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ABSTRACT. Motivated by approaches to the word problem for one-relation monoids arising from
work of Adian and Oganesian (1987), Guba (1997), and Ivanov, Margolis and Meakin (2001), we
study the submonoid and rational subset membership problems in one-relation monoids and in
positive one-relator groups. We give the first known examples of positive one-relator groups with
undecidable submonoid membership problem, and apply this to give the first known examples
of one-relation monoids with undecidable submonoid membership problem. We construct sev-
eral infinite families of one-relation monoids with undecidable submonoid membership problem,
including examples that are defined by relations of the form w = 1 but which are not groups,
and examples defined by relations of the form u = v where both of v and v are non-empty.
As a consequence we obtain a classification of the right-angled Artin groups that can arise as
subgroups of one-relation monoids. We also give examples of monoids with a single defining
relation of the form aUb = a, and examples of the form aUb = aVa, with undecidable rational
subset membership problem. We give a one-relator group defined by a freely reduced word of
the form wv—! with u,v positive words, in which the prefix membership problem is undecidable.
Finally, we prove the existence of a special two-relator inverse monoid with undecidable word
problem, and in which both the relators are positive words. As a corollary, we also find a posi-
tive two-relator group with undecidable prefix membership problem. In proving these results, we
introduce new methods for proving undecidability of the rational subset membership problem in
monoids and groups, including by finding suitable embeddings of certain trace monoids.

1. INTRODUCTION AND SUMMARY OF RESULTS

Central among algorithmic problems in combinatorial algebra is the word problem which, given
an algebraic structure defined by generators and relations, asks whether there is an algorithm
which takes two expressions over the generators and decides whether they represent the same
element. The word problem for finitely presented semigroups was proved undecidable by Markov
and, independently, Post, in 1947. This was subsequently improved to the undecidability of the
word problem in finitely presented cancellative semigroups by Turing [57] resp. groups by Novikov
in 1952 and, independently, Boone and Britton in 1958. In spite of, and of course unaware of,
these general impossibilities, Magnus [35] had proved in 1932 that the word problem is decidable
for all groups with only a single defining relation; such groups are now called one-relator groups.
By contrast, the word problem for monoids with one defining relation — one-relation monoids —
remains a tantalizing open problem, in spite of over a century of investigations; see [45] for a recent
survey of the problem.

The majority of the results on the word problem for one-relation monoids have been focussed
on trying to obtain a positive solution. The problem has now been solved positively in several
cases. For example, Adian [2] proved that the word problem is decidable for all special one-
relation monoids, being those admitting a presentation of the form M = Mon<A |w = 1>7 and
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results of Adian & Oganesian [4, 5] show that the word problem for a given Mon<A |u = v> can
be reduced to the word problem for a one-relation monoid of the form 1\/Ion<a7 b|bUa = aVa> or
Mon<a, b|bUa = a>. In both of these cases the word problem remains open.

There are several important reduction results in the literature that relate the word problem
in one-relation monoids to other natural decision problems in one-relator groups, one-relation
monoids, and also in a class that lies between these two called inverse monoids. As we shall
explain in more detail below, these reduction results divide into three interrelated approaches to
the word problem for one-relation monoids, namely: (i) results of Ivanov, Margolis and Meakin
[22] that give a reduction to the word problem in one-relator inverse monoids, (ii) results of Guba
[16] that give a reduction to the submonoid membership problem in positive one-relator groups,
and (iil) results of Adian and Oganesian [2, 3, 5] that give a reduction to the problem of deciding
membership in principal right ideals of certain one-relation monoids. Here a one-relator group is
positive if it admits a presentation Gp<A |r = 1> where no inverse symbol appears in r. Such
groups were studied by e.g. Baumslag [6], as well as by Perrin & Schupp [50], who proved that
a one-relator group is positive if and only if it is a one-relation monoid. There are also natural
connections between the three approaches above. For example, Guba’s reduction may alternatively
be expressed as a question asking for membership in the submonoid of a one-relator group with
defining relation of the form uv~! = 1 generated by the prefixes of the defining relation, where u, v
are both positive words. This prefix membership problem for one-relator groups also arises naturally
in the work of Ivanov, Margolis and Meakin [22] where for cyclically reduced relator words they
show that word problem for the inverse monoid reduces to the prefix membership problem for
the group. In the reduction result (iii) the principal right ideals of one-relation monoids will not
typically be finitely generated submonoids, but they are examples of rational subsets of the monoid.
Hence one consequence of the reduction result (iii) of Adian and Oganesian is that a necessary
step for constructing one-relation monoids with undecidable word problem is to first construct
examples in which there are rational subsets in which membership is undecidable. This provides a
connection between this approach and the approach of Guba to the word problem. Indeed, since
by [50] every positive one-relator group is in particular a one-relation monoid, the study of the
submonoid membership problem for one-relation monoids has as a special case the submonoid
membership problem for positive one-relator groups. Hence both of these approaches lie within
the broader study of decidability of membership in rational subsets of one-relation monoids. These
three approaches to the word problem for one-relation monoids with their various interrelations
are summarized in the diagram in Figure 1. In addition to the motivation for their study coming
from the connection with the word problem for one-relation monoids, the decision problems listed
there, e.g. submonoid membership problem for one-relation monoids, are also natural questions to
study in their own right.

The connections explained above have led to extensive research and numerous positive decid-
ability results have been obtained for special cases of these problems; see for example [16, 22, 23,
24, 25, 38, 40]. Until recently all of the focus of this work has been on showing that various special
cases of these problems are decidable. However, several recent striking undecidability results in
this area have for the first time brought into question the view that our attention should only be
focussed on seeking positive solutions to such problems. First, Gray [14] proved the existence of a
special one-relator inverse monoid Inv(A |w = 1) with undecidable word problem and at the same
time proved that there are one-relator groups with undecidable submonoid membership problem.
Then, Dolinka & Gray [12] went on to prove the existence of a one-relator group Gp<B | r = 1>
with undecidable prefix membership problem (where r is a reduced word). Given the reduction
results of Guba [16] and Ivanov, Margolis, Meakin [22] discussed above, if any of these problems
had been decidable it would have resolved positively the word problem for one-relation monoids
either in general, or for one of the two main open cases.
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FIGURE 1. A summary of the main results of this article and how they relate
to the three approaches to the word problem for one-relation monoids given by
reduction results of (i) Ivanov, Margolis and Meakin [22], (ii) Guba [16], and (iii)
Adian and Oganesian [2, 3, 5]. The arrows indicate implication of decidability.
The problems in red are all proved to be undecidable in this article in the results
listed in the corresponding boxes. The problems in white boxes are all open.

These recent undecidability results give the first serious indication that the word problem for
one-relation monoids could in fact be undecidable. If it is undecidable then, of course, all of the
other reduction results mentioned above must also have negative answers. With that viewpoint in
mind, the main goal of the current paper is to present a collection of new undecidability results all
of the type that if they had been decidable then it would have solved positively the word problem
for one-relation monoids (either in general, or in one of the two main open cases). For this we will
conduct a detailed study of the rational subset, and submonoid, membership problems in positive
one-relator groups, and in one-relation monoids. We will also introduce new tools for proving
undecidability results of this kind.

Figure 1 gives a summary of the main undecidability results proved in this article and how they
relate to the three approaches to the word problem discussed above. We shall now explain in more
detail the reduction results discussed above, and summarized in Figure 1, and in each case give an
overview of the undecidability results related to them that we shall prove in this paper.
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The word problem for one-relation monoids of the form Mon<a, bl|bUa = a> remains open. We
shall call these the monadic one-relation monoids. Important work of Guba [16, Corollary 2.1]
implies that the word problem for one-relation monoids in this class reduces to the submonoid
membership problem for positive one-relator groups. In more detail, it follows from the results of
Guba [16] that for every one-relation monoid of the form M = Mon(a,b | bQa = a), with a and b
distinct, there exists a group defined by a presentation of the form G = Gp(a,b,C |aUba™' = 1),
where C' is a finite set of new generators and U is a positive word over {a,b} U C, such that
if G has decidable prefix membership problem then M has decidable word problem. In fact,
Guba proves the equivalent dual result reducing the problem to the suffix membership problem in
Grp<a7 b,Cla"1bUa = 1>. Note that Gp<a, b,ClabUa™! = 1> is a positive one-relator group, as it is
isomorphic to Gp<a, b,C|bU = 1>. However, in general, the prefix monoid of Gp<a7 b,ClabUa™! =
1> and of Gp<a,b,C’ | oU = 1> will not be the same and, related to this, decidability of the
prefix membership problem depends on the choice of presentation for a group rather than just its
isomorphism type. Clearly if the positive one-relator group G has decidable submonoid membership
problem, then in particular we can decide membership in the prefix monoid. Hence this reduction
result of Guba motivates motivates the question of whether the submonoid membership problem
is decidable for positive one-relator groups. Further motivation for this question comes from the
fact that the submonoid membership problem is decidable for all surface groups if and only if it
is decidable in the positive one-relator group with defining relation a?b?c? = 1; see Subsection 3.1
for further discussion of this important open problem. As mentioned above, it was only recently
discovered in [14] that there exist one-relator groups that contain finitely generated submonoids in
which membership is undecidable. The first example of such a one-relator group was constructed by
Gray [14], and has the single defining relation abba = baab. Recently Nyberg-Brodda [47] proved
that the one-relator groups Gp<a,b | a™b" = b"am> have undecidable submonoid membership
problem for every m,n > 2. However, it may be shown (see below) that none of these one-relator
groups admits a one-relator presentation with a positive defining relator word, that is, none of
them are positive one-relator groups. The starting point for the work in this paper is to build on
the examples from [47] to obtain positive one-relator groups with undecidable word problem by
allowing m and n to vary through all integer values. As with previous examples, this is achieved
by showing that the right-angled Artin group A(Py) of the path with four vertices embeds in the
group, and then appealing to a theorem of Lohrey and Steinberg [33, Theorem 2]. However, what
makes doing this more difficult than in the cases considered in [47] is that the embedded copies of
A(Py) that we find in the positive one-relator groups are no longer subgroups of finite index, so
Reidemeister—Schreier rewriting methods alone are not sufficient to obtain the result. This gives
the first main result of this paper (Theorem 3.8) where we exhibit an infinite family of positive
one-relator groups all with undecidable submonoid membership problem.

In another direction, Guba’s reduction motivates the question of whether the prefix membership
problem is decidable for all one-relator groups of the form G = Gp<a, b,C|aUba~! = 1> where U
is a positive word. Here the defining relator is a reduced word of the form wv~! where u and v
are both positive words. For words of this form we shall call the corresponding one-relator groups
Gp<A |uv™t = 1> quasi-positive. Quasi-positive one-relator groups have received attention in the
literature in the study of the word problem for the related class of inverse monoids motivated by
results of Ivanov, Margolis and Meakin [22] discussed above and illustrated in the implications in the
bottom two lines of Figure 1. The prefix membership problem for various families of quasi-positive
one-relator groups has been solved positively by Margolis, Meakin, and Sunik [38, Corollary 2.6],
and some cases of the word problem for the corresponding class of inverse monoids have been
resolved by Inam [20]. This connects more generally with the study of groups and inverse monoids
defined by, so-called, Adian type presentations; see [55, 21]. In Section 4 we prove Theorem 4.1
showing that that there is a one-relator group of the form Gp<A |luv=t = 1>, where u, v are positive
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words and wv ™! is a reduced word, with undecidable prefix membership problem. This is the first
known example of a quasi-positive one-relator group with undecidable prefix membership problem.

Our other main motivation for investigating membership problems in positive one-relator groups
was the connection with the open question of whether one-relation monoids have decidable sub-
monoid membership problem. When Magnus solved the word problem for one-relation groups he
actually proved a more general result: membership in Magnus subgroups! is decidable. However,
the general subgroup membership problem (also called generalized word problem) remains an im-
portant open problem for one-relator groups; see [8, Problem 18]. The analogue of this question for
monoids asks whether one-relation monoids have decidable submonoid membership problem. This
problem has been shown to be decidable in several examples and families of one-relation monoids;
see [23, 24, 26, 48, 51]. Since by [50] a one-relator group is a one-relation monoid if and only if it is
a positive one-relator group, the positive one-relator groups with undecidable submonoid member-
ship problem that we give in this paper (Theorem 3.8) give the first known examples of one-relation
monoids with undecidable submonoid membership problem (Corollary 3.9). Building on this, we
shall construct several infinite families of one-relation monoids with undecidable submonoid mem-
bership problem including examples that are groups, examples that are defined by relations of the
form w = 1 but are not groups, and examples defined by relations of the form uv = v where neither
u nor v is equal to 1, so these monoids have trivial groups of units; see Propositions 5.1 & 5.2, and
Example 5.3. As part of this, we also obtain a classification of exactly which right-angled Artin
groups can appear as subgroups of one-relation monoids; see Theorem 3.10.

Generalizing the submonoid membership problem is the rational subset membership problem,
which asks for an algorithm to decide membership in the image of an arbitrary regular language.
In groups, this problem has been surveyed by Lohrey [32]. The rational subset membership problem
in one-relation monoids has also seen some study. Kambites’ work [26] on small overlap conditions
can be used to show that almost all one-relation monoids, in a suitably defined sense, have decidable
rational subset membership problem (cf. also [45, p. 338]). Furthermore, the rational subsets of
the bicyclic monoid Mon(b, ¢ | bc = 1) have been fully described by Render & Kambites [51], and
more generally the rational subset membership problem in any M0n<A |w = 1> with virtually
free group of units is decidable [48]. Results of Adian and Oganesian [2, 3, 5] imply that if
membership in principal right ideals is decidable in all monoids of the form Mon(a, b|bUa = a>
and 1\/_[0n<a7 b|bUa = aVa> then the word problem for all one-relation monoids is decidable (see also
the related general statement [16, Lemma 3.1]). The principal right ideals of these monoids will
not typically be finitely generated submonoids, but they are rational subsets. Motivated by this,
in Section 6 we extend our investigation to the study of the rational subset membership problem
in these two classes of one-relation monoids. Further motivation for studying this problem for
monoids of the form M0n<a,b | bUa = a> comes from the result [16, Theorem 4.1] relating the
word problem in these monoids to the membership problem in both principal left and principal
right ideals. In Theorem 6.1 we give an infinite family of monoids of the form Mon(on7 b|bUa = a>
all with undecidable rational subset membership problem. Then in Remark 6.11 we explain how
these examples can be adapted to give examples of the form Mon<a, b|bUa = aVa> with the same
property. To prove these results it is necessary for us to introduce new techniques since the only
groups that monoids in these classes can embed are trivial groups, and hence the usual approach
of embedding A(P;) is not possible. For this we prove a new general result, Theorem 6.2, which
shows that a left-cancellative monoid has undecidable rational subset membership problem if it
embeds a copy of the trace monoid T'(Py) that is generated by a set of elements that are all related
by Green’s L-relation. This result is in some ways surprising since any trace monoid itself, unlike
right-angled Artin groups, necessarily has decidable rational subset membership problem, so the

IThese are subgroups generated by a subset of the generating set omitting a generator that appears in the defining
relator word. Magnus called this specific membership problem the erweitertes Identititsproblem, i.e. “extended word
problem”.
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way in which the trace monoid embeds is crucial. As another corollary to this new general result for
left-cancellative monoids, we deduce (Corollary 6.4) that any group containing the trace monoid
T(Py) has undecidable rational subset membership problem, and then explore some applications
of this to proving the undecidability of the rational subset membership problem in groups.

In Section 7 we shall apply the results of the previous section to the word problem for special
inverse monoids. It was proved in [14] that there are special one-relator inverse monoids Inv{A|w =
1> with undecidable word problem. In all known examples the word w is not a reduced word, and it
remains an open problem whether the word problem is decidable in that case. This is an important
question since, if it is, then by [22, Theorem 2.2] this would imply that all one-relation monoids
have decidable word problem. In particular it is open whether there is a positive one-relator inverse
monoid with undecidable word problem. Motivated by this, in Section 7 we explain how the word
problem for one-relation monoids also reduces to the word problem for positive 2-relator special
inverse monoids, and then in Theorem 7.4 we show the existence of a 2-relator special inverse
monoid with undecidable word problem and in which both defining words are positive words.
We use this result to prove the existence of a positive two-relator group with undecidable prefix
membership problem in Corollary 7.6.

2. PRELIMINARIES

In this section we fix some notation and recall some background definitions and results from
geometric and combinatorial group and monoid theory. Inverse monoids will only be considered
later in Section 7, and we defer giving the more involved notation and definitions for inverse monoids
to that section. For additional background we refer the reader to [36, 34] for combinatorial group
theory, [19] for monoid and semigroup theory, [53, Chapter 1] for monoid presentations, and [31]
for the theory of inverse monoids.

Monoid and group presentations. For a non-empty alphabet A we use A* to denote the free
monoid of all words over A including the empty word which we denote by €. A monoid presentation
is a pair M0n<A | R> where A is an alphabet and R is a subset of A* x A*. The monoid defined
by this presentation is the quotient A* /o of the free monoid by the congruence o on A* generated
by R. We usually write a defining relation (u,v) € R as v = v. Similarly when working with a
fixed monoid presentation Mon<A | R> given any two words «, 3 € A* we write @ = [ to mean
that a and 8 are o-related, that is, they represent the same element of the monoid defined by the
presentation. We write @ = § to mean that « and S are equal as words in the free monoid A*. A
monoid presentation is called special if all the defining relations are of the form w = 1.

A group presentation is a pair Gp<A | R> where A is an alphabet and R is a subset of (AU
AN x (AU A7Y)*, where A1 = {a7! : a € A} is disjoint from A. The group defined by this
presentation is then the quotient of the free group F4 on A by the normal subgroup generated by
the set of all uv=! for (u,v) € R. As for monoids, when working with a fixed group presentation
we write = 3 to mean that the words represent the same element of the group, and we write the
defining relations in the form v = v.

A one-relator monoid (also called one-relation monoid) is one defined by a presentation of the
form M0n<A |u= 11>. Similarly a one-relator group is one that is defined by a presentation of the
form Gp(A|w =1).

We often abuse terminology by talking about the group Gp<A | R> or the monoid M0n<A | R>
where we mean the group or monoid defined by the given presentation.

Given a subset X of a monoid we use Mon<X > to denote the submonoid generated by X, and
similarly if X is a subset of a group then Gp<X > denotes the subgroup generated by X.

Submonoid and rational subset membership problems. The set of all rational subsets of
a monoid M is the smallest subset of the power set of M which contains all finite subsets of M,
and which is closed under union, product, and Kleene hull. Here the Kleene hull of a subset
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L of a monoid M is just the submonoid of M generated by L. Clearly every finitely generated
submonoid of M is a rational subset. If M is finitely generated by a set A, and ¢ : A* — M is the
corresponding canonical homomorphism, then a subset L C M is rational if and only if L = ¢(K)
for some rational subset K of A*. Since by Kleene’s theorem the rational subsets of A* are the
same as those that can be recognised by a finite state automaton, in this case K is the language
defined by some finite state automaton, and L is the set of all elements of M represented by words
in that language.

Let M be a monoid finitely generated by a set A, and let ¢ : A* — M be the corresponding
canonical homomorphism. The submonoid membership problem for M is the following decision
problem

e INPUT: A finite set of words A C A* and a word w € A*

e QUESTION: ¢(w) € p(A*)?
Observe that ¢(A*) is equal to the submonoid of M generated by ¢(A). The decidability of this
problem is independent of the choice of finite generating set for the monoid. For a group G with
finite generating set A, the set A U A~! is a finite monoid generating set for G, and then the
submonoid membership problem for G is defined as above, where G is the monoid generated by
AU AL Let L(A) denote the language recognised by a finite automaton A. Then the rational
subset membership problem for M is the decision problem

e INPUT: A finite automaton A over the alphabet A and a word w € A*

e QUESTION: ¢(w) € ¢(L(A))?
Note that by the Kleene Theorem, the input to the rational subset membership problem could
alternatively be taken to be a rational expression over the alphabet A. As for the submonoid
membership problem, the rational subset membership problem also applies to groups where we
view the group as a monoid generated by AU A~!. As every finitely generated submonoid is a
rational subset (being precisely the Kleene hull of a finite set), decidability of the rational subset
membership problem implies decidability of the submonoid membership problem.

A priori, it may seem natural to assume that the rational subset membership problem ought
to be strictly harder than the submonoid membership problem. However, whether this is actually
the case remains an open problem; the problems may be equivalent, and there are some reasons
to believe that they may be (see [33]).

In the two decision problems above, the submonoid (resp. rational subset) is part of the input.
The non-uniform analogues of these problems can also be studied where one considers a fixed
finitely generated submonoid (or rational subset) and asks whether there is an algorithm deciding
membership in that particular subset. In general for any subset .S of M by the membership problem
for S within M we mean the decision problem:

e INPUT: A word w € A*

e QUESTION: ¢(w) € S?
Similarly we talk about the membership problem for S within G where G is a finitely generated
group. This non-uniform version is sometimes called the weak membership problem, with the
uniform being called strong, e.g. by Mikhailova [42] in the context of the subgroup membership
problem.

Decidability of these problems is preserved when taking substructures in the following sense.
Let M be a finitely generated monoid and let T' be a finitely generated submonoid of M. If M
has decidable submonoid (resp. rational subset) membership problem then so does T'. In addition
to this, for any subset S of T', if the membership problem for S within M is decidable then the
membership problem for S within T is also decidable. See [32, §5] for more details on how to prove
closure properties like these.

RAAGSs and trace monoids. For a finite simplicial graph I" with vertex set VI we use A(T")
to denote the right-angled Artin group (abbreviated to RAAG) determined by I', so A(T") is the
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group defined by the presentation
Gp<VF | vy = yx if and only if z is adjacent to y in F>.
We will use T'(T') to denote the corresponding trace monoid defined by
M0n<VI‘ | zy = yx if and only if z is adjacent to y in F>.

We shall now record some facts from the theory of trace monoids and RAAGs that we need later
on. For more comprehensive background on RAAGs and trace monoids we refer the reader to
[10, 11]. It was proved by Paris [49] that for any graph I’ the identity map on VT induces an
embedding of the trace monoid T'(I") into the corresponding RAAG A(T).

Much is known about the behaviour of rational subsets of trace monoids (see e.g. [11]). In par-
ticular, since trace monoids are defined by presentations where the defining relations are all length
preserving (so called ‘homogeneous presentations’) it follows the any trace monoid has decidable
rational subset membership problem. By contrast, not every RAAG has decidable rational subset
membership. Indeed, Lohrey & Steinberg [33] proved that a RAAG A(T") has decidable submonoid
membership problem if and only if it has decidable rational subset membership problem if and
only if I' does not embed the path P, with four vertices, or the square C; with four vertices, as
an induced subgraph. A complete characterization of RAAGs with decidable subgroup member-
ship problem is not, however, known; it is, for example, unknown whether A(C5) has decidable
subgroup membership problem.

Inverse monoid presentations. We just give the essential definitions from combinatorial inverse
semigroup theory that we need. We refer the reader to [41] and [31] for a more comprehensive
treatment of the subject.

An inverse monoid M is a monoid with the property that for every m € M there is a unique
element m~! € M satisfying mm~'m = m and m~'mm ™' = m~!. For any alphabet A the free
inverse monoid over A is the monoid defined by the presentation

Mon(AUA™! uwu 'y =u, vu™ oo™ = oo™ luu™! (u,v € Z*)>

where (a™1)"! =a and (a;...ax) ' =a;'...a;". We use FI, to denote the free inverse monoid

on A. An inverse monoid presentation is a pair Inv(A | R) where A is an alphabet and the set of
defining relations R is a subset of (AU A™!)* x (AU A~')*. The presentation Inv(A | R) defines
the inverse monoid FIo/p where p is the congruence on the free inverse monoid FIo generated
by R. By a special inverse monoid we mean one defined by a presentation where all the defining
relations in the presentation are of the form » = 1. The maximal group image of InV<A | R> is the
group Gp<A | R> defined by the same presentation, and the identity map on A defines a surjective
homomorphism from the inverse monoid onto its maximal group image.

1

3. MEMBERSHIP PROBLEMS IN POSITIVE ONE-RELATOR GROUPS

In this section, we construct positive one-relator groups with undecidable submonoid member-
ship problem. As discussed in the previous section, the following one-relator groups:

Gp{a,b|[ab,ba) =1), resp. (a,b|[a™,b"] =1) (m,n > 2),

were shown to have undecidable submonoid membership problem in work of Gray [14] and Nyberg-
Brodda [47], respectively. However, it is a consequence of Lyndon’s identity theorem that none of
these groups admits a positive one-relator presentation. Indeed, it follows from Lyndon’s identity
theorem that any one-relator group of the form Gp(A | [u,v] = 1> has second homology group
Hy(G;Z) = Z, while on the other hand any positive one-relator group has Hy(G;Z) = 0; see [9,
1.4, Example 3].

For m,n € N, define a class of groups by the presentation:
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Remark 3.1. If n = 1 then G, 1 = Gp<:v, y|yz™y~t = x’m> is the unimodular Baumslag-Solitar
group BS(m, —m) which is known (see e.g. [47, paragraph preceding Prop. 3.9]) to be virtually a
direct product of Z and a finite rank free group, and hence G,, ; has has decidable rational subset
membership problem.

The key property of the groups G, ;, is the following.

Lemma 3.2. The group G, has decidable submonoid membership problem if and only if m =1
or n = 1. Furthermore, if m,n > 2 then G, contains a fized finitely generated submonoid in
which membership is undecidable.

Proof. Decidability for n =1 is discussed in Remark 3.1, while the case for m = 1 will be covered
in Remark 3.4. For m,n > 2, we will obtain an injection i: A(Py) — Gy, in Lemma 3.6. In
[33] it is shown that A(Py) contains a fixed submonoid where membership is undecidable. So, if
m,n > 2, then the submonoid membership problem is undecidable in G, ;. g

Thus to prove the above lemma, we must prove Lemma 3.6. We do this by a Reidemeister—
Schreier rewriting procedure.

Lemma 3.3. The subgroup K, , = Gp<y2”,yixy*i for0<i<2n-— 1> of G, has the following
presentation:

Gp<6, a; for0<i<2n—1|of"a}, =1, [of", ] =1f0r0§i§n—1>
where B corresponds to y*", and a; corresponds to yixy =" for all 0 < i < 2n — 1.

Proof. Note that K = K,, , is normal in G = G, », as it is closed under conjugation by both z
and y, with quotient equal to:

G/K = Gp(y| Y = 1) = Cy,, = cyclic group of order 2n.
We proceed to find a presentation for K using the Reidemeister-Schreier procedure (see [34]) with
G = Gp(S| R), where S = {z,y}, and R = 2™y a™y ™.
A Schreier transversal for K in G is T = {y* | 0 <1i < 2n — 1}, giving a set of generators for K
as U = {ts(ts)"! |t €T, s€ S, ts ¢ T} where W is the representative of w in T
Any t € T can be written as y* for 0 < i < 2n — 1, so:

o ; - i ir)-l if s —
ts(ts)™' = y's(yis) ' = yiff(ﬂlc)_1 1 s - z,
yiy(y'y) ™t ifs=uy.

As z € K, one has yiz = y' for all 0 < i < 2n — 1. Also yiy = y**t! for 0 < i < 2n — 2 and

y27"—ly = 1. One obtains 8 = y?" and a; = y’azy~" for 0 < i < 2n — 1 as generators of K; hence
U={B=9"", a; =y'oy " for 0<i<2n—1},
gives a set of generators for K.

To get relations for K, rewrite tRt~! for t € T and R = 2™y"2™y ", using generators in U.
Write any ¢t € T as y* for some 0 < i < 2n — 1. One obtains:

. . T, ,—1 i+n,..m,,—i—n .f0<'< _1
th—lzyz(xm n,.m n)y—z:{(yz Y )(y ry ) 1 St=n

Yy . ) . !

Y Y (yzmmyfz)an(yzfnxmy77,+n)y72n lf n S i S m—1
_Jaall, if0<i<n-—1,
CarBar, Bt ifn<i<2n—1.

The first relation gives o}, = a; ™ for any 0 < ¢ < n — 1; substituting it in the second line, one
obtains the relation [af*, §] for all 0 <4 <n — 1.
So, V.={aj*ajt,, [of*,B] |0 <i<mn—1} gives the relations of K, as desired. O
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Remark 3.4. Note that for m = 1, the subgroup K ,, is actually a RAAG, isomorphic to Z x F,.
In this case, the group G ,, is a finite extension of Z x F),, implying that it has decidable rational
subset membership problem (so, a fortiori, also decidable submonoid membership problem), see
[33]).

Section 3 of article [47], treats a class of groups called right-angled Baumslag-Solitar-Artin
groups, for which the problem of decidable submonoid membership is studied. One particular
example is the family B(S,, ,,) with n,m € Z, where m,n > 0, defined as:

B(Snm) = Gp(d,c; for 0<i<n—1][c]",d=1for 0<i<n-—1). (2)
Another example is the family B(Ps ,,,) with m € Z where m > 0, defined as:
B(Ps,) = Gp{wo, w1, w2 | [wo, wa] = 1, [wo, wi*] = 1). (3)
Lemma 3.5. The group B(Sy m) injects in G, . In particular, the map
o d— y* e ylayT (0 < i < n) (4)
defines an injective homomorphism o: B(Sp,m) = Gmon-

Proof. Recall from Lemma 3.3 that the subgroup K,,, = Gp<y2",yixy_i for 0 <i<2n— 1> of
G n, has the following presentation:

Gp{B, o for 0 <i<2n—1|af"aft, =1, [a",fl=1for 0<i<n-—1)

where 3 corresponds to y*", and «; corresponds to y'zy =" for all 0 <i < 2n — 1. Let K ¥ K, ,,
denote the group defined by the above presentation, let B = B(S,, ), and consider the two maps:

s: B — K given by s(d) =, s(¢;) = «; forany 0 <i<n-—1,

p: K — B given by p(8) = d, p(a;) = ¢i, p(atiyn) = c; ' for any 0 <i<n-— L.
Obviously, both s and p induce well-defined homomorphisms, as they respect the relations. More-
over, one has p o s = idg, which implies that s is injective. It follows that there is an injective
homomorphism o : B(Sym) <> Gpm.n that maps d — y?" and ¢; — ylay forall 0 <i<n-—1. O
Lemma 3.6. There exists an embedding i: A(Py) < G p from

A(Py) = Gp<A7 B,C,D|AB=BA,BC=CB,CD = DC>
into G, given by
i(A) = ya™y ™, i(B) = y*", i(C) = 2™, i(D) = zy™a
Proof. From the proof of Proposition 3.5 in [47] (see also Proposition 3.3 there), one obtains an
embedding of A(Py) in B(S,,,,) for n,m > 2. One such embedding is the following:
J: Gp<A,B,C7D | AB=BA,BC =CB,CD = DC’> — B(Sn,m);

given by j(A) = ¢, j(B) = d, j(C) = ¢, (D) = codey . Indeed, to show that j is an embedding,
we note that by Lemma 3.5 the group B(S), ) injects into G, , where
B(Sn,m) = Gp<d,ci for0<i<n-—-1|[c"d=1for0<i<n-— 1>,
with d +— y?", and for all 0 < i < n — 1 one has ¢; — y'zy~'. In particular the RABSAG B(S2 )
(in the sense of [47]) defined by the graph
m m

< >
- >

C1 d Co
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injects in B(Sy,m). By [47, Proposition 3.5] and its proof, the group B(Ps ,,,) injects into B(Sy m ),
with one embedding being via the RABSAG defined by the graph
m
@ @ >Q

ctt d €o

Here, we have abused notation by letting the vertices of the graph Ps ,, above be labelled by their
images in B(S), ;) under the prescribed embedding. That is, inside B(S,, 1, ), defined as above, the
elements ¢, d, and ¢y generate an isomorphic copy of B(Ps ,,) where, in terms of the presentation
given in equation (3), this isomorphism is given by mapping wg to d, ws to ¢f*, and w; to co.
Continuing, and using the analogous slight abuse of notation also for RAAGs, the RAAG defined
by the graph

@ o o @)

m m —
cq d Co CodCO !

now embeds in our chosen copy of B(Ps ,,,) by unpacking the proof of [47, Proposition 3.3] together
with the generalisation of that result explained in [47] in the paragraph immediately after the
proof of [47, Proposition 3.3]. That is, inside B(S,, ,,) as above, the elements ¢}*, d, ¢, and codcy *
generate a copy of A(Py). It follows that j is indeed an embedding of A(Py) into B(Sy, m)-

Now the composition ¢ = ¢ o j where o is the injection o: B(Sy,m) <> G, defined by (4),
from Lemma 3.5, gives the desired embedding i: A(Ps) — Gpyop- O

Putting it all together, we have now shown Lemma 3.2. In particular, for every m,n > 2
the one-relator group Gyy,,n has undecidable submonoid membership problem. Importantly, these
groups also have the following property:

Lemma 3.7. For every m,n > 1, the group G, ,, is a positive one-relator group.

Proof. Consider the relation 2™y"z™y~". We want to change it to an equivalent positive relation,
so we introduce new generators a,b with y = a and x = ba™. Now we write the group relation in
terms of a and b as:

(ban)77LaTL (ban)ma—n — (ban)man<ban>m—l (ban)a—n

_ (ban)man(ban)mflb

= (ba™)™(a"b)™.
This way, we obtain another equivalent presentation for G, , as:
Gmn = Gp(a,b| (ba™)™(a"b)™ =1). (5)
Thus G, , is a positive one-relator group. g

We have proved the following, which is the main result of this section:

Theorem 3.8. For all m,n > 2 the group
Gmn =2 Gp(a,b| (ba™)™(a"b)™ = 1)

s a positive one-relator group that contains a fixed finitely generated submonoid in which member-
ship 1s undecidable. In particular, there are positive one-relator groups with undecidable submonoid
membership problem.

Note that if M, , denotes the monoid with the same defining relation as in (5), then b is
invertible in M, ,,, being both left and right invertible by virtue of the defining relation. By
cyclically permuting the letters b from the ends of the defining relation, we similarly also conclude
that a is invertible. Hence M,, ,, is a group, so necessarily M, ,, = Gy, . Thus, we conclude:
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Corollary 3.9. There exists a one-relation monoid with undecidable submonoid membership prob-
lem. Furthermore, there exists such a monoid with a presentation of the form Mon<A |w = 1>.
Additionally, one can construct such monoids which contain a fized finitely generated submonoid
in which membership is undecidable.

Using this, it is now not difficult to find the following classification of right-angled Artin sub-
groups of one-relation monoids:

Theorem 3.10. Let I be a finite graph and let A(T") be the right-angled Artin group that it defines.
Then the following are equivalent.
(i) T is a forest;
(ii) A(T') embeds into a one-relator group;
(11i) A(T') embeds into a positive one-relator group;
(iv) A(T) embeds into a one-relation monoid Mon(A |u = v);
(v) A(T) embeds into a one-relation monoid of the form Mon(A |w = 1).

Proof. The equivalence of (i) and (ii) follows from [14, Remark 2.3].

(i) = (iii): By [28, Theorem 1.8] if T" is a finite forest then A(T") embeds in A(P;) which in turn
embeds in a positive one-relator group by Lemma 3.6 and Lemma 3.7 above.

(iii) = (v): This follows from the result of Perrin and Schupp [50] showing that any positive
one-relator group admits a one-relation monoid presentation.

(v) = (iv) is trivial.

(iv) = (ii): If A(T") embeds into Mon({A | u = v) then it must embed in a maximal subgroup of
Mon(A |u = v) which by the results of [30] must itself be a one-relator group. Hence A(T") embeds
in a one-relator group. O

3.1. Positive one-relator groups and surface groups. The class of positive one-relator groups
has received some attention in the literature. They were first studied by Baumslag [6] in 1971, who
proved that the intersection of all terms in the lower central series in any positive one-relator group
is trivial. While Perrin & Schupp [50] observed that not all positive one-relator groups are residually
finite, Wise [58] later studied the residual finiteness of positive one-relator groups, proving that any
positive one-relator group with torsion is residually finite (this result was later sharpened by Wise
[59] by dropping the positivity condition). In general, classifying which positive one-relator groups
have decidable submonoid membership problem seems difficult. It is even unknown whether every
one-relator group with torsion has decidable submonoid membership problem [27, Questions 20.68
& 20.69]. One-relator groups with torsion are hyperbolic by the B. B. Newman Spelling Theorem;
thus, a natural question in line with this was implicitly asked by Ivanov, Margolis & Meakin [22,
p. 110]:

Question 3.11. Is the submonoid/rational subset membership problem decidable in every surface
group?

Here, a surface group G (of genus g > 0) is one which is the fundamental group of some compact
2-manifold; thus either G = N, or G = S, where

g
N, = Gp<a1,...,ag | ata’- -~a§ = 1> and S, = Gp<a1,b1,...,ag,bg | H[ai,bi] = 1>.
i=1
We remark that the subgroup membership problem in all surface groups is, by contrast, well-known
to be decidable [54], but in general hyperbolic groups can even have undecidable subgroup mem-
bership problem by using the Rips construction [52]. Note further that N> = Gp(a,b | a®b?* = 1)
and S; = Z? are virtually abelian, and hence have decidable rational subset membership problem
[15]. All other surface groups are hyperbolic one-relator groups. If Gromov’s famous Surface Sub-
group Conjecture holds for one-relator groups (see e.g. [13]), then any non-virtually free one-relator
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group contains a subgroup S, for some g > 2. Hence, understanding membership problems for
surface groups can be seen as a key first step to understanding membership problems in hyperbolic
one-relator groups.

It is well-known (see e.g. [56, §4.3.7] or [17]) that the group A3 contains a finite index copy of
every hyperbolic surface group. Consequently, Question 3.11 is equivalent to:

Question 3.12. Is the submonoid/rational subset membership problem decidable in the positive
one-relator group N3 = Gp(a, b, c| a?b?c? = 1)?

The word a?b?c? has length 6. It is easy to see that any one-relator group G = Gp<A |r = 1>
with |r| < 6 is either free or isomorphic to a free product of a free group by a two-generated one-
relator group H = Gp({a, b|r = 1) with |r| < 6. There are only seven (non-free) isomorphism types
of such H, namely: Cs,C3, Cy, Cs, Na, Z2, and the torus knot group Gp(a,b|a?® = 1). All such
groups have decidable rational subset membership problem (see [47]), and hence, as decidability of
the rational subset membership problem is preserved by taking free products, we conclude that any
G as above (with |r| < 6) has decidable rational subset membership problem. Thus, the group N3
is the smallest (in terms of relator word length) candidate for a one-relator group with undecidable
rational subset membership problem.

4. PREFIX MEMBERSHIP PROBLEMS

We say that a one-relator group G is quasi-positive if it is given by a presentation of the form
G = Gp<A |uv=! = 1> where u,v € A1 are positive words, and uv~! is a reduced word. As
explained in the introduction, and summarized in the diagram of implications in Figure 1, both
results of Guba [16] and work of Ivanov, Margolis and Meakin [22] motivate the study of the prefix
membership problem for quasi-positive one-relator groups. The main result of this section is:

Theorem 4.1. There exists a one-relator group G = Gp<A |uv=t = 1>, where u,v € AT and

wv™t is a reduced word, with an undecidable prefic membership problem.

Theorem 4.1 will be proved by encoding the submonoid membership problem for a positive
one-relator group into the prefix membership problem for a quasi-positive one-relator group. The
encoding uses a general construction that will also be used to establish other undecidability results
in this paper e.g. for inverse monoids, so we will explain it here so that it can be applied in each
instance that it is needed.

Construction 4.2. Let G be a positive one-relator group and let ) be a finitely generated
submonoid of G. Let Mon{A|q = 1) = Gp(A|q = 1) be a one-relation monoid presentation
for the group, which exists by [50] since G is a positive one-relator group, and let a denote the first
letter of the word ¢q. Let Q be a finitely generated submonoid of G. Let X = {wy,...,wx} C AT
be a set of positive words such that @ = Mon(wl, cee wk> < G. Such a set of positive words X
exists since every element of G can be expressed by a positive word over A as this is true in the
monoid M. For any w € A" let w € A* such that w = w™! in G, i.e. ww =ww =1 in G. Let
z; be word obtained from w; after replacing a with tx for every letter a. Similarly, let Z; be the
word obtained by replacing a with tx in w; for every occurrence of the letter a. Let r be the word
obtained by replacing every occurrence of a with ¢tz in the word ¢q. Let B = A\ {a}. Then r, z;
and z; for 1 <4 < k are all positive words over BU{x,t}, and r begins with ¢z since the first letter
of g is a. Write r = ts , i.e. making s the positive word obtained by deleting the first letter of r.
In particular s begins with the letter x.
Using the data above we define a two-relator group presentation

Hgx = Gp<B,a:,t |r=1, tzistz1s...stzpstzZps = 1>.
For future reference, we also use Mg, x to denote the corresponding inverse monoid presentation

Mg x = Inv<B,x,t |r=1, tzi1stz1s...stzkstZgs = 1>.



14 ISLAM FONIQI, ROBERT D. GRAY, AND CARL-FREDRIK NYBERG-BRODDA

To establish Theorem 4.1 we will first prove a general result which shows how the word problem
in any finitely generated submonoid of a positive one-relator group can be encoded in the prefix
membership problem in a quasi-positive one-relator group, and then we combine that with the
examples from Section 3 to obtain Theorem 4.1. To prove this general result we will make use of a
related general result (Theorem 7.5) about the prefix membership problem for positive two-relator
groups that will be proved in Section 7 below as an application of results proved there about the
word problem for two-relator inverse monoids.

Theorem 4.3. Let G be a positive one-relator group, and let Q@ be any finitely generated submonoid
of G. Then there exists a quasi-positive one-relator group G’ such that the membership problem
for Q in G reduces to the prefit membership problem for G'. Furthermore, G' can be chosen such
that G' =2 G x Z.

Proof. Let

Hex = Gp<B,sc,t |r =1, tz1stZ1s...stzpstZps = 1>
be the positive two-relator group given by Construction 4.2. Set H = Hg x, Y = BU{z,t},u=r
and v = tz18tZ1S. .. stzpstzgs. It then follows from Theorem 7.5 and its proof that the membership
problem for @ in G reduces to the prefix membership problem for H, that the identity map on Y
induces an isomorphism Gp<Y |u=1v= 1> — Gp<Y | u = 1>, and that H = G x Z. It follows
that the identity map on Y induces an isomorphism

Gp(Y |u=1,v=1) = Gp(Y |vuww ™" =1),

and this group is isomorphic to G * Z. Now since v = 1 in this group, the prefix monoids of
Gp(Y |u=1,v=1) and Gp(Y | vuv™! = 1) are both generated by Pref(u) U Pref(v). Hence the
isomorphism induced by the identity map on Y maps the prefix monoid of Gp<Y |u=1v= 1>
bijectively to the prefix monoid of Gp<Y lvuv—! = 1>. Therefore if Gp<Y|vuv*1 = 1> has decidable
prefix membership problem then so does Gp<Y lu=1,v= 1> which in turn by Theorem 7.5 implies
that the membership problem for @ in G is decidable. The result then follows by taking G’ to be
the one-relator group with generating set Y and defining relator the reduced form of vuv=!. 0O

Applying this general result with our examples from earlier gives:

Proof of Theorem 4.1. By Theorem 3.8 there exists a positive one-relator group G with a fixed
finitely generated submonoid @ such that the membership problem for @ in G is undecidable.
Hence, by Theorem 4.3 there is a quasi-positive one-relator group G’ such that the membership
problem for @ in G reduces to the prefix membership problem for G’. Hence G’ is a quasi-positive
one-relator group with undecidable prefix membership problem. O

5. MEMBERSHIP PROBLEMS IN ONE-RELATION MONOIDS

The subgroup membership problem (also called the generalized word problem) is open in general
for one-relator groups. The analogous question for monoids asks whether all one-relation monoids
have decidable submonoid membership problem. As well as being a natural question, another
reason for studying the membership problem in submonoids, and more generally rational subsets,
of one-relation monoids comes from the left (resp. right) divisibility problem, i.e. the problem of
deciding membership in the principal right (resp. left) ideal generated by a given element. By
a classical result of Adian & Oganesian [4, Corollary 3], decidability of the divisibility problems
in one-relation monoids M0n<A |u = v> implies decidability of the word problem. Clearly, these
principal one-sided ideals are rational subsets of the monoid. Furthermore, Guba [16] proved
that for one-relation monoids of the form M0n<a, b|bUa = a>, the decidability of the membership
problem in principal right ideals is equivalent to the word problem. This motivates the study of the
membership problem for rational subsets of one-relation monoids. As outlined in the introduction
above, several examples and families of one-relation monoid have been shown to have decidable
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rational subset membership problem, and in some sense most of them do in the way that for a
randomly chosen one-relation monoid this problem will be decidable [26], cf. [45, p. 338] for a
discussion.

Since every positive one-relator group admits a one-relation monoid presentation, the main result
of §3 (Theorem 3.8) gave as a corollary (Corollary 3.9) the first known examples of one-relation
monoids for which the submonoid membership problem is undecidable. Specifically we have shown
that the one-relation monoid

Mm,n = MOD<CL, b ‘ (ban)m(anb)m = 1>

with m,n > 1 has decidable submonoid membership problem (and rational subset membership
problem) if and only if m = 1 or n = 1. These are the first known examples of one-relation monoids
with undecidable submonoid membership problem (and undecidable rational subset membership
problem). Of course all of these monoids are in fact groups. Thus arises the question: are there
one-relation monoids that are not groups and have undecidable submonoid, or rational subset,
membership? More generally we have the following problem:

Problem: Classify the one-relation monoids M0n<A |u = v> with decidable rational subset, or
submonoid, membership problem.

Of course this problem may well be difficult to answer given the fact that the word problem for
one-relation monoids remains open but, motivated by the connection with the reduction results by
Adian & Oganesian and Guba mentioned above, there is still strong motivation for developing a
better understanding of the submonoid and rational subset membership problems in one-relation
monoids.

The general study of one-relation monoids Mon<A|u = v> typically splits into cases that, roughly
speaking, give a measure of how far away the monoid is from being a group. In more detail, the
study of one-relation monoids naturally divides into the investigation of so-called special, and more
generally subspecial, monoids on the one hand, and those that are not subspecial, on the other. As
we will explain in more detail below, associated with any one-relation subspecial monoid is a unique
positive one-relator group that arises as a maximal subgroup of the monoid and the algorithmic
properties of the monoid (e.g. the word problem) are typically controlled by properties of this
positive one-relator group.

All of the remaining one-relation monoids, i.e. those that are non-subspecial, are far away from
being groups in the sense that the only idempotent such a monoid contains is its identity, and the
group of units of the monoid is trivial. Recall from above that the word problem for one-relation
monoids has been reduced to the problem of solving the word problem for one-relation monoids of
the form Mon(a, b |bUa = aVa) and of the form Mon(a,b|bUa = a). All of the monoids in these
two families are non-subspecial and it is natural to ask whether the rational subset membership
(or submonoid) problems are decidable in the non-subspecial case, and in particular for monoids
in these two classes. It is not difficult to show that the word problem in such monoids, which are
left cancellative, reduces to the left divisibility problem, i.e. the problem of deciding membership
in the principal right ideals wA*.

Any principal ideal is clearly a rational subset so a better understanding of the membership
problem in rational subsets of monoids of this form is important for the study of the word problem.
We will see below how to construct monoids of both forms M011<a, blbUa = a> and M0n<a, blbUa =
aVa> with undecidable rational subset membership problem. Constructing such examples is more
difficult than in the subspecial case since the monoids do not embed any subgroups (apart from
the trivial group) so the usual approach of embedding the RAAG A(P;) is not available to us in
those cases. This will be discussed in more detail below.

5.1. Special and subspecial monoids. As we have already seen above, the one-relation monoids
that are groups all admit presentation of the form Mon<A |w = 1>. These are usually called special
one-relation monoids in the literature. It follows from results of Adian [2] that the group of units



16 ISLAM FONIQI, ROBERT D. GRAY, AND CARL-FREDRIK NYBERG-BRODDA

of any special one-relation monoid is a positive one-relator group, and there is an algorithm (called
Adian’s overlap algorithm) that computes a presentation for the group of units of the monoid. In
more detail, the algorithm computes a factorization w = wy ... u, into non-empty words u; that
all represent invertible elements of the monoid, and no proper non-empty prefix of u; represents
an invertible element. The set of factors {u; : 1 < i < k} is overlap-free, in the sense that no
non-empty prefix (resp. suffix) of a word in this set is equal to a non-empty suffix (resp. prefix)
of another word in this set. This is called the decomposition of the relator into minimal invertible
pieces, and the group of units of the monoid is then isomorphic to M0n<B | buy buk> where
B = {by, : 1 < i < k}. So the group of units Mon(B | by, ...by, ) of M = Mon(A |w = 1)
is a positive one-relator group, and if that group has undecidable submonoid, or rational subset,
membership problem then so does M. This gives the most straightforward way of using our results
to construct non-group one-relation monoids with undecidable submonoid membership problem.

Proposition 5.1. Let m,n > 2 and let A be a finite alphabet and let o, 8 € AT such that {a, 5}
is overlap-free. Then the group of units of

N = Mon(A | (Ba™)™(aB)™ = 1)

is isomorphic to My, , and hence N contains a fized finitely generated submonoid in which mem-
bership is undecidable. The monoid N is a group if and only if || = || = 1.

Proof. The fact that the group of units of N is M,, , follows by using the fact that {a, 5} are
overlap-free and applying Adian’s overlap algorithm [2]. If |a] > 2 then the first letter of « is

right invertible but not left invertible in N from which it follows that IV is not a group; similarly
if |8 > 2. O

For example taking « = xy and § = zzyy in Proposition 5.1 gives that the following monoid,
which is not a group since x is not invertible, has undecidable submonoid membership problem

Mon(z, y | (zzyy(zy)”)™ ((zy)"zayy)™ = 1)
for m,n > 2.
More generally, a one-relation monoid Mon(A | u = v) with |v] < |u| is called subspecial if
u € vA* N A*v. The following proposition follows from known results, and explains the close
connection between these one-relation monoids and the class of positive one-relator groups.

Proposition 5.2. Let M be a subspecial one-relation monoid, i.e. let M = M0n<A |u = 11> where
[v] < |u| and u € vA* N A*v.
(i) If v =1 is the empty word then M is a special monoid with group of units H isomorphic
to a positive one-relator group.
(i1) If v # 1 then the group of units is trivial, the monoid contains non-trivial idempotents, and
there is a fized positive one-relator group H such that the mazimal subgroup (i.e. group
H-class) associated to any non-trivial idempotent is isomorphic to H.

In both cases, there is an algorithm that computes a presentation and a generating set for the
positive one-relator group H from the given presentation of M. In particular, if M has decidable
submonoid (resp. rational subset) membership problem then so does the positive one-relator group
H.

There is evidence in the literature that the converse of this proposition should be true in the case
of rational subset membership, that is, in both cases of Proposition 5.2 we expect that the monoid
M will have decidable rational subset membership problem if and only if the positive one-relator
group H does. For instance if the group H is a virtually free group (and hence has decidable
rational subset membership problem) then it was proved in [48, 43] that M has decidable rational
subset membership problem. In this sense we expect the problem of classifying subspecial monoids
with decidable rational subset membership problem to be equivalent to the problem of classifying
the positive one-relator groups with this property.
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Given that we now have examples of positive one-relator groups with undecidable submonoid
membership problem, Proposition 5.2 gives a recipe for constructing many more subspecial exam-
ples, by realizing our examples as the group H in the proposition. Rather than developing that
theory in full here, we content ourselves by giving an example from which it should be clear that
many other examples could be constructed using the same approach.

Example 5.3. For m,n > 1 define 7T}, ,, to be the monoid
Mon(z,t | ((2t2%t)?(2t2°t)? (2t2tatzt)" )™ ((2t2"tat2 )" (2t2°1)% (2t2°1)%)™ = 2t).
If we compress this monoid (in the sense of [30, 29]) with respect to zt we obtain the monoid
Mon(z, y | (zzyy(zy)")™ ((zy)"zryy)™ = 1),
and from above the group of units of this monoid is isomorphic to
My, = Mon(a, b | (ba™)™(a™b)™ = 1).

It then follows from [30] that T}, ,, contains non-identity idempotents and the maximal subgroup of
any of these idempotents is isomorphic to the positive one-relator group M, . It follows that for
all m,n > 2 the monoid T, , embeds the group A(Ps) and hence contains a fixed finite generated
submonoid in which membership is undecidable.

5.2. Non-subspecial monoids. As explained in the beginning of this section, all of the remaining
one-relation monoids, i.e. those that are non-subspecial, are far away from being groups, containing
no non-trivial subgroups. These non-subspecial monoids will be the topic of the remainder of this
section, and also the next section where we develop new methods for constructing examples of
these forms with undecidable rational subset membership problem. We now turn our attention
to the class of monadic one-relation monoids Mon(a7 b|bUa = a> discussed in the introduction
to this paper. As explained there, one major motivation for the work done in this paper is the
work of Guba [16] which reduces the word problem in these monoids to the membership problem
in certain submonoids of particular positive one-relator groups. In the next section we will give an
infinite family of monadic one-relation monoids Mon<a, b|bUa = a>, each of which has undecidable
rational subset membership problem.

In his paper [16], Guba associates with any M0n<a, b|bUa = a> a positive one-relator group G
such that the word problem in M0n<a, b|bUa = a> reduces to solving the membership problem
within a certain submonoid of G. Of course if G has decidable submonoid membership problem
then M0n<a,b | bUa = a> will have decidable word problem, so the only cases of interest now
are those where the positive one relator group G does not have decidable submonoid membership
problem. We now know from the results above that such positive one-relator groups G do exist, so
the next step is to seek monoids Mon(a, blbUa = a> such that the associated positive one-relator
groups arising from Guba’s theory are isomorphic to the positive groups G, , that we defined and
investigated above. We will now identify one such class of monadic one-relation monoids, and give
some of their basic properties, before going on to study rational subset membership in this class
in depth in the next section (§6).

Let Gy = Gp<x, Yy | xmy”xmy*") By Remark 3.6 the subgroup

H = Gp(ya™y ' y™", 2™ ay* ™)

is isomorphic to A(Py) in Gy, p-
The substitution y — a,z — ba™ defines an isomorphism between G, ,, and the group:
My, = Mon(a, b | (ba™)™(a™b)™ = 1).

We know from the results in §3 that M,, ,, is a one-relator group defined by a positive word and
with an undecidable submonoid membership problem.
In the new presentation, the subgroup H is given as:

H = Gp{a(ba™)™a" ", a®", (ba™)™, ba® b ).
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Let Wy, = (ba™)™(a™b)™, and let Q. be the longest proper suffix of W, ., i.e. Wy, =
bQm,n. Consider the monoid

Ryn =Mon(a, b|a=0bQmna).

Applying Oganesian’s algorithm (see [16]) to the monoid R, ,, we see that the suffix monoid of
R, » embeds in the one-relator group

G?n,n = Gp(a, b ‘ (ban)m(anb)m = 1> = MnL,n'

Indeed, the suffixes of Q. na that start with a are left-divisible by a (which is the first suffix), while
the suffixes of @, na that start with b, start with ba as well; so, these suffixes are left-divisible by
ba (which is the second suffix). Moreover, as a = bQp, na = (ba™)™(a™b)™, a is left-divisible by ba.
By Oganesian’s algorithm, this suffices to show that the suffix monoid of R,, , embeds in G, .

In the next section, we will prove the undecidability of the rational subset membership problem
in the monoid R, . Before doing so, we will solve the word problem in R, ,. We will do so by
means of a finite complete rewriting system. First, note that the word bQ),, ,a has self-overlaps;
in fact, all the words of the form (ba™)%ba (for 0 < i < m — 1) are both a prefix and a suffix.
Thus while the rewriting system bQ,, na — a defines R,, ,,, it is not complete. It can, however, be
completed to one:

Lemma 5.4. The monoid Ry, , admits a finite complete rewriting system S on the alphabet {a, b},
and with the following rules:

(i) (ba™)™(a™b)"a — a,

(ii) (ba™)™(a™b)™ *a"a — (a™b)™ ta™(a"b)™a (1 < i < m).

We will denote rule (i) as ag — o, and (ii) as a; — 5; (1 < i < m), respectively. To show
that the system S in Lemma 5.4 is complete, it is enough to show that it is Noetherian and locally
confluent by Newman’s Lemma (see e.g. [18, Lemma 12.15]). Obviously, it is Noetherian, as can be
seen by using the shortlex order. We must therefore only show that our system is locally confluent.
For this, we use the following lemma;:

Lemma 5.5 (Lemma 12.17 in [18]). The system S is locally confluent if and only if for all pairs
of rules (I1,71), (la,m2) € S, the following conditions are satisfied:
(i) If Iy = us and ly = sv with u,s,v € {a,b}* and s # €, then there exists w € {a,b}* with
rv = w, and urg —* w.
(i1) If Iy = usv and lo = s with u,s,v € {a,b}* and s # ¢, then there exists w € {a,b}* with
ry —=* w, and urgv —* w.

Proof of Lemma 5.4. Note that the second condition of Lemma 5.5 does not apply to our system,
as none of the «; is a subword of another «;.

Note also that the first condition of Lemma 5.5 can only be applied for l; = o and Iy = «; for
0 < i < m, because other pairings do not overlap.

For l; = ap and Iy = «; set s; = (ba™) ba for 0 < j < m—1. We want ap = u;s; and oy = s;v; 5,
so: u; = (ba™)™(a"b)™"1"Ia"; vy ; = a1 (ba™)™ 177 (a"b)™a; while for all other i > 0 one has
Vi = an—l(ban)m—l—j (anb)m—iana'

Now we want to find a word w; ; with Bov; ; —* w; ;, and u;3; —* w; ;. Recall that 3y = a,
and B; = (a"b)™ 'a"™(a™b)™a. Actually, one can see that w; ; = Bov; ; = av; j, i.e. w;; = Bov;; is
reduced with respect to our system, and u;8; gets reduced to w; ;. (]

6. UNDECIDABILITY IN MONADIC ONE-RELATION MONOIDS

The goal of this section is to prove the following result, the proof of which will use the results
of the previous sections.
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Theorem 6.1. For all m,n > 2, the monoid
Rypn = Mon(a,b| (ba™)™(a™b)™a = a)
contains a fized rational subset in which membership is undecidable.

Since the first letters of the two sides of the defining relation are distinct, the monoid R, , is
left-cancellative by Adian [1, Theorem 3], so the only idempotent in R, ,, is the identity. The group
of units in R,, y, is trivial since the defining relation is not of the form w = 1. Hence, R, ,, does not
contain any non-trivial groups; in particular, R, , does not embed A(Ps). So Theorem 6.1 cannot
be proved by embedding A(Py), or embedding any other group for that matter. Theorem 6.1 gives
the first known examples of non-subspecial one-relation monoids with undecidable rational subset
membership problem.

To prove the theorem we will need to introduce a new approach which involves embedding the
trace monoid T'(P,) into Ry, in a certain way. It is not the case that every left-cancellative
monoid that embeds T'(P;) has undecidable rational subset membership problem. For example,
T(Py) itself is left-cancellative (it is even group-embeddable) and has decidable rational subset
membership problem [11]. So the way in which the trace monoid embeds into R,, , will be vital.

Recall [19, Chapter II] that two elements x, y in a monoid T are said to be L-related if Tz = Ty.
Also note that it is immediate from the definition that £ is a right congruence, i.e. if xLy then
xzLyz for any z € T. This will be used implicitly throughout our proofs below. We will prove
the following general result and then show that the hypotheses are satisfied by the one-relation
monoid R, , above.

Theorem 6.2. Let M be a finitely generated left-cancellative monoid and let U C M such that
wolv for all u,v € U. If Mon<U> is isomorphic to the trace monoid T(Py) then M contains a
fixed rational subset in which membership is undecidable.

By the trace semigroup of P4, we mean the semigroup defined by the semigroup presentation
Sgp<a, b,c,d | ab = ba,bc = cb,cd = dc>.

Corollary 6.3. If a left-cancellative monoid embeds a copy of the trace semigroup of P, that is
contained in a single L-class of the monoid, then the monoid contains a fixed rational subset in
which membership is undecidable.

In addition to applying to our one-relation monoid example, the general result Theorem 6.2
also has the following application to groups, since in a group every pair of elements are clearly
L-related.

Corollary 6.4. If G is a finitely generated group which embeds the trace monoid T(Py) then G
contains a fized rational subset in which rational subset membership is undecidable.

Given this, a natural question is whether a group can embed T'(Py) but not A(Py); this will be
discussed at the end of this section.

Before proving Theorem 6.2 we will show how it can be applied to prove Theorem 6.1. For that
we need the following lemma about the L-relation in one-relation monoids of the same form as our
example.

Lemma 6.5. Let
M = Mon(a,b|ba"ba" ...ba"*ba = a)
with i; > 1 for all1 < j < k. Then wLa in M for every word w € {a,ba}™.

Proof. Set r = ba™ba®® ...ba'*ba. Since r begins and ends with ba we can write r = aba = bay. As
a =1 =bayin M and « ends in the letter a, it follows that ayLa. In M we have ay = abay = aa
hence aaLla. Since r = aba and i, > 1 it follows that the last letter of o equals a, so we can write
a = o’a. But now aala implies o’ a?La so da’a? = a for some word §. It follows that a®La in M.
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Next observe that baLa since ba is a suffix of r, from which it follows that ba(ba)La(ba) and also
ba(a)La(a). Also abaLla since aba is a suffix of r. We have shown aaLla, a(ba)La, (ba)(ba)Labala
and (ba)aLaala, that is, all two-factor products of the words {a,ba} are L-related to a. Now
the result follows by induction since setting wy = a, wy = ba, for any product w;, w;, ... w;, with
k > 3 from above we have w;, w;,La from which, since £ is a right congruence, it follows that
Wiy Wiy Wiy - . . Wi, LaW;, . .. w;, where by induction aw, ... w;, = wwi, ... w;, La. O

The key to applying Theorem 6.2 to R,, , is to find an appropriately embedded copy of the
trace monoid T'(Py). This is achieved in the following lemma.

Lemma 6.6. For all m,n > 2 the submonoid Ty = Mon<X> of Ry, generated by
X = {a(ban)m—lban—l7 a2n7 (ban)m7 bana2n(ban)m—1}
is isomorphic to the trace monoid T'(Py).

Proof. Set
a = a(ban)m—lban—l, B — a2n7 = (ban)m7 = bana2n(ban)m—l.

Let H = Gp<a(ba")ma_1, a*, (ba™)™, ba2"b_1> < My, and denote by A, B, C, D its 4 generators,
in the given order, recalling that My, ,, = Gp{a,b | (ba™)™(a"b)™a = a). In Section 3, Remark
3.6 was applied to show that H = A(P;) with A, B, C and D corresponding to the vertices in
the path P, in this order. It then follows from a sequence of easy Tietze transformations that
Gp(a, 8,7, ) < My, is also isomorphic to A(Py) since o = a(ba™)™ 'ba" ! is equal to A in
My, B=DB,vy=C, and

= bana2n(ban)m71 — ba2nan(ban)mfl — ba2nb71(ban)m = DC

is equal to DC' in M, ,,. Since any trace monoid naturally embeds in its corresponding right-angled
Artin group, it follows that M0n<oz7 58,7, ,u> < M, », is isomorphic to the trace monoid T'(P;) where
«, B, 7, p correspond to the vertices on the path P, in this order. Let ¢ be the homomorphism
¢ : Ry, n — My, , induced by the identity map on {a,b}. Then

o(Ty) = ¢(Mon<X>) = Mon<qb(X)> = M0n<a,ﬁ77,u> < Mpmn

is isomorphic to the trace monoid T(P;) where Ty = Mon<X> = Mon<a,5,’y,p> < Ry So
¢ induces a surjective homomorphism from T4 onto ¢(T4) < M, . To show that this defines
an isomorphism between Ty and ¢(T4) we need to show that ¢ is injective on the set Ty which,
since ¢(T}) is isomorphic to T'(Py), means we need to show that the defining relations of the trace
monoid hold between the generators of Ty in the monoid R,,,. Hence to complete the proof we
just need to show that af = fa, fy = vB and yu = py all hold in R, .

Using the rewriting rule (ii) for ¢ = m from Lemma 5.4 we obtain

(ba™)™a"a = a"(a"b)™a. (6)
Multiplying Equation (6) by a”~! on the right, we obtain (ba™)™a?" = a?"(ba™)™; i.e. v8 = By

in Ry,.n. Multiplying Equation (6) by a on the left, and a”~2 on the right (note that n > 2) and
writing m = (m — 1) + 1 we obtain:

[a(ban)mflbanfl]cﬂn — a2n[a(ban)mban71],

which means that a8 = S« in R,,,. Lastly, note that v = (ba™)™ commutes with all the words
ba™, a®*", and (ba™)™~!. So we obtain:

py = [ba"a® (ba™) ™y = y[ba"a®" (ba™) ™ ] = p,
as required. O

We are now in a position to prove the main result of this section, which we presented at the
very beginning.
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Proof of Theorem 6.1. Let m,n > 2, and set R,,, = M0n<a,b | (ba™)™(a™b)™a = a>. By
Lemma 6.6 the submonoid T, = Mon<X > of R, generated by

X = {a(ban)mflbanfl7 a{2n7 (ban)m7 bana2n(ban)mfl}

is isomorphic to the trace monoid T'(Py), and since every word in X belongs to {a,ba}™ it follows
from Lemma 6.5 that all non-empty products of elements of X are L-related to each other, since
they are all L-related to a. Since M is left cancellative by Adian [1, Theorem 3], the result now
follows by applying Theorem 6.2. O

The remainder of this section will be devoted to proving Theorem 6.2 and then discussing some
of its other consequences.

First, the following result identifies a sufficient condition for constructing rational subsets of
left-cancellative monoids in which membership is undecidable.

Theorem 6.7. Let M be a left-cancellative monoid with a finite generating set A. Suppose that
there exist rational languages L, K, L C A*, a surjective map « : L — L with «(l) = I, and a
fized word w € A*, satisfying the following properties:

(i) llw =w in M, for alll € L, and _

(i) it is undecidable whether there exists a pair (I, k) € L x K satisfying lw* =k in M, for a

given i € N.

Then the rational language LK C A* defines a fized rational subset of M in which membership is
undecidable.

Proof. The language LK C A* is clearly rational as both L and K are.

Let i € N. Since M is left cancellative it follows that for any (I,k) € L x K we have [w® = k in
M if and only if llw' = Ik. Applying condition (i) gives llw’ = [lww'~! = w?, hence lw' = k in M
if and only if w’ = [k.

It follows that for a given i € N there exists (I,k) € L x K satisfying lw® = k if and only if
there exists (I, k) € L x K satisfying w' = Ik which is true if and only if w’ € LK, since o being
surjective implies that L = {I : | € L}. But the former problem is undecidable by assumption (ii)
and hence the latter problem must also be undecidable, i.e. membership in the rational subset LK
of M is undecidable. O

Condition (ii) in the above theorem comes from the following result of Lohrey and Steinberg
[33] about the trace monoid T'(Py).

Lemma 6.8 (Corollary of Proof of Theorem 2 in [33]). Let T be the trace monoid of Py defined by
T = Mon(u1, ug, us, ug | U1ty = ugtiy, UpUz = Uz, Usly = UsUs).

Then there are two fized rational subsets Q, R C {u1, ua, us, us}*, with Q not containing the empty
word, such that it is undecidable whether there exists a pair (z,y) € Q X R satisfying x(u2)* =y
inT, for a given i € N.

Proof. In the paper [33, Proof of Theorem 2| the authors take ¥ = {a,b,¢,d} and work in the
trace monoid S = Mon<2 | ab = ba,bc = ¢b,cd = dc>. They show that there is a fixed rational
language L C ¥* and a family of languages K, , with m,n € N such that it is undecidable whether
Kpn ML # @ for given m,n € N. For our purposes the important thing is that K, , = b*"3"Q
where 2 C ¥* is a certain fixed rational language with the property that 2 does not contain the
empty word.? Their argument shows that it is undecidable whether b2"3"Q N L # @ for given
m,n € N. It follows from the defining relations in the trace monoid S that for any two words

2In fact in [33, Proof of Theorem 2], the authors use K n = b2 3" Q where Q = a(d(cb)Ta)*dc*. However,
this definition appears to have a typo, since for the equality in the displayed equation in the fourth-from-last line
of their proof to be true, one should really take 2 to be a(d(cb)ta)*dct because of the condition j; > 1. This small
change does not have any impact on the conclusion of their result or on our application of it.
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u,v € ¥* we have v = v in S if and only if rev(u) = rev(v) in S where rev denotes the reverse
of a word. Hence if we set Q' = {rev(u) : u € Q} and L' = {rev(l) : [ € L} then ' and L’ are
rational subsets of ¥*, since word reversal clearly preserves the property of being a regular language.
Furthermore, € and L’ have the property that it is undecidable whether Q'b2"3" N L’ # & for
given m,n € N. In particular this means that there are fixed rational subsets Q', L’ C ¥* such
that it is undecidable whether Q'b* N L’ # & for given i € N. Finally if we translate this into the
notation of the trace monoid as defined in the statement of the lemma by substituting a — uq,
b+ us, c— uz and d — uy we obtain the result, where ) does not contain the empty word since
Q does not. O

We will also need the following lemma about a certain mapping on words that preserves the
property of being a regular language.

Lemma 6.9. Let A = {a,...,a,} and for every pair (i, j) of natural numbers withi,j € {1,...,n}
choose and fix some b; ; € A*. For every word w = a;, @i, ... a;,_,a;, € A* of length at least 2
define

D@, Qig - - @iy @iy, ) = by iy Dig_gisey -+ Dig isbin i
If L C A* is a regular language, and every word in L has length at least two, then ¢(L) C A* is
also a regular language.

Proof. Let L C A* be a regular language, and suppose that every word in L has length at least
two. Let o : A* — A* be the homomorphism defined by a; — a? and set L; = o(L). Since the
class of regular languages is closed under taking homomorphisms, it follows that L; is a regular
language. Since every word in L has length at least two it follows that every word in L; has length
at least four. Now let Ly be the language obtained by taking each word from L; and deleting the
first letter and the last letter. Note that every word in Lo has even length, and has length at least
two. Since the left or right quotient of a regular language is again regular, and deletion of the
last resp. first letter is an example of taking a left resp. right quotient of a language by a regular
language, it follows that Lo is a regular language. Let g : L1 — Lo be the map that deletes the
first and last letter of the input word, and L3 the reversal of the language Lo, i.e. the language
obtained by reversing every word.

Now define a new alphabet C' = {¢; ; : 1 <i,j < n} and a homomorphism 6 : C* — A* defined
by ¢i j — a;a;. Note that the homomorphism 6 is clearly injective with image the set of all word
in A* of even length. Since regularity is preserved under taking inverse images of homomorphisms,
it follows that for any regular language W C A* the language =1(W) C C* is regular. Let
p: C* — C* be the word reversing map which also preserves regularity.

Now, given any word w = a;, @;, . .. @, _,a;, € A* of length at least 2 we have

9(0(W)) = Qi iy Qin iy Qg « - . Ay Qi iy iy Qi
is a non-empty word of even length and then
(po810goa)(w) = Cip_,.ixCix_sins - - - CirsiaCir is
Finally let v : C* — A* be the homomorphism defined by ¢; ; — b; ;, so that
(YopobOtogoo)(aiaiy .. ai_,ai) =bir i bix_gir_y - DigisDiyin-
It follows that the mapping ¢ in the statement of the lemma satisfies ¢ = yopof~logoo and since

as explained above all of the maps in this composition preserve regularity of follows that ¢(L) is a
regular language. O

We now have everything we need to prove our general theorem.

Proof of Theorem 6.2. Let M be a finitely generated left-cancellative monoid and let U C M such
that wvlv for all u,v € U, and Mon<U > is isomorphic to the trace monoid T(Py). Since every
generating set of T'(P;) must contain the four standard generators of the monoid that correspond
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to the four vertices of the path Py (this follows from the fact that the relations in the presentation
of T'(P,) are length preserving so one cannot recover the letters as products of words of greater
length) it follows that U contains a subset Y = {uj,us,us, us} corresponding to the standard
generators of the trace monoid. Since the rational subsets of a monoid do not depend on the choice
of finite generating sets, without loss of generality we can take the generating set A for M in the
statement of the theorem to be a finite generating set for M so that it contains the subset Y C A.
So Y C A with Y = {u1, u2,us, us} where T' = Mon(Y") is isomorphic to the trace monoid 7'(Py)
with the generators ui, us, us, uq corresponding to the vertices in the path P, with u; adjacent to
u;41 for all 4, and by the assumptions in the statement of the theorem u;u;Lu; for all u;,u; €Y.

Next, for every pair 4,5 € {1,2,3,4} we fix a word v; ; € A* such that v; ju;u; = u;. This is
possible since u;u;Lu;. Then for any non-empty word w = u;, uj, ... u;, € Y™ we define

W = Vi, 2Viy_1,inVig_2,in_1 * - Vig,igVis,igViyia
and observe that
WWU2 = V4, 2Vi, 1,0, Vig_a,in—1 « - - Vig,igVig iz Uiy io Uiy Wiy - - - Ug,, U2 = Vg, 2U5, U2 = U2

in M.

By Theorem 6.8 there are two fixed rational subsets ), R C Y™, with () not containing the
empty word, such that it is undecidable whether there exists a pair (z,y) € Q X R satisfying
x(ug)t =y in M, for a given i € N. Since Y C A it follows that @, R are also rational subsets of
A* satisfying this property.

Set Q = {w: w € Q}. We claim that @ is a rational subset of A*. To see this note that Q is a
rational subset of A* not containing the empty word, from which it follows that Qus is a rational
subset of A* in which every word has length at least two. For every word w = w;, wi, ... w4, _, Ui, €
A* of length at least 2 define

¢(ui1ui2 i uik—luik) = Vig_1,inVig_o,in—1 - - - Via,igViy ia-

Since Quq is a rational subset of A* it follows from Lemma 6.9 that ¢(Qus) is a rational subset of
A*. But Q = ¢(Qus), and hence Q is a rational subset of A*, completing the proof of the claim.
Hence we have a left-cancellative monoid M with finite generating set A, rational languages
Q,R,Q C A*, a surjective map a : Q — @Q with a(r) = 7, and a fixed word up € A*, satisfying
the following properties:
(i) Tzus = ug in M, for all z € Q,
(i) it is undecidable whether there exists a pair (x,y) € Q x R satisfying z(uz)’ = y in M, for

a given ¢ € N.
Then by Theorem 6.7 the rational language QR C A* defines a fixed rational subset of M in which
membership is undecidable. 0

A natural question is the following

Question 6.10. If m = 1 or n = 1 then does R,,, = Mon{a,b | (ba™)™(a"b)™a = a) have
decidable rational subset membership problem?

We know from above that the group with the same presentation does have decidable rational
subset membership problem when m =1 or n = 1.

Remark 6.11. We have seen that for all m,n > 2 the monoid R,,, contains a fixed rational
subset in which membership is undecidable. There are easy modifications of this example that can
be used to obtain monoids of the form M01r1<a7 b|bUa = aVa> with the same property. One simple
way to do this would be to replace a by aaa and b by bbb to obtain the family of monoids

Mon(a, b | [bbb(aaa)™]™[(aaa)"bbb]"aaa = aaa).
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It is straightforward to show that the submonoid of this monoid generated by {aaa, bbb} is isomor-
phic to R, », and hence for every m,n > 2 this monoid contains a fixed rational subset in which
membership is undecidable, and this monoid has the form Mon(a7 bl|bUa = aVa>.

Remark 6.12. In a very similar way to Example 5.3 the monadic examples constructed above
can be combined with the theory of compression [30, 29] to obtain many more examples of non-
subspecial monoids with undecidable rational subset membership problem. Indeed, it is not difficult
to show that one-step compression by an overlap-free word (in the sense of Kobayashi [29]) preserves
the property of having decidable rational subset membership problem. So if a monoid compresses
in finitely many steps to one of our monadic example above with undecidable rational subset
membership problem then the original monoid will have the same property. To give an example,
for m,n > 1 the monoid

T = Mon(z,y | (zyyzy(zyzry)™)™ ((zyzey) cyyry) " cyrey = ryzry)

is sealed by the self-overlap free word zy, and when we perform one-step compression with respect
to this we obtain the monoid

Rm,n — M0n<a, b | (ban)m(anb)ma _ a>.

It follows that for m,n > 2 the monoid T above contains a fixed rational subset in which mem-
bership is undecidable. Clearly T is not a subspecial monoid. There is evidence that the converse
should be true, that is, a compressible one-relation monoid has decidable rational subset member-
ship problem if and only if its full compression does. Combining this with the comments above
on subspecial monoids, the authors believe that the problem of classifying one-relation monoids
with decidable rational subset membership problem should reduce to solving the problem for pos-
itive one-relator groups (for the subspecial case) and solving it for incompressible monoids (in the
non-subspecial case).

6.1. An application to the rational subset membership problem in groups. Corollary 6.4
shows that if G is a finitely generated group which embeds the trace monoid T'(Ps) then G contains
a fixed rational subset in which rational subset membership is undecidable. Currently all known
examples of one-relator groups with undecidable rational subset membership problem embed A(Py).
This motivates the following question:

Question 6.13. Is there a one-relator group which embeds the trace monoid T'(Py) but does not
embed A(Py)?

If such an example exists it would show that for one-relator groups embeddability of A(FPy) is
sufficient but not necessary for undecidability of the rational subset membership problem.

In the following proposition we will give an example of a group H with a finite subset X such
that Mon(X) is isomorphic to the trace monoid T'(P) but Gp(X) is not isomorphic to A(Py). In
particular, since H is a group embedding T'(Py), it follows from Corollary 6.4 that H contains a
rational subset in which membership is undecidable. We do not know whether the group H embeds
A(Py). And the only way we know of proving that H has undecidable rational subset membership
problem is by using the fact that it embeds T'(P;). This shows that Corollary 6.4 can be usefully
applied to examples.

Proposition 6.14. Let
H= Gp<a:, y,z,t|te = xt,xz = za, 2y = yz7y2x = 9t7y>7
and set X = {t,z,z,xy}. Then
(i) Mon(X) is isomorphic to the trace monoid T(Py), while
(1) Gp<X> is not isomorphic to the right-angled Artin group A(Py).

In particular the group H contains a rational subset in which membership is undecidable.
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Proof. (i) Let K = Gp<x, Y,z | w2 = za,yz = 2y, y%x = :cy> Then T = Mon<x,y, z|lxz = za,yz =
2y, y2x = xy> naturally embeds in the group K.
To see this observe that with K; = Gp(z | > and Ky = Grp<3v7 y|y*r = xy> we have

K:K1 X K2 > 7 x BS(].,?),
while setting 77 = Mon(z | ) and T, = Mon(z,y | y?z = xy) we have
T =T, x T, 2 Ny x Mon(z,y | y*z = xy).

Both 77 and T3 are group embeddable; T3 is free, and T5 is left and right cycle-free, so is group-
embeddable [1, Theorem 5]. Hence the natural maps ¢; : T; — K; for i = 1,2 define injective
homomorphisms. But then it follows that the map ¢: Ty x To — K; x K5 defined by (t1,t2) —
(¢1(t1), P2(t2)) defines an injective homomorphism from 7' into K. Hence T is group embeddable
and thus T embeds naturally into the group with the same presentation, that is, the identity map
on {x,y, z} defines an injective homomorphism from 7" into K.

Then T = M0n<x,y, 2|2z = za,yz = 2y, y’x = asy> is a finite complete presentation for the
monoid T, and if we consider the submonoid of T" generated by {z, zy, z} we see that the reduced
form of any word in {z,zy,2}* belongs to the set {z}*{z,ry}* since the rewrite rule y*z = xy
can never be applied to a word in {z,zy, z}*. We conclude that the submonoid of T, and hence
also of K, generated by {x,xy, z} is isomorphic to Ny x {¢,d}* i.e. it is isomorphic to the trace
monoid T'(P;) where the vertices of P; are x, z, xy in that order (with z being the middle vertex
of the path).

Now apply Theorem 6.15 below to the HNN-extension H of K where

H= Gp<x,y, z,t|xz = zx, 2y = yz,ny = xyﬂﬁxt‘l = x>

From the previous paragraph the submonoid of K generated by {x,z,zy} is isomorphic to the
trace monoid Mon<x, b,c|xb=bx,bc = cb,cd = dc>.

Then by Theorem 6.15 it follows that the submonoid of H generated by X = {¢t, z, 2z, zy} is
isomorphic to Mon<t, x,b,c|te = at,xb = bx,bc = ¢b,cd = dc> =~ T(Py), as required.

(ii) Gp(X) = H which has abelianisation Z* and hence cannot be isomorphic to A(P;) which
has abelianisation Z*. O

The proof of Proposition 6.14 uses the following general result about submonoids of HNN
extensions of groups, which is also of independent interest.

Theorem 6.15. Let G = Gp<B | Q), let AC B, fita € A and set
H = Gp(B,t| Q,tat™ = a)

which is an HNN-extension of G with respect to the automorphism fixing the cyclic subgroup of G
generated by a. Let M be the submonoid Mon<A> of G generated by A, and let Mon<A | R> be a
presentation for M with respect to the generating set A. Then

Mon({M U {t}) = Mon(A, t| R, at = ta).

Before giving the proof, we recall the normal form in HNN-extensions, which is an immediate
consequence of Britton’s Lemma (see [34, Ch. IV]):

Lemma 6.16 (cf. Lemma 6.2 in [12]). An equality of two reduced forms
Gt grt%? -t gy = hot™ hat® -t Ry

holds in the HNN-extension G*¢ ao.N, N, if and only if n = m,e; = §; for all 1 < i < n, and
there exist 1 = ag, a1, ..., an, apyr1 = 1 € Ny U Ny such that for all 0 < i < n we have a; € Ny if
gi=—-1,a; € Ny ife; =1, and

hi = a;lgi(taiJrlOliJrltis'Hl).
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Proof of Theorem 6.15. Set N = Mon<A, t|R,at = ta>. There is an obvious morphism j: N — H,
given by j(a) = a for any a € A, and j(t) =t.

Moreover, the image j(N) in H is equal to Mon(M U {t}). To prove the result, it is enough to
show that j is injective as well. Let

g()tglt e tgn = hothlf R thm (7)

be an equality of elements in j(N) = M0n<M U {t}>, where M = Mon<A>; ie. gi,h; € M for all
0<i<n,and 0 <j <m.

Equality (7) holds in the group H as well, so we can use Lemma 6.16 for G = Gp(B | Q),
Ny =Ny ={(a)2Z,H= G*t,é:(a>ﬂ>(a)’ and we obtain:
n = m, and there are 1 = ag, a1, ..., 0, @py1 = 1 € (a) with h; = a;lgi(taiﬂt_l).

Since tat ™! = a for any a € (a), we obtain h; = a;lgiaiﬂ in H.
Claim. Let a;y1 = a® for some 0 < i < n. The following equalities hold in N:
hothlt s thl = g()tglt s tgl‘Oéi_‘_l, if s Z 0;
hothqt - - ~thiozi_+11 = gotgrt---tg;, if s <0.

Proof of Claim. From the equality h; = a;lgiaiﬂ in H, for ¢ = 0 one obtains hy = goa;. Multi-
plying by ¢ on the right and using a1t = ta; (because a1 € (a)) we obtain the desired conclusion
for i = 0.
Assume the result holds for a given ¢ < n. We want to show that it holds for i + 1 as well. Set
Q42 = a’®.
(1) Assume first that hothit---th; = gotgit---tg;a;1 in N. Multiplying by th; 1, and using
the commutation o111t = ta; 1 we obtain:

hothlt tee thithi+1 = gotglt tee tgitaiJrlhiJrl (8)

a) If s > 0 one has a;11h;11 = gir10410 in N, which substituting in Equation (8), gives
+11%+ +1 Q%+
the desired conclusion.
b) If s < 0 one has a;11hir1al, = gi+1 in N. Multiplying Equation (8) by a; L, on the
+ +1&5 42 + i+2
right and substituting o;11hi4100 +12 by gi+1, we obtain again the desired equality for
i+ 1.
2) Assume now that hothit---th;a;l, = gotgit---tg; in N. Multiplying by tg; 11, and using
i+1 +
the commutation a;llt = to,, +11 we obtain:
hothit - - thita; !l giv1 = gotgit - - tgitgis 9)
a) If s > 0 one has h;;1 = a ! git10;19 in N. Multiplying Equation (9) by a;19 on the
+ i+191+ + +
right and substituting o +11 gi+1Qi+2 by hiy1, we obtain again the desired equality for
i+ 1.
b) If s < 0 one has hi 10,5 = ;Y gir1 in N, which substituting in Equation (9), gives
+1% 19 i+19i+
the desired conclusion.

This shows the proof of our claim. O

Now the proof of the theorem is obtained by taking ¢ = n in our claim. O

7. THE WORD PROBLEM FOR POSITIVE SPECIAL INVERSE MONOIDS

It is an open question whether the word problem is decidable for all one-relation inverse monoids
InV<A |w = 1> where w is a reduced word. This problem is important since if the answer is yes then
it would solve positively the longstanding open question of whether all one-relation monoids have
decidable word problem. In particular, this question is open in the case when w € AT is a positive
word. Interesting examples of positive one-relator special inverse monoids with counter-intuitive
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behaviour have been studied in the literature e.g. the O’Hare monoid [39], and subsequent simpler
examples [46]. Given that the question for positive one-relator inverse monoids remains open, it
is natural to consider what happens in the case of two positive relators. Further motivation for
studying positive two relator inverse monoids comes from the fact that for any pair of positive
words u,v € AT there is an isomorphism

Inv(A|uww™ =1) 2 Inv(At|ut = 1,0t =1)

which is a positive two-relator inverse monoid, and it follows from [22] that the word problem
for one-relation monoids reduces to the word problem for inverse monoids of this form. So the
word problem for one-relation monoids reduces to the word problem for positive two-relator inverse
monoids of the above form. While that question remains open, in this section we will show that
in general the word problem for two-relator inverse monoids is not decidable.

Theorem 7.1. There is a positive two-relator inverse monoid Inv<A |u = 1Lv = 1>, where
u,v € AT, with an undecidable word problem. Furthermore, the example may be chosen to be
E-unitary.

Remark 7.2. Given that the word problem for two-relator groups is open, and also for two-relator
monoids is open, it is natural to ask whether the groups or monoids defined by the presentations
given by Theorem 7.1 have decidable word problem. It is a consequence of the proof of Theorem 7.1
that the corresponding groups are in fact isomorphic to one-relator and hence have decidable word
problem by Magnus’ theorem. It is less obvious whether the corresponding two relator special
monoids have decidable word problem, but by Makanin [37, 44] they have groups of units that are
two-relator groups, and the word problem reduces to that of the group of units. So those monoids
are likely to have decidable word problem, else we would have an example of a two-relator group
with undecidable word problem (namely the group of units of the monoid), and the word problem
for two-relator groups is a famous open problem, cf. [27, Problem 9.29]

The following standard lemma will be helpful in proving the main result of this section; for a
proof see e.g. [14, Corollary 3.2].

Lemma 7.3. Let M = Inv(A | R). If waa™'y € (AU A™Y)* is right invertible in M, where
a€ AUAY and z,y € (AU A™Y*, then waa "ty = zy in M.

The main result of this section, Theorem 7.1, will follow from the following general result that
shows how to encode the submonoid membership problem in any positive one-relator group into a
positive two-relator inverse monoid.

Theorem 7.4. Let G be a positive one-relator group, and let Q@ be any finitely generated submonoid
of G. Then there exists a positive two-relator inverse monoid M = InV<A\u =1lv= 1>, with u,v €
AT, such the membership problem for Q in G reduces to the word problem of M. Furthermore, M
can be chosen to be E-unitary and have maximal group image isomorphic to G x Z.

Proof. Let M be the inverse monoid defined by the two-relator positive presentation
M=Mgx = Inv<B,x,t |r =1, tzistzis...slzpstzZgs = 1>

given by Construction 4.2. We claim that if M has decidable word problem then the membership
problem for @) within G is decidable. Furthermore we shall show that M is E-unitary and has
maximal group image isomorphic to G * Z.

To establish this, we will perform a series of Tietze transformations on the presentation. This
will come in two stages. First we will apply a set of Tietze transformations to prove that M = T
where

T=Inv(B,z,t|r=1, (tat Dtzy't) =1, ..., (tzpt Dtz 't =1).

Since Mon<A g = 1> is a group it follows that every letter from a is invertible in this monoid.
From this it follows that in the monoid Mon<B,x,t |r = 1>, where r is the word defined above
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obtained from ¢ by replacing a by tx everywhere it appears, the element tx is invertible. Indeed,
the map a — tx and identity on every other letter defines a homomorphism from Mon<A g = 1>
to M0n<B, x,t|r= 1> which must map units to units, and since a is a unit in the former monoid,
tzr is a unit in the latter monoid.

Since tz is a unit in M0n<B ot = 1> it follows that tz is a unit in the inverse monoid M, since
M has r = 1 as a defining relation. The fact that tz is invertible in M implies (tx)~! = z=1¢~!
is also invertible in the inverse monoid M. The first letter of s is x, so tzyx is right invertible in
M since it is a prefix of the second defining relator, hence the product tz;zz~'t~! of two right
invertible elements is right invertible, hence by Lemma 7.3 it is equal in M to tz;¢t~!. We conclude
that tz,¢t~! is right invertible in M.

Now wiw; = wywy = 1 in Mon<A g = 1> implies z1Z7 = z7z1 = 1 in Mon<B,:c,t |r = 1> since
the map between these monoids given by a — xt, and identity on all other generators, defines a
homomorphism with z; the image of w; under this homomorphism, and z7 is the image of w7.
Since r = 1 in M it then follows that z1Z7 = Z1z1 = 1 in M, hence 21—1 =Z7 in M. Since tz;t~ 1 is
right invertible in M we have tz1t~ 'tz 't~ = 1 in M, then since z; ' = Z7in M, and r = 1 in M,
it follows that tzt~'rtZt'r = 1 in M. Since this word equals 1 it is right invertible and hence
by Lemma 7.3 it is equal in M to the word obtained by cancelling the t~! with the first letters of
r. It follows that

tz15tz18 = tzlt_lrtzﬁt_lr =1
in M. Hence
tzostzos ... stzpstzs = tz1stz1s. .. stzpstzps = 1

in M. It follows that tzsx is right invertible since s begins with x, and we can repeat the argument
above to deduce that tzot~! is right invertible in M and

tzostZos = tzgtflrtz*gfl?“ =1
in M. Repeating this for all j, we can prove that tzjt_l is right invertible in M, and we have
tzjstzjs = tzjt_lrtz*jt_lr =1
in M. In particular since ¢z;t~! is right invertible in M this means that the defining relations
(tzjt_l)(tzflt_l) =1 from the presentation for T all hold in M for 1 < j < k.
Conversely, since z;Z; = Zjz; = 1 in Mon<B, x,t|r = 1>, and r = 1in T, it follows that zj_l =7
in T for all 1 < j < k. It follows that

(tzit M)zt ) bzt ) () = (fzat™ ) (b ') (bt Y (2 ) =1
in T which, since r = 1, implies that
(tzat™)r(tzrt ). or(tzpt ezt Hr = 1

holds in 7. Since the word equals one and so right is invertible by Lemma 7.3 we can reduce
cancelling the t~1¢ in each subword ¢t~ !r and deduce that the following relation holds in T

tz18tz1S ... stzpstzps = 1.

We have proved the second defining relator of M holds in T, and the second defining relator of T'
holds in M. Since the first defining relators are the same, and the generating sets are the same,
we conclude that M = T. In fact we have proved that these are equivalent presentations in the
sense that the identity map on B U {z,t} induces an isomorphism between them.

To complete the proof we now prove a second sequence of Tietze transformations to the presen-
tation for T' to obtain a presentation to which the main construction from [14] can then be applied
to finish the proof. To do this we first we add a redundant generator a and relation a = tx to
obtain

Inv(B,a,z,t|r=1, (tzat )ty t7) =1, ..., (tzet Dtz ') =1, a = tz).



MEMBERSHIP PROBLEMS FOR ONE-RELATOR GROUPS AND MONOIDS 29

Next in every z; and in r we can replace every occurrence of xt by the letter a obtaining, since
A = BU{a}, the presentation

Inv(A,z,t|qg=1, (fwit” (w7 =1, ..., (twpt™ ) (tw, 't71) =1, a = ta).

By assumption the relations aa~! = 1 and a~'a = 1 are both consequences of ¢ = 1 hence from
a = tr we can deduce that 1 = a~'a = ¢ 'tz in this inverse monoid. Hence we can deduce
x =t~ !a in this inverse monoid, giving the following presentation

(A, t|g=1, (twit H(twy't ) =1, ..., (twpt H(twy't7") =1,
a=tr, x= t_1a>.
Now the relation (twit~')(tw; 't~') = 1 implies that ¢~ = 1 in this inverse monoid, and so from

x = t~'a we can deduce the relation tx = tt~'a = a. Since this relation is a consequence of the
others we can now remove it obtaining the presentation

Inv(A,z,t|g=1, (fwit )(twy 't =1, ..., (twet (tw, 't =1, z=t""a)

for the same monoid. Now z is a redundant generator which can be removed. This has no impact
on the other relations since neither z nor =! appears in any of those words. Hence we arrive at
the following presentation

Inv(A,t|g=1, (twit " )(twi't") =1, ..., (twpt H(tw't)=1 )

for T. Finally, by assumption the relations cc™! = 1 and ¢~'c = 1 for ¢ € A are all consequences
of ¢ =1 so we can add them to obtain

(Atlg=1cct =1, cle=1(ceA), (twit ")(twy't™!) =1,

o (ot (twy ) = 1),
Now it follows from [14, Theorem 3.8] that M = T is an E-unitary inverse monoid, and if M = T
has decidable word problem then the membership problem for @ = Mon<w1, ey wk> < G within
G is decidable. The fact that [14, Theorem 3.8] applies to the presentation above follows from [14,
Lemma 3.3] (see line three of the proof of Theorem 3.8 in [14]). The maximal group image of T is
isomorphic to

(At|g=1,cct =1, cle=1(c€A), (twit ")(twi't™") =1,
o (utTHw ) =1 )
which is isomorphic to Gp(A | ¢ = 1) x FG(t) = G * Z, completing the proof of the theorem. [

By combining this general theorem with the earlier results form this paper we can now prove
the main result of this section.

Proof of Thoerem 7.1. Let G be a positive one-relator group and let ) be a finitely generated
submonoid in which the membership problem is undecidable; such examples exist by Theorem 3.8.
Then by Theorem 7.4 there is a E-unitary positive two-relator inverse monoid M = Inv<A | u =
1,v= 1>, with u,v € A", such that decidability of the word problem for M would imply decidabil-
ity of the membership problem for @ in G. Hence M is an E-unitary positive two-relator inverse
monoid with undecidable word problem. O

As a second application we now show how Theorem 7.4 can be used to relate the membership
problem in positive one-relator groups to the prefix membership problem in positive two-relator
groups. It remains an open question whether there is a one-relator group presentation with cycli-
cally reduced relator and undecidable prefix membership problem [7, Question 13.10]. In particular,
it is not known whether there are positive one-relator groups with undecidable prefix membership
problem. Using Theorem 7.1 and its proof we will show that if one allows two relators then ex-
amples with positive relators do exist. The following result is also the key ingredient used in the
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proof of Theorem 4.1 above that shows there are quasi-positive one-relator groups with undecidable
prefix membership problem.

Theorem 7.5. Let G be a positive one-relator group, and let Q) be any finitely generated submonoid
of G. Then there is a positive two-relator group H = Gp<A |u =10 = 1>, where u,v € AT,
such that the membership problem for Q in G reduces to the prefic membership problem for H.
Furthermore the group H may be chosen such that the identity map on A induces an isomorphism
Gp<A |lu=1v= 1> — Gp<A|u = 1>, and such that H = G x Z.

Proof. Let K be the group defined by the two-relator positive presentation
K=Hgx = Gp<B,m,t |r =1, tzstzis...slzpstzZps = 1>

given by Construction 4.2. We claim if the prefix membership problem for the positive two-relator
group K is decidable then the membership problem for @ in G is decidable. To see this note that
it is shown in the proof of Theorem 7.4 that

M = Inv<B,x,t |r=1, tzistz1s...stzpstZps = 1>

is E-unitary and if M has decidable word problem then the membership problem for @ in G is
decidable. It is also shown there that the inverse monoid M has maximal group image isomorphic
to G x Z which is a one-relator group and thus has decidable word problem by Magnus’ Theorem.
It then follows from [22, Theorem 3.3] that M has decidable word problem. But in Theorem 7.4
it is proved that decidability of the word problem for M implies decidability of the membership
problem for @ in G, hence the membership problem for @) in G is decidable, as claimed.

In the proof of Theorem 7.4 it is shown that the identity map on B U {x,t} induces an isomor-
phism between the inverse monoids

M = InV<B,m7t |r=1, tzistzis...stzpstZgs = 1>

and
T=Inv(B,z,t|r=1, (tat (7t ) =1, ..., (tat H(tz't7H)=1).

It follows that the identity map induces an isomorphism between the maximal group images of
these inverse monoids

Gp<B,x,t |r=1, tzistz1s...stzpstzZps = 1> — Gp<B,x,t |r = 1>.

(In general if the identity map induces an isomorphism InV<A | R> — InV<A | S’> then for any
additional set of relations T the identity map will also induce an isomorphism between Inv<A | RU
T) — Inv(A|SUT) since S and R are consequence of each other, and hence the same is true of SUT
and RUT. And so in particular it is true when T is the set of relations aa™! = 1 = aa~! added to
get the maximal group image.) Now set u = r and v = tz15tZ7s. .. stzgstZgs and Y = B U {x, t}.
Then the identity map on Y induces isomorphisms

Gp<Y|u:1,v:1>%Gp<Y|u:1>.

It follows from Theorem 7.4 that the maximal group image of M is isomorphic to G * Z. But
the group Gp<Y | vuv=! = 1> we have constructed is isomorphic to the maximal group image
Gp<Y |u=1,v= 1> of M, so this completes the proof of the theorem. O

Corollary 7.6. There is a positive two-relator group Gp<A lu=1v= 1>, where u,v € AT, with
an undecidable prefiz membership problem.

Proof. This follows from Theorem 7.5 together with Theorem 3.8 that shows there are positive one-
relator groups containing finitely generated submonoids in which membership is undecidable. [
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