Impact of measured and simulated tundra snowpack properties on heat transfer

Dutch, Victoria R. ORCID: https://orcid.org/0000-0002-4482-2853, Rutter, Nick, Wake, Leanne, Sandells, Melody, Derksen, Chris, Walker, Branden, Hould Gosselin, Gabriel, Sonnetag, Oliver, Essery, Richard, Kelly, Richard, Marsh, Phillip, King, Joshua and Boike, Julia (2022) Impact of measured and simulated tundra snowpack properties on heat transfer. The Cryosphere, 16 (10). pp. 4201-4222. ISSN 1994-0440

[thumbnail of tc-16-4201-2022]
Preview
PDF (tc-16-4201-2022) - Published Version
Available under License Creative Commons Attribution.

Download (1MB) | Preview

Abstract

Snowpack microstructure controls the transfer of heat to, as well as the temperature of, the underlying soils. In situ measurements of snow and soil properties from four field campaigns during two winters (March and November 2018, January and March 2019) were compared to an ensemble of CLM5.0 (Community Land Model) simulations, at Trail Valley Creek, Northwest Territories, Canada. Snow micropenetrometer profiles allowed for snowpack density and thermal conductivity to be derived at higher vertical resolution (1.25 mm) and a larger sample size (n = 1050) compared to traditional snowpit observations (3 cm vertical resolution; n = 115). Comparing measurements with simulations shows CLM overestimated snow thermal conductivity by a factor of 3, leading to a cold bias in wintertime soil temperatures (RMSE = 5.8 °C). Two different approaches were taken to reduce this bias: alternative parameterisations of snow thermal conductivity and the application of a correction factor. All the evaluated parameterisations of snow thermal conductivity improved simulations of wintertime soil temperatures, with that of Sturm et al. (1997) having the greatest impact (RMSE = 2.5 °C). The required correction factor is strongly related to snow depth (R2 = 0.77, RMSE = 0.066) and thus differs between the two snow seasons, limiting the applicability of such an approach. Improving simulated snow properties and the corresponding heat flux is important, as wintertime soil temperatures are an important control on subnivean soil respiration and hence impact Arctic winter carbon fluxes and budgets.

Item Type: Article
Additional Information: Funding Information: Victoria R. Dutch was funded by a Research Development Fund (RDF) studentship from Northumbria University and the Northern Water Futures project. Nick Rutter and Leanne Wake were supported by the Natural Environment Research Council (NERC; grant no. NE/W003686/1). Nick Rutter and Richard Essery were supported by the NERC Arctic Office UK–Canada Arctic Bursaries. Funding for Julia Boike was provided from the Helmholtz Association in the framework of MOSES (Modular Observation Solutions for Earth Systems).
Uncontrolled Keywords: water science and technology,earth-surface processes ,/dk/atira/pure/subjectarea/asjc/2300/2312
Faculty \ School: Faculty of Science > School of Environmental Sciences
Related URLs:
Depositing User: LivePure Connector
Date Deposited: 02 Jun 2023 10:31
Last Modified: 09 Jun 2023 10:30
URI: https://ueaeprints.uea.ac.uk/id/eprint/92258
DOI: 10.5194/tc-16-4201-2022

Downloads

Downloads per month over past year

Actions (login required)

View Item View Item