systems that recreate

computational studies automatically and enable detailed examination of

the data and code displayed in an image would be beneficial (Peng, 2011;

Perkel, 2017, 2018).

Solutions exist that enable the reproducibility of computational analyses

outside of the research paper. These solutions are typically provided as

links within the research paper that redirect to a variety of different

types of computational systems, such as Galaxy workflows, and Binder

interactive workspaces converted to Jupyter notebooks using GitHub

repositories (Ragan­Kelley et al., 2018) and myExperiment links (Goble

et al., 2010). Often, these technologies include graphical figures or plots,

which may be interactive, allowing for adjustment of the plot type, data

filtering, and regression lines, among other things. While some figures

may be interactive in that the viewer may alter certain aspects of the

visualisation, this does not imply that the data or code used to create

them is more accessible and therefore more reproducible.

Technologies that enable the public disclosure of code, data, and

interactive figures have matured. Jupyter notebooks, for example, are

composed of executable“cells”of code that can contain a link to a data

file held on a cloud storage service, code to retrieve and analyse the data

file, and code to generate an interactive figure illustrating the dataset.

Again, this is relatively unrelated to the study article itself. However, as

data storage capacity, computational power on the web via cloud

services, and the ability of such services to execute code have increased,

we are now at a stage where interactive figures inside papers are

possible. These interactive figures, which have intrinsic access to the

underlying data and analysis, can provide readers with a unique

capability enabling the research’s reproducibility. This synthesis of data,
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code, analysis, interactive image visualisation, and paper constitutes an

“executable document”(Ghosh et al., 2017; Maciocci et al., 2019).

Thus, interactive figures embedded in executable documents have

combined data, code, and graphics. When the user interacts with the

figure, for example, by selecting a cluster of data points within a graph,

the user can be presented with the underlying data. Similarly, a user can

alter the analysis’s underlying parameters, such as a filter threshold,

which will affect how the figure or document is shown (Barnes and

Fluke, 2008; Grossman et al., 2016; Newe, 2016; Perkel, 2018; Rao

et al., 2017; Weissgerber et al., 2016). An executable document, for

example, might depict an interactive graphic displaying a heat map of

gene expression under various stress situations. In a typical article (with

static figures), the user would be tasked with locating and obtaining

dataset references, then finding and downloading the code or technique

used to analyse the data and retracing the original authors’ actions (if the

data and code were available). In an executable document, a user can

choose a particular gene of interest within an interactive graphic by

clicking on the heatmap and reading the gene expression information in

a pop­up browser window (as an example). While this is beneficial for

broad interpretation, reproducibility requires that this pop­up window

includes a button that allows the user to import the sequencing read data

used to generate the findings into a computational system and re­run the

differential expression analysis. This raises several issues about how this

infrastructure will be supplied, the technologies utilised to package all of

the components necessary for reproducibility and the costs of deploying

and sustaining such infrastructures.

Apart from these caveats, interactive figures embedded within

executable documents can benefit the reader by enabling interactive

consumption of research outputs, providing easy access to data, and
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eliminating the need to install and configure code and parameters to

reproduce the computational experiments displayed in the figure

(Perkel, 2017). The approaches outlined above would assist paper

readers (Tang et al., 2018) and the peer review process (Perkel, 2018).

Within online publications, there have been attempts to integrate the

creation and consumption of research products. The Living Figure by

Björn Brembs and Julien Colomb was one of the first interactive figures

published in a literary LSs magazine (Colomb and Brembs, 2014). It

allowed viewers to alter the parameters of a statistical computation

behind the figure (Ghosh et al., 2017). F1000Research has published

further articles that incorporate Plotly graphs and Code Ocean widgets

to enhance interaction and data and code reproducibility within the

articles’ figures (Ghosh et al., 2017; Ingraham, 2017).

The prototype of eLIFE’s computationally reproducible article is

designed to convert manuscripts created in a specific format (using the

Stencila Desktop, Stenci.la, and saved as a Document Archive file) into

interactive documents that allow the reader to “play”with the article

and its figures when displayed in a web browser (Maciocci et al., 2019).

The Manifold platform (manifoldapp.org) enables researchers to display

their research objects alongside their publications in an electronic reader

while also incorporating dynamic aspects. The Cell journal published an

article in 2017 that includes interactive graphics created with Juicebox.js

for 3D visualisation of high­contrast data

(http://aidenlab.org/juicebox/) (Rao et al., 2017; Robinson et al., 2018).

https://stenci.la/
https://manifoldapp.org
http://aidenlab.org/juicebox/
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4.3 Interactive Representation of Results:

Approaches and Solutions

I wanted to address a specific question: how would interactive figures (or

interactively depicting the presented data of a previously static image) be

perceived by the readers of a paper, and how could they be a means of

allowing the computational reproducibility of the experiment presented

in the figure?

I planned to gain insight into this problem by building interactive figure

prototypes and then investigating the best minimum viable product to

demonstrate their effectiveness and the researcher’s perceptions of

interactive figures’ benefit to reproducibility with survey studies

including empirical testing. To do this, I needed to find suitable datasets

and construct a framework in which to present the figure which

mimicked an online publication.

4.3.1 Choice of Data for Interactive Figure

This section intends to demonstrate a use case and prototype that could

provide initial points of reference for building appropriate future

infrastructures to allow the experiment’s computational reproduction

through an article with an interactive figure.

To find a suitable use case, the following criteria were followed:

1. Data must be mature; researchers have been working with it for at

least a year, meaning that they understand it well.

2. Data has to be of good quality, could lead to interesting conclusions

and answer interesting biological questions and has already been
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published or it is openly available.

3. Data should be genomics­based, as this was entailed by the initial

proposal of my project.

4. All of the pieces of software used to analyse the data are available (are

inworking order, are open access), high quality, well established and

in use.

5. Many of the major experimental methodologies would rely heavily

on computation.

6. When visualised interactively, the data would have the potential to

offer new and interesting insights.

Several papers already deposited in the eLIFE journal were investigated,

and researchers at the Norwich BioScience Institutes (NBI) were

interviewed to find suitable data for the interactive figure prototype. I

contacted other on­site scientists who were interested in reproducibility

in order to find suitable data for the interactive figure prototype.

To decide on the type of data to be used for the interactive figure

prototypes, I wrote a piece of code to find the number of articles per

category in the eLIFE journal at the time (2015). After familiarisation

with the eLIFE paper corpus, I wrote a Python script available via this

GitHub link

https://github.com/code56/LivingFigures/blob/master/testing.py) that

when run against the XML data of the total articles in the eLIFE

repository returns the different categories of articles per tag assigned in

descending order. The most popular category would be the suggested

category in which to find my first use case data type for the interactive

figure. The script produces results in one minute when run with a

MacBook with 16GB RAM. The first six article categories in descending

https://github.com/code56/LivingFigures/blob/master/testing.py
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order were:

1. Cell biology: 303

2. Neuroscience: 288

3. Biochemistry: 264

4. Biophysics and structural biology: 204

5. Developmental biology and step cells: 188

6. Genomics and evolutionary biology: 109

The method that eLIFE follows for tagging their articles is based on the

suggested tag placedby the authors, and then eLIFE uses another“higher­

order”category by which articles can be grouped in bigger categories.

Finding an appropriate use­case project with suitable data would allow

the addressing of biological questions and enable the user to get involved

in the data analysis, in addition to finding ways of recreating the CEs.

I interviewed many people within the Earlham Institute (EI) (formerly

known as The Genome Analysis Centre TGAC) and NBI to find suitable

data and to collaborate on the project. The following are only the most

promising candidates whose names have been anonymised to comply

with General Data Policy Regulation (GDPR):

Researcher 1, TGAC: Their main research focus is annotating various

organisms’ genomes. Data generated as part of this work involved a

pipeline of 15 tools; on average, running such a workflow takes ten days.

For this reason, this workflow is too laborious, impractical and

time­consuming to reproduce within the settings of an article.

Researcher 2, TGAC and University of East Anglia (UEA): Their main

research involved prostate cancer differential gene expression analysis.
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The experiments were intricate, and the datasets were too large to be a

good candidate for my project. There was a potential project involving

cancer transcriptomics, but Researcher 2 was not directly involved in this

study, so could not supply the data. As the primary researchers of the

project were not on­site, and potential communication with them would

be complicated, I chose not to go forward with this dataset.

Researcher 3, TGAC: The various projects they were currently

investigating with their team were discussed, of which there was only

one where data was available at the time. This project involved analysis

of bifidobacteria differential expression of genes in vitro. I familiarised

myself with the protocols and analysis workflow of this project, and

while it seemed like an interesting dataset, I needed to ensure that the

computational analysis parameters, including the experimental steps

and tools, were the most appropriate for the dataset. At a later

examination, I realised that this dataset was quite new and had not been

studied long enough to be an appropriate dataset according to my initial

set of requirements. In addition, this project did not have a consolidated

analysis workflow at the time.

Of the potential candidates interviewed, the Expression Visualisation

and Integration Platform (expVIP) study fulfilled all criteria (Borrill

et al., 2016). The expVIP study offered a computational platform that

was positively received by the wheat research community (with 300

users a month according to Google Analytics statistics, at the date this

PhD project was undertaken in 2015). ExpVIP could have further

visualisation assets applied and, importantly, offer the ability to test

several hypotheses around the concept of reproducibility of CEs.

The study raised the following initial hypothesis: By providing

standardised workflows (one such example is expVIP) within
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a journal, I can demonstrate that there is an improvement in

the reproducibility of the study and a positive contribution to

the field of reproducibility of CEs.

Having found a suitable use case for the project, expVIP was studied to

see which aspects could be made reproducible. expVIP was developed to

integrate a large amount of RNA­seq data in plant studies, starting with

wheat, to allow comparative analysis from multiple studies by

interactively visualising them (Borrill et al., 2016). ExpVIP has many

features, such as the ability to analyse public and user­specified datasets

with a VM, without needing particular bioinformatics skills. The VM can

then create a customised web browser, where one can sort and filter the

RNA­seq data for visualising differential gene expression analyses. This

allows expVIP to be applied to various species, facilitating for the

comparison of experimental results, in this case, wheat studies.

To validate their methodologies, the authors used 16 wheat RNA­seq

studies (sequenced via Illumina) across different tissues, developmental

stages, varieties and stress conditions, totalling 418 samples with more

than 11 billion reads. From these reads, 7.4 million were mapped to the

IWGSC Chinese Spring (CS42) reference gene models stored in

EnsemblPlants. Mapping all reads to one reference genome standardises

the study’s read­mapping process. One outcome of the expVIP analysis

was that even though the number of mapped reads between samples

varied, it did not hinder comparing studies with each other. As a whole,

the expression profiles from the same tissues were the same between the

different samples. The mapping in expVIP is carried out by Kallisto

v0.42.3 (Bray et al., 2016). Moreover, the authors concluded that their

data analyses resulted in the same gene expression patterns as the

expected gene expression for plants like wheat, which validates that

expVIP is a valuable tool for comparative RNA­seq analyses.
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ExpVIP is a robust visualisation and data integration platform. Users

can provide metadata for classifying their samples to the provided four

categories (tissue, DS, variety, disease/abiotic stress) so their data can be

automatically uploaded into the expVIP database to be grouped, filtered

and compared against the other data, making expVIP a good research

facilitator. On that note, expVIP currently addresses three research

questions, providing: (1) function prediction of candidate genes; (2)

identification of stably expressed genes that could be used as reference

genes in qPCR comparative expression level studies; and (3)

identification of genes expressed in “states”or conditions (using the

Kallisto companion software Sleuth (Pimentel et al., 2017)), where such

analyses can be indicators of the plant transcription responses to the

four states.

Hereby, I propose solutions to the lack of reproducibility of CEs in the

context of the three questions that expVIP can currently address. Below

are the issues around CEs along with suggested solutions that were aimed

to be explored via this project:

Availability of data It took the researchers involved in the expVIP

study two months to gather the data for the expVIP database. Tasks

included downloading the data from databases or asking the original

authors to provide it. expVIP hosts 16 wheat RNA­seq studies in one

platform. expVIP also allows users to upload their data to perform their

investigations, which is only possible at the VM version. Given the above

features, expVIP serves as a platform for making data available.

Inconsistent metadata annotation It is common for different

researchers to use different terminologies for the same concepts. This

makes it difficult for others to understand exactly what authors are

referring to and whether the terminology is correct or not. Issues with
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diverging terminologies (ontologies) are further discussed in Chapter 5.

Therefore, any data not correctly annotated or not annotated with

metadata will be less useful for reproducing the study results, let alone

be included in further research.

Comparison of data with one reference genome The developers

of expVIP took data from 16 different studies carried out over a broad

period. Each of those datasets is run against the same tools and the same

reference genomes for comparison. At the time of writing, there was

only one completed wheat reference genome with a relatively mature set

of gene annotations, but new versions of reference genomes are released

as data and analysis improve. To make research more reproducible, by

comparing the transcriptomics data against a reference genome (or

indeed more than one), the mapping of the reads is standardised

through the use of consistent file formats and tools that accept those

formats, so the effective comparison of results is facilitated.

Analysing the data with a common workflow expVIP maps the

reads with Kallisto. All the data are analysed using one workflow,

removing any other variability factor that would hinder the experiment’s

reproducibility.

Interactively visualising the data allows the data to be better

understood and enables more biological questions to be posed

Posing biological questions at the level of complexity enabled by

large­scale comparative RNA­seq studies would be time­consuming and

less efficient without an integrated platform such as expVIP, and even

more so within a research article. Since this platform would be available

through a journal, one can address these questions whilst reading the

paper, enabling the validation of results presented in a paper in situ.

Therefore, considering all of the five points above, I felt I had a good
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starting point for using expVIP as my first use case for testing the

incorporation of interactive figures within articles for facilitating the

reproducibility of CEs.

4.3.2 A Framework for an Interactive Figure

The figure includes a range of User Experience (UX) features that would

make it interactive: the changeable use of colours or other graphical

widgets to aid interpretation; being easy to manipulate; the ability to

clearly display any changes in the figure resulting from changing any

parameters; being easily able to define parameters that would, in turn,

change the figure; the inclusion of a “how to use the tool”link, or

pop­up window; a forum/comment section for readers and authors to

discuss their conclusions from interacting with the figure; import and

export data and static figure options. These characteristics for the design

of the framework were inspired after seeing the F1000 Living Figures

and discerning what improvements could be made to improve their

user­friendliness and functionality (Colomb and Brembs, 2014).

Moreover, they were rated by the survey participants and deemed

favourable as interactive figure features, as discussed in Chapter 3.

Having an interactive figure within the journal article not only allows for

the reproducibility of CEs but also benefits the end user as follows:

1. It has the potential to allow the user to better understand the data,

workflows, and results by interacting with it. This can allow the user

to pose further questions and draw additional conclusions having

“played”with the figure.

2. The figure could save a significant amount of time and effort for the

scientist as all the data, software and workflow would be there for
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them, as well as in a local form, possibly via a VM so that they do not

have to worry about installing and configuring the system or dealing

with dependencies.

3. The interactivity alone and comparing similar data with data from

many different studies is a great way to learn and draw conclusions,

as discussed in previous sections.

4.3.3 Prototype of an Interactive Figure in Drupal

I decided to develop the prototype initially in Drupal because eLIFE’s

back­end infrastructure also uses Drupal. Following further

communications with the developer team at eLIFE, it was encouraged

that Drupal should be used for this reason.

Drupal is a free and open­source content management system written in

PHP, released under the GNU General Public License, and based on the

Model­View­Controller architectural pattern. It is estimated that

approximately 13% of the top 10,000 websites use Drupal, ranging from

blogs to governmental sites.

A Drupal site was set up to include the interactive figure and dummy

eLIFE article. Because I was using a Macintosh, a compatible and

easy­to­install solution for a local web server was a MAMP server (an

environment incorporating MacOS (operating system), Apache, the web

server, MySQL, the database management system, PHP, Perl or Python,

and all programming languages used for web development (Wikipedia

contributors, 2016)), coupled with a Drupal installation (version 7.43),

mySQLite for the backend database, and PHP for the programming

language. I initially used this MAMP server configuration but then

moved on to using individual VMs (using Drupal 8) for the code to be

https://www.drupal.org
https://www.drupal.org
https://www.drupal.org
https://www.mamp.info/en/mamp/mac/
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more reproducible and distributable. The code for the MAMP server I

built, which included a Drupal site of a dummy eLIFE paper and an

interactive figure, is available on GitHub via this link:

https://github.com/code56/MAMP_server.git, the code for the Drupal

site is available via this link:

https://github.com/code56/drupal8article.git.

Within the Drupal site, I created a dummy web page styled to look like

an eLIFE article, where I then embedded expVIP. The expVIP datasets

were migrated into the mySQLite Database (which I installed in the

MAMP server) in order to enable users to display datasets or their

subsets based on the users’ selection of filters. In the Drupal interactive

figure prototype embedded in the dummy eLIFE I developed some

additional (preliminary) features which intended to enable research

reproducibility. One such feature was the incorporation of an

autosuggest functionality, to suggest (for example) gene names and

species names. With this autocomplete functionality, aiming to be a

user­friendly feature; the user can select which genes to display in the

expVIP interactive figure. Ultimately, this would have allowed the

interactive figure’s image to change according to the gene currently

selected.

For the layout and styling of the web pages themselves, I used a sample

HTML eLIFE article page, viewed and downloaded from the source code

inspection tools available through a web browser. ExpVIP was then

embedded in the main page area using a Javascript script (see

Figure 4.3.1). I set up the MySQL Database, which stored the expVIP

data. I ran some of the snippets of the expVIP platform with code­sniper

(an npm package) to familiarise myself with the code. To make a

complete working expVIP platform within the dummy article, I would

have had to install the necessary BioJS components, link the data to the

https://github.com/code56/MAMP_server.git
https://github.com/code56/drupal8article.git
https://www.npmjs.com/package/code-sniper
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interactive figure, and gain access to the expVIP server. However, at the

time when I was working on this project, there were errors in the expVIP

platform that the expVIP developer could not attend to and resolve at

the time.

Moreover, feedback from eLIFE (through their readers) indicated that a

more straightforward (bar­plot type) figure would have been more

desirable as it could be more versatile for more data types. Therefore, I

decided to move on to a different kind of interactive figure as an

additional proof of concept interactive figure prototype. Nonetheless, I

gained a lot of insights from the efforts in deciding the appropriate

platform, tools and software for deploying a working interactive figure

depicting expVIP in the dummy eLIFE article.

Figure 4.3.1: Interactive figure prototype. The interactive figure is expVIP
embedded within a dummy eLIFE article within the Node.js server.
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VirtualMachines toContain theCode for theDummyArticlePage and

Interactive Figure

Virtual machines (VMs) act as containers for an OS and any other

software and/or data that could be used as a complete package for other

users, thus improving reproducibility (see the relevant section 2.4.3 in

Chapter 2 that explains this better). Installing Drupal within a VM

would mean all dependencies would be provided and would remove the

need for a user to go through the full installation procedures.

The VM could then be exposed to anyone using Vagrant (tool for

building and managing VM environments, see Section 2.4.4. The

VirtualBox (virtualisation software to build and run VMs) used was

version 5.1.2, and the MAC OS version was 10.10.5. The VM can be

downloaded and spun up in the user’s system to reproduce the

experiments presented in the figure. This way, the Drupal VM could be

made public for receiving feedback from users.

Vagrant was selected for this project as a containerisation software to

create, configure and manage this project’s VM because its potential as a

testing platform had already been discussed with the team at eLIFE

during an industrial placement there. Effectively, Vagrant acted as a

layer of software between the VirtualBox and the VM. Benefits of using

Vagrant include the fact that the figure can accept data input from the

end user and can be a good tool for checking the quality of the data and

the research itself before publication.

After several attempts to develop the interactive figure further in Drupal,

it was necessary to move to a different means of making the figure.

Drupal is a complex web environment with a steep learning curve, and it

is hard to write this type of tool in this environment. Developing even

simple components needs in­depth knowledge of Drupal’s modular
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structure, which was time­consuming and too laborious for the scope of

this research.

Therefore, following further investigation of other possible solutions, I

decided to develop a more stand­alone approach comprising a Node.js

server. The benefits of using Node.js were that there is a more extensive

community working in this software library, so it is easier to start with

development. There is a lot of documentation and resources online to

help develop the tools needed. Drupal could not offer a straightforward

minimumviable product approach therefore, given problemswithDrupal

affecting the project’s delivery speed, I decided to move on to Node.js.

4.3.4 Node.js Server Interactive Figure Prototypes

I hereby provide prototypes of the interactive figure architecture,

comprising a Node server running an example article page that contains

a wheat expression viewer from expVIP. I also provide a second example

of an interactive figure comprising a Node server with an interactive

BioJS bar plot.

The Node.js server is connected to the expVIP database in the MAMP

server, whereby the expVIP database can be queried to select the gene

names to display in the expVIP interactive figure for an interactive

representation and exploration of the data displayed in the figure, which

would otherwise not be feasible with static figures. The Node.js server

was developed in Node version 5 (“Node 5”) to maintain compatibility

with the expVIP BioJS components at the time this project was

undertaken.

The Project Repositories are found via the following links: node server:

https://github.com/code56/node_web_server.git;

https://nodejs.org/
https://github.com/code56/node_web_server.git
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node­web­server­formula:

https://github.com/code56/node­web­server­formula.git; node web

server with box­plot interactive figure:

https://github.com/code56/nodeServerSimpleFig.git. License: MIT

[node web server] GPL V3 [box­plot interactive figure]

As mentioned earlier, the expVIP component had certain important bugs

that were not addressed while investigating this prototype. Therefore,

developing the interactive figure using expVIP as a use­case and adding

further functionalities and making it work fully came to a halt. As a

complete software package, the relative complexity of expVIP meant that

such a solution would be difficult to implement in many scenarios.

Therefore, in addition to the expVIP interactive figure, the BioJS boxplot

courtesy of Ariane Mora was also added to the Node.js server article

dummy page as an example of an interactive figure (Biojsboxplot,

http://biojs.io/d/biojs­vis­box­plot. The advantage of such an approach

is that the component is simpler to deploy and can be more versatile for

use with a broader variety of datasets from different disciplines. BioJS is

a library of JavaScript functional elements and guidelines that provide

biologically driven user interface components that are easy to reuse,

maintain and deploy on the web. BioJS attempts to provide an Open

Source Standard for Biological Visualisation.

Figure 4.3.2 shows the BioJS bar box plot interactive figure prototypes

within the Node.js server. The figure demonstrates how the visualisation

of data is altered dynamically given the user’s choice of display options

(e.g. logarithmic, raw data, change to a line graph).

https://github.com/code56/node-web-server-formula.git
https://github.com/code56/nodeServerSimpleFig.git
http://biojs.io/d/biojs-vis-box-plot
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Figure 4.3.2: Interactive figure prototype Bar Box Plots. Figures (a), (b) and
(c) show how the figure’s data can be dynamically displayed depending on the
display options chosen by the user. The BioJS Bar Box Plots are courtesy
of Arianne Mora. The code behind the Node.js dummy eLIFE site with the
BioJS Bar Plots is available via this GitHub repository link: https://github.com/
code56/nodeServerSimpleFig.git

Since I completed this work, eLIFE released their first in collaboration

with Stencila (https://stenci.la). In the section below I discuss ERA and

its functions, features and limitations.

4.3.5 Executable Research Article

Stencila (https://stenci.la) has been developed by the Substance team

(Substance.io) in collaboration with eLIFE to build an ERA.

Computational reproducible papers which used to be part of the

Reproducible Document Stack Project are currently publicly available as

an ERA. This initiative aims to enable reproducibility and transparency

and to enrich published work interactively. This is achieved via live code

blocks and programmatically generated interactive figures using R

https://github.com/code56/nodeServerSimpleFig.git
https://github.com/code56/nodeServerSimpleFig.git
https://stenci.la
https://stenci.la
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Markdown and Jupyter in combination with Stencila Hub’s interface.

Future plan development for the ERA project is the creation of a Google

Docs plugin to allow authors to insert data blocks and executable code in

their manuscripts using the Cloud Service.

Stencila is a document editor intended for research projects. Stencila

documents are self­contained, comprising all the text, media, code and

data representing the author’s research. Stencila removes the need for

manual content conversion from source documents (Microsoft Word,

Google Docs) to XML and web HTML format for publications (eLife

Labs, 2018).

Stencila Desktop (https://stenci.la/use/install) is a prototype of a

“researcher’s office suite”where researchers can edit their research

documents and incorporate their research text, media, data and code.

Stencila has its built­in language, Mini

(https://stenci.la/learn/languages/mini/), which is a “minimal,

functional language focused on data analysis and visualisation”. Mini is

executed in Javascript with easy­to­understand expressions which are

only moderately more complex than those of a spreadsheet cell or a

calculator. Stencila’s interfaces run in the browser and are available on

all major operating systems. Stencila Articles and Sheets offer a

spreadsheet­like programming experience (see figure below).

Texture is an open­source manuscript editor, which incorporates all the

standard static components of a manuscript (abstract, main body,

figures, citations), and is used for visually editing Journal Article Tag

Suit (JATS) XML format documents which are extensively used by

journals to describe scientific literature. The Stencila article editor offers

an extension of the functionality of Texture, with additional code cells

that allow for interactively manipulating code and data. The Stencila

https://stenci.la/use/install
https://stenci.la/learn/languages/mini/
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code cells can range from simple Excel expressions to executing code in

the currently supported languages (Javascript, R, Python and SQL).

Datasets can be referenced from within the Stencila publications and can

be used, for instance, to create a scatter plot. Such examples can be seen

in this Stencila article available via this URL:

http://builds.stenci.la/stencila/fix­regressions­2018­06­01­142af5d/

example.html?archive=introduction.

Stencila stores projects in an open­source file archive format called Dar,

available from https://github.com/substance/dar. Dar is a folder with

various files, including the manuscript itself (usually one XML per

document) and all relevant media (such as figures) (eLife Labs, 2018).

ERA readers can inspect code, modify and re­execute it, alter plot

formats and change the data range of specific analyses, all within

individual web browsing sessions, which means that their actions do not

affect the publication. Readers can also download the ERA publication

with all embedded data and code.

4.4 Discussion

In the survey results described in Chapter 2, respondents to our survey

expressed how they would find it beneficial to have their research results

interactively presented in journal articles. In this chapter, I have

presented the prototypes of interactive figures, including features

reflective of the respondents’ opinions and preferences. Moreover,

different data types and computational experiments were explored and

presented, as well as other technologies and projects involved in the field

of reproducing CE within journal articles. There are many benefits in

presenting CEs interactively within research papers. These include

http://builds.stenci.la/stencila/fix-regressions-2018-06-01-142af5d/example.html?archive=introduction
http://builds.stenci.la/stencila/fix-regressions-2018-06-01-142af5d/example.html?archive=introduction
https://github.com/substance/dar
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allowing readers to view the data which contributed to the figure and the

ability to zoom into data points that an otherwise static image could not

provide.

Will interactive publications become the mainstream means of

presenting research in LS? Are interactive figures and reproducible

documents the next standard for publications? Although they present

many benefits, one must consider that there are many more data and

experiment types than those covered by the current Reproducible

Document examples (Maciocci et al., 2019; Colomb and Brembs, 2014).

Computations take days, weeks or months in HPC setups, meaning

complete re­analysis cannot be easily reproduced within journal articles.

However, for figures which allow interactivity to assess already

computed data points, such as those examples listed on the Stencila Hub

website, it is more advantageous for them to be presented interactively

instead of as static images.

Nonetheless, one notably challenging aspect of reproducible documents

and interactive figures is the question of uptake from the scientific

community. Would publishing research results interactively involve a

significant amount of effort for the researchers, besides the already

time­consuming process of writing and publishing research papers?

Stencila, for example, is written in Mini. Even though Mini is advertised

as an easy language to code, it is still a new skill that researchers would

need to acquire; further, it is not particularly advantageous, given that

Mini is not a commonly used language, and would not help them in

other aspects of their research (apart from coding for Stencila

Documents). The Reproducible Document Stack announced their future

development of a Google Docs plugin for converting their manuscripts

into Reproducible Documents more easily; such an update could

seemingly help researchers by providing a more straightforward



Chapter 4: Enabling the Reproducibility of Computational Experiments
within Journals using Interactive Figures 111

conversion of their research articles to ERAs format. However, many

authors write their research articles using other systems, such as LaTex

for example. In other words, the provision of a Google Drive plugin will

not be a panacea for incentivising researchers to convert their articles

into ERA. Thus, if researchers have to do part of the coding of their

figures for them to be converted into reproducible document­compatible

figures, meaning that the scientists would have to learn to code in

Stencila (using Mini) (or other languages compatible with other

journals), that would likely be burdensome for the researchers by adding

more workload steps and processes before the publication of their work.

Surely the researcher would also want to approve how the interactive

figure (presenting their work) looks (ensuring it is accurate and free

from errors), similarly to how researchers currently approve how the

static images will appear in their published articles.

Another key question is whether the journals’ decisions on the type of

data and experiment type they choose to present as interactive figures

would alienate scientists from other communities or disciplines and

make them feel left out or unrepresented. At least for the production

efficiency of such figures, the journals’ developers would need to be

focusing on producing one type of data set/computation per project

round. For example, the first Reproducible Document examples

published by eLIFE are bar plots produced with R. Potentially different

releases and updates of reproducible documents would represent

different types of data from other scientific disciplines. Furthermore,

how long do interactive figures stay live and up to date? Surely, as

journals change their backend software and configurations, these figures

might also need to be updated. This requires further time, labour and

costs, so reproducible documents need to be tested long­term before we

can understand the full costs (time, monetary, storage costs) of such
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functionalities.

What would be the computational cost involved with running such

interactive figures, especially with more complicated data and

experiment types? Would the journals be willing to endure that extra

cost? Would the journals need a higher fee for reproducible documents,

and if so, would researchers be willing to pay the extra fee for their

publication to be represented interactively? I believe that unless there is

an incentive in terms of career progression, such as measurable metrics

in terms of an increase in the reach, readability and impact of their

research, the majority of researchers will not want to pay an extra fee or

even choose one journal over another simply because of their capacity to

publish their figures interactively. This belief has been confirmed by our

survey (see Chapter 3, Results, figure REF), whereby the majority of

respondents expressed that being able to publish interactive figures

would not affect their decision in terms of which journal they would

choose to publish their articles.

Reproducible documents are a way of developing a level of modularity to

conduct an analysis of biological data if it could be possible for

frameworks to be built around the reproducible document. From my

work, I have found developing these frameworks can be difficult even

with existing software and raises key questions about development cost,

overall benefits, and user uptake. The options are for you to develop the

framework in its entirety or use a ready­made one; it is an expensive

process, but then you still need to get the research community to buy

into it. Many research articles cite their data and workflow analysis

presented in the paper as being available in Galaxy. Whilst this is an

effective way of making their work publicly available, and in a

reproducible manner, this involves users having to “leave the paper”

and visualise the data interactively within a separate web page (in this



Chapter 4: Enabling the Reproducibility of Computational Experiments
within Journals using Interactive Figures 113

case, Galaxy). However, as Galaxy is already a popular web­based

platform within the LSs community with many users and an established

system for scientists to access the workflows of others and analyse their

data, issues such as the costs of rendering interactive figures could be

mitigated.

In theory, it is hard to achieve reproducibility when writing code for

research purposes in CEs. The reproducibility of research software

development (coding) is typically not a priority for researchers. Most

will have the primary goal of building a piece of software that will lead

them to the biological interpretation of their data. They want to get to

the results as fast as possible because again there is the pressure of

“publish or perish”. Therefore, recording what packages were installed

and what version of tools were used is not always the priority of research

programmers. Based on my interactions with the eLIFE development

team, it seems to be the case that, outside of academia, professional

developers who are working collaboratively on projects are used to and

need to be working in a reproducible manner and pay more attention to

provenance. Within commercial/industrial development, full teams of

testers, analysts, change managers and designers are also employed.

These positions are very rare in academia.

Having said that, there are many projects and infrastructures that

support and enable the reproducibility of research, and some with more

uptake from the scientific community than others. The complication

arises from the fact that there are so many of them. How do researchers

know which solution to choose and subsequently know it is the best

solution for potentially many to fit their needs? Having to train

researchers in how to use all of the available options would also be

unfeasible.
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Although interactive figures within journal articles represent a useful

means of presenting data, they are not a substitute for the importance of

performing robust and reproducible science, to begin with. It is the

responsibility of scientists to ensure they design their research correctly

(e.g. good experimental design including strong statistical power and

appropriate sample size), collect and describe their data and metadata

appropriately and in standardised formats, write reproducible code and

provide all the details in their methodology, upload their data, metadata

and code to the appropriate online platforms (e.g. databases) and have

those elements available as links in the journal.

As should hopefully be obvious, this requires a large amount of work. In

other words, I believe more emphasis should be placed on training

researchers in reproducible and robust science rather than prioritising

creating interactive figures because interactive figures alone cannot be

the mainstream means of disseminating publications for the reasons

discussed above. Two examples of projects focusing on training

students, their supervisors, funding bodies, publishers and editors in

reproducible science are the Turing Way, Data and Software Carpentry.

More information on how training can help with the reproducibility

crisis in the LSs will be presented in Chapter 6.

4.4.1 Limitations

Drupal has a steep learning curve and limited online educational

resources for new Drupal developers to learn from and solve coding

problems. For example, getting the interactive figure modularised and

functional in the Drupal environment involved certain technical

difficulties that were time­consuming to resolve and overcome.

Therefore, a significant amount of time was spent attempting to create a

https://the-turing-way.netlify.app/welcome
https://datacarpentry.org/
https://software-carpentry.org/
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product in Drupal before changing direction and using Node.js.

Due to time constraints, the code I wrote within the first half ofmy studies

has not been revised to ensure that my interactive figure prototypes still

work properly. I am assuming that if specific Javascript dependencies are

broken, not supported, or obsolete, that might affect the functionality of

the interactive figure.

There was a scheduled interruption in my studies, during which time

eLIFE took up a collaboration with Stencila for the development of ERA.

Whilst this has been an unfortunate situation in terms of the progression

of my work with interactive figures, I have learned a lot about building

reproducible interactive figures, and the research I completed has been

relevant to the field of interactive figures and reproducibility of CE

within journal articles. I then spent time exploring a different path for

my PhD involving the reproducibility of research in relation to

ontologies and automating the process of finding standardised

ontological terms within journal articles and their respective metadata.

This line of research will be discussed in Chapter 5.

Ultimately, I believe the experiences I gained whilst developing the

interactive figures project gave me a good insight into how difficult it is

to reliably create a truly reproducible environment within research

articles and publisher frameworks.

4.5 Future work

The challenges of this project were in demonstrating that expVIP as a

standardised workflow would (a) enable the reproducibility of its

containing experiments, (b) be a tool that authors would want to use and

(c) improve the reproducibility in the wheat transcriptomic field. To
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assess the success of such an effort, surveys are required to canvas the

authors’ opinions on interactive figures in publications and the use of

existing algorithms to compute the popularity of the tool and whether

readers found that they could reproduce the results reliably. The aim

was then to approach volunteers and have them test the figure and

receive user experience feedback. However, due to the time constraints

and the interruption to the study as explained above, this testing has not

been undertaken. It is important to provide a caveat in this case, as

collecting citation rates and other metrics requires the collection of data

over an extended time frame and that could not have been completed

within the period of my PhD studies. Nevertheless, the outcomes of such

a study could provide us with key information such as how many people

read or prefer reading articles with interactive figures and how many

interacted with the figure. Additionally, it would have been useful to

include pop­up questionnaires asking readers whether they benefited

from the interactive figure (i.e. it helped them understand the study

better) and to record how many people tweeted or blogged about the

paper with the interactive figure in order to assess the popularity of

interactive figures within journal articles within the LSs scientific

community and how many more authors would want to publish their

research using interactive figures. However, it would still be difficult to

determine whether any improvements in the paper’s readability would

be due to the interactive figure and not the context of the article itself.

Based on the outcomes of this chapter, I see there are four core areas of

potential future work:

(i) Evaluations of the interactive figure prototypes using an empirical

survey to gather opinions from authors and consumers of scientific

research articles would be a helpful exercise, enabling an assessment of

the perceived value of interactive figures within journal articles in
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enabling the reproducibility of the research depicted in the interactive

figure.

(ii) In the survey we conducted (see Chapter 2), the final question we

asked respondents was to include their email addresses should they wish

to be contacted to give feedback on the interactive figure prototypes I

made. I received 10 responses from local researchers (in the NBI) and

conducted a very informal meeting with five respondents who played

with and tested the Node.js interactive figure with the expVIP platform.

The results were not analysed due to the small size of the sample.

(iii) A more formal survey, with well­thought­out questions, assessing

respondents’ opinions on interactive figures, having been presented with

different types of interactive figures (e.g. different data types, different

methodologies), would be a beneficial project in thoroughly

understanding the users’ opinions on interactive figures. Making the

interactive figures publicly available (i.e. making the local server

accessible from anywhere) could allow for participants from different

countries, universities, and research institutions to give opinions on the

interactive figures so that the pool of participants is composed of users

from different backgrounds, scientific fields and expertise.

(iv) A beneficial further development of interactive figures would be to

allow for the complete compartment of the interactive figure to be

downloaded from within the research papers, in the form of VMs, to

allow users the ability to add their data into the interactive figure and

run their data within the computational workflow presented in the

papers’ interactive figure. Allowing users to download the interactive

figure and upload their data locally can prevent issues with overloading

the servers of the respective journals that render the interactive figure,

which again would mean increased costs for the journal and the
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possibility of cyber­attacks on the journals’ servers. This could also

mean that researchers can further the work presented in the research

paper; in other words, they can build upon the work of others to work

collaboratively (even if not officially collaborators to a project) in

progressing the scientific field.
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Researchers find data in one of two ways: by searching through data

repositories or search engines or by reading through research articles
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and manually looking for and downloading the data associated with the

papers. In many cases, the data is not freely available, and when it is

available, it may not be correctly standardised and formatted or

described with the required metadata for reanalysis.

A bioinformatician, whomwe hereby call Bob, wants to carry out an RNA­

seq (transcriptomic) analysis and a comprehensive comparison between

different plant species to evaluate the expression of a gene in different

developmental stages, plant tissues and stress factors.

To achieve this task, Bob was able to find some datasets by searching the

EMBL­EBI European Nucleotide Archive (ENA), but from reading

recent literature, he finds that he has to manually search through all

papers on the plant species of interest that involve RNA­seq data

published between the arbitrary time frame that he has defined. Reading

through the methodology of the papers, he finds references to available

datasets and notes these down in a spreadsheet, one dataset per row. He

then tries to mark each row in his Excel file with extra information, such

as the plant species, developmental stage, stress factors, and the study’s

tissue involved. From there, he looks at the“Data Availability” sections

of the papers, trying to find links provided to online databases to

download the relevant data and metadata files from the EBI database.

This might seem like an effective way of performing this task. However,

in reality, it is not straightforward, primarily due to the lack of

standardisation of data and metadata presentation in publications and

the lack of integration of scientific databases into the publication

lifecycle. As explained in the Introduction of this thesis, lack of

standardisation in data and metadata presentation are elements leading

to the irreproducibility of experiments.

https://www.ebi.ac.uk/ena/browser/home
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5.1 Manual Process of Finding Use Cases for

Comparison Tools

To find the case studies to include in the expVIP visualisation platform

(Borrill et al., 2016), the expVIP authors began their search at the NCBI

Sequence Read Archive (SRA) for terms “wheat” or “Triticum

aestivum” (the scientific name of wheat). SRA contains raw sequencing

and alignment data. The manual process of finding appropriate case

studies for expVIP included filtering for“RNA­seq” and manually going

through every sample. At the time the expVIP researchers were

collecting the case article studies, there were 400 samples; currently,

there are over 1500 samples in the NCBI Sequence Read Archive (SRA).

Using the SRA number, they conducted a Google search to see if they

could find any publications associated with the SRA number. However,

this was not a very successful approach. The expVIP researchers found

that examining for the SRA or Project Accession Number (PAN), again

using Google, was somewhat more successful in finding appropriate case

studies for their platform. Then they manually curated the retrieved

samples to ensure they were the correct ones by reading the papers (e.g.

the number of samples, tissues etc). Following those steps, they similarly

used Google with the name of the author or the institution who had

deposited the data in SRA and some keywords (e.g. wheat, tissue, or

experimental conditions), and they were able to find the associated SRA

sample. The researchers found that, sometimes, the person who

deposited the paper was not on the authors’ list, which made the search

more complicated. This often resulted in finding a published paper that

seemed likely to be associated with the SRA samples by verifying the

tissue and growth conditions. Often it was not that easy to tell, and

sometimes people deposit extra samples that are not in the final paper. 

https://www.ncbi.nlm.nih.gov/sra
https://www.ncbi.nlm.nih.gov/sra
https://www.ncbi.nlm.nih.gov/sra
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Using this approach, the researchers (Borrill et al., 2016) could identify a

paper for 95% of samples. Nonetheless, finding appropriate case studies

for the expVIP platform described here involved considerable manual

curation and time.

Researchers are often tasked with subjectively understanding what

authors may mean by a particular terminology, e.g. “30 days

post­anthesis” in a plant developmental biology article. Whilst someone

might be able to approximate or have an idea of the author’s intent, this

plant development stage description is not a standardised term which

can be universally and unequivocally understood and accepted. When

such data and metadata are presented in papers without a deeper

understanding of what the author meant, it poses difficulties in using the

material for re­purposing analysis and may well affect the ability to carry

out cross­species studies where different descriptions (“terms”) might

be used.

We use ontologies to try and solve issues associated with the lack of

standardisation of scientific information presented in papers and

datasets. In this chapter, I explain the concept of ontologies, why

ontologies are necessary for data standardisation, and the importance

and usefulness for reproducibility in standardising the use of ontologies

in publications and data. Moreover, I present, qualify and quantify the

lack of ontology annotation standards in publications and datasets using

real­world case studies and a software prototype I created (Deus ex

machina) to measure the issue. I also propose a proof­of­concept

programmatic solution to the lack of ontology annotation standards and

data retrieval in publications which can be used to automate biocuration

tasks.  
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5.2 The Lack of Ontology Annotation Standards in

Publications and Databases as an Issue

Negatively Affecting the Reproducibility of

Experiments

5.2.1 What is an Ontology?

In information and computer science, an ontology is a structured

vocabulary of formal naming, allowing for the identification of categories

in bodies of knowledge, data and conceptual entities and their

inter­relationships (Cooper and Jaiswal, 2016). The purpose of

ontologies is to represent the properties that a subject domain

encompasses, as defined by the categories or “classes” and

“subclasses” to which it belongs (Stevens et al., 2010; Smith et al., 2007).

5.2.2 Ontology Development and Organisation

Many different groups develop ontologies around the world in an

attempt to provide consensus within or across scientific domains.

Despite this intention to standardise a domain, there are many different

ontology technologies and file formats, with varying descriptive

complexity and many ontology construction conventions, so there are

accompanying efforts to harmonise these into comparable formats to aid

consistency when using the terms within them.

One such harmonisation effort is the Open Biological and Biomedical

Ontologies (OBO) Foundry (http://www.obofoundry.org/), an

organisation constructing and maintaining ontologies in the LSs. At the

time of writing, the OBO Foundry includes more than 150 ontologies

http://www.obofoundry.org/
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submitted by community members. Within this list, ten have been

manually reviewed by the OBO Foundry, including the Basic Formal

Ontology, Human Disease Ontology, Gene Ontology, Phenotype

Ontology and Plant Ontology, amongst others. The mission for the OBO

Foundry is to standardise the description of biological data and allow the

data to be more easily comprehended and better interconnected

amongst distinct research disciplines. This way, we can aggregate and

compare plant ontologies amongst different species.

Services have been built around ontologies to make them more generally

accessible through aggregation and search functionality. For example,

the Ontology Lookup Service (OLS)

(http://www.ebi.ac.uk/ols/ontologies) is a search engine to find

ontology terms. OLS is part of the ELIXIR infrastructure and includes

257 indexed ontologies at the time of writing. The list includes

long­standing ontologies in use by many communities, such as the

Agronomy Ontology (AgrO)

(https://www.ebi.ac.uk/ols/ontologies/agro) for agronomic practices

and agronomic techniques, and EDAM (https://edamontology.org/) for

describing bioinformatics operations, data types, formats, identifiers

and topics.

Apart from the ontologies listed in the OBO Foundry, other ontologies

exist which are utilised in the LSs. These include crop ontologies

(https://www.cropontology.org/about). Crop Ontology is part of the

Generation Challenge Programme (GCP)

(http://www.generationcp.org) storing agriculture­related data and

metadata associated with, among other things, phenotypes and

germplasm. GCP also developed Trait Dictionaries for breeders for data

collection and annotation using ontologies in a standardised way. The

crop­related ontologies were developed in 2008, starting with chickpea,

http://www.ebi.ac.uk/ols/ontologies
https://elixir-europe.org/
https://www.ebi.ac.uk/ols/ontologies/agro
https://edamontology.org/
https://www.cropontology.org/about
http://www.generationcp.org
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maize, Musa (edible bananas and plantains), potato, rice and wheat, and

most recently cassava in 2010.

5.2.3 Standardisation in the use of Data and Metadata

Description in Research Papers and Databases

As there are many examples of ontologies and their use in data and

metadata description, I will focus on one example of ontology, the Plant

Ontology (PO), to describe the most common standardisation issues.

The PO (https://www.plantontology.org) nomenclature was developed

as a way of characterising plant anatomy and morphology (Ilic et al.,

2007) and the whole­plant growth/developmental stages (Pujar et al.,

2006) of all green plants. The PO includes plant genomic annotations

corresponding to PO terms (Cooper and Jaiswal, 2016). The PO was first

established to describe the growth stages and anatomy of Arabidopsis

thaliana (thale cress) (Garcia­Hernandez et al., 2002), maize (Vincent

et al., 2003) and rice (Jaiswal et al., 2002).

The PO comprises two entities of classification serving as two main

branches: the Plant Anatomical Entity and the Plant Structure

Development Stage. Examples of Plant Anatomical Entity are “whole

plantome” and “plant cell”, and an example of the Plant Structure

development stage is the “reproductive shoot system development

stage”. Ontological concepts/classes organised closest to the root of the

tree are the most generic (Cooper et al., 2013) (see Figure 5.2.1).

Ontologies are Important in Standardising Data and Metadata

Descriptions

Recent studies have highlighted that metadata is critical to the

understanding and reuse of datasets (Löffler et al., 2021), so the

https://www.plantontology.org
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Figure 5.2.1: Upper­level structure of the two branches of the Plant Ontology.
The Plant Ontology (PO) is made up of two interconnected branches organized
hierarchically under a root class Plan Anatomical Entity or Plant Structure
development stage. The classes are linked by relationships (indicated by the
direction of the arrows), with the most general classes positioned towards the
top. The examples above are only the“is a” and“part of” relationships. This
image is based on PO Version #20 (Released August 2013) and was created
using OBO­Edit (Day­Richter et al., 2007). (a) The Plant Anatomical Entity
branch has three upper­level subclasses: plant structure, plant anatomical
space, and a portion of plant substance, which together describe all the
anatomical and morphological parts of a plant. The largest subclass plant
structure has 13 direct subclasses, which each havemany subclasses (not shown
in the figure). (b) The Plant Structure development stage branch describes the
developmental stages of all plant structures, including the whole plant. There
are six direct subclasses, which describe the developmental stages of the classes
of plant structures.
The figure and its original caption are both reproduced verbatimwith permission
from Cooper and Jaiswal (2016).

importance of ontologies is apparent when considering the requirement

to organise and annotate the plethora of data produced in the current

Big Data era, where the number of biological datasets is increasing

exponentially (Greene et al., 2014). Mapping ontological descriptions in

databases is a vital step for comparative studies of cross­species

phenotypic and genotypic studies as well as gene discovery experiments,
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ultimately allowing for easier access and integration of data (Shrestha

et al., 2010).

Ontologies and their terms and relationships convey a rational structure

relative to one another, much like the relationship between object

classes. This is particularly beneficial for the computational

comprehension of these structured vocabularies and the utilisation of

ontologies for efficient study design and execution (Hollmann et al.,

2018).

To explain this use of ontologies further, we can consider the example of

readers of research papers; where a paper does not use the standardised

ontological terms to describe its methodology, readers cannot

distinguish at what developmental stage the experiment was performed.

The paper’s lack of standardised ontological terms ultimately makes the

paper less reproducible since readers cannot know the conditions or

variables involved in the experiments with certainty. The correct

definition of a plant tissue sample, experimental condition,

developmental stage, and treatment depends on the proper use of

ontologies, which can remove ambiguity and complexity when

describing the data.

The Zadoks growth scale was developed by phytopathologist Jan C.

Zadoks, classifying the stages of crop development on a scale from 10 to

92 (Zadoks et al., 1974) (see Figure 5.2.2). Using the Zadoks growth

scale, researchers can remove ambiguity about crop developmental

stages described in their research, which ultimately helps with their

research’s reproducibility.

Using the wheat transcriptomics examples as a continuation of Chapter

4’s expVIP interactive figure, the expVIP authors included the

comparison of datasets from different wheat transcriptomics papers. To
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Figure 5.2.2: Barley growth stages and benchmarks illustration (using the
Zadoks scale system). Source: The Agriculture and Horticulture Development
Board (AHDB) website http://cereals.ahdb.org.uk/

curate and categorise the data to different plant development stages,

plant tissue, variety, and plant stress factors (e.g. disease, drought, light

exposure, etc.) proved problematic since many papers did not include

standardised ontological terms to describe their data, metadata and

methods. This meant that utilising and re­purposing those papers’ data

in the expVIP comparison platform could not be done reliably.

The importance of using ontology terms in enabling reproducibility in

LS is not limited to research papers. Datasets described using

http://cereals.ahdb.org.uk/


Chapter 5: Ontology Annotation Standards in Publications and Databases
and Reproducibility Metric Scores 129

standardised ontology terms can be more easily navigated and shared,

enabling a more effective comparison of experiments from different

studies and within species (Hollmann et al., 2018).

5.2.4 Ontology Unique Identifiers

To uniquely refer to terms within ontologies, terms have been appointed

an Identifier (ID). This ID comprises a unique, seven­digit, zero­padded

integer prefixed by an abbreviation of the ontology name, e.g.“PO:”for

Plant Ontology, with PO:0009046 referring to flower. If a term becomes

obsolete, its identifier is removed and never reused. Similarly, when two

classes are merged, one of the two IDs is appointed as an alternative

identifier (alt_id) (Cooper and Jaiswal, 2016).

A PO ID therefore represents a Universal Resource Identifier (URI) that

can be found online if those URIs are mapped to a similarly unique

Uniform Resource Locator (URL), e.g.

http:/purl.obolibrary.org/obo/PO_XXXXXX). These URLs can be found

in ontology indexers, such as the Ontobee website to catalogue and

search for ontology terms across many ontologies. Ontobee is a

connected data server designed for ontologies, and it enables ontological

data exchange, visualisation, querying integration, and analysis.

Ontobee dynamically de­references and addresses the individual

ontological term URIs to HTML pages, allowing users to browse through

ontologies in a web browser.

5.2.5 Development of Plant Ontology

The Plant Ontology Consortium (POC) provides a standard and

controlled vocabulary for describing plant anatomy terms,

https://ontobee.org
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developmental stages and traits. This is a collaborative process among

various databases and projects, aiming to standardise the description of

entities and display the hierarchical relationship between the terms

(Avraham et al., 2008; Bard and Rhee, 2004; Jaiswal et al., 2005). The

ontological relationships are not abstract but can be considered nodes

and edges within a network of ontology terms. The relationship can be

“directed”(i.e. a parent­child relationship, where the child cannot be

the parent of its parent) or “undirected”(i.e. where, if A is next to B,

then B is next to A) (Bard and Rhee, 2004).

With this network, data knowledge can be better incorporated into

databases, and bio­ontologies can be searched and connected across

different databases, as ontologies are machine­readable terminologies

(Pérez and Benjamins, 1999). Biological data, which are complicated,

can be organised in a hierarchical order, enabling humans and

computers to understand them better, ask more meaningful questions,

draw conclusions and identify where we lack knowledge. Ontologies do

just that: they enunciate the associations between the terms. Ontologies

are created to follow certain principles and rules. For example, terms

referring to anatomy can be described in the following ways: as part of,

has cell type, has adhesion points, is a (Bard and Rhee, 2004).

The ontology terms are represented by unique IDs (e.g., PO:0009089)

and show their hierarchical relationship with other terms. The IDs

connect the biological databases to ontologies and the various databases

to each other (Bard and Rhee, 2004). It is important to note that

ontologies are not the same as annotations, the latter being the

description of data objects. In contrast, ontologies are rules that

comprise a“description logic”(Bard and Rhee, 2004). All terms in the

POC are manually curated. Some terms become obsolete, and when this

is the case, they are labelled as“OBSOLETE”. Sometimes, there might
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not be a unanimous consensus in agreeing on the term relationships and

the facts of the ontologies (Bard and Rhee, 2004); moreover, as

knowledge is ever­evolving over time, while some objects can become

obsolete, others may have missing links as the object data is unknown.

The PO terms are categorised in classes named according to the OBO

Foundry naming conventions. As defined by the authors (Cooper and

Jaiswal, 2016), “the PO name (or label in OWL format) is made by a

unique noun rather than an adjective e.g., ‘embryo’ instead of

‘embryonic’”.

The Web Ontology Language (OWL) is the primary semantic Web

language that depicts complicated information about things, groups of

things, and relationships between things and was created by the OWL

Working Group (World Wide Web Consortium, 2012). The OWL serves

as a computational logic language to be processed by computer

programs. OWL can be serialised in Resource Description Framework

(RDF) and adds ontological capability to RDF. OWL allows for

describing more about data models and provides more useful

annotations for knowledge representation (larger vocabulary) than RDF.

RDF is a framework for depicting interconnected data from multiple

sources on the Web. The semantic Web organises information using

RDF (Ontotext, nd). RDF was initially designed (and is often utilised)

for describing metadata about Web resources, such as Extensible

Markup Language (XML) files (Decker et al., 2000). Other than XML

format, RDF is based on other syntaxes such as Terse RDF Triple

Language (Turtle), Javascript Object Notation for Linked Data and

N­Triples (Ontotext, nd; TechTarget, 2022).

https://www.w3.org/OWL/
https://www.w3.org/OWL/
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Plant Ontology Term Names and Synonyms

The PO terms have standardised names and synonyms, enablingmultiple

descriptions of a term to be condensed into a single concept, providing

consistency and other benefits such as translations.

Synonyms are typically subdivided into four different categories: (a)

Narrow: for species­specific names, e.g.,“pod” is a narrow synonym of

“fruit”; (b) Broad: when the synonym can be used for two or more PO

classes, e.g., “plant fiber cell” (PO:0025407) has “fiber” and “fiber

cell” as broad synonyms; (c) Exact: when the same plant class has more

than one name e.g., “leaf­derived cultured plant cell” (PO:0000007)

has an exact synonym “leaf­derived cultured cell”. Moreover,

translations into other languages are classed as exact synonyms, e.g.,

“plant embryo proper” (PO:0000001) has synonyms “embrióforo” (in

Spanish) and“胚本体” in Japanese; (d) Related: when a word or phrase

is used in literature interchangeably, but not strictly accurately used

because the synonym has a narrowly different meaning than the primary

name (Cooper and Jaiswal, 2016; OBO Foundry, 2012; Walls et al.,

2012) (see Figure 5.2.3).
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Figure 5.2.3: Elements of an ontology term, for example, flower PO:0009046.
The key elements of a PO term are shown for the PO term flower. The identifier
(ID) is a unique, seven­digit integer prefixed by “PO”. The alternate ID is
assigned when two terms are merged. Term definitions are carefully written
with the assistance of experts in botany and ontology design and may include
references to other ontology terms. The“xref”indicates the related SourceForge
tracker, which can be accessed as a link from the term page. The OBO­Edit
(Day­Richter et al., 2007) flat file version of the PO term flower shows the key
elements in a textual form.
The image and caption were reproduced here verbatim with permission from
Cooper and Jaiswal (2016)

5.3 Methods

For expVIP to be useful for researchers, the conditions and phenotypes

recorded against the variousRNA­seq experiments needed to bemanually

curated to ensure they were placed under the appropriate categories for

the correct comparison of the RNA­seq results. The categories used in the

expVIP application at the time I undertook this project were not all named

using the correct ontological terms.

From my correspondence with the authors of expVIP, it became

apparent that it would be beneficial to have a system where literature on

https://sourceforge.net/p/obo/plant-ontology-po-term-requests/
https://sourceforge.net/p/obo/plant-ontology-po-term-requests/
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the same topic (i.e. genes, transcriptomics data, and information around

wheat expression) could be easily gathered automatically. This would

allow for a consistent understanding of the development conditions and

the part of the plant the authors meant to relate to the expression of the

genes of interest, as well as better prepare the data for incorporation into

tools like expVIP. In this way, researchers who wanted to compare the

results from each of the studies could do so more easily through the

expVIP tool. Using the case studies below, I will demonstrate the lack of

ontology annotation standards in wheat, rice, and barley papers and how

this hinders reproducibility.

With the findings of the examination of the case studies, I will

demonstrate the need for a tool that can provide semi­ or

fully­automated mappings of terms in literature and dataset metadata to

standardised ontology terms, thus improving the ability of researchers to

integrate biological datasets, reuse results, understand research better

and reduce the burden of manual annotation of datasets.

5.3.1 Mapping Plant Ontology Terms in Plant Species:

Observations of a Manual Process

In a preliminary evaluation of 16 wheat papers, (Barrero et al., 2015;

Cantu et al., 2011, 2013; Choulet et al., 2014; Gillies et al., 2012; Kugler

et al., 2013; Leach et al., 2014; Li et al., 2013, 2014; Liu et al., 2015; Oono

et al., 2013; Pearce et al., 2015; Pfeifer et al., 2014; Yang et al., 2013,

2015; Zhang et al., 2014) included in the expVIP study (Borrill et al.,

2016), the terminologies describing the parameter investigations

(disease/stress, tissue and developmental stage) were examined to

manually match them to their equivalent PO terms by searching the PO

and CO databases. This manual process also involved reading the
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paper’s methodology and deciding whether the describing terms used

were accurate enough to clearly describe what the authors had written in

their papers. The findings of this investigation are available in an Excel

file which can be accessed via this Dropbox link. I was provided with the

Excel file by Dr Philippa Borrill, the principal researcher of the

publication (Borrill et al., 2016), who had manually retrieved the case

studies for expVIP following the method described in Section 5.1. I was

responsible for finding the standardised PO and ID values, as well as a

description that was the closest match to the description used by the

authors of the studies, by manually searching the PO and CO Databases

https://www.ebi.ac.uk/ols/ontologies/po and https://cropontology.org/

respectively.

5.3.2 Manual Data and Metadata Retrieval from Published

Articles and Associated Database Entries

Problem Linking data and metadata and mapping ontological terms to

the text within papers is a necessary but laborious and time­consuming

task. The following section describes the manual steps I undertook to

complete the aforementioned task.

Starting with a journal article in wheat transcriptomics, an initial step

would be to retrieve the study accession number and subsequently

search online for these terms. As an example, we can search for

“accession number E­MTAB­1729”. This web search returns the

following URL:

https://www.ebi.ac.uk/arrayexpress/experiments/E­MTAB­1729 (see

Figure 5.3.1 which is a screenshot from the aforementioned EBI search).

https://www.dropbox.com/s/l60rrwl6ldfnd77/Evanthia_excel_metadata.xlsx?dl=0
https://www.ebi.ac.uk/ols/ontologies/po
https://cropontology.org/
https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-1729
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Figure 5.3.1: Screenshot of the EBI website corresponding to accession number
E­MTAB­1729.

From the “Links” section of the ArrayExpress web result (see Figure

5.3.1), selecting the option for“ENA­ERP003465”redirects the user to

the Web page with URL:

https://www.ebi.ac.uk/ena/browser/view/PRJEB4202 that shows its

associated project, with project accession number PRJEB4202.

As seen in Figure 5.3.2, at the time this search was performed, there

were 60 samples with different accession numbers (e.g.

SAMEA2151438), experiment accessions (e.g. ERX278684) and run

accessions (e.g. ERR305274) associated with the project: PRJEB4202.

From the right­hand side of the page (see Figure 5.3.2), we can see the

publication linked to this project, which is available via this DOI link:

DOI: 10.3390/ijms20235974.

https://www.ebi.ac.uk/ena/browser/view/PRJEB4202
https://doi.org/10.3390/ijms20235974
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Figure 5.3.2: Screenshot of the EBI website for the project number PRJEB4202,
accessed by the URL: https://www.ebi.ac.uk/ena/browser/view/PRJEB4202.

One can access the XML file from the EBI project page by specifying the

display option in the URL:

https://www.ebi.ac.uk/ena/data/view/ERP003465&display=xml.

Sometimes XML files can include an <ABSTRACT> tag, which may or

may not be an abstract from a published research article associated with

the data. For example, see the following XML file at

https://www.ebi.ac.uk/ena/browser/view/PRJEB4202
https://www.ebi.ac.uk/ena/data/view/ERP003465&display=xml
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https://www.ebi.ac.uk/ena/browser/api/xml/ERP003465, which is

shown in Figure 5.3.3. In this case, searching the Web using abstract

terms did not return a research article.

Figure 5.3.3: Screenshot of the EBI website showing the XML file for
ENA ArrayExpress study accession number ERP003465, with the abstract
highlighted.

5.3.3 Deus ex machina: Prototype Software for Ontology

Mapping and Standardisation of Data and Metadata in

Literature and Associated Database Artefacts and

Computing a Reproducibility Metric Score

In the previous section (Section 5.3.2), I described the manual process

required to retrieve the data and metadata from published articles and

associated databases using study and project accession numbers, which

can be found (but not always) within research papers. Linking data and

metadata and mapping ontological terms to the paper’s text is necessary

to better understand, replicate and build upon the research conducted

behind a publication, but it can be a laborious and time­consuming

process.

https://www.ebi.ac.uk/ena/browser/api/xml/ERP003465
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The Deus ex machina software prototype I developed aims to solve the

issue of mapping the arbitrary descriptions used in research papers to

standardised ontology terms and IDs. Manually mapping these

descriptions to standardised ontology terms and IDs is a

time­consuming, laborious and often impossible task (where

information about a particular study is simply not available) but is

necessary for the development of bioinformatics tools such as expVIP.

With the methods undertaken in Section 5.3.1, the results of which are

displayed in Sections 5.4.1, albeit a small number of case studies were

reviewed, we can deduce that authors do not regularly use the

conventional PO terms in their crop transcriptomics research

publications. Therefore, it is typically not easy for the readers to

understand the data (and metadata) presented in the paper without

undertaking manual work. In many cases, whilst this manual curation is

often more accurate due to the ability of humans to contextualise

phrases into a common domain of knowledge, the accuracy relies on the

expertise level of the curator.

For this reason, I created a software prototype named Deus ex machina

that aims to annotate plant descriptions within an article with

standardised POs and IDs. Deus ex machina also focuses on

automatically retrieving the associated data of the paper by looking up

specific keywords and phrases related to data availability. Moreover, it

detects the database identifiers and ontology terms found within the full

text of research articles. This would enable datasets to be marked with

richer metadata than those typically deposited alongside the raw data in

the public archives. The case studies used in the development and

validation of the Deus ex machina prototype were in wheat

transcriptomics.
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Deus ex machina Software Design

The following sections outline the Deus ex machina software design.

Figure 5.3.4 shows the Deus ex machina flow diagram.

Figure 5.3.4: Deus ex machina flow diagram.

Deus ex machina is written in Python version 3.7. The software has been
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developed to run on the command line, incorporating different libraries

and pre­configured parameters. Of the libraries incorporated in theDeus

ex machina pipeline, one is the Python pdftotext library, which converts

a PDF file into the plain text that is necessary for parsing and extracting

data and keywords.

Deus ex machina also incorporates (amongst other libraries) the Python

tokenize library to “tokenize” (break strings into separate lexical

elements, or “tokens”) the text for the subsequent Natural Language

Processing (NLP) that searches for PO terms and data access related

keywords.

Please refer to the Deus ex machina code for the full list of libraries and

processes executed by the code. TheDeus ex machina is available via this

GitHub repository.

The inputs for Deus ex machina are transcriptomics research papers in

PDF format, and the PO description and the ID file (in text format) from

the PO database (“plant­ontology­dev.txt”, version 401d05a)

downloaded from Github via this link: https://github.com/Planteome/

plant­ontology/blob/master/plant­ontology.txt, (see Figure 5.3.5 which

is a screenshot of the file). This “plant­ontology­dev.txt” file is also

available within the GitHub repository of the Deus ex machina. The

fields included in the “plant­ontology­dev.txt” file are the plant ID,

name, definition, synonyms, is_a ID (to signify the parent node by which

the entry is classed under), and is_a name (the name of the parent of the

entry).

One example is PO:0000001, with the name plant embryo proper. Its

definition is “An embryonic plant structure (PO:0025099) that is the

body of a developing plant embryo (PO:0009009) attached to the

maternal tissue in a plant ovule (PO:0020003) by a suspensor

https://pypi.org/project/pdftotext/
https://docs.python.org/3/library/tokenize.html
https://github.com/code56/ontologiesreproducibility
https://github.com/Planteome/plant-ontology/blob/master/plant-ontology.txt
https://github.com/Planteome/plant-ontology/blob/master/plant-ontology.txt
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Figure 5.3.5: Screenshot of the Plant ontology developer text file (version
401d05a), downloaded from Github via https://github.com/Planteome/
plant­ontology/blob/master/plant­ontology.txt

(PO:0020108)”. Meaning that the parent of plant embryo proper is

embryonic plant structure. Figure 5.3.6 shows a Tree View of the term

plant embryo proper taken from the OBO library, as seen via this link.

Figure 5.3.6: Screenshot of the Tree View of an example plant ontology entity,
the plant embryo proper (with ID PO:0000001). The screenshot was taken
from the OBO library from this link.

Pdf to Text and Tokenisation

Deus ex machina converts the PDF format of the article into plain text

using the Python library pdftotext. Tokenisation is splitting text into

individual tokens, whereby tokens can be words, stopwords (commonly

used words such as“the”,“a”,“an”,“in”), or special characters

(such as _n ­ newline, _t­ horizontal tab, _b­ backspace, _”­ double

quote). Tokens next to each other in the tokenised text are called

https://github.com/Planteome/plant-ontology/blob/master/plant-ontology.txt
https://github.com/Planteome/plant-ontology/blob/master/plant-ontology.txt
http://purl.obolibrary.org/obo/PO_0000001
http://purl.obolibrary.org/obo/PO_0000001
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N­grams, where N represents several contiguous elements.

For the next stage in the process, Deus ex machina converts the tokens

into N­grams (N­number of consecutive words that appear in the text;

unigrams, bigrams, trigrams, etc.). In other words, it establishes the“N­

number of adjacent elements from a string of tokens”. For instance, in

the sentence“Hello world, have a great day!”, the bigram (where N = 2),

would be [(“hello”,“world”), (“world”,“,”), (“,”,“have”), (“have”,

“a”), (“a”,“great”), (“great”,“day”), (“day”,“!”)].

The tool tokenises the article text to a word level of 6­grams. The choice

of stopping at 6­grams has been determined by the fact that most of the

PO terms (according to the PO and ID developer file) comprise 6 or

fewer words. The tokenisation of the article is necessary for parsing it in

the subsequent pipeline steps. As Deus ex machina forms the N­grams,

it searches for them against the keywords in a Python dictionary (as

described in the next step).

Retrieving Ontology Terms from the Research Article and Associated

Database Files

Deus ex machina constructs a Python dictionary (named po_dict) from

the PO description and IDs text file “plant­ontology­dev.txt”. The keys

to the po_dict are the official name of a PO and the values are its

corresponding ID. The code shown in Box 5.1 is a snippet of the code

creating the po_dict from the“plant­ontology­dev.txt” file.

Deus ex machina searches the text file and finds matches in the po_dict

dictionary and the article. Using the NLP properties means that strings

of n­length, otherwise known as N­grams, can be searched in the text

file. The code shown in Box 5.2 is a code snippet that locates ontology

matches between the po_dict dictionary and the research article. The
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function find_ngrams is constructed within the class File; see the Deus

ex machina code for more context, via this GitHub link.

Listing 5.1: Deus ex machina code snippet that constructs the po_dict Python

dictionary with keywords, the names of a plant ontology, and value, its ID.

po_dict = {}

for line in open('plant-ontology-dev.txt'):

split = line.split("\t")

if len(split) > 2:

po_dict[split[1]] = split[0]

Listing 5.2: Python code snippet that finds ngram matches in the research

article up to 6­grams.

def find_ngrams(self, data_tokenised, dict_po):

ngram_matches = []

n = 6

for i in range(1, n + 1):

n_grams = list(ngrams(data_tokenised, i))

res = [' '.join(tups) for tups in n_grams]

for query, onto_id in dict_po.items():

if query in res:

ngram_matches.append((query,onto_id))

return ngram_matches

ngram_matches = file1.find_ngrams(textarticlecreation,po_dict)

Complexity arises when the authors have not used standardised ontology

terms in their papers. At the moment Deus ex machina cannot provide

“fuzzy” word matching, i.e. terms that have slightly different tokens

https://github.com/code56/ontologiesreproducibility
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from a given input term. For example, the tool can match “plant

embryo proper” if this term was explicitly used in the paper. Whereas, if

the authors wrote something that is not a standardised ontology

description, such as the “embryo of the plant”, the software cannot

currently match this phrase.

However, to compensate for such cases, the tool provides all phrases that

might have at least one word from the standardised ontology

descriptors. For example, in the case given above, the tool will return

any phrases that contain the single words “embryo” or “plant” and

both words “embryo” and “plant”. This allows the software user to

manually curate which sentences are significant for them and which to

ignore. For example, a PO descriptor “plant cell wall” would be

irrelevantly matched with a sentence that reads “the wall was painted

blue”. This is where the user’s discretion comes in place to discard and

ignore such phrases.

Given how many wheat transcriptomic papers do not use the correct

ontology term (as per the “name” column of the PO

“plant­ontology­dev.txt”, see Figure 5.3.5), but instead use synonyms or

the description (as per the column “defn” of the

“plant­ontology­dev.txt”, or something similar to the description) for

explaining their work, I explored the approach of including the

description and the synonym values in addition to the name to see if

there were any matches found in the articles. To do so, I created a

dictionary of lists, where the key is the“id” and the list of values are the

“name”,“synonym”, and“defn” (i.e. the description of the ontology) of

the plant ontology elements as per the“plant­ontology­dev.txt” file.

Therefore, when the code finds matches between the values in the lists

and the research article, it can recognise metadata that the researchers
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used. This approach can be useful since, despite not using the

standardised name for each particular PO, the authors have at least used

a synonym. This could usually be the case where common names are

used as synonyms rather than official terminologies within the scientific

community of specific disciplines because they can be more easily

pronounced or remembered or are in popular use. This approach is

much like how we use “aspirin” instead of 2­acetoxybenzoic acid, the

correct pharmaceutical term.

However, in the current version of theDeus exmachina, the functionality

to match terms from the synonym field of the “plant­ontology­dev.txt”

is unavailable. It can be found in older commits of the code on GitHub.

The decision to exclude it in the current code version was taken given the

nature of the results retrieved from this approach. The decision to exclude

the synonyms­matching functionality, is better explained in the Results of

this chapter, see Section 5.4.2.

Keywords Matching and Data Retrieval from the EBI Database.

Processing the ArrayExpress XML Output to get Information of

Interest

Additionally, the Deus ex machina pipeline finds keywords in the

articles from a keyword list I composed, having read various

transcriptomics papers. From these keywords, the pipeline can then

retrieve data accessibility links to fetch the data from an EBI search (see

Figure 5.3.4). The list of keywords includes, amongst others, the phrases

“accession”, “repository”, “ArrayExpress”, and “Supporting”, and

they aim to find links to the article’s associated data and metadata.

Moreover, the Deus ex machina tool uses Python’s Regular Expression

library (RegEx), where “a RegEx, or Regular Expression, is a sequence

of characters that forms a search pattern. RegEx can be used to check

https://docs.python.org/3/library/re.html
https://docs.python.org/3/library/re.html
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if a string contains the specified search pattern” (W3Schools, n.d.). EBI

accession codes for experiments and array projects in ArrayExpress are

given unique accession codes in the following format, where “XXXX”

represents a four­letter code and n is a number (ArrayExpress, n.d.):

• E-XXXX-n for experiments

Using RegEx, the tool captures the EBI ArrayExpress accession number.

According to the ArrayExpress help page the URL format needed for

REST­style queries to retrieve results in XML format from the

ArrayExpress is

https://www.ebi.ac.uk/arrayexpress/xml/v3/experiments/ followed

by the ArrayExpress accession number. For example, the URL

https://www.ebi.ac.uk/arrayexpress/xml/v3/experiments/E­MTAB­

1729 retrieves the XML file associated with the ArrayExpress experiment

code E­MTAB­1729. Using the EBI REST Application Programming

Interface (API), the software can download XML data files associated

with the ArrayExpress code found in the research article.

Finding Ontologies in the XML ArrayExpress file and

Comparing them with those found in the Research Article

The code then parses and scrapes the ArrayExpress XML file to find

ontologies and then compares the findings with the ontologies in the

article (see Section Retrieving ontology terms from the research article

and associated database files) to establish how many (if any) ontology

terms are shared between the research article and the database XML file.

In other words, the code finds the common ontologies between the

research paper and the XML files and reports those.

The ultimate aimof this part of the code is to verify that the data is publicly

https://www.ebi.ac.uk/arrayexpress/help/accession_codes.html
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available at the appropriate databases or repositories and to then compare

the ontologies found in the article with the ontologies contained in the

ArrayExpress XML files of the study. By doing so, we hope to answer the

following question: “How well does the metadata found in the research

paper match with the metadata of the study records in the database?”

Additionally, the Deus ex machina tool performs a similar RegEx search

for Project Accession codes of the format (PRJEB12345) and fetches the

XML file corresponding to the Project Accession code, by following the

URL https://www.ebi.ac.uk/ena/browser/api/xml/ followed by the

Project Accession code. One such example is

https://www.ebi.ac.uk/ena/browser/api/xml/PRJEB43230 which

downloads the XML file saved as a text file for the user to examine. No

further processing, in terms of finding ontologies, is done on the XML

corresponding to Project Accession codes, but this is a feature that can

be added in the future development of the tool.

Computation of a Reproducibility Metric Score

Moreover, the software computes various scores for a Reproducibility

Metric Score (RMS). The code snippet (in Box 5.3) also shows how Deus

ex machina assigns a score of 1 for the research paper if it contained

standardised ontologies.

RMS comprises the following scoring components:

• Score of 1 for finding ontology terms within the journal article,

irrespective of how many ontologies were found.

• Score of 1 if the journal article quoted an ArrayExpress Experiment

accession code because it means the article denotes where the

associated data for the study can be found.
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• Score of 1 if the ArrayExpress XML file corresponding to the

experiment accession code contained ontologies.

• Score of 2 if the journal article quoted a Project Accession code,

with a larger score assigned here, as a study’s Project Accession

code can provide more information and metadata about the study

than the experiment ArrayExpress accession code, hence why more

weight for the computation of the RMS is given for a study

including a Project accession code.

• Score of 2 if there were common ontologies within the journal article

and the ArrayExpress XML file associated with the study.

Listing 5.3: Python code that assigns a score of 1, if a researcher’s paper

contained any standardised ontologies

ngram_matches = file1.find_ngrams(textarticlecreation, po_dict

↪→ )

ngram_matches_score = 0

if ngram_matches is not None:

ngram_matches_score = ngram_matches_score + 1

The Deus ex machina code has been tested and validated using 18

real­world research papers in wheat transcriptomics. The code creates a

Common Separated Values (CSV) file, that includes the following fields:

the article file name, the ontologies found in the article (if any), the

ArrayExpress Experiment Accession code (if any), the Project accession

code (if any), the ontologies found in the XML file corresponding to the

ArrayExpress Experiment Accession code (if any), common ontologies

between the research article and the XML file (if any), the score for

finding research ontologies, the score for finding an ArrayExpress

experiment accession code, the score for finding ontologies in the XML
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file, the score for finding a Project Accession code, the score for finding

common ontologies between the research article and the XML file and

the total value of the scores which is the RMS.

Confusion Matrix: computing the accuracy of the Deus ex machina

tool in automatically annotating PO terms

The accuracy of the Deus ex machina tool of correctly annotating the PO

terms within wheat transcriptomic articles, was assessed by comparing

the manually annotated results (assumed as the “actual truth”) and

the automatically annotated results, produced by Deus ex machina, with

the help of a confusion matrix. Table 5.1 depicts an example of a typical

confusion matrix. The focus of the confusion matrix computation, in this

case, is to compare the presence of ontologies, not their absence.

Table 5.1: Example of a typical Confusion matrix. The abbreviations represent the
following: True Positives (TP) represent the number of ontologies that are found in
both manual and automatic annotation; False Positives (FP) represent the number
of ontologies that are found only in the automatic annotation; False Negatives (FN)
represent the number of ontologies that are found only in the manual annotation.

Predicted positive Predicted negative

Actual positive True Positive (TP) False Positive (FP)

Actual negative False Negative (FN)

Thus, in such a confusion matrix; where the confusion matrix is used to

evaluate a classification algorithm (in this case Deus ex machina, only

True Positives (TP), False Positives (FP), and False Negatives (FN) are

included, as these are the cases where predictions are made about

whether the algorithm is correct. These are the cases where the
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algorithm makes a prediction, on whether a term is an ontology or not.

To include True Negatives (TN), in a confusion matrix, requires a

labelled dataset containing both positive and negative examples. This is

typically the case with machine learning models. True Positives

represent the number of ontologies that are found in both manual and

automatic annotation, FP represent the number of ontologies that are

found only in the automatic annotation and FN represent the number of

ontologies that are found only in the manual annotation.

Using the formulae for precision, recall and F1 score, the accuracy of the

Deus ex machina tool in automatically annotating PO terms can be

calculated as follows:

Precision = True Positives / (True Positives + False

Positives)

Recall = True Positives / (True Positives + False

Negatives)

F1-score = 2 * (Precision * Recall) / (Precision + Recall)

Precision denotes out of all the positive predicted, what percentage that

are truly positive. Recall defines out of all of the actual positives, what

percentage are predicted positive. F1­score is the harmonic mean of

precision and recall, indicating the model’s ability to capture positive

cases (recall) and be accurate with the cases it does capture (precision).

F1­score is a robust gauge of model performance, as it takes into account

the model’s ability over two attributes, rather than just the absolute

amount of correct prediction (Allwright, 2022).

The computations and analyses in creating the confusion matrix for

assessing the accuracy of the Deus ex machina tool (using the 18 real­life

wheat transcriptomics papers, are available via this FigShare link:
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https://doi.org/10.6084/m9.figshare.22734056.v1.

The following points were taken into account for the computation of the

confusion matrix and are listed below:

• The manual annotation of research articles found ontology terms

from other ontology databases (i.e. not only from the PO database.

However, as the Deus ex machina was coded to only find PO for an

accurate comparison to take place, only the PO terms from the

manual annotation were taken into account in the computation of

the confusion matrix.

• Only PO terms of standardised names were taken into account and

not the synonyms or definitions as per the

“plant­ontology­dev.txt” (version 401d05a) file. The Excel file

found on FigShare via this link, includes all the ontology terms

found via the manual computation (which included synonyms), but

for the accurate computation of the confusion matrix, given how

Deus ex machina was coded to only retrieve ontologies from the

standardised names (as mentioned above) were taken into account

for the confusion matrix computation.

• There were a few terms found from the manual annotation whereby

it was not possible to assign to a standardised ontology term with

accuracy, because of the way they were noted in the articles. This is

as mentioned earlier in the chapter, an issue where authors do not

use standardised ontology terms and ID values next to the terms.

One such example was the word floret, but there is a BRENDA

Tissue Ontology (BTO) BTO:0000468 for it. There is no exact PO

term for floret, but rather options are: “ear floret”PO:0006354;

“spikelet floret”PO:0009082; and others. However, in this

particular paper, the word floret is near the word spikelet.

https://doi.org/10.6084/m9.figshare.22734056.v1
https://doi.org/10.6084/m9.figshare.22734056.v1
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Therefore, the word could be assumed as spikelet floret ­

PO:0009082, but again without certainty. These small cases of

ambiguity are clearly noted in the Excel file found on FigShare, as

noted above. These ambiguous terms were not many, and therefore

placing them under TP or not was not going to significantly change

the confusion matrix analysis results.

5.4 Results

5.4.1 Wheat Case StudiesManualMapping of Ontology Terms

This section presents the results produced following the methods

described in Section 5.3.1. The Excel file showing the results of manual

mapping of ontology terms and their respective IDs is available on

Figshare via this link:

https://doi.org/10.6084/m9.figshare.20673207.v1. The fields that I

completed in the Excel file were the fields denoted in the file with blue

colour font, which corresponded to the columns named: “Ontology

Term ID Tissue”, “Comments Tissue”, “Ontology Term ID Age”,

“Comments on the developmental stage”,“Stress­disease ontology ID”,

“High­level tissue ontology ID”, “comments high­level tissue”,

“High­level developmental stage (HLDS) ontology ID”, “comments for

HLDS ontologies”, “high­level stress­disease ontology ID”, and

“comments for high­level stress­disease”. I consulted OLS, Ontobee and

sometimes Google searches in order to complete the fields. In general,

authors often failed to describe their data and metadata with the

appropriate PO terms and IDs and instead used non­standardised

descriptions or synonyms.

I will use the term Days Post Anthesis (DPA) to illustrate the hurdles

https://doi.org/10.6084/m9.figshare.20673207.v1
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encountered when trying to reproduce experiments in wheat genomic

studies when non­standard terminologies are used. Some of the wheat

transcriptomic papers I examined for manually mapping ontology terms

and IDs included the term “days post anthesis”, e.g. 10 days post

anthesis. The term “anthesis stage” is the synonym (narrow) for

“flowering stage” (PO:0007616). The description for the flowering stage

term is “a flower development stage (PO:0007615) that begins when

pollen (PO:0025281) is released by anther dehiscence (GO:0009901)

and/or the stigma (PO:0009073) is receptive and ends with the process

of pollination (GO:0009856) and/or floral organ senescence

(GO:0080187)”. However, there is no exact or synonym term for“days

post anthesis”, currently available under the Plant Ontology (searched

via OLS or searching Ontobee, which is a server containing many

ontologies).

When studies refer to a specific number of days post anthesis, it might not

always be easy to reproduce the study accurately because after a certain

number of days post anthesis, depending on the weather conditions or

other environmental conditions, the plantmight develop at different rates

and so days post anthesis might not always be an accurate representation

of a plant’s developmental stage.

5.4.2 Deus ex machina Results

The Deus ex machina results are as expected given the current

functionalities and features coded into the prototype. Manual validation

of the results shows that the tool accurately finds the ontology terms

from unigrams to 6­grams within the journal articles and the XML files

(corresponding to the ArrayExpress experiment accession codes). There

are some minor discrepancies that can be easily accounted for and

http://purl.obolibrary.org/obo/PO_0007616
https://ontobee.org/
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resolved with future development of the Deus ex machina code.

The computations of the code are tabulated for easy access for the user of

the tool. The outputs of Deus ex machina on the 18 wheat

transcriptomics use­case studies are available in an Excel file available

via Figshare from this link:

https://doi.org/10.6084/m9.figshare.20614728. The fields of the Excel

file are as follows: article file name, the PO and their corresponding ID

found in the article, the ArrayExpress experiment accession code found

in the research article, the Project accession code found in the research

article, the metadata found in the XML file corresponding to the

ArrayExpress experiment accession code (the metadata found under the

tags <value>, not just the possible ontologies that may be found in the

XML file: see Appendix 5, C1), the ontologies found in the XML file, the

common ontologies between the research article and the XML file, the

score for finding ontologies (named as per the standardised term

according to the “plant­ontology­dev.txt” file) thus scoring the article

positively for annotating their study with the standardised

terminologies, the score for the research article quoting ArrayExpress

experiment accession code(s), the score for the research article quoting

Project Accession code(s), the score for finding common ontologies

between the research article and its associated XML file (corresponding

to the ArrayExpress experiment accession code), and the RMS which is

the total score of the scores mentioned above.

Figure 5.4.1 is a plot of the distribution of the RMS of the 18 articles

assessed by the Deus ex machina tool.

https://doi.org/10.6084/m9.figshare.20614728
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Figure 5.4.1: Plot distribution of the RMS of the 18 articles assessed by the Deus
ex machina tool.

The majority of the case­study papers assessed scored low (RMS of 1)

because they only included terms that were standardised PO terms. The

articles did not include any of the other parameters measured and

contributing to the RMS namely: ArrayExpress code, Project Accession

number, XML metadata, ontologies found in the XML metadata file,

common ontologies between the paper article and the XML metadata

file).

Some papers achieved an RMS of 3 or 5 because they included PO

standard terms, ArrayExpress code and ontologies in the XML metadata

files and some had quoted Project accession codes within the article. The

article that scored the maximum possible RMS value was the paper

Tyrka et al. (2021). Figure 5.4.2 shows the RMS distribution of the case
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studies (research articles) assessed by the Deus ex machina tool,

whereby the RMS results are placed in “frequency bins” to better

visualise the distribution of the results. As since in the figure most

papers scored low, which means they lacked to include many of the

reproducibility metric score parameters assessed by the Deus ex

machina tool. In other words, those papers that scored lower RMS

didn’t present their research in a reproducible manner that would have

allowed others to successfully reproduce their work.

Figure 5.4.2: Distribution of the RMS of the case studies (research articles)
assessed by the Deus ex machina tool, whereby the RMS results are placed in
frequency bins to better visualise the distribution of the results.

Finding Project Accession codes

The Deus ex machina finds any Project Accession codes quoted in the

research article and downloads the XML file saved as a text file for the

user to examine with ease. This saves time for the user, who would have

otherwise needed to perform a search via the ArrayExpress using the

code and then manually download the XML file. This action is
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performed accurately by the code whereby, in all the use cases, which

were checked manually to validate the results, the Project Accession

codes were detected every time.

Processing the ArrayExpress XML file

Processing of the ArrayExpress XML file fetched from the API­Rest

request is conducted using the ArrayExpress experiment accession code.

An example XML file corresponding to the EBI ArrayExpress

experiment code E­MTAB­1729 is shown in Appendix 5, C1. Examining

the XML files retrieved, the elements of interest concerning ontologies

were found under the XML tag <value>. So from there capturing all the

elements under the XML tag <value> returns a list such as this one:

['anthesis', 'CM-82036 resistant parent line', 'NIL1, Fhb1 and

Qfhs.ifa-5A resistance alleles', 'NIL2, Fhb1 resistance

allele', 'NIL3, Qfhs.ifa-5A resistance allele', 'NIL4, non

resistance allele', 'Triticum aestivum', 'spikelet floret',

'Institute for Biotechnology in Plant Production, IFA-Tulln,

University of Natural Resources and Life Sciences, A-3430

Tulln, Austria', 'CM-82036 resistant parent line', 'NIL1, Fhb1

and Qfhs.ifa-5A resistance alleles', 'NIL2, Fhb1 resistance

allele', 'NIL3, Qfhs.ifa-5A resistance allele', 'NIL4, non

resistance allele', 'Fusarium graminearum', 'mock', '30 hour',

'50 hour']

The tag <value> was chosen as, after investigating many ArrayExpress

XML files, it was determined that ontology terms were included under

the <value> tag. See Appendix B for the XML file fetched for the

ArrayExpress Experiment accession number. I am unsure of the possible

forms the researchers had to complete or the checklists or other fields

required in the ArrayExpress database for the XML file to be produced,
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but examining other XML files corresponding to ArrayExpress

experiment accession codes, the ontologies (if any) were consistently

under the <value> tag. Therefore, the assumption that the ontologies

would be found under the <value> tag was made with more confidence.

Therefore in the ArrayExpress experiment accession code E­MTAB­1729

example, we can note that the terms 'anthesis', 'spikelet floret'

are terms of interest in the search for finding ontologies mentioned in

the XML file. Anthesis is a commonly used term to describe the plant

developmental stage (as explained above in Section 5.4.1). Spikelet floret

is a standardised ontology term name with the ID PO:0009082.

Comparing these results with the ontology terms fetched from the

research article, we can then deduce the overlap of ontology term

annotation between the research article and the XML file.

This is a critical hypothesis to investigate as this relationship is important

in the reproducibility of research. The correct access, and availability of

data andmetadata in published research, both in articles and repositories

or databases, are fundamental elements of reproducibility as explained

in Chapter 3. As explained earlier, being able to use software to connect

information between research articles and database entries means that

we can access information that would otherwise be buried in databases or

research articles. For the successful understanding, reproducibility, and

re­use of research studies, it is vital to have a link of data between research

papers and database entries.

Papers commonly use non­standardised ontological terms such as

“anthesis”. The XML metadata file in the EBI ArrayExpress file, fetched

by an API REST request using the experiment accession code found in

the paper, demonstrates they have a field for “developmental stage” as

“anthesis” (see Appendix 5, C1). The correct “name” for PO ID
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PO:0007616 is“lowering stage“, whereas the authors used in the XML

metadata file the term “anthesis” (a synonym (narrow) as per the

“plant­ontology­dev.txt” file).

The following text is one entry of the po_dict of the synonym list

constructed by the code that is currently not included in the latest

version of Deus ex machina, so as to demonstrate how the “synonym”

and “description” fields could be queried to find ontologies within the

research article or study database data and metadata files:

‘PO:0030135': ['drepanium inflorescence', '"An inflorescence

(PO:0009049) with a sympodial growth habit, which at flowering

stage (PO:0007616), is composed of pedicellate flowers

(PO:0009046) on determinate inflorescence axes (PO:0020122),

each of which develops at progressively more acute angles from

each higher inflorescence axis (PO:0009081)."', 'drepanium

(exact) EXACT; monochasium (broad) BROAD; scorpioid (broad)

BROAD']

However, even if I were to include the functionality to match ontologies

in the research papers and database­associated files, using as inputs the

synonyms or descriptions of any ontology, which would entail more

“fussy” matching principles, this would have still not completely solved

the issue of lack of ontology annotation standards in research papers

(and database files). To illustrate this better, we can use the same

example of the descriptor “anthesis”. In the “plant­ontology­dev.txt”

file manually searching (using CTRL + F or CMD + F on the keyboard

depending on the device used) for the word “anthesis” returns four

possible entries, displayed below for more visual clarity:

1. ID: PO:0007016; term name: whole plant flowering stage;

synonym: (07­anthesis in barley (related) RELATED; 07­anthesis



Chapter 5: Ontology Annotation Standards in Publications and Databases
and Reproducibility Metric Scores 161

in oat (related) RELATED; 07­anthesis in wheat (related)

RELATED [...])

2. ID: PO:0007024; term name: FL.04 end of flowering stage;

synonym: (6.09 End of flowering in soybean (related) RELATED;

7.03­anthesis completed in barley (related) RELATED [...])

3. ID: PO:0007026; term name: FL.00 first flower(s) open stage;

synonym: 6.00 1st flowers on main stem open in soybean (related)

RELATED; 7.01­anthesis beginning in barley (related) RELATED

[...]

4. ID: PO:0007053; term name: FL.02 1/2 of flowers open stage;

synonym: 6.02 1/2 of flowers on main stem open in soybean

(related) RELATED; 7.02­anthesis half­way in barley (related)

RELATED [...]

The convention [...] is used here to denote that the synonym entry is not

complete but truncated for the purpose of brevity.

From the above example, we can deduce that even if the Deus ex

machina tool incorporated a synonym field, the tool’s accuracy in

matching a valid ontological term (in the research paper or database

entries) would still not always be possible. This is because any synonym

term could have multiple meanings; for example, the term anthesis

discussed here can serve as a synonym for four different ontology terms.

This issue of ontology ambiguity matching could be resolved should

authors include the corresponding ontology ID for each term they use,

even if it is not the standardised term name.

Referring again back to the“anthesis” example, and one of the use case

wheat transcriptomic papers (Tyrka et al., 2021), this paper would have

scored higher in the RMS (deeming their research more reproducible),
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should the authors have incorporated the standardised ontology term

and ID corresponding to the term they wanted to include. This would

look like the following text: “Furthermore, the mitochondrial gene

orf279, which is important for the cms trait, is highly expressed in the

early anthesis stage” (FL.00 first flower(s) open stage; PO:0007026).

This simple addition of the parenthesis with the corresponding term

name and ID removes any ambiguity and allows humans to better

understand the research and for tools to more efficiently extract

information programmatically.

Therefore, in other words, even if I were to apply more language

processing, and include the synonyms (in the current final version of

Deus ex machina, as I performed some tests and given the more complex

and ambiguous results) because anthesis appears in the descriptions and

synonyms of different PO and IDs, it would still not give us a definite

answer on what the authors meant by “anthesis”. It is not a

straightforward issue to tackle. It would still need some manual human

interpretation. This is why it is ever more vital for researchers to be

quoting the ID number in parenthesis, to remove ambiguity and

ultimately allow for software to parse the information in both papers and

database entries more efficiently and produce more accurate results.

5.4.3 Confusion Matrix: computing the accuracy of the Deus

ex machina tool results

This section presents the results produced following the methods

described in Section 5.3.3. The confusion matrix used to compute the

precision, recall, and F1­score of Deus ex machina tool in automatically

annotating the PO terms in the 18 real­life use­cases in wheat

transcriptomic articles is shown in Table 5.2.
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The computations and analyses in creating the Confusion matrix for

assessing the accuracy of the Deus ex machina tool are available via this

FigShare link: https://doi.org/10.6084/m9.figshare.22734056.v1.

Table 5.2: The confusion matrix for accessing the accuracy of the Deus ex machina
tool in automatically annotating PO terms. The abbreviations denote the following:
TP represent the number of ontologies that are found in both manual and automatic
annotation; FP depict the number of ontologies that are found only in the automatic
annotation; FN represent the number of ontologies that are found only in the manual
annotation.

Predicted positive Predicted negative

Actual positive TP = 112 FP = 6

Actual negative FN = 12

The Deus ex machina precision is 0.949 (TP=112, FP=6), which is a high

precision value. The Deus ex machina recall is 0.903 (TP=112, FN=12).

The F1­score of Deus ex machina is 0.926, which is a very good score

according to the general conversions of the F1­score values (Allwright,

2022).

All of the above scores denote that Deus ex machina performs well with

high accuracy in correctly annotating the PO terms in wheat

transcriptomic papers.

5.4.4 Limitations

The pdftotext Python Library which reads the PDF file line by line and

then concatenates it into a text file converts the two­column article PDF

files in such a way that, where a sentence is split between the two

columns, the text from two different columns is merged wrongly,

creating some fragmented sentences.

https://doi.org/10.6084/m9.figshare.22734056.v1
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This limitation, however, is not expected to significantly impact the

ability of the code to find the ontology matches, and keywords. It mainly

affects the code’s functionality which finds the sentences which include

the data availability­related keywords. This limitation, however, is not

expected to impact the production of reliable results significantly

negatively. Given that the Deus ex machina code also applies Python

RegEx principles to find the ENA Project accession code(s), and ENA

ArrayExpress experiment accession code(s), retrieving the study’s

associated data is not impaired. In other words, the Deus ex machina

functions which employ Python RegEx principles can compensate for

any sentences split and concatenated incorrectly by the pdftotext

functionality of the code.

Deus ex machina cannot provide“fuzzy” word matching, i.e. terms that

have slightly different tokens from a given input term. Input terms, in

this case, are the PO terms. Nonetheless, more complexmachine learning

principles or NLP principles would still not eliminate ambiguity in certain

cases (as explained above with the“anthesis” example), and especially in

caseswhere the authorsmay have used completely arbitrary language, not

related to the name, synonym or definition of a term.

Deus ex machina queries articles and ArrayExpress XML files with

currently only the PO database. Some terms in the articles and

database­associated files may be missed because they corresponded to,

for example, the BRENDA tissue/enzyme source ontology.

Incorporating more ontologies within the Deus ex machina can be

addressed in future developments of the tool.

As noted in the Methods section of this chapter, the manual annotation

if taken as the “actual truth”(gold standard), can be inaccurate,

especially when undertaken by a single individual. Nevertheless, I have

https://www.brenda-enzymes.org
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paid close attention in performing the manual annotation of the 18

use­case studies in finding all of the ontology (or potential) ontology

terms and I have clearly denoted them in the FigShare Excel file, as well

as a descriptive explanation of the choice of the ontology.

5.5 Discussion

In recent years, technological developments in LSs mean a plethora of

data and findings are produced rapidly. However, when these findings

are not presented with the appropriate standardised ontological

terminologies to contextualise metadata, understanding and

interpreting that data (and the research around that data) becomes more

complex. Thus, tools are needed to annotate the data in research articles

and their associated metadata (in databases and repositories). Where

published research or data in repositories and databases is not

annotated properly with the correct ontologies, then understanding,

re­purposing, and reproducing those study findings becomes an issue.

Apart from tools such as Deus ex machina which help automatically

annotate the data and metadata from studies with the correct ontology

terms, a more fundamental issue needs to be addressed. This issue

would be not having the researchers’ compliance to publish their study

findings using the correct ontological terms. Could this lack of

annotation of data and metadata be due to the lack of awareness or

training on behalf of the researchers? Could it be because journal

publishers or databases and repositories do not have the standardised

ontological annotation of studies as a pre­requisite compulsory

requirement?

Would pressure from journal publishers, databases, or repositories help

https://figshare.com/articles/dataset/Deus_ex_machina_tool_-_Confusion_matrix_computation_analyses/22734056/1
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to create a culture or a shift in researchers’ attitudes to annotate their

studies’ data and metadata with the correct ontological terms? Would

such pressure help shift the current practices (which do not mandate

that authors annotate their work with standardised ontological terms)

and ultimately improve the reproducibility of those studies? Is it because

not a lot of weight and importance is placed by all parties (researchers,

journals, databases and repositories) to publish studies with

reproducibility in mind? Could it be because most researchers (and

journals) focus on the “Publish or Perish” paradigm and not on

performing research that is robust and reproducible, or having their

research conducted and published in such a fashion so that others can

reproduce it?

All of these questions are fundamental and need to be addressed by the

LS community as a whole, and certain mandates put in place so that the

reproducibility of studies in LSs can be improved. In this respect, tools

such as Deus ex machina could be useful to researchers, journals, and

databases to help all parties automatically and quickly identify

ontological terms and annotate them with the appropriate ontological

ID. However, if such tools were made readily available and were at the

disposal of researchers, journals, and databases, their ultimate success

would depend on the motivation of all parties to use the tools.

Given how Deus ex machina is a proof­of­concept tool and does not

incorporate complex machine learning principles, it cannot identify

words or phrases of interest which could be describing ontological terms.

This means that, apart from producing a long list of results, should

words of interest be found (e.g. cell) and then left to the discretion of the

user to decide whether those results are useful in finding candidate

words or phrases to be then annotated with standardised ontological

terms, the ultimate call is left to the user to ensure all ontology terms
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have been written using the correct standardised ontological terms,

including their ID. It is important to state, however, that there are cases

where there could be no available standardised ontological terms for a

specific word or phrase. One such example, as mentioned in the Results

section, is the word “anthesis”. In this case, the scientific community

can suggest these terms to be included/incorporated into the

appropriate databases. The POC encourages users to submit new

ontology terms to be reposited and incorporated into their database.

Given how the accurate and effective retrieval and annotation of data

and metadata from research are fundamental to reproducibility in the

LSs, Deus ex machina could be a tool for promoting the reproducibility

of research in LSs. For instance, Deus ex machina could be run before

submitting papers to journals to ensure that manuscripts and their

associated data and metadata deposited in public repositories included

standardised PO terms and IDs. Furthermore, researchers who want to

read and reuse already published data (both in literature and public

repositories), similar to the needs of expVIP, can do so more confidently

by knowing that the data and metadata associated with the research in

question have been marked up with standardised terminologies, thus

removing ambiguity in the concepts related to the research in question.

As explained in Section 5.2.3, using the correct ontological terms and IDs

to describe research papers and their associated databases can help with

the reproducibility of the studies in question and make themmore useful

both for humans and computers.

Finding the ontology descriptors in the papers and providing the

standardised PO and ID can help readers to understand the research, the

experiment conducted, the data and the metadata involved and, in turn,

be able to use the data to further the research in the field.



Chapter 5: Ontology Annotation Standards in Publications and Databases
and Reproducibility Metric Scores 168

HTML pages of research articles are not designed uniformly, so parsing

them with algorithms such as those employed in Deus ex machina is not

a straightforward process. For example, algorithms may need to parse

only certain parts of interest in the HTML files, namely: the title,

abstract, introduction, methods, results, conclusions, discussion, and

data availability. However, not all publishers use the same terminology

or structure to present their articles.

Due to this issue, the algorithm could not select sections with particular

“div­id” or “section” titles only. These are tags used in HTML files to

signify particular parts in an HTML file, and this solution was feasible

for HTML files from a single publisher. The complexity comes when

publishers use different HTML structures, where the tags or section

names differ, which is commonplace. One would have to build separate

HTML file scrapers for each journal article structure. As you can

imagine, this is a complex and laborious problem. Arguably, if all journal

articles had employed a uniform structure for their HTML files, then the

job of parsing the HTML files and finding and extracting data from them

with the help of machines would have been more straightforward and

automated. Tools have been developed to do this, such as ContentMine

from Peter Murray­Rust’s group in Cambridge

(https://github.com/ContentMine). However, as publishers frequently

change their website structures and HTML representations, this

becomes a game of cat­and­mouse where HTML scrapers and parsers

must be continually updated.

Thus, this is an example of where standards in publications and their

structure (e.g. HTML­tag uniformity, following the same tagging

system) would serve the scientific community to more easily consume

and re­use scientific artefacts programmatically. JATS is one such

standard, but it is not in widespread use.
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Considering these findings, the better practice would be that authors use

the correct ontologies when describing their data in the first place and use

the PO term in parenthesis. For example, journals could assist with this

process by having a drop­downmenuwith pre­selected terms that authors

could select from to describe their data. This way, journals could ensure

that authors use standardised terminologies for their metadata, making it

easier for other scientists to understand their work, reproduce it, and use

it to further the science in the field and potentially increase citations.

Checklists, much as the term suggests, provide a list of fields that

scientists are encouraged to use and fill in; some fields are mandatory

for describing the correct and standardised terminologies for their data.

Adhering to and using the provided checklists when depositing data at

EBI makes it easier for researchers, readers of research papers, and

researchers searching for the data in EBI databases, thus making the

data and the research involved more reproducible.

Purpose and Benefit of the Reproducibility Metric Score of the

Deus ex machina Software

The Reproducibility Metric Score (RMS) aims to review the availability

of data in a standardised presentation format across research papers and

their associated database files. Using a quantitative and qualitative

approach, the scoring system allows us to evaluate what properties and

elements research papers need to possess to be more reproducible and

thus more valuable in the scientific community.

Ultimately, the computations of Deus ex machina can be further

expanded to include more assessment parameters, which can be added

with feedback from the crop transcriptomics community who can denote

which specific parameters are important to the reproducibility of crop

transcriptomics studies. It is important to note that although Deus ex
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machina has been developed and validated using wheat transcriptomic

studies, the concepts around it can be extrapolated and used by other

study types.

These transferable concepts include the assessment of standardised

ontology annotation in research articles and their associated data and

metadata in related databases and the assessment of the availability of

data (via links to the data or via the accession codes) which can

ultimately enable others to reproduce the studies in question with more

ease. Eventually, it is hoped that tools such as Deus ex machina may

inspire the creation of a generalised means of computationally assessing

the reproducibility status of a study utilising a reproducibility metric

score. With such RMSs we can then motivate researchers to conduct and

publish more reproducible research.

5.6 Further Work

Through the manual mapping efforts from wheat transcriptomics

papers, certain terminologies have been identified that were not

corresponding to any PO terms or other ontology vocabularies. Future

efforts to help improve the semantic annotation standards in

publications and associated database entries could involve creating a

new ontology consortium and making them publicly available and

retrievable through OLS and Ontobee, or suggest new terminologies and

IDs to the appropriate Ontologies (see the Plant Disease Ontology

available on GitHub via this link:

https://github.com/Planteome/plant­disease­ontology).

The tool can become more versatile by providing “fuzzy” word

matching, i.e. finding terms that have slightly different tokens from a

https://github.com/Planteome/plant-disease-ontology
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given input term. This development, however, is a more complex matter

that entails more intricate machine learning, natural language

processing, and linguistics concepts.

The Deus ex machina can be further developed to include assessment

parameters that are more generalised and therefore applicable for more

types of papers (and research disciplines) as a metric for their

reproducibility status. At the present time, it is not possible for the tool

to function with all types of papers, as some parameters in the Deus ex

machina include finding “study accession numbers” and “project

accession numbers”. These are specific elements that help with the

reproducibility of crop transcriptomics papers. In other words, the

extension of Deus ex machina could include some further generic

parameters which can help with assessing the reproducibility of research

papers within other disciplines.

Further development of the Deus ex machina code can also include

searching using Python’s RegEx principles for other data accession

codes, such as GenBank numbers, and ENA reference numbers for

studies such as ERP123456 (as per the ENA guide

(guidefromENA:https://ena­docs.readthedocs.io/en/latest/submit/

general­guide/accessions.html), and ENA secondary study accession

codes such as DRP000768.

However, because I am not involved in the particulars of research in crop

transcriptomics I am not sure what is needed, in terms of which of the

aforementioned accession codes, or the content of the associated XML

files and the elements in the files (other than the ones I already identified),

for the reproducibility of a study, beyond the requirement for ontological

annotation, which represented the scope ofmy objectives and aims for the

project described in this Chapter.

guide from ENA: https://ena-docs.readthedocs.io/en/latest/submit/general-guide/accessions.html
guide from ENA: https://ena-docs.readthedocs.io/en/latest/submit/general-guide/accessions.html
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In other words, we can speculate that other elements, related to data

availability, and correct metadata description can be taken into account

or are necessary for the successful reproducibility of a study. However,

the scope of the project described in this Chapter, and the applicability of

the Deus ex machina, was centred around the standardised (or not)

semantic annotation of research papers and their associated database

entries. This is an important distinction to keep in mind when

evaluating the applicability of the Deus ex machina tool.

Further programmatic features that can assess other reproducibility

parameters of crop transcriptomics (and other types of studies) can be

added to the tool, or other tools aiming to computationally evaluate the

reproducibility score of studies in the effort of recognising, rewarding,

and incentivising reproducible research practices and a more sustainable

reproducible research culture within the LSs community.

The code can be further improved by allowing the detection of ontologies

in the research paper or the associated database files in their plural

form, for example, root vs roots. Also, the code can be furthered by

including ontologies other than PO. From the manual matching of terms

annotating the Excel file (available on Figshare via this link

https://doi.org/10.6084/m9.figshare.20673207), consulting OLS and

OntoBee platforms, certain terms could be matched with “BRENDA

tissue/enzyme source” (BTO) and via https://www.brenda­enzymes.org

which is a structured vocabulary for enzyme comprising tissues, cell

lines, cell types and cell cultures.

https://doi.org/10.6084/m9.figshare.20673207
https://ontobee.org/ontology/BTO
https://ontobee.org/ontology/BTO
https://www.brenda-enzymes.org
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Discussion and Conclusion

Research reproducibility has preoccupied the scientific community for

many years, with numerous publications appearing on the subject for

over three decades. Many articles have highlighted the issues with

research reproducibility, ringing the alarm that more must be done to

overcome the obstacles hindering research reproducibility. This thesis

presented the research exploring technical and cultural solutions for

research reproducibility.

This chapter first summarises the research contributions, and next, it

remarks on how the findings of this thesis informs discussions in the

field of research reproducibility in the LSs. Finally, this chapter

discusses the limitations of the research undertaken for this thesis.

6.1 Contributions

The work of this thesis sought to explore how technical and cultural

solutions can aid with the issues currently faced in research

reproducibility in the LSs. This section provides a summary of the key

research findings of this thesis.
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6.1.1 Canvassing Researchers’ Opinions and Attitudes around

Reproducibility

We conducted a survey study that investigated the opinions of 251

researchers working in the LSs about their knowledge and attitudes

about research reproducibility and technological solutions for

reproducing research within research articles. The findings of this

survey study were published in a paper of which I am the first author

(Samota and Davey, 2021).

Our survey corroborated other literature results in that many

researchers experience issues accessing data from published research, as

well as regularly encountering difficulties with installing and running

bioinformatic tools. Moreover, our survey highlighted how researchers

believe that the most pivotal step towards improving research

reproducibility would be for publications to describe methodologies

(protocols, parameters, analyses) in detail.

The survey highlighted the confusion regarding definitions of

reproducibility versus replication; as in the literature, the terms

reproducibility and replicability are often confused or used

interchangeably.

Moreover, through our survey result analyses, we were able to determine

that training can affect the ability and intent of researchers to reproduce

published research. Even though a small sample of respondents

participated in this survey section (some skipped this section), it can still

give us some insight into how training can affect motivation and the

ability to reproduce published research. The responses received can then

inspire us to ask further questions to better understand and establish the

relationship between training and the ability and intent to reproduce
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published research.

Moreover, the survey canvassed the opinions of life scientists around

interactive figures, whether they believed they would be useful in

reproducing computation experiments within research articles, what

interactive figures they would deem favourable and whether the

provision of interactive figures within research articles would influence

their decision when choosing a journal to publish their research. To my

knowledge, this was the first survey study to explore the views of LS

researchers around interactive figures and reproducibility.

6.1.2 The Role of Interactive Figures in Supporting

Reproducibility within Journal Articles

My PhD is an i­Case collaboration with eLIFE, and the initial aim was to

investigate the interactive representation of computational, experimental

results within research papers to facilitate their reproducibility.

The survey study we conducted to explore the views of respondents

around interactive figures as a potential solution for enabling the

reproducibility of computational experiments within research articles

has given us insights for the development of my interactive figure

prototypes as well as eLIFE’s Reproducible Documents collaboration

project with Stencila.

6.1.3 Semantic Annotation of Published Research and

Associated Database Artefacts

Additionally, this thesis has explored the question of how we can

improve how publications and databases are annotated with

standardised ontological terms (semantic information) so that research
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papers and their associated metadata (in databases and other

repositories) can be presented reproducibly so that others can

understand, re­use and build upon the results presented in the research

in question.

This contribution aimed to explore the following research question: How

can we improve how publications and databases are annotated with the

standardised ontological terms (semantic information) so that research

papers and their associated metadata (in databases and other

repositories) can be presented reproducibly so that others can

understand, re­use and build up the results presented in the research in

question?

Following the manual mapping of crop transcriptomic studies and along

with correspondence with scientists from the field, it was determined

that there is an issue with the lack of standardisation with regards to

semantic annotation of research depicted in publications and database

artefacts. So it was established that there is a need for automatically

annotating both research papers and databases, as well as establishing

how well the metadata in the articles and the databases overlap.

The solution presented in this thesis is a software prototype, named

Deus ex machina, which helps to automatically semantically annotate

papers (using the PDF format) and their associated database files with

the standardised ontology terms and IDs according to POC. The Deus ex

machina prototype has been developed and tested on real­world use

cases of wheat transcriptomics papers and has been demonstrated to

work with relatively good accuracy (currently with direct word matches)

for PO terms. The Deus ex machina can be used on other types of crop

papers (or any papers in which one would expect to find PO terms).

Although the specific parameters which are evaluated by Deus ex
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machina relate to crop transcriptomics; Deus ex machina is a tool that

researchers can also use when writing research papers in crop

transcriptomics to remind themselves to complete the elements that will

make their research more reproducible. The Deus ex machina tool can

be used by publishing journals at the editing stage to check whether

researchers have included the standardised semantic annotations for

their research papers and include them in the feedback and review

process to prompt researchers to edit their manuscripts accordingly and

include the standardised ontologies.

For terms that are not able to be captured by the Deus ex machina,

because it would require more complex machine learning principles, or

in the worse case, when the researchers have used some arbitrary

terminologies, this editorial stage tool (in the publication cycle), can still

serve as a reminder to the authors to ensure that they use standardised

terminologies or, where they introduce a new term or description, to

specifically denote that term in their manuscript to allow for readers to

better understand and reproduce their research.

One option to support institutes is to provide them with an expanded

version of the Deus ex machina tool to incorporate a user interface, for

example with an easier (click button) installation. It is often the case

with technologies of this genre that the tools are usually developed to be

command line tools. However, the code can be expanded, adapted and

adjusted accordingly, depending on what parameters the developer

wants to score/assess.

Assuming the Deus ex machina is made publicly available through a

Web Server, then maintenance and sustainability issues come into place,

as staff and resources need to be (in theory perpetually) available for

such a tool to be (perpetually) available. The BioLit tool (Fink et al.,
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2008; Attwood et al., 2009) was designed to automatically semantically

annotate papers with CO terms and connect the papers with their

associated database metadata; it was one such example of a tool that was

available through the internet. However, the BioLit tool is no longer

available; the links from the papers (Fink et al., 2008; Attwood et al.,

2009) are no longer functional (http://biolit.ucsd.edu/), and there was

also no GitHub link to the tool’s code. This obsolescence could be due to

issues with maintenance, where the developers of the tool have moved

on and are working in new positions, or issues with the lack of funding

required to maintain a tool that is publicly available through a Web

Server. Given this example, command line tools shared with GitHub

links, such as the Deus ex machina, can be made available on a more

long­term basis, provided GitHub does not archive or delete repositories

after many years of inactivity.

Apart from the automatic semantic annotation of research papers and

their associated database metadata files (particularly XML files), Deus ex

machina computes an RMS which assesses the reproducibility status of

crop transcriptomics papers by measuring certain parameters which

reflect the reproducibility status of a study.

6.1.4 Reproducibility Metric Score for Recognising and

Rewarding Reproducible Science

The computation of the RMS as a different means of assessing research

reproducibility and as another publication metric can be used as a means

of motivating researchers by giving recognition to those who perform and

publish reproducible research.

The scientific community in the LSs has many tools and mandates

seeking to improve research reproducibility, but we still have issues with
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reproducibility. In this thesis, I proposed using a different metric to be

applied to research articles to quantify their reproducibility status. The

RMS would serve as a metric for assessing the quality of the research

based on the reproducibility assessment parameters measured by Deus

ex machina. We can identify and reward reproducible research using

this RMS. If more journals used reproducibility badges with the

implementation of RMS systems, then researchers would be motivated

to conduct and publish more reproducible research.

6.2 Discussion

6.2.1 Providing all the Reproducibility Elements

To achieve research reproducibility, the research’s associated data,

metadata, correctly annotated data and metadata, and detailed

methodologies (including well­documented code, analysis parameters,

and explicit protocols) must be included in the proper knowledge

“how­to.” According to our survey findings, individuals who said they

had prior informatics experience also stated that they are more capable

of attempting and reproducing outcomes.

Rather than focusing on particular technologies, practical

bioinformatics, and data management training is possibly a more

effective method of reinforcing the idea that researchers’ contributions

to reproducibility are a duty that needs active preparation and execution.

This may be particularly beneficial considering the training needs of wet

lab and field scientists, who are increasingly accountable for bigger and

more complicated computing datasets. It is necessary to complete

further studies to better understand how researchers’ skills in

computational reproducibility may be related to their degree of training
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in informatics.

Large and complicated datasets are becoming more common in science,

particularly genomics. Storage solutions for BigData files and referencing

them inside the publishing document, particularly those in terabytes, may

allow for their broader, more efficient, and appropriate data reusability

(Faniel and Zimmerman, 2011; Poldrack and Gorgolewski, 2014).

However, despite the potential benefit these Big Data storage solution

services may offer regarding data availability and accessibility, they do

not automatically address the issue of data reusability on their own.

Most noticeably, issues arise when data is too big to be kept locally or

transmitted over internet connections in a reasonable time or when

there is no way to attach metadata that defines datasets adequately for

reuse or integration with other datasets. The issue of data repository

lifespan also arises: who will provide funding for data repositories for

decades into the future? Some researchers are now required to pay data

egress fees in order to obtain data from cloud service providers

(Banditwattanawong et al., 2014; Linthicum, nd).

Using this approach, data providers are supposedly saving money by not

having to store big datasets publicly, but the expense of doing so has

been transferred to the user to some extent. This presents complicated

issues for large­scale data creation initiatives, which must be thoroughly

investigated to have a long­term effect, particularly regarding

reproducibility within publications.

Moreover, when data deposition to the appropriate repositories or

databases is compromised, the issue of reproducibility is compounded

further. Federer et al. (2015) investigated the differences between

clinical and non­clinical scientists and uncovered that the majority of

respondents had no prior experience in uploading biomedical data to a
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repository, with the majority citing various social reasons for not doing

so, including concerns and motivations about data sharing as well as the

work required to prepare the data for submission. The failure to include

data alongside publications, despite current policies and guidelines

mandating data openness (National Institutes of Health, 2015;

Wilkinson et al., 2016), can be attributed to a variety of factors, including

technical difficulties, fear of being scooped, fear of mistakes being

discovered in data or analyses, and fear of other researchers using the

data for their research papers (Stodden, 2010; Tenopir et al., 2011;

Federer et al., 2015; Tenopir et al., 2015).

Individual researchers and communities could benefit from the

standardisation of FAIR data practices, which could be accomplished

through public data deposition and subsequent publication and citation.

This would encourage researchers and communities to share and reuse

data while taking their individual requirements and needs into

consideration (Pawlik et al., 2019). Data accessibility problems are

further exacerbated by the fact that data becomes less retrievable with

each passing year after the publication of the paper (Vines et al., 2014).

It is important to state that 100% reproducibility cannot always be

achieved for certain research fields or published work conducted many

years ago. For example, the Reproducibility Project attempted to

reproduce high­impact research papers (Morrison, 2014). The team of

researchers that were assigned to reproduce the studies was aware that

certain factors would be a hindrance to achieving reproducibility. These

factors were identified as the inability to find the original reagents; the

fact that, at the time of publication of the papers in question, it was not

the standard to describe methods and protocols in detail or publish raw

data; and the materials not being commercially available (Morrison,

2014; Maher, 2015; Baker and Dolgin, 2017). The author of one paper
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that was found to be irreproducible by the Reproducibility Project team

noted that their study was reproduced successfully by at least 10 other

labs internationally in the past and that the result of the Reproducibility

Project was worrisome in that it could be a hindrance in enabling the

drug to progress to the clinical study stage and receive further funding

(Baker and Dolgin, 2017).

This is an example of where the inability to achieve irreproducibility

does not always mean that the research is false or the findings are wrong.

It could also mean that the study has been published lacking important

reproducibility elements (such as links to data, links to code, and

detailed methodology including all the parameters used to analyse the

data). Unfortunately, published research can be missing these important

reproducibility elements; consequently, good research can fail to achieve

the impact and leverage it deserves. In contrast, research published in a

reproducible way allows other researchers to successfully reproduce the

research findings and build upon them, adding to our knowledge of the

topics. More noteworthy results (including negative findings) can be

achieved if more research is produced and published reproducibly,

enabling other researchers to expand on the outcomes and deepen our

understanding of particular research topics.

Although research irreproducibility has negative impacts in all LS

domains, for some fields, it is more detrimental and costly. Such LS

fields include those related to medicine and biomedicine or

biochemistry. For example, as mentioned in the introduction of this

thesis, the validity of over two decades of research on Alzheimer’s

disease and beta­amyloid plaque has been undermined since it was built

upon initial studies that have recently been found to have falsified data

(Piller, 2022). This example, alongside the misannotations of genetic

associations for childhood diseases, demonstrates how important it is to
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reproduce data before it is deposited in databases and before we can

re­use it and build upon it to further research. However, this process is

not always feasible or practical. When a new piece of research is

produced and published, it should include the data associated with the

research.

Yet, before further research is conducted based on data deposited in

databases, that data ought to be deemed reproducible. Similarly to how

data is manually curated in certain databases (such as the Swiss­Prot

section of the UniProt KnowledgeBase), data that has been reproduced

could be labelled with a badge to demonstrate that it is reproducible. In

such a manner, researchers who want to build on or use the deposited

data in the database can be confident that the data is valid, truthful and

correct.

Such efforts, however, require funding, motivation and incentive for

research teams (other than the original researchers who deposited that

data in the database or repository) to reproduce the study and publish

their results to inform the scientific community that they have

successfully reproduced the results of others. However, this culture is

not presently established, nor is it a phenomenon we generally

encounter, as the current research environment mostly rewards “new

findings”. The Reproducibility Project was undertaken on high­impact

cancer studies and cost $1.6 million (Morrison, 2014).

This begs the question, will there ever be a regular practice of making

funding available to reproduce studies? It is not a question of assessing

how reproducible studies are in hindsight, several years after their

publication (such as with the Reproducibility Project (Morrison, 2014)),

but rather whether there would ever be a decision­making body for each

scientific discipline that would devote funding to various research
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groups across the globe to be reproducing research results as and when

needed, depending on what “original research” is published. Would

research groups be motivated to devote the time and resources (even if

funded) to reproduce the results of others instead of competing for

funding to perform“original research”? This is what a more sustainable

research reproducibility culture would entail, and such an outcome can

be achieved if researchers are motivated by recognition and reward to

perform studies to assess the reproducibility status of other research.

The costs of reproducing other studies, of course, vary depending on the

studies themselves. Computational studies (i.e., not wet lab studies)

require far fewer costs to be evaluated for reproducibility, with the main

costs being the time and computational resources (if involving high

throughput research). However, in the hypothetical scenario, where a

group is assigned to reproduce the study findings of a different research

group involving animals, or other live organisms, with in vitro research

equipment, more funding would need to be assigned to perform such

reproducibility studies. Assuming that the validation of the

methodologies used in the assessed study does not require particularly

specific and rare research skills and the investigating research team

possesses the necessary laboratory skills, then, in theory, if the original

researchers have conducted and published reproducible research, their

results could be reproduced with a certain degree of success and

accuracy (assuming some variation due to human factors).
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6.2.2 Good Research Practices and Reproducibility Training

and Institutions’ Responsibility to Promote

Reproducibility Culture

Is the root cause of the problem the difficulty of reproducibility per se,

or is it more the lack of adequate training in how to design and conduct

scientific studies and how to present them with reproducibility in mind?

There should be fundamental training in all undergraduate courses in

LSs and beyond (in other sciences), providing guidance in correct and

rigorous study design (with appropriate control groups); in statistics

planning, especially with regards to designing research for statistical

power, correct statistical planning, and how to choose the correct

statistical tests for analysis; creating complete model systems; and

avoiding conceptual flaws, self­bias and human prejudice in favour of

our own ideas.

Training in statistics will enable researchers to understand how to

design research with appropriate statistical power and choose the

correct statistical test for analysing their data. It is commonplace for

funders to require that grant applicants supply power calculations when

proposing research involving living specimens or experimental assays.

Training in computer and data science can allow researchers to write

code and analyse data in a reproducible manner, as explained in Crick

et al. (2017).

Many of the issues with research irreproducibility, would be rendered

obsolete if the correct study design had been executed, and there had

been more focus on the correct study design (Collins and Tabak, 2014)

and more focus on conducting research reproducibly. I believe that more

focus needs to be placed on these two pivotal factors affecting research:
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1) training in how to design research (starting from undergraduate

studies) and 2) training in how to conduct reproducible research.

In addition to basic training at the undergraduate level, there should

also be continuous training throughout a scientist’s career (including

research institution training) on research reproducibility, computer

science and bioinformatics. This claim has been backed up (on a small

scale with a small cohort of respondents) by the findings of our research

study (Samota and Davey, 2021), which demonstrated that researchers

who had training in computer science were more willing and able to

reproduce computational research.

Evidently, study design principles and rules will depend on the type of

study and the domain. For example, a study in epidemiology needs to be

designed differently than a study in computational biology. For this

reason, it is not possible to divulge and list all the principles for correct

study design for all domains in LSs. However, there are key papers

describing the concepts of correct study design and setting a research

question (Kuhn and McPartland, 1954).

A paper published in Nature (Begley et al., 2015), discussed the

responsibility of research institutes in instilling reproducible research

culture within their Institutes, naming it Good Institutional Practice

(GIP). In a similar way to how many institutes include annual training

on fire hazards and diversity and discrimination, reproducible research

training should be a yearly requirement that researchers at institutions

need to undertake.

It is possible that more institutions need to hire researchers whose

responsibility is to be a“second set of eyes” for the research performed

by the institute’s researchers. Dr Catherine Winchester’s job at the

Cancer Research UK Beatson Institute is to go over the experimental
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design and the data produced by the researchers in the institute to

ensure it is valid and reproducible. The outcomes of her work as a

research integrity adviser were that her institute produced research

published in many high­impact and prestigious journals with no

retractions. If funding is dependent on a certified compliance record

with GIP, then robust research would get its due recognition

(Winchester, 2018).

6.2.3 Measuring Reproducibility, Incentives and Rewards of

Reproducible Research

The scientific community in the LSs has many tools and mandates

seeking to improve research reproducibility, but we still have issues with

reproducibility. In this thesis, I proposed using a different metric to be

applied to research articles to quantify their reproducibility status. The

RMS would serve as a metric for assessing the quality of the research

based on the reproducibility assessment parameters measured by Deus

ex machina. Using this RMS, we can identify and reward and incentivise

reproducible research.

The need for incentivising and rewarding reproducible research has been

demonstrated extensively over the past two­plus decades. More andmore

technologies and more and more data are produced, adding to the data

and tool cabinet of the LSs. When researchers produce research (data

and analysing tools) and move on to different positions, the technologies

and the data can be forgotten and are not easily accessible.

By applying this RMS in research papers, researchers will be more

motivated to conduct and publish reproducible research. It has been

demonstrated that findings from research that has been validated to be

reproducible can be thus deemed robust; we can trust the results are
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valid, and we can confidently re­use and build upon the results of the

reproducible research, and, importantly, avoid the issues mentioned

throughout this thesis with reproducible research (Piller, 2022).

Should such reproducibility assessment metrics be used for promotion

and securing more funding and ultimately for furthering the research

career of scientists? If so, could the currency of research status be shifted

from its present “publish or perish” status towards a more robust,

rigorous and reproducible science? This shift would thereby create a

need and motivation for researchers to receive more training and

acquire more skills (if needed) to design, conduct and publish

reproducible research.

With RMS and the real­world use case papers, I have quantitatively

demonstrated the lack of semantic annotation of research papers in crop

transcriptomics. This issue affects the ability to properly reproduce the

papers, understand the research conveyed, build on them and use their

findings to further the field.

Reproducibility needs to become normalised in academia and it is

difficult to envisage this unless there is fundamental structural change:

unless publishing impact factors incorporate reproducibility metric

scores; unless reproducible research is taught from the undergraduate

level onwards, with continuous mandatory institution training (similar

to how equality and fire hazard training is conducted every year); and

unless all journals abolish the word limitations on the methods section

of articles so that authors can explain all their methodologies and

protocols in detail, instead of saying“the protocol published in“XYZ”

paper, modified as such [...] was followed”.

Until reproducible research is regarded equally or more important than

publication frequency, the hiring standards and the mandatory
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institution training on reproducibility will not significantly improve.

This does not imply that the entire burden of pulling the lever for

achieving reproducible science is solely placed on the individual

researcher. Instead, with the use of technologies such as interactive

figures and Deus ex machina, certain aspects of the research

reproducibility journey are automated, facilitating the researcher in their

quest to perform and publish reproducible research.

We need to demonstrate to researchers that there is a need and a benefit

to presenting research reproducibly: to show them “what is in it for

them”. People tend to first serve their own interests; it is human

nature. They do not necessarily care if publishing journals intend to

develop a new fancy way of presenting research interactively (but some

people might care). This view has been made apparent with our survey

research figures see Appendix A.3, with some of the free­text comments

making it clear that we“don’t need”interactive figures. Encouraging

researchers to take up an interest in interactive figures (and publishing

their research using interactive figures and reproducible documents) is

about showing them how they will change perceptions of themselves and

their research; they could be seen as more prestigious, more influential,

and win more research grants, more funding, and more promotions.

Now, if we can quantify outcomes, by demonstrating how much per cent

their paper readability increases and how the impact of their research is

amplified, making comparisons between the papers from the same

science domain, then we can convince researchers of the greater

effectiveness of papers with interactive figures compared to those

without interactive figures.

In other words, it feels like, at the moment,“conducting and presenting

research reproducibly”is a “good to have” value/feature, but is not a
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“must have”feature. This could be because the research currency is

currently measured by the number of papers one researcher produces

and how fast they can produce them. The producers of each new tool

aiming to improve research reproducibility should spend time and

resources to find ways to create the need and incentive for its use. For

example, with interactive figures, if we prove that readability increases

and the papers’influence increases, we can motivate the research

community to create a more robust research reproducibility culture by

incorporating interactive figures within publications as the new

direction of research publication.

I believe the true need for research reproducibility will arise when

experiments are reproduced before their data is deposited. This scenario

sounds far away and costly, but we only have to look at the issues with

misannotations of polymorphism of genetic diseases or the issue with

amyloid studies. Fortunately, there is now technology that aims to detect

images that have been modified (falsified). Steps are necessary because

studies build upon the results of other studies, and any wrong data ­ or

worse still, any fraudulent data ­ can significantly derail the course or the

direction of a scientific field.

6.2.4 Journals and Reproducibility

It is very positive that more journals are focusing on research

reproducibility and spending resources on projects promoting research

reproducibility.

I still believe the most vital issues, the most fundamental issues, are not

related to the presentation of the figures interactively but relate to the

research that cannot be presented interactively as live

figures/reproducible documents. In these cases, more rigorous tests
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ought to be done to ensure the data submitted are in the correct

repositories, and that it is annotated appropriately according to the

standardised ontology terms.

What tests can be done to see if the code is reproducible? One option is

that papers could have a Discussion section for comments that is open to

the public and awarded a badge for reproducibility. However, this opens

a potential can of worms, including the possibility for competitors and

researchers with conflicting interests or competing projects to sabotage

the research and leave fake reviews that the code does not run.

In this scenario, would journals have to employ a review monitoring

team, much like those who monitor online marketplace platforms? Of

course, this would mean additional costs for the journals whereby,

unless the journal can find compensation from funding resources,

increased publication costs may arise, which researchers and their

institutions would then have to endure.

Collaborations, as opposed to the competitive science field, may enhance

reproducibility and generate the opportunity for replication studies to

corroborate findings. Imagine a world where all the research groups

working in a specific field, e.g. wheat genomics, joined forces. Groups

which were previously competitors decided to work together. This has,

thankfully, been an increasing phenomenon. Institutions and

universities from different countries join forces for specific research

causes. For some, this might sound controversial; it might stir some

waters, but imagine the depth and breadth of the quality results that

could be produced.

With this collaboration model, there would be enough personnel and

resources to allocate a sub­team in the project to ensure the research is

reproducible; this team would have duties to supervise the research
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design and validate the results.

But how realistic would such a research culture be in practice? Given the

current state of research, where research groups have to compete for the

same funding, then this might seem a naive way of approaching this

problem. Nonetheless, there are initiatives, including various

consortiums, which aim to bring together researchers and scientists

from different countries and institutions.

6.2.5 Literature Challenging whether there is a Research

Reproducibility Crisis, or Challenging the Scale and

Extent to which it is Perceived by the Scientific

Community

It will have been apparent throughout this thesis that I am a passionate

advocate for promoting research reproducibility. However, I do not want

to be perceived (or for this thesis to be perceived) as dogmatic. The

paper by Fanelli (2018) argues that the state of the reproducibility crisis

as depicted through the various literature is overly estimated; in

particular, the number of claims of misconduct and falsification of data,

especially from scientists from Western institutions, is exaggerated, with

falsification being a rare event.

Importantly, the premise of the Fanelli (2018) paper is that it is

counter­productive to be trying to motivate researchers to perform

reproducible research using irreproducible science statistics and

“science is in crisis” narratives. Whereas instead, a better approach to

promote better science would be to invest and invite greater respect for

research and inspire younger generations to do better science.

Others have also argued that the reproducibility crisis and the associated
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literature wave discussing the topic could lead to mental health issues

for scientists (Clements, 2020). Whereby failing to reproduce published

results can cause stress because researchers might be a bad reflection on

their research capabilities.

It is important to emphasise to the research community that inability to

reproduce published results is not an indication of research

incompetence. Initial studies might lack transparency, include biases

and have weak methodologies.

6.2.6 Limitations

The interactive figures I created were prototypes and not completed

solutions for reproducing computational experiments within research

articles. However, they can be used at the front end of a research article.

The interactive figure prototypes were developed, and the follow­up step

would have been making them public via eLIFE to receive feedback from

researchers who would have “played” with the figures and provided

user feedback on them, including their opinions on whether the

interactive figures could help reproduce computational experiments

within journal articles; researchers could have also provided feedback

for their preferred features for the interactive figures.

The interactive figure prototypes were developed to answer specific

scientific questions, particularly in terms of assessing how difficult or

easy it would be to have such infrastructures within journal articles for

reproducing computational experiments. Moreover, the creation of the

prototypes was intended to define what type of data (and thus which

experiment types) would have been more popular within the scientific

community, to establish targeted data types in specific LS research

domains and receive feedback from the LS scientific community. The
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prototypes would have needed to be further developed to be more useful:

they were not designed or intended to be the framework by which all

journals can incorporate interactive figures in their publications. As part

of the original project schedule with eLIFE, the interactive figures would

have gone on to be published through a public server for researchers to

provide me with user feedback to address further research questions.

During a scheduled interruption of my PhD studies, eLIFE developed a

collaboration with the Stencila team and moved the interactive figures

project forward in a different direction. As a consequence, I had to

change the objectives and aims of my PhD study which regretfully meant

having to cease any further development of the interactive figures and

the evaluation of their usefulness in improving research reproducibility.

Nonetheless, the work I have completed with the interactive figure

prototypes has been productive and has helped to answer some

questions about the ability of interactive figures to successfully

reproduce computational experiments. Issues explored include which

data types would have been useful to investigate for the initial interactive

figure prototypes and the limitations and caveats of using interactive

figures as a means of reproducing interactive figures within journal

articles. The study has also helped to create an understanding that such

solutions are difficult to implement, scale up, or be applied to all types of

computational experiments, and an understanding of computational

costs and maintenance costs.

The shift in the direction of my PhD provided a valuable opportunity to

take a more holistic approach to my research. It enabled me to

investigate other technological and cultural advances to overcome the

hurdles to research reproducibility and to acquire a more overarching

understanding of research reproducibility with wider aims and
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objectives. As a result of this expansion of focus, the Deus ex machina

tool was developed.

As described in Chapter 5, Deus ex machina is a command line tool,

meaning that its usage is currently limited to the cohort of users or

researchers for whom it is designed. The researchers/users would need

to have some computational programming experience. The Deus ex

machina tool has been developed to assess specific parameters in crop

transcriptomics, and in its present form, it cannot be readily used on all

types of papers until there is some code adjustment. Nevertheless, the

work depicted in Chapter 5 can demonstrate how this prototype tool, as

well as other tools, can be developed to either be specific to certain data

types/research domains or to be more generalised to provide a more

uniform, applicable comparison as a reproducibility metric for research

papers across many disciplines in the LSs.

The parameters included in the RMS are not an exhaustive list. The

intention of the code is, following implementation, to test with more use

cases to be able to recognise other parameters of interest and include

them in the RMS assessment.

6.3 Further Work

Further work concerning interactive figures and reproducible

documents and their role in improving research reproducibility would

require quantifying results in observational survey studies. We need to

assess over the period of years how interactive figures and reproducible

documents improve reproducibility in an empirical manner and prove

that they can be sustainable and applicable to various types of datasets

and research domains. We need to establish again, through
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observational empirical studies, the opinions of researchers and

research consumers of publications on whether they believe interactive

figures and reproducible documents have assisted them in effectively

reproducing published experiments. Lastly, we need to establish

qualitatively and quantitatively how interactive figures and reproducible

documents can affect the research and publishing cultures concerning

reproducibility.

Further work about the research presented in Chapter 5 would be to run

the tool for at least 100 wheat transcriptomics papers and quantify the

reproducibility status of the papers based on the RMS to be computed.

This would have given us a quantitative measurement of how

reproducibly or not the corpus of the wheat transcriptomics domain

presents their research. In line with the above, the Deus ex machina can

be further developed to extract the date of publication of the research

paper to help us assess the following research question: “Can we

quantitatively demonstrate that the availability and accessibility of data

through publications has increased following the introduction 2016 of

FAIR Research Principles (Wilkinson et al., 2016)?” This will allow us to

establish quantitatively whether data/code/research openness mandates

from policymakers actually translate to the measurable execution of

such mandates and, importantly, whether it translates to a more

reproducible research culture. The above investigation can also be

stratified as a comparison of how different journals compare given the

RMS assessment. This way, more journals can emulate the publishing

standards of the higher­scoring journals (and improve on the

standards), which can help the overall research reproducibility state of

the current publishing culture.
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6.4 Reflections

The research presented in this thesis contributed to the notion that

technological and social solutions should be used holistically to ensure

that research is more reliable, robust, reproducible and reusable, and to

reward and incentivise researchers for establishing a culture of

reproducibility.

Our survey study (Samota and Davey, 2021), corroborated the findings

of other studies in the field of reproducibility, in that many researchers

experience issues accessing data from published research and that

publications should describe methodologies in detail (Baker, 2016; Feger

et al., 2019; Stodden, 2010). To my knowledge, this was the first survey

to explore the opinions of life scientists around interactive figures, as a

potential solution for reproducibility of CEs within journal articles and if

the provision of interactive figures would influence their decision when

choosing a journal to publish their research. Further insights were

gained from developing interactive figure prototypes whereby I explored

research questions, which helped the development of the ERA project

(Maciocci et al., 2019).

With the manual annotation of ontologies of 18 real­life use case papers,

which was a laborious and time­consuming task, I demonstrated how

difficult it is to decipher with accuracy the work of others when authors

do not use standardised ontology terms and IDs; all of which hinder the

reproducibility of the studies (Fink et al., 2008; Shrestha et al., 2010).

The Deus ex machina software prototype, amongst other functions,

automatically annotates research papers and their associated metadata

with standard semantic data (PO terms and IDs). In order to evaluate

the reproducibility status of research publications, Deus ex machina
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calculates a RMS for an article. Thus, the software can be used to

encourage and reward a more reproducible research culture, similar to

other projects involving badges of reproducibility after manual

evaluation of the reproducibility status of papers (Hong, 2021).

The Deus ex machina tool can be used by publishing journals at the

review stage to check whether researchers have included the

standardised semantic annotations for their research papers and

associated metadata, as well as for researchers to test their own paper’s

reproducibility status.

There have been several projects attempting to tackle aspects of the

reproducibility issue, with varying features and limitations, many of

which have become obsolete when researchers move positions (Colomb

and Brembs, 2014; Fink et al., 2008). This demonstrates the importance

for technological solutions to be receiving funding to be maintained and

promoted for better take up within the LS community; something that

has been successfully done, with the Galaxy project (Afgan et al., 2018)

as a WMS.

Importantly, for the current status of reproducibility in the LSs to

change, there needs to be more emphasis and training in reproducible

practices, also presented in our survey study (Samota and Davey, 2021),

from the early stages of a scientist’s career, as well as offer more

incentives for career promotion and recognition for those conducting

and sharing reproducible science.

In other words, technological and cultural advancements should be

implemented synergistically for better and more long­term

improvements in the LSs reproducibility.
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6.5 Closing Notes

The ultimate goal of my research in the extensive field of research

reproducibility is to demonstrate how synergistic use of technological

advances and cultural changes can truly and sustainably shift the

reproducibility issue.

I hope to have inspired the readers of this thesis, policymakers,

researchers, and publishing journals to think of the reproducibility issue

from a more holistic angle. Whereby instead of building more tools and

technologies, and instead of creating further mandates for FAIR

principles and assigning badges on publications to think of the

researcher first.

To think of how the researcher conducts research and how the

availability and implementation of technologies can facilitate

reproducibility and offer incentives and rewards for receiving training

and conducting reproducible research; but also to create a burning need

for the researcher to use the tools and a true need for adopting

reproducibility research practices and sustainable, reproducible

research.

This action is required because, although many researchers acknowledge

that there is an issue with research reproducibility and they often

experience issues with reproducing the work of others; maybe this is not

enough of a motive for researchers to feel the need to conduct and

present research reproducibly, because it currently doesn’t translate to

career development.
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Within Journal Articles: A Research
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Evanthia Kaimaklioti Samota1,2* and Robert P. Davey1

1Earlham Institute, Norwich, United Kingdom, 2School of Biological Sciences, University of East Anglia, Norwich, United Kingdom

We constructed a survey to understand how authors and scientists view the issues around
reproducibility, focusing on interactive elements such as interactive figures embedded
within online publications, as a solution for enabling the reproducibility of experiments. We
report the views of 251 researchers, comprising authors who have published in eLIFE
Sciences, and those whowork at the Norwich Biosciences Institutes (NBI). The survey also
outlines to what extent researchers are occupied with reproducing experiments
themselves. Currently, there is an increasing range of tools that attempt to address the
production of reproducible research by making code, data, and analyses available to the
community for reuse. We wanted to collect information about attitudes around the
consumer end of the spectrum, where life scientists interact with research outputs to
interpret scientific results. Static plots and figures within articles are a central part of this
interpretation, and therefore we asked respondents to consider various features for an
interactive figure within a research article that would allow them to better understand and
reproduce a published analysis. The majority (91%) of respondents reported that when
authors describe their research methodology (methods and analyses) in detail, published
research can become more reproducible. The respondents believe that having interactive
figures in published papers is a beneficial element to themselves, the papers they read as
well as to their readers. Whilst interactive figures are one potential solution for consuming
the results of research more effectively to enable reproducibility, we also review the equally
pressing technical and cultural demands on researchers that need to be addressed to
achieve greater success in reproducibility in the life sciences.

Keywords: reproducibility in life sciences, replication of experiments, reproducibility of computational experiments,
interactive figures, reproducibility, reproducibility metrics, open science, reproducibility survey in life sciences

INTRODUCTION

Reproducibility is a defining principle of scientific research, and broadly refers to the ability of
researchers, other than the original researchers, to achieve the same findings using the same data and
analysis (Claerbout and Karrenbach, 1992). However, irreproducible experiments are common
across all disciplines of life sciences (Begley and Ellis, 2012) and many other disciplines (Ioannidis,
2005), such as psychology (Open Science Collaboration, 2015), computer science (Crick et al., 2017),
economics (Ioannidis et al., 2017; Christensen and Miguel, 2018) and ecology (Fraser et al., 2018). A
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2012 study showed that 88% of drug-discovery experiments could
not be reproduced even by the original authors, in some cases
forcing retraction of the original work (Begley and Ellis, 2012).
Irreproducible genetic experiments with weak or wrong evidence
can have negative implications for our healthcare (Yong, 2015).
For example, 27% of mutations linked to childhood genetic
diseases cited in literature have later been discovered to be
common polymorphisms or misannotations (Bell et al., 2011).
While irreproducibility is not confined to biology and medical
sciences (Ioannidis and Doucouliagos, 2013), irreproducible
biomedical experiments pose a strong financial burden on
society; an estimated $28 billion was spent on irreproducible
biomedical science in 2015 in the United States alone (Freedman
et al., 2015).

Reproducibility should inevitably lead to robust science,
relating to the way in which conclusions rely on specific
analyses or procedures undertaken on experimental systems.
Unfortunately, the community has yet to reach consensus on
how we traverse the space of re-use, re-analysis and re-
interpretation of scientific research to try to define suitable
overarching definitions for reproducibility. Thus, there are
different definitions of reproducibility used in the literature
(Drummond, 2009; Plesser, 2018), some of which contradict
one another. A recent exhaustive review has also documented
this problem (Leipzig et al., 2020), so our survey and results do
need to be contextualised somewhat by this lack of consensus.
The terms repeatability, replicability and reproducibility are also
occasionally confused (Peng et al., 2006; Liberman, 2015),
therefore it is important to differentiate these terms from each
other.

1. Repeatability The original researchers using the same data,
running precisely the same analysis and getting the same
results, on multiple runs (Drummond, 2009).

2. Replicability Different teams performing different
experimental setups and using independent data, achieving
the same result as the original researchers, on multiple trials
(Peng et al., 2006; Peng, 2011; Stodden et al., 2013a).

3. Reproducibility Different teams re-running the same analysis
with the same data and getting the same result (Claerbout and
Karrenbach, 1992; Peng et al., 2006; Peng, 2011; Stodden et al.,
2013a).

It is argued that in many science disciplines replicability is
more desirable than reproducibility because a result needs to be
corroborated independently before it can be generally accepted by
the scientific community (Peng, 2011; Nuijten et al., 2018).
However, reproducibility can serve as a cost-effective way of
verifying results prior to replicating results (Nuijten et al., 2018).

Computational reproducibility, or reproducible computational
research, refers to the reproducibility of computational
experiments, where an independent team can produce the
same result utilising the data and computational methods
(code and workflow) provided by the original authors

(Donoho, 2010; Stodden et al., 2013a; Stodden and Miguez,
2013; Stodden et al., 2018; Leipzig et al., 2020). Computational
reproducibility is influenced by both technical and cultural
(social) factors (LeVeque et al., 2012; Stodden et al., 2013a;
Stodden et al., 2018). Technical challenges to computational
reproducibility include poorly written, incorrect, or
unmaintained software, changes in software libraries on which
tools are dependent, or incompatibility between older software
and newer operating systems (Cataldo et al., 2009). Cultural
factors that challenge computational reproducibility include
the attitudes and behaviors of authors when performing and
reporting research. Examples include authors not providing
sufficient descriptions of methods and being reluctant to
publish original data and code under FAIR (Findable,
Accessible, Interoperable, and Reusable) principles (Stodden
et al., 2013b; Baker, 2016; Munafo et al., 2017). Other cultural
factors include favoring of high prestige or high impact scientific
publications over performing rigorous and reproducible science
(which tends to be improved by open access policies) (Eisner,
2018; Hardwicke et al., 2018). We refer to the cultural factors
affecting computational reproducibility as the culture of
reproducibility (Peng, 2011).

Several projects have attempted to address some of the
technical aspects of reproducibility by making it easier for
authors to disseminate fully reproducible workflows and data,
and for readers to perform computations. For example F1000
Living Figure (Colomb and Brembs, 2014) and re-executable
publications (Ingraham, 2017; Perkel, 2017; Ingraham, 2017)
using Plotly (plot.ly) and Code Ocean widgets (codeocean.
com); Whole Tale Project (Brinckman et al., 2018); ReproZip
project (Chirigati et al., 2016); Python-compatible tools and
widgets (interactive widgets for Jupyter Notebooks with
Binder); Zenodo (zenodo.org) and FigShare (figshare.com) as
examples of open access repositories for scientific content
(including datasets, code, figures, reports); Galaxy (Afgan et al.
, 2018); CyVerse (formerly iPlant Collaborative) (Goff et al.,
2011); myExperiment (Goble et al., 2010); UTOPIA (Pettifer
et al., 2009; Pettifer et al., 2004); GigaDB (Sneddon et al.,
2012); Taverna (Hull et al., 2006; Oinn et al., 2004;
Wolstencroft et al., 2013); workflow description efforts such as
the Common Workflow Language (Amstutz et al., 2016); and
Docker (docker.com), Singularity (sylabs.io) (Kurtzer et al., 2017)
and other container systems. Even though these tools are widely
available and seem to address many of the issues of technical
reproducibility and the culture of reproducibility, they have not yet
become a core part of the life sciences experimental and
publication lifecycle. There is an apparent disconnection
between the development of tools addressing reproducibility
and their use by the wider scientific and publishing
communities who might benefit from them.

This raises the question of “how do researchers view their role
in the production and consumption of scientific outputs?” A
common way for researchers to quickly provide information
about their data, analysis and results is through a figure or
graph. Scientific figures in publications are commonly
presented as static images. Access to the data (including the
raw, processed and/or aggregated data), analysis, code or
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description of how the software was used that produced the figure
are not available within the static images (Barnes and Fluke, 2008;
Barnes et al., 2013; Grossman et al., 2016; Newe, 2016;
Weissgerber et al., 2016; Rao et al., 2017; Perkel, 2018). This
can be especially pertinent to figures that have thousands or
millions of points of data to convey (Perkel, 2018). In order for
readers to interrogate published results in more detail, examine
the transparency and reproducibility of the data and research,
they would need to download a complete copy of the data, code,
and any associated analysis methodology (data pre-processing,
filtering, cleaning, etc) and reproduce this locally, provided all
those elements are available and accessible (Stodden et al., 2016).
Computational analyses often require running particular
software which might require configuration and
parameterisation, as well as library dependencies and
operating system prerequisites. This is a time-consuming task
and achieving reproducibility of computational experiments is
not always possible (Stodden et al., 2016; Kim et al., 2018). Thus,
solutions that automatically reproduce computational analyses
and allow the investigation of the data and code presented in the
figure in detail would be advantageous (Peng, 2011; Perkel, 2017;
Perkel, 2018).

Many solutions now exist that allow for the reproducibility of
computational analyses outside the research paper and are
typically supplied as links within the research paper or journal
website redirecting to many different types of computational
systems, such as Galaxy workflows, Binder interactive
workspaces converted by GitHub repositories with Jupyter
notebooks (Jupyter et al., 2018), and myExperiment links
(Goble et al., 2010). The endpoint of these analyses are often
graphical figures or plots, and these may well be interactive, thus
allowing modification of plot type, axes, data filtering, regression
lines, etc. Whilst these figures may well be interactive in that a
user can modify some part of the visualisation, this does not
implicitly make the data or code that produced that figure more
available, and hence more reproducible.

Technologies that can expose code, data and interactive figures
are now mature. For example, Jupyter notebooks are built up of
executable “cells” of code which can encapsulate a link to a data
file hosted on a cloud service, code to get and analyze this data file,
and then produce an interactive figure to interpret the dataset.
Again, this is somewhat disconnected from the actual research
publication. However, as technology has progressed in terms of
available storage for data, computational power on the web
through cloud services, and the ability of these services to run
research code, we are now coming to the point where the
production of interactive figures within publications
themselves is achievable. These interactive figures which would
inherently have access to the underlying data and analytical
process can provide users with unique functionality that can
help increase the reproducible nature of the research. This
combination of code, data, analysis, visualisation and paper
are examples of “executable documents” (Ghosh et al., 2017;
Maciocci et al., 2019).

Interactive figures within executable documents, therefore,
have incorporated data, code and graphics so that when the
user interacts with the figure, perhaps by selecting a cluster of data

points within a graph, the user could then be presented with the
data that underlies those data points. Similarly, a user could make
changes to the underlying parameters of the analysis, for example
modifying a filter threshold, which would ultimately make
changes to the visualisation of the figure or the document
itself (Barnes and Fluke, 2008; Barnes et al., 2013; Grossman
et al., 2016; Newe, 2016; Weissgerber et al., 2016; Rao et al., 2017;
Perkel, 2018). By means of an example, an executable document
could represent an interactive figure showing a heat map of gene
expression under different stress conditions. In a traditional
article, the user would be tasked with finding references to the
datasets and downloading them, and subsequently finding the
code or methodology used to analyze the data and retrace the
original authors’ steps (if the code and data were available at all).
Within an interactive figure in an executable document, a user
could select a particular gene of interest by clicking on the
heatmap and viewing the gene expression information within
a pop-up browser window. Whilst this is useful for general
interpretation, to achieve reproducibility this pop-up window
would provide a button that allows the user to pull the sequencing
read data that was the basis for the results into a computational
system in order to re-run the differential expression analysis. This
raises many questions around how this infrastructure is provided,
what technologies would be used to package up all elements
needed for reproducibility, the subsequent costs of running the
analysis, and so on.

These caveats aside, interactive figures within executable
documents can benefit the reader for the consumption of the
research outputs in an interactive way, with easy access to the data
and removing the need for installing and configuring code and
parameters for reproducing the computational experiments
presented in the figure within the publication (Perkel, 2017).
The aforementioned solutions would not only be helpful to the
readers of papers (Tang et al., 2018) but benefit the peer review
process (Perkel, 2018).

There have been efforts to make the connection between
production and consumption of research outputs within online
publications. One of the first interactive figures to have been
published in a scholarly life sciences journal is the Living Figure
by Björn Brembs and Julien Colomb which allowed readers to
change parameters of a statistical computation underlying a figure
(Ghosh et al., 2017). F1000Research has now published more
papers that include Plotly graphs and Code Ocean widgets in
order to provide interactivity and data and code reproducibility
fromwithin the article figures (Ghosh et al., 2017; Ingraham, 2017).
The first prototype of eLIFE’s computationally reproducible article
aims to convert manuscripts created in a specific format (using the
Stencila Desktop, stenci.la, and saved as a Document Archive file)
into interactive documents allowing the reader to “play” with the
article and its figures when viewed in a web browser (Maciocci et al.,
2019). The Manifold platform (manifoldapp.org) allows
researchers to show their research objects alongside their
publication in an electronic reader, whilst including some
dynamic elements. The Cell journal included interactive figures
in a paper using Juicebox js for 3D visualisation of Hi-C data
(http://aidenlab.org/juicebox/) (Rao et al., 2017; Robinson et al.,
2018). Whilst there are few incentives to promote the culture of
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reproducibility (Pusztai et al., 2013; Higginson and Munafò,
2016), efforts in most science domains are being made to
establish a culture where there is an expectation to share data
for all publications according to the FAIR principles. The
implementation of these principles is grounded in the
assumption that better reproducibility will benefit the scientific
community and the general public (National Institutes of Health,
2015; Wilkinson et al., 2016). Studies have suggested that
reproducibility in science is a serious issue with costly
repercussions to science and the public (Stodden et al., 2013b;
Pulverer, 2015). Whilst there have been survey studies canvassing
the attitudes of researchers around reproducibility in other
disciplines to some extent (Baker, 2016; Feger et al., 2019;
Stodden, 2010), fewer studies have investigated the attitudes
and knowledge of researchers around reproducibility in the life
sciences (Baker, 2016). In particular, minimal research has been
conducted into the frequency of difficulties experienced with
reproducibility, the perception of its importance, and preferences
with respect to potential solutions among the life sciences
community.

This paper presents a survey that was designed to assess
researchers’ understanding of the concepts of reproducibility
and to inform future efforts in one specific area: to help
researchers be able to reproduce research outputs in
publications. The development of tools, one example of which
are interactive figures within journal publications, may better
meet the needs of producers and consumers of life science
research. Our survey is limited in that we do not assess how
open-access tools for the production of reproducible research
outputs compare, but how the consumption of research
information through interactive means is regarded. We
constructed the survey in order to understand how the
following are experienced by the respondents:

• Technical factors affecting computational reproducibility:
issues with accessing data, code and methodology
parameters, and how solutions such as interactive figures
could promote reproducibility from within an article.

• Culture of reproducibility: attitudes toward reproducibility,
the social factors hindering reproducibility, and interest in
how research outputs can be consumed via interactive
figures and their feature preferences.

METHODS

Population and Sample
The data were analyzed anonymously, nonetheless, we sought ethical
approval. The University of East Anglia Computing Sciences
Research Ethics Committee approved this study (CMPREC/1819/
R/13). Our sample populations were selected to include all life
sciences communities across levels of seniority, discipline and level
of experiencewith the issues wewished to survey. The first surveywas
conducted in November 2016 and sent out to 750 researchers
working in the Norwich Biosciences Institutes (NBI) at a post-
doctoral level or above. We chose to survey scientists of post-
doctoral level or above, as these scientists are more likely to have

had at least one interaction with publishing in scientific journals. The
NBI is a partnership of four United Kingdom research institutions:
the Earlham Institute (formerly known as The Genome Analysis
Center), the John Innes Center, the Sainsbury Center, and the
Institute of Food Research (now Quadram Institute Bioscience).
Invitations to participate were distributed via email, with a link to
the survey. The second survey, similar to the first but with
amendments and additions, was distributed in February 2017 to a
random sample of 1,651 researchers who had published papers in the
eLIFE journal. Further information about the eLIFE sample is found
in Supplementary section 3. Invitations to participate were sent using
email by eLIFE staff.We achieved a 15% (n� 112) response rate from
the NBI researchers and an 8% response rate from the eLIFE survey
(n � 139). Table 1 shows the survey questions. Questions were
designed to give qualitative and quantitative answers on technical and
cultural aspects of reproducibility. Questions assessed the frequency
of difficulties encountered in accessing data, the reasons for these
difficulties, and how respondents currently obtain data underlying
published articles. They measured understanding of what constitutes
reproducibility of experiments, interactive figures, and
computationally reproducible data. Finally, we evaluated the
perceived benefit of interactive figures and of reproducing
computational experiments, and which features of interactive
figures would be most desirable.

Validation of the Survey Design
We undertook a two-step survey: firstly NBI, then eLIFE
interactions leading to additional questions. We tested the
initial survey on a small cohort of researchers local to the
authors to determine question suitability and flow. We
reported the qualitative results of the surveys in accordance
with the Standards for Reporting Qualitative Research (SRQR)
(O’Brien et al., 2014).

The survey questions were not designed based on specific
culture theory, but rather on our understanding of the field of
reproducibility, that is the human factors and researcher attitudes
toward reproducibility, as well as the mode of conducting science.
We assume that these factors affect how reproducible and robust
the science, and therefore the published work, will be. Therefore,
we adopt the term “culture of reproducibility” to encompass the
attitudes of life scientists toward science and reproducibility
directly related to research articles, and not referring to
human demographics. The rationale behind evaluating the
culture of reproducibility was to examine how the attitudes or
means by which researchers present their work in research papers
can affect reproducibility.

It is important to state that not any one survey question was
assessing solely the technical factors affecting reproducibility or solely
the culture of reproducibility. For example, accessing data for the
reader is both a cultural and technical factor, i.e., data available from
public repositories via persistent identifiers and APIs vs. “data
available on request”. For the author of the paper, not publishing
the data is solely a cultural/social factor as it could be seen that they
are not conducting and presenting their research in an open
reproducible manner, or they do not have the support or
knowledge around the best practice for reproducible data
publishing in their domain.
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We also evaluated the sentiment around interactive figures in
our research. In themselves, they are a technical factor that we
suggest can promote reproducibility. However, the interest of the
readers in finding interactive figures desirable, including what
features they think are favourable, can be a variable factor
depending on the social background or demographic of the
respondent (for example, training received, data they work
with, discipline they work in).

We understand that there are a lot of human factors in the way
reproducibility is achieved, which are mainly centered around the
attitude of life scientists toward reproducibility. How robust,
open-source, open-access they conduct and share their
research affects the reproducibility of their work. In this way
we wanted to evaluate, assess and see the extent of the issue in
quantifying and qualifying how difficult it is to access data and
code presented in papers, and how difficult it is to understand the
methods presented in a paper. Our work adds to existing surveys
that also highlight reproducibility as an issue.

We received consistent responses where all or most
respondents interpreted the questions in a similar manner
suitable for cross-comparison. The NRP study results
produced consistent results with the eLIFE study results,
which were sent out at different times and to the different
survey cohorts. We primarily took surveys and conclusions
raised in the existing literature and the results of discussions
with various researchers who are looking into reproducibility in
our local institutions to form our construct validity. The
questions we asked indicated they fit our requirements to
better understand the qualitative nature of the respondents’

answers and perform empirical analyses (Chi-squared) to
show relationships. We used the same process to determine
content validity, where we tried to provide questions that
would cover the breadth of the domain we were assessing as
we “cast a wide net” over potential respondents that would
comprise people from a wide variety of domains, expertise,
and other demographics. Finally, our theory of how
researchers view reproducibility fed into our questions to
provide translation validity where we formed two practical
surveys based on our theory assessments from previous literature.

Statistical Analysis
Results are typically presented as proportions of those
responding, stratified by the respondent’s area of work,
training received, and version of the survey as appropriate.
Chi-square tests for independence were used to test for
relationships between responses to specific questions, or
whether responses varied between samples. The analysis was
conducted using R (version 3.5.2; R Core Team, 2018) and
Microsoft Excel. All supplementary figures and data are
available on Figshare (see Data Availability).

We assessed if there was a significant difference in the ability and
willingness to reproduce published results between the cohort of
eLIFE respondents who understand the term “computationally
reproducible data” and those who do not and whether training
received (bioinformatics, computer science, statistics, or no training)
had an effect. Given the free-text responses within the “unsure”
group as to the understanding of the term “computationally
reproducible data”, where many understood the term, we did not

TABLE 1 | Questions used to survey the knowledge of respondents about research reproducibility.

Survey questions

1 How often do you encounter difficulties with working with bioinformatic analysis tools (that are not your own)? (Problems
such as: installing, configuring, running the software, working with command-line software)?

2 How difficult is it to source (or access) the data presented in published papers?
3 What difficulties have you encountered in accessing the data described in published papers?
4 How are you currently sourcing the data (if applicable)? Select all that apply to you.
5a What is your current understanding of the reproducibility of experiments? Please select any that apply. Should you wish to

add any additional information, please add it to the “Other” box.
6a Have you ever tried reproducing any published results? Please select the answer that applies best for you.
7a In your opinion, what could be done to make published research more reproducible? Other please specify (free text answer).
8 When thinking about interactive figures, what comes to your mind? (please describe what you understand of what an

interactive figure to be, its features, and where you have seen such a feature before if applicable).
9 An interactive figure is a figure within a paper that is dynamic and becomes “live”when the user interacts with it and where the

data displayed changes according to various parameter options. Which of the following features of an interactive figure tool
would be good to have? Please rank them in the order of preference, where 1 is the most preferred feature, and 11 the least
preferred feature.

10 What other features an interactive figure could have that were not mentioned in the previous question?
11 Do you perceive a benefit in being able to publish interactive figures?
12 Does the provision or option of an interactive figure in the paper affect your decision in choosing the publishing journal or

publisher?
13 Have you heard of the term computationally reproducible data, and do you understand what the term means? If answered

yes or unsure, please explain what you understand from the term.
14 Would you benefit from being able to automatically reproduce computational experiments or other analyses (including

statistical tests) described within a paper?
15 How often do you work with bioinformatic analysis tools (e.g., assemblers, aligners, structure modeling)?
16 Have you received any of the following training? Training whether formal or informal (training through a colleague etc.).
17 Which of the following type(s) of data do you work with?

aQuestions indicated with an asterisk were only available to the eLIFE survey. Answer options to the questions are shown in Supplementary section 1.
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FIGURE 1 | Data types used by NBI and eLIFE respondents. Responses were not mutually exclusive. Data type choices were the same as the article data types
available in the eLIFE article categorisation system.

FIGURE 2 | (A): Difficulty encountered accessing data underlying published research. Whether respondents have attempted to access data underlying previous
publications and the level of difficulty typically encountered in doing so. (B): Reasons given for difficulty accessing data. The reasons given by respondents for being
unable to access data (restricted to those who have attempted to access data).
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include in our analysis the data from those who replied, “unsure”
(see Section “Understanding of reproducibility, training and
successful replication” below). The respondents who chose “yes
tried reproducing results, but unsuccessfully”, “have not tried to
reproduce results” and “it is not important to reproduce results”
were grouped under “unsuccessfully”.

RESULTS

Characteristics of the Sample
Figure 1 shows the distribution of areas of work of our
respondents, stratified by survey sample. Genomics
(proportion in the whole sample � 22%), biochemistry (17%),
and computational biology (15%) were the most common subject
areas endorsed in both NBI and eLIFE samples. With regard to
how often respondents use bioinformatics tools, 25% replied
“never”, 39% “rarely”, and 36% “often”. Many (43%) received
statistical training, (31%) bioinformatic training, (20%) computer
science training.

Access to Data and Bioinformatics Tools
In both samples, 90% of those who responded, reported having
tried to access data underlying a published research article
(Figure 2). Of those who had tried, few had found this “easy”
(14%) or “very easy” (2%) with 41% reporting that the process
was “difficult” and 5% “very difficult”. Reasons for difficulty were
chiefly cultural (Figure 2), in that the data was not made available
alongside the publication (found by 75% of those who had tried to
access data), or authors could not be contacted or did not respond
to data requests (52%). Relatively few found data unavailable for
technical reasons of data size (21%), commercial sensitivity (13%)
or confidentiality (12%). With respect to data sources, 57% of the
total sample have used open public databases, 48% reported data
was available with a link in the paper, and 47% had needed to
contact authors.

Very few of the respondents either “never” (2%) or “rarely”
(8%) had problems with running, installing, configuring
bioinformatics software. Problems with software were
encountered “often” (29%) or “very often” (15%) suggesting
that nearly half of respondents regularly encountered technical
barriers to computational reproducibility.

Understanding of Reproducibility, Training
and Successful Replication
Most respondents reported that they understood the term
“reproducibility of experiments” and selected the explanation
for the term as defined in the introduction above, which
corresponds to the most established definitions of
reproducibility (Peng et al., 2006; Peng, 2011; Stodden et al.,
2013b). It is important to state that for this question, we allowed
for respondents to choose more than one answer, as we recognise
the limitation that there is no standard and accepted definition for
reproducibility, as well as the familiarity of the term between
scientists from different backgrounds, can differ. The first three
definitions are plausible definitions for reproducibility. Given the

results, we can assume that some of the respondents chose both
correct and wrong definitions. The majority of the answers (77%)
included the definition of reproducibility as we define it in the
manuscript. However, by looking into the individual responses
(n � 54), 11.1% (n � 6) of respondents chose only option A thus
appeared to understand that this matched the definition of
reproducibility, as we state in the manuscript. 5.5% (n � 3)
chose only option D, which is incorrect. The majority of
people (57%, n � 23) picked any of A, B, or C and did not
pick D, which seems to suggest that they understand that
replicability is not reproducibility, but they are still not clear
on exact definitions, which matches the general lack of consensus
(Drummond, 2009; Liberman, 2015; Plesser, 2018). Just over a
third (37%, n � 20) picked one or all of A, B and C, and picked D,
which seems to suggest that they didn’t understand the difference
between reproducibility and replicability at all and considered
any form of repeating a process could be classed as reproducibility
of experiments (see Supplementary Table 4).

Most (52%) participants provided a different interpretation of
the term “computationally reproducible data” to our
interpretation, while 26% did know and 22% were unsure. We
received several explanations (free text responses) of the term of
which the majority were accurate (Supplementary section 2, free
responses to question 13). We assign meaning to the term as data
as an output (result) in a computational context, which was
generated when reproducing computational experiments.
Although the term “computationally reproducible data” is not
officially defined, other sources and studies have referred to the
concept of data that contributes to computational reproducibility
(Baranyi and Greilhuber, 1999; Weinländer et al., 2009; de Ruiter,
2017; Perkel, 2017; Tait, 2017; Pawlik et al., 2019). From the
unsure responses (n � 30), we categorised those that gave free-text
responses (70%, n � 21, see Supplementary section 2, free
responses) into whether they did actually understand the term,
those that did not understand the term, and those that did not
give any free text. The majority of respondents that chose
“unsure” and gave a free text response (71%, n � 15) did
understand the term “computationally reproducible data”. The
remaining 29% (n � 6) did not understand the term correctly.

Some (18%) reported not attempting to reproduce published
research. Very few (n � 5; 6%) of the sample endorsed the option
that “it is not important to reproduce other people’s published
results” (Supplementary figure 1). Even though the majority
(60%) reported successfully reproducing published results,
almost a quarter of the respondents found that their efforts
to reproduce any results were unsuccessful (23%). Table 2
shows respondents’ ability to reproduce experiments,
stratified by their understanding of the term
“computationally reproducible data” and the training
received (bioinformatics, computer science, statistics). A chi-
square test of independence was performed to examine the
relationship between the ability to reproduce published
experiments and knowing the meaning of the term
“computationally reproducible data”. The relationship
between these variables was significant, χ2(1, n � 75) � 3.90,
p � .048. Those who knew the meaning of the term
“computationally reproducible data” were more likely to be
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able to reproduce published experiments. Taking their training
background into account did not show any significant difference.
However, when testing with the responses “yes tried reproducing
results, but unsuccessfully”, “have not tried to reproduce results”
and “it is not important to reproduce results” (not grouped under
“unsuccessfully” in order to get an indication of how willingness
and success together differed between the training groups), we
found a significant difference (see Supplementary Table 1). The
distribution of the training variable with those who received
computer science training and those without was significantly
different (Fisher exact test for independence, p � 0.018). It
appears that respondents with computer science training are less
likely to have tried to reproduce an experiment but be more likely
to succeed when they did try.

There was no evidence for a difference in the ability and
willingness to reproduce published results between the
respondents who use bioinformatics tools often, and those
who use them rarely or never, χ2(3, n � 90) � 0.53, p � 0.91
(Supplementary Table 2). The majority of the respondents who
use bioinformatics tools often were coming from the scientific
backgrounds of Biophysics, Biochemistry, Computational
Biology and Genomics. Most of the respondents who
answered “reproducibility is not important” and “haven’t tried
reproducing experiments” were scientists coming from
disciplines using computational or bioinformatics tools
“rarely” or “never” (Supplementary Table 3).

Improving Reproducibility of Published
Research
The majority (91%) of respondents stated that authors describing all
methodology steps in detail, including any formulae analysing the
data can make published science more reproducible. Around half
(53%) endorsed the view that “authors should provide the source

code of any custom software used to analyze the data and that
the software code is well documented”, and that authors provide
a link to the raw data (49%) (Supplementary figure 2). Two
respondents suggested that achieving better science
reproducibility would be easier if funding was more readily
available for reproducing the results of others and if there were
opportunities to publish the reproduced results (Supplementary
section, free responses). Within the same context, some
respondents recognised the current culture in science that
there are not sufficient incentives in publishing reproducible
(or indeed negative findings) papers, but rather being rewarded
in publishing as many papers as possible in high impact factor
journals (Supplementary section, free responses).

Interactive Figures
Participants ranked their preferences for interactive figure
features within a research article. The most preferred
interactive figure feature was “easy to manipulate”, followed by
“easy to define parameters” (Figure 3). Generally, the answers
from both the eLIFE and NBI surveys followed similar trends.
Furthermore, free-text responses were collected, and most
respondents stated that mechanisms to allow them to better
understand the data presented in the figure would be
beneficial, e.g., by zooming in on data (Supplementary section,
free responses).

The majority of the respondents perceive a benefit in having
interactive figures in published papers for both readers and
authors (Figure 4). Examples of insights included: the
interactive figure would allow visualising further points on
the plot from data in the supplementary section, as well as be
able to alter the data that is presented in the figure; having an
interactive figure like a movie or to display protein 3D
structures, would be beneficial to readers. The remaining
responses we categorised as software related, which

TABLE 2 | Success in reproducing any published results stratified by their knowledge of the term “computationally reproducible data” and training received.

Number (% of
the total sample)

Success in reproducing any published results

Variable Successful (% within
variable)

Not Successfula

(% within variable)
p-value

Knowledge of the term “computationally reproducible data” (n = 75)
Yes 25 (33.3) 18 (72) 7 (28) 0.048b

No 50 (66.7) 24 (48) 26 (33)
Training (n = 90)
Bioinformatics 42 (46.7) 26 (61.9) 16 (38.1) 0.73
Not trained in Bioinformatics 48 (53.3) 28 (58.3) 20 (41.7)
Computer Science 33 (36.7) 21 (63.6) 12 (36.4) 0.59
Not trained in Computer Science 57 (63.3) 33 (57.9) 24 (42.1)
Statistics 71 (78.9) 42 (59.2) 29 (40.8) 0.75
Not trained in Statistics 19 (21.1) 12 (63.2) 7 (36.8)
No training 10 (11.1) 6 (60) 4 (40) 0.73c

All other training 80 (88.8) 48 (60) 32 (40)

n is different for the two variables as not all participants answered all the questions.
aUnsuccessful includes answers: “Yes, I have tried reproducing published results, but I have been unsuccessful in producing any results, or the same results”, “No, I have never tried
reproducing any published results” and “It is not important to reproduce other people’s published results”.
bStatistically significant at the level of p < 0.05.
cChi-square statistic with Yates correction, applied when expected frequencies were lower than five.
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included suggestions of software that could be used to produce
a figure that can be interactive, such as R Shiny (shiny.studio.
com). We received a total of 114 free-text responses about the
respondents’ opinions on what interactive figures are and a
proportion of those (25%) suggested that they had never seen
or interacted with such a figure before, and no indication was
given that an interactive figure would help their work (see
Supplementary section, free responses).

The majority of the respondents also said that they see a
benefit in automatically reproducing computational experiments
and manipulating and interacting with parameters in
computational analysis workflows. Equally favourable was to
be able to computationally reproduce statistical analyses
(Figure 5). Despite this perceived benefit, most respondents
(61%) indicated that the ability to include an interactive figure
would not affect their choice of a journal when seeking to publish
their research.

Limitations
The findings were collected using the self-reporting method
which can be limited in certain ways, especially with regards
to the reported reproducibility success or lack of success of the
respondents. We do not know categorically that someone
reproduced experiments successfully because they checked the
box. Despite the potential for confusing the exact meaning of
reproducibility, which could affect the answers to questions five,
six and seven, the general consensus among respondents showed
that the questions were sufficiently phrased to help us divide
people into two groups of assessment (successful vs not
successful) for subsequent analysis.

Part of our survey sample were researchers from the NBI, and
this population might not be representative of the life sciences
research community. Researchers working in academic
institutions may have attitudes, incentives, or infrastructure
to support reproducibility that may be different from those

FIGURE 3 | Preferred features for the interactive figure. Responses to question 9: Respondents were asked to rank in order of preference the above features, with
one most preferred feature, to 11 the least preferred feature. The average score for each feature was calculated in order of preference as selected by the respondents
from both NBI and eLIFE surveys. The lower the average score value (x-axis), the more preferred the feature (y-axis).
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who work in the private sector or government agencies. In
addition, as the population of the NBI researchers was solely
United Kingdom based, the attitudes of these researchers might
differ from those in the rest of the world, even though the NBI
comprises scientists who are from multiple countries and have
trained and worked in global institutions. eLIFE authors work
across the breadth of scientific institutions, both private and public,
from the international stage, thus we believe that both eLIFE and
NBI participants to be sufficiently representative for the purposes
of our survey study.

Although we do not have distinct evidence that the eLIFE
authors’ cohort had a predisposition to reproducibility, and the
authors we surveyed were randomly selected, we acknowledge
that as eLIFE is a journal that requires data sharing and is also
heavily involved in reproducibility efforts, such as the
Reproducibility Project: Cancer Biology. In the absence of data
to the contrary, thus it is reasonable to assume that some factors
might have influenced the eLIFE respondents’ opinions about
reproducibility. We do not think that this fact undermines our
conclusion, but it is a factor that future studies should be aware of
when drawing comparisons that can shed further light on
this issue.

We acknowledge that questions eight and nine were on the
same page when the participants were taking the survey and

seeing the two questions together might have introduced bias into
their answers. Nonetheless, free text answers to question eight
included answers which were not presented as options for
question nine. Some respondents also declared that they were
not aware of, or have not previously encountered, interactive
figures (see Supplementary section free-text responses to question
eight).

We have found that the response rate for studies of this
nature is fairly typical and indeed, other studies (Koschke,
2003; Snell and Spencer, 2005; Federer et al., 2015; Schneider
et al., 2016; Barone et al., 2017) have experienced comparable
or lower rates. Ideally, we would want to aim for a higher
response rate for future studies, which could be achieved by
providing monetary incentives, as well as sending email
reminders to the same or bigger cohort of invited people to
participate in the study (James and Bolstein, 1990; Shettle and
Mooney, 1999; Jobber et al., 2004).

DISCUSSION

This study highlights the difficulties currently experienced in
reproducing experiments and conveys positive attitudes of
scientists toward enabling and promoting reproducibility of

FIGURE 4 | The level of perception of benefit to having the ability to publish papers with interactive figures. The benefit to the author, to the readers of the author’s
papers and to the papers the author reads. Answers include the responses from both NBI and eLIFE surveys for question 11.
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published experiments through interactive elements in online
publications. The NBI cohort of respondents were active life
sciences researchers at the time the survey was conducted, and the
eLIFE cohort were researchers that have published at least once in
the eLIFE journal; therefore we believe the opinions collected are
representative of researchers in life sciences who are routinely
reading and publishing research.

While progress has been made in publishing standards across
all life science disciplines, the opinions of the respondents reflect
previously published shortcomings of the publishing procedures
(Müller et al., 2003; Tenopir et al., 2011; Marx, 2013; Stodden,

2015): lack of data and code provision; storage standards; not
including or requiring a detailed description of the methods and
code structure (i.e., code scripts, algorithms, full software
packages, language used, versions of any libraries required,
organisation of any modular components, configuration and
deployment options) in the published papers. However, the
level of interest and incentives in reproducing published
research is in its infancy, or it is not the researchers’ priority
(Collins and Tabak, 2014; Nosek et al., 2015). A key outcome of
our survey is the acknowledgment of the large majority who
understand that science becomes implicitly more reproducible if

FIGURE 5 | Assessment of perceived benefit for automatically reproducing computational experiments or other analyses (including statistical tests). Responses
from both NBI and eLIFE for question 14.
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methods (including data, analysis, and code) are well-described
and available. Respondents also perceive the benefit of having
tools that enable the availability of data, methods and code and
being able to automatically reproduce computational
experiments described within the paper. Interactive figures
within publications and executable documents can be such
tools that allow the automatic reproducibility of computational
experiments, or other analyses described within the paper,
interact and manipulate parameters within the computational
analysis workflow and give further insights and detailed view of
the data in the figure. Despite technologies existing to aid
reproducibility (Crick et al., 2014) and authors knowing they
are beneficial, many scientific publications do not meet basic
standards of reproducibility.

Our findings are in accordance with the current literature
(Pulverer, 2015; Berg, 2018) that highlight that the lack of access
to the data presented and described in research articles is one of
the major reasons leading to the irreproducibility of published
studies. When data is difficult to obtain, the reproducibility
problem is exacerbated. A study that examined the differences
between clinical and non-clinical scientists, showed that the
majority of respondents did not have experience with
uploading biomedical data to a repository, stemming from
different social reasons not to do so: concerns and motivation
around data sharing; work necessary to prepare the data (Federer
et al., 2015). Even with current policies mandating data openness
(National Institutes of Health, 2015; Wilkinson et al., 2016),
authors still fail to include their data alongside their
publication, and this can not only be attributed to technical
complications, but also fear of being scooped, fear of mistakes
being found in data or analyses, and fear of others using their data
for their own research papers (Federer et al., 2015; Stodden, 2010;
Tenopir et al., 2011, Tenopir et al., 2015). Making FAIR data
practices standard, through public data deposition and
subsequent publication and citation, could encourage
individual researchers and communities to share and reuse
data considering their individual requirements and needs
(Pawlik et al., 2019). Data accessibility issues are also
compounded by data becoming less retrievable with every year
passing after the publication (Vines et al., 2014). This is supported
by our findings where data is either not available upon
publication (57%) or authors cannot be reached/are
unresponsive to data provision requests (44%). This continues
to be a cultural artifact of using a paper’s methods section as a
description of steps to reproduce analysis, rather than a fully
reproducible solution involving easy access to public data
repositories, open-source code, and comprehensive
documentation.

As evidenced by the respondents, the lack of data availability is
a common hurdle for researchers to encounter that prevents the
reproducibility of published work. Thus, the reproducibility of
experiments could be improved by increasing the availability of
data. Datasets are becoming larger and more complex, especially
in genomics. Storage solutions for large data files and citing them
within the publication document, especially those in the order of
terabytes, can allow for their wider, more efficient and proper
data reusability (Faniel and Zimmerman, 2011; Poldrack and

Gorgolewski, 2014). Despite the potential advantage, these
services can provide for data availability and accessibility, they
do not implicitly solve the problem of data reusability. This is
most apparent when data is too large to be stored locally or
transferred via slow internet connections, or there is no route to
attach metadata that describes the datasets sufficiently for reuse
or integration with other datasets. There is also the question of
data repository longevity - who funds the repositories for decades
into the future? Currently, some researchers now have to pay data
egress charges for downloading data from cloud providers
(Banditwattanawong et al., 2014; Linthicum, 2018). This
method presumably saves the data producers money in terms
of storing large datasets publicly, but the cost is somewhat now
presented to the consumer. This raises complex questions around
large data generation projects that also need to be studied
extensively for future impact, especially with respect to
reproducibility within publications. Moreover, access to the
raw data might not be enough, if the steps and other artifacts
involved in producing the processed data that was used in the
analysis are not provided (Pawlik et al., 2019). In addition,
corresponding authors often move on from projects and
institutions or the authors themselves can no longer access the
data, meaning “data available on request” ceases to be a viable
option to source data or explanations of methods. Restricted
access to an article can also affect reproducibility by requiring
paid subscriptions to read content from a publisher. Although
there is precedent for requesting single articles within cross-
library loan systems or contacting the corresponding author(s)
directly, this, much like requesting access to data, is not without
issues. Pre-print servers such as bioRxiv have been taken up
rapidly (Abdill and Blekhman, 2019), especially in the genomics
and bioinformatics domains, and this has the potential to remove
delays in publication whilst simultaneously providing a “line in
the sand” with a Digital Object Identifier (DOI) and maintaining
the requirements for FAIR data. In some cases, the sensitivity of
data might discourage authors from data sharing (Hollis, 2016;
Figueiredo, 2017), but this reason was only reported by a small
proportion of our respondents. Whilst there are efforts that
attempt to apply the FAIR principles to clinical data, such as
in the case of the OpenTrials database (Chen and Zhang, 2014),
they are by no means ubiquitous.

Data within public repositories with specific deposition
requirements (such as the EMBL-EBI European Nucleotide
Archive, ebi.ac.uk/ena), might not be associated or annotated
with standardised metadata that describes it accurately (Attwood
et al., 2009), rather the bare minimum for deposition. Training
scientists to implement data management policies effectively is
likely to increase data reuse through improved metadata. In a
2016 survey of 3,987 National Science Foundation Directorate of
Biological Sciences principal investigators (BIO PIs), expressed
their greatest unmet training needs by their institutions (Collins
and Tabak, 2014). These were in the areas of integration of
multiple data (89%), data management and metadata (78%) and
scaling analysis to cloud/high-performance computing (71%).
The aforementioned data and computing elements are integral
to the correct knowledge “how-to” for research reproducibility.
Our findings indicated that those who stated they had experience
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in informatics also stated they are better able to attempt and
reproduce results. Practical bioinformatics and data management
training, rather than in specific tools, may be an effective way of
reinforcing the notion that researchers’ contributions toward
reproducibility are a responsibility that requires active
planning and execution. This may be especially effective when
considering the training requirements of wet-lab and field
scientists, who are becoming increasingly responsible for larger
and more complex computational datasets. Further research
needs to be undertaken to better understand how researchers’
competence in computational reproducibility may be linked to
their level of informatics training.

Furthermore, for transparent and reproducible science, both
negative (or null) and positive results should be reported for others
to examine the evidence (Franco et al., 2014; Prager et al., 2019;
Miyakawa, 2020). However, there remains a perception that
researchers do not get credit for reproducing the work of others
or publishing negative or null results (Franco et al., 2014; Teixeira
da Silva, 2015). Whilst some journals explicitly state that they
welcome negative results articles (e.g., PLOSONE “Missing Pieces”
collection), this is by no means the norm in life science publishing
as evidenced by low, and dropping publication rates of negative
findings (Fanelli, 2012; Franco et al., 2014; Teixeira da Silva, 2015).
In addition, the perception that mostly positive results are
publication-worthy might discourage researchers from providing
enough details on their research methodology, such as reporting
any negative findings. Ideally, the publication system would enable
checking of reproducibility by reviewers and editors at the peer-
review stage, with authors providing all data (including raw data), a
full description of methods including statistical analysis
parameters, any negative findings based on previous work and
open source software code (Iqbal et al., 2016). These elements can
all be included within the interactive figure, such as by zooming in
on over data points to reveal more information on the data, pop-up
windows to give details on negative results and parameters and the
figure offering re-running of the computational experiment in the
case of executable documents. Peer reviewers would then be better
able to check for anomalies, and editors could perform the final
check to ensure that the scientific paper to be published is
presenting true, valid, and reproducible research. Some
respondents have suggested that if reviewers and/or editors were
monetarily compensated, spending time to reproduce the
computational experiments in manuscripts would become more
feasible and would aid the irreproducibility issue. However, paying
reviewers does not necessarily ensure that they would be more
diligent in checking or trying to reproduce results (Hershey, 1992)
and there must be optimal ways to ensure effective pressure is
placed upon the authors and publishing journals to have better
publication standards (Anon, 2013; Pusztai et al., 2013). The
increasing adoption by journals of reporting standards for
experimental design and results, provide a framework for
harmonising the description of scientific processes to enable
reproducibility. However, these standards are not universally
enforced (Moher, 2018). Similarly, concrete funding within
research grants for implementing reproducibility itself
manifested as actionable Data Management Plans (Digital
Curation Center), rather than what is currently a by-product of

the publishing process, could give a level of confidence to
researchers who would want to reproduce previous work and
incorporate that data in their own projects.

Respondents mentioned that there are word count restrictions
in papers, and journals often ask authors to shorten methods
sections and perhaps move some text to supplementary
information, many times placed in an unorganised fashion or
having to remove it altogether. This is a legacy product of the
hard-copy publishing era and readability aside; word limits are
not consequential for most internet journals. Even so, if the word
count limit was only applicable to the introduction, results and
discussion sections, then the authors could describe methods in
more detail within the paper, without having to move that
valuable information in the supplementary section. When
methods are citing methodology techniques as described in
other papers, where those original references are hard to
obtain, typically through closed access practices or by request
mechanisms as noted above, then this can be an additional barrier
to the reproducibility of the experiment. This suggests that there
are benefits to describing the methods in detail and stating that
they are similar to certain (cited) references as well as document
the laboratory’s expertise in a particular method (Moher et al.,
2015). However, multi-institutional or consortium papers are
becoming more common with ever-increasing numbers of
authors on papers, which adds complexity to how authors
should describe every previous method available that
underpins their research (Gonsalves, 2014). There is no
obvious solution to this issue. Highly specialised methods (e.g.,
electrophysiology expertise, requirements for large
computational resources or knowledge of complex
bioinformatics algorithms) and specific reagents (e.g., different
animal strains), might not be readily available to other research
groups (Collins and Tabak, 2014). As stated by some respondents,
in certain cases the effective reproducibility of experiments is
obstructed by numerical issues with very small or very large
matrices or datasets, or different versions of analysis software
used, perhaps to address bugs in analytical code, will cause a
variation in the reproduced results.

Effects on Technical Developments
Previous studies have provided strong evidence that there is a
need for better technical systems and platforms to enable and
promote the reproducibility of experiments. We provide
additional evidence that paper authors and readers perceive a
benefit from having an interactive figure that would allow for the
reproducibility of the experiment shown in the figure. An article
that gives access to the data, code and detailed data analysis steps
would allow for in situ reproduction of computational
experiments by re-running code including statistical analyses
“live” within the paper (Perkel, 2017). Whilst our study did
not concentrate on how these “executable papers” may be
constructed, this is an active area of development and some
examples of how this may be achieved have been provided
(Jupyter et al., 2018; Somers, 2018). We provide additional
evidence that paper authors and readers perceive a benefit
from having publication infrastructure available that would
allow for the reproducibility of an experiment. As such, the
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findings of this survey helped the development of two prototypes
of interactive figures (see Data and Code availability) and
subsequently the creation of eLIFE’s first computationally
reproducible document (Ghosh et al., 2017).

We also asked whether presenting published experiments
through interactive figures elements in online publications
might be beneficial to researchers, in order to better consume
research outputs. Respondents stated they could see the benefit in
having interactive figures for the readers of their papers and the
papers they read and being able as authors to present their
experiment analysis and data as interactive figures. Respondents
endorsed articles that include interactive elements, where access to
the processed and raw data, metadata, code, and detailed analysis
steps, in the form of an interactive figure, would help article readers
better understand the paper and the experimental design and
methodology. This would, in turn, improve the reproducibility
of the experiment presented in the interactive figure, especially
computational experiments. The notion of data visualisation tools
promoting interactivity and reproducibility in online publishing
has also been discussed in the literature (Perkel, 2018). Other efforts
have been exploring the availability of interactive figures for driving
reproducibility in publishing in the form of executable documents
(Ghosh et al., 2017; Ingraham, 2017; Rao et al., 2017; Jupyter et al.,
2018). Moreover, technologies such as Jupyter Notebooks, Binder,
myExperiment, CodeOcean enable the reproducibility of
computational experiments associated with publications,
provided by the authors as links from the paper. However, the
benefit of having the interactivity and availability of reproducing
experiments from within the article itself in the form of interactive
figures, is that the reader can stay within the article itself and
explore all the details of the data presented in the figure, download
the data, play with the code or analysis that produced the figure,
interact with parameters in the computational analysis workflows
and computationally reproduce the experiments presented in the
figure. This can enable the reader to better understand the research
done presented in the interactive figure. Despite the self-reported
perceived benefits of including interactive figures, the availability of
this facility would not affect the respondents’ decisions on where to
publish. This contradiction suggests that cultural factors
(incentives, concerns authors have with sharing their data,
attitudes toward open research) (Stodden, 2010; Federer et al.,
2015) play an underestimated role in reproducibility.

Despite the benefits, the interactive documents and figures can
provide to the publishing system for improved consumption of
research outputs, and that those benefits are in demand by the
scientific community, work is needed in order to promote and
support their use. Given the diversity of biological datasets and
ever-evolving methods for data generation and analysis, it is
unlikely that a single interactive infrastructure type can support
all types of data and analysis. More research into how different
types of data can be supported and presented in papers with
interactivity needs to be undertaken. Yet problems with data
availability and data sizes will persist - many studies comprise
datasets that are too large to upload and render within web
browsers in a reasonable timescale. Even if the data are available
through well-funded repositories with fast data transfers, e.g., the
INSDC databases (insdc.org), are publishers ready to bear the extra

costs of supporting the infrastructure and people required to
develop or maintain such interactive systems in the long run?
These are questions that need to be further investigated,
particularly when considering any form of industry
standardisation of such interactivity in the publishing system.
Publishing online journal papers with embedded interactive
figures requires alterations to infrastructure, authoring tools and
editorial processes (Perkel, 2018). In some cases, the data
underpinning the figures might need to be stored and managed
by third parties and this means the data, as well as the figures, may
not be persistent. The same argument is relevant to software
availability and reuse - publishers would need to verify that any
links to data and software were available and contained original
unmodified datasets. As datasets become larger and more complex,
and more software and infrastructure is needed to re-analyse
published datasets, this will affect how infrastructure will need
to be developed to underpin reproducible research. Incentives will
need to be put in place to motivate investment in these efforts.

Effects on Research Policy and Practice
We show that providing tools to scientists who are not
computationally aware also requires a change in research
culture, as many aspects of computational reproducibility
require a change in publishing behavior and competence in
the informatics domain. Encouraging and incentivising
scientists to conduct robust, transparent, reproducible and
replicable research, such as with badges to recognise open
practices should be prioritised to help solve the
irreproducibility issue (Kidwell et al., 2016). Implementing
hiring practices with open science at the core of research roles
(Schönbrodt, 2016) will encourage attitudes to change across
faculty departments and institutions. In general, as journal
articles are still the dominant currency of research in terms of
career development, measures of reproducibility and openness
may well become more important to hiring institutions when
considering candidates rather than publication placement and
impact. Indeed, DORA (sfdora.org) now has many signatories,
showing that research institutions are taking their role seriously
in changing the previous cultural practices of closed “prestigious”
science.

We believe that the attitudes highlighted in this survey reflect the
growing acceptance of open publishing of code and data, in at least
some disciplines. Some publishers are acknowledging that they have
a part to play in the improvement of reproducibility through their
publishing requirements, e.g., PLOS Computational Biology recently
announced that the journal is implementing a “more-rigorous code
policy that is intended to increase code sharing on publication of
articles” (Cadwallader et al., 2021). Google Scholar now includes a
measure of the number of publications in a researcher’s profile that
meet funder mandates for open access. Whilst, not a perfect system
(institutional repositories do not seem to be well covered currently),
this shows that even search engines that are heavily in use by
researchers to find and consume research outputs are trying to
both adapt to cultural changes and automate the presentation of
open reproducible science as a goal for researchers. Our survey
reflects movements toward open scholarly communications and
reproducible academic publishing that are being put into practice.
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Further work in this area should include surveys to quantitatively
and qualitatively assess how these changes and developments in
policy and practice are having an effect on the research culture of
reproducibility in the life sciences.

Another potential solution to the reproducibility crisis is to
identify quantifiable metrics of research reproducibility and its
scientific impact, thus giving researchers a better understanding
of how their work stands on a scale of measurable
reproducibility. The current assessment of the impact of
research articles is a set of quantifiable metrics that do not
evaluate research reproducibility, but stakeholders are starting
to request that checklists and tools are provided to improve
these assessments (Wellcome Trust, 2018). It is harder to find a
better approach that is based on a thoroughly informed analysis
by unbiased experts in the field that would quantify the
reproducibility level of the research article (Flier, 2017). That
said, top-down requirements from journals and funders to
release reproducible data and code may go some way to
improving computational reproducibility within the life
sciences, but this will also rely on the availability of technical
solutions that are accessible and useful to most scientists.

Opinions are mixed regarding the extent and severity of the
reproducibility crisis. Our study and previous studies are
highlighting the need to find effective solutions toward
solving the reproducibility issue. Steps toward modernising
the publishing system by incorporating interactivity with
interactive figures and by automatically reproducing
computational experiments described within a paper are
deemed desirable. This may be a good starting point for
improving research reproducibility by reproducing
experiments within research articles. This, however, does not
come without its caveats, as we described above. From our
findings and given the ongoing release of tools and platforms for
technical reproducibility, future efforts should be spent in
tackling the cultural behavior of scientists, especially when
faced with the need to publish for career progression.
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(2018). The Galaxy Platform for Accessible, Reproducible and Collaborative
Biomedical Analyses: 2018 Update. Nucleic Acids Res. 46 (W1), W537–W544.
doi:10.1093/nar/gky379
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A.2 Survey Questions and Answer Options

Knowledge and attitudes among life scientists towards

reproducibility within journal articles. Survey Questions and

answer options. Developed by Evanthia Samota, Dr Robert P.

Davey. Earlham Institute, University of East Anglia, United

Kingdom.

1. How often do you encounter difficulties with working with

bioinformatic analysis tools (that are not your own)? (Problems

such as: installing, configuring, running the software, and working

with command line software).

• Never

• Rarely

• Sometimes

• Often

• Very often

• N/A

2. How difficult is it to source (or access) the data presented in

published papers?

• Very difficult

• Difficult

• Neither difficult nor difficult

• Easy

• Very easy
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• I do not seek to source or access the data presented in

published papers

3. What difficulties have you encountered in accessing the data

described in published papers? Select all that apply to you.

• Privacy reason (patients’ medical data)

• Commercial sensitivity around the data (e.g. pharmaceutical

companies’data that could lead to the production of a drug)

• Data not available at publication

• Authors cannot be reached or are unresponsive to data

provision requests

• Data is too large to be transferable

• N/A

4. How are you currently sourcing the data (if applicable)? Select all

that apply to you.

• Data is readily available through a link from the paper

• Data is available in a public database

• I contact the author(s)

• N/A

• Other (please specify): free response

5. What is your current understanding of the reproducibility of

experiments? Please select any that apply. Should you wish to add

any additional information, please add it to the “Other”box

(only available in the eLIFE survey).
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• If the experiment was performed by another laboratory, the

same or similar results are produced

• Using similar materials, reagents, and methods, reaching the

same conclusions

• Running and analysing similar datawith the sameworkflow and

getting similar results

• The original authors or others running the same data with

precisely the same workflow and getting the same results

• Other (please specify) as an open comment box.

6. Have you ever tried reproducing any published results? Please

select the answer that applies best to you (only available in the

eLIFE survey).

• Yes, I have tried reproducing published results, and I have been

successful in producing exact or similar results

• Yes, I have tried reproducing published results, but I have been

unsuccessful in producing any results or similar results

• No, I have never tried reproducing any published results

• It is not important to reproduce other people’s published

results.

7. In your opinion, what could be done to make published research

more reproducible? Select all that apply to you (only available in

the eLIFE survey).

• The authors provide the raw data and a link to it through the

paper
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• The authors provide the source code of any custom software

used to analyse the data and the code of the software is well

documented

• The authors describe all methodology steps in detail, including

any formulae analysing the data

• Other (please specify)

8. When thinking about interactive figures, what comes to your mind?

Please describe what you understand of what an interactive figure

to be, its features, and where you have seen such a feature before,

if applicable.

• Free response

9. An interactive figure is a figure within a paper that is dynamic and

becomes“live”when the user interacts with it and where the data

displayed changes according to various parameter options. Which

of the following features of an interactive figure tool would be good

to have? Please rank them in the order of preference, where 1 is the

most preferred feature and 11 is the least preferred feature.

• Display the altered figure (after having chosen different

parameters) with different colours, fonts etc.

• Display arrows that point out any subtle changes in the figure

(after changing some parameters)

• Easy to manipulate (play around with)

• Easy to define parameters (that would change the image of the

figure)

• Have many parameters to select from a “how to use the tool”

link, pop­up window
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• A forum/comment section for readers and authors to discuss

their conclusions from interacting with the figure

• A symbol that would link to the raw data, metadata and

supplementary data related to the figure

• Import data option

• Export data option

• Link to the source code that builds the interactive figure

10. What other features an interactive figure could have that were not

mentioned in the previous question?

• Free response

11. Do youperceive a benefit in being able to publish interactive figures?

Please answer the sub­questions below.

• Do you see a benefit to yourself in publishing Interactive

figures?

• Do you see a benefit to the readers of your papers?

• Do you see a benefit to yourself in having Interactive figures

available in papers that you read?

– Definitely, not

– Somewhat not, neither yes nor no, somewhat yes,

definitely yes

12. Does the provision or option of an interactive figure in the paper

affect your decision in choosing the publishing journal or

publisher?

• Negatively
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• Less likely

• Just as likely

• Likely

• Positively

13. Have you heard of the term computationally reproducible data, and

do youunderstandwhat the termmeans? If answeredyes or unsure,

please explain what you understand from the term.

• Yes

• No

• Unsure

14. Would you benefit from being able to automatically reproduce

computational experiments, or other analyses (including statistical

tests) described within a paper?

• Reproduce the computational experiments (i.e. follow the

workflow of the authors)

• Reproduce the statistical analyses

• Be able to interact and manipulate parameters and options

within the computational analysis workflow

– Definitely, not

– Somewhat not

– Neither yes nor no

– Somewhat yes

– Definitely yes
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15. How often do you work with bioinformatic analysis tools (e.g.

assemblers, aligners, structure modelling)?

• Often

• Rarely

• Never

• Free Response, if it applies: Please specify the nature of the

tools you use (e.g. assemblers, RNA­Seq analysis tools,

stochastic modelling tools).

16. Have you received any of the following training? Training whether

formal or informal (training through a colleague etc.).

• Bioinformatics

• Computer Science

• Statistical

• N/A

17. Which of the following type(s) of data do you work with? Select all

that apply to you.

• Biochemistry

• Biophysics

• Computational biology (e.g. stochastic modelling; machine

learning)

• Epigenetics

• Genomics

• Immunology

• Population/epidemiological
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• Proteomics

• None

• Other (please specify)

A.3 Free Text Answers to Survey Questions

Knowledge and attitudes among life scientists towards

reproducibility within journal articles. Survey Questions.

Developed by Evanthia Samota, Dr Robert P. Davey. Earlham

Institute, University of East Anglia, United Kingdom.

Free text responses from question 5: What is your current

understanding of reproducibility of experiments?

• Rawmaterials (testing differentmice, testing different DNA samples

from humans) with the same methodology and coming to the same

conclusion.

• Most of the time you get similar results, unless the original paper

obviously lacked controls or was in a [perceived low quality] journal.

• There is technical reproducibility and biological variability to define.

At least three biological replicates of the whole protocol is required

to derive statistical significance.

• 1. In my opinion, the reproducibility of an experiment starts by

being able to get the same results in a lab by exactly repeating the

same method and using the same materials, etc; but it should also

be possible to reproduce it in a different laboratory even when

small changes are introduced in terms of reagents, materials or
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equipment. 2. ”The original authors or others running the same

data getting the same results” as a statement that describes

experiment reproducibility because although I would expect that

option to be valid for a reproducible experiment, I do not think it is

conclusive by itself, not only the analysis of the data should be

reproducible.

Free text responses from question 7: In your opinion, what

could be done to make published researchmore reproducible?

• Ease getting funding to reproduce published results and opportunity

for publication.

• Raw data may be in the form of large files in a proprietary format

(e.g. data frommass spectrometers) and can require significant pre­

processing before they are reported in a tabularised format. For a

variety of reasons, I think it’s impractical to require links to true raw

data.

• Strict word counts in publications limit the amount of detail in

methods sections. Sometimes moving methods to “supplement”

can help with this. But in general I think people don’t want to waste

discussion and results space with over describing methods. Word

counts should count only for Intro­Results­Discussion, and authors

should be encouraged to put in as much detail as possible in the

methods section.

• A main problem for open sharing of data is storage space! Who will

pay for it when you are dealing with very large amounts of data? E.g.

terabytes.

• Authorsmust publish result with significant intrinsic reproducibility
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(n sample high enough and independent experiments).

• Authors provide better descriptions of what the data is. For

example, when depositing RNA­seq samples in NCBI they

described in detail what each sample is and this description

matches to the samples mentioned in the manuscript. This is

frequently not the case!

• Methods are usually too brief in papers e.g. experiments performed

as per (8), which in turns references further back. Experiments

change, but methods sections do not. We’ve had journals tell us to

make our methods briefer.

• Source code should definitely be available. Whether one can

understand how it was written or how to use it is another matter

though.

• Authors provide data analysis files and output.

• I have had some successful and some unsuccessful attempts to

reproduce published results in plant biology. I think part of the

“problem” is that we are investigating fine details of very complex

living systems, and I suspect that seemingly minor differences in

environmental conditions between experiments can have big

impacts on some of the components of the system, even if there are

no obvious visible effects at the whole plant level.

• Due to word limits, methods may need to be in supplemental

materials, but still should be presented in detail. Methods citing a

prior paper can be really aggravating as sometimes in my field I

find the prior paper was done on a different animal (slice

electrophysiology in mice vs rats) or has other differences that

make it unclear if methods were adjusted for changes in

preparation or not. Additionally, sometimes the original references
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can be hard to obtain, especially when the cited paper cites another

paper in its methods and so forth. It would be more useful to

describe methods in detail, and then say these methods are similar

to the methods in the following references, to document the lab’s

expertise in a particular method.

• Depending on the type of analysis, a more detailed description of the

methodology might help. But peer review is key IMAO.

• Authors only publish results when they are confident that anyone

following their methods will get the same results: like a good cook

book.•Generally, problems with reproducibility arise from highly

specialized methods and reagents that are not readily available. If

only one lab has access to cell lines, antibodies, or the

electrophysiology expertise (for instance) to do the experiments, it

can become very burdensome and difficult to independently

reproduce results. Ideally, key evidence for a proposed model from

a paper can be validated independently through the use of widely

available and standardised techniques, but this is the exception

rather than the rule. More importantly, as a separate cultural issue,

the pressures for graduate students, postdocs and faculty to churn

out large quantities of “high impact” papers also creates awful

incentives to take ill­advised shortcuts or outright fabricate and

obfuscate. Simply put: the competition for limited jobs creates a

cut­throat environment that is toxic to intellectual honesty and

academic integrity. This problem has no easy solution and will

continue to get worse.

• In some cases, computer hardware might have an influence. For

example, numerical issues with very small or very large numbers

will vary.

• I think raw images would be especially helpful when reproducing co­
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localization with fluorescence microscopy.

• A small percentage of funding is set aside for testing the

reproducibility of data, to be awarded to grantees who need to

know that the data are reliable before going into their own project.

• Provide more specific guidelines about how to describe procedures.

Providing code gives a technical description, but we also need a less

technical summary of the intention of each step in the analysis so

that we can judge whether the operations performed actually did

what they were supposed to. Having some recommended structure

for how analysis should be described would be a way to potentially

achieve both of these aims.

Free text responses from question 8: When thinking about

interactive figures, what comes to your mind? (please

describe what you understand of what an interactive figure is,

its features, and where you have seen such a feature before, if

applicable).

eLIFE authors

• Include plots with individual data points and the ability to have the

option to add additional data coming from the supplementary data

of the paper.

• The user can change the information being plotted or mouse over

specific elements to gain more information.

• Interactive is a figure in which you can either zoom in on parts of an

image to get additional information about the data and/or to change

the appearance of a figure by changing parameters.
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• Figure, which can be used to show different parameters and options.

• Options to set different axis and scales and choose which data to

display together. A pop­up or navigation through figure segments

to better see the variation in“noisy” or dense data.

• Where one can click to expand certain aspects of the figure.

• Allows you to select subsets and zoom in and out additional info

appearing when selecting specific points, for example.

• Where you can change the figure when viewing it.

• Data values used to make graphs and plots should be available so

new analyses can be performed, or data can be combined.

• A figure with links to the original data?

• I would think about a figure in which by “clicking” (or something

similar) one could get raw data (like raw scan image of a gel or a table

with all the data from an experiment).

• Perhaps a figure that allows to zoom in particular aspects of it and

give information on such detail. In general, a figure that personalises

the information given based on the reader’s interest.

• A figure that can be accessed dynamically going through the data and

theway theywere analysed, with the possibility of accessing rawdata

and re­analyse them in alternative ways.

• Interactive figures should allow you to navigate to the raw data that

lies behind any data point in a plot.

• GIFs of animations or slideshows that point to where readers should

focus on step by step.

• Clicking on a figure brings up more data.
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• Figure with a feature that allows additional layer of information

superimposed on the image (upon mouse hover, e.g.).

• I don’t really know. Perhaps hovering over a graph and having the

actual values appear?

• Interactive figuresmean access to the source data to include/exclude

the desired information by the user.

• Links to primary data.

• Move mouse over figure and pop­up boxes appear to highlight

specific information.

• I think it is a figure with which the reader can interact; maybe there

are links in the figure that can bring you to specific parts of the paper

or provide you with further information about the data.

• Interactive figure = image/plot can be manipulated by the reader to

change some variables/parameters (e.g. threshold value).

• Ability to change the display (e.g. of the axes); click on bars or data

points and have numerical data pop up; ability to click on

numerical data and see the underlying raw data; click on axes for a

longer explanation of what is shown, including methodology.

• A figure in an electronic journal or book allows the reader to

manipulate that figure and gain a better understanding of the trend

or concept defined by the figure.

• It would be a figure where you can select or deselect either

cases/subjects or conditions.

• Structures that have immediate zoom in­out­rotate functions or

plots that you can play with the axes.
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• I have never seen interactive figures in an academic paper, but I can

imagine being able to remove groups from plots to more easily

compare relevant data. Or, in a qPCR experiment, clicking on a bar

graph might load a spreadsheet document with raw data, primers

use and analysis. I have seen inappropriate primers used in

qRT­PCR figures in high­profile journals. These things are seldom

checked by reviewers who are (correctly) more interested in

checking the validity of the reasoning and approaches in the overall

manuscript.

• That would be great to interactively increase different parts of the

figures (plots, curves...etc.) and the possibility to pick up data points

and see raw data behind them.

• Figure that gives all information to reproduce the data and

understand what the result means.

• The possibility to go through the different parts of a 3D figure (a

brain with activations for example). Also, the possibility to click on

the figure and access the data that have produced the result. I do

not remember where I have seen it.

• An interactive figure is a figure that is dynamic, and the reader

interacts with it.

• For structures, 3d representation.

• A figure where one can check boxes to include/exclude certain

reps/results with the plots/stats updated in real­time.

• An interactive figure allows users to set certain parameters (e.g. a

range of years, particular countries/states/districts) and view the

results that are of interest to them. These figures might be either

static or dynamic. Our group has produced a website that allows
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this for our results, and this has increased engagement with the

media, who have embedded our dynamic visualisations in some of

their stories.

• Images that can be adjusted or overlaid on the web page, or graphs

that can be rearranged or providemore data when clicked on. I don’t

think I have encountered an interactive figure apart from movies.

• An interactive figure is something that you will be able to change.

Most usefully, the interactive figure will let you see and work on the

raw data on which the figure is based.

• Someone can pick an area of the figure getting extra information.

• A figure that can be modified directly in the online version of the

publication using the data provided by the authors.

• Figure with direct links to methodology and raw and supplementary

data.

• When/where applicable (a proposed model, or large dataset with

outliers), the ability to assess the effect of input parameters and

inclusion of outliers into the model behaviour.

• An interactive figure is a figure within a paper that is dynamic and

becomes live when the user interacts with it and where the data

displayed changes according to various parameter options.

• An interactive figure should provide more detailed information

about the different figure parts if needed. It should give the reader

the possibility to visualize the raw data submitted by the authors in

an unbiased but still easy­to­understand manner.

Which software or platform to use to display the interactive

figure
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• Shiny in R.

• Stuff like Shiny in R where you can play around with a limited set of

parameters. It’s an interesting toy, but ultimately a real

examination of the data is going to need access to the full raw data

to put it into a more powerful environment.

Responses of the NBI participants

No Opinion

• n/a

• n/a

• I don’t know what is an Interactive Figure.

• I don’t know what that is.

• I have never made nor used one.

• No idea.

• I have never come across an interactive figure and I’m not sure what

that even means.

• I have no prior knowledge concerning interactive figures.

• I have no idea what this is or how it relates to experimental

variability.

• Did not see any in the publications I am looking at.

• I have never seen such a thing.

• I don’t need them.
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Data and parameters related

• Being able to access the data underlying the figure.

• I have not come across this before, but being able to click on figures

to gain more data comes to mind.

• It is not quite usual to have such figures in biology, but to me, it is

mainly associated with “clickable models” such as this one:

http://labs.biology.ucsd.edu/schroeder/clickablegc/pages/closure.html

• I have not seen such a figure. I imagine it to be a figurewhere you can

select the different panels to obtain detailed figure legends and links

to the relevant text section or other figures as well as to the original

data.

• I think of interactive figures mainly in the context of online news

articles, where additional features of a dataset become visible when

interacting with them (e.g. given a mouse­over event).

• Roll­over information and clickable element.

• Figures whose format can be modified by readers and whose raw

data can be downloaded by the readers.

• A graph where when you hover on a point, the raw value is

displayed. A chromatogram where if you click on a peak, the

underlying spectral data might be displayed. A metabolic pathway

where when you click on an arrow, data about the enzyme or

metabolite are displayed, or further details of measurements on

that piece of metabolism are displayed. A result of a mathematical

model, where there might be sliders and text­boxes where

parameters can be specified whose results are then displayed in the

figure; this is often done in learning tools/interactive experiments

in websites.
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• Figures you can click on to get more details.

• Only ever seen molecular structures that can be moved around an

axis to see the structure better. Not sure what else might be wanted,

except perhaps a model of a system. However, being able to pick

out a particular gene in a big dataset (e.g. from expression cluster

in RNA seq data) by just typing in a would be the only thing I could

imagine really wanting.

• See how figures change if you alter the parameters that were made

to produce them, or by leaving certain data out.

• I understand there is a piece of code and piece of data“behind” the

figure, which I can see, and I can adjust the data (parameters, inputs)

to see the difference rendered in the output. Ideally, I would also be

able to play with the code itself.

• Figures that allow user input to access more details.

• Changing axis, datasets, plotted functions, dimensionality,

rotations, colours, scales etc.

• For me an interactive figure is a figure that automatically changes

when you change an option, the data or anything. You don’t have to

reload it every time.

• Possibility to plot the same data in different ways.

• In the context of this survey, I think that a useful interactive figure

would be one that could be linked online to the raw dataset that it

represents. I have never come across this type of figure.

• I’d guess an online figure, where the data can be viewed interactively.

I have not seen one before.

• Javascript, plots in which parameters can be changed and the view

of the graph changes.
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• I have not used interactive figures, but I would imagine a Circos­style

plot that presents data at each level at which the user zooms into the

figure. This would require re­plotting sliding windows to increase

resolution.

• An interactive figure, for me, is a way of presenting huge datasets by

exposing dynamically only a user­requested fraction. An in­house

example could very well be the ExpVip website by Ricardo Ramirez,

or related the sleuth interface to kallisto.

• Point at a graph read off a value.

• A dynamic figure where the user can select different parameters

and the figure changes depending on what you want to see.

Which software or platform to use to display the interactive

figure

• D3.js, An interactive I think allows you to click on it with a mouse,

pan around (either to see other views of a 3D surface, or to focus

more on a certain section), zoom in/out, subset. These can be

created in D3­like applications such as plotly, and there are

numerous examples on data science blogs etc.

• D3.js kind of figure, where you can interact with the data points to

make them more relevant to your interests.

Miscellaneous

• The same comes to mind as in the description of question 7. Seen it

before in a paper I reviewed and I am currently producing something

similar.
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• Animation.

• A figure that is not static, but can be viewed in many dimensions.

• Figure legend will be enough to explain the whole story in figure and

I don’t have to go and read the article to understand it.

• Generally annoying poorly used graphics that don’t enhance my

understanding. Want: intuitive visual interfaces with complex

datasets.

• Videos, only ever seen them in eLIFE. There are others suggested

as produced by the R package Shiny, where axis can be changed,

parameters of models altered. However, I’ve never seen them used.

• I don’t know. A moving or rotating 3D protein structure?

• I am not sure what they are, maybe figures available online only.

Free text responses from question 10: What other features

could an interactive figure have that were not mentioned in

the previous question?

eLIFE authors

Manipulate the view of the figure

• Ability to alter figures to show different cohorts (colours, line/bar

styles, etc.).

• View of the original picture with no adjustment.

• Change the format e.g. Bar chart to a line graph.

• The option to customize the figure in terms of graphic design.
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• Molecule or protein structures rotate zoom functions.

• When selecting a part of a figure (e.g. a diagram or a fluorescence

picture) or“hovering” over it with the pointer, show the applicable

part of the figure legend or at least some supporting information

(e.g. how often was the experiment repeated; abbreviations etc.) in

a pop­up window.

Analysis related

• Ability to test the results displayed in the figure.

• Statistical toolbox for verifying results presented and/or being able

to run different statistical testing procedures on the same data.

• A log of what parameters were changed by the user.

• Possibility of zooming an area of the picture.

• The ability to view statistical “cleaning” or treatment of the raw

data (removal of outliers), with formulae available for any data

transformations that occurred.

• Link to methodology.

• Link or mouse­over to the methodology used to obtain raw data and

process the data to the form presented.

• Usually with large parameters themodels become quite complex and

difficult to interpret. So always our aim should be to have a simplistic

model which a beginner can understand and adapt to his research

quite easily.

• If it’s a graph, the option to change for example the “Y” axis by

clicking on it to plot the data according to different parameters.
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Comments section to provide more insights

• If interactive figures are included, there should be an opportunity

for authors to describe/recommend alternative analyses and

plotting in the published text (i.e., not just in an online forum post

publication). Also, the forum/comment section option needs to be

carefully thought out since comments will not be peer­reviewed to

the same extent that the manuscript has. There may be conflict of

interest issues, unqualified negative comments, and so forth.

• In a perfect world, a link to other papers with similar experiments

and data.

• A section for the authors to explain why they initially used

preferential sets of parameters to analyse and/or display their

results.

Data related

• Possibility to import data or include track/view from public

repositories, e.g. ucsc or washu genome browser.

• To me the most useful aspect of an interactive figure would be to

show the underlying distribution of the data, and/or raw traces of

the data. This helps provide more insight that is often hidden in the

averaged final figures.

• Ways to access the data behind parts of the figure (identify a gene on

mouse over, show specific data values for selected points etc).

• A figure that allowed visualization of each series in a dataset

independent of the other series, allowed the bar + SEM to be

replaced by scatterplots, etc.
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• Labels for data points that appear when the user hovers over the

point.

Unclassified or cannot recommend

• What above seems comprehensive

• The options in q9 didn’t work in my browser.

• 24 responded either as no extra features than thosementioned in the

previous questions, NA, didn’t know, or unsure, or didn’t knowwhat

is the point of having extra features for a pop­up reference literature

for example.

• Interactive figure.

• I’m afraid I can’t imagine how informative any of this would be. It

just seems likely to add confusion.

• None.

• I am concerned that this would complicate further the publication

process: it should be optional but strongly recommended.

• I ordered last question points, but consider my ordering

meaningless: all points are equally important.

• Ability to export the figure as a GIF for presentations.

Free text responses from question 13, 137 answered question

13 of which 47 provided free text responses explaining their

understanding of the term “computationally reproducible

data”
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eLIFE responses, who answered,“yes that they know the term’

s meaning”

• Data generated by computational models.

• Within the FAIR principle.

• Computational workflows should be easy to reproduce, meaning the

same data produces the same output. But software differences can

make this not the case.

•“Computationally reproducible data” means that the computational

model is specified in sufficient detail that someone else building the

model will get identical results. “Reproducible data” with the

adjective“computationally” prepended is less clear to me.

• Rerunning the same analysis pipeline yields the same results.

• Using the same starting data and the same software (original version

+ any custom scripts) you arrive at the exact same results.

• Being able to reproduce the date [data] in your own computer.

• To be able to reproduce the results obtained by others when using

the same computational tools.

• Where you get the same results when a different person analyses it.

• We deal with cell signalling regulatory mathematical models and

have adapted a couple of previously published models and

reproduced computational data although at certain times it needs

curation/parameter fitting of the model based on the additional

parameters you modify.

• For example ­if I take a RNAseq dataset (for instance) and run it

through an analysis pipeline (say DESeq) I should be able to draw
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the same conclusions as other people who have used the same data

and run it through the same pipeline. Problems with reproducibility

might be due to software version numbers, exact parameters used,

or software bugs.

• Data or estimates should be the same, whatever system/software is

used to analyse them.

• Computational data performedwith similar conditions should result

reasonably similar and lead to similar conclusions.

• Answered in a comment to the previous question. [previous question

free­text response of the participant: Ways to access the data behind

parts of the figure (identify a gene onmouse over, show specific data

values for selected points etc).

• Computational data is reproducible when multiple researchers, on

different or similar computational platforms, can arrive at the same

analysis/conclusions and said analysis is not affected by software

packaging, implementation, researcher documentation, etc.

NBI responses, who answered“yes that they know the term’s

meaning”

• Reproducing the data results of a computational experiment (given

that this is achievable as some software will, of course, use

heuristics).

• If I understand this rather badly worded question, you’re asking

what reproducible data is from a computational point. To me, it

means data that would be identical every time you produce it.
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• Being able to use the same sets of workflows and arrive at a close

enough result with the same data.

• A study is reproducible if all of the code and data used to generate the

numbers and figures in the paper are available and exactly produce

the published results.

• A result which I can reproduce by myself through using the original

author’s raw data and code.

• Running a process on a dataset and getting the same answer twice.

• It means that the paper provides ALL the information needed for

reproducing the analysis. It includes the workflow, software (with

version and options), the code, statistical analysis, figure making.

• Providing some means of automatically re­running all

computational analyses i.e. Jupyter notebooks, or the R equivalent

(forgot the name), or even a very comprehensive bash script.

• Able to reproduce the same results using the same input data and

workflow.

• Same data, same pipeline, same results. Docker containers,

versioned workflows, VMs.

eLIFE free­text responses of participants who answered

“unsure”of the meaning of the term “computationally

reproducible data”. Those denoted with an asterisk * are the

answers we deemed as correct knowledge of the term

• Modelling­based analysis, using certain measurements as input

and predicting system behaviour based on parameters assessed
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from those measurements. Or statistics­based analysis where

certain thresholds govern the selection of significant results.

• *Given the exact same raw data, you are able to perfectly reproduce

the results of the analysis performed?

• *Should“computationally reproducible data” all be italicized? Am

I hearing the term“reproducible data” in a computational way?

• *I think it means that running the same or similar dataset through

some computational paradigm produces the same or similar results.

• Concern result that is processed and generated by algorithms?

• *Mathematical models that can be reproduced by using the same

parameters.

• *Having the same raw data, slightly different computational

methods of analysis giving similar results.

• *I think this refers to the reproducibility of all the analyses that are

done with software and the data that arises from those analyses.

• *Just as for non­computational data, reproducibility should bewhen

using the same set of data, and the same code, by a different group,

results are similar. One can also like that, in the case of homemade

software, that similar results could be obtained when using publicly

available software, provided that any parameters used in the analysis

are the same.

• *I’d guess it means that given the raw data I’d be able to compute

results identical or very similar to those provided by the authors.

Well, this is ambiguous as“reproducible data” is italicized, making

you think this is the key term, but the adjective“computationally”

must be critical too. Recommend italicizing “computationally
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reproducible data.” I’m not sure what to make of this.

NBI free­text responses of participantswhoanswered“unsure”

of themeaningof the term“computationally reproducibledata”

. Those denoted with an asterisk * are the answers we deemed

as correct knowledge of the term

• *Getting similar resultswhen rerunning the analysis. Getting similar

results when using different approaches for the data analysis.

• Meaning repeating an in­Silico analysis of the data?

• *I believe it is providing complete and coherent data sets and data

treatment protocols that are clear and provide consistent results.

• *To me it means that I have enough information about the

data­handling applied to a data­set, and enough access to any tools

used to handle the data, to reproduce exactly the output that

someone (possibly me!) has already created from that data­set

(example: if someone tells me they’ve carried out a principal

component analysis on a data­set, and they tell me what sort of

scaling and mean­centring they’ve done, I should be able to

generate a PCA plot that is identical to theirs, ignoring, in this case,

the fact that the sign of the loadings is arbitrary between

algorithms, so axes might get flipped). I’m a chromatographer, so a

lot of the data handling is using proprietary software from the

instrument manufacturer (which is highly validated; open­source

chromatography is rarer because regulated labs are never going to

adopt something that isn’t highly validated). This means that

question 12 is irrelevant to me because I won’t be able to reproduce

others’ results unless I use the same software as them, but it is
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important to me that I can reproduce results we generated in our

own lab, using the software we have. There is no way we’d be able

to do this with data in a paper (until papers come with an

embedded chromatography analysis system...probably not in my

lifetime sadly).

• I don’t see what you mean by “computationally”. For me

“reproducible data” is data that is likely to be gathered again by

repeating the experiment.

• Data that is easy to access and use reproducibly in line with a specific

methodology or pipeline.

• *The ability to come up with the same results as a published study

by using the same data and workflow that is described in the paper.

• *Being able to have access to a raw input dataset and be able to put

it into an open access analysis pipeline to recreate a figure?

• *Running the sameprogramandparameterswill give similar results.

• *The data and process presented in a paper should be reproducible

by any interested reader; so, the data should come with: ­a

description of the system setup ­a description of each step of the

analysis where “description”, above, encompasses also ancillary

data such as configuration files, glue scripts, and hopefully a

pipeline manager script that allows going from point 0 to the end of

the analysis in an automatic way.

NBI free­text response of the respondent that replied “No,

don’t know the meaning of the term computationally

reproducible data. “No”responses were not asked to provide

a free­text explanation
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• But it is guessable: scripts which can be run again to generate data

which recapitulate the results.

Free text responses from question 15: What type of

bioinformatic tools were used by the participants of the survey

(36 responses)

• DNA Sequences, RNA­Seq analysis.

• A variety of tools to analyse metabolomics data.

• Transcriptomics (filtering, alignment, differential expression),

operation on genomic intervals, data integration.

• Spades, STAR.

• RNA­Seq alignment, False Discovery Rate Analysis, Monte Carlo

Simulations.

• Sometimes RNA­Seq tools.

• RNAseq, domain predictions, coding predictions, aligners,

sometimes modellers.

• Structural bioinformatics and modelling tools, docking, molecular

simulations.

• RNA­seq analysis, ChIP­seq analysis, statistical analysis with R.

• Protein modelling.

• Proteomics software.

• Assemblers, 3D protein viewers.

• RNA­Seq, ChIP­Seq and Hi­C.
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• Neural networks modelling tools.

• Sequence and NGS analysis.

• Genome browsers and databases, RNA­seq, ChIP­seq.

• Proteomics processing tools, GO terms, KEGG< String etc.

• Sequence alignment.

• ChIP­seq and RNA­seq tools.

• Metagenomic tools (Metaphlan, HUMANN, qiime, mothur,

PICRUSt, etc.).

• DNA/RNA/protein sequence analysis tools, statistical programs.

• Aligners, homology BLAST.

• Network analysis tools, statistical tools.

• Assemblers.

• Ensemble, NCBI BLAST.

• Perseus ­mass spec analysis tool.

• Alignment protein, RNA, DNA sequences; image analysis; tracking,

etc.

• Structure modelling tools.

• RNA­seq read assembly, aligner, read count quantification,

differential expression.

• Aligners, mostly. I do very basic bioinformatics on a fairly regular

basis and have done some more demanding work on occasion

(microarray and RNAseq analysis).

• Proteomics tools.
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• I did in the past ­my experience must be way out of date by now!

• RNA­seq, mutation analysis, models.

• Structural modelling (e.g. Rosetta, Modeller) Molecular dynamics

Kinetic Monte Carlo.

• All sorts of stuff. All of the above and more.

• RNAseq analysis; microbial community analysis; (meta)genomic

analysis, phylogenetic tools.

A.4 Supplementary Figure 1

Figure A.4.1: Responses to question 6 (which was only available for the eLIFE
authors’ survey as it was added after the NBI study was distributed). The
percentage of respondents that attempted to reproduce published results and to
what extent they have been successful or not. The figure has been reproduced
with permission from Samota and Davey (2021)

.
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A.5 Supplementary Table 1



 

*Fisher Exact test, more than 20% of cells had expected frequencies lower than 5.  

 

 

Number  
(% of 
total 
sample) 

Success and willingness in reproducing any published results 

Variable  
Successful 
(% within 
variable) 

Attempted but 
unsuccessfully 
(% within 
variable) 

Never tried 
(% within 
variable) 

Not important 
to reproduce 
(% within 
variable) 

P-value 

Training (n = 90)       

Bioinformatics  42 (46.7) 26 (61.9) 10 (23.8) 5 (11.9) 1 (2.4) 0.758* 

Not trained in Bioinformatics 48 (53.3) 28 (58.3) 11 (22.9) 5 (10.4) 4 (8.3)  

Computer Science 33 (36.7) 21 (63.6) 3 (9.1) 7 (21.2) 2 (6.1) 0.018* 

Not trained in Computer 
Science  

57 (63.3) 33 (57.9) 18 (31.8) 
3 (5.3) 3 (5.3)  

Statistics 71 (78.9) 42 (59.2) 16 (22.5) 9 (12.7) 4 (5.6) 0.937* 

Not trained in Statistics  19 (21.1) 12 (63.2) 5 (26.3) 1 (5.3) 1 (5.3)  
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This table appears in my first author publication (Samota and Davey,

2021) and is printed here with permission.

A.6 Supplementary Table 2

Frequency using bioinformatics tools and ability and

willingness to reproduce experiments: a research survey.

Frequency of using bioinformatic tools

Success and willingness in reproducing

any published results (N=90)
Often Rarely/Never

Successful 19 35

Attempted but unsuccessful 7 14

Never tried 3 7

Not important to reproduce 1 4

This table appears in my first author publication (Samota and Davey,

2021) and is printed here with permission.
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A.7 Supplementary Table 3

The profiles of individuals in the eLIFE survey that replied

“No, have never tried reproducing any published results”in

Question 6 and how the respondents replied in each of the

questions 13, 15, 16, 17. From themanuscript“Knowledge and

attitudes among life scientists towards reproducibility within

journal articles: a research survey.”(Samota and Davey,

2021)

Have you heard the term

“computationally reproducible data”,

and do you understand

what does the term mean?

(If answered yes, or unsure,

explanation of term means) (q13)

How often do you work with

bioinformatics analysis tools

(please specify the nature

of the tools you use)? (q15)

Have you received any

of the following training?

Formal or informal

(through a colleague etc.).

Types of data they work with

No Rarely
Bioinformatics,

Statistical

Biochemistry,

Genomics

Yes (did not give any comments to

explain what the term means)
Rarely

Bioinformatics,

Statistical

Biochemistry,

Computational Biology,

Genomics

Yes (did not give any comments to

explain what the term means)
Often

Bioinformatics,

Statistical

Computational Biology,

Genomics

No Never
Computer Science,

Statistical

Immunology,

Population/Epidemiology

No Never Statistical

Biophysics,

Computational Biology,

Other (neural potential data ­

single cell, LFP, EEG)

No

Often (RNA­seq read assembly,

aligner, read count quantification,

differential expression)

Bioinformatics Genomics

No Rarely Statistical
Other (Brain imaging,

eye tracking

No Rarely Statistical
Biophysics,

Imaging and electrophysiology

No Never
Computer Science,

Statistical
Biochemistry

Yes (Computational data is reproducible when

multiple researchers on different

or similar computational platforms,

can arrive at the same analysis/conclusions

and said analysis is not affected by

software packaging, implementation,

researcher documentation, etc.)

Often

RNAseq analysis,

microbial community analysis,

metagenomic analysis,

phylogenetic tools

Genomics,

Population/epidemiological

No Did not answer this question Computer Science Did not answer this question
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A.8 Supplementary Figure 2

Figure A.8.1: Responses to question 7 (which was only available for the eLIFE
authors survey as it was added after theNBI studywas distributed): The opinions
of the respondents on what could be done to make published research more
reproducible. We received 19 comments from the “other”comment. The
numbers (shown on the y­axis) correspond to the number of participants. For
the free­text (other) responses, see Supplementary Section 2. The figure has been
reproduced with permission from Samota and Davey (2021)

.



B

Appendix for Chapter 5

B.1 Example XML file corresponding to the EBI

ArrayExpress Experiment Accession code

E­MTAB­1729. The XML file is fetched by the

Deus ex machina code by executing

REST­Requests to the ArrayExpress API.



<?xml version="1.0" encoding="UTF-8"?><experiments api-version="3" 
api-revision="091015" version="3.0" revision="091015" total="1" 
total-samples="60" total-assays="60"><experiment><id>554620</
id><accession>E-MTAB-1729</accession><secondaryaccession>ERP003465</
secondaryaccession><name>RNA-seq of coding RNA from near-isogenic 
lines, harboring either the resistant or the susceptible allele for 
Fhb1 and Qfhs.ifa-5A, in response to F. graminearum</
name><releasedate>2013-10-10</
releasedate><lastupdatedate>2017-03-09</
lastupdatedate><organism>Triticum aestivum</
organism><experimenttype>RNA-seq of coding RNA</
experimenttype><experimentdesign>co-expression</
experimentdesign><experimentdesign>in vivo</
experimentdesign><experimentdesign>stimulus or stress</
experimentdesign><description><id/><text>Near isogenic wheat lines, 
differing in the presence of the FHB-resistance QTL Fhb1 and 
Qfhs.ifa-5A, have been sequenced using Illumina HiSeq2000 under 
disease pressure (30 and 50 hai) as well as with mock-inoculation, 
to discern transcriptional differences induced by Fusarium 
graminearum.</text></description><provider><contact>Wolfgang 
Schweiger</contact><role>data generator submitter</
role><email>wolfgang.schweiger@boku.ac.at</email></
provider><bibliography><accession>24152241</
accession><authors>Kugler KG, Siegwart G, Nussbaumer T, Ametz C, 
Spannagl M, Steiner B, Lemmens M, Mayer KF, Buerstmayr H, Schweiger 
W</authors><title>Quantitative trait loci-dependent analysis of a 
gene co-expression network associated with Fusarium head blight 
resistance in bread wheat (Triticum aestivum L.).</
title><doi>10.1186/1471-2164-14-728</doi></
bibliography><bibliography><accession>26438291</
accession><authors>Nussbaumer T, Warth B, Sharma S, Ametz C, Bueschl 
C, Parich A, Pfeifer M, Siegwart G, Steiner B, Lemmens M, 
Schuhmacher R, Buerstmayr H, Mayer KF, Kugler KG, Schweiger W</
authors><title>Joint Transcriptomic and Metabolomic Analyses Reveal 
Changes in the Primary Metabolism and Imbalances in the Subgenome 
Orchestration in the Bread Wheat Molecular Response to Fusarium 
graminearum</title><doi>10.1534/g3.115.021550</doi></
bibliography><samplecharacteristic><category>developmental stage</
category><value>anthesis</value></
samplecharacteristic><samplecharacteristic><category>genotype</
category><value>CM-82036 resistant parent line</value><value>NIL1, 
Fhb1 and Qfhs.ifa-5A resistance alleles</value><value>NIL2, Fhb1 
resistance allele</value><value>NIL3, Qfhs.ifa-5A resistance 
allele</value><value>NIL4, non resistance allele</value></
samplecharacteristic><samplecharacteristic><category>organism</
category><value>Triticum aestivum</value></
samplecharacteristic><samplecharacteristic><category>organism part</
category><value>spikelet floret</value></
samplecharacteristic><samplecharacteristic><category>provider</
category><value>Institute for Biotechnology in Plant Production, 
IFA-Tulln, University of Natural Resources and Life Sciences, A-3430 
Tulln, Austria</value></
samplecharacteristic><experimentalvariable><name>genotype</
name><value>CM-82036 resistant parent line</value><value>NIL1, Fhb1 



and Qfhs.ifa-5A resistance alleles</value><value>NIL2, Fhb1 
resistance allele</value><value>NIL3, Qfhs.ifa-5A resistance 
allele</value><value>NIL4, non resistance allele</value></
experimentalvariable><experimentalvariable><name>infect</
name><value>Fusarium graminearum</value><value>mock</value></
experimentalvariable><experimentalvariable><name>time</
name><value>30 hour</value><value>50 hour</value></
experimentalvariable><protocol><id>1229079</id><accession>P-
MTAB-33418</accession></protocol><protocol><id>1229077</
id><accession>P-MTAB-33419</accession></
protocol><protocol><id>1229076</id><accession>P-MTAB-33416</
accession></protocol><protocol><id>1229075</id><accession>P-
MTAB-33417</accession></protocol><protocol><id>1229078</
id><accession>P-MTAB-33415</accession></
protocol><protocol><id>1229074</id><accession>P-MTAB-33420</
accession></protocol><bioassaydatagroup><id/><name>scan</
name><bioassaydatacubes>60</bioassaydatacubes><arraydesignprovider/
><dataformat>scan</dataformat><bioassays>60</
bioassays><isderived>0</isderived></bioassaydatagroup></
experiment></experiments>
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