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We show how both the ellipticity η and degree of polarization P influence the extraordinary optical chirality
properties of nonparaxial vortex beams. We find that, in stark contrast to paraxial optics and nonvortex modes,
extremely rich and tunable spatial distributions of optical chirality density can be produced by an optical vortex
beam under tight focusing. We develop a theoretical description of how the optical chirality can be tailored
for purpose by altering both the state η and degree of polarization P of the input vortex mode, along with the
magnitude and sign of optical orbital angular momentum via the pseudoscalar topological charge �. We expect
that the results will have a significant role in both producing alternative techniques and improving existing
methods in chiral nano-optics and structured light photonics.
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I. INTRODUCTION

Chiral objects are nonsuperimposable with their mirror
image. Material chirality pervades the universe at all scales,
from the spiraling arms of galaxies to our hands and feet,
to the biomolecules responsible for life on earth. Light may
also be chiral, most commonly manifest in circular polariza-
tion states, where the electromagnetic field vectors trace out
helices that may twist to the left or right. This chirality associ-
ated with the handedness of polarization is often described
in terms of the pseudoscalar optical helicity or chirality
σ = ±1 where the upper (lower) sign refers to left-handed
(right-handed). A prevalent method of studying material chi-
rality is to use chiral light in chiroptical spectroscopy; classic
examples include circular dichroism, optical rotation, and
vibrational optical activities [1,2]. The basis of such spec-
troscopy is extremely simple: a right-handed (left-handed)
molecule or nanostructure interacts with a left-handed circu-
larly polarized photon σ = 1 in a different way than it does
with a right-handed circularly polarized photon σ = −1, this
discrimination is referred to as natural optical activity [1]. The
importance of chiroptical spectroscopy cannot be overstated:
essentially all the molecular building blocks of life (nucleo-
sides, amino acids, proteins, carbohydrates, etc.) are chiral;
over half of the developed pharmaceutical drugs are chiral
[3], and considering the recent challenge faced globally by
COVID-19 it is pertinent to state that chiral spectroscopy can
be used to study viruses [4,5]. It is therefore easy to appreciate
why chiroptical spectroscopy is a widespread and flourishing
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area of research throughout science, being applied in chemical
systems [1,5,6], biomolecules [7–10], and artificial nanos-
tructures and metamaterials [11–16]. All these studies, while
concerning an extremely diverse range of chiral materials, still
predominantly rely on circularly polarized light as the chiral
optical probe.

Structured light is a term which refers to the fact that, due
to significant advances in optics technology, we can tailor
beams of light to possess inhomogeneous polarization, am-
plitude, and phase, both spatially and temporally [8,9]. One
of the most well-known types of structured light is the optical
vortex, a generic term which denotes an electromagnetic field
that possesses an azimuthal phase exp(i�φ), where � ∈ Z is
the pseudoscalar topological charge and φ is the azimuthal
coordinate. Specific modes include Laguerre-Gaussian and
Bessel beams. Optical vortices have found immense applica-
tion in a diverse range of areas; see the latest reviews [17–24].
Optical vortices are chiral irrespective of their polarization:
their helical wavefront (surface of constant phase) is chiral
and can twist to the left, � > 0, or right, � < 0. Since 2018
there has been a surge in research activity applying the chiral-
ity of optical vortices in chiroptical light-matter interactions
and spectroscopies [22,25]. Cutting-edge experiments include
x-ray vortex dichroism of organometallic compounds [26],
nonlinear vortex dichroism in chiral molecules as small as fen-
chone and limonene [27], and differential Raman scattering of
vortex beams in liquid crystals [28].

Critical to engaging the chirality associated with the phase
of an optical vortex is the consideration that it is a global
property of the beam (its structure spans the transverse di-
mension of the beam, i.e., beam width), unlike polarization
which is a local property. As such, in order for the chirality of
materials to discriminate the handedness of the optical vortex,
� > 0 or � < 0, the size scale must be relatively similar:
for small chiral nanostructures and molecules the light must
therefore be spatially confined, e.g., by tight focusing. It is
well known that the state and degree of polarization of the
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input beam significantly influence the electromagnetic fields
around the focal plane of a nonparaxial field [29,30]. All
such previous studies looking at the optical chirality density
of vortex beams have been concerned with beams that are
fully polarized (i.e., degree of polarization P of the input
beam before focusing is P = 1) and with the two extremes
of ellipticity η, i.e., linearly polarized η = 0 or circularly
polarized η = ±π/4. In this study we look specifically at
how the degree of polarization and ellipticity influences the
optical chirality density of vortex beams in nano-optics. It
is highlighted that varying these two experimentally con-
trollable parameters produces an extremely rich and diverse
number of landscapes of optical chirality density in vortex
beams.

II. OPTICAL CHIRALITY DENSITY OF A NONPARAXIAL
BESSEL BEAM

A. Electromagnetic fields of nonparaxial Bessel beams
and optical chirality density

We use analytical theory to describe nonparaxial Bessel
beams. We use the standard language first introduced by Lax
et al. [31]. The zeroth-order transverse electromagnetic fields

T0 for a Bessel beam propagating along z are

E (T0 ) = (αx̂ + β ŷ)J�[kt r]E0ei(kzz+�φ−ωt ),

B(T0 ) = (αŷ − βx̂)
kz

k
J�[kt r]B0ei(kzz+�φ−ωt ), (1)

where (α, β ) are the generalized Jones vectors; E0 is the
electric field amplitude; B0 = E0/c; k2 = ω2/c2 = k2

x + k2
y +

k2
z = k2

t + k2
z is the square of the wave number, with kz =√

k2−k2
t and kt =√

k2
x +k2

y ; J�[kt r] are Bessel functions of the
first kind; exp(i�φ) is the azimuthal phase mentioned in the
Introduction; and ω is the mean circular frequency. We drop
the dependences [· · · ] from now on for notational brevity.
Both fields in (1) describe a paraxial mode and the electro-
magnetic fields of a Bessel beam correctly when k ≈ kz, e.g.,
a well-collimated beam. However, it is easy to show that (1)
do not satisfy Maxwell’s equations in their current form, e.g.,
∇ · E (T0 ) �= 0. By using Maxwell’s equations in a well-known
method first developed by Lax et al. [31], we can generate the
electromagnetic fields of a Bessel beam up to second order in
a smallness parameter (kt/kz ), and thus they now include the
zeroth-order transverse field T0; the first-order longitudinal
field L1 (polarized along ẑ); and the second-order transverse
fields T2 (see Supplemental Material [32] for derivation):

E =

⎡
⎢⎢⎣

(αx̂ + β ŷ)J� + ẑ ikt
2kz

({α + iβ}e−iφJ�−1 + {iβ − α}eiφJ�+1)

+ k2
t

4k2 (x̂ [2αJ� + J�−2{α + iβ}e−2iφ + J�+2{α − iβ}e2iφ]

+ŷ[2βJ� + J�−2{iα − β}e−2iφ + J�+2{−β − iα}e2iφ])

⎤
⎥⎥⎦E0ei(kzz+�φ−ωt ), (2)

B =

⎡
⎢⎢⎣

(αŷ − βx̂) kz

k J� + ẑ ikt
2k ({iα − β}e−iφJ�−1 + {iα + β}eiφJ�+1)

+ k2
t

4kkz
(x̂[−2βJ� + J�−2{iα − β}e−2iφ + J�+2{−iα − β}e2iφ]

+ŷ[2αJ� + J�−2{−iβ − α}e−2iφ + J�+2{iβ − α}e2iφ])

⎤
⎥⎥⎦B0ei(kzz+�φ−ωt ). (3)

Both (2) and (3) can accurately describe a paraxial or
nonparaxial (e.g., tightly focused) Bessel beam. The small-
ness parameter for a Bessel beam is kt/kz: increasing the
size of this factor essentially accounts for tightly focusing
the beam. For example, in the far field kt/kz ≈ 0 (or k ≈ kz)
for a z-propagating beam and the field can essentially be
described by the zeroth-order transverse fields in (2) and
(3), or equally (1) to an almost exact approximation (i.e., a
paraxial description) [33]. By focusing the beam kt/kz be-
comes larger and the additional longitudinal and transverse
terms in (2) and (3) become important in magnitude and
are responsible for the extraordinary properties of structured
light in nano-optics [34–36]. Thus, the paraxial descrip-
tion (1) no longer suffices under tight focusing. Throughout
this paper we refer to the polarization properties of the in-
put light in the far field as two-dimensional (2D), i.e., the
zeroth-order electric field polarization state. The polarization
properties of the nonparaxial field under spatial confine-
ment are generally referred to as three-dimensional (3D)
polarization [37–39].

The optical chirality density C for a quasimonochromatic
beam may be defined as (see Supplemental Material [32] for

further information) [40–42]

C = −ε0ω

2
Im(Ē · B), (4)

where the overbar denotes complex conjugation. Crudely put,
this dynamic property of light (conserved in free space) gives
a measure of how chiral the optical field is. It is related to the
optical helicity; interested readers are referred to Refs. [40,42]
for further information. Chiral light-matter interactions are
produced from multipolar interferences that give space-odd,
time-even tensors for the material [1,43]. It is of utmost im-
portance to appreciate that (4) couples to the electric dipole
magnetic dipole (E1M1) interferences supported only by chi-
ral materials. The interaction of light and matter leads to a
transition amplitude consisting of a sum of multipolar cou-
plings: electric dipole E1 + magnetic dipole M1 + electric
quadrupole E2 and so on [1,44]. The transition probability
of any given optical process (absorption, scattering, etc.) de-
pends on the square of this amplitude. While the ensuing
E1E1 and M1M1 terms are independent of both material and
optical chirality (being space even and time even), the E1M1
cross terms mix the electric and magnetic dipole interactions,
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leading to chiral observables directly proportional to (4). The optical chirality, defined by (4), therefore does not account for
all chiral light-matter interactions, for example, those which stem from electric dipole electric quadrupole interferences (E1E2).
Inserting (2) and (3) into (4) gives the optical chirality density as (full systematic derivation in Supplemental Material [32])

C = − Iω

c2

[
kz

k
J2
� P sin 2η + k2

t

4kkz

(
2

{
1 + k2

z

k2

}
J2
� P sin 2η + {P sin 2η + 1}J2

�−1 + {P sin 2η − 1}J2
�+1

)

+
(

k4
t

8k3kz

)(
2J2

� P sin 2η + J2
�−2{P sin 2η + 1} + J2

�+2{P sin 2η − 1})
]
, (5)

where I = cε0E2
0 /2 is the intensity of the beam; P is the

2D degree of polarization of the input, which takes values
between 0 for unpolarized light and 1 for polarized light,
i.e., 0 � P � 1, and is formally defined as the ratio of the
intensity of the polarized part of the beam to the total intensity
[45]; η defines the degree of 2D polarization ellipticity and
is formally defined as the ratio of the minor (b) and major
(a) axes of the polarization ellipse tan η = b/a: η = 0 is
linearly polarized light; η = ±π/4 is pure circular; and
−π/4 < η < π/4 corresponds to elliptically polarized light
(positive signed is right handed, negative sign left handed).
The first term in square brackets in (5) corresponds to the
well-known optical chirality density for a paraxial beam
of light which stems purely from a degree of ellipticity in
the 2D polarization state, proportional to the third Stokes
parameter, and clearly requires P �= 0. All the other terms
correspond to the optical chirality density generated by
first-order longitudinal and second-order transverse fields
which become important under the nonparaxial conditions
we are interested in. Note that no terms in (5) depend
on the azimuth θ , i.e., the orientation of the 2D polarization
ellipse.

B. Optical chirality density of a Bessel beam with pure
P = 1 2D polarization

The optical chirality density (5) is plotted in Figs. 1 and 2
for P = 1 and kt/kz = 0.6315 (i.e., tightly focused).

The leftmost column in Figs. 1 and 2 corresponds to an
input 2D linearly polarized (η = 0) Bessel beam; the right-
most column corresponds to a circularly polarized Bessel
beam, and in between shows varying degrees of ellipticity.
First, we note that 2D linearly polarized vortex beams un-
der tight focusing exhibit nonzero optical chirality densities
[46,47]: this is in stark contrast to plane waves or parax-
ial beams, where there must be a degree of ellipticity η

in the polarization state. Furthermore, comparing Figures 1
and 2 shows that the optical chirality density spatial distri-
butions reverse depending on the sign of �, i.e., the vortex
wavefront handedness. It is this nonzero chirality associ-
ated with tightly focused linearly polarized vortex beams
which is responsible for vortex dichroism [26,48] and vor-
tex differential scattering [49]: chiral materials absorb and
scatter linearly polarized nonparaxial vortex beams at dif-
ferent rates depending on whether the input beam is � > 0
or � < 0.

FIG. 1. Evolution of the optical chirality density of an � = 1 Bessel beam in the focal plane with varying 2D-polarization ellipticity η.
The input polarization progresses from linearly polarized η = 0 through varying degrees of ellipticity −π/4 < η < π/4 until it reaches pure
circular polarization η = ±π/4. The top row cycles through right-handed polarization, the bottom row left-handed polarization. In all plots
kt/kz = 0.6315, λ = 729 nm, and each plot is normalized individually.
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FIG. 2. Evolution of the optical chirality density of an � = −1 Bessel beam in the focal plane with varying 2D-polarization ellipticity η.
(Everything else is the same as Fig. 1.)

Moving across the rows in Figs. 1 and 2 we are changing
the state of 2D polarization by increasing the degree of 2D
ellipticity of the input and this significantly alters the spatial
distribution of optical chirality density. It is noticeable that we
soon lose half of the rings of chirality density (the left-hand
panels have five rings, for example, whereas the rightmost
have three). We also note that there is a chiral interplay be-
tween the signs of � (vortex handedness) and the sign of η

(polarization handedness): this is due to spin-orbit interactions
of light. Most striking is the fact that when the handednesses
of the vortex and polarization are opposite (e.g., left-handed
vortex, right-handed ellipticity) we produce on-axis optical
chirality densities of the same sign as the ellipticity hand-
edness; where they are of the same handedness there is an
opposite signed chirality density which progresses to a null
density along the axis. This is somewhat similar to the be-

havior of the intensity of tightly focused vortex beams, where
it is often described in terms of parallel and antiparallel spin
and orbital angular momentum of the beams [35,50] (also see
Appendix B). Furthermore, in the cases of η ≈ ±π/40, � ± 1
(i.e., we have antiparallel polarization and vortex handedness)
we produce the spatial distribution of the optical chirality of
an � = 0 mode (see Fig. 3, for example), even though � �= 0.

It is simple to highlight the significant influence orbital
angular momentum of light (OAM) and vortex chirality have
on optical chirality by plotting (5) for � = 0, i.e., a tightly
focused nonvortex beam with no OAM. Figure 3 highlights
that when there is no degree of ellipticity in the 2D polar-
ization state (η = 0) the optical chirality is zero, and while
the magnitude of the optical chirality density increases with
increasing ellipticity, the spatial distributions are invariant to
both magnitude and sign (handedness). This is clearly in stark

FIG. 3. Evolution of the optical chirality density of a tightly focused � = 0 Bessel beam in the focal plane with varying 2D-polarization
ellipticity η. Each plot is normalized against |η| = π/4 plots. (Everything else is the same as Fig. 1.)
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FIG. 4. Evolution of the optical chirality density of an � = 1 and � = −1 weakly focused (kt/kz ) = 0.01 Bessel beam in the focal plane
with varying 2D-polarization ellipticity η. Each plot is normalized against |η| = π/4 plots. (Everything else is the same as Fig. 1.)

contrast to tightly focused � �= 0 Bessel modes which possess
OAM in Figs. 1 and 2.

Another degree of freedom we can control is the magnitude
of � for the input beam, and plots for � = ±2 modes can be
found in Appendix A. The optical chirality spatial distribu-
tions follow a pattern similar to Figs. 1 and 2 for the larger
value of �, the main difference being the increase in ring
widths analogous to the behavior of the intensity of vortex
beams.

In order to appreciate the role tight focusing has in produc-
ing the extraordinary optical chirality properties highlighted in
Figs. 1 and 2 it is useful to plot (5) under paraxial conditions.
We gave a qualitative physical reason for the necessity for
tight focusing in the Introduction: here we see it played out
by the mathematics. The analogous plots of Figs. 1 and 2 for
a weakly focused (kt/kz ) = 0.01, essentially a paraxial beam,
can be found in Fig. 4, where it is readily observed that all

the extraordinary properties of the nonparaxial field are lost.
Indeed, there are no observable spin-orbit interactions; there
is a vanishingly small (practically zero) chirality for linearly
polarized inputs η = 0, and the optical chirality density does
not depend on the sign of vortex handedness: the plots in
Fig. 4 are identical for � = ±1.

C. Optical chirality density of a Bessel beam
with partial 2D polarization

Between the two extremes of completely polarized light
P = 1 and unpolarized light P = 0 we have partially polarized
light. In the previous section we studied how the state of
polarization (specifically the degree of ellipticity η) affects the
optical chirality density in the focal plane for a fully polarized
beam P = 1; in this section we will study how the degree of
polarization P affects the optical chirality density for a set of

FIG. 5. Evolution of the optical chirality density of an � = 1 Bessel beam in the focal plane with varying degree of polarization P of
an elliptically polarized beam η = ±π/80. The top row cycles through right-handed polarization η = π/80, the bottom row left-handed
polarization η = −π/80. In all plots kt/kz = 0.6315, λ = 729 nm, and each plot is normalized individually.
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FIG. 6. Evolution of the optical chirality density of an � = 1 Bessel beam in the focal plane with varying degree of polarization P of an
elliptically polarized beam η = ±π/40. Everything else is as in Fig. 5.

fixed polarization states: Fig. 5: η = π/80; Fig. 6: η = π/40;
and Fig. 7: η = π/8.

First we must point out the remarkable result that even
when the beam is unpolarized P = 0 (leftmost columns in
Figs. 5–7), the optical chirality density is nonzero [51]. In
other words, we can get chiral light-matter interactions and do
chiral spectroscopy with unpolarized sources of light [51–53].
Furthermore, Figs. 5–7 clearly highlight how increasing (or
decreasing) the degree of 2D polarization P significantly in-
fluences the spatial distribution of the optical chirality density,
even though the state of 2D polarization η for the polarized
part of the field is fixed in each case (and so too is the
value of �).

Another way to gauge the influence of P is to compare how
the spatial distribution of the optical chirality of a fully 2D
polarized beam for a given η (from Figs. 1 and 2) compares
to that where P �= 1 (Figs. 5–7). As an example, Fig. 7 shows
the optical chirality density of a partially polarized beam with

η = π/8, which can be compared to the fourth column in
Fig. 1. We see that Fig. 7 shows that a P = 0.1, η = π/8
beam gives a similar optical chirality density as a P = 1, η =
π/80 beam. In this section we have concentrated on � =
1 modes; however, the corresponding � = −1 plots can be
found in the Supplemental Material [32], alongside the � =
±2 mode plots.

III. DISCUSSION AND CONCLUSION

Here we have systematically studied how the 2D state
and degree of polarization of an input paraxial vortex beam
influences the optical chirality density of the nonparaxial field
around the focal plane. We have highlighted the extremely
rich spatial distributions of optical chirality density that can
be produced by optical vortex beams in nano-optics. This
optical chirality density can be tailored for purpose by al-
tering both the state and degree of 2D polarization of the

FIG. 7. Evolution of the optical chirality density of an � = 1 Bessel beam in the focal plane with varying degree of polarization P of an
elliptically polarized beam η = ±π/8. Everything else is as in Fig. 5.
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FIG. 8. Evolution of the optical chirality density of an � = 2 Bessel beam in the focal plane with varying 2D-polarization ellipticity η.
The input polarization progresses from linearly polarized η = 0 through varying degrees of ellipticity −π/4 < η < π/4 until it reaches pure
circular polarization η = ±π/4. The top row cycles through right-handed polarization, the bottom row left-handed polarization. In all plots
kt/kz = 0.6315, λ = 729 nm, and each plot is normalized individually.

input vortex mode, along with the magnitude and sign of
OAM through �. It must be remembered that the optical
chirality density produced by paraxial beams or plane waves
requires both P �= 0 and η �= 0, and altering these parame-
ters does not lead to any observable variations in the spatial
distributions of the optical chirality density; they just vary in
magnitude (e.g., Fig. 4). Comparison between this currently
prevalent optical probe in chiroptical spectroscopy versus the
optical chirality of nonparaxial vortex beams we have high-
lighted in this work makes it readily clear why structured
light chirality is poised to revolutionize chiral light-matter
interactions [22,25,54].

It is worth briefly discussing another extraordinary prop-
erty of optical fields in nano-optics at this juncture: the
transverse spin momentum of light [34,55]. There have been

a number of recent studies looking at the influence of the
state and degree of 2D polarization on this property [56–59].
Like the optical chirality density of optical vortex beams, the
transverse spin momentum density of light occurs even if the
optical source is 2D unpolarized [56,57]. This property of
transverse spin is extremely generic for confined electromag-
netic fields, being present in surface evanescent waves and
tightly focused laser beams, for example. However, the optical
chirality density which exists for 2D unpolarized light strictly
only occurs in optical vortex beams [51]. It is rather interest-
ing to reflect on the extraordinary fact that light can possess
both spin angular momentum and optical chirality density for
2D unpolarized fields, and that the state and degree of 2D
polarization significantly influence the spatial distributions of
these quantities.

FIG. 9. Evolution of the optical chirality density of an � = −2 Bessel beam in the focal plane with varying 2D-polarization ellipticity η.
(Everything else is the same as Fig. 8.)
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FIG. 10. Evolution of the intensity of an � = 1 Bessel beam in the focal plane with varying 2D-polarization ellipticity η. The input
polarization progresses from linearly polarized η = 0 through varying degrees of ellipticity −π/4 < η < π/4 until it reaches pure circular
polarization η = ±π/4. The orientation of the 2D-polarization ellipse is zero. The top row cycles through right-handed polarization, the bottom
row left-handed polarization. In all plots kt/kz = 0.6315, λ = 729 nm, and each plot is normalized individually.

As previously mentioned in the Introduction, to date
practically all chiroptical spectroscopy and chiral light-
matter interactions have utilized circularly polarized light
(e.g., unstructured Gaussian beams) as the chiral optical
probe. The optical chirality density for vortex beams we
have studied has already been proven to offer significant
advancements in both generating novel and improving ex-
isting applications in chiral nano-optics [25–28,52]. Here
we have shown that this extraordinary optical chirality of
structured light is able to be tailored for purpose. Future
studies are aimed towards other forms of structured light
which have enhanced chiral properties [60], such as vec-
tor vortex modes, alongside the influence of second-order
coherence.

APPENDIX A: ADDITIONAL CHIRALITY DENSITY
DISTRIBUTIONS FOR PURELY POLARIZED LIGHT P = 1

Here we provide additional plots of the spatial distribution
for purely polarized Bessel beams relevant to Sec. II A of the
main text. Figures 8 and 9 show the spatial distribution of
the optical chirality density equation (6) from the main text
for cases of |�| = 2, i.e., showing the effects of increasing the
OAM of the input beam.

APPENDIX B: ENERGY DENSITY DISTRIBUTIONS
OF NONPARAXIAL BESSEL BEAMS

The corresponding time-averaged electric energy densities
wE = ε0

2 Re(Ē · E ), proportional to the intensity, for Bessel

FIG. 11. Evolution of the intensity of an � = −1 Bessel beam in the focal plane with varying 2D-polarization ellipticity η. (Everything
else is the same as Fig. 10.)
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beams under the identical conditions as Figs. 1 and 2 of
the main text are provided here. Unlike the optical chi-
rality density (5), displayed in Figs. 1 and 2, the energy
density (intensity) for nonparaxial beams is dependent on

the orientation of the 2D polarization ellipse, i.e., the az-
imuthal angle θ . In Figs. 10 and 11 we choose θ = 0, such
that for the case of η = 0 the 2D state of polarization is x
polarized.
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