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OVERCONVERGENT HILBERT MODULAR FORMS
VIA PERFECTOID MODULAR VARIETIES

by Christopher BIRKBECK,
Ben HEUER & Chris WILLIAMS (*)

Abstract. — We give a new construction of p-adic overconvergent Hilbert mod-
ular forms by using Scholze’s perfectoid Shimura varieties at infinite level and the
Hodge–Tate period map. The definition is analytic, closely resembling that of com-
plex Hilbert modular forms as holomorphic functions satisfying a transformation
property under congruence subgroups. As a special case, we first revisit the case of
elliptic modular forms, extending recent work of Chojecki, Hansen and Johansson.
We then construct sheaves of geometric Hilbert modular forms, as well as sub-
sheaves of integral modular forms, and vary our definitions in p-adic families. We
show that the resulting spaces are isomorphic as Hecke modules to earlier construc-
tions of Andreatta, Iovita and Pilloni. Finally, we give a new direct construction of
sheaves of arithmetic Hilbert modular forms, and compare this to the construction
via descent from the geometric case.

Résumé. — Nous donnons une nouvelle construction de formes modulaires de
Hilbert p-adiques surconvergentes en utilisant les variétés perfectoïdes de Shimura
de Scholze au niveau infini et l’application de périodes de Hodge–Tate. La défi-
nition est analytique, ressemblant étroitement à celle des formes modulaires de
Hilbert complexes en tant que fonctions holomorphes satisfaisant une propriété de
transformation sous des sous-groupes de congruence. Comme cas particulier, nous
revisitons d’abord le cas des formes modulaires elliptiques, prolongeant les travaux
récents de Chojecki, Hansen et Johansson. Nous construisons ensuite des faisceaux
de formes modulaires géométriques de Hilbert, ainsi que des sous-faisceaux de
formes modulaires entières, et modifions nos définitions en familles p-adiques. Nous
montrons que les espaces résultants sont isomorphes comme modules de Hecke à
ceux construits par Andreatta, Iovita et Pilloni. Enfin, nous donnons une nouvelle
construction directe de faisceaux de formes modulaires arithmétiques de Hilbert,
et la comparons à la construction par descente à partir du cas géométrique.
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1. Introduction

In a first introduction, modular forms are usually defined as certain holo-
morphic functions f : H → C on the complex upper half-plane H satisfying
a transformation property of the form

γ∗f = (cz + d)kf ∀γ =
(

a b
c d

)
∈ Γ,

where Γ ⊂ SL2(Z) is a congruence subgroup. More algebraically, one can
consider modular forms as sections of an automorphic line bundle ω on
the complex modular curve Γ\H. This algebraic definition admits a p-adic
interpretation, giving rise to the theory of overconvergent modular forms
varying in p-adic families, which has proved extremely important with wide-
ranging applications in algebraic number theory and arithmetic geometry.

An analytic definition of p-adic overconvergent modular forms has, how-
ever, proved elusive, until such an approach was recently introduced in
the case of rational quaternionic modular forms by Chojecki, Hansen and
Johansson [9].

In this article, we give an analytic definitions of both arithmetic and
geometric p-adic Hilbert modular forms over any totally real field F , for
any prime p, and show that they agree with earlier algebraic definitions of
Andreatta–Iovita–Pilloni in [2].

Following [9], the key idea of the construction is to use Scholze’s perfec-
toid Shimura varieties at infinite level over a perfectoid base field L, and
the associated Hodge–Tate period map πHT, all introduced in [28]. These
spaces can be viewed as p-adic analogues of H. In the complex situation,
the pullback of the automorphic bundle ω along the covering map

H → Γ\H

can be canonically trivialised, and the descent to Γ\H via the action of Γ
gives rise to the usual definition of complex modular forms, at least after
dealing with compactifications.

Similarly, in the p-adic situation, there is an adic analytic moduli space
X , which in our case is a Hilbert modular variety, carrying an automorphic
bundle ω. It has a cover

XΓ(p∞) → X

by a perfectoid Hilbert moduli space. Using πHT, the pullback of ω along
this projection can be canonically trivialised over open subspaces. Via the
action of the associated covering group – a p-adic level subgroup – one
obtains a definition of overconvergent Hilbert modular forms.
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More precisely, there are two different kinds of Hilbert modular forms:
there are those associated to the group G := ResF/Q GL2, which are called
arithmetic; and those associated to G∗ := G ×ResF/Q Gm

Gm, which are
called geometric. Shimura varieties for G∗ have a moduli interpretation in
terms of abelian varieties with PEL structure. For any (narrow) ideal class
c ∈ Cl+(F ), we consider the c-polarised finite level Shimura variety Xc.
Since the Shimura variety for G∗ is in particular of Hodge type, one gets
an associated infinite level Hilbert moduli space Xc,Γ∗(p∞) in the limit over
level structures at p. Inside of this we have for any small enough ϵ ⩾ 0 an
open subspace Xc,Γ∗(p∞)(ϵ)a, the ϵ-overconvergent anticanonical locus.

Definition 1.1. — For any weight character κ : Z×
p → L×, a geo-

metric overconvergent Hilbert modular form of weight κ is a function
f ∈ O(Xc,Γ∗(p∞)(ϵ)a) satisfying

(1.1) γ∗f = κ−1(cz + d)f ∀γ =
(

a b
c d

)
∈ Γ∗

0(p),

where Γ∗
0(p) is a p-adic level subgroup, and κ(cz + d) is a factor of auto-

morphy to be defined.

From modular forms for G∗, one can obtain an indirect definition of
modular forms for G by descent. As we shall show, one of the advantages
of the analytic approach is that instead, one can also work with perfectoid
Shimura varieties attached to G, and give a completely intrinsic definition.
Let XG,c be the c-polarised Shimura variety for G. This is now not a fine
moduli space of abelian varieties, but one can still construct a perfectoid
cover

XG,c,Γ(p∞) → XG,c.

Definition 1.2. — An arithmetic overconvergent Hilbert modular form
of weight κ is a function f ∈ O(XG,c,Γ(p∞)(ϵ)a) satisfying

γ∗f = κ−1(cz + d)wκ(det γ)f ∀γ =
(

a b
c d

)
∈ P Γ0(p)

where P Γ0(p) is a p-adic level subgroup, and wκ is a character to be defined.

More generally, one can similarly define line bundles ωκ whose global
sections are the modular forms of Definitions 1.1 and 1.2. These bundles,
and hence the modular forms, vary naturally over p-adic families U in the
respective weight spaces, by considering analytic functions on the sousper-
fectoid space Xc,U,Γ∗(p∞)(ϵ)a := Xc,Γ∗(p∞)(ϵ)a×LU (and analogously for G).

TOME 0 (0), FASCICULE 0
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1.1. What is new

Several constructions of both geometric and arithmetic p-adic overcon-
vergent Hilbert modular forms have already appeared in the literature
(e.g. amongst others [21], [2] and most generally [3]), so let us explain
how our constructions differ and what, in our opinion, are some of their
advantages.

• Our main goal is to give a new intrinsic definition of the sheaf of
arithmetic Hilbert modular forms for G, which is arguably cleaner
and easier to work with than the one via descent from G∗.

• We also show how to define subspaces of integral geometric and
arithmetic Hilbert modular forms in the analytic setting, which
match up with the ones constructed in [3]. An advantage of the
perfectoid construction is that this does not require formal models.
Rather, the subspace of integral forms is given by simply replacing
O with the integral subsheaf O+ in the construction.

• As in [9], the resulting framework is well-adapted to constructing
overconvergent Eichler–Shimura maps from overconvergent coho-
mology, namely maps of the form

Hg
c (Xc, Dκ)→ H0(X tor

c (ϵ), ωκ ⊗ Ωg
X tor

c (ϵ)(−∂))(−g)

where Dκ is an étale sheaf of distribution modules, g = [F : Q], and
∂ ⊆ X tor

c (ϵ) is the boundary of a chosen toroidal compactification.
A proof of this will be included in upcoming work.

As a secondary goal, we modify the strategy of [9] in several ways:
• We work with the anticanonical locus rather than the canonical one,

which makes it easier to deal with the boundary of the Shimura
varieties, an issue which is is not present in op.cit. as there the
construction is carried out for quaternionic modular forms.

As a minor but pleasant side effect, this results in the automor-
phic factor κ(cz + d) appearing in (1.1), like in the complex case,
rather than the κ(bz + d) from op.cit.

• We give a conceptually new proof that the resulting sheaves are line
bundles.

• Throughout we work with sousperfectoid spaces, a language that
was not available at the time that [9] was written. This allows
one to define automorphic sheaves uniformly for arbitrary bounded
weights U in a geometric way, by working over the fibre product
of the infinite level modular variety with U . In particular, one does
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not have to impose restrictions on the shape of weights as in the
construction using formal models.

• We also explain how the “perfect” modular forms of [3] appear in
this anticanonical setting. In the elliptic case, this point of view has
been used in [15] for a perfectoid approach to Coleman’s Spectral
Halo, and one should be able to use our constructions to obtain
similar results for Hilbert modular forms.

We shall now explain our constructions and the organisation of the paper
in some more detail.

1.2. Elliptic modular forms via the anticanonical locus

While the main focus of this paper is to construct families of Hilbert
modular forms, we start in Section 2, 3 and 4, by treating the elliptic case.
One reason to consider this seperately is that while the boundary in the
higher dimensional case can be dealt with via Koecher’s principle, in the
elliptic case it requires an explicit analysis. Our second reason to treat the
elliptic case separately is to illustrate the ways in which we deviate from
the construction in [9].

To explain this, we first summarise their construction. Let L be any
perfectoid field over Qcyc

p , let X ∗ be the (compact) modular curve over L
of some tame level considered as an adic space, and let q : X ∗

Γ(p∞) → X
∗ be

Scholze’s infinite level perfectoid modular curve (denoted X∞ op. cit.). It
admits a Hodge–Tate period map πHT : X ∗

Γ(p∞) → P1 with the key property

π∗
HTO(1) = q∗ω.

To study this sheaf, they consider a family of open subspaces of P1, which
are parametrised by w ∈ Q>0, on which O(1) admits a non-vanishing sec-
tion. Pulling back under πHT gives a family of neighbourhoods X ∗

Γ(p∞),w ⊂
X ∗

Γ(p∞) of the (canonical) ordinary locus. There are then subspaces X ∗
w ⊆

X ∗ such that X ∗
Γ(p∞),w → X

∗
w is a pro-étale Γ0(p)-torsor, at least away

from the cusps. Here Γ0(p) ⊂ GL2(Zp) is the subgroup of matrices that are
upper-triangular modulo p.

Pulling back the natural parameter at ∞ ∈ P1, they obtain a parameter
z ∈ O(X ∗

Γ(p∞),w). For a certain class of p-adic weights κ, and w ⩾ 0 suf-
ficiently small, they then define the space of “w-overconvergent” modular
forms of weight κ to be the set of f ∈ O(X ∗

Γ(p∞),w) satisfying

γ∗f = κ(bz + d)−1f ∀γ =
(

a b
c d

)
∈ Γ0(p).

TOME 0 (0), FASCICULE 0
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1.2.1. The case of elliptic modular forms

The results of [9] are only explicitly proved in the quaternionic case where
the Shimura curve is compact, though they do mention that their methods
can be extended to the elliptic case, where one can use “soft” techniques
to deal with ramification at the boundary. This is also noted in [17]. We
expand on these remarks and explain how to extend to the cusps by using
perfectoid Tate curve parameter spaces.

Instead of considering the canonical locus, we choose to work with the
anticanonical locus X ∗

Γ(p∞)(ϵ)a everywhere. This definition is equivalent,
since the two loci can be interchanged via the action of the Atkin–Lehner
matrix

( 0 1
p 0

)
.We define a sheaf

ωκ
1 :=

{
f ∈ q∗OX ∗

Γ(p∞)(ϵ)a

∣∣γ∗f = κ−1(cz + d)f ∀γ =
(

a b
c d

)
∈ Γ0(p)

}
on X ∗

Γ0(p)(ϵ)a, where now z is the parameter on X ∗
Γ(p∞)(ϵ)a defined by pulling

back the canonical parameter on A1,an ⊆ P1 at 0, and q : X ∗
Γ(p∞) → X

∗
Γ0(p)

is the projection. The space of ϵ-overconvergent modular forms is then the
space of global sections of this sheaf. We note that this is very similar to the
complex definition. We then use the Atkin–Lehner isomorphism to obtain
a sheaf ωκ = ωκ

0 := AL∗ ωκ
1 on the tame level space X ∗(p−1ϵ). One could

now prove, as in [9], that the sheaf ωκ is a line bundle, but we instead
deduce this from our later comparison results.

1.2.2. Variation in families

Reinterpreting [9] in the context of sousperfectoid spaces, we show how
to extend the definition to also work for p-adic families. The weights con-
sidered above can be considered as points Spa(L,OL) κ−→ W in the rigid
analytic weight space

W := Spf(ZpJZ×
p K)ad

η × L,

where throughout we consider all rigid spaces as adic spaces, and where
L is our perfectoid field. We can then consider more general (families of)
weights κ : U → W, where U is a smooth rigid space and κ has bounded
image. This gives rise to a sheaf ωκ on the fibre product X ∗(p−1ϵ) ×L U
whose fibre over any point κ0 ∈ U is the sheaf ωκ0 defined above.

By comparing the anticanonical locus with the Pilloni-torsor as described
in [4], in Theorem 4.8 we construct an isomorphism between ωκ and the
bundle ωκ

AIP of forms op. cit.:

ANNALES DE L’INSTITUT FOURIER
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Theorem 1.3. — Let κ : U → W be a bounded smooth weight (Defi-
nition 3.1; e.g. a point or an affinoid open in W). Then there is a natural
Hecke-equivariant isomorphism ωκ ∼= ωκ

AIP.

One reason we prefer to work with the anticanonical locus over the canon-
ical one is that it simplifies the proof of the above comparison. A second
reason is that it makes it easier to study the boundary: the technical com-
plication for defining elliptic modular forms rather than quaternionic ones
is that the cover X ∗

Γ(p∞)(ϵ)a → X ∗
Γ0(pn)(ϵ)a is pro-étale over XΓ0(pn)(ϵ)a,

but is ramified at the cusps. However, the situation at the cusps is easy
to deal with in the anticanonical tower, because here the cusps are totally
ramified and give rise to perfectoid versions of Tate curve parameter discs.
This allows one to extend the arguments from [9] to the boundary.

1.3. Generalisation to the Hilbert case

The main result of the present paper is a generalisation of this approach
to the setting of Hilbert modular forms, that is, modular forms for GL2
over any totally real field F of degree g.

Having treated the elliptic case separately, we will assume g ⩾ 2, and, by
the Koecher principle, largely ignore the boundary in this case. Whilst con-
ceptually the constructions follow the same lines as in the elliptic case, there
are additional subtleties in the Hilbert case that do not arise when the base
field is Q. The most immediate is in the choice of classical definition. The
Shimura varieties arising from G∗ are of PEL (hence Hodge) type. They
are fine moduli spaces parametrising Hilbert–Blumenthal abelian varieties
(HBAVs), namely abelian varieties equppied with an OF -action and a po-
larisation, plus some fixed tame level structure. The Shimura varieties for
G, in contrast, are only of abelian type, and are only coarse moduli spaces,
parametrising instead only equivalence classes of polarisations. These dis-
tinctions make it technically easier to work with G∗, although ultimately
the case in which we are most interested is the arithmetic case of G, which
has a better theory of Hecke operators.

In both cases these Shimura varieties are called Hilbert modular varieties,
for G∗ and G respectively. In practice, we will work with the c-polarised
part of the Hilbert modular variety. We sometimes emphasize this with a
subscript c, but usually drop this from the notation.

TOME 0 (0), FASCICULE 0
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1.3.1. Hilbert modular varieties for G∗ at infinite level

As in the elliptic case, the key object in the construction of overconver-
gent forms is an infinite level Hilbert modular variety for G∗, which is a
p-adic analogue of the classical complex Hilbert modular variety. It it is
a special case of Scholze’s perfectoid Shimura varieties of Hodge type [28,
§III and IV]. As we shall recall in Section 5.2, it arises from the tower of
(c-polarised) Hilbert modular varieties Xc,Γ∗(pn) as the wild level Γ∗(pn) ⊂
G∗(Zp) varies. Once again, one can restrict to the anticanonical locus of
an ϵ-neighbourhood of the ordinary locus and obtain a Hilbert modular
variety at infinite level

Xc,Γ∗(p∞)(ϵ)a ∼ lim←−
n

Xc,Γ∗(pn)(ϵ)a,

which is a pro-étale Γ∗
0 (p)-torsor over Xc,Γ∗

0 (p)(ϵ)a, where Γ∗
0 (p) ⊂ G∗(Zp)

is the subgroup of matrices that are upper-triangular modulo p.
We also need a version of the Hodge–Tate period map, as defined in [28,

§IV] and refined in [7, §2]. If C is a perfectoid field extension of L, then
a (C,C+)-point of Xc,Γ∗(p∞) corresponds to a HBAV A equipped with a
trivialisation α : O2

p
∼−→ TpA

∨ and extra data, where Op := OF ⊗Z Zp.
Here we note that the appearance of A∨ differs somewhat from [28], but
in the presence of a polarisation λ, the two are always isomorphic after a
choice of p-adic generator of c. The reason we wish to parametrise TpA

∨

rather than TpA is that together with the Hodge–Tate morphism

O2
p

α−→ TpA
∨ HTA−−−→ ωA,

the trivialisation α gives rise to canonical differentials α(1, 0) and α(0, 1)
of ωA (instead of ωA∨).

This construction can be made more conceptual by way of the Hodge–
Tate period morphism

πHT : Xc,Γ∗(p∞)(ϵ)a −→ ResOF /Z P1.

If F splits in L (which we do not assume in the main text), this decomposes
canonically into maps πHT =

∏
v∈Σ πHT,v : Xc,Γ∗(p∞)(ϵ)a → (P1)Σ, where

Σ is the set of embeddings v : F ↪→ L. On C-points, a point corresponding
to an isomorphism α is then sent to the point in (P1(C))Σ defined by the
Hodge filtration

0→ Lie(A∨)(1) −→ TpA
∨ ⊗Zp

C
HTA−−−→ ωA → 0.

Crucial here is that πHT allows one to extend this pointwise consideration
to the universal situation: If ωA denotes the conormal sheaf to the universal

ANNALES DE L’INSTITUT FOURIER
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abelian variety A → Xc,Γ∗
0(pn)(ϵ)a and q : Xc,Γ∗(p∞)(ϵ)a → Xc,Γ∗

0(pn)(ϵ)a is
the forgetful map, then there is a canonical isomorphism

q∗ωA = π∗
HT ResOF /ZO(1).

If F splits in L, then ResOF /ZO(1) is identified with the direct sum ⊕ΣO(1)
on (P1)Σ, and using canonical sections of O(1) near (0 : 1) ∈ P1, we obtain a
canonical section s of q∗ωA which is a geometric incarnation of the section
α(1, 0) considered above. In general we work with a canonical section of
ResOF /ZO(1), an instance of Scholze’s “fake Hasse invariants” from [28].

In the elliptic case, we had a canonical parameter z. In the Hilbert case,
z is now simply the restriction of πHT to a function z : Xc,Γ∗(p∞)(ϵ)a →
ResOF /Z Ĝa where Ĝa ⊆ P1 is the closed unit ball around (0 : 1) ∈
P1. When F splits in L, via the canonical decomposition ResOF /Z Ĝa =
GΣ

a this can be interpreted as a collection of functions z = (zv)v∈Σ in
O+(Xc,Γ∗(p∞)(ϵ)a).

In order to define p-adic families of Hilbert modular forms, letW∗ denote
the weight space for G∗ (cf. Definition 6.1) and let κ : U → W∗ be a
bounded smooth weight. In Section 6, we use the sousperfectoid adic space

Xc,U,Γ∗(p∞)(ϵ)a := Xc,Γ∗(p∞)(ϵ)a ×L U

to define the sheaf of c-polarised geometric Hilbert modular forms of weight
κ on Xc,U,Γ∗

0(p)(ϵ)a as

ωκ
1,c :=

{
f ∈ OXc,U,Γ∗(p∞)(ϵ)a

∣∣γ∗f = κ−1(cz + d)f ∀γ =
(

a b
c d

)
∈ Γ∗

0 (p)
}
.

Here ϵ > 0 is such that for any element of γ =
(

a b
c d

)
∈ Γ∗

0 (p), we
can make sense of κ(cz + d) as an invertible function on Xc,U,Γ∗(p∞)(ϵ)a

(Definition 6.4). We describe the variation of this in families, and a local
version giving an overconvergent automorphic bundle ωκ

G∗on X (ϵ). We also
have integral versions of these spaces given by simply replacing OX with
O+

X in the above definition. In Theorem 7.14 we use the canonical sections
of ωA at infinite level to define a comparison isomorphism to the sheaf of
Hilbert modular forms defined in [2].

1.3.2. Hilbert modular varieties for G at infinite level

For arithmetic applications, it is desirable to have a version of this theory
for arithmetic Hilbert modular forms, that is for the group G. For example,
these are objects that arise in modularity of elliptic curves over totally real
fields.

TOME 0 (0), FASCICULE 0
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Towards this goal, we pass from G∗ to G and discuss in Section 8 the
perfectoid Hilbert modular variety at infinite level for G and the corre-
sponding Hodge–Tate period map. In the case of L = Cp, this is a special
case of the construction of Shen of perfectoid Shimura varieties of abelian
type [31]. For Hilbert modular varieties, this is easy to extend to general
perfectoid fields following the methods of [28], as we shall describe.

In contrast to the definition in [2] by descent from G∗, this allows us to
define the sheaf of p-adic overconvergent arithmetic Hilbert modular forms
without reference to G∗.

While this definition is ultimately quite simple, in order to explain why
this is the correct definition, it is important for us to work out the geo-
metric relation between the perfectoid Hilbert modular varieties for G and
G∗ rather explicitly, in particular keeping close track of all of the relevant
Galois actions. At tame level, this is easy: let X and XG be the adic ana-
lytifications of the tame c-polarised Hilbert modular varieties for G∗ and G
respectively. The natural map X → XG can then be described as the quo-
tient under the action of O×,+

F on the polarisation, which factors through
the action of a finite group ∆(N).

For level at p, however, the condition defining level structures for G∗ is
not preserved by the action of O×,+

F , so there is no longer a full polarisation
action on the spaces XΓ∗(pn). We therefore work with an auxiliary ‘mixed’
moduli problem, and work with the spaces XΓ(pn) relatively parametrising
G-level structures over the space X arising from G∗. In the limit, combined
with the Weil pairing these give rise to a perfectoid space XΓ(p∞) with a
canonical Z×

p -torsor

(1.2) XΓ∗(p∞) ×O×
p −→ XΓ(p∞).

Now, on XΓ(p∞), we do get an O×,+
F action on polarisations. At infinite

level, this extends to an action of a profinite group ∆(p∞N), which makes
the morphism XΓ(p∞) → XG,Γ(p∞) into a pro-étale ∆(p∞N)-torsor. We
thus obtain a morphism of pro-étale torsors (cf. (8.8))

(1.3)
XΓ(p∞) XG,Γ(p∞)

XΓ0(pn) XG,Γ0(pn).

Γ0(pn)

∆(p∞N)

P Γ0(pn)
∆(N)

The diagonal map is also a pro-étale torsor for some group E(pn), as we
shall discuss in §8.

ANNALES DE L’INSTITUT FOURIER
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1.3.3. Hilbert modular forms for G

In Section 9, we use the above to define arithmetic Hilbert modular
forms. Let W be the weight space for G and let κ : U → W be a bounded
smooth weight.

Definition 1.4. — The sheaf of arithmetic Hilbert modular forms of
weight κ on XG,c,U (ϵ), denoted ωκ

G, consists of all

f ∈ O(XG,c,U,Γ(p∞)(ϵ)a)

such that

γ∗f = κ−1(cz + d)wκ(det γ)f, ∀γ =
(

a b
c d

)
∈ P Γ0(p).

Its global sections MG
κ (Γ0(p), ϵ, c) form the space of c polarised ϵ over-

convergent arithmetic Hilbert modular forms. We also have an integral
subsheaf ωκ,+

G by instead using the O+-sheaf.

Our approach yields various natural alternative definitions; for example,
we could instead use the torsor XΓ(p∞)(ϵ)a → XG,Γ0(p)(ϵ)a to define forms
for G. In Section 9, we show that these alternatives (see Definition 9.1) are
all equivalent to the one given above.

1.3.4. Comparison to other definitions

Using the canonical section s, we obtain a comparison isomorphism to
the Hilbert modular forms of Andreatta–Iovita–Pilloni in Theorems. 7.14
and 9.12.

Theorem 1.5. — There is a natural Hecke-equivariant isomorphism be-
tween ωκ,+

G∗ (resp. ωκ,+
G ) and the sheaf of integral Hilbert modular forms

for G∗ (resp. G) defined in [2, 3].

We establish this for G∗, and prove that our modular forms for G are the
descent of those for G∗ under the action of ∆(N) (see Lemma 9.6); from
this we we obtain the analogous result for G, as the forms of [2] are defined
via this descent.
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1.5. Notation

We fix a rational prime p and a perfectoid field extension L of Qcyc
p .

For instance, we could take L = Qcyc
p , or any complete algebraically closed

extension of Qp.
We use adic spaces in the sense of Huber [18], and in particular the notion

of smooth adic spaces from [18, Definition 1.6.5]. By a rigid space over L,
we mean an adic space locally of topologically finite type over Spa(L,OL).
We use the pro-étale site of a smooth adic space in the sense of [27].

The letter X typically refers to modular curves and Hilbert modular
varieties. We typically use latin letters X to refer to schemes, gothic letters
X to refer to formal schemes, and calligraphic letters X to refer to analytic
adic spaces (typically over L), like rigid and perfectoid spaces. If X is a
modular variety of some tame level, we specify the level at p of a modular
variety by a subscript on the appropriate X. We will use a superscript ∗ to
denote the minimal compactification X∗.

Lastly, if Γ is any profinite set we also write Γ for the associated profinite
perfectoid space Spa(Mapscts(Γ, L),Mapscts(Γ,OL)) when this is clear from
the context. If Γ is a profinite group, this will be a group object in perfectoid
spaces over L.

2. Perfectoid modular curves and the Hodge–Tate period
map

In this section we review the modular curve at infinite level and the
Hodge–Tate period map, and discuss the open subspaces which we are
going to use to define p-adic elliptic modular forms.

2.1. Modular curves and their canonical and anticanonical loci

Let N be an integer coprime to p. Let X be the modular curve over L
of some tame level Γp at N such that the corresponding moduli problem
is representable by a scheme, e.g. Γ(N) or Γ1(N) for N ⩾ 3. Similarly, we
let Γ0(p) ⊂ GL2(Zp) denote the usual upper triangular Iwahori subgroup,
corresponding to the choice of an order p sub-group-scheme of our elliptic
curves.
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We denote by X the rigid analytification, considered as an adic space.(1)

The space X represents the moduli functor that sends any adic space S →
Spa(L,OL) to isomorphism classes of pairs (E,µ) where E is an elliptic
curve over OS(S) with Γp-structure µ (see [13, Lemma 2.3]).

Let X∗ be the compactification ofX, with analytification X ∗. The divisor
of cusps X ∗\X becomes a finite set of closed points after adding a primitive
N -th root to L.

For any 0 ⩽ ϵ < 1 with |p|ϵ ∈ |L|, we denote by X ∗(ϵ) ⊆ X ∗ the open
subspace of the modular curve where |H̃a| ⩾ |p|ϵ, where H̃a is any local
lift of the Hasse invariant. For any analytic adic space Y → X ∗, we write
Y(ϵ) ⊆ Y for the preimage of X ∗(ϵ) ⊆ X ∗. We call the elliptic curves
parametrised by this open subspace ϵ-nearly ordinary.

Let X ∗
Γ(p∞) ∼ lim←−X

∗
Γ(pn) be the perfectoid modular “curve” at infinite

level as defined in [28]. We in particular have the open subspace X ∗
Γ(p∞)(ϵ) ∼

lim←−X
∗
Γ(pn)(ϵ).

Recall that for any n ∈ Z⩾1, the modular curve XΓ0(pn) → X of level
Γ0(pn) relatively represents the choice of a cyclic rank pn subgroup scheme
Dn ⊆ E[pn]. If 0 ⩽ ϵ < 1/(p+ 1)pn−2 then by Lubin’s theory of the canon-
ical subgroup, any elliptic curve corresponding to a morphism S → X (ϵ)
admits a canonical cyclic subgroup scheme Hn ⊆ E[pn] of rank pn, which in
the case of good reduction reduces to the kernel of the n-th iterate of Frobe-
nius on E modulo p1−ϵ. This defines a canonical section XΓ0(pn)(ϵ)← X (ϵ)
which in fact extends to the cusps. As a consequence, for n = 1, the space
X ∗

Γ0(p)(ϵ) decomposes into two open and closed components

X ∗
Γ0(p)(ϵ) = X ∗

Γ0(p)(ϵ)c ⊔̇ X ∗
Γ0(p)(ϵ)a,

the first of which (away from the cusps) parametrises triples (E,α,H1)
with α a tame level and H1 the canonical subgroup, while the second
parametrises (E,α,Dn) with Dn ⊆ E[p] a cyclic rank p subgroup such
that Dn ∩ H1 = 0. The two components are called the canonical and the
anticanonical locus, respectively. At infinite level, these two components,
via pullback, give rise to canonical and anticanonical loci of X ∗

Γ(p∞)(ϵ) re-
spectively:

X ∗
Γ(p∞)(ϵ) = X ∗

Γ(p∞)(ϵ)c ⊔̇ X ∗
Γ(p∞)(ϵ)a

X ∗
Γ0(p)(ϵ) = X ∗

Γ0(p)(ϵ)c ⊔̇ X ∗
Γ0(p)(ϵ)a.

(1) We note that this is the only way in which our notation deviates from that in [28,
§III], where X denotes the good reduction locus.
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For any perfectoid (Qcyc
p ,Zcyc

p )-algebra (R,R+), the (R,R+)-points of
XΓ(p∞) are in functorial 1-1 correspondence with isomorphism classes of
triples (E,µ, α), where E is an elliptic curve over R, µ is a Γp-structure,
and α : Z2

p
∼−→ TpE is a trivialisation of the Tate module (see [13, Corol-

lary 3.2]). We have an action of GL2(Zp) on XΓ(p∞) given by

(2.1) γ · (E,µ, α) = (E,µ, α ◦ γ∨),

where
γ∨ = det(γ)γ−1 =

(
d −b

−c a

)
for all γ =

(
a b
c d

)
∈ GL2(Zp). For notational convenience we also fix the

following.

Definition 2.1. — Let E be an ordinary elliptic curve. Then E has
canonical cyclic subgroups Hn of rank pn for all n. The canonical p-divisible
subgroup of E is H = (Hn)n∈N ⊆ E[p∞].

2.2. The Hodge–Tate period map around 0 ∈ P1

We recall how the canonical and anticanonical loci behave under the
Hodge–Tate period map

πHT : X ∗
Γ(p∞) → P1.

By [28, Lemma III.3.6], the preimage of P1(Zp) under πHT is given by
the closure of the ordinary locus X ∗

Γ(p∞)(0). After removing the cusps, this
parametrises isomorphism classes of triples (E,µ, α) as above where E has
potentially semistable or good ordinary reduction in every fibre. Write e1, e2
for the standard basis of Z2

p. Away from cusps, the preimage π−1
HT(∞) of

∞ = (1 : 0) parametrises triples where moreover α(e1) generates the canon-
ical p-divisible subgroup.

Instead of using the canonical locus, we shall work with the anticanonical
locus X ∗

Γ(p∞)(ϵ)a, which by contrast is sent by πHT to neighbourhoods of
points of the form (b : 1) for b ∈ Zp.

In order to define overconvergent modular forms on X ∗
Γ(p∞)(ϵ)a of weight

κ for ϵ > 0, we need to make sense of the expression κ(cπHT(x) + d) for
x ∈ X ∗

Γ(p∞)(ϵ)a. To account for the overconvergence, we therefore need to
consider open neighboorhods of these points:

Definition 2.2. — Let B0(Zp : 1) ⊆ P1(Zp) ⊆ P1 be the subspace of
points of the form (a : 1) for a ∈ Zp considered as a profinite adic space. For
any 0 < r ⩽ 1 and any compact open subspace U ⊆ Zp, let Br(U : 1) ⊆ P1
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be the subspace defined as the union of all closed balls of radius r around
points (a : 1) ∈ P1(Zp) with a ∈ U

Definition 2.3. — Let z be the parameter on P1 at 0 arising from the
canonical isomorphism of schemes A1 ∼−→ P1\{∞}, z 7→ (z : 1) and let
z := π∗

HTz. It is easy to see that Br(Zp : 1) ⊆ A1 is closed both under the
additive group structure as well as the multiplicative monoid structure.

Lemma 2.4. — The action of Γ0(p) fixes Br(Zp : 1) ⊆ P1. In terms of
the parameter z, we have

(2.2)
(

a b
c d

)
· z = az + b

cz + d
.

Proof. — Let γ =
(

a b
c d

)
∈ Γ0(p). Then inside P1 we have

(
a b
c d

)
(z : 1) =

(az + b : cz + d) = (γz : 1). Moreover, |cz + d| = 1 on Br(Zp : 1) since
|z| ⩽ 1 (as r ⩽ 1) , c ∈ pZp, d ∈ Z×

p . Consequently, since (cz + d)−1 =
d−1 ∑

n⩾0(cd−1z)n ∈ Br(Zp : 1), the fact that Br(Zp : 1) is closed under
multiplication and addition implies that also γz = (az + b)(cz + d)−1 ∈
Br(Zp : 1) as desired. □

Remark 2.5. — In the definition of modular forms in [9], the automorphic
factor features the term (bz + d), since in their notation – where z is a
parameter for a neighbourhood of ∞ ∈ P1 – the action of Γ0(p) is given by
z 7→ (b+dz)/(a+ cz). In switching from the canonical to the anticanonical
locus, we instead get (cz+d) as in the complex case (see also Remark 3.23).

The following proposition implies that for any weight κ, there is an
ϵ > 0 such that for any x ∈ X ∗

Γ(p∞)(ϵ)a and any
(

a b
c d

)
∈ Γ0(p), the factor

of automorphy κ(cz(x) + d) converges.

Proposition 2.6. — Let 0 ⩽ r < 1. Then for 0 ⩽ ϵ ⩽ r/2 if p ⩾ 5 or
ϵ ⩽ r/3 if p = 3, or ϵ ⩽ r/4 if p = 2, we have πHT(X ∗

Γ(p∞)(ϵ)a) ⊆ Br(Zp : 1).

Proof. — Away from the cusps, this is a special case of Proposition 5.18
below. For the cusps, the statement is clear since these are contained in the
ordinary locus and are thus sent to P1(Qp). □

3. Overconvergent elliptic modular forms

In this section we define line bundles of p-adic modular forms of weight κ,
where κ is a smooth bounded weight. Following [9] with our slightly modi-
fied setup, these bundles are defined using the structure sheaf of X ∗

Γ(p∞)(ϵ)a
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by taking invariants under a group action with a factor of automorphy to
descend to finite level, mirroring the definition of complex modular forms.

We first explain what we mean by a smooth bounded weight:

Definition 3.1. — The weight space for GL2 is

W := Spf(ZpJZ×
p K)ad

η ×Qp
L.

A smooth weight over L is a smooth adic space U over a perfectoid extension
of L together with a map U → W. A smooth weight is bounded if its image
in W is contained in some affinoid subspace of W.

3.1. Sousperfectoid spaces

We would like to define sheaves of families of modular forms of weight U
to be functions on XΓ(p∞)(ϵ)a × U . In order to obtain a sheaf, we need to
make sure that the latter fibre product exists as an adic space. For this we
use the language of sousperfectoid spaces, which we briefly recall from [12,
Section 7] and [29, Section 6.3]. Their technical importance stems from
Proposition 3.3.

Definition 3.2.
(1) A complete Tate Zp-algebra R is called sousperfectoid if there is a

perfectoid R-algebra R̃ such that R ↪→ R̃ splits in the category of
topological R-modules.

(2) A Huber pair (R,R+) is called sousperfectoid if R is sousperfectoid.
(3) An adic space is called sousperfectoid if it can be covered by affinoid

open subspaces of the form Spa(R,R+) where R is sousperfectoid.

Proposition 3.3 ([29, Proposition 6.3.4]). — Any sousperfectoid Hu-
ber pair (R,R+) is stably uniform. In particular, Spa(R,R+) is a sheafy
adic space.

Corollary 3.4. — Let X be a perfectoid space over L and let Y be
a rigid space smooth over a perfectoid extension of L′/L. Then the fibre
product X ×L Y exists as a sousperfectoid adic space.

Proof. — By [18, Corollary 1.6.10], the smooth rigid space Y can be
covered by open subspaces which are étale over some disc

B = Spa(L′⟨X1, . . . , Xn⟩).

Since the fibre product of perfectoid spaces is perfectoid, we may with-
out loss of generality assume that L = L′, and that X = Spa(S, S+) is
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affinoid perfectoid. The fibre product X ×L B then exists and is sousper-
fectoid because the algebra S⟨X1, . . . , Xn⟩ is sousperfectoid by [29, Propo-
sition 6.3.3.(i) and (iii)]. The fibre product X ×L Y = (X ×L B)×B Y now
exists and is sousperfectoid because algebras étale over a sousperfectoid
algebra are again sousperfectoid (Proposition 6.3.3.(ii) op. cit.). □

Corollary 3.5. — If U is a smooth adic space over L, then

X ∗
U,Γ(p∞)(ϵ)a := X ∗

Γ(p∞)(ϵ)a ×L U

exists as a sousperfectoid adic space. Moreover, if we define

X ∗
U,Γ(pn)(ϵ)a := X ∗

Γ(pn)(ϵ)a ×L U ,

then
X ∗

U,Γ(p∞)(ϵ)a ∼ lim←−
n∈N
X ∗

U,Γ(pn)(ϵ)a.

Proof. — The first part is immediate from the last corollary. The second
part follows from the observation that when (An)n∈N is a direct system
of Tate algebras (by which we mean a Huber pair with a topologically
nilpotent unit), andA∞ is a Tate algebra with compatible morphismsAn →
A∞ such that lim−→An ⊆ A∞ has dense image, and B is a Tate algebra
over A1, then lim−→(An⊗̂A1B) ⊆ A∞⊗̂A1B has dense image by pointwise
approximation. □

Lemma 3.6 ([20, Theorem 8.2.3]). — Let Y be a seminormal adic space
(see [20, Definition 3.7.1]), for example a smooth rigid space. Let v :
Yproét → Yan be the natural map. Then v∗Ô+

Yproét
= O+

Y .

Proof. — By [20, Theorem 8.2.3], we have v∗ÔYproét = OYan . Using the
adjunction morphism of v, we thus have inclusions O+

Y ⊆ v∗Ô+
Yproét

⊆ OY .
On the other hand, for any affinoid V ⊆ Y, we clearly have v∗Ô+

Yproét
(V ) ⊆

v∗ÔYproét(V )◦ = OY(V )◦. Since Y is a rigid space, we have OY(V )◦ =
O+

Y (V ), which shows v∗Ô+
Yproét

⊆ O+
Y . □

Lemma 3.7. — Let Y be an affinoid adic space over L that is either a
smooth rigid space or a perfectoid space. Let Γ be a profinite group. Let
X ∈ Yproét be an affinoid perfectoid pro-étale Γ-torsor. Let U be a smooth
adic space over L, set XU := X ×L U and YU := Y ×L U , and denote the
induced map by h : XU → YU . Then

(h∗O+
XU

)Γ = O+
YU

and (h∗OXU )Γ = OYU .
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Proof. — As the statement is local on YU , it suffices to check that for
an affinoid open V ⊆ Y with affinoid perfectoid preimage W = h−1(V ) we
have O+

XU
(V × U)Γ = O+

YU
(W × U). Since by our assumptions Y is stably

uniform, [9, Lemma 2.23 (2)] reduces this to checking that (h∗O+
X )Γ = O+

Y .
To see this, we first treat the case that Y is a smooth rigid space. Then
in the pro-étale site Yproét in the sense of [27], we have the structure sheaf
O+

Yproét
as well as the completed structure sheaf Ô+

Yproét
. For the affinoid

perfectoid space X , we have O+
X (X ) = Ô+

Yproét
(X ). The Cartesian diagram

expressing X → Y as a pro-étale Γ-torsor then shows that we have

O+
X (X )Γ = Ô+

Yproét
(X )Γ = Ô+

Yproét
(Y).

The first part of the Lemma now follows from Lemma 3.6. The second
follows by inverting p.

If Y is a perfectoid space, the same argument works in the pro-étale site
Yproét of [26]. □

Proposition 3.8. — Let U be a smooth adic space over a perfectoid
field extension L′ of L. For any n ⩾ 1 denote by h : X ∗

U,Γ(p∞)(ϵ)a →
X ∗

U,Γ0(pn)(ϵ)a the natural map. Then

(h∗O+
X ∗

U,Γ(p∞)(ϵ)a
)Γ0(pn) = O+

X ∗
U,Γ0(pn)(ϵ)a

and
(h∗OX ∗

U,Γ(p∞)(ϵ)a
)Γ0(pn) = OX ∗

U,Γ0(pn)(ϵ)a
.

For the proof, we explain how to deal with the boundary, which was not
treated in [9].

Proof. — After base-change to L′, we may without loss of generality
assume that L = L′.

Over the open subspace away from the cusps, the map h : XU,Γ(p∞)(ϵ)a →
XU,Γ0(pn)(ϵ)a is a pro-étale Γ0(pn)-torsor for the action defined in (2.1). By
Lemma 3.7, we thus have

(h∗O+
XU,Γ(p∞)(ϵ)a

)Γ0(pn) = O+
XU,Γ0(pn)(ϵ)a

.

We are left to extend this to the cusps. Let us first look at the case that
U is a single point. For this we can use Tate curve parameter discs as
discussed in [13]: For any geometric point c in the boundary of X ∗, there is
an integer d|N (depending on the tame level structure and the presence of
unit roots in L) such that there is an open immersion D×µd ↪→ X ∗ where
D ⊆ L⟨q⟩ is the open disc defined by |q| < 1, such that the image of the
origin contains c. For X ∗

Γ0(pn)(ϵ)a there is then also a Tate curve parameter
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disc D × µd ↪→ X ∗
Γ0(pn)(ϵ)a. The induced map over X ∗

Γ0(pn)(ϵ)a → X ∗ is
D → D, q 7→ qpn by Proposition 2.10 op. cit. Equivalently, we may rewrite
this as the open disc Dn ⊆ Spa(L⟨q1/pn⟩). By taking tilde-limits, we obtain
a perfectoid disc D∞ ∼ lim←−Dn ⊆ Spa(L⟨q1/p∞⟩). By [13, Theorem 3.8],
there is then a Cartesian diagram

Γ0(p∞)×D∞ × µd Dn × µd

X ∗
Γ(p∞)(ϵ)a X ∗

Γ0(pn)(ϵ)

where Γ0(p∞) is the profinite perfectoid group of upper triangular matrices
in GL2(Zp). By Theorem 3.21 op. cit., the Γ0(pn)-invariance of a function f
on Γ0(p∞)×D∞×µd now means precisely the following: first, the Γ0(p∞)-
invariance means that f comes from a function on D∞ × µd via pullback
along the projection Γ0(p∞)×D∞×µd → D∞×µd. It is thus of the form f ∈
O+(D∞ × µd) = OL[ζd]Jq1/p∞

K. Second, the remaining Γ0(pn)/Γ0(p∞) =
pnZp-action is the one which sends q1/pm → ζh

pmq1/pm for all m ∈ N and
h ∈ pnZp. For f to be invariant under this action means that f ∈ O+(Dn×
µd) = OL[ζd]Jq1/pn

K, as desired.
For general weight U , we may without loss of generality assume that

U is affinoid. The same argument then still works, adding a fibre prod-
uct with U everywhere in the above and working with q-expansions in
O+(U)[ζd]Jq1/pn

K instead. □

Remark 3.9. — As pointed out to us by the referee, one can also use
the rigid analytic Riemann Hebbarkeitssatz for normal rigid spaces due
to Bartenwerfer [5] and Lütkebohmert [22, Satz 1.6] to extend over the
boundary. One advantage of the perspective taken above is that it explicitly
describes the q-expansions associated to p-adic modular forms.

3.2. Overconvergent modular forms

Definition 3.10. — For any rational 0 < r ⩽ 1, let Br(Z×
p : 1) ⊂

Br(Zp : 1) ⊂ P1 be the union of all balls Br(a) of radius r around points
(a : 1) with a ∈ Z×

p . For r = 0, we instead let B0(Z×
p : 1) := Z×

p , where we
recall that we mean by this the perfectoid space associated to the profinite
group Z×

p .

The adic space Br(Z×
p : 1) inherits the structure of an adic group from

Gm = P1\{0,∞} ⊆ P1. Note that for r < 1, on Zp-points we have Br(Z×
p :
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1)(Zp) = Z×
p compatible with the group structure. We therefore regard

Br(Z×
p : 1) as an adic analytic thickening of Z×

p .

Definition 3.11.

(1) In the following, we will also denote by Ga the adic analytification
of the corresponding scheme over L. Its underlying adic space is
A1,an, and it represents the functor sending an adic space Z over
(L,OL) to O(Z).

(2) We analogously define the adic group Gm as the adic analytifica-
tion of the corresponding scheme over L. It represents the functor
sending an adic space Z over (L,OL) to O(Z)×.

(3) Denote by Ĝa the adic generic fibre of the formal completion of the
OL-scheme Ga,OL

; then Ĝa ⊆ Ga is an open subgroup, given by the
closed ball of radius 1 around the origin 0 ∈ Ga. It represents the
functor sending an adic space Z over (L,OL) to O+(Z).

(4) Similarly, let Ĝm be the adic generic fibre of the formal completion
of Ga,OL

; then Ĝm ⊆ Gm is an open subgroup, given by the closed
ball of radius 1 around the origin 1 ∈ Gm. It represents the functor
sending an adic space Z over (L,OL) to O+(Z)×.

Any continuous character κ : Z×
p → L× has a geometric incarnation

as a morphism of adic spaces κ : Z×
p → Ĝm. Indeed, by the univer-

sal property of Gm, any such morphism corresponds to an element of
O(Z×

p )× = Mapcts(Z×
p , L)× = Mapcts(Z×

p , L
×). Any such κ has an ana-

lytic continuation to Br(Z×
p : 1) for small enough r. In fact, this holds

more generally: let U be any bounded smooth weight (see Definition 3.1).
This corresponds to a morphism κ : Z×

p × U → Ĝm or, equivalently, a
continuous morphism Z×

p → OU (U)×, called the character of U .

Proposition 3.12. — If κ : U → W is a bounded smooth weight, then
there exists rκ such that for rκ ⩾ r > 0 there is a unique morphism

κan : Br(Z×
p : 1)× U → Ĝm

such that the restriction of κan to Z×
p ×U via Z×

p ↪→ Br(Z×
p : 1), a 7→ (a : 1),

is equal to κ.

Proof. — If U is affinoid this is a special case of [6, Proposition 8.3]. In
general, the assumption that U is bounded ensures that U is contained in
some affinoid open subspace of W. For a precise value of rκ see Proposi-
tion 6.3. □
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Definition 3.13. — For any smooth bounded weight κ : U → W, let
rκ be the supremum of all r such that the proposition holds. Similarly, let
ϵdef

κ be the maximum ϵ satisfying the conditions of Proposition 2.6 with
respect to rκ, then πHT(X ∗

Γ(p∞)(ϵ)a) ⊆ Br(Zp : 1).

Recall z := π∗
HTz is the function on X ∗

Γ(p∞)(ϵ)a defined by pullback of
the function z on Br(Zp : 1) from Definition 2.3. Since πHT is GL2(Zp)-
equivariant, Lemma 2.4 implies that for any γ ∈ Γ0(p), we have

(3.1) γ∗z = az + b

cz + d
.

Using this and Proposition 2.6, we can then make the following definition:

Definition 3.14. — Let κ : U → W be a bounded smooth weight and
ϵdef

κ > ϵ ⩾ 0. For any c ∈ pZp, d ∈ Z×
p , we then let κ(cz+d) be the invertible

function on XU,Γ(p∞)(ϵ)a defined by

XU,Γ(p∞)(ϵ)a
πHT×id−−−−−→ Br(Zp : 1)×U (z 7→cz+d)×id−−−−−−−−−→ Br(Z×

p : 1)×U κan

−−→ Ĝm.

We can now give the definition of sheaves of overconvergent modular
forms of weight κ.

Definition 3.15. — For κ : U → W a bounded smooth weight, n ∈
Z⩾1 ∪ {∞} and 0 ⩽ ϵ ⩽ ϵdef

κ , we define a sheaf ωκ
n on X ∗

U,Γ0(pn)(ϵ)a by

ωκ
n :=

{
f ∈ q∗OX ∗

U,Γ(p∞)(ϵ)a

∣∣∣∣γ∗f = κ−1(cz + d)f, ∀γ =
(

a b
c d

)
∈ Γ0(pn)

}
,

where we recall that q : X ∗
U,Γ(p∞)(ϵ)a → X ∗

U,Γ0(pn)(ϵ)a denotes the projec-
tion. We also have an integral subsheaf ωκ,+

n on X ∗
U,Γ0(pn)(ϵ)a defined by

using instead the O+-sheaf:

ωκ,+
n :=

{
f ∈ q∗O+

X ∗
U,Γ(p∞)(ϵ)a

∣∣∣∣γ∗f = κ−1(cz + d)f, ∀γ =
(

a b
c d

)
∈ Γ0(pn)

}
.

For n = 0 and ϵκ/p > ϵ ⩾ 0, we use the Atkin–Lehner isomorphism
AL : X ∗

Γ0(p)(pϵ)a
∼−→ X ∗(ϵ) to define the sheaf of overconvergent p-adic

modular forms ωκ to be the sheaf AL∗ ω
κ
1 on X ∗

U (ϵ). We also have the
O+-submodule of integral p-adic modular forms ωκ,+ given by AL∗ ω

κ,+
1 .

We will later see that these are all invertible sheaves. Note that for n =
∞, this defines sheaves of modular forms on X ∗

U,Γ0(p∞)(ϵ)a which, by analogy
to [2], we call perfect modular forms.

Definition 3.16. — Let κ : U → W be a bounded smooth weight and
let n ∈ Z⩾1 ∪ {∞}. We define the space of overconvergent modular forms
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of weight U , wild level Γ0(pn), tame level Γp and radius of overconvergence
0 ⩽ ϵ < ϵdef

κ to be the L-vector space

Mκ(Γ0(pn), ϵ) := H0(X ∗
U,Γ0(pn)(ϵ)a, ω

κ
n)

=
{
f ∈ O(X ∗

U,Γ0(p∞)(ϵ)a)
∣∣∣γ∗f = κ−1(cz + d)f, ∀γ ∈ Γ0(pn)

}
and the analogous space of integral forms to be

M+
κ (Γ0(pn), ϵ) := H0(X ∗

U,Γ0(pn)(ϵ)a, ω
κ,+
n ).

Finally, we set Mκ(ϵ) := Mκ(Γ0(p), pϵ), and analogously for the integral
subspaces. We note that for any n < ∞, there is then a natural Atkin–
Lehner isomorphism

M+
κ (Γ0(pn), ϵ) ∼= M+

κ (p−nϵ).

One can similarly define cusp forms by working instead with ωκ
n(−∂)

where ∂ denotes the boundary divisor in X ∗
U,Γ0(pn)(ϵ)a. As usual, one now

defines an action of Hecke operators Tℓ for ℓ ∤ Np and Up via correspon-
dences. We shall discuss this in detail in the Hilbert case in Section 10.

3.3. Comparison to overconvergent modular forms of classical
weights

Recall that on X ∗ we have the conormal sheaf ωE := π∗Ω1
E|X of the

universal semi-abelian scheme π : E → X ∗. For a p-level structure Γp

of the form Γ0(pn) or Γ(pn) for n ∈ Z⩾0 ∪ {∞}, we write ωΓp
for the

pullback of ωE to X ∗
Γp

(ϵ)a. In this section, we show that for characters κ
of the form x 7→ xk, for k ∈ Z⩾1, the sheaf ωκ

n can be identified with
ω⊗k

Γ0(pn). This shows that for classical weights, our definition agrees with
the usual spaces of overconvergent modular forms, and contains the spaces
of classical modular forms. The key to the comparison is the isomorphism
of line bundles

(3.2) π∗
HTO(1) = ωΓ(p∞)

from [28, Theorem III.3.18]. We recall that on (C,C+)-points, this has the
following moduli interpretation: The C-points of the total space T (1)→ P1

of the line bundle O(1) parametrise pairs (L, y) of a line L ⊆ C2 together
with a point y ∈ C2/L on the quotient. Equivalently, this is the data (φ, y)
of a linear projection φ : C2 ↠ Q to a 1-dimensional C-vector space Q
and a point y ∈ Q. We sometimes just write this as the point y if Q is
clear from context. Using this description of O(1), one can now illustrate
equation (3.2) as follows.
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Lemma 3.17. — Let x be a (C,C+)-point of XΓ(p∞), corresponding to
data (E,µ, α : Z2

p
∼−→ TpE). Let HTE : TpE → ωE be the Hodge–Tate map

of E. In terms of the total spaces, the isomorphism ωΓ(p∞) = π∗
HTO(1) is

given in the fibre of x by the morphism

(E, α, η ∈ ωE) 7→ (HT : TpE ⊗Zp C → ωE , η ∈ ωE).

Following [9], we now compare our sheaf of modular forms ωκ for κ = id
to the bundle of differentials ωE by using an explicit trivialisation of O(1)
over Br(Zp : 1):

Definition 3.18. — Let s be the global section P1 → T (1) given by

(x : y) 7→
(
C2 → C2/〈

( x
y )

〉
, ( 1

0 ) +
〈

( x
y )

〉)
,

where the second component lies in C2/⟨( x
y )⟩. This section is non-vanishing

away from the point (1 : 0) = ∞ ∈ P1, and in particular it is invertible
over Br(Zp : 1) ⊆ P1.

We need to compute the action of Γ0(p) on s over Br(Zp : 1) ⊆ Ga ⊆ P1

in terms of the parameter (z : 1). For later reference in the Hilbert case,
we record this in diagrammatic fashion:

Lemma 3.19. — Let γ =
(

a b
c d

)
∈ Γ0(p), then γ∗s = (cz + d)s, i.e. the

following diagram commutes:

Ĝm × T (1) T (1) T (1)

Ĝa Ĝa.

m γ−1

γ
(cz+d)×s

γ∗s s

Proof. — We first note that the equivariant action of Γ0(p) onO(1) which
is compatible with (2.1) is by letting γ act via det(γ)−1γ. In particular, γ−1

acts as γ∨. The natural fibre action of γ on s is by γ∗s = γ−1 ◦s◦γ, i.e. the
right square commutes by definition. We therefore have

γ∗s(z) = γ∨ ·( 1
0 ) =

(
d

−c

)
≡

(
d

−c

)
+c ( z

1 ) =
(

cz+d
0

)
(3.3)

= (cz + d) ( 1
0 ) mod ⟨( z

1 )⟩,(3.4)

which shows that γ∗s = (cz + d)s as desired. □

Definition 3.20. — Let s := π∗
HT(s) be the pullback of s to a section

of π∗
HTO(1) = q∗ω.

Since the isomorphism π∗
HTO(1) is equivariant for the Γ0(p)-action, the

action of Γ0(p) on s is

(3.5) γ∗s = (cz + d)s,
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where we recall z is the pullback of the parameter z to a function on
X ∗

Γ(p∞)(ϵ)a. We have the following consequence of Lemma 3.17.

Proposition 3.21. — Let x be a (C,C+)-point of XΓ(p∞)(ϵ)a corre-
sponding to a triple (E,µ, α : Z2

p
∼−→ TpE). Then via the isomorphism

π∗
HTO(1) = ωΓ(p∞), we have

s(x) = HT(α(e1)) ∈ ωE .

Proposition 3.22. — Let κ : x 7→ xk. Then there is a natural isomor-
phism ωκ ∼= ω⊗k.

Proof. — As s is a non-vanishing section of q∗ω over X ∗
Γ(p∞)(ϵ)a, the

sections of q∗ω⊗k are all of the form f ·s⊗k for f ∈ O(X ∗
Γ(p∞)(ϵ)a). Of these

sections, the ones coming from sections of ω⊗k – that is, those defined over
X ∗

Γ0(p)(ϵ)a – are exactly the Γ0(p)-equivariant ones. But

γ∗(f · s⊗k) = γ∗f · γ∗s⊗k (3.5)== γ∗f · (cz + d)ks⊗k for all γ ∈ Γ0(p).

The Γ0(p)-equivariance of γ∗(f · s⊗k) is thus equivalent to γ∗f = (cz +
d)−kf = κ−1(cz + d)f . □

Remark 3.23. — While the analogy to the complex situation is very close,
one notable difference is that on the complex upper half planeH the canoni-
cal differential ηcan satisfies γ∗ηcan = (cz+d)−1ηcan, whereas on X ∗

Γ(p∞)(ϵ)a

one has γ∗s = (cz + d)s. The different signs can be explained as follows.
Both constructions of modular forms depend on a canonical trivialisation
of the automorphic bundle ω on the covering space, which is H in the
complex case and X ∗

Γ(p∞)(ϵ)a in the p-adic case. But there is a sign dif-
ference in the canonical trivialisation: consider the universal trivialisation
α : Z2 ∼−→ H1(E,Z) on H and let αi denote the image of the standard
basis vector ei of Z2. Then the canonical non-vanishing differential ηcan
is defined to be the unique differential such that

∫
α1
ηcan = 1 under the

pairing ∫
: H1(E,Z)→ ω∨

E , α 7→
(
w 7→

∫
α
w

)
.

As a consequence, when we denote by q∗ω the pullback of ω via H →
Y = SL2(Z)\H, then using the natural period map ι : H ↪→ P1, α 7→(∫

α2
wcan :

∫
α1
wcan

)
we have a natural isomorphism q∗ω ∼= ι∗O(−1). On

the other hand, in the p-adic case, the trivialisation is given using the
image α1 of e1 under the Hodge–Tate map α : Z2

p → TpE. The canonical
differential is then the image of α1 under HT : TpE = H ét

1 (E,Zp) →
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ωE∨ = ωE and as discussed earlier, the period map πHT : X ∗
Γ(p∞)(ϵ)a → P1

therefore induces an isomorphism q∗ωE
∼= π∗

HTO(1).
In summary, in the complex case one trivialises ω∨

E whereas in the p-adic
case it is ωE∨ , therefore one description of ωE is by comparing to O(−1)
whereas the other uses O(1). It is this difference that ultimately leads to
the different signs in the definition of modular forms.

3.4. Comparison to Katz’ convergent modular forms

For ϵ = 0, it has long been known how to construct sheaves of p-adic
modular forms, going back to [19, §4]. We briefly present the construction
here in the adic language, and sketch how it compares to our setting.

Let us for simplicity assume U = Spa(L); the discussion applies without
changes for general U . Let X ∗

Ig(pn)(0) → X ∗(0) be the n-th Igusa curve,
i.e. the (Z/pnZ)×-torsor parametrising trivialisations Z/pnZ ∼−→H∨

n of the
canonical subgroup. Since this has a natural finite étale formal model, we
can form the inverse limit X ∗

Ig(p∞)(0) → X ∗(0) over n as a sousperfectoid
space. This is a pro-étale Z×

p -torsor known as the Igusa tower, relatively
parametrising isomorphisms Zp

∼−→TpH
∨. As we will see in more detail in

the next section, there is a commutative diagram

X ∗
Γ(p∞)(0)a X ∗

Γ0(p)(0)a

X ∗
Ig(p∞)(0) X ∗(0)

t

where t is given by using the canonical isomorphism H∨
n = E[pn]/Hn and

sending a trivialisation α : Z2
p

∼−→TpE to

Zp
(1,0)−−−→ Z2

p
∼−→ TpE

α−→ TpH
∨.

One now observes that in the case of ϵ = 0, the function cz + d is of the
form

cz + d : X ∗
U,Γ(p∞)(0)→ Z×

p ,

where as usual we consider Z×
p as a profinite adic space. One now checks

that t is equivariant with respect to the map sending
(

a b
c d

)
7→ cz + d, in
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the sense that the following diagram commutes:

Γ0(p)×X ∗
Γ(p∞)(0)a X ∗

Γ(p∞)(0)a

Z×
p ×X ∗

Ig(p∞)(0) X ∗
Ig(p∞)(0).

(cz+d)×t t

It follows formally (e.g. [15, Lemma 2.8.4]) that ωκ is the pullback of the
pro-étale line bundle on X ∗(0) associated to the cocycle

κ : Z×
p → O(U)×.

Returning to general ϵ ⩾ 0 and U , we now use this to give a new proof
that ωκ is analytic:

Proposition 3.24. — For any 0 ⩽ ϵ < ϵdef
κ , the sheaf ωκ is an analytic

line bundle on X ∗
U (ϵ).

Proof. — Away from the boundary, it is clear that ωκ is a pro-étale
line bundle, i.e. an invertible module over the completed structure sheaf
of XU (ϵ)proét, as it is defined via a descent datum for the pro-étale torsor
XΓ0(p∞)(ϵ)a → XΓ0(p)(ϵ)a. The crucial point is now that by [14, Corol-
lary 3.5], such a pro-étale line bundle is already an analytic line bundle if it
is analytic on any Zariski-dense open subspace of XU (ϵ). We can thus reduce
to proving the statement over the ordinary locus, including the boundary;
the analyticity will then automatically overconverge.

We now use that the Igusa tower admits a formal model which is still a
pro-étale Z×

p -torsor. It follows from [14, Proposition 3.8] that ωκ on X ∗(0)
is locally trivial in the analytic topology. □

Remark 3.25. — Alternatively, one could use the analyticity criterion [14,
Corollary 3.6], which says that a pro-étale line bundle on X ∗(ϵ) × U is
analytic if it is analytic in each fibre of a Zariski-dense subset of points
in each factor. It is clear that ωκ becomes trivial over the fibre of any
x ∈ X ∗(ϵ)(C) because the torsor X ∗

Γ(p∞)(ϵ) → X ∗(ϵ) becomes split over
x. On the other hand, Proposition 3.22 says that ωκ is analytic over the
Zariski-dense set of classical points of W.

4. Comparison with Andreatta–Iovita–Pilloni’s modular
forms

In this section, we prove that the sheaves of p-adic modular forms de-
fined above are canonically isomorphic to those defined by Pilloni in [24]
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and Andreatta–Iovita–Pilloni in [4]. In order to distinguish their construc-
tion from ours, we shall denote the latter sheaf by ωκ

AIP. This extends the
comparison for classical weights proved in Proposition 3.22 above. We first
briefly summarise the construction.

4.1. The Pilloni-torsor

The construction of ωκ
AIP relies on the Pilloni-torsor Fm(ϵ). In this sub-

section, we will recall its definition, and show how the section s from Defini-
tion 3.20 induces a natural map X ∗

Γ(p∞)(ϵ)a → Fm(ϵ) into the Pilloni-torsor,
allowing a direct comparison of the modular forms in [4] with those defined
in Definition 3.15 above. This is very similar to [9, §2.7], which also relies on
the section s, but the present setup makes the comparison slightly easier:
it allows for a global comparison map from the perfectoid modular curve
to the Pilloni torsor, which makes it possible to avoid auxiliary choices.

We shall discuss the Pilloni-torsor in an analytic setting, rather than
dealing with normal formal schemes like in [4]. This is mainly to avoid
discussing normalisations in our non-Noetherian setting over OL – while
this is still possible, it would require more work.

Definition 4.1. — For any m ∈ Z⩾1, let 0 ⩽ ϵ ⩽ ϵcan
m := 1/pm+1. Like

in [28, Definition III.2.12], one can define a canonical formal model X∗(ϵ) of
X ∗(ϵ) with a semi-abelian formal scheme E→ X∗(ϵ). By [4, Corollary A.2],
this admits a canonical subgroup Hm ⊆ E of rank pm characterised by
the property that its reduction mod p1−ϵ equals kerFm where F is the
relative Frobenius. Let Hm ⊆ E → X ∗(ϵ) be the adic generic fibre, this is
the universal canonical subgroup of the semi-abelian adic space over X ∗(ϵ)
(cf the discussion in Section 2.1).

The Igusa curve X ∗
Ig(pm)(ϵ) → X ∗(ϵ) is now the finite étale (Z/pmZ)×-

torsor which relatively represents isomorphisms of group schemes
Z/pmZ→ H∨

m.

Consider the pullback ωIg(pm) of the conormal sheaf ω to X ∗
Ig(pm)(ϵ), and

denote the total space of ωIg(pm) by Tm(ϵ) → X ∗
Ig(pm)(ϵ). Following [24],

the Pilloni-torsor is now a certain open subspace Fm(ϵ) ⊆ Tm(ϵ). We recall
this in an analytic setting.

Definition 4.2. — For any formal scheme Y, the generic fibre Y = Yad
η

comes equipped with a morphism of locally ringed spaces s : (Y,O+
Y )→ Y.

For any coherent sheaf G on Y with generic fibre G, this gives rise to an
integral O+

Y -module G+ := s∗G on Y.
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Applying this to the conormal sheaf of E → X∗(ϵ) and pulling back to
X ∗

Ig(pm)(ϵ), we see that the sheaf ωIg(pm) carries a natural integral structure
ω+

Ig(pm) ⊆ ωIg(pm). The same construction applied to the conormal sheaf of
the canonical subgroup Hm ⊆ E → X∗(ϵ) gives a morphism of O+

X ∗
Ig(pm)(ϵ)-

modules π : ω+
Ig(pm) → ω+

Hm
. Let Hdg be the Hodge ideal on X ∗

Ig(pm)(ϵ) [4,
§3.1].

Lemma 4.3. — The following sequence of O+
X ∗

Ig(pm)(ϵ)-modules is exact:

0→ pm Hdg− pm−1
p−1 ω+

Ig(pm) −→ ω+
Ig(pm)

π−−−→ ω+
Hm
→ 0.

Proof. — We have an exact sequence 0 → ωE[pm]/Hm
→ ωE[pm] →

ωHm
→ 0 over X∗(ϵ). The middle term is ωE/p

m, whilst the first term has
annihilator Hdg(pm−1)/(p−1) by [4, Cor. A.4.2]. We thus have an isomor-
phism ωE/p

m Hdg−(pm−1)/(p−1) ∼= ωHm
. Pulling this back under the mor-

phism of ringed spaces (X ∗
Ig(pm)(ϵ),O

+
X ∗

Ig(pm)(ϵ))→ (X ∗(ϵ),O+
X ∗(ϵ))→ X∗(ϵ)

gives the result. □

When we now regard H∨
m as a sheaf of sections over X ∗

Ig(pm)(ϵ), we have
a morphism of sheaves

(4.1) ψ : Z/pmZ H∨
m ω+

Hm

α HT

that defines a canonical section ψ(1) ∈ ω+
Hm

.

Definition 4.4. — Let 0 ⩽ ϵ ⩽ ϵcan
m . The Pilloni-torsor Fm(ϵ) is the

O+
X ∗

Ig(pm)(ϵ)-module defined by

Fm(ϵ) := {r ∈ ω+
Ig(pm) | π(r) = ψ(1)}.

Let Fm(ϵ) ↪→ Tm(ϵ) → X ∗
Ig(pm)(ϵ) be its total space. By Lemma 4.3, this

is an analytic torsor under the group (1 + pm Hdg−(pm−1)/(p−1) Ĝa) →
X ∗

Ig(pm)(ϵ) and an étale torsor over X ∗(ϵ) for the group Bm := Z×
p (1 +

pm Hdg−(pm−1)/(p−1) Ĝa) when combined with X ∗
Ig(pm)(ϵ)→ X ∗(ϵ).

Definition 4.5.
(1) For the universal weight κun : W → W, let T be the weight space

parameter given by the function κun(q)− 1 on W for a fixed topo-
logical generator q ∈ Z×

p .
(2) For any k ∈ Z⩾1, we define the annulus Wk := W(|T |pk

⩽ |p| ⩽
|T |pk−1). For k = 0, we simply take the disc W0 := W(|T | ⩽ |p|).
Then W = ∪k∈Z⩾0Wk.
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(3) Let now κ : U → W be any bounded smooth weight, which we
may regard as a function κ : Z×

p × U → Ĝm. We let |Tκ| :=
sup(x,u)∈Z×

p ×U |κ(x, u) − 1| and |δκ| := max(|p|, |Tκ|). Let r := 3 if
p > 2 and r := 5 if p = 2. Then we let 0 < ϵκ be implicitly defined by
|p|ϵκ = |δκ|1/pr+1 . Finally, for any k ∈ Z⩾0, we let Uk := κ−1(Wk);
then U = ∪k∈Z⩾0Uk.

Remark 4.6. — One checks easily that ϵκ ⩽ ϵdef
κ . Moreover, we note that

by definition, ϵdef
κ is such that we can define our sheaf of integral modular

forms on X (ϵ) for 0 ⩽ ϵ < ϵdef
κ , while for 0 ⩽ ϵ < ϵκ this sheaf will be

invertible (although we do not claim this is the optimal bound).

The sheaf ωκ
AIP is then defined in [24] and [4] as follows.

Definition 4.7. — Let κ : U → W be a bounded smooth weight. In
order to define ωκ

AIP, we need to split this up into opens Uk as in Defini-
tion 4.5: Let 0 ⩽ ϵ < ϵκ. Fix now any k ∈ Z⩾0 and set m = r + k − 1 (this
implies ϵκ ⩽ ϵcan

m and ϵκ ⩽ ϵdef
κ ).

(1) Using the projection pr : Fm(ϵ)×U → X ∗
U (ϵ), we define ωκ

AIP|Uk
(V )

as

{f ∈ pr∗OFm(ϵ)×U (V )|γ∗f = κ−1(γ)f, ∀γ ∈ Z×
p (1 + pmĜa)× U}.

Proposition 7.10 below shows that these sheaves for different k ∈
Z⩾1 can then be glued over U to get a sheaf ωκ

AIP. We similarly
define ωκ,+

AIP by using O+
Fm(ϵ)×U instead.

(2) For any n ∈ Z⩾1 we set ωκ,+
AIP,n := ALn∗ ωκ,+

AIP where

ALn : X ∗
Γ0(pn)(pnϵ)a

∼−→ X ∗(ϵ)

is the Atkin–Lehner isomorphism which corresponds to the matrix(
pn 0
0 1

)
. Let i : X ∗

Γ0(pn)(ϵ)a → X ∗
Γ0(pn)(pnϵ)a be the restriction map.

Then by [4, Théorème 6.2.4], there is a canonical isomorphism

i∗ωκ,+
AIP,n = q∗

nω
κ,+
AIP,

where qn : X ∗
Γ0(pn)(ϵ)a → X ∗(ϵ) is the forgetful map. For n = 0 we

let ωκ,+
AIP,0 := ωκ,+

AIP.
(3) We therefore set ωκ,+

AIP,∞ := q∗ωκ,+
AIP where q : X ∗

Γ0(p∞)(ϵ)a → X ∗(ϵ)
is the forgetful map.

4.2. The comparison morphism

The following is the main result of this section.
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Theorem 4.8. — Let κ : U → W be a bounded smooth weight, let
0 ⩽ ϵ ⩽ ϵκ, and let n ∈ Z⩾0 ∪ {∞}. Then there is a natural isomorphism
of O+-modules on X ∗

U,Γ0(pn)(ϵ)a

ωκ,+
n

∼−→ ωκ,+
AIP,n.

In particular, the ωκ,+
n are invertible O+-modules. By inverting p, we also

obtain isomorphisms of invertible O-modules

ωκ
n

∼−→ ωκ
AIP,n

on X ∗
U,Γ0(pn)(ϵ)a. Moreover, this induces a Hecke equivariant isomorphism

between the respective spaces of modular forms.

For n = 0, this in particular gives a canonical isomorphism ωκ,+ ∼= ωκ,+
AIP

on X ∗
U (ϵ).

The proof of Theorem 4.8 now relies on the following lemma (cf. [4,
p. 31]):

Lemma 4.9. — Let ϵ ⩽ ϵcan
m . Then s induces a morphism over X ∗(ϵ)

s : X ∗
Γ(p∞)(ϵ)a → Fm(ϵ).

Let s̃ := s ◦ un where un :=
(

pn 0
0 1

)
. Then for any γ =

(
a b
c d

)
∈ Γ0(pn), we

have γ∗s̃ = (cz + d)s̃, that is the diagram

(4.2)
X ∗

Γ(p∞)(pnϵ)a X ∗
Γ(p∞)(pnϵ)a X ∗

Γ0(pn)(pnϵ)a

Bm ×Fm(ϵ) Fm(ϵ) X ∗(ϵ),

γ

(cz+d)×s̃ s̃ ALn

m

commutes, where m denotes the respective action maps.

Remark 4.10. — In fact, the map s factors through the forgetful map
X ∗

Γ(p∞)(ϵ)a → X ∗
Γ1(p∞)(ϵ)a.

Proof. — Proposition 7.11 will prove a more general version of the first
part away from the cusps. The morphism extends since the relative moduli
interpretation of Fm(ϵ)→ XIg(pm)(ϵ)→ X (ϵ) also holds over the cusps.

A more general version of the second part will be proved in Lemma 7.12
below, we now explain the argument in the elliptic case: Recall that s =
π∗

HTs. By GL2(Qp)-equivariance of πHT, we therefore have s̃ = π∗
HTs̃ for

the section s̃ := u∗
ns on Ĝa ⊆ P1. It therefore suffices to prove that γ∗s̃ =

(cz + d)s̃. For this we first note that the action of un sends (z : 1) to
(pnz : 1), and therefore

(4.3) u∗
nz = pnz
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In particular, un sends Ĝa ⊆ P1 onto pnĜa ⊆ P1. Note that this is preserved
by the action of Γ0(pn) := {( ∗ b

∗ ∗ ) ⊆ GL2(Zp)|b ∈ pnZp}. By the same
computation as in (3.3), we see that on pnĜa, for any γ′ =

(
a′ b′

c′ d′

)
∈ Γ0(pn),

we have γ′∗s = (c′z + d′)s. For γ′ := unγu
−1
n , this shows

γ∗s̃ = γ∗u∗
ns = u∗

n(unγu
−1
n )∗s = u∗

n

(
a pnb

p−nc d

)∗
s = u∗

n((p−ncz + d)s)
(4.3)= (cz + d)s̃ □

Proof of Theorem 4.8. — It suffices to prove this locally on W, so we
may assume that κ has image in Wk for some k ∈ Z⩾0. Set m = r+ k− 1.
We start with the case of n ∈ Z⩾1.

Let f be a section of ωκ,+
AIP. For simplicity of notation, let us assume that

f is a global section, even though the proof works for any section. We may
then regard f as a map Fm(ϵ) × U → Ĝa. To see that s̃∗f = f ◦ s̃ is a
section of ωκ,+

n , we use that for any γ ∈ Γ0(pn), the diagram

X ∗
Γ(p∞)(pnϵ)a × U X ∗

Γ(p∞)(pnϵ)a × U

Z×
p (1 + pmĜa)×Fm(ϵ)× U Fm(ϵ)× U

Ĝm × Ĝa Ĝa

γ

(cz+d)×s̃×id s̃×id
m×id

κ−1×f f

m

commutes, where m denotes the multiplication map. Here the top square
commutes by Lemma 4.9 and the bottom square is commutative by defini-
tion of ωκ,+

AIP. The outer square now shows that

γ∗(s̃∗f) = κ−1(cz + d)s̃∗f

as desired. This gives a natural morphism of O+
X ∗

U (ϵ)-modules ωκ,+
AIP →

ALn
∗ ω

κ,+
n which in turn induces s̃∗ : ωκ,+

AIP,n = ALn∗ ωκ,+
AIP → ωκ

n.
To see this is an isomorphism, recall that ωκ,+

AIP is invertible, so locally
on some open U ⊆ XU (ϵ) we can find f that is invertible as an element
of O+

Fm(ϵ)×U (U). Thus ωκ,+
AIP |U = fO+

U . Let V := AL−n(U); then s̃∗f ∈
q∗O+

X ∗
U,Γ(p∞)(pnϵ)a

(V ) is invertible. It now follows from Proposition 3.8 that
we have ωκ,+|V = s̃∗fO+

V . Thus s̃∗ is an isomorphism locally over U . Since
XU (ϵ) can be covered by such U , this completes the proof in the case of
n ∈ Z⩾1.
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The case of n = 0 follows from the case of n = 1 since we have ωκ,+ =
AL∗ ω

κ,+
1 = ωκ,+

AIP. For n =∞, the same argument works for the diagram

(4.4)
X ∗

Γ(p∞)(ϵ)a X ∗
Γ(p∞)(ϵ)a X ∗

Γ0(p∞)(ϵ)a

Z×
p ×Fm(ϵ) Fm(ϵ) X ∗(ϵ).

γ

d×s s q

m

which induces an isomorphism s∗ : q∗ω+
AIP → ωκ,+

∞ as desired. Lastly,
the statement about Hecke equivariance is a special case of Propos
ition 10.8. □

5. Perfectoid Hilbert modular varieties for G∗

For the remainder of the paper, we move on to Hilbert modular forms.
In this section, we recall the classical Hilbert modular varieties for G and
G∗, and the perfectoid versions for G∗.

5.1. Classical Hilbert modular varieties for G and G∗

The content of this section is mainly classical and can be found in many
sources, e.g. [32, §2] and [16, §4].

Notation 5.1.
(1) Let F be a totally real field of degree g over Q with ring of integers
OF and absolute different d ⊆ OF . Let Σ denote the set of infinite
places of F .

(2) Recall that we fixed a rational prime p. We set Op := OF ⊗ Zp =
⊕p|pOFp

, where p|p ranges over the prime ideals of OF over p and
where Fp is the completion of F at p.

(3) For any fractional ideal r, let r+ denote the totally positive elements
in r; in general “+” will denote “totally positive”. We have a non-
degenerate trace pairing Tr : r× r−1d−1 → Z.

(4) Let G := ResF/Q GL2 and let G∗ := G ×ResF/Q Gm
Gm, where the

map G → ResF/Q Gm is given by the determinant morphism and
Gm → ResF/Q Gm is given by the diagonal map.

Let S := HΣ, where H ⊂ C is the standard upper half-plane. For K an
open compact subgroup of G(Af ), there exists a Shimura variety ShK(G,S)
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of level K over Q. Similarly, if K∗ is an open compact subgroup of G∗(Af ),
there exists a Shimura variety ShK∗(G∗,S) over Q. These Shimura varieties
are the Hilbert modular varieties. The Shimura variety ShK∗(G∗,S) is of
PEL type, therefore of Hodge type, whereas the Shimura variety ShK(G,S)
is of abelian type.

Definition 5.2. — Let c ⊆ OF be any nonzero ideal and let N be
coprime to c.

(1) Let Kc := G(Af ) ∩
(

ÔF (cd)−1ÔF

cdÔF ÔF

)
. Let K∗

c := G∗(Af ) ∩Kc.
(2) Let K0(c, N) := {γ ∈ Kc | γ ≡ ( ∗ ∗

0 ∗ ) mod N} and K∗
0 (c, N) :=

K0(c, N) ∩K∗
c .

(3) Let K1(c, N) := {γ ∈ Kc | γ ≡ ( ∗ ∗
0 1 ) mod N}. Let K∗

1 (c, N) :=
K1(c, N) ∩K∗

c .
(4) Let K(c, N) := {γ ∈ Kc | γ ≡ ( 1 0

0 1 ) mod N}. Let K∗(c, N) :=
K(c, N) ∩K∗

c .

5.1.1. Moduli problems for Hilbert–Blumenthal abelian varieties

Hilbert modular varieties arise as solutions to moduli problems of abelian
varieties with level structures.

Definition 5.3. — Let S be any scheme. Let c ⊆ OF be an ideal.
(1) A Hilbert–Blumenthal abelian variety (HBAV) over S is a triple

(A, ι, λ) consisting of an abelian variety A over S with real multi-
plication ι : OF ↪→ End(A) and a c-polarisation λ : A ⊗ c ∼−→ A∨,
such that ι is stable under the Rosati-involution.

(2) Given a HBAV (A, ι, λ), we refer to (A, ι) as the underlying abelian
variety with real multiplication (AVRM).

(3) A morphisms of HBAVs is an OF -linear morphisms f : A → A′ of
abelian S-schemes for which λ = f∨ ◦ λ′ ◦ f .

The Shimura varieties for G∗ represent moduli problems given by c-
polarised HBAVs with additional rigidifying level structure, which we shall
discuss next. In contrast, the Shimura varieties for G are only coarse moduli
spaces parametrising triples (A, ι, [λ]) where (A, ι) is an AVRM and [λ] =
{νλ|ν ∈ O×,+

F } is a polarisation class, plus level structure.

Definition 5.4 (Level structures forG). — Let (A, ι, λ) be a c-polarised
HBAV, let N ∈ Z⩾4 with (N, p) = 1 and let n ∈ Z⩾0.

(1) A µN -level structure is a closed immersion of OF -module schemes
d−1 ⊗Z µN ↪→ A[N ].
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(2) A Γ0(pn)-level structure is an OF -submodule scheme

Φn : C ↪→ A[pn]

that is étale locally isomorphic to OF /p
nOF . Via λ, this is equiva-

lent to giving an OF -submodule scheme

C ′ := λ(C ⊗ c) ↪→ A∨[pn].

In the context of Shimura varieties for G∗, we also call the same
data a Γ∗

0(pn)-level structure, since this level structure appears for
both G∗ and G.

(3) A Γ1(pn)-level structure is a closed immersion

Φn : OF /p
nOF ↪→ A∨[pn]

of OF -module schemes. Again, we also call this a Γ∗
1(pn)-level struc-

ture,
(4) A Γ(pn)-level structure is an isomorphism of OF -module schemes

αn : (OF /p
nOF )2 ∼−→ A∨[pn].

Remark 5.5. — Our definition of level structures at p is slightly non-
standard: usually one would define a Γ(pn)-structure to be an isomorphism
(OF /p

nOF )2 ∼−→ A[pn]. The reason we use the above modified version
parametrising A∨[pn] is that the Hodge–Tate morphism is of the form
TpA

∨ → ωA, so it is this level structure which gives rise at infinite level to
canonical sections of ωA, as required for the definition of modular forms.
The isomorphisms (OF /p

nOF )2 ∼−→ A[pn] would instead give sections of
ωA∨ . We note, however, that given a fixed c-polarisation λ as in the moduli
problem for G∗, a Γ(pn)-level structure is equivalent to an isomorphism

(OF /p
nOF )2 ⊗ c−1 αn⊗c−1

−−−−−→ A∨[pn]⊗ c−1 λ−1

−−→ A[pn].

In this case our notion is (non-canonically) isomorphic to the more stan-
dard definition.

We now define level structures for G∗. Recall that we have defined
Γ∗

0 = Γ0 and Γ∗
1 = Γ1-level structures to be the same, but at full level

we need a slightly different definition, analogous to [25, §1.21]. To motivate
this, observe that we can see G as a group preserving a pairing up to simil-
itude, whilst G∗ is the subgroup that preserves certain rational structures
within this. For the Shimura varieties associated to G∗, we therefore need
isomorphisms αn preserving a rational structure. We will now define the
OF -structure in which the rational structure should live, via an OF -linear
version of the Weil pairing.
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Definition 5.6. — Let (A, ι, λ) be a HBAV. The Weil pairing epn :
A[pn]×A∨[pn]→ µpn satisfies epn(ax, y) = epn(x, ay) for a ∈ OF (see [23,
Section 20]). The Weil pairing can therefore be extended to an OF -linear
version, by using the trace map to write d−1 ≃ Hom(OF ,Z), setting

ẽn : A[pn]×A∨[pn] −→ d−1 ⊗Z µpn ,(5.1)
x, y 7−→ (a 7→ epn(ax, y))

which is OF -bilinear and perfect. We call ẽn the OF -linearisation of epn .
Note epn = Tr ◦ ẽn.

We fix a non-degenerate OF -linear pairing on (OF /p
nOF )2 ⊗ c−1 ×

(OF /p
nOF )2 to compare to the Weil pairing. To this end, fix an isomor-

phism of free Op-modules of rank 1

β : c−1Op → d−1 ⊗Z Tpµp∞ =: d−1(1),

or equivalently an Op-module generator β ∈ cd−1 ⊗Z Tpµp∞ = cd−1(1).
Then we get a pairing ⟨−,−⟩β,n given by:

(OF /p
nOF )2 ⊗ c−1 × (OF /p

nOF )2

β×id−−−→ (d−1/pn)2 ⊗Z µpn × (OF /p
nOF )2 det−−→ d−1 ⊗Z µpn ,

where det : [(a, b), (c, d)] 7→ ad− bc. Given a Γ(pn)-level structure αn, this
fits into a diagram

(5.2)
(OF /p

nOF )2 ⊗ c−1 × (OF /p
nOF )2 d−1 ⊗Z µpn µpn

A[pn] × A∨[pn] d−1 ⊗Z µpn µpn .

λ−1◦(αn⊗id) αn

⟨−,−⟩β,n Tr

b∼

ẽn Tr

The two pairings into d−1 ⊗Z µpn will always be similar, that is there
always exists some b ∈ Aut(d−1 ⊗Z µpn) = (OF /p

nOF )× that makes the
above diagram commute.

Definition 5.7. — A Γ∗(pn)-level structure is a Γ(pn)-level structure
αn : (OF /p

n)2 ∼−→ A∨[pn] such that the similitude b in (5.2) lies in the
subgroup (Z/pnZ)× ⊆ (OF /p

nOF )×. Equivalently, it is an αn such that
after composing both pairings with the trace map – the final horizontal
maps of (5.2) – the two pairings into µpn remain similar via b ∈ Aut(µpn) =
(Z/pnZ)×.

Via its natural action on (OF /p
nOF )2, the group

G∗(Zp/p
nZ) ⊆ GL2(OF /p

nOF )
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acts on Γ∗(pn)-level structures by letting γ act as pre-composition with
γ∨ := det(γ)γ−1.

Remark 5.8. — We note that the dual ensures that we obtain a left-
action. One reason for us to use γ∨ rather than γ−1 to define the action is
Lemma 8.23 below.

In the limit n → ∞, the pairings ⟨−,−⟩β,n are compatible and define
a pairing ⟨−,−⟩β : O2

p ⊗ c−1 × O2
p → d−1(1). A Γ∗(p∞)-structure is a

compatible collection of Γ∗(pn)-level structures. Equivalently, this is an
isomorphism O2

p → TpA
∨ inducing a (rational) similitude of pairings on

O2
p ⊗ c−1 ×O2

p → TpA× TpA
∨ as above.(2)

5.1.2. Hilbert modular varieties as moduli spaces

We now recall the moduli problems that the Shimura varieties

ShK∗(G∗,S)

represent. Consider the functor

Sch /Z[1/N ] −→ Set,

sending a scheme S to the set of isomorphism classes of (A, ι, λ, µ), where
(A, ι, λ) is a c-polarised HBAV and µ is a µN -level structure which we call
the tame level. This functor is represented by the Hilbert moduli scheme
X(c, µN )Z[1/N ] over Z[1/N ]. We denote by X(c, µN )R the base change to
any Z[1/N ]-algebra R. Then there is an isomorphism

X(c, µN )C ∼= ShK∗
1 (c,N)(G∗,S).

Thus X(c, µN )Z[1/N ] is a model for ShK∗
1 (c,N)(G∗,S) over Z[1/N ]. We write

X := X(c, µN )L

In the case of G, the Shimura variety ShK1(c,N)(G,S) also has a canon-
ical model XG(c, µN )Z[1/N ], but this is only a coarse moduli space; for an
algebraically closed field C, and appropriate K, the C-points of XG(c, µN )C
parametrise isomorphism classes of tuples (A, ι, [λ], µN ), where [λ] is a po-
larisation class. We shall write XG := XG(c, µN )L.

(2) The above choices may not seem natural, but we remark that they do not affect our
construction for modular forms G, and are just an auxiliary choice in our construction
of G∗-forms. We also note that the Shimura varieties are of course completely canonical,
it is the moduli interpretation which requires the choice.
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We obtain the analogous results when we now add level structures at
p. Let Γ∗

p be one of Γ∗
0(pn), Γ∗

1(pn) or Γ∗(pn), and let K∗
p be the corre-

sponding subgroup K∗
0 (c, pn), K∗

1 (c, pn) or K∗(c, pn). Consider the func-
tor Sch /Q → Set sending a scheme S to the set of isomorphism classes
of (A, ι, λ, µ, α), where (A, ι, λ, µ) is as above, and α is a Γ∗

p-level struc-
ture. This functor is represented by a Hilbert moduli scheme X(c, µN ,Γ∗

p)Q
whose base-change to C is isomorphic to ShK∗

1 (c,N)∩K∗
p
(G∗,S). Here for

Γ∗
p = Γ∗(pn) we recall that our definition of this level structure depends

on our chosen isomorphism β, and the isomorphism is given by transform-
ing our notion of a Γ∗(pn)-level structure into the usual notion, by using
β, the complex unit root exp(2πi/pn) and the given polarisation to make
(OF /p

nOF )2 → A∨[pn] into an isomorphism d−1 ⊗ µpn × OF /p
nOF →

A[pn].
Again we abbreviate XΓ∗

p
:= X(c, µN ,Γ∗

p)L. By the natural forgetful
map between the moduli functors, we can summarise these Hilbert moduli
schemes in the tower of moduli schemes

XΓ∗(pn) −→ XΓ∗
1(pn) −→ XΓ∗

0(pn) −→ X.

Let X∗
Γ∗

p
denote the minimal compactification of XΓ∗

p
over L. For tame level,

we also have the minimal compactification X∗
OL

over OL. These can all be
defined via base-change from Q or Z[1/N ], respectively.

Finally in this subsection, we pass to p-adic geometric spaces:

Definition 5.9. — Let Γ∗
p be a level at p of the form Γ∗

0(pn), Γ∗
1(pn),

Γ∗(pn) for some n ∈ Z⩾0.

(1) Let X∗ → Spf(OL) be the p-adic completion of XOL
→ Spec(OL).

(2) We denote by XΓ∗
p

the adic analytification of XΓ∗
p
. We thus obtain

a tower of adic spaces

XΓ∗(pn) −→ XΓ∗
1(pn) −→ XΓ∗

0(pn) −→ X .

(3) In the case of tame level, we also have the compactification X∗ →
Spf(OL) obtained by completion of X∗

OL
. Its adic generic fibre co-

incides with the analytification X ∗ of X∗.

Remark 5.10. — Our notation suppresses the dependence on the polari-
sation ideal c (and on the tame level). If required, we will make this clear
by writing X∗

c,K∗
p
, X ∗

c,K∗
p
, etc.
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5.2. Hilbert modular varieties for G∗ at infinite level

Next, we recall the perfectoid Hilbert modular varieties for the group
G∗, following [28] and [7].

Let X ∗(ϵ) denote the admissible open subset of X ∗ defined by |H̃a| ⩾ |p|ϵ,
where H̃a denote any local lift of the (total) Hasse invariant. Now, for
n ∈ Z⩾0 take ϵ ∈ [0, (p−1)/pn)∩log |L|. Then by [2, Section 3.2] we have an
integral model X∗(ϵ) of X ∗(ϵ). Moreover, abelian schemes parametrised by
X ∗(ϵ) have a canonical subgroup of level n which agrees with the kernel of
the n-th iterated power of the Frobenius map modulo p1−ϵ. Following [28],
we let X ∗

Γ∗
0 (pn)(ϵ)a denote the anticanonical locus, parametrising subgroups

that intersect the canonical subgroup trivially. The forgetful maps then
extend to the minimal compactification and give the anticanonical tower

· · · −→ X ∗
Γ∗

0 (p2)(ϵ)a −→ X ∗
Γ∗

0 (p)(ϵ)a −→ X ∗(ϵ).

One then has the following analogue of the results in [28, §III]:

Theorem 5.11. — There are perfectoid spaces that are the tilde-limits
(1) XΓ∗

0 (p∞)(ϵ)a ∼ lim←−n
XΓ∗

0 (pn)(ϵ)a.
(2) XΓ∗

1 (p∞)(ϵ)a ∼ lim←−n
XΓ∗

1 (pn)(ϵ)a.
(3) XΓ∗(p∞)(ϵ)a ∼ lim←−n

XΓ∗(pn)(ϵ)a.
(4) XΓ∗(p∞) ∼ lim←−n

XΓ∗(pn).

They fit into the following tower of pro-étale torsors for the indicated profi-
nite groups

XΓ∗(p∞)(ϵ)a

XΓ∗
1(p∞)(ϵ)a

XΓ∗
0 (p∞)(ϵ)a

XΓ∗
0 (pn)(ϵ)a.

Γ∗
0 (p∞)

Γ∗
0 (pn) O×

p

where Γ∗
0 (pn) ⊆ G∗(Zp) is the subgroup of matrices that are upper trian-

gular mod pn, and Γ∗
0 (p∞) ⊆ G∗(Zp) is the subgroup of upper-triangular

matrices.

Part (4) is proved in [28, §Theorem IV.1.1] in the case that L is alge-
braically closed, and under the additional assumption that the embedding
G∗ ↪→ GSp2g sendsKp into a subgroup of GSp2g(Ẑ). In our case, this means
that c = 1. One can deduce the general case from this by first shrinking the
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level and then quotienting by a Galois action, which by [10, Theorem 1.4]
or [11, Theorem 5.8] is again a perfectoid space. Part (3) of the proposition
then follows by restriction, and one can modify the argument to also obtain
statements (1) and (2).

Alternatively, to prove Theorem 5.11 one can follow Scholze’s construc-
tion in the Siegel case [28, §III], as we shall now demonstrate: here we
note that since we ignore the boundary, we do not need to worry about
ramification. One first shows (cf [28, Theorem III.2.15]):

Lemma 5.12. — Division by the canonical subgroup defines a natural
map

ϕ : X∗(p−1ϵ)→ X∗(ϵ)
that reduces to the relative Frobenius mod p1−δ where δ = p+1

p ϵ.

Proof. — We argue as in [28, Theorem III.2.15]. Let A→ X(p−1ϵ) be the
universal abelian scheme. Then the abelian scheme A′ := A/H1 defines a
morphism ϕ : X(p−1ϵ)→ X. Locally on any affine open Spf(R) ⊆ X defined
over Zp, this corresponds to a morphism ϕ : R→ R⟨T ⟩/(T H̃a−pp−1ϵ). Since
H1 ≡ kerF mod p1−p−1ϵ, we have A′ ≡ A(p) mod p1−p−1ϵ. Consequently, ϕ
reduces mod p1−p−1ϵ to the relative Frobenius on R. Here R(p) = R since
R is already defined over Zp. In particular, since Ha(A(p)) = Ha(A)p, we
have ϕ(H̃a) ≡ H̃a

p
mod p1−p−1ϵ. Consequently,

T pϕ(H̃a) ≡ T pH̃a
p

= pϵ mod p1−p−1ϵ

inside R⟨T ⟩/(T H̃a− pp−1ϵ). We can therefore find u ∈ R such that

T pϕ(H̃a) = pϵ + p1−p−1ϵu = pϵ(1 + p1−δu).

Sending T 7→ ϕ(T ) := T p(1+p1−δu)−1 therefore defines a unique extension

ϕ : R⟨T ⟩/(T H̃a− pϵ)→ R⟨T ⟩/(T H̃a− pp−1ϵ)

giving the desired lift to a map

(5.3) ϕ : X(p−1ϵ)→ X(ϵ).

Since ϕ mod p1−ϵ is given by the Frobenius on R, and by sending T 7→
T p(1+p1−δu)−1 ≡ T p mod p1−δ, this map reduces to the relative Frobenius
mod p1−δ as desired.

It remains to extend this to the minimal compactification. Since the
boundary is already contained in the ordinary locus, it suffices to consider
the case of ϵ = 0, and thus δ = 0. It moreover suffices to consider the case
of L = Qcyc

p ; the general case follows by base-change.
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Since X∗
Fp

is normal (see [8, Theorem 4.3] and the discussion in [21,
1.8.1]), and the cusps are of codimension ⩾ 2, we can now apply Scholze’s
version of Hartog’s extension principle, [28, Lemma III.2.10] to see that ϕ
extends uniquely over the boundary to a map

ϕ : X∗(0)→ X∗(0)

which still reduces to the relative Frobenius mod p. Glueing this to (5.3)
proves the lemma. □

Proof of Theorem 5.11. — We can argue as in [28, Corollary III.2.19].
For every n ∈ N we have by Lemma 5.12 a morphism

ϕ : X∗(p−n−1ϵ)→ X∗(p−nϵ)

that reduces to the relative Frobenius mod p1− p+1
pn+1 ϵ and in particular mod

p1−δ where δ := p+1
p ϵ. Consequently,

X∗(p−∞ϵ) := lim←−
ϕ

X∗(p−nϵ)

is a flat formal scheme for which the relative Frobenius mod p1−δ is an
isomorphism. It follows that the generic fibre X ∗(p−∞ϵ) is perfectoid and
moreover, by [30, Proposition 2.4.2], on the generic fibres we have

X ∗(p−∞ϵ) ∼ lim←−
ϕ

X ∗(p−nϵ).

By [30, Proposition 2.4.3], we can now restrict to the open modular curve
to deduce that there is a perfectoid tilde-limit X (p−∞ϵ) ∼ lim←−ϕ

X (p−nϵ).
Since the Atkin–Lehner isomorphisms ALn define an isomorphism of inverse
systems of the anticanonical tower to the system

· · · −→ X (p−n−1ϵ) ϕ−−→ X (p−nϵ) −→ . . .

we equivalently have XΓ∗
0 (p∞)(ϵ)a∼ lim←−n

XΓ∗
0 (pn)(ϵ)a, as desired. This proves

part (1).
To deduce parts (2) and (3), we use that the forgetful morphism

XΓ∗
1(pn)(ϵ)a → XΓ∗

0 (pn)(ϵ)a

is finite étale. By pulling these back from varying n, we obtain a tower of
finite étale morphisms

XΓ∗
0 (p∞)(ϵ)a XΓ∗

0 (p∞)∩Γ∗
1(pn)(ϵ)a . . .

XΓ∗
0 (pn)(ϵ)a XΓ∗

1(pn)(ϵ)a
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Since perfectoid tilde-limits of inverse systems of perfectoid spaces with
affinoid transition maps exist, we obtain a perfectoid tilde-limit

XΓ∗
1(p∞)(ϵ)a ∼ lim←−

n

XΓ∗
0 (p∞)∩Γ∗

1(pn)(ϵ)a.

This proves part (2). Part (3) follows similarly using that XΓ∗
1(pn) → XΓ∗

0 (pn)
is finite étale.

Since the morphisms

XΓ∗
1(pn)(ϵ)a → XΓ∗

0 (pn)(ϵ)a

XΓ∗(pn)(ϵ)a → XΓ∗
0 (p)(ϵ)a

XΓ∗(pn)(ϵ)a → XΓ∗
0 (pn)(ϵ)a

are finite étale torsors for the groups

(OF /p
nOF )×

{( ∗ ∗
c ∗ ) ∈ G∗(Z/pnZ) | c ∈ pOF /p

nOF }
{( ∗ ∗

0 ∗ ) ∈ G∗(Z/pnZ)}

respectively, the last statement follows from the fact that perfectoid tilde-
limits commute with fibre products.

It remains to prove (4), which we deduce from (3) using the G∗(Qp)-
action at infinite level recalled in Section 8.4.1: like in [28, §III.3], it suffices
to prove that on the level of topological spaces we have

G∗(Qp)|XΓ(p∞)(ϵ)a| = |XΓ(p∞)| := |lim←−
n

XΓ(pn)|.

But as it suffices to prove this after passing to a smaller Kp and any field ex-
tension of C, we can reduce to the case considered in [28, Theorem IV.1.1].
This finishes the proof of the theorem. □

Remark 5.13. — As in the elliptic case, we have a moduli description of
the (C,C+)-points of XΓ∗(p∞) for any perfectoid extension C of L: They are
in functorial one-to-one correspondence with isomorphism classes of tuples
(A, ι, λ, µN , α) where (A, ι, λ) is an ϵ-nearly ordinary c-polarised HBAV over
C with tame level µN , together with a Γ∗(p∞)-level structure α : O2

p
∼−→

TpA
∨. The subspace XΓ∗

0(p)(ϵ)a represents those tuples for which α(1, 0)
generates a subgroup of A∨[p] that is different to the canonical subgroup.

Definition 5.14. — The G∗(Z/pnZ)-actions on XΓ∗(pn) in the limit
give rise to a G∗(Zp)-action on XΓ∗(p∞) which in terms of moduli can be
described as follows: the action of γ ∈ G∗(Zp) ⊆ GL2(Op) sends any HBAV
(A, ι, λ, α : O2

p → TpA
∨) to (A, ι, λ, α ◦ γ∨).
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5.3. The Hodge–Tate period morphism and its image

For any adic space S over Spa(L), we denote by ResOF |Z S the functor
on affinoid (L,OL)-algebras given by (R,R+) 7→ S(RF , R

+
F ), where RF :=

R ⊗Q F and R+
F is the integral closure of R+ ⊗Z OF in RF . If S = Xan

is the analytification of a variety X over L for which the usual restriction
of scalars ResOF |ZX is representable by a variety, we have ResOF |Z S =
(ResOF |ZX)an. For all spaces we need below, this shows that ResOF |Z S is
representable by an adic space.

For example, ResOF |Z P1 is the adic analytification of the finite type
scheme representing the functor that sends any L-algebra R to the set
P1(R ⊗Z OF ). This is the flag variety of G∗. By [7, Theorem 2.1.3], there
is a Hodge–Tate period map of the form

πHT : XΓ∗(p∞) → ResOF |Z P1.

Remark 5.15. — On points, this map has the following moduli inter-
pretation: let C/L be a complete algebraically closed field and let A a
c-polarised HBAV over C. Then the Hodge–Tate filtration is a short exact
sequence of C ⊗Zp

Op-modules

0 −→ Lie(A∨)(1) −→ TpA
∨ ⊗Zp

C
HTA−−−→ ωA −→ 0

Now, a point x ∈ XΓ∗(p∞)(C,C+) gives rise to a trivialisation O2
p

∼−→ TpA
∨

which we can use to consider the above as a filtration of O2
p ⊗Zp

C of
rank 1. This defines the desired point πHT(x) ∈ ResOF |Z P1(C,C+) =
P1(Op ⊗Zp

C).

For the definition of Hilbert modular forms, it will be important for
us to bound the image of the anticanonical locus under the Hodge–Tate
period map. More precisely, our goal is to compare this to a family of
neighbourhoods of P1(Op) ⊆ ResOF |Z P1 which we shall now define.

Definition 5.16. — Recall from Definition 3.11 that we had defined
adic groups Ga, Gm, Ĝa, Ĝm.

(1) By applying the functor ResOF |Z−, we obtain adic spaces

ResOF |Z Gm and ResOF |Z Ga,

and open subspaces ResOF |Z Ĝm, ResOF |Z Ĝa.
(2) Given a point x ∈ ResOF |Z Ga, and an element z ∈ L with |z| = r,

we shall call the open subspace Br(x) := x + zResOF |Z Ĝa ⊆ Ga

the ball of radius r around x.

ANNALES DE L’INSTITUT FOURIER



PERFECTOID HILBERT MODULAR FORMS 43

Definition 5.17. — The subspace P1(Op) = ResOF |Z P1(Zp) is a profi-
nite set, and therefore has a geometric incarnation as a morphism P1(Op)→
ResOF |Z P1, where as usual we also write P1(Op) for the associated profinite
perfectoid space.

We embedded Ga ↪→ P1 via z 7→ (z : 1). By applying ResOF |Z, this
defines an open subspace ResOF |Z Ga ↪→ ResOF |Z P1. We also have Op =:
B0(Op : 1) ↪→ P1(Op) via a 7→ (a : 1) for a ∈ Op. For r ∈ (0, 1] ∩ |L|,
we define the open neighbourhood Br(Op : 1) ⊆ ResOF |Z Ĝa ⊆ ResOF |Z P1

of B0(Op : 1) to be the union of all balls of radius r around points in
Op ↪→ Ĝa ⊆ ResOF |Z P1. We make analogous definitions for open subspaces
Br(O×

p : 1) and Br(1 : pOp) of ResOF |Z P1.

Proposition 5.18. — Let 1 > r ⩾ 0. Then for any m ∈ Z⩾1 with
1/pm ⩽ r and any 0 ⩽ ϵ ⩽ 1/2pm, or ϵ ⩽ 1/3pm if p = 3, or ϵ ⩽ 1/4pm if
p = 2, we have:

(1) πHT(XΓ∗(p∞)(ϵ)c) ⊆ Br(1 : pOp),
(2) πHT(XΓ∗(p∞)(ϵ)a) ⊆ Br(Op : 1).

For the proof, we need the following technical input on the Hodge–Tate
morphism:

Proposition 5.19. — Let K be a completely valued extension of Qp

with algebraic closure K. For any v ∈ |R|, let (pv) := {x ∈ K | |x| ⩽ v}.
Let D be a p-divisible group over OK of dimension d and height h. Let
0 ⩽ ϵ be such that the Hodge ideal is Hdg(D) = (pϵ). Let n ∈ Z⩾0 be such
that ϵ ⩽ 1/2pn−1 if p ⩾ 5, or ϵ ⩽ 1/3pn−1 if p = 3, or ϵ ⩽ 1/4pn−1 if p = 2.
Let δ := ϵpn−1

p−1 < 1.
(1) D has canonical subgroups 1 ⊆ H1 ⊆ · · · ⊆ Hm · · · ⊆ Hn ⊆ D of

level m, finite locally free of rank pmd, for all m ⩽ n. They reduce
to the kernel of Frobenius on D mod (p1−δ).

(2) The map ωD[pn] → ωHn induces an isomorphism ωD[pn]/(pn−δ) =
ωHn

/(pn−δ).
(3) The Hodge–Tate map Hn(K)∨⊗ZOK → ωHn

⊗OK
OK has cokernel

of degree ϵ/(p− 1).

Proof. — (1) is a special case of [4, Corollary A.2, parts 1,2]. For (2),
in the case of p > 2, this is [1, Proposition 3.2.2]. For the case of p = 2,
we can in the proof replace [1, Theorem 3.1.1] by [4, Cor. A.2.4]. Finally,
for p > 2, (3) is again [1, Proposition 3.2.2]. The case of (3) for p = 2
follows from [4, Proposition A.3], which applies by 2 ∈ Hdg(D)4 and which
says that det coker = detωHn

/HdgT for an ideal HdgT ⊆ OK satisfying
HdgTp−1 = Hdg(D) = (pϵ). □
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Proof of Proposition 5.18. — It suffices to check this on (C,C+)-points
for C algebraically closed.

Let z ∈ XΓ(p∞)(ϵ)(C,C+) correspond to a c-polarised HBAV A/C with
extra data and an isomorphism α : O2

p → TpA
∨. Let A∨

0 be the semi-abelian
scheme over OC associated to A∨ and let V be the kernel of the integral
Hodge–Tate-map; then there is a left exact sequence

0→ V → TpA
∨
0 ⊗OC

HT−−→ ωA0

and by definition, V ⊆ TpA
∨
0 ⊗OC is saturated. Via α, it thus gives a point

(a : b) ∈ P1(Op⊗Zp
OC) ∼= P1(OC)Σ with a = (av)v, b = (bv)v ∈ OΣ

C , which
is the image of z under πHT.

Let n := m + 1. Upon reduction mod pn, we get an injection V/pn →
A∨

0 [pn]⊗Z OC which fits into a (not necessarily exact) complex

0→ V/pn → A∨
0 [pn]⊗OC → ωA0[pn].

The Hodge ideals of the p-divisible groups of A and A∨ are the same
(e.g. [1, Theorem 3.1.1]); thus by Proposition 5.19(1) and our choice of ϵ,
there is a canonical subgroup Hn ⊆ A∨

0 [pn] of rank pn. Modulo a certain
power of p, the position of V/pn coincides with that of Hn inside A∨

0 [pn]:

Claim. — Let x = n − pn

p−1ϵ. Then inside A∨
0 [pn] ⊗ OC/p

x, we have
V/px = Hn ⊗OC/p

x.

To see that this proves the proposition, note that

Hn ⊗Z OC ⊆ A∨
0 [pn]⊗Z OC

has Zp/p
nZp-coordinates. Moreover, the case that

z ∈ XΓ(p∞)(ϵ)c(C,C+)

is equivalent to the coordinates of Hn being of the form

(1 : 0) ∈ P1(Z/pZp)Σ

after reducing modulo p. The claim then implies that b/a ∈ pOp + pxOΣ
C ,

and hence πHT(z) = (a : b) ∈ B|px|(1 : pOp). Since x > n − 1, we have
|px| = 1/px ⩽ 1/pn−1 ⩽ r. This implies πHT(z) ∈ Br(1 : pOp), as desired.

The proof of (2) follows in the same way, using that having

z ∈ XΓ(p∞)(ϵ)a(C,C+)

is equivalent to having the coordinates of Hn being of the form (c : 1) ∈
P1(Z/pZp)Σ for some c ∈ Z/pZp, and therefore

(5.4) πHT(z) = (a : b) ∈ B|px|(Op : 1).

ANNALES DE L’INSTITUT FOURIER



PERFECTOID HILBERT MODULAR FORMS 45

Proof of claim. — Let y := n − δ = n − pn−1
p−1 ϵ. By Proposition 5.19(2),

modulo py the Hodge–Tate map can be described as

HTy : A∨
0 [pn]⊗OC/p

y → ωA∨
0 [pn] ⊗OC/p

y = ωHn
⊗OC/p

y.

Let now N := ker HTy and Q := coker HTy and consider the exact sequence

0→ N → A∨
0 [pn]⊗Zp

OC/p
y HTy−−−→ ωHn

/py → Q→ 0

By Proposition 5.19(3), the OC-module Q = coker HTy has degree ∂ :=
ϵ/(p − 1). Using additivity of degrees of OC-modules in extensions, we
calculate that

degN = deg(A0[pn]⊗Zp
OC/p

y)− degωHn
/py + degQ

= 2gy − gy + ∂ = gy + ∂.

Observe now that M1 := V/py and M2 := Hn ⊗Zp OC/p
y are both free

OC/p
y-submodules of rank g of A0[pn] ⊗Zp

OC/p
y that are contained in

N . Since N is py-torsion and of degree gy + ∂, we conclude from this that
N is of the form (OC/p

y)g ⊕ T as an OC-module, where T is p∂-torsion.
Second, this shows that inside p∂N , the modules p∂M1 and p∂M2 coincide.
Thus the same is true inside A∨

0 [pn] ⊗ p∂OC/p
y. Via multiplication by

p∂ : OC/p
y−∂ ∼−→ p∂OC/p

y, this shows that the images of M1 and M2
in OC/p

y−∂ coincide. Since by definition x = y − ∂, this gives the desired
statement, proving the claim, and hence the proposition. □

Definition 5.20. — We write z for the restriction of πHT to the open
subspaces

z : XΓ∗(p∞)(ϵ)a → Br(Op : 1) ⊆ ResOF |Z Ĝa ⊆ ResOF |Z P1.

Remark 5.21. — If F is split in L, we also consider for any v : F → L

the projection

zv : XΓ∗(p∞)(ϵ)a → ResOF |Z Ĝa = ĜΣ
a

πv−→ Ĝa.

By the universal property of Ĝa, we can interpret each zv as a function in
O+(XΓ∗(p∞)(ϵ)a). However, we caution that for general L, the morphism z

admits no such canonical interpretation.

5.4. The canonical differential

Definition 5.22. — We define a G∗-equivariant vector bundle

ResOF |ZO(1)
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of rank g on ResOF |Z P1 as follows: recall that on P1 we have the line bundle
O(1) whose total space π : T (1)→ P1 is therefore a Gm-bundle with fibres
A1. It moreover has a natural GL2-equivariant action. By applying the
functor ResOF |Z, we see that ResOF |Z π : ResOF |Z T (1) → ResOF |Z P1 is
a ResOF |Z Gm-bundle with fibres ResOF |Z A1. As any choice of Z-basis of
OF induces an isomorphism ResOF |Z A1 ∼= Ag, we conclude that ResOF |Z π

is a vector bundle of rank g. It moreover receives a natural equivariant
ResOF |Z GL2 = G-action (and hence a G∗-action) by functoriality.

Remark 5.23. — The vector bundle ResOF |Z T (1) has the following mod-
uli interpretation: for any Zp-algebra R, the R-points of ResOF |Z P1 can be
seen to parametrise quotients R2⊗ZOF → Q of rank 1 as R⊗ZOF -modules.
Then ResOF |Z T (1)→ ResOF |Z P1 represents the choice of a point of Q.

Definition 5.24. — Let ωA be the conormal sheaf of the universal
abelian variety A → X , an invertible OX ⊗Z OF -module. Its total space
T (ωA) → X is a ResOF |Z Gm-bundle. As before, if q : XKp → X is the
forgetful map with Kp any of our wild levels, we let ωKp

:= q∗ωA.

As a special case of [7, Theorem 2.1.3. (2)], we then have the following
result which forms the basis of our definition of Hilbert modular forms.

Proposition 5.25. — There is a ResOF |Z Gm-equivariant isomorphism

ωΓ∗(p∞) = π∗
HT ResOF |ZO(1).

Recall that in section 4 we have defined a canonical section s : P1 → T (1)
of O(1), non-vanishing away from ∞. We shall now change notation and
denote this by sell : A1 → T (1). We now set:

Definition 5.26. — Let

s := ResOF |Z sell : ResOF |Z P1 → ResOF |Z T (1).

This is a section of the vector bundle ResOF |ZO(1), non-vanishing over
ResOF |Z A1 ⊆ ResOF |Z P1.

Remark 5.27. — From the moduli description in the case of g = 1, we
see that in the moduli interpretation, s sends a quotient R2 ⊗Z OF → Q

to the image of (1, 0)⊗ 1.

Remark 5.28. — If F is split in L, we have OF ⊗Z L =
∏

v∈Σ L where
we interpret Σ as the set HomZ(OF , L) and where the morphism into the
v-component comes from the natural map OF ⊗ZL

v⊗id−−−→ L. Consequently,
we then get a canonical splitting ResOF |Z P1 = (P1)Σ. Similarly, we see on
total spaces that the vector bundle ResOF |ZO(1) becomes the direct sum
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ResOF |ZO(1) =
⊕

v∈Σ π
∗
vO(1) of the pullbacks of O(1) on P1 along the

projections πv : (P1)Σ → P1. The section s then decomposes into partial
sections s =

∑
v:F ↪→L sv where sv := π∗

vsell.

Lemma 5.29. — For any γ =
(

a b
c d

)
∈ Γ∗

0(p), let (cz + d) be the map
ResOF |Z Ĝa

·c−→ pResOF |Z Ĝa
+d−−→ ResOF |Z Ĝm. Then we have γ∗s = (cz +

d)s, in the sense that the following diagram commutes:

ResOF |Z Ĝm × ResOF |Z T (1) ResOF |Z T (1) ResOF |Z T (1)

ResOF |Z Ĝa ResOF |Z Ĝa.

m γ

γ
(cz+d)×s

γ∗s s

Proof. — It suffices to show that this diagram commutes after extending
L, so we may without loss of generality assume that F is split in L. Then
by Remark 5.28, ResOF |Z P1 = (P1)Σ is canonically split, as is the bundle
ResOF |Z T (1) =

⊕
ΣO(1), and the diagram becomes a product over Σ of

the diagram in Lemma 3.19. □

Definition 5.30. — Let s := π∗
HTs. This is a section of

π∗
HT ResOF |ZO(1) = ωΓ∗(p∞).

Write T (ωΓ∗(p∞))→ X for the total space of ωΓ∗(p∞); then we may regard
s as a morphism

s : XΓ∗(p∞) → T (ωΓ∗(p∞)).

As in the elliptic case, one checks that:

Lemma 5.31. — For any γ =
(

a b
c d

)
∈ Γ∗

0(p), we write cz + d for the
composition

cz + d : XΓ∗(p∞)(ϵ)a
z−→ ResOF |Z Ĝa

z 7→cz+d−−−−−→ ResOF |Z Ĝm.

Then we have γ∗s = (cz + d)s, in the sense that the following diagram
commutes:

XΓ∗(p∞)(ϵ)a XΓ∗(p∞)(ϵ)a

ResOF |Z Ĝm × T (ωA) T (ωA)

γ

(cz+d)×s s

m

Proof. — This follows from Lemma 5.29 by pullback along πHT. □

The crucial property of s is given by the following moduli interpretation.
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Lemma 5.32. — Let x ∈ XΓ∗(p∞)(C,C+) be a point corresponding to
a HBAV A equipped with a Γ∗(p∞)-level α : O2

p
∼−→ TpA

∨ and extra
structures. Then via π∗

HT ResOF |ZO(1) = ωΓ∗(p∞),

s(x) = HTA(α(1, 0)) ∈ ωA.

Proof. — In terms of the total spaces

T (ωΓ∗(p∞))→ XΓ∗(p∞) and ResOF |Z T (1)→ ResOF |Z P1,

by Remark 5.15, the isomorphism ωΓ∗(p∞) = π∗
HT ResOF |ZO(1) is defined

in the fibre of x by sending

(A,α, η ∈ ωA) 7→ (O2
p ⊗Zp C

α−→ TpA
∨ ⊗Zp C

HT−−→ ωA, η ∈ ωA).

Since s, by Remark 5.27, sends a quotient x : O2
p ⊗Zp C → Q to the image

of (1, 0)⊗ 1 under x, it follows that s sends x to the image of (1, 0) under
HT ◦α. □

6. Geometric overconvergent Hilbert modular forms

6.1. Weights and analytic continuation

Next we define the relevant weight spaces for G∗ and G, and set up some
notational conventions as to how they are related.

Definition 6.1. — Let T := ResOF |Z Gm, then define:
(i) W := Spf(ZpJT(Zp)× Z×

p K)an
η × L, the weight space for G.

(ii) W∗ := Spf(ZpJT(Zp)K)an
η × L, the weight space for G∗.

An L-point (w, t) ∈ W(L) is a pair of maps w : T(Zp) → L× and t :
Z×

p → L× (and analogously, an L-point of W∗ is just a map T(Zp)→ L×).
Following [3], we let ρ :W →W∗ be the morphism associated to the map
T(Zp)→ T(Zp)×Z×

p defined by x 7→ (x2, NF/Q(x)). For (w, t) ∈ W(Cp) we
write κ = w2·(t−1◦NF/Q) for its image inW∗(Cp), noting that κ(x)·w(x−2)
factors through some power of the norm.

Definition 6.2. — In order to be able to treat single weights and fam-
ilies in a uniform way, we define a weight to be a morphism κ : U → W or
κ : U → W∗ for G and G∗ respectively, where U is a smooth rigid space over
some perfectoid field extension of L. We say that κ is bounded if its image
in W or W∗ is contained in some affinoid open subspace. This generalises
Definition 3.1.
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By unravelling the definitions, a weight κ : U → W∗ determines a mor-
phism

κ : O×
p × U → Ĝm,

which in an abuse of notation we also denote κ. The weight κ is then
bounded if and only if

|Tκ| := sup
(t,x)∈O×

p ×U
|κ(t, x)− 1| < 1

Similarly, for G we have associated to any κ : U → W a pair of maps
(wκ, tκ) of the form wκ : O×

p × U → Ĝm and tκ : Z×
p × U → Ĝm. By

composing with ρ, we get an associated weight ρ(wκ, tκ) = w2
κ·(t−1

κ ◦NF/Q)
for G∗, which we use to see any weight for G as a weight for G∗.

Recall from Definition 5.17 that we embed Op as a profinite set into
ResOF |Z P1 by sending z 7→ (z : 1). Given a bounded weight, one can then
always find an analytic continuation of κ to a neighbourhood of O×

p in
ResOF |Z P1. More precisely:

Proposition 6.3. — Let κ : U → W∗ be a bounded smooth weight.
Let r0 = 1 if p > 2 and r0 = 3 if p = 2. Let rκ := |p|r0 |Tκ|, then for
rκ ⩾ r > 0, the morphism κ extends uniquely to a morphism

κan : Br(O×
p : 1)× U → Ĝm.

Proof. — We first prove that such a bound exists. In case that F is split
in L, this is completely analogous to Proposition 3.12. In general, we first
pass to a finite Galois extension L′|L, with group H and in which F is
split, to obtain a morphism Br(O×

p : 1) ×L L
′ × U → Ĝm. Passing to the

quotient by H, the result follows.
The precise value of rκ follows from [2, Proposition 2.8]. □

Definition 6.4. — Let κ : U → W∗ be a smooth bounded weight. Let
ϵdef

κ > 0 be such that XΓ(p∞)(ϵdef
κ )a ⊆ Brκ

(Op : 1), see Proposition 5.18
for a precise bound on ϵdef

κ . Then for any c ∈ pOp, d ∈ O×
p , we define the

invertible function κ(cz + d) ∈ O+(XU,Γ∗(p∞)(ϵ)a)× to be the composition

XU,Γ∗(p∞)(ϵ)a
πHT×id−−−−−→ Br(Op : 1)× U (cz+d)×id−−−−−−−→ Br(O×

p : 1)× U κan

−−→ Ĝm,

where XU,Γ∗(p∞)(ϵ)a := XΓ∗(p∞)(ϵ)a ×L U .

TOME 0 (0), FASCICULE 0



50 Christopher BIRKBECK, Ben HEUER & Chris WILLIAMS

6.2. Definition of overconvergent Hilbert modular forms

Definition 6.5. — For κ : U → W∗ a bounded smooth weight, 0 ⩽ ϵ ⩽
ϵdef

κ and n ∈ Z⩾1 ∪ {∞}, we define a sheaf ωκ
n on XU,Γ∗

0 (pn)(ϵ)a by setting

ωκ
n(U) := {f ∈ q∗OX∞(U) | γ∗f = κ−1(cz + d)f, ∀γ =

(
a b
c d

)
∈ Γ∗

0 (pn)},

where X∞ = XU,Γ∗(p∞)(ϵ)a and q : XU,Γ∗(p∞)(ϵ)a → XU,Γ∗
0 (pn)(ϵ)a is the

projection. We similarly get the integral subsheaf

ωκ,+
n (U) := {f ∈ q∗O+

X∞
(U) | γ∗f = κ−1(cz + d)f, ∀γ =

(
a b
c d

)
∈ Γ∗

0 (pn)},

by using the O+-sheaf instead. For n = 0, as before, via the Atkin–Lehner
isomorphism AL : XU,Γ∗

0 (p)(pϵ)a
∼−→ XU (ϵ) we define the sheaves ωκ :=

ωκ
0 := AL∗ ω

κ
1 and ωκ,+ := ωκ

0 := AL∗ ω
κ,+
1 on XU (ϵ) thus giving a sheaf on

the tame level Hilbert modular variety. If needed we will add a subscript
G∗ to make clear these are sheaves for G∗.

Exactly like in Proposition 3.24, we see:

Proposition 6.6. — ωκ
n is an analytic line bundle on XU (ϵ).

We will also see this in Theorem 7.14, which moreover shows that ωκ,+
n

is an invertible O+-modules.
Proof. — Exactly as in the elliptic case, [14, Corollary 4.1] shows that

the analyticity overconverges if we can prove it for ϵ = 0. By the same
argument, we may restrict to the good reduction locus, as this is Zariski-
dense in XU . Over this, we again have an Igusa tower with a pro-étale
formal model, and like in the elliptic case, [14, Proposition 4.8] gives the
desired statement. □

Remark 6.7. — We caution the reader that ω1
n is not the same as ωΓ∗

0(pn)
from Definition 5.24, as the latter is not an invertible sheaf, when [F : Q] >
1. Instead, we have ω1

n = detωΓ∗(pn).

Definition 6.8. — Let κ : U → W∗ be a bounded smooth weight,
0 ⩽ ϵ ⩽ ϵdef

κ and n ∈ Z⩾0 ∪ {∞}. We define the space of c-polarised
overconvergent Hilbert modular forms for G∗ of weight κ, wild level Γ∗

0 (pn),
tame level µN and radius of overconvergence ϵ to be the L-vector space

MG∗

κ (Γ∗
0 (pn), µN , ϵ, c) := H0(Xc,U,Γ∗

0 (pn),µN
(ϵ)a, ω

κ
G∗,n).

Similarly, we define the space of integral overconvergent Hilbert modular
forms for G∗ to be

MG∗,+
κ (Γ∗

0 (pn), µN , ϵ, c) := H0(Xc,U,Γ∗
0 (pn),µN

(ϵ)a, ω
κ,+
G∗,n).
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Remark 6.9. — By the Koecher principle (see [2, Proposition 8.4]) or [3,
Theorem 5.5.1], ωκ

c extends uniquely to a line bundle on a suitable toroidal
compactification X tor(c). Let ∂ denote the boundary divisor, then one can
define the subspaces of cusp forms as sections of the subsheaf ωκ

c (−∂). Via
Theorem 7.14 below, these agrees with the spaces of cusp forms defined
in [3]. In particular, they will be projective Banach modules with surjective
specialisation maps (see [2, Theorem 3.16]).

7. Comparison to Andreatta–Iovita–Pilloni’s geometric
Hilbert modular forms

In this section, we will show that our spaces of overconvergent Hilbert
modular forms for G∗ coincide with those defined in [2].

7.1. The Andreatta–Iovita–Pilloni-torsor

Like in the elliptic case, Andreatta–Iovita–Pilloni give a construction of
integral sheaves of Hilbert modular forms on the Hilbert modular variety as
a formal scheme over OF . In order to define such a sheaf on the full Hilbert
modular variety over OF , the definition of the Pilloni-torsor in the Hilbert
case is not just the straightforward adaptation of the elliptic case (the issue
appears away from the Rapoport locus, i.e. on the closed subscheme con-
centrated in the special fibre where the abelian scheme does not satisfy the
Rapoport condition). Instead, Andreatta–Iovita–Pilloni in [2, §4.1] explain
how this definition needs to be modified by endowing the sheaf ωA with an
integral structure ωint (denoted by F op. cit.) which, when p is ramified in
F , is different to the canonical one. We briefly recall the construction, with
the minor modification that as before we present it in the analytic setting
over L rather than in the excellent Noetherian setting of [2, §4.1].

Definition 7.1.
(1) For any m ∈ Z⩾1, let ϵcan

m := 1/pm+1 as before. Then [4, Corol-
lary A.2] implies that, for 0 ⩽ ϵ ⩽ ϵcan

m , the universal semi-abelian
variety A on X (ϵ) admits a canonical subgroup Hm ⊆ A of order
pm, étale locally isomorphic to OF /p

mOF .
(2) We denote by XIg(pm)(ϵ) → X (ϵ) the finite étale (OF /p

mOF )×-
torsor which relatively represents isomorphisms OF /p

mOF → H∨
m

of adic spaces with OF -module structure
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Let ωIg(pm) be the conormal sheaf of the pullback of A to XIg(pm)(ϵ). It
has an integral subsheaf ω+

Ig(pm) obtained from its formal model on X∗(ϵ).
The canonical subgroup Hm ⊆ A, considered as a finite flat group over
XIg(pm)(ϵ) induces a map π : ω+

Ig(pm) → ω+
Hm

. As in Lemma 4.3, we see:

Lemma 7.2 ([4, Corollary A.4]). — We have a right exact sequence of
O+

XIg(pm)(ϵ)-modules

Im · ω+
Ig(pm) → ω+

Ig(pm)
π−→ ω+

Hm
→ 0, where Im := pm Hdg− pm−1

p−1 .

The Hodge–Tate map now defines a morphism of sheaves of OF -modules
over XIg(pm)(ϵ)

ψ : OF /p
mOF → H∨

m
HT−−→ ω+

Hm
→ ω+

Ig(pm)/Im.

Definition 7.3. — Let ωint
Ig(pm) be the OF ⊗Z O+

XIg(pm)(ϵ)-submodule
of ω+

Ig(pm) defined as the preimage of the OF -submodule of ω+
Ig(pm)/Im

generated by ψ(1).

The sheaf ωint
Ig(pm) gives a second integral structure on ωIg(pm). If p is

ramified in OF , it is better behaved than ω+
Ig(pm), because it always satisfies

the analogue of the Rapoport condition:

Proposition 7.4 ([2, Proposition 4.1]).
(1) The sheaf ωint

Ig(pm) is a locally free OF ⊗Z O+
XIg(pm)(ϵ)-module on

XIg(pm)(ϵ).
(2) The cokernel of ωint

Ig(pm) ⊆ ω
+
Ig(pm) is annihilated by Hdg1/(p−1). We

thus have an injection

ωint
Ig(pm)/Im ↪→ ω+

Ig(pm)/Im

whose image is precisely the OF⊗ZO+
XIg(pm)(ϵ)-submodule generated

by ψ(1).
(3) Let I ′

m := pm Hdg− pm

p−1 ⊇ Im. Sending 1 7→ ψ(1) induces an isomor-
phism

HT′ : OF ⊗Z O+
XIg(pm)(ϵ)/I

′
m

∼−→ ωint
Ig(pm)/I

′
m.

Definition 7.5. — The Andreatta–Iovita–Pilloni-torsor is the subsheaf
of ωint

Ig(pm) defined by

Fm := {w ∈ ωint
Ig(pm) |w ≡ HT′(1) mod I ′

m}.

We denote the analytic total space of Fm ⊆ ω+
Ig(pn) over XIg(pm)(ϵ) by

Fm(ϵ)→ XIg(pm)(ϵ).
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By Proposition 7.4(3), this is a torsor in the analytic topology for the
subgroup

1 + I ′
m ResOF | Z Ĝa |X (ϵ)

of ResOF | Z Ĝm |X (ϵ), where ResOF | Z Ĝa|X (ϵ) is the pullback of
ResOF | Z Ĝa → Spa(L) to X (ϵ), and similarly for ResOF |Z Ĝm|X (ϵ). In par-
ticular, the composition Fm(ϵ)→ X (ϵ) is a torsor in the étale topology for
the subgroup

Bm := O×
p (1 + I ′

m ResOF | Z Ĝa|X (ϵ)) ⊆ ResOF | Z Ĝm|X (ϵ).

This also shows that the natural map Fm(ϵ) → T (ω) into the total space
of ω over X is an open immersion. Finally, we note that since pϵ ∈ Hdg,
we have for x := m− ϵpm/(p− 1) that

(7.1) O×
p (1 + px ResOF | Z Ĝa)|X (ϵ) ⊆ Bm.

The following corollary relates Fm to the definition in the elliptic case:

Corollary 7.6. — Let w ∈ ω+
Ig(pm) be any lift of ψ(1) ∈ ω+

Hm
under

ω+
Ig(pm) → ω+

Hm
. Then w ∈ Fm.

Proof. — By Lemma 7.2, for w to be a lift of ψ(1) means that w and
the image of ψ(1) in ω+

Ig(pm)/Im agree. Thus w ∈ ωint
Ig(pm). By the injective

morphism from Proposition 7.4(2), this shows that ψ(1) and w also agree
in ωint

Ig(pm)/Im and thus in its quotient ωint
Ig(pm)/I

′
m. This means w ∈ Fm. □

Definition 7.7. — Let κ : U → W∗ be a bounded smooth weight.
Recall that we may regard κ as a morphism O×

p ×U → Ĝm. As before, we
let |δκ| := max(|p|, |Tκ|). Let r = 3 if p > 2 and r = 5 if p = 2. Let ϵκ > 0
be implicitly defined by |p|ϵκ = |δκ|1/pr+1 . We note that ϵκ ⩽ ϵdef

κ .

Definition 7.8. — For any k ∈ Z⩾1, let W∗
k be the open in weight

space denoted by WF,[pk−1,pk] in [2, §2], and let W∗
0 be the open denoted

by WF,[0,1]. Explicitly, for any k ∈ Z⩾0, we have W∗
k :=W∗(|δκ|p

k

⩽ |p| ⩽
|δκ|p

k−1). Then W∗ = ∪k∈Z⩾0W∗
k .

If κ : U → W∗ is a bounded smooth weight, we let Uk := κ−1(W∗
k ), then

U = ∪k∈Z⩾0Uk.

Definition 7.9. — Let κ : U → W∗ be a smooth bounded weight and
let 0 ⩽ ϵ ⩽ ϵκ. For each k ∈ Z⩾0, let m = k + r (this is the variable “n”
in [2]), so that ϵκ ⩽ ϵcan

m . The sheaf ωκ
AIP on X (ϵ) × Uk of modular forms

of weight κ, as defined in [2], is given locally as

ωκ
AIP | Uk

:=OFm(ϵ)×Uk
[κ−1] =

{
f ∈ OFm(ϵ)×Uk

∣∣ γ∗f =κ−1(γ)f, ∀γ ∈Bm

}
.
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As usual, we define an integral subspace ωκ,+
AIP |Uk

by using O+ instead.

Proposition 7.10 ([2, Proposition 4.3]). — Let κ : U → W∗ be a
smooth bounded weight and let 0 ⩽ ϵ ⩽ ϵκ. Then the sheaves ωκ,+

AIP |Uk
can

be canonically identified on intersections X (ϵ)× (Uk ∩ Uk+1), so that they
glue to give an O+-module ωκ,+

AIP on XU (ϵ) = X (ϵ)×U . This O+-module is
invertible. Similarly, we can glue the ωκ

AIP |Uk
to get a line bundle ωκ

AIP on
XU (ϵ).

Proof. — We first need to explain how our variable ϵ is related to the
radius variable r used in [2, §3]. The sheaf “wn,r,I” constructed in [2, §4]
for I = [pk−1, pk] lives on a formal scheme “Xr,[pk−1,pk]” over Zp. The
base-change to L of the generic fibre of this formal scheme is the subspace
of X × W∗

k cut out by the condition |Hapr+1
| ⩾ |δκ|. Since we have set

|p|ϵκ = |δκ|1/pr+1 , this is contained in X (ϵ) ×W∗
k . By [2, Proposition 4.3],

the sheaf “wn,r,I” is a line bundle. It now follows from our definition that
the sheaf ωκ,+

AIP |Uk
is the pullback of “wn,r,I” along the morphism of ringed

spaces (X (ϵ)× Uk,O+)→ Xr,k. In particular, ωκ,+
AIP |Uk

is invertible.
By [2, Proposition 4.7], there is a canonical isomorphism between this

sheaf and the one defined using m + 1 instead of m. This shows that the
ωκ,+

AIP |Uk
glue on intersections Uk∩Uk+1. Since ωκ,+

AIP |Uk
is invertible on each

open X (ϵ)× Uk, it is clearly also invertible on XU (ϵ). □

7.2. The comparison morphism

Recall from Definition 5.30 that over XΓ(p∞), the conormal sheaf ωΓ∗(p∞)
has a canonical section s that we may regard as a morphism into the total
space s : X ∗

Γ(p∞) → T (ωΓ∗(p∞))→ T (ω). Let us simply write T (ϵ)→ X (ϵ)
for the restriction of T (ω) to X (ϵ), then s restricts to

s : XΓ∗(p∞)(ϵ)a → T (ϵ).

The comparison of our Hilbert modular forms to the ones defined by [2]
relies on the following proposition saying that s compares XΓ∗(p∞)(ϵ)a to
the Andreatta–Iovita–Pilloni-torsor.

Proposition 7.11. — Let 0 ⩽ ϵ ⩽ ϵcan
m . Then s : XΓ∗(p∞)(ϵ)a → T (ϵ)

factors through the subspace

s : XΓ∗(p∞)(ϵ)a → Fm(ϵ) ⊂ T (ϵ)

defined by the Andreatta–Iovita–Pilloni torsor (see Definition 7.5).

ANNALES DE L’INSTITUT FOURIER



PERFECTOID HILBERT MODULAR FORMS 55

Proof. — It suffices to check that for C any complete algebraically closed
extension of L, the (C,C+)-points that the image of s are contained in the
open subspace Fm(ϵ) ⊆ T (ϵ).

There is a natural map φ : XΓ∗(p∞)(ϵ)a → XIg(pm)(ϵ) defined by sending a
point valued in some stably uniform adic ring (R,R+) corresponding to an
abelian variety A and a trivialisation α : O2

p
∼−→ TpA

∨ to the trivialisation
of H∨

m(A) given by the composition

Op/p
mOp

(1,0)−−−→ (Op/p
mOp)2 α mod pm

−−−−−−→ A∨[pm]→ H∨
m

with the dual of the inclusion Hn → A[pm], where as usual we identify
A[pm]∨ = A∨[pm] via the Weil pairing. By functoriality of the Hodge–Tate
map we then have a commutative diagram

O2
p TpA

∨ ω+
A

ψ : Op/p
mOp H∨

m ω+
Hm

.

α

(1,0) mod pn

HT

HT

For (R,R+) = (C,C+), we then have s(x) = HT ◦α(1, 0) by Lemma 5.32.
This shows that s(x) is a lift of ψ(1) ∈ ω+

Hm
. By Corollary 7.6, this implies

that s(x) ∈ Fm(ϵ)(C,C+) as desired. □

Lemma 7.12. — The following diagram commutes

Γ∗
0 (p)×XΓ∗(p∞)(ϵ)a XΓ∗(p∞)(ϵ)a XΓ∗

0 (p∞)(ϵ)a

Bm ×Fm(ϵ) Fm(ϵ) X (ϵ).

m

(cz+d)×s s q

m

Proof. — We first note that the morphism XΓ∗(p∞)(ϵ)a → Bm is well-
defined: for this we use that by (7.1), we have O×

p (1+px ResOF |Z Ĝa) |X (ϵ)⊆
Bm. Moreover, by (5.4), the map z already restricts to XΓ∗(p∞)(ϵ)a →
B|px|(Op : 1) = O×

p (1 + px ResOF |Z Ĝa). The left square now commutes by
Lemma 5.31. Commutativity of the right square is clear. □

Combining this with the morphism un : XΓ∗(p∞)(pnϵ)a → XΓ∗(p∞)(ϵ)a

defined by the action of the matrix
(

pn 0
0 1

)
, we obtain from the lemma a

commutative diagram

(7.2)
Γ∗

0 (p)×XΓ∗(p∞)(pnϵ)a XΓ∗(p∞)(pnϵ)a XΓ∗
0 (pn)(pnϵ)a

Bm ×Fm(ϵ) Fm(ϵ) X (ϵ)

m

(cz+d)×s̃ s̃ ALn∼

m
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where s̃ = s◦un. From this, we finally deduce the following Hilbert analogue
of Theorem 4.8.

Definition 7.13.
(1) For any n ∈ Z⩾0 we set

ωκ,+
AIP,n := ALn∗ ωκ,+

AIP

where ALn : XΓ∗
0 (pn)(pnϵ)a

∼−→ X (ϵ) is the Atkin–Lehner isomor-
phism. By [2, Theorem 6.7.3], the restriction of ωκ,+

AIP,n to XΓ0(pn)(ϵ)a

equals q∗
nω

κ,+
AIP, where qn : XΓ∗

0 (pn)(ϵ)a → X (ϵ) is the forgetful map.
(2) We then set ωκ,+

AIP,∞ := q∗ωκ,+
AIP where q : XΓ∗

0 (p∞)(ϵ)a → X (ϵ) is the
forgetful map.

Theorem 7.14. — Let κ : U → W∗ be a bounded smooth weight. Let
0 ⩽ ϵ ⩽ ϵκ. Then for any n ∈ Z⩾0 ∪ {∞}, the map s̃∗ induces a Hecke-
equivariant isomorphism of O+

XU,Γ0(pn)(ϵ)a
-modules

s̃∗ : ωκ,+
n

∼−→ ωκ,+
AIP,n.

In particular, ωκ,+
n is an invertible O+

XU,Γ0(pn)(ϵ)a
-module, and ωκ ∼= ωκ

AIP.

Proof. — With the preparations from this and the last section, we can
argue as in the elliptic case. It suffices to prove this locally on W∗. We
may therefore without loss of generality assume that κ has image in W∗

k

for some k ∈ Z⩾1 and set m := k + r.
We first check that s induces a map ωκ,+

AIP,n → ωκ,+
n . This is because for

any section f of ωκ,+
AIP,n and for any γ ∈ Γ∗

0 (pn), diagram (7.2) implies that
the following diagram commutes:

XU,Γ∗(p∞)(pnϵ)a Bm ×Fm(ϵ) Gm × Aan

XU,Γ∗(p∞)(pnϵ)a Fm(ϵ) Aan,

γ

(cz+d)×s̃

m

κ−1×f

m

s̃ f

As before, this together with ωκ,+
AIP,n being invertible proves the theorem

for n ∈ Z⩾1 since

(O+
XU,Γ∗(p∞)(ϵ)a

)Γ∗
0 (pn) = O+

XU,Γ∗
0 (pn)(ϵ)a

by Lemma 3.7. The case of n =∞ follows by the same argument from the
diagram in Lemma 7.12. The case of n = 0 follows from ωκ,+ = AL∗ ωκ,+

1 =
ωκ,+

AIP,1. Finally, the isomorphism ωκ = ωκ
AIP is induced from the integral

one by inverting p.
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We postpone the proof of Hecke equivariance to Section 10 where we
discuss the Hecke action. □

8. Perfectoid Hilbert modular varieties for G

We now pass from modular forms for G∗ to those for G, the so-called
arithmetic Hilbert modular forms. This requires a closer study of the per-
fectoid modular varieties attached to G, and their relation to the perfectoid
modular varieties of G∗, which is the subject of this section.

Notation 8.1. — Recall that in Section 5.1.2 we have defined Hilbert
modular varieties X,XG over L which are base-changes of models for the
Shimura varieties attached to G∗ and G respectively. In doing so, we had
fixed a choice of tame level µN as well as polarisation ideal c and omit these
notation. We denote by X ,XG the adic analytifications of X,XG.

We begin by recalling that the action of OF is a source of isomorphisms
of HBAV:

Lemma 8.2. — Let S be any ring and let (A, ι, λ, µ, α) be a HBAV over
S where µ is a µN -structure and α is either a Γ0(pn), Γ1(pn) or Γ(pn)-
level structure. Then for any η ∈ O×

F , the map ι(η) : A → A induces an
isomorphism of HBAV

η : (A, ι, η2λ, η−1µN , ηα) ∼−→ (A, ι, λ, µN , α).

Here we write ηα as a shorthand notation for the composition of the OF -
linear map α with multiplication by η on either side of α. Similarly for η2λ

and η−1µN .

Proof. — A morphism of HBAVs (B, ι′, λ′, µ′, α′) → (A, ι, λ, µ, α) is an
OF -linear isogeny φ : B → A making the following diagrams commute:

B∨ A∨ d−1 ⊗ µN d−1 ⊗ µN (O/pn)2 (O/pn)2

B ⊗ c A⊗ c B A B∨[pn] A∨[pn].

φ∨

µ′
N

µN α′ α

φ

λ′ λ

φ φ∨

Setting B = A, and φ = [η], we see that λ′ = [η]∨ ◦ λ ◦ [η] = η2λ, where in
the second step we have used that [η]∨◦λ = λ◦[η] since ι is stable under the
Rosati involution. The second diagram implies µ′

N = [η]−1 ◦ µN = η−1µN .
The third diagram implies α′ = [η]∨ ◦ α = ηα. □
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Definition 8.3. — The polarisation action of O×,+
F on X is given by

letting η ∈ O×,+
F act via

η ·pol (A, ι, λ, µN ) = (A, ι, ηλ, µN ).

As a consequence of Lemma 8.2 we see:

Proposition 8.4 ([2, Lemma 8.1]). — This action ofO×,+
F on X factors

through the finite group ∆(N) := O×,+
F /(1+NOF )×2, and makes X → XG

into a finite étale ∆(N)-torsor.

8.1. The anti-canonical tower for G

Our next goal is to construct from the anti-canonical tower of G∗ the
anti-canonical tower for G. For this, we move on from schemes to adic
spaces.

Recall that, for either G or G∗, the datum of a Γ0(pn)-level structure is
a the choice of an OF -submodule C ⊆ A[pn] etale locally isomorphic to
OF /p

nOF . If necessary we will denote this level structure by Γ0(pn) and
Γ∗

0 (pn) on G and G∗ respectively. Similarly, on both G∗ and G the notions
of anticanonical level structures coincide. We thus obtain commutative di-
agrams

XΓ∗
0 (pn) XG,Γ0(pn) XΓ∗

0 (pn)(ϵ)a XG,Γ0(pn)(ϵ)a

X XG X (ϵ) XG(ϵ)

Lemma 8.5. — The above diagrams are both Cartesian. In particular,
the morphism of adic spaces XΓ∗

0 (pn)(ϵ)a → XG,Γ0(pn)(ϵ)a is a finite étale
∆(N)-torsor.

Proof. — The points of XΓ∗
0 (pn) correspond to HBAV (A, ι, λ, µN , D)

where D ⊆ A[pn] is a subgroup étale locally isomorphic to O/pn. For
any η ∈ O×

F , as D is an OF -module, we have ηD = D, and hence the
isomorphism of HBAVs induced by η from Lemma 8.2 identifies the tuples
(A, ι, η2λ, η−1 · µN , D) and (A, ι, λ, µN , D) in XΓ∗

0 (pn). Thus, exactly as in
Proposition 8.4, the polarisation action factors through ∆(N). It follows
on the level of relative moduli descriptions that the top map in the above
diagram is a ∆(N)-torsor. This shows that the left diagram is Cartesian.

The case of the right hand side follows after adic analytification and
restriction. □
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By the following lemma, this allows us to pass to tilde-limits in the
diagram on the right:

Lemma 8.6. — Let ∆ be a finite group. Let (Xn → Yn)n∈N be an in-
verse system of étale ∆-torsors of adic spaces over L. Suppose there is a
perfectoid tilde-limit X∞ ∼ lim←−Xn. We moreover impose the technical con-
dition that there is a cover of Y0 by open affinoid spaces V0, with affinoid
pullbacks Un := Spa(Rn, R

+
n ) to Xn, such that R∞ is affinoid perfectoid

and lim−→n
Rn → R∞ has dense image. Then X∞/∆ =: Y∞ is perfectoid,

X∞ → Y∞ is an étale ∆-torsor, and Y∞ ∼ lim←−Yn.

This is a special case of the statement of [31, Corollary 2.3.5]. We focus on
this special case since it suffices for our applications, and has the following
simple proof:

Proof. — Since the conclusions are local, by restricting to V0 we are
immediately reduced to the case that all Xn = Spa(Rn, R

+
n ) are affinoid,

X∞ = Spa(R∞, R
+
∞) is affinoid perfectoid and lim−→Rn → R∞ has dense

image. Then Yn = Spa(R∆
n , R

+,∆
n ). It follows from [10, Theorem 1.4] that

Y∞ := X∞/∆ = Spa(R∆
∞, R

+,∆
∞ ) is perfectoid. Note that the assumptions

are satisfied because we work over the perfectoid field L over Qp.
We claim that lim−→n

R∆
n → R∆

∞ has dense image. To see this, let r ∈ R∆
∞

and let r′ := r/|∆|. Then we can find r′
n ∈ Rn such that r′

n → r′ inside
R∞. Let now rn :=

∑
g∈∆ gr′

n, then clearly rn ∈ R∆
n . Since the ∆-action is

continuous, and r ∈ R∆
∞, we then have rn →

∑
g∈∆ gr′ = 1

|∆|
∑

g∈∆ gr = r,
as desired. This shows that Y∞ ∼ lim←−Yn, since the condition on topological
spaces follows from |Y∞| = |X∞|/∆.

That X∞ → Y∞ is a ∆-torsor now follows from the Cartesian diagrams
expressing that Xn → Yn is a ∆-torsor, by commuting product and perfec-
toid tilde-limit. □

Proposition 8.7. — There exists a perfectoid tilde-limit

XG,Γ0(p∞)(ϵ)a ∼ lim←−XG,Γ0(pn)(ϵ)a.

Moreover, the natural map XΓ∗
0 (p∞)(ϵ)a → XG,Γ0(p∞)(ϵ)a is a finite étale

∆(N)-torsor.

Proof. — We apply Lemma 8.6 to the system of ∆(N)-torsors

XΓ0(pn)(ϵ)a → XG,Γ0(pn)(ϵ)a.

To see that the technical condition is satisfied, we note that by construc-
tion in Proposition 5.11, and by [30, Proposition 2.4.2], any affine open
formal subscheme of the formal model X∗(ϵ) of X ∗(ϵ) pulls back to opens
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Spa(Rn, R
+
n ) ⊆ XΓ∗

0 (pn)(ϵ)a for all n ∈ Z⩾0 ∪ {∞} such that R∞ is affinoid
perfectoid and lim−→Rn → R∞ has dense image. Thus also for any rational
subset Spa(R0, R

+
0 )( T

s ), the map lim−→Rn⟨T
s ⟩ → R∞⟨T

s ⟩ has dense image.
We conclude that any affinoid cover of XG that is a rational refinement of
an affine formal cover of X∗

G(ϵ) := X∗(ϵ)/∆(N) is of the desired form. □

8.2. Wild full level structures

As before, we ultimately want to work with the full level structures Γ(pn)
for G defined in Section 5.1.1, since this will provide the appropriate univer-
sal covering spaces we need to define overconvergent Hilbert modular forms.
In this case, though, there are differences between Γ(pn) and Γ∗(pn)-level
structures which introduce new subtleties.

There is a space XG,Γ(pn) → XG,Γ0(p) which relatively represents a choice
of an isomorphism αn : (O/pn)2 → A∨[pn] such that αn(1, 0) generates the
corresponding subgroup for the Γ0(pn)-level, and there is a natural map
XΓ∗(pn) → XG,Γ(pn). However, this map is not a torsor, as it is not surjective.
In addition, O×,+

F no longer admits a polarisation action on XΓ∗(pn), due
to the restrictive additional conditions on Γ∗(pn)-level structures: indeed,
changing λ changes the isomorphism b in diagram (5.2), and in general true
this will not result in a similitude of pairings.

8.2.1. ‘Hybrid’ full level structures

Bearing all of the above in mind, it is convenient to also introduce an
intermediate space XΓ(pn) → X , relatively representing a choice of Γ(pn)-
level structure αn over the Shimura variety X for G∗. This fits into a
diagram

(8.1)
XΓ∗(pn) XΓ(pn) XG,Γ(pn)

X X XG.

β1 β2

The polarisation action (8.3) now gives a well-defined action on this ‘hy-
brid’ space XΓ(pn), since the Γ(pn)-level structures require no Weil pairing
compatibility.

We also have a second natural left-action on this space:

Definition 8.8. — The level structure (LS) action of G(Z/pnZ) =
GL2(OF /p

nOF ) on XΓ(pn) is given by letting γ ∈ G(Z/pnZ) act as

γ ·LS (A, ι, λ, µN , αn) 7→ (A, ι, λ, µN , αn ◦ γ∨), γ∨ = det(γ)γ−1.
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8.2.2. Components and the OF -linear Weil pairing

To understand the map XΓ∗(pn) → XG,Γ(pn), we begin by analysing β1.
For this, we require a description of the components of XΓ(pn) through the
OF -linear Weil pairing ẽn (Definition 5.6): Suppose (A, ι, λ) is a c-HBAV
over S with Γ(pn)-level structure αn : (OF /p

nOF )2 ∼−→ A∨[pn]. Then ẽn

induces an OF -linear isomorphism

OF /p
nOF ⊗ c−1 = (OF /p

nOF )2 ∧ (OF /p
nOF ⊗ c−1)2(8.2)

αn∧(αn⊗c−1)−−−−−−−−−→ A∨[pn] ∧A∨[pn]⊗ c−1(8.3)
(1,λ−1⊗id)−−−−−−−→ A∨[pn] ∧A[pn] ẽn−→ d−1 ⊗Z µpn .

Equivalently, by tensoring with c, this can be described as a generator of
the OF -module scheme cd−1⊗Zµpn . We denote the subscheme of generators
by (cd−1 ⊗Z µpn)×.

In the universal situation over XΓ(pn), we conclude that the Weil pairing
gives rise to a map

(8.4) en,β : XΓ(pn) → (cd−1 ⊗Z µpn)× β−1

−−→ (OF /p
nOF )×.

where we recall that β ∈ cd−1 ⊗Z µpn is the isomorphism chosen in Defini-
tion 5.6.

Similarly for G we get a map en : XG,Γ(pn) → (cd−1 ⊗Z µpn)×. Next, we
record two equivariance properties of the linearised Weil pairing.

Lemma 8.9.

(1) For γ ∈ G(Z/pnZ), the action on XΓ(pn) fits into a commutative
diagram

XΓ(pn) (OF /p
nOF )×

XΓ(pn) (OF /p
nOF )×.

γ

en,β

det(γ)
en,β

(2) For η ∈ O×,+
F , the polarisation action on XΓ(pn) fits into a commu-

tative diagram

XΓ(pn) (OF /p
nOF )×

XΓ(pn) (OF /p
nOF )×.

η

en,β

η−1

en,β
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Proof. — Recall that γ acts by sending αn to αn◦γ∨. From (8.2) it is then
clear that en,β ◦γ = det(γ∨)en,β . The first part then follows from det γ∨ =
det γ. The second part holds since replacing λ → η ◦ λ multiplies (8.2) by
η−1 due to the λ−1 appearing. □

For any c ∈ (OF /p
nOF )×, the fibre of en,β over c gives a component

of XΓ(pn). This will be a connected component, as we shall discuss in the
next section. Recall that by Definition 5.4, the Γ∗(pn)-level depends on
β ∈ cd−1(1). We can now describe the space XΓ∗(pn) as follows:

Lemma 8.10. — The morphism XΓ∗(pn) → XΓ(pn) fits into a Cartesian
diagram

XΓ∗(pn) (Z/pnZ)×

XΓ(pn) (OF /p
nOF )×

en,β

en,β

Proof. — We can check this on the level of schemes, where we can check
on the level of moduli functors. Let (A, ι, λ, µN , α) be a HBAV over S
corresponding to a point x ∈ XΓ∗(pn)(S). Then by (5.1), we recover the
Weil pairing epn from ẽn,β by composing with Tr. The level structure α
therefore composes with λ−1 and ẽn,β to a pairing

(OF /p
nOF )2 × (OF /p

nOF )2 ⊗ c−1 → d−1 ⊗ µpn
Tr−→ µpn .

By definition, α is a Γ∗
c (pn)-level structure if and only if this pairing is

similar to the pairing

(OF /p
nOF )2 × (OF /p

nOF )2 ⊗ c−1 id ⊗β−−−→ (OF /p
nOF )2 × (d−1 ⊗Z µpn)2

Tr−→ µpn

After evaluation at 1 in the second factor, and tensoring with c, these
each induce isomorphisms φ1, φ2 : OF /p

nOF → cd−1 ⊗ µpn . After com-
posing with β−1, the map φ2 derived from the second pairing has image
in (Z/pnZ)×. The above pairings are now similar if and only if their ratio
φ1/φ

−1
2 is in Aut(µpn) ⊆ Aut(cd−1⊗µpn), i.e. given by multiplication with

(Z/pnZ)× ⊆ (OF /p
nOF )×. Thus α is a Γ∗(pn)-level structure if and only

if en,β(x) is in (Z/pnZ)×. □

8.2.3. The map β1

Lems. 8.9 and 8.10 immediately imply that XΓ(pn) is a disjoint union of
copies of XΓ∗(pn). More precisely, they imply the following corollary.
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Corollary 8.11. — Let (OF /p
nOF )× act on XΓ(pn) by letting η act

via the level structure action of the matrix
(

η 0
0 1

)
. The restriction of the

action map to
(OF /p

nOF )× ×XΓ∗(pn) → XΓ(pn)

is then a (Z/pnZ)×-torsor for the antidiagonal action and induces an iso-
morphism [

(OF /p
nOF )× ×XΓ∗(pn)

]
/(Z/pnZ)× → XΓ(pn).

8.2.4. The map β2

Next, we study the second map from (8.1), namely β2 : XΓ(pn) →
XG,Γ(pn).

Lemma 8.12. — For any η ∈ (1 + NOF )×, set γ :=
( η 0

0 η

)
. Then the

polarisation action of η2 ∈ O×,+
F on XΓ(pn) coincides with the LS action on

XΓ(pn) by γ−1. In particular, if η ∈ (1 + pnNOF )×, then the polarisation
action of η2 on XΓ(pn) is trivial.

Proof. — If η ∈ (1+NOF )×, then η−1 ·µN = µN . We note that acting on
the polarisation via η2 and then composing with the LS action by γ = γ∨

sends an HBAV (A, ι, λ, µN , α) to (A, ι, η2λ, µN , ηα) which is isomorphic
to (A, ι, λ, µN , α) by Lemma 8.2, giving the first statement. The second is
immediate, since if η ∈ (1 + pnNOF )×, then η acts trivially on the level
structure. □

Definition 8.13. — For the tame levels we consider, the space X is
connected, but this is no longer true of the spaces XΓ(pn) and XG,Γ(pn) for
n ⩾ 1. We denote by X 0

Γ(pn) and X 0
G,Γ(pn) the respective identity compo-

nents.

Definition 8.14. — Let Un be the cokernel in the exact sequence

1→ (1 + pnOF )×,+ → O×,+
F → (O/pnO)× → Un → 1.

Lemma 8.15. — Via the Weil pairing, the sets of connected components
are:

(1) π0(Xc,Γ(pn)) = (OF /p
nOF )×,

(2) π0(XG,c,Γ(pn)) = Un.

Proof. — It suffices to prove this for L = Qcyc
p , and we may choose

a Q-linear embedding L ↪→ C. The C-points of Xc,Γ∗(pn) then admit a
description as G∗(Q)+\[G∗(Af )×S]/K∗, where K∗ := K∗(pn)∩K∗

1 (N) ⊂
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G∗(Af ) is an open compact level subgroup. For ℓ ∤ p, our choice of tame level
ensures that det(K∗

ℓ ) = Z×
ℓ , whilst K∗

p = Γ∗(pn) has determinant 1+pnZp.
By strong approximation, the determinant thus induces an isomorphism
from the component group

G∗(Q)+\G∗(Af )/K∗ ∼−→ Ẑ×/(1 + pnẐ)× ∼= (Z/pnZ)×.

Thus
π0(Xc,Γ∗(pn)(C)) = (Z/pnZ)×,

which implies
π0(Xc,Γ(pn)(C)) = (OF /p

nOF )×

by Lemma 8.11. Similarly, for G we have K := K(pn) ∩K1(N) ⊂ G(Af )
and G(Q)+\G(Af )/K equals

GL2(OF )+\GL2(Ẑ⊗OF )/K(pn) ∩K1(N)

which is isomorphic to

O×,+
F \(Ẑ⊗OF )×/(1 + pnẐ⊗OF )×.

This is the strict ray class group of conductor pn, which is an extension of
Cl+(OF ) by Un. After taking the fibre of [c] ∈ Cl+(OF ), this equals Un as
desired. □

Lemma 8.16.
(1) The map β2 : XΓ(pn) → XG,Γ(pn) is a torsor for

∆(pnN) := O×,+
F /(1 + pnNOF )×2.

(2) The map β2 : X 0
Γ(pn) → X

0
G,Γ(pn) is a torsor for

∆n(N) := (1 + pnOF )×,+/(1 + pnNOF )×2.

Proof. — Setup and notation like in the last proof, it suffices to see this
for XΓ(pn)(C) → XG,Γ(pn)(C). We first see from Lemma 8.15 that β2 on
connected components is the quotient

(OF /p
nOF )× → (OF /p

nOF )×/(O×,+
F /(1 + pnOF )×,+).

It therefore suffices to prove that on identity components,

X0
Γ∗(pn)(C) = X0

Γ(pn)(C)→ X0
G,Γ(pn)(C)

is a torsor for the group ∆n(N) := (1 + pnOF )×,+/(1 + pnNOF )×,2. This
map is the cover

(8.5) G∗\Hg → G\Hg

ANNALES DE L’INSTITUT FOURIER



PERFECTOID HILBERT MODULAR FORMS 65

where G∗ = K∗ ∩G∗(Q)+ where K∗ = K∗(pn) ∩K∗
1 (N), and analogously

for G. Recall that the kernel for the action of G(Q)+ on Hg are the scalar
matrices. Denoting by PG the quotient of G by scalar matrices in G. We
note that the only scalar matrix in G∗ is the identity. We therefore have a
commutative diagram with exact rows and columns

1 (1 + pnNOF )× (1 + pnNOF )×,2 1

1 G∗ G (1 + pnOF )×,+ 1

1 G∗ PG ∆n(N) 1.

x7→x2

det

The bottom row tells us that the Galois group of the cover (8.5) is ∆n(N),
as desired. □

8.3. Torsors over tame level

To define overconvergent modular forms, we also need to understand the
torsor structures obtained as we vary the wild level.

Definition 8.17. — Let m ⩽ n.
(1) Let Γ0(pm, pn) ⊂ G(Z/pnZ) and Γ∗

0 (pm, pn) ⊂ G∗(Z/pnZ) denote
the subgroups of matrices of the form ( ∗ ∗

c ∗ ) with pm|c.
(2) Let Zn := (1 +NOF )×/(1 + pnNOF )×, embedded diagonally into

Γ0(pm, pn).
(3) Let P Γ0(pm, pn) := Γ0(pm, pn)/Zn be the quotient group.

By Lems. 8.9 and 8.10, the level structure action of Γ(pn) on XΓ(pn)
restricts to an action of Γ∗(pn) on XΓ∗(pn). We then have:

Proposition 8.18. — Via actions on the level structure:
(1) The map XΓ∗(pn) → XΓ∗

0 (pm) is a finite étale torsor for the group
Γ∗

0 (pm, pn).
(2) The map XΓ(pn) → XΓ∗

0 (pm) is a finite étale torsor for the group
Γ0(pm, pn).

(3) The map XG,Γ(pn) → XG,Γ0(pm) is a finite étale torsor for the group
P Γ0(pm, pn).

Proof. — Parts (1) and (2) follow from the moduli description. Part (3)
follows from Lemma 8.16.1 and Lemma 8.19 below: the proof only uses the
left hand side of (8.6), so this is not circular. □
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8.3.1. The diagonal torsor

We now have a commutative diagram of towers of finite étale torsors

(8.6)
XΓ(pn) XG,Γ(pn)

XΓ0(pm) XG,Γ0(pm)

Γ0(pm,pn)

∆(pnN)

P Γ0(pm,pn)

∆(N)

Next, we describe the diagonal map in the above diagram, which should be
a torsor for some group E(pm, pn) which can be described as an extension
in two ways:

0→ Γ0(pm, pn)→ E(pm, pn)→ ∆(N)→ 0,

0→ ∆(pnN)→ E(pm, pn)→ P Γ0(pm, pn)→ 0.
It transpires that both extensions are non-split, reflecting our earlier ob-
servation that there is no polarisation action by ∆(N) on XΓ(pn).

In order to describe E(pm, pn) and its action, recall from Lemma 8.12
that for any η ∈ (1 +NOF )×, the polarisation action of η2 coincides with
the action on the level structure via

(
η−1 0

0 η−1

)
. We conclude that the

combined action of Γ0(pm, pn)×O×,+
F is such that the subgroup

(1 +NOF )× ↪→ Γ0(pm, pn)×O×,+
F , η 7→

(( η 0
0 η

)
, η2)

acts trivially on XΓ(pn). We therefore obtain an action of the quotient

E(p, pn) :=
(
Γ0(pm, pn)×O×,+

F

)
/(1 +NOF )×.

We now obtain a short exact sequences as above: first, we clearly have a
sequence

0→ Γ0(pm, pn) γ 7→(γ,1)−−−−−→ E(pm, pn) (γ,x) 7→x−−−−−→ ∆(N)→ 0.

Second, projection to the first factor induces a natural map E(pm, pn) →
P Γ0(pm, pn). From the snake lemma diagram

0 (1 + pnNOF )×

0 (1 +NOF )× (1 +NOF )× 0

0 O×,+
F O×,+

F × Γ0(pm, pn) Γ0(pm, pn) 0

O×,+
F E(pm, pn) P Γ0(pm, pn) 0

(x 7→ x2)
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we see the kernel of this map is ∆(pnN) embedded into E(pm, pn) via
x 7→ (1, x), from which the second exact sequence follows. This shows:

Lemma 8.19. — The map XΓ(pn) → XG,Γ0(pm) is an étale torsor for the
group E(pm, pn).

Proof. — By definition in diagram (8.6), this map is the composition
of an étale Γ0(pm, pn)-torsor with an étale ∆(N)-torsor. It is therefore
finite étale. From the fact that E(pm, pn) acts on XΓ(pn) → XG,Γ0(pm),
it is clear that the diagram defining the torsor property commutes. One
then verifies that the diagram is Cartesian by decomposing it into smaller
Cartesian diagrams induced from the torsor properties of XΓ(pn) → XΓ0(pm)
and XΓ0(pm) → XG,Γ0(pm). □

8.4. Passing to infinite level

The following proposition is proven over Cp by Xu Shen [31, Theo-
rem 3.3.9] in the much greater generality of Shimura varieties of abelian
type. In our special case, the version over Qcyc

p is easy to deduce from our
preparations. We first note:

Lemma 8.20. — The group

∆∞(N) = lim←−
n

∆n(N)

is finite and ∆∞(N) = ∆n(N) for n≫ 0.

Proof. — There is a natural injective map, compatible for varying n,

∆n(N) = (1+pnOF )×,+/(1+pnNOF )×,2 ↪→ O×,+
F /(1+NOF )×,2 = ∆(N).

Since ∆(N) is finite, it follows that ∆n(N) stabilises for n≫ 0. □

Proposition 8.21.
(1) There exist perfectoid spaces XΓ(p∞) and XG,Γ(p∞) such that

XΓ(p∞) ∼ lim←−XΓ(pn) and XG,Γ(p∞) ∼ lim←−XG,Γ(pn).

(2) There also exist perfectoid spaces

X 0
Γ(p∞) ∼ lim←−X

0
Γ(pn) and X 0

G,Γ(p∞) ∼ lim←−X
0
G,Γ(pn).

(3) There is a natural morphism XΓ(p∞) → XG,Γ(p∞) which is a pro-
étale torsor for the profinite group ∆(p∞N) = lim←−n

∆(pnN).
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(4) When restricted to connected components of the identity, it is a
finite étale torsor X 0

Γ(p∞) → X
0
G,Γ(p∞) for the finite group ∆∞(N) =

lim←−n
∆n(N).

Proof. — By Theorem 5.11.4, there is a perfectoid space

XΓ∗(p∞) ∼ lim←−XΓ∗(pn).

By Corollary 8.11 we have

XΓ(pn) = XΓ∗(pn) × [(OF /p
nOF )×/(Z/pnZ)×]

on the level of adic spaces, and thus

XΓ(p∞) := XΓ∗(p∞) ×O×
p /Z×

p ∼ lim←−
n

XΓ∗(pn) × [(OF /p
nOF )×/(Z/pnZ)×]

= lim←−
n

XΓ(pn).

For (2) we note that X 0
Γ(pn) = X 0

Γ∗(pn), and the existence of the perfectoid
space X 0

Γ∗(p∞) ∼ lim←−X
0
Γ∗(pn) follows from [31, Corollary 3.3.4]. From this

we obtain the perfectoid space X 0
G,Γ(p∞), using Lemma 8.6, Lemma 8.16(2)

and the fact that ∆∞(N) = ∆n(N) for n≫ 0. This lemma also gives (4).
We deduce the second part of (1) from the second part of (2) by [31,
Proposition 3.3.5].

Finally, (3) follows from Lemma 8.16(1) by as usual applying the fact
that perfectoid tilde-limits commute with fibre products to the diagram
defining the torsor property. □

8.4.1. The action of G(Qp)

Since each XΓ(pn) → X is an étale G(Z/pnZ) = GL2(OF /p
nOF )-torsor,

it follows that XΓ(p∞) → X is a pro-étale G(Zp) = GL2(Op)-torsor. Here
we recall that γ ∈ GL2(Op) acts by precomposition with γ∨ = det(γ)γ−1

on the level structure O2
p

∼−→ TpA
∨.

We shall now for a moment include the dependence on the polarisation
ideal c into the notation because, as in the Siegel case, the G(Zp)-action
extends naturally to a G(Qp)-action which, in our case, permutes the spaces
Xc,Γ(p∞) over the polarisation ideals c, as we shall now describe.

Lemma 8.22. — Let (A, ι, λ, µN ) be a HBAV. Let a ⊆ OF be an ideal
coprime to N and let D ⊆ A[a] be any OF -submodule scheme. Then there
is a unique way to make the isogeny φ : A → B := A/D into a mor-
phism of HBAVs (A, ι, λ, µN ) → (B, ι′, λ′, µ′

N ). If D ∼= ⊕k
i=1OF /bi and
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b := b1 · · · bk, then λ′ is the unique cb-polarisation making the following
diagram commute:

(8.7)
A⊗ c A∨

B ⊗ cb B∨.

λ

φD⊗c

λ′

φ∨

Here φD is such that B ⊗ b
φD

−−→ A
φ−→ B is the natural map B ⊗ b →

B ⊗OF = B.

Proof. — Let ι′ be the quotient action and let µ′
N be the composition

of µN with A → A/D. It remains to construct λ′ and show that it is a
Deligne–Pappas polarisation as described. We refer to [21, §1.9] for the
construction if D is of the form D = OF /bi. The general case follows by
decomposing into a chain of isogenies of this form. □

Let now γ ∈ G(Qp) = GL2(Fp). If γ is an element of the form ( x 0
0 x ) for

some x ∈ Op, we will see that the action we now define sends A 7→ A/A[x] =
A⊗ (x)−1. For general γ =

(
a b
c d

)
, we may therefore after rescaling assume

that γ ∈M2(Op) ∩GL2(Fp).
We may regard γ as acting on O2

p⊗ c−1. In particular, via λ−1 ◦α : O2
p⊗

c−1 ∼−→ TpA, the matrix γ acts OF -linearly on TpA and thus on A[pn] for all
n. For n→∞, the kernel D of γ : A[pn]→ A[pn] stabilises. The automor-
phism γ now sends (A, ι, λ, µN , α) to the HBAV (B := A/D, ι′, λ′, µ′

N , α
′)

from Lemma 8.22, where α′ : O2
p

∼−→ TpB
∨ is determined as follows:

Lemma 8.23. — There is a unique α′ : O2
p

∼−→ TpB
∨ such that the

following diagram commutes:

O2
p TpA

∨

O2
p TpB

∨.

α

α′

γ∨ φ∨

Proof. — By Lemma 8.22, it suffices to show that there is a unique dotted
arrow making the diagram

O2
p TpA⊗ c TpA

∨

O2
p TpB ⊗ cb TpB

∨

α λ

γ∨ φD

λ′

φ∨

commutative. Since all arrows become isomorphisms upon inverting p, it
suffices to show that the cokernels of γ∨ and φD are identified by α. As
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usual, one sees that the cokernel of φD is given by A[b]/D. Since γ ◦ γ∨ =(
det γ 0

0 det γ

)
, we have coker γ∨ = coker(det γ)/ coker γ. Let now n be large

enough that pn kills coker γ, then the Tor-sequence for quotienting by pn

shows that α sends coker γ to coker(γ : TpA → TpA) = (ker γ : A[pn] →
A[pn]) = D. Second, we have det(γ)Op = bOp, and the same Tor-argument
shows that α sends coker(det γ) to ker(det γ : A[pn]→ A[pn]) = A[b]. This
shows that α sends coker γ∨ to A[b]/D = cokerφD. □

It is clear from this characterisation of γ and the contravariance of −∨

that this is compatible with the multiplication in G(Qp), and thus defines
an action as desired. We moreover note that for γ ∈ G(Zp), we have φ = id
and therefore the action thus defined coincides with the action by precom-
position with γ∨. Thus the G(Qp)-action extends the G(Zp)-action defined
earlier.

Lemma 8.24. — Let n ∈ Z⩾1 ∪ {∞}.
(1) XΓ(p∞) → XΓ0(pn) is a pro-étale torsor for the group Γ0(pn) :=

lim←−m
Γ0(pn, pm).

(2) XG,Γ(p∞) → XG,Γ0(pn) is a pro-étale torsor for the group PΓ0(pn) :=
lim←−m

P Γ0(pn, pm).
(3) XΓ(p∞) → XG,Γ0(pn) is a pro-étale torsor for the group E(pn) :=

lim←−m
E(pn, pm).

(Notice we have swapped n and m; this is for notational convenience
later on).

Proof. — The diagrams expressing the torsor property are Cartesian
since the corresponding Cartesian diagrams at finite level are, and per-
fectoid tilde-limits commute with fibre products. □

In summary, taking the limit over diagram (8.6), we thus get a diagram
of pro-étale torsors

(8.8)
XΓ∗(p∞) XΓ(p∞) XG,Γ(p∞)

XΓ0(pn) XG,Γ0(pn)

Γ∗
0 (pn)

Γ0(pn)
E(pn)

∆(p∞N)

P Γ0(pn)

∆(N)

where ∆(p∞N) := lim←−n
∆(pnN).

8.4.2. Comparison to XΓ∗(p∞)

Taking limits, the Weil pairing morphism (8.4) induces maps

lim←− en,β =: eβ : XΓ(p∞) → O×
p
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and
lim←− en =: e : XG,Γ(p∞) → cd−1(1)×,

where the targets refer to the associated profinite perfectoid groups. More-
over, in the limit we obtain a level action of G(Zp). Through this we define
a level structure action of η ∈ O×

p acting by
(

η 0
0 1

)
. In the limit, Lemma 8.9

and Corollary 8.11 give the following two lemmas.

Lemma 8.25. — The anti-diagonal action of O×
p restricts to a Z×

p -torsor

XΓ∗(p∞) ×O×
p −→ XΓ(p∞).

Lemma 8.26. — For any (γ, x) ∈ E(p), the following diagram com-
mutes:

XΓ(p∞) O×
p

XΓ(p∞) O×
p .

(γ,x)

eβ

det(γ)x−1

eβ

Remark 8.27. — We note that if we take the diagram from Lemma 8.5
and fiber it with (8.8) we can see that everything restricts to the anticanon-
ical locus, i.e., in the statements above, we can replace XΓ(p∞),XG,Γ(p∞),
etc with XΓ(p∞)(ϵ)a,XG,Γ(p∞)(ϵ)a, etc.

8.5. Hodge–Tate period maps

Lemma 8.28. — There exist Hodge–Tate period maps making the fol-
lowing diagram commute:

XΓ∗(p∞) XΓ(p∞) XG,Γ(p∞)

ResOF |Z P1 ResOF |Z P1 ResOF |Z P1.

πHT πHT πHT

The map XΓ(p∞) → ResOF |Z P1 is invariant for the polarisation action of
O×,+

F on XΓ(p∞).
Proof. — We may define a map πHT on XΓ∗(p∞) × O×

p by projection
from the first factor. This map is Z×

p -invariant for the antidiagonal action
since the Z×

p -action on Γ∗(p∞) just amounts to a rescaling of the basis
vectors, which leaves the relative position of the kernel of the Hodge–Tate
morphism invariant. Using the Z×

p -torsor property from Lemma 8.25 in the
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pro-étale site, we conclude that πHT descends to the second vertical map
in the following diagram.

XΓ∗(p∞) ×O×
p XΓ(p∞) XG,Γ(p∞)

ResOF |Z P1 ResOF | Z P1 ResOF | Z P1

Z×
p ∆(p∞N)

Similarly, the polarisation action of ∆(p∞N) clearly leaves πHT invariant
since it does not change the level structure. The same descent argument
gives the third vertical map.

For the last statement, we note that XΓ∗(p∞) → ResOF | Z P1 is invariant
under the polarisation action by Z×

p ∩ O
×,+
F since the polarisation does

not feature in the Hodge–Tate sequence. The result then follows from the
construction via the Z×

p -torsor XΓ∗(p∞) ×O×
p → XΓ(p∞). □

9. Arithmetic overconvergent Hilbert modular forms

In Section 8, we exhibited various pro-étale torsors of perfectoid Hilbert
modular varieties over XG. In this section, we use these to define overcon-
vergent modular forms for G and compare them to those for G∗. We do
this by defining four different sheaves, each using a different torsor, and
then give a chain of comparisons that relate them. This will show that
our modular forms for G agree with the previous sheaves defined in [2] by
descending the sheaves for G∗.

Let κ : U → W be a bounded smooth weight. Recall from 6.2 that by
composition with ρ :W →W∗ this also defines a bounded smooth weight
for G∗ which by Proposition 6.3 we may interpret as a morphism of adic
spaces κ : Br(O×

p : 1) × U → Ĝm. It follows from Lemma 8.28 that Def-
inition 6.4 goes through also for the infinite level spaces XΓ∗(p∞)(ϵ)a and
XG,Γ(p∞)(ϵ)a. In particular, this gives us invertible functions κ(cz + d) on
each of these spaces. We denote them by the same letter since by defini-
tion they are compatible via pull-back along XΓ∗(p∞)(ϵ)a → XΓ(p∞)(ϵ)a →
XG,Γ(p∞)(ϵ)a.

Definition 9.1. — Let n ∈ Z⩾1 ∪ {∞}. In the following, all infinite
level sheaves are tacitly pushed forward to the indicated finite level base.

(1) The sheaf ωκ,+
G∗,(G∗,Γ∗,n) of integral modular forms for G∗ via

XU,Γ∗(p∞) is{
f ∈ O+

XU,Γ∗(p∞)(ϵ)a

∣∣ γ∗f = κ−1(cz + d)f, ∀γ =
(

a b
c d

)
∈ Γ∗

0 (pn)
}
.
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(2) The sheaf ωκ,+
G∗,(G∗,Γ,n) of integral modular forms for G∗ via

XU,Γ(p∞) is{
f ∈ O+

XU,Γ(p∞)(ϵ)a

∣∣ γ∗f = κ−1(cz + d)f, ∀γ =
(

a b
c d

)
∈ Γ0(pn)

}
.

(3) The sheaf ωκ,+
G,(G∗,Γ,n) of integral modular forms for G via

XU,Γ(p∞) is{
f ∈ O+

XU,Γ(p∞)(ϵ)a

∣∣ (γ, x)∗f = κ−1(cz + d)wκ(x)f, ∀(γ, x) ∈ E(pn)
}
.

(4) The sheaf ωκ,+
G,(G,Γ,n) of integral modular forms for G via

XG,U,Γ(p∞) is{
f ∈ O+

XG,U,Γ(p∞)(ϵ)a

∣∣ γ∗f = κ−1(cz + d)wκ(det γ)f, ∀γ ∈ PΓ0(pn)
}
.

We note that (1) is the sheaf of modular forms for G∗ from Definition 6.5,
denoted there by ωκ

n. We have switched to the notation above for clearer
comparison to (2), (3) and (4). The goal of this secion is to relate these
sheaves. More precisely:

(i) in Lemma 9.3 below, we will see that the sheaves (1) and (2) are
isomorphic;

(ii) in Lemma 9.6, we will see that sheaf (3) is obtained from (2) by
taking ∆(N)-invariants;

(iii) in Lemma 9.7, we will see that the sheaves (3) and (4) are isomor-
phic.

Before we start giving comparison maps, however, we need to check:

Lemma 9.2. — The conditions in (3) and (4) above are well-defined;
that is, they do not depend on the choice of representatives (γ, x) or γ
respectively.

Proof. — The relation of wκ and κ given in Definition 6.2 implies that

(9.1) κ−1(η)wκ(η2) = tκ ◦NF/Q(η) = 1 for all η ∈ O×,+
F .

For (3), this implies that for any (γ, x) ∈ Γ0(pn)×O×,+
F , the factor

κ−1(cz + d)wκ(x)

only depends on the image of (γ, x) in E(pn); indeed, for any η ∈ O×,+
F the

translate (γ
( η 0

0 η

)
, xη2) has the same associated factor

κ−1(cηz + dη)wκ(xη2) = κ−1(η)wκ(η2)κ−1(cz + d)wκ(x)

= κ−1(cz + d)wκ(x)
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For (4), we similarly note that for any η ∈ (1+NOF )×,+, setting γ =
( η 0

0 η

)
results in the factor κ−1(η)wκ(η2) = 1. By continuity, the same is true for
γ in the topological closure Z∞ of (1 +NOF )×,+ in O×,+

p . As

PΓ0(pn) = lim←−
m

P Γ0(pn, pm) = lim←−
m

Γ0(pn, pm)/Zm = Γ0(pn)/Z∞,

this shows that for any γ ∈ Γ0(pn), the factor κ−1(cz + d)wκ(det γ) only
depends on the image of γ in PΓ0(pn). This shows that the condition in (4)
is well-defined. □

Lemma 9.3. — Let κ : U → W∗ be a smooth weight. The natural mor-
phism of torsors XU,Γ∗(p∞)(ϵ)a → XU,Γ(p∞)(ϵ)a over XU,Γ∗

0 (pn)(ϵ)a induces
a natural isomorphism

ωκ,+
G∗,(G∗,Γ∗,n)

∼= ωκ,+
G∗,(G∗,Γ,n).

In particular, the definition of forms for G∗ is independent of the choice of
Γ or Γ∗.

Proof. — By Lemma 8.28, for any γ ∈ Γ∗
0 (pn), the function κ−1(cz + d)

on XU,Γ(p∞)(ϵ)a pulls back to κ−1(cz+ d) on XU,Γ∗(p∞)(ϵ)a. Since the map
XU,Γ∗(p∞)(ϵ)a → XU,Γ(p∞)(ϵ)a is equivariant under Γ∗

0 (pn) → Γ0(pn), it
follows that the associated map O+

XU,Γ(p∞)(ϵ)a
→ O+

XU,Γ∗(p∞)(ϵ)a
restricts to

(9.2) ωκ,+
G∗,(G∗,Γ,n) → ωκ,+

G∗,(G∗,Γ∗,n).

To construct an inverse, let f ∈ ωκ,+
G∗,(G∗,Γ∗,n). Note that f is invariant

under the action of Z×
p , since for any ϵ ∈ Z×

p , we have γϵ = ( ϵ 0
0 1 ) acting

via γ∗
ϵ f = κ−1(1)f = f. Consider now

XU,Γ∗(p∞)(ϵ)a ←− XU,Γ∗(p∞)(ϵ)a ×O×
p −→ XU,Γ(p∞)(ϵ)a,

where the right hand morphism is the Z×
p -torsor from Lemma 8.25 and the

left hand morphism is simply the projection. Since f is Z×
p -invariant, the

pullback f ′ of f under the left map is invariant under the antidiagonal Z×
p -

action. Since the morphism on the right is a Z×
p -torsor of affinoid perfectoid

spaces, this implies that f ′ descends uniquely down the right to a function
f ′′ on XU,Γ(p∞)(ϵ)a. We claim that f ′′ ∈ ωκ

G∗,(G∗,Γ∗,n), that is, it transforms

as required under Γ0(pn). This group is generated by
(

O×
p 0

0 1

)
and Γ∗

0 (pn),
so it suffices to check that

(9.3) γ∗
ϵ f

′′ = κ−1(0z + 1)f ′′ = f ′′ for all ϵ ∈ O×
p ,

(9.4) γ∗f ′′ = κ−1(cz + d)f ′′ for all γ ∈ Γ∗
0 (pn).
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As f ′′ came from pullback from the left, the function f ′ is invariant for
the O×

p -action, and thus the same is true for f ′′, where ϵ ∈ O×
p acts via

γϵ = ( ϵ 0
0 1 ). This gives (9.3). Also, since f was a modular form and the above

maps are all equivariant for the natural Γ∗
0(pn)-action, we also have (9.4).

Thus f ′′ ∈ ωκ
G∗,(G∗,Γ∗,n), and we see directly that f 7→ f ′′ gives an inverse

to (9.2). □

We now use étale descent along π : XU (ϵ)→ XG,U (ϵ) to relate the sheaves
for G∗ and G. Explicitly, this can be done by endowing π∗ω

κ,+
G∗,(G∗,Γ,n) with

a ∆(N)-action given by a twist of the O×,+
F -action on XU,Γ(p∞)(ϵ)a →

XG,U,Γ(p∞)(ϵ)a, as follows:

Definition 9.4. — Let κ : U → W be a smooth bounded weight. We
define a wκ-twisted polarisation left-action of O×,+

F on π∗q∗O+
XU,Γ(p∞)(ϵ)a

by letting ε ∈ O×,+
F act as

ε ·wκ f := wκ(ε) · (ε−1)∗f

where wκ is as in 6.2 and the action on the right side is the polarisation
action on XU,Γ(p∞)(ϵ)a.

Lemma 9.5. — The wκ-twisted action of O×,+
F restricts to the sheaf

π∗ω
κ,+
G∗,(G∗,Γ,n), where it factors through an action of ∆(N). Furthermore,

this action coincides with the action defined by [2].

Proof. — It is clear from the moduli description that the polarisation
action of O×,+

F and the level structure action of Γ0(pn) commute on

XU,Γ(p∞)(ϵ)a.

By Lemma 8.28, the action moreover leaves πHT and thus z invariant. We
therefore have for any ε ∈ O×,+

F and any f ∈ π∗ω
κ,+
G∗,(G∗,Γ,n)

γ∗(ε ·wκ f) = wκ(ε)ε−1∗γ∗f = wκ(ε)ε−1∗(κ−1(cz + d)f)

= κ−1(cz + d)ε ·wκ f.

This shows that the action restricts. Next, if η ∈ O×,+
F , then η2 acts on

f ∈ π∗ω
κ,+
G∗,(G∗,Γ,n) via

η2 ·wκ f =wκ(η2) · (η−2)∗f
Lemma 8.12== wκ(η2) ·

( η 0
0 η

)∗
f = wκ(η2)κ−1(η)f

(9.1)= f

and in particular the subgroup (1 + NOF )×2 acts trivially; thus the ac-
tion factors through ∆(N) as desired. The last statement follows from
Lemma 9.3 and Theorem 7.14 since Definition 9.4 and the definition in [3,
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Section 4.1] match up: here we use that the polarisation action commutes
with s since it leaves the wild level α and the Hodge–Tate morphism un-
changed. □

Lemma 9.6. — We have an equality of subsheaves of O+
XU,Γ(p∞)(ϵ)a

on
XG,U,Γ0(p)(ϵ)a

ωκ,+
G,(G∗,Γ,n) = (π∗ω

κ,+
G∗,(G∗,Γ,n))

∆(N).

Proof. — Let f ∈ ωκ,+
G,(G∗,Γ,n). By Lemma 9.2, the action of E(pn) that

defines the modular forms property for f is induced by an action of Γ0(pn)×
O×,+

F ; from this, it is clear that

γ∗f = (γ, 1)∗f = κ−1(cz + d)f for all γ =
(

a b
c d

)
∈ Γ0(pn),

and thus f ∈ π∗ω
κ,+
G∗,(G∗,Γ,n). To see that it is also ∆(N)-equivariant, it

suffices to note that

x∗f = (1, x)∗f = wκ(x)f for all x ∈ O×,+
F ,

which implies that for the wκ-twisted action of x we have x ·wκ f =
wκ(x)(x−1)∗f = f . Thus f ∈ (π∗ω

κ,+
G∗,(G∗,Γ,n))

∆(N) as desired. The converse
follows by reversing the above calculations. □

To compare ωκ,+
G,(G∗,Γ,n) to ωκ,+

G,(G,Γ,n), pulling back functions along

XU,Γ(p∞) → XG,U,Γ(p∞)

is not enough: We also need an additional twist that changes the factor of
κ−1(cz+d)wκ(x) in the definition of the former into the factor of κ−1(cz+
d)wκ(det γ) used in the latter. To describe this, let κ : U → W →W∗ be a
smooth weight and recall from the discussion before Lemma 8.26 the Weil
pairing morphism eβ : XU,Γ(p∞) → O×

p . We use this to define a composite
morphism

wκ(eβ) : XU,Γ(p∞)
eβ−→ O×

p

wκ−−→ Ĝm.

Restricting to the subspace XU,Γ(p∞)(ϵ)a, the universal property of Ĝm

associates to wκ(eβ) a function in O+(XU,Γ(p∞)(ϵ)a)× that we might rea-
sonably also denote by wκ(eβ). By Lemma 8.26,

(9.5) (γ, x)∗wκ(eβ) =wκ(x−1)wκ(det γ)wκ(eβ) for any (γ, x)∈E(pn).

Lemma 9.7. — Let π∞ be the natural morphism of torsors

XU,Γ(p∞)(ϵ)a XG,U,Γ(p∞)(ϵ)a

XG,U,Γ0(pn)(ϵ)a XG,U,Γ0(pn)(ϵ)a.

E(pn)

π∞

PΓ0(pn)
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Then sending f 7→ w−1
κ (eβ) · π∗

∞f defines an isomorphism of O+-modules
on XG,U,Γ0(pn)(ϵ)a

ωκ,+
G,(G,Γ,n)

∼−→ ωκ,+
G,(G∗,Γ,n).

Proof. — Let f ∈ ωκ,+
G,(G,Γ,n). For any (γ, x) ∈ E(pn), we have

(γ, x)∗(w−1
κ (eβ)π∗

∞f) = (γ, x)∗w−1
κ (eβ) · (γ, x)∗π∗

∞f

= wκ(x)w−1
κ (det γ)w−1

κ (eβ)π∗
∞γ

∗f

In the second step we have used equation (9.5) and the fact that π∞ is
equivariant with respect to the projection E(pn) → PΓ0(pn), (γ, x) 7→ γ.
Now using the that f ∈ ωκ,+

G,(G,Γ,n), we get that is equal to

wκ(x)w−1
κ (det γ)w−1

κ (eβ)π∗
∞(κ−1(cz + d)wκ(det γ)f)

= κ−1(cz + d)wκ(x)w−1
κ (eβ)π∗

∞f.

and in the last step we use that by Lemma 8.28, π∗
∞(κ−1(cz+d)) = κ−1(cz+

d). This identity shows that indeed w−1
κ (eβ)π∗

∞f ∈ ωκ
G,(G∗,Γ,n), so the map

in the statement of the proposition is well-defined.
To see that the map is an isomorphism, take now f ∈ ωκ,+

G,(G∗,Γ,n) and
consider the function g = wκ(eβ)f on XU,Γ(p∞)(ϵ)a. We claim that g de-
scends uniquely to a function on XG,U,Γ(p∞)(ϵ)a. To see this, since π∞ :
XU,Γ(p∞)(ϵ)a → XG,U,Γ(p∞)(ϵ)a is a perfectoid ∆(p∞N)-torsor, it suffices
to show that g is ∆(p∞N)-invariant. It suffices by continuity to show that it
is invariant for the dense subgroup O×,+

F ↪→ ∆(p∞N). For this we calculate
that for any x ∈ O×,+

F we have

x∗g = (1, x)∗g = (1, x)∗(wκ(eβ))(1, x)∗f = wκ(x)−1wκ(eβ)κ−1(1)wκ(x)f
= wκ(eβ)f
= g

where we have again used equation (9.5). This shows that g indeed arises as
pullback of a unique function h = h(f) on XG,U,Γ(p∞)(ϵ)a with π∗

∞h = g.
We claim that h ∈ ωκ,+

G,(G,Γ,n). For this we have to check by definition
that γ∗h equals κ−1(cz + d)wκ(det γ)h. The morphism of sheaves π∗

∞ :
O+

XU,Γ(p∞)(ϵ)a
→ O+

XU,Γ0(p∞)(ϵ)a
is the pullback of a pro-étale map, hence

injective; thus, as it is also Γ0(pn)-equivariant, it suffices to check this prop-
erty on π∗

∞h = g with respect to the action of Γ0(pn) → E(pn). But by
definition of g as wκ(eβ)f , we have for any γ ∈ Γ0(pn) that

γ∗g = (γ, 1)∗(wκ(eβ))(γ, 1)∗f = wκ(det(γ))wκ(eβ)κ−1(cz + d)f

= κ−1(cz + d)wκ(det(γ))g.
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This shows that g transforms under the action of Γ0(pn) as desired, and thus
so does h. This shows h ∈ ωκ,+

G,(G,Γ,n) as desired. Moreover, by construction
we have f = w−1

κ (eβ)π∗
∞h.

This shows that the map in the proposition is injective and surjective,
thus an isomorphism. □

Definition 9.8. — Let κ : U → W be a bounded smooth weight and
n ∈ Z⩾0 ∪ {∞}. For n ̸= 0, let ωκ,+

G,c,n be the sheaf ωκ,+
G,(G,Γ,n) from Defini-

tion 9.1(4), noting that we have reintroduced our fixed c to the notation.
As before, we define the rational version ωκ

G,c,n by replacing O+
X with OX ,

or equivalently by inverting p. We use the Atkin–Lehner isomorphism to
define “n = 0” versions

ωκ
G,c = ωκ

G,c,0 := AL∗ ω
κ
G,c,1, ωκ,+

G,c = ωκ,+
G,c,0 := AL∗ ω

κ,+
G,c,1

which are sheaves on XG,c,U (ϵ). For any n ∈ Z⩾0 ∪ {∞}, the space of
overconvergent arithmetic Hilbert modular forms of tame level µN , p-level
Γ0(pn), polarisation ideal c, radius of overconvergence ϵ and weight κ, and
its integral subspace, are then

MG
κ (Γ0(pn), µN , ϵ, c) := H0(XG,c,U (ϵ), ωκ

G,c,n),

MG,+
κ (Γ0(pn), µN , ϵ, c) := H0(XG,c,U (ϵ), ωκ,+

G,c,n).

Remark 9.9. — One can define cusp forms for G in much the same way
as for G∗ (Remark 6.9).

As in [3, Lemma 4.5], the polarisation action by p-adic units x ∈ F×,+

defines isomorphisms

Px : MG
κ (Γ0(pn), µN , ϵ, c) ∼−→MG

κ (Γ0(pn), µN , ϵ, xc)

We will see below that the action of the Hecke operators permutes the
spaces MG

κ (µN , ϵ, c) by scaling the polarisation ideal. To obtain a Hecke
stable space, one therefore also defines:

Definition 9.10. — Let R
(p)
F be the group of fractional ideals of F

coprime to p and T
+,(p)
F be the positive elements which are p-adic units,

then R
(p)
F /T

+,(p)
F is the narrow class group. We let MG

κ (Γ0(pn), µN , ϵ) be
defined as ⊕

c∈R
(p)
F

MG
κ (Γ0(pn), µN , ϵ, c)

 /〈
Px(f)− f for all x ∈ T

+,(p)
F

〉
.
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This is the space of arithmetic overconvergent Hilbert modular forms of
weight κ, tame level µN and radius of overconvergence ϵ. One can define
integral versions of these spaces by using ωκ,+

G,c,n.

Putting everything together, we obtain the desired comparison to the
sheaf of Hilbert modular forms for G as defined by Andreatta–Iovita–
Pilloni. For this we first recall the definition:

Definition 9.11. — Let ωκ,+
G,c,AIP,n := (π∗ω

κ,+
G∗,c,AIP,n)∆(N). This is the

integral analytic incarnation of the sheaf of Hilbert modular forms for G
on XG,c,U (ϵ) denoted by ωκun

G in [2, §8.2].

Theorem 9.12. — Let κ : U → W be a smooth bounded weight, n ∈
Z⩾0 ∪ {∞} and 0 ⩽ ϵ ⩽ ϵκ. There is a natural isomorphism

ωκ,+
G,c,n

∼= ωκ,+
G,c,AIP,n

of O+-modules on XG,c,U (ϵ). In particular, ωκ,+
G,c,n is an invertible O+-

module. By inverting p, it induces a Hecke-equivariant isomorphism of line
bundles ωκ

G,c,n = ωκ
G,c,AIP,n.

Proof. — To ease notation, we suppress the dependence on c. By Theo-
rem 7.14, we have ωκ,+

G∗ = ωκ,+
G∗,AIP. By combining the lemmas of Section 9,

we conclude that

ωκ,+
G,n

(9.8)= ωκ,+
G,(G,Γ,n)

(9.7)= ωκ,+
G,(G∗,Γ,n)

(9.6)= (π∗ω
κ,+
G∗,(G∗,Γ,n))

∆(N)

(9.3)= (π∗ω
κ,+
G∗,(G∗,Γ∗,n))

∆(N)

(7.14)&(9.5)= (π∗ω
κ,+
G∗,AIP,n)∆(N)

(9.11)= ωκ,+
G,AIP,n

as desired. We postpone the proof of Hecke-equivariance to Section 10. □

10. Hecke operators

Throughout this section, we fix a smooth bounded weight κ : U → W →
W∗ and 0 ⩽ ϵ ⩽ ϵκ. To ease notation, in this section we suppress the
subscript U from our Hilbert modular varieties.
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10.1. The tame Hecke operators

Let a ⊆ OF be any ideal coprime to n and p. Let us denote by Xc,Γ0(a)(ϵ)
the Hilbert modular variety of tame level µN ∩ Γ0(a), representing tuples
(A, ι, λ, µN , D) where D ⊆ A[a] is a closed OF -submodule scheme that is
étale locally isomorphic to OF /a, and λ : A ⊗ c ∼−→ A∨. Let us denote by
π1 : Xc,Γ0(a)(ϵ)→ Xc(ϵ) the forgetful morphism. By Lemma 8.22, there is a
second map defined by sending A 7→ A/D:

π2 : Xc,Γ0(a)(ϵ)a → Xca(ϵ), (A, ι, λ, µN , D)→ (A′ := A/D, ι′, λ′, µ′
N ).

Now let n ∈ Z⩾1 ∪ {∞}. Then it is clear that the morphisms π1 and
π2 extend uniquely when we add level structures at p: more precisely, we
obtain a natural commutative diagram

(10.1)
Xca,Γ(p∞)(ϵ)a Xc,Γ(p∞)∩Γ0(a)(ϵ)a Xc,Γ(p∞)(ϵ)a

Xca,Γ0(pn)(ϵ)a Xc,Γ0(pn)∩Γ0(a)(ϵ)a Xc,Γ0(pn)(ϵ)a,

π2,∞ π1,∞

π2 π1

where π2,∞ sends α : O2
p → TpA

∨ to α′ : O2
p

α−→ TpA
∨ (φ∨)−1

−−−−−→ TpA
′∨,

where the isomorphism φ∨ : TpA
′∨ → TpA

∨ is the one induced from the
prime-to-p isogeny φ∨ : A′∨ = (A/D)∨ → A∨.

Lemma 10.1. — There is a canonical isomorphism π∗
1ω

κ,+
n = π∗

2ω
κ,+
n of

sheaves on Xc,Γ0(pn)∩Γ0(a)(ϵ)a.

Proof. — By diagram (10.1), we have

π∗
1ω

κ,+
n = {f ∈ O+

Xc,Γ(p∞)∩Γ0(a)(ϵ)a
| γ∗f = π∗

1,∞κ
−1(cz + d)f, ∀γ ∈ Γ0(pn)}.

The same applies to π∗
2ω

κ,+
n , so we are left to see that π∗

1,∞κ
−1(cz +

d) = π∗
2,∞κ

−1(cz + d). To see this, observe that φ : A → A/D induces an
isomorphism of Hodge–Tate sequences

(10.2)
O2

p Tp(A/D)∨ ωA/D

O2
p TpA

∨ ωA

α HT

φ∨
φ∗

α′ HT

by definition of α. This shows that πHT ◦ π1,∞ = πHT ◦ π2,∞, giving the
desired equality. □
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Definition 10.2. — The Ta-operator is defined as the composition

MG∗,+
κ (Γ0(pn), µN , ϵ, ca) = Γ(Xca,Γ0(pn)(ϵ)a, ω

κ,+
n )

→ Γ(Xc,Γ0(pn)∩Γ0(a)(ϵ)a, π
∗
2ω

κ,+
n ) ∼−→ Γ(Xc,Γ0(pn)∩Γ0(a)(ϵ)a, π

∗
1ω

κ,+
n )

1
qa

Trπ1−−−−−→ Γ(Xc,Γ0(pn)(ϵ)a, ω
κ,+
n ) = MG∗,+

κ (Γ0(pn), µN , ϵ, c).

where Trπ1 is the trace of the finite locally free map π1, and where qa :=
|OF /a|.

10.2. The Up-operators

Let n ∈ Z⩾1 and p be a prime ideal of OF above p of ramification
index e. Set l := ne+ 1. For the definition of the Up-operator, we then use
the moduli space Xc,Γ0(pn)∩Γ0(pl)(ϵ)a → Xc(ϵ) which relatively represents
the data of an anticanonical OF -submodule scheme C ⊆ A[pn] étale locally
isomorphic toOF /p

nOF together with anOF -submodule schemeD ⊆ A[pl]
étale locally isomorphic to OF /p

l such that C[pen] = D[pen]. In particular,
D is then anticanonical. There is a forgetful map π1 : Xc,Γ0(pn)∩Γ0(pl)(ϵ)a →
Xc,Γ0(pn)(ϵ)a which is finite flat of degree qp := |OF /p|. There is also a
second map

π2 : Xc,Γ0(pn)∩Γ0(pl)(ϵ)a →Xcp,Γ0(pn)(ϵ)a

(A, ι, λ, µN , C,D) 7→(A′ := A/D[p], ι′, λ′, µ′
N , C

′ := (C +D)/D[p])

where (A′, ι′, λ′, µ′
N ) is like in Lemma 8.22 and where C + D ⊆ A[pn+1]

is the submodule scheme generated by C and D. Then C ′ is étale locally
isomorphic to OF /p

nOF . We note that this map is not surjective, and the
image is already contained in an open subspace that can be described using
the partial Hasse invariant at p (for example, if F = Q, then it lands in
Xpc,Γ0(pn)(p−1ϵ)a).

Let us now fix any uniformiser ϖ ∈ Op such that ϖOp = pOp and let
up := ( ϖ 0

0 1 ) ∈ G(Qp). Then letting up act in terms of the G(Qp)-action,
we obtain a commutative diagram

(10.3)
Xcp,Γ(p∞)(ϵ)a Xc,Γ(p∞)(ϵ)a Xc,Γ(p∞)(ϵ)a

Xcp,Γ0(pn)(ϵ)a Xc,Γ0(pn)∩Γ0(pl)(ϵ)a Xc,Γ0(pn)(ϵ)a.

q

up

q

π2 π1

Lemma 10.3. — The action of up defines a map π∗
2ω

κ,+
n → π∗

1ω
κ,+
n of

invertible sheaves on Xc,Γ0(pn)∩Γ0(pl)(ϵ)a. It is independent of the choice of
the uniformiser ϖ.
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Proof. — By diagram (10.3), we have

π∗
1ω

κ,+
n = {f ∈ O+

Xc,Γ(p∞)(ϵ)a
| γ∗f = κ−1(cz + d)f, ∀γ ∈ Γ0(pn) ∩ Γ0(pl)}.

We claim that u∗
pω

κ,+
n admits the same description. To see this, we first

recall that the action of up is equivariant with respect to the morphism
Γ0(pn) ∩ Γ0(pl) → Γ0(pn) given by conjugation by up, namely j :

(
a b
c d

)
7→(

a ϖb
ϖ−1c d

)
. Second, we see from G(Qp)-equivariance of πHT that u∗

pz = ϖz.
Consequently, κ(γ, z) := κ(cz + d) is sent by up to (γ, z) 7→ κ(j(γ), ϖz) =
κ(ϖ−1ϖcz + d) = κ(cz + d). This together with the fact that shows that
Xc,Γ(p∞)(ϵ)a → Xc,Γ0(pn)∩Γ0(pl)(ϵ)a is a pro-étale Γ0(pn)∩Γ0(pl)-torsor shows
that u∗

pω
κ,+
n has the desired form. □

Definition 10.4. — The Up-operator is defined as the composition

MG∗

κ (Γ0(pn), µN , ϵ, cp) = Γ(Xcp,Γ0(pn)(ϵ)a, ω
κ
n)

→ Γ(Xc,Γ0(pn)∩Γ0(pl)(ϵ)a, π
∗
2ω

κ
n) −→ Γ(Xc,Γ0(pn)∩Γ0(pl)(ϵ)a, π

∗
1ω

κ
n)

1
qp

Trπ1−−−−−→ Γ(Xc,Γ0(pn)(ϵ)a, ω
κ
n) = MG∗

κ (Γ0(pn), µN , ϵ, c).

10.3. The Hecke action on arithmetic Hilbert modular forms

For c a polarisation ideal, we let [c] denote its class in the narrow class
group. One can then define Hecke operators on the spaces of overconvergent
Hilbert modular forms for G of the form

Ta : MG
κ (Γ0(pn), µN , ϵ, [ca])→MG

κ (Γ0(pn), µN , ϵ, [c])

Up : MG
κ (Γ0(pn), µN , ϵ, [cp])→MG

κ (Γ0(pn), µN , ϵ, [c])
by taking ∆-invariants of the operators defined in the last section. Al-
ternatively, one can define these operators more directly and without any
reference to G∗ based on Definitions 9.1 and Definition 9.8; copying the def-
initions for G∗ and replacing X by XG throughout. The proofs go through
without change. The natural morphisms of Hecke correspondences over the
map X → XG shows that the operators thus defined coincide with the ones
obtained via G∗.

It is clear from either definition that the Hecke operators commute with
the polarisation action from Definition 9.10. Consequently, they induce a
Hecke action on MG

κ (Γ0(pn), µN , ϵ).

Remark 10.5. — Via the Koecher principle the Hecke operators also ex-
tend to the boundary. Moreover, the subspaces of cusp forms will be pre-
served by the action of Hecke operators.
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Remark 10.6. — As defined, the Hecke operators for G∗ are canonical.
If one fixes a set of representatives (ci) of the narrow class group and
considers the Hecke operators as mapping between the spaces for these
fixed ci, then the Hecke operators for G∗ become non-canonical, depending
on the choice of representatives (cf. [3, Section 4.3]). For G, the operators
remain canonical as picking different representatives does not affect our
polarisation class. In particular, we get commuting Hecke operators on
MG

k (Γ0(pn), µN , ϵ).
Lastly, one can check directly that for G∗ or G the Hecke operator

Up =
∏

p|p U
ei
p is a compact operator. Alternatively, this follows from

Proposition 10.8 together with [3, Lemma 3.27].

Remark 10.7. — It is clear from the definition that the tame Hecke op-
erators preserve the integral spaces of overconvergent forms, while for Up

this is in general only true after renormalisation.

10.4. Hecke-equivariance of the comparison

We can now finish the proof of Theorems. 7.14 and 9.12 by proving that
the comparison isomorphisms are Hecke equivariant.

Proposition 10.8. — The isomorphisms

ωκ,+
G∗,n

∼−→ ωκ,+
G∗,AIP,n and ωκ,+

G,n
∼−→ ωκ,+

G,AIP,n

are Hecke equivariant on global sections.

Proof. — We consider the case of G∗, the case of G follows from this.
As in the proof of Theorem 9.12, we can assume that κ has image in W∗

k

for some k > 0. It is clear from comparing Definitions 10.2 and 10.4 to
the definition in [2, §8.5] that it suffices to prove that the isomorphism
π∗

2ω
κ
G∗,n = π∗

1ω
κ
G∗,n from Lemma 10.1 and 10.3 is identified with the iso-

morphisms π∗
2ω

κ
G∗,n,AIP = π∗

1ω
κ
G∗,n,AIP from [2, Lemma 8.5] under the com-

parison isomorphism. For this it suffices to see that the comparison map s

from Section 7.2 induces a morphism of Hecke correspondences

(10.4)
Xcp,Γ(p∞)(ϵ)a Xc,Γ(p∞)(ϵ)a Xc,Γ(p∞)(ϵ)a

Fm(ϵ) Fm,Γ0(a)(ϵ) Fm(ϵ)
s

π2,∞ π1,∞

s s

π2 π1

where Fm,Γ0(a)(ϵ) is the pullback along π1 : Xc,Γ0(a)(ϵ) → Xc(ϵ) of the
Andreatta–Iovita–Pilloni torsor, and where π2 is induced by the map

ωA/D → ωA.
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Commutativity of the right square is clear. In terms of moduli, commuta-
tivity of the left square is now precisely that of diagram (10.2).

For the Up-operator, the top left map in diagram is replaced by the action
of up = ( ϖ 0

0 1 ). LetA be the universal abelian variety over Xc,Γ0(pn)∩Γ0(pl)(ϵ)a

with its anticanonical subgroup D ⊆ A[pl], then the map π∗
2ω

κ
G∗,n,AIP =

π∗
1ω

κ
G∗,n,AIP is induced via the adjoint ωκ

G∗,n,AIP → π2,∗π
∗
1ω

κ
G∗,n,AIP ob-

tained by restriction from the map φ∗ : ωA/D[p] → ωA associated to the
isogeny A→ A/D[p].

On the other hand, the morphism ωκ
G∗,n → π2,∗π

∗
1ω

κ
G∗,n in Lemma 10.3

is given by restriction of the action of up. To prove that the comparison
is equivariant for the Up-operator, it thus suffices to prove that these two
morphisms commute with the comparison morphism s.

Using Lemma 8.23 and the identity u∨
p (1, 0) = (1, 0), we see that the

following diagram commutes

(1, 0) O2
p TpA

∨ ωA

(1, 0) O2
p Tp(A/D[p])∨ ωA/D[p].

u∨
p

α HT

α′ HT
φ∨

φ∗

This shows that also s ◦ up = φ∗ ◦ s, and thus Up commutes with the
comparison isomorphism. □

BIBLIOGRAPHY

[1] F. Andreatta, A. Iovita & V. Pilloni, “p-adic families of Siegel modular cusp
forms”, Ann. of Math. (2) 181 (2015), no. 2, p. 623-697.

[2] ——— , “The adic, cuspidal, Hilbert eigenvarieties”, Res. Math. Sci. 3 (2016), article
no. 34 (36 pages).

[3] ——— , “On Overconvergent Hilbert Modular cusp forms”, in Arithmétique p-
adique des formes de Hilbert, Astérisque, vol. 382, Société Mathématique de France
(SMF), Paris, 2016, p. 163-192.

[4] ——— , “Le halo spectral”, Ann. Sci. Éc. Norm. Supér. (4) 51 (2018), no. 3, p. 603-
655.

[5] W. Bartenwerfer, “Der erste Riemannsche Hebbarkeitssatz im nichtarchimedis-
chen Fall”, J. Reine Angew. Math. 286(287) (1976), p. 144-163.

[6] K. Buzzard, “Eigenvarieties”, in L-functions and Galois representations, London
Math. Soc. Lecture Note Ser., vol. 320, Cambridge Univ. Press, Cambridge, 2007,
p. 59-120.

[7] A. Caraiani & P. Scholze, “On the generic part of the cohomology of compact
unitary Shimura varieties”, Ann. of Math. (2) 186 (2017), no. 3, p. 649-766.

[8] C.-L. Chai, “Arithmetic minimal compactification of the Hilbert–Blumenthal mod-
uli spaces”, Ann. of Math. (2) 131 (1990), no. 3, p. 541-554.

[9] P. Chojecki, D. Hansen & C. Johansson, “Overconvergent modular forms and
perfectoid Shimura curves”, Doc. Math. 22 (2017), p. 191-262.

ANNALES DE L’INSTITUT FOURIER



PERFECTOID HILBERT MODULAR FORMS 85

[10] D. Hansen, “Quotients of adic spaces by finite groups”, to appear in Math. Res.
Lett. http://www.davidrenshawhansen.com/adicgpquotient.pdf.

[11] D. Hansen & C. Johansson, “Perfectoid Shimura varieties and the Calegari–
Emerton conjectures”, preprint https://arxiv.org/abs/2011.03951.

[12] D. Hansen & K. S. Kedlaya, “Sheafiness criteria for Huber rings”, preprint https:
//kskedlaya.org/papers/criteria.pdf.

[13] B. Heuer, “Cusps and q-expansion principles for modular curves at infinite level”,
preprint https://arxiv.org/abs/2002.02488.

[14] ——— , “Line bundles on rigid spaces in the v-topology”, preprint https://arxiv.
org/abs/2012.07918.

[15] ——— , “Perfectoid geometry of p-adic modular forms”, PhD Thesis, King’s College
London, 2019.

[16] H. Hida, p-adic automorphic forms on Shimura varieties, Springer Monographs in
Mathematics, Springer-Verlag, New York, 2004, xii+390 pages.

[17] S. Howe, “Overconvergent modular forms and the p-adic Jacquet-Langlands
correspondence”, PhD Thesis, University of Chicago, 2017, https://knowledge.
uchicago.edu/record/787.

[18] R. Huber, Étale cohomology of rigid analytic varieties and adic spaces, vol. 30,
Springer, 2013.

[19] N. M. Katz, “p-adic properties of modular schemes and modular forms”, in Mod-
ular functions of one variable, III (Proc. Internat. Summer School, Univ. Antwerp,
Antwerp, 1972), Lecture Notes in Mathematics:, vol. 350, Springer, Berlin, 1973,
p. 69-190.

[20] K. S. Kedlaya & R. Liu, “Relative p-adic Hodge theory, II: Imperfect period rings”,
preprint https://arxiv.org/abs/1602.06899.

[21] M. Kisin & K. F. Lai, “Overconvergent Hilbert modular forms”, Amer. J. Math.
127 (2005), no. 4, p. 735-783.

[22] W. Lütkebohmert, “Der Satz von Remmert-Stein in der nichtarchimedischen
Funktionentheorie”, Math. Z. 139 (1974), p. 69-84.

[23] D. Mumford, Abelian varieties, Tata Institute of Fundamental Research Studies
in Mathematics, vol. 5, Published for the Tata Institute of Fundamental Research,
Bombay; Oxford University Press, London, 1970, viii+242 pages.

[24] V. Pilloni, “Formes modulaires surconvergentes”, Ann. Inst. Fourier (Grenoble) 1
(2013), no. 63, p. 219-239.

[25] M. Rapoport, “Compactifications de l’espace de modules de Hilbert-Blumenthal”,
Compositio Math. 36 (1978), no. 3, p. 255-335.

[26] P. Scholze, “Étale cohomology of diamonds”, preprint https://arxiv.org/abs/
1709.07343.

[27] P. Scholze, “p-adic Hodge theory for rigid-analytic varieties”, Forum Math. Pi 1
(2013), article no. e1 (77 pages).

[28] ——— , “On torsion in the cohomology of locally symmetric varieties”, Ann. of
Math. (2) 182 (2015), no. 3, p. 945-1066.

[29] P. Scholze & J. Weinstein, p-adic geometry, UC Berkeley course notes, Annals
of Mathematics Studies, Princeton University Press, Princeton, NJ.

[30] ——— , “Moduli of p-divisible groups”, Camb. J. Math. 1 (2013), no. 2, p. 145-237.
[31] X. Shen, “Perfectoid Shimura varieties of abelian type”, Int. Math. Res. Not. (2017),

no. 21, p. 6599-6653.
[32] Y. Tian & L. Xiao, “p-adic cohomology and classicality of overconvergent Hilbert

modular forms”, in Arithmétique p-adique des formes de Hilbert, Astérisque,
no. 382, Société Mathématique de France (SMF), Paris, 2016, p. 73-162.

TOME 0 (0), FASCICULE 0

http://www.davidrenshawhansen.com/adicgpquotient.pdf
https://arxiv.org/abs/2011.03951
https://kskedlaya.org/papers/criteria.pdf
https://kskedlaya.org/papers/criteria.pdf
https://arxiv.org/abs/2002.02488
https://arxiv.org/abs/2012.07918
https://arxiv.org/abs/2012.07918
https://knowledge.uchicago.edu/record/787
https://knowledge.uchicago.edu/record/787
https://arxiv.org/abs/1602.06899
https://arxiv.org/abs/1709.07343
https://arxiv.org/abs/1709.07343


86 Christopher BIRKBECK, Ben HEUER & Chris WILLIAMS

Manuscrit reçu le 12 juillet 2020,
révisé le 9 juillet 2021,
accepté le 15 juillet 2021.

Christopher BIRKBECK
Department of Mathematics
University College London
Gower street, London WC1E 6BT (UK)
c.birkbeck@ucl.ac.uk
Ben HEUER
Mathematical Institute
University of Bonn
Endenicher Allee 60, 53012 Bonn (Germany)
heuer@math.uni-bonn.de
Chris WILLIAMS
Mathematics Institute
University of Warwick
Coventry CV4 7AL (UK)
christopher.d.williams@warwick.ac.uk

ANNALES DE L’INSTITUT FOURIER

mailto:c.birkbeck@ucl.ac.uk
mailto:heuer@math.uni-bonn.de
mailto:christopher.d.williams@warwick.ac.uk

	1. Introduction
	1.1. What is new
	1.2. Elliptic modular forms via the anticanonical locus
	1.2.1. The case of elliptic modular forms
	1.2.2. Variation in families

	1.3. Generalisation to the Hilbert case
	1.3.1.  Hilbert modular varieties for G* at infinite level
	1.3.2. Hilbert modular varieties for G at infinite level
	1.3.3. Hilbert modular forms for G
	1.3.4. Comparison to other definitions

	1.4. Acknowledgements
	1.5. Notation

	2. Perfectoid modular curves and the Hodge–Tate period map
	2.1. Modular curves and their canonical and anticanonical loci
	2.2. The Hodge–Tate period map around 0 in P1

	3. Overconvergent elliptic modular forms
	3.1. Sousperfectoid spaces
	3.2. Overconvergent modular forms
	3.3. Comparison to overconvergent modular forms of classical weights
	3.4. Comparison to Katz' convergent modular forms

	4. Comparison with Andreatta–Iovita–Pilloni's modular forms
	4.1. The Pilloni-torsor
	4.2. The comparison morphism

	5. Perfectoid Hilbert modular varieties for G*
	5.1. Classical Hilbert modular varieties for G and G*
	5.1.1. Moduli problems for Hilbert–Blumenthal abelian varieties
	5.1.2. Hilbert modular varieties as moduli spaces

	5.2. Hilbert modular varieties for G* at infinite level
	5.3. The Hodge–Tate period morphism and its image
	5.4. The canonical differential

	6. Geometric overconvergent Hilbert modular forms
	6.1. Weights and analytic continuation
	6.2. Definition of overconvergent Hilbert modular forms

	7. Comparison to Andreatta–Iovita–Pilloni's geometric Hilbert modular forms
	7.1. The Andreatta–Iovita–Pilloni-torsor
	7.2. The comparison morphism

	8. Perfectoid Hilbert modular varieties for G
	8.1. The anti-canonical tower for G
	8.2. Wild full level structures
	8.2.1. `Hybrid' full level structures
	8.2.2. Components and the OF-linear Weil pairing
	8.2.3. The map beta1
	8.2.4. The map beta2

	8.3. Torsors over tame level
	8.3.1. The diagonal torsor

	8.4. Passing to infinite level
	8.4.1. The action of G(Qp)
	8.4.2. Comparison to chi gamma*(p infty)

	8.5. Hodge–Tate period maps

	9. Arithmetic overconvergent Hilbert modular forms
	10. Hecke operators
	10.1. The tame Hecke operators
	10.2. The Up-operators
	10.3. The Hecke action on arithmetic Hilbert modular forms
	10.4. Hecke-equivariance of the comparison

	References

