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Abstract

This paper develops a generic adjustment framework to improve in the market

risk forecasts of diverse risk forecasting models, which indicates the degree

to which risk is under‐ and overestimated. In the context of the energy commodity

market, a market in which tail risk management is of crucial importance, the

empirical analysis shows that after this adjustment framework is applied, the

forecasting performance of various risk models generally improves, as verified by

a battery of backtesting methods. Additionally, our method also lessens the risk

model disagreement among post‐adjusted risk forecasts.
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1 | INTRODUCTION

Interest in understanding the risks related to large price movements in the energy futures market has increased
following the large influx of financial investors in this market after the financialization of the commodity market
(Čech & Baruník, 2019; Qiao & Han, 2023; Xu & Lien, 2020). Recently, Ding et al. (2021) utilize artificial
intelligence techniques to extend traditional financial econometric models for volatility risk forecasting allowing
for liquidity effects. This highlights that the frequent sharp drops in prices and highly leveraged margin trading in
the energy futures market, however, have made it challenging for energy producers, index investors, speculators,
exchanges, and commodity market regulators to accurately evaluate the risks associated with potential extreme
price movements. The accuracy of such risk forecasts constitutes a major concern in effective risk management
practices. Risk measurement procedures often involve specification error in the underlying dynamic processes
and estimation error in the model parameters—a concern invoked by numerous studies on risk estimation and
forecast evaluation (for a comprehensive overview, see Christoffersen, 2012). In practice, then, when assessing
market risk, relying on a single risk forecasting model across different market conditions and for various assets is
implausible.1 Lazar and Zhang (2019) show that commodity risk measures carry a higher model misspecification
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risk among other assets, because of the stylized facts of the commodity returns (heavy‐tailedness and negative
skewness). This difficulty has made risk managers and regulators more aware of the forecasting ability of
particular risk models.

Another challenge in accurately evaluating risk is that financial institutions are required to allocate risk
capital to shield themselves from unexpected negative shocks. Here, the amount of risk capital is determined by
the risk model being used. However, the use of diverse risk models results in risk disagreement, leading to
varying degrees of capital buffers. As the risk numbers given by diverse risk models are typically different, as
shown in Danielsson et al. (2016), a regulatory arbitrage opportunity arises; that is, financial institutions can
report less risk to regulators with respect to inadequate risk models to reduce their capital requirements (Liu &
Stentoft, 2021). Hence, the model disagreement between numerous risk models makes risk management
inefficient in allocating risk capital to cover potential losses quantified by risk measures. This inefficiency is even
pronounced under Basel III (Basel Committee on Banking Supervision, 2019), as pointed out by Liu and Stentoft
(2021). As such, regulators are incentivized to reduce the model disagreement. For example, the Basel III reforms
(Basel Committee on Banking Supervision, 2021), also known as Basel IV, published revisions to the market risk
capital requirements, showing more tendency towards the standardized approach, away from the internal model
approach. Though the standardized approach is praised for its simplicity and consistency, it fails to allow for
specific characteristics of individual institutions. In contrast, the internal model approach can overcome this
issue. Motivated by these findings, our proposed adjustment methodology is aimed at not only providing
adequate risk forecasts but also mitigating the market risk model disagreement while embracing the diversity in
risk models.

To determine extreme risk exposures of an investment position in times of stress, standard risk measures are
typically used. These measures are value‐at‐risk (VaR) and expected shortfall (ES) (Basel Committee on Banking
Supervision, 2019): VaR measures the worst possible loss of an investment within a given probability level, and
ES quantifies the average loss exceeding the VaR threshold. Our proposed methodology, an internal model
approach, is built on the seminal work of Fissler and Ziegel (2016), which identifies the joint elicitability of VaR
and ES measures. This desirable elicitability property enables the optimal risk estimates to be uniquely obtained
by minimizing the average loss for a given loss function within the family of loss functions proposed by Fissler
and Ziegel (2016) (hereafter, FZ loss function for simplicity). By exploiting this property, we are able to improve
on the ex ante risk forecasts of risk models and reduce the model disagreement towards a recognized objective
(i.e., the minimization of average loss over a time period). Specifically, given the time series of pairs of ex ante
VaR and ES forecasts of a risk model at a predefined probability level and the associated return data, within a
rolling‐window scheme we obtain the time‐varying adjustments for VaR and ES, respectively, via the
minimization of average loss. If the value of the adjustment multiplier is smaller (resp. larger) than 1, this
suggests that the risk forecast is overestimated (resp. underestimated). This adjustment methodology is
applicable to different risk forecasting models, unlike the studies of Farkas et al. (2020) and Patra (2021), which
modify risk estimates restricted to a certain model. In addition, it gives a clear indication of the inaccuracies of
risk forecasts, rather than relying on the relative model performance within the model set (Barrieu &
Scandolo, 2015; Danielsson et al., 2016).

Empirically, we test this proposed methodology by applying it to a battery of commonly used risk forecasting
models for several futures in the energy futures market.2 Our proposed adjustment methodology identifies the
under‐ or over‐estimated risk forecasts generated by these risk models. After making adjustments to the VaR and
ES estimates, the forecasting ability of risk models generally improves, as verified via various VaR and ES
backtesting methods. Additionally, we investigate eight energy crisis periods and the margin‐level change date
that signals a high‐volatility market regime and find an abatement in risk disagreement among post‐adjusted risk
forecasts.

Our paper mainly relates to three strands of existing literature. First, this study focuses on the accuracy of risk
measures. In general, the adequacy of VaR and ES forecasts is affected by different sources: (1) the model
misspecification involving inappropriate assumptions about true data‐generating processes that may lead to the choice
of inadequate risk models (see Danielsson et al., 2016; Liu & Stentoft, 2021; Patra, 2021); and (2) the estimation errors
in model parameters, as shown in Pitera and Schmidt (2018) and Farkas et al. (2020). This inevitably leads to varying

2Risk model specifications can be found in Section 3.
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risk predictions depending on which risk estimation methodology is used. In practice, divergence in the risk forecasts
of different risk models can induce speculative institutional investors to use models that produce inferior forecasts,
with the aim of mitigating the risk capital required by regulators. Further, without knowing the statistical form of the
underlying asset behavior, capturing model misspecification and parameter estimation errors is problematic. To
address these issues, using the newly proposed methodology, we provide adjustments to quantify the extent to which
one risk model underestimates or overestimates risk. Thus, we use these adjustments to build better risk estimates,
which we subsequently evaluate with various backtesting methods. Our proposed methodology is a practical tool for
making adjustments to the ex ante VaR and ES forecasts of a given model, and it facilitates the refinement of internal
risk models for risk managers. It also helps to align the model performance across various models, thus disincentivizing
financial institutions from reporting inadequate risk numbers to the regulatory authority.

Second, this paper relates to the abundant literature on market risk forecasting models. The VaR and ES
forecasting methodologies can be classified into three main categories (Engle & Manganelli, 2004; Taylor, 2008):
nonparametric, parametric, and semiparametric. Nonparametric approaches (see, e.g., Chen, 2007) rarely rely on
assumptions about the conditional distribution of asset returns. Within this framework, VaR and ES are treated
as quantiles of a selected sample of returns over a specific window at a given significance level. Nonparametric
methods are model‐free and easy to implement, but they are often criticized because of their sensitivity to
window size selection. Conversely, before applying parametric models for VaR and ES forecasting (e.g.,
Escanciano & Olmo, 2010), we make a specific assumption on the asset returns distribution. The selection of the
distribution function can cause differences in the forecasting performance of VaR and ES. Semiparametric
models impose a parametric structure on the dynamics of VaR and ES but require no assumptions on the
conditional distributions of financial returns (Engle & Manganelli, 2004; Patton et al., 2019). The parameters of
semiparametric models are estimated by minimizing a specified loss (scoring) function instead of maximizing a
distributional likelihood function described in the parametric techniques.3 The forecasting accuracy of these risk
models depends heavily on the data. Parsimonious models can easily outperform other benchmarks in a stable
market, but they are often less efficient than highly sophisticated models during a turbulent period. While a
myriad of studies propose VaR and ES models to fit the market data thoroughly, practitioners and academics
prefer a limited number of them. Thus, in this study, we consider a group of commonly used VaR and ES models
covering the three categories mentioned above.4 Besides the risk models considered in this paper, our proposed
methodology can also be applied to several sophisticated machine learning models incorporating liquidity and
micro‐structure information, for example, the LIQ‐GARCH model in a genetic programming framework,
proposed by Ding et al. (2019).

Last, our study also relates to the line of research on statistical backtesting methods, which are necessary to
validate risk forecasting models. To thoroughly evaluate whether the forecasting accuracy of post‐adjusted VaR
and ES forecasts based on our methodology is improved, we consider traditional and comparative backtesting;
the former is designed to directly test the forecasting ability of a given model, whereas the latter focuses on
model performance comparisons among models. With respect to traditional backtesting, we adopt a series of
commonly used and recently proposed traditional backtesting methods tailored to different desirable criteria.
Specifically, the unconditional coverage (UC) test (Kupiec, 1995), the conditional coverage (CC) test
(Christoffersen, 1998), and the dynamic quantile (DQ) test (Engle & Manganelli, 2004) are used to backtest
VaR; the exceedance residual (ER) test (McNeil & Frey, 2000), the conditional calibration (CCA) test (Nolde &
Ziegel, 2017), and the regression‐based expected shortfall (ESR) test (Bayer & Dimitriadis, 2022) are used to
backtest ES. With respect to comparative backtesting, we use the well‐known Diebold‐Mariano (Diebold &
Mariano, 2002) and model confidence set tests (Hansen et al., 2011) to make model comparisons based on the
joint FZ loss of VaR and ES.

The paper is structured as follows: Section 2 briefly introduces the proposed methodology to adjust risk
forecasts based on the FZ loss function; Section 3 discusses the forecasting approaches for VaR and ES;
the empirical data are presented in Section 4; Section 5 compares the risk model disagreement of pre‐ and

3In the extreme value theory framework, which is also classified as a semiparametric model, parameters are obtained by maximizing the generalized
Pareto distribution (McNeil & Frey, 2000). However, they focus on the left tail of the conditional distribution instead of the whole conditional
distribution.
4More details are discussed in Section 3.
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post‐adjusted VaR and ES forecasts and validates the efficiency of this adjustment methodology via various
backtesting methods; and Section 6 concludes.

2 | ADJUSTMENT METHODOLOGY FOR RISK FORECASTS

The theoretical property of the FZ loss function that optimal VaR and ES forecasts can result in the
lowest average loss has motivated the applications of FZ loss functions in risk estimation and evaluation (Patton
et al., 2019; Nolde & Ziegel, 2017). In this section, we propose a generic and empirical approach to jointly
improve the accuracy of VaR and ES forecasts built by any given risk forecasting model via minimizing the FZ
loss function.

Here, we would like to adjust risk forecasts generated by a risk model using past realized observations and
1‐day ahead risk forecasts produced by the same model. A general setting is constructed to illustrate our

methodology. Let rt denote the asset return on day t , and correspondingly  ( )v eˆ , ˆt t
α

t t
α

+1 +1 , in which α will be

suppressed for brevity, represent the pairs of 1‐day‐ahead VaR and ES forecasts for day t + 1 based on the
information available until t at α level.5 Throughout this paper, the signs of VaR and ES are considered negative,
which indicates the potential loss occurring in the left tail of the return distributions, following Nolde & Ziegel
(2017). The pair of risk forecasts can be adjusted by

⋅ ⋅   v a v e a e= ˆ , = ˆ ,t t t t t t t t t t+1 1, +1 +1 2, +1 (1)

where a a( , )t t1, 2, are a set of arbitrary adjustment multipliers for VaR and ES forecasts formed at t , which satisfies
that a t1, , a > 0t2, to ensure the negativity of VaR and ES forecasts. The proposed form of adjustments, that is, the
pair of multipliers, can provide direct evidence of under‐ and over‐estimation risk and thus allow for model
comparisons among diverse models.

The derived consistency of FZ loss functions implies that the true values of (VaR, ES) forecasts can minimize the
expected loss (Fissler & Ziegel, 2016). When we use a consistent loss function, the optimal adjustment multipliers

( )a a* , *t t1, 2, consequently minimize the expectation of the FZ loss function:

⋅ ⋅ ( )a a L r a v a e α* , * = arg min [ ( , ˆ , ˆ ; ) ],t t
a a

FZ t t t t1, 2,
,

0 1 2

1 2

(2)

where t denotes the information set up to time t , and ⋅ ∕a a v e> ˆ ˆt t2 1 is set to ensure that for a pair of risk forecasts, ES
values are always smaller than VaR values, showing a more extreme level of risk than VaR. LFZ0 is the FZ0 loss
function considered in this paper, formulated as follows:

≤L r v e α
αe

r v v r
v

e
e( , , ; ) = −

1
{ }( − ) + + log(− ) − 1,FZ0 (3)

where refers to the indicator function, which is 1 if ≤r v, that is, a VaR exceedance occurs, and 0 otherwise. Of
the broad FZ family, the aforementioned loss function FZ0 is the primary option in terms of risk estimation and
backtesting; see related papers, Nolde and Ziegel (2017), Patton et al. (2019), and Merlo et al. (2021).

Then, we can obtain the estimators a a( ˆ , ˆ )t t1, 2, of the optimal adjustment multipliers on day t via the minimization of
average FZ0 loss over a training sample period with length M :6

⋅ ⋅ ⋅ ∕a a
M

L r a v a e α a a v e( ˆ , ˆ ) = arg min
1

( , ˆ , ˆ ; ), with > ˆ ˆ .t t
a a i t M

t

FZ i i i i i1, 2,
, = −

−1

0 +1 1 +1 2 +1 2 1 +1 +1

1 2

(4)

5Here, we follow Engle and Manganelli (2004) and use 1000 observations to estimate the parameter values in a risk model for (VaR, ES) forecasting.
6We use M = 2000 to avoid the outliers' effect, following the convention that the computation of average loss is based on 2000 data points in Nolde
and Ziegel (2017).
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Finally, we multiply optimized positive constants calibrated from the training sample to the next day VaR and ES
forecasts v e( ˆ , ˆ )t t+1 +1 to adjust the forecasts given by the risk model:

⋅ ⋅   v a v e a e˜ = ˆ ˆ , ˜ = ˆ ˆ .t t t t t t t t t t+1 1, +1 +1 2, +1 (5)

We use a rolling window scheme with the window length of M to obtain the time series of the pair of optimized
multipliers for further analysis in this paper. The detailed procedure can be found in Algorithm 1.

3 | RISK FORECASTING MODELS

A large number of risk forecasting models are used in the academic, industry, and regulator system. The model
choice highly depends on the preference and demand of end users. In this paper, we broadly select 10 commonly
used risk forecasting models as our candidates, including nonparametric, parametric, and semiparametric
models.

3.1 | Nonparametric methods

3.1.1 | Historical simulations (HS)

As a simple nonparametric approach, the standard HS is selected, which is implemented within an estimation window
with the size n = 1000. The HS predicts the 1‐day‐ahead VaR by taking α quantile of past returns empirically.
Additionally, we calculate the average left‐tail returns beyond VaR to proxy ES.

3.1.2 | Weighted historical simulations (WHS)

We consider the WHS method, which is based on a geometrically declining scheme (see Boudoukh et al., 1998). Within
this method, more recent observations are assigned with higher weights for forecasting. The weight of day
t t w t* = − + 1, …, is given as ∕η t η η η( *) = (1 − ) (1 − )t n*−1 , where η = 0.99.
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3.1.3 | Cornish–Fisher (CF) approximation

Another nonparametric method for VaR and ES estimation is the CF approximation method, which is an extended
normal quantile technique by considering the in‐sample estimated skewness δ̂1 and kurtosis δ̂2:

( ) ( ) ( )( ) ( ) ( )

v μ σ F α

F α

= ˆ + ˆ ( ),

( ) = Φ + Φ − 1 + Φ − 3Φ − 2 Φ − 5Φ ,

t t t CF

CF α α
δ

α α
δ

α α
δ

−1 −1
−1

−1 −1 −1 2 ˆ

6
−1 3 −1 ˆ − 3

24
−1 3 −1 ˆ

36
1 2 1

2 (6)

andΦα
−1 denotes the inverse of the Gaussian cumulative distribution function, μ̂t and σ̂t denote the in‐sample mean and

standard deviation, respectively.
Boudt et al. (2008) develop the CF approximation technique to estimate ES:

≤


  


e μ σ z z F α= ˆ + ˆ ( ) ,t t t CF−1 −1

−1 (7)

where

≤

∕
∕

∕ 
 

 
 



  




























































( )

( )

( ) ( )

( )

z z F α
α
ϕ F α

δ
I I ϕ F α

δ
I I

δ
I I I ϕ F α

I

j

j
g ϕ g j ϕ g p

j

j
g ϕ g j ϕ g p

( ) =−
1

( ) +
ˆ

24
− 6 + 3 ( ) +

ˆ

6
( − 3 )

+
ˆ

72
− 15 + 45 − 15 ( ) ,

=

2

2
( ) + 2 ( ), for is even ,

(2 + 1)

(2 + 1)
( ) − (2 + 1) ( ), for is odd ,

CF CF CF

CF

p
i

p
j

p

j

i α
i

α
j

p

α

i

p
j

p

j

i α
i

α
j

p

α

−1 −1 2 4 2 −1 1 3 1

1
2

6 4 2 −1

=1

2
=1

2

=1

2

=1

2

=0

*
=0

*

=0

2 +1

=0

*

and ∕p p* = ( − 1) 2, g F α= ( )α CF
−1 . ⋅ϕ ( ) denotes the Gaussian probability density function.

3.2 | Parametric methods

3.2.1 | GARCH(1,1)–Student's t model (G–t)

The generalized autoregressive conditional heteroskedasticity (GARCH) framework is proposed by Bollerslev (1986) to
model conditional volatility with a specified distribution of innovations. In this paper, we consider the GARCH(1,1)
model with the Student's t (GARCH–t) and skewed t (GARCH–skt) distributional innovations as our candidates. They
are more accurate in terms of describing heavy tails and negative skewness (Patton et al., 2019). The (VaR, ES) forecasts
can be obtained via the following specification:

( ) ( )

v μ σ F α ν

e μ σ

= ˆ + ˆ ( , ),

= ˆ + ˆ ,

t t t t

t t t

ν F α ν

ν

t F α ν

α

−1

+ ( , )

− 1

( , )

1−

t t
−1 2 −1 (8)

where ν denotes the estimated degree of freedom (DoF) parameter of the t distribution, and ⋅t ( ) is the Student's t
distribution probability density function.
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3.2.2 | GARCH(1,1)–skewed t model (G–skt)

Next, we suppose that the innovations follow a skewed‐t distribution. Thus, we forecast risk measures as in the
following expression:

∞


v μ σ F α ν λ

e μ σ xf x dx

= ˆ + ˆ ( , , ),

= ˆ + ˆ ( ) ,

t t t skt

t t t α

v α

skt

−1

1

−

− ( ) (9)

where ⋅f ( )skt denotes the skewed‐t distribution probability density function.

3.3 | Semiparametric methods

3.3.1 | Extreme value theory with peaks‐over‐threshold (EVT‐POT)

The EVT provides a tool for estimating the tails based on available observations in the left tail of distribution. McNeil
and Frey (2000) propose a semiparametric model applying EVT to describe the tail of the conditional distribution,
which is developed by Samuel (2008). Following this, we use the POT method to consider the exceedances of past
observations over a typically high threshold, where a generalized Pareto distribution (GPD) is employed to fit negative
returns over this specified threshold:

v μ σ F α= ˆ + ˆ ( ),t t t EVT
−1 (10)

where the quantile F α( )EVT
−1 can be estimated as

∕
















F α u

s

ξ

α

n n
( ) = +

ˆ

ˆ
1 −

− 1 ,EVT
u

ξ
−1

− ˆ

with both the scale parameter ŝ and the shape parameter ξ̂ estimated from the fitting of the GPD distribution. The term
nu denotes the number of observations exceeding the selected threshold u. Consequently, the predicted ES can be
calculated as







e μ σ F α

ξ

s ξ u

ξ z
= ˆ + ˆ ( )

1

1 − ˆ
+

ˆ − ˆ

(1 − ˆ) ˆ
.t t t EVT

α

−1

3.3.2 | One‐factor GAS model (GAS‐1F)

Patton et al. (2019) propose a group of dynamic semiparametric models for VaR and ES forecasting. We select the one‐
factor generalized autoregressive score model (GAS‐1F), where we use the scaled score of the FZ0 loss function to drive
the time variation in the target parameter. The GAS‐1F model is expressed as

v a κ

e b κ b a

κ ω βκ γH s

= exp{ },

= exp{ }, < < 0,

= + + ,

t t

t t

t t t t−1 −1
−1

−1

(11)
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where the score variable st is defined as

≡
∂

∂
≤



 


s

L r a κ b κ α

κ e α
r v r e

( , exp{ }, exp{ }; )
= −

1 1
{ } − ,t

FZ t t t

t
t t t t

0 (12)

the Hessian factor Ht is set to one in our paper for simplicity. To estimate parameters in the framework, we minimize
the proposed FZ0 loss function.

3.3.3 | Filtered historical simulations (FHS)

To estimate VaR and ES in a GARCH(1,1) framework without assuming the underlying conditional distribution,
Barone‐Adesi et al. (1999) propose a semiparametric model called FHS. In this framework, we randomly draw the

historical standardized innovations (with replacement) B times to form a bootstrapped set: { }z z z* = *, …, *i
i

B

B
=1

1 . The

bootstrapped returns can be computed as follows:

r μ σ z* = ˆ + ˆ *,t
i

t t i
( )

where σ̂t is estimated by GARCH(1,1) model. Next, we apply the HS method to the bootstrapped returns { }r*t
i

i

B
( )

=1
to

obtain the estimated VaR and ES at α significance level.

3.3.4 | CAViaR model with symmetric absolute value (CAViaR‐SAV)

Taylor (2019) extends the ES estimation from the conditional autoregressive Value at Risk (CAViaR) models
introduced by Engle and Manganelli (2004). In this study, we select CAViaR‐SAV, which considers the symmetric
absolute values of historical observations:

⋅

 v ω βv γ r

e b v b

= + + ,

= , > 1.
t t t

t t

−1 −1 (13)

Here, the parameters of this model are estimated by maximizing the sum of logarithm of the asymmetric Laplace‐
likelihood function proposed by Koenker and Machado (1999):

≤





f r

α

e

r v α r v

αe
( ) =

− 1
exp

( − )( − { })
,t

t

t t t t

t

instead of minimizing the loss function.7

3.3.5 | CARE model with symmetric absolute value (CARE‐SAV)

Newey and Powell (1987) define the expectile of a distribution as the tail expectation if values above it were more likely
to occur than they actually are. Efron (1991) estimates VaR at α level by mapping it to the expectile at τ level, denoted
by q τ( ). Taylor (2008) proposes a set of conditional autoregressive expectile (CARE) models to forecast expectiles and
ES. We consider the CARE‐SAV, which is shown as:

7Taylor (2019) shows that maximizing the AL density function is the same as minimizing the FZ loss function under the assumption of zero‐mean
returns. Our estimation result is consistent when we apply the FZ loss function minimization.
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( )

q τ ω βq γ r

e α q τ

( ) = + + ,

( ) = 1 + ( ),

t t t

t
τ

τ α t

−1 −1

(1− 2 )

(14)

where the parameters are estimated by minimizing the loss function proposed by Newey and Powell (1987):

≤ S q r τ τ r q r q( , ; ) = − { } ( − ) .t t t t t t
2

4 | DATA

Our analysis focuses on four commodities in the energy sector, including WTI crude oil (CL), heating oil (HO), natural
gas (NG), and RBOB/unleaded gasoline (XB), which are listed on the Chicago Mercantile Exchange (CME). We obtain
daily prices for individual commodity's futures contracts and the corresponding open interests and volumes data from
Bloomberg. The sample period used in this paper is between April 4, 1990, and December 31, 2021 (7971 days), since
NG futures have a relatively short history, which is available starting from April 4, 1990. The XB futures contracts were
replaced by the RBOB Gasoline futures contracts in 2006. Thus, we use XB before 2006 and RBOB Gasoline after 2006
to represent RBOB/XB.

We calculate daily excess returns of long positions based on the assumption of fully collateralized futures positions
(e.g., Bakshi et al., 2019; Boons & Prado, 2019; Gorton et al., 2013; Koijen et al., 2018):

r
P

P
= − 1,t

t

t
+1

1 +1
1

1
(15)

where Pt
1 is the time‐t closing price of the 1st front‐month contract (the contract with the 1st shortest maturity at time t

among all available contracts). Focusing on the 1st front‐month contract could ensure sufficient liquidity. The front‐
month contract is rolled on the 7th day of the month or the next closest business day if 7th day of the month is not a
business day (Kang et al., 2020).

In Table 1, we present the summary statistics of their daily excess returns, open interest, and trading volume. Over
the time period studied, the means of all return series are close to zero, and the NG market is found to be the most
volatile one. Non‐zero skewness and high kurtosis reflect that all return series (especially of WTI CL and HO) are
slightly skewed and display leptokurtic distributions. This indicates that the return distributions of energy commodities
are not normally distributed and often have fat tails. It is also notable that WTI CL, as an important component of the
downstream refined oil products and highly financialized commodity, has the highest open interest and daily trading
volume in the energy sector.

TABLE 1 Summary statistics of energy commodity futures excess returns and their corresponding open interests and trading volumes

CL HO NG XB

Mean (%) 0.03 0.03 ‐0.05 0.06

SD 2.44 2.07 2.92 2.24

Min (%) −43.37 −29.60 −17.46 −25.78

Max (%) 25.10 13.66 20.64 21.28

Skewness −0.75 −0.34 0.21 −0.43

Kurtosis 31.50 11.61 5.91 14.15

AR(1) −0.01 −0.02 −0.04 −0.01

OI 234,793 61,578 122,729 67,447

Volume 191,768 29,527 55,408 31,454

ZHANG ET AL. | 9
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Figure 1 shows the dynamics of the daily returns of futures contracts of four energy commodities, with several
energy crisis periods highlighted in the gray‐shaded area. The energy crisis periods include (1) 2003 Iraq War (2003‐03‐
01 to 2003‐04‐30), (2) 2004 Hurricane Ivan (2004‐09‐01 to 2004‐10‐31), (3) 2005 Hurricane Dennis (2005‐07‐01 to 2005‐
10‐31), (4) 2006 Nigerian cuts (2006‐04‐01 to 2006‐05‐31), (5) 2008 Global Financial Crisis (2007‐12‐01 to 2009‐06‐30),
(6) 2008 OPEC cuts in production (2008‐12‐01 to 2009‐06‐30), (7) 2014–2016 oil prices collapse (2014‐06‐01 to 2016‐03‐
31) and (8) 2020 Covid pandemic (2020‐01‐23 to 2021‐02‐17).8 As shown in Figure 1, high volatilities are noticeable
around these crisis, indicating the high likelihood of incurring extreme losses. Among these crises, the 2003 Iraq War,
the 2008 Global Financial Crisis, the 2008 OPEC cuts in production, the 2014–2016 oil prices collapse and 2020 Covid
Crisis show a widespread impact on the four energy commodities.

5 | EMPIRICAL INVESTIGATION

Considering the widely used risk models in the current literature, we employ the proposed methodology to improve
VaR and ES forecasts for the energy commodities. We evaluate 1‐day‐ahead VaR and ES forecasts for the four
commodity futures returns and for the following three significance levels: 1%, 2.5%, and 5%, of most interest to financial
regulators and institutions (Basel Committee on Banking Supervision, 2019). One‐day‐ahead VaR and ES forecasts are
made with parameter values estimated within a fixed window of 1000 observations starting from April 4, 1990, for each
model (except for nonparametric ones) and each probability level.9 Then, the adjustment parameters are estimated
using a rolling window of 2000 returns and risk forecasts, which moves forward by 1 day at a time. The out‐of‐sample
period for each asset contains 4971 days, between March 27, 2002, and December 31, 2021.

FIGURE 1 Daily energy commodity futures excess returns.

8The sample period of the COVID‐19 crisis starts on 2020‐01‐23, the day of the Wuhan lockdown in China, marking the beginning of the pandemic.
We use 2021‐02‐17 as the end of Covid crisis, which is the first day when CL price was higher than its close price in 2019, following the impact of
COVID‐19.
9The fixed window scheme has been widely accepted for parameter estimation of parametric and semiparametric models among practitioners but has
been criticized for its lack of model flexibility in adapting to market conditions. To illustrate the effectiveness of our methodology, risk forecasting
models considered in this paper are mainly estimated using this fixed window strategy.

10 | ZHANG ET AL.
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5.1 | Model disagreement of risk forecasts

Different characteristics of risk models lead to disagreement among their risk forecasts. One of the benefits of our risk
adjustment method is to reduce these disagreements among diverse risk models; this method is not restricted to any
model or model set used. To investigate the disagreement level of pre‐ and post‐adjusted risk forecasts, we follow
Danielsson et al. (2016) to calculate the ratio of the maximum to the minimum tail risk forecasts—referred to as the
risk ratio—by utilizing all candidate models. At time t + 1, the risk ratio for one asset is defined as

RiskRatio
TailRisk

TailRisk
=

max( )

min( )
,t

t n
N

t n
N+1

+1 =1

+1 =1

(16)

where N is the number of candidate models, which is equal to 10 in this paper. According to the definition, the risk
ratio must be greater than one. The risk ratio is approaching one, indicating less model disagreement.

Panel A in Table 2 displays average risk ratios from pre‐adjusted 1% daily VaR forecasts by using 10 candidate
models and by excluding one particular model over the full out‐of‐sample period and during seven energy crisis
periods. Overall, risk model disagreement for oil‐related products, including WTI CL, HO, and RBOB/Unleaded
Gasoline, differs from NG. First, when all candidate models are considered, a larger disagreement between risk
forecasts can be observed in oil‐related products (risk ratio is more than 2.28) relative to NG products (risk ratio is 1.79).
Second, for oil‐related products, the risk ratio is relatively low when the CARE‐SAV model is excluded, but the lowest
risk ratio is observed after excluding the EVT‐POT model in the NG market. It is interesting to note that both the
CARE‐SAV and EVT‐POT models produce the highest tail risk in the (oil products) NG market, since a selection of
threshold is required when implementing these procedures. In a crisis period, a biased selection of threshold may result
in significant estimation errors. Last, during 2008 global financial crisis and 2020 global Covid crisis, risk disagreement
for oil‐related products is higher than NG, especially for WTI CL. This is because CL is a highly financialized energy
commodity and can be significantly influenced by shocks.

Market conditions potentially have impacts on risk ratios—for example, a change in political environment (i.e.,
wars), supply/demand disruptions (i.e., hurricanes), and so on. Inspired by the key geopolitical and economic events
that affect oil prices, we consider eight events as energy crises, covering wars, natural disasters, a financial crisis, OPEC
supply disruptions, and Covid global pandemic.10 The mean of risk ratios during the crisis period in Panel A in Table 2
shows that risk disagreement is relatively high during the crisis period. For oil‐related products, risk disagreement is
extremely high during the 2003 Iraq War, 2008 Global Financial Crisis, 2008 OPEC cuts in production, 2014–2016 oil
prices collapse, and 2020 Covid crisis. However, a high risk ratio for NG is observed during Hurricane Ivan and
Hurricane Dennis (in 2004 and 2005, respectively), which resulted in a reduction in the production of NG.

Panel B in Table 2 shows risk ratios obtained from post‐adjusted VaR forecasts. First, compared to Panel A in
Table 2, the risk ratios of VaR forecasts calculated from all candidate models witness a drop after utilizing an
adjustment method to 1% daily VaR over the out‐of‐sample period.11 For example, the risk ratio decreases from 3.06
and 1.79 to 2.54 and 1.56 in the WTI CL market and NG market, respectively. Second, the decrease in risk disagreement
after adjusting VaR forecasts can also be observed in crisis periods. In the 2008 financial crisis period, VaR forecasts
from different risk models are highly divergent in the WTI CL market (average risk ratio in this period is 3.08). This
disagreement reduces to 2.24 after applying the risk adjustment method. Last, after the VaR adjustment, the risk ratios
are more stable even if one risk model is excluded from the candidate models. This means that the risk adjustment
method leads to the VaR level becoming less sensitive to one particular model.

Panels A and B in Table 3 show the risk ratios calculated from pre‐ and post‐adjusted ES, respectively. Consistent
with the VaR disagreement, the ES disagreement also lessens after applying the adjustment method in the full sample
and most of the crisis periods. Thus, the risk adjustment method not only helps reduce the VaR disagreement but also
improves the ES disagreement.

In addition, the change in margin requirements often happens in the energy commodity futures market, as
regulators intend to adjust the margin level to stabilize the market in the face of high fluctuating commodity futures
prices. For example, CME Clearing uses a variety of VaR‐based models to determine their benchmark margin levels.12

10See https://www.eia.gov/finance/markets/crudeoil/spot_prices.php for more details.
11For more details on the 2.5% and 5% VaR and ES, see Tables C1 and C2, respectively.
12See https://www.cmegroup.com/clearing/risk-management/futures-and-options-margin-model.html for more details.
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TABLE 2 Risk ratio sensitivity: 1% VaR.

Panel A: Pre‐adjusted

Energy Sample/Events None HS1000 WHS CF G‐s G‐skt
EVT‐
POT GAS‐1F FHS

CAViaR‐
SAV

CARE‐
SAV

CL Full Sample 3.06 2.96 3.04 2.52 3.05 3.06 3.06 2.91 3.06 3.00 2.53

2003 Iraq War 3.17 2.88 3.10 3.17 3.16 3.17 3.17 3.10 3.17 3.17 2.01

2004 Hurricane Ivan 2.37 2.37 2.34 2.31 2.37 2.37 2.37 2.27 2.37 2.37 1.87

2005 Hurricane Dennis 2.61 2.61 2.61 2.55 2.61 2.61 2.61 2.19 2.61 2.61 1.95

2006 Nigerian Cuts 2.32 2.32 2.27 2.32 2.31 2.32 2.32 2.26 2.32 2.32 1.63

2008 Global Financial Crisis 3.08 2.98 3.06 3.08 3.07 3.08 3.08 3.02 3.07 3.07 2.07

2008 OPEC Cuts Production 3.08 2.95 3.06 3.08 3.08 3.08 3.08 3.08 3.08 3.06 2.11

2014–2016 Oil Prices Collapse 2.86 2.70 2.82 2.81 2.86 2.86 2.86 2.85 2.86 2.85 1.98

2020 Covid Crisis 7.81 6.63 7.81 4.56 7.81 7.81 7.80 7.69 7.81 7.55 7.12

HO Full Sample 2.28 2.22 2.25 2.18 2.27 2.28 2.26 2.18 2.27 2.26 1.95

2003 Iraq War 2.65 2.50 2.65 2.65 2.64 2.65 2.64 2.47 2.65 2.65 1.90

2004 Hurricane Ivan 1.95 1.95 1.87 1.90 1.95 1.95 1.92 1.95 1.95 1.95 1.65

2005 Hurricane Dennis 2.52 2.52 2.51 2.50 2.51 2.52 2.52 2.20 2.52 2.52 2.03

2006 Nigerian Cuts 2.00 1.98 1.91 2.00 2.00 2.00 2.00 1.91 2.00 2.00 1.63

2008 Global Financial Crisis 2.63 2.56 2.54 2.63 2.62 2.63 2.63 2.56 2.63 2.63 2.04

2008 OPEC Cuts Production 2.73 2.60 2.66 2.73 2.73 2.73 2.72 2.65 2.73 2.73 2.12

2014–2016 Oil Prices Collapse 2.50 2.30 2.47 2.45 2.49 2.50 2.50 2.48 2.46 2.49 2.05

2020 Covid Crisis 3.23 2.81 3.15 2.88 3.22 3.23 3.20 3.04 3.23 3.22 2.82

NG Full Sample 1.79 1.78 1.77 1.76 1.79 1.78 1.70 1.72 1.77 1.78 1.79

2003 Iraq War 2.14 2.14 2.04 2.14 2.14 2.14 2.02 2.01 2.14 2.11 2.14

2004 Hurricane Ivan 1.94 1.94 1.92 1.93 1.94 1.94 1.85 1.94 1.94 1.94 1.94

2005 Hurricane Dennis 1.93 1.93 1.91 1.90 1.93 1.93 1.80 1.91 1.93 1.93 1.93

2006 Nigerian Cuts 1.70 1.70 1.67 1.70 1.70 1.69 1.56 1.57 1.70 1.69 1.69

2008 Global Financial Crisis 1.69 1.69 1.68 1.68 1.69 1.67 1.57 1.59 1.68 1.68 1.69

2008 OPEC Cuts Production 1.87 1.86 1.87 1.87 1.87 1.87 1.69 1.65 1.87 1.87 1.87

2014–2016 Oil Prices Collapse 1.68 1.68 1.66 1.68 1.68 1.68 1.58 1.68 1.62 1.68 1.66

2020 Covid Crisis 1.88 1.87 1.87 1.84 1.88 1.88 1.74 1.76 1.88 1.87 1.88

XB Full Sample 2.36 2.31 2.34 2.12 2.36 2.36 2.36 2.14 2.36 2.35 2.18

2003 Iraq War 2.02 1.93 2.01 2.02 1.99 2.02 2.02 1.87 2.02 2.02 1.77

2004 Hurricane Ivan 1.71 1.71 1.69 1.67 1.70 1.71 1.71 1.62 1.71 1.71 1.55

2005 Hurricane Dennis 2.37 2.30 2.33 2.34 2.33 2.37 2.37 1.98 2.37 2.37 2.11

2006 Nigerian Cuts 1.88 1.88 1.85 1.83 1.87 1.88 1.88 1.72 1.88 1.88 1.65

2008 Global Financial Crisis 2.11 2.07 2.07 2.09 2.10 2.11 2.11 1.90 2.11 2.10 1.89

2008 OPEC Cuts Production 2.19 2.16 2.11 2.19 2.18 2.19 2.19 1.96 2.19 2.18 2.00

2014–2016 Oil Prices Collapse 2.21 2.12 2.18 2.21 2.20 2.21 2.21 1.92 2.18 2.20 2.01

2020 Covid Crisis 4.63 3.99 4.62 3.55 4.62 4.63 4.62 4.24 4.63 4.61 4.35

Note: The mean of the risk ratio of the highest to the lowest daily 1% pre‐adjusted (post‐adjusted) VaR forecasts in Panel A (in Panel B) for four energy
commodities futures indicated in the first column. The second column indicates the sample/event period used for risk ratio calculation, including both full out‐
of‐sample period and eight energy crisis periods. Risk ratios presented in the third column (“None”) are calculated from daily VaR forecasts by using all 10
candidate models. The rest of columns display risk ratios when one specific model is excluded to avoid the effect of outlying forecasts. The excluded model is
indicated by the column name.
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Panel B: Post‐adjusted

None HS1000 WHS CF G‐s G‐skt EVT‐POT GAS‐1F FHS CAViaR‐SAV CARE‐SAV

2.54 2.44 2.50 2.14 2.54 2.54 2.54 2.48 2.53 2.53 2.15

2.30 2.15 2.21 2.28 2.30 2.30 2.30 2.30 2.30 2.30 1.63

1.86 1.86 1.69 1.75 1.86 1.86 1.86 1.86 1.86 1.86 1.57

1.78 1.78 1.76 1.74 1.78 1.78 1.78 1.70 1.78 1.78 1.50

1.74 1.70 1.58 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.46

2.24 2.24 2.21 2.11 2.24 2.24 2.24 2.22 2.23 2.23 1.73

2.18 2.18 2.11 2.04 2.18 2.18 2.18 2.17 2.16 2.17 1.74

2.38 2.32 2.29 2.31 2.38 2.38 2.38 2.37 2.37 2.37 1.74

6.26 5.14 6.26 4.16 6.26 6.26 6.26 6.11 6.26 6.23 5.45

2.12 2.06 2.08 2.07 2.12 2.12 2.12 2.06 2.09 2.11 1.71

2.62 2.57 2.60 2.62 2.62 2.62 2.62 2.54 2.60 2.62 1.70

1.89 1.89 1.70 1.88 1.89 1.89 1.89 1.88 1.89 1.89 1.46

2.27 2.26 2.16 2.27 2.27 2.27 2.27 2.19 2.27 2.27 1.64

1.84 1.79 1.74 1.84 1.84 1.84 1.84 1.79 1.84 1.84 1.55

2.18 2.16 2.10 2.16 2.18 2.18 2.18 2.16 2.18 2.18 1.73

2.26 2.23 2.18 2.21 2.26 2.26 2.26 2.22 2.26 2.25 1.87

2.44 2.30 2.42 2.39 2.44 2.44 2.44 2.42 2.39 2.44 1.78

2.99 2.68 2.92 2.81 2.99 2.99 2.99 2.82 2.99 2.99 2.37

1.56 1.54 1.51 1.54 1.56 1.56 1.56 1.53 1.55 1.54 1.55

1.78 1.78 1.69 1.78 1.78 1.78 1.78 1.77 1.77 1.72 1.77

1.70 1.69 1.48 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70

1.51 1.51 1.33 1.49 1.51 1.50 1.51 1.51 1.50 1.50 1.51

1.34 1.34 1.30 1.34 1.34 1.34 1.34 1.34 1.31 1.33 1.32

1.41 1.40 1.40 1.39 1.41 1.41 1.41 1.38 1.41 1.39 1.40

1.34 1.33 1.33 1.34 1.34 1.34 1.34 1.34 1.34 1.32 1.33

1.50 1.49 1.45 1.50 1.50 1.50 1.50 1.47 1.46 1.49 1.49

1.52 1.51 1.50 1.46 1.52 1.52 1.52 1.47 1.52 1.50 1.51

2.29 2.23 2.24 2.12 2.29 2.29 2.29 2.05 2.28 2.28 2.07

1.93 1.90 1.90 1.93 1.93 1.93 1.93 1.83 1.93 1.93 1.58

1.75 1.75 1.67 1.75 1.75 1.75 1.75 1.63 1.75 1.75 1.52

2.26 2.25 2.21 2.24 2.26 2.26 2.26 1.95 2.26 2.25 1.90

1.78 1.78 1.69 1.78 1.78 1.78 1.78 1.72 1.78 1.78 1.49

2.16 2.16 2.11 2.12 2.16 2.16 2.16 1.92 2.15 2.16 1.87

2.22 2.22 2.19 2.15 2.22 2.22 2.22 1.95 2.21 2.22 1.99

2.32 2.24 2.30 2.32 2.32 2.32 2.32 1.94 2.28 2.32 2.08

4.33 3.67 4.18 3.61 4.33 4.33 4.33 3.91 4.33 4.33 4.04
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TABLE 3 Risk ratio sensitivity: 1% ES.

Panel A: Pre‐adjusted

Energy Sample/Events None
H-
S1000 WHS CF G‐s G‐skt

EVT‐
POT GAS‐1F FHS

CAViaR‐
SAV

CARE‐
SAV

CL Full Sample 3.17 3.10 3.14 2.32 3.16 3.17 2.94 3.14 3.16 3.17 2.86

2003 Iraq War 2.34 2.20 2.25 2.32 2.33 2.34 2.33 2.34 2.33 2.34 1.78

2004 Hurricane Ivan 2.08 2.08 1.94 1.94 2.08 2.08 2.00 2.08 2.08 2.08 1.84

2005 Hurricane Dennis 1.96 1.96 1.92 1.87 1.95 1.96 1.78 1.96 1.96 1.96 1.72

2006 Nigerian Cuts 2.00 2.00 1.82 2.00 1.99 2.00 1.98 1.99 2.00 2.00 1.66

2008 Global Financial Crisis 2.72 2.60 2.69 2.72 2.70 2.72 2.72 2.69 2.71 2.72 2.18

2008 OPEC Cuts Production 2.79 2.53 2.79 2.79 2.79 2.79 2.78 2.72 2.78 2.79 2.26

2014–2016 Oil Prices Collapse 2.61 2.43 2.61 2.53 2.61 2.61 2.58 2.57 2.61 2.61 2.06

2020 Covid Crisis 9.79 9.27 9.79 4.24 9.79 9.79 8.74 9.78 9.79 9.79 9.40

HO Full Sample 2.30 2.26 2.28 2.16 2.29 2.30 2.14 2.24 2.29 2.30 2.09

2003 Iraq War 2.22 2.15 2.22 2.22 2.21 2.22 2.16 2.20 2.22 2.22 1.79

2004 Hurricane Ivan 1.99 1.99 1.96 1.99 1.99 1.99 1.79 1.91 1.99 1.99 1.85

2005 Hurricane Dennis 2.11 2.11 2.01 2.11 2.09 2.11 1.96 2.09 2.11 2.11 1.88

2006 Nigerian Cuts 1.92 1.92 1.87 1.92 1.91 1.92 1.76 1.88 1.92 1.92 1.76

2008 Global Financial Crisis 2.38 2.35 2.29 2.38 2.35 2.38 2.34 2.35 2.38 2.38 2.07

2008 OPEC Cuts Production 2.44 2.39 2.43 2.44 2.43 2.44 2.35 2.39 2.44 2.44 2.13

2014–2016 Oil Prices Collapse 2.44 2.26 2.44 2.40 2.43 2.44 2.41 2.32 2.39 2.44 2.12

2020 Covid Crisis 3.26 2.96 3.26 2.70 3.26 3.26 2.93 3.24 3.26 3.26 3.07

NG Full Sample 1.80 1.80 1.80 1.72 1.80 1.79 1.79 1.69 1.77 1.80 1.80

2003 Iraq War 2.12 2.12 2.12 2.09 2.12 2.11 2.10 1.87 2.12 2.11 2.10

2004 Hurricane Ivan 2.06 2.06 2.06 1.95 2.06 2.06 2.05 1.76 2.06 2.06 2.06

2005 Hurricane Dennis 1.96 1.96 1.96 1.88 1.96 1.96 1.95 1.77 1.96 1.96 1.96

2006 Nigerian Cuts 1.70 1.70 1.70 1.66 1.70 1.70 1.68 1.54 1.70 1.70 1.70

2008 Global Financial Crisis 1.68 1.68 1.68 1.64 1.68 1.67 1.67 1.56 1.67 1.68 1.68

2008 OPEC Cuts Production 1.86 1.85 1.86 1.86 1.86 1.86 1.83 1.60 1.86 1.86 1.86

2014–2016 Oil Prices Collapse 1.65 1.64 1.65 1.64 1.65 1.65 1.64 1.65 1.55 1.65 1.64

2020 Covid Crisis 2.02 2.01 2.02 1.80 2.02 2.02 2.00 1.72 2.01 2.02 2.01

XB Full Sample 2.59 2.56 2.59 2.14 2.59 2.59 2.55 2.39 2.59 2.58 2.40

2003 Iraq War 1.87 1.83 1.85 1.86 1.83 1.87 1.87 1.75 1.87 1.87 1.69

2004 Hurricane Ivan 1.73 1.73 1.71 1.70 1.71 1.73 1.68 1.62 1.73 1.73 1.58

2005 Hurricane Dennis 2.21 2.17 2.19 2.21 2.17 2.21 2.21 1.89 2.21 2.21 2.04

2006 Nigerian Cuts 1.82 1.82 1.76 1.77 1.80 1.82 1.81 1.75 1.82 1.82 1.64

2008 Global Financial Crisis 2.10 2.02 2.09 2.06 2.09 2.10 2.08 1.89 2.10 2.10 1.92

2008 OPEC Cuts Production 2.17 2.07 2.17 2.14 2.15 2.17 2.15 1.94 2.17 2.17 2.02

2014–2016 Oil Prices Collapse 2.21 2.11 2.20 2.20 2.20 2.21 2.20 1.87 2.18 2.21 2.03

2020 Covid Crisis 5.75 5.54 5.75 3.24 5.75 5.75 5.58 5.52 5.75 5.75 5.40

Note: The mean of the risk ratio of the highest to the lowest daily 1% pre‐adjusted (post‐adjusted) ES forecasts in Panel A (in Panel B) for four energy
commodities futures indicated in the first column. The second column indicates the sample/event period used for risk ratio calculation, including both full out‐
of‐sample period and eight energy crisis periods. Risk ratios presented in the third column (“None”) are calculated from daily ES forecasts by using all 10
candidate models. The rest of columns display risk ratios when one specific model is excluded to avoid the effect of outlying forecasts. The excluded model is
indicated by the column name.
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Panel B: Post‐adjusted

None HS1000 WHS CF G‐s G‐skt EVT‐POT GAS‐1F FHS CAViaR‐SAV CARE‐SAV

2.86 2.82 2.84 2.32 2.86 2.86 2.86 2.80 2.84 2.84 2.39

2.33 2.33 2.30 2.32 2.33 2.33 2.33 2.28 2.30 2.33 1.39

1.81 1.81 1.77 1.80 1.81 1.81 1.81 1.80 1.81 1.80 1.53

1.83 1.83 1.83 1.83 1.83 1.83 1.83 1.68 1.83 1.82 1.49

1.71 1.67 1.66 1.71 1.71 1.71 1.71 1.71 1.71 1.71 1.35

2.41 2.38 2.41 2.30 2.41 2.41 2.41 2.39 2.40 2.41 1.72

2.22 2.12 2.22 2.21 2.22 2.22 2.22 2.20 2.17 2.22 1.66

2.56 2.50 2.51 2.52 2.56 2.56 2.56 2.55 2.55 2.55 1.69

7.65 7.28 7.65 4.01 7.65 7.65 7.65 7.51 7.65 7.55 7.08

2.21 2.18 2.19 2.15 2.21 2.21 2.21 2.13 2.19 2.20 1.76

2.37 2.37 2.36 2.33 2.37 2.37 2.37 2.23 2.35 2.37 1.53

1.79 1.77 1.70 1.79 1.79 1.79 1.79 1.78 1.79 1.79 1.44

2.15 2.13 2.13 2.15 2.15 2.15 2.15 1.98 2.15 2.15 1.58

1.83 1.78 1.77 1.83 1.83 1.83 1.83 1.78 1.83 1.83 1.50

2.26 2.26 2.21 2.24 2.26 2.26 2.26 2.24 2.26 2.26 1.65

2.20 2.20 2.18 2.16 2.20 2.20 2.20 2.15 2.20 2.19 1.66

2.57 2.47 2.57 2.53 2.57 2.57 2.57 2.54 2.52 2.56 1.71

3.21 3.04 3.18 2.95 3.21 3.21 3.21 2.94 3.21 3.21 2.60

1.60 1.58 1.58 1.56 1.60 1.60 1.60 1.56 1.58 1.58 1.59

1.83 1.83 1.80 1.83 1.83 1.83 1.83 1.83 1.83 1.73 1.79

1.65 1.60 1.60 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65

1.50 1.50 1.41 1.49 1.50 1.50 1.50 1.50 1.50 1.49 1.50

1.33 1.33 1.31 1.33 1.33 1.33 1.33 1.32 1.26 1.32 1.33

1.44 1.43 1.44 1.44 1.44 1.44 1.44 1.39 1.44 1.43 1.43

1.37 1.37 1.37 1.36 1.37 1.37 1.37 1.36 1.37 1.36 1.36

1.45 1.44 1.43 1.44 1.45 1.45 1.45 1.43 1.39 1.43 1.44

1.68 1.68 1.68 1.53 1.68 1.68 1.68 1.59 1.68 1.65 1.67

2.44 2.42 2.41 2.18 2.44 2.44 2.44 2.23 2.42 2.43 2.18

2.00 2.00 1.95 2.00 2.00 2.00 2.00 1.87 1.99 2.00 1.56

1.74 1.72 1.70 1.74 1.74 1.74 1.74 1.66 1.74 1.74 1.48

2.34 2.33 2.28 2.33 2.34 2.34 2.34 2.03 2.34 2.34 1.90

1.88 1.88 1.77 1.88 1.88 1.88 1.88 1.82 1.88 1.88 1.52

2.25 2.22 2.21 2.24 2.25 2.25 2.25 2.04 2.24 2.25 1.86

2.26 2.22 2.26 2.24 2.26 2.26 2.26 2.03 2.24 2.25 1.92

2.39 2.37 2.37 2.38 2.39 2.39 2.39 2.15 2.34 2.39 1.96

5.01 4.90 5.01 3.19 5.01 5.01 5.01 4.68 5.01 5.01 4.74
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As an additional exercise, we would like to explore the efficiency of this adjustment methodology around the margin
level change date that characterizes the market state as highly volatile (Hedegaard, 2014; Park & Abruzzo, 2016).

Figure 4 shows the maintenance margin of the front‐month contract for WTI CL, NG, HO, and RBOB/Unleaded
Gasoline between 2009 and 2021.13,14 Large margin variation could be observed over time for all four energy
commodities. Oil products share common factors that have impacts on their supply/demand side, which results in high
risk in the market. Regulators could change the margin level across oil products to stabilize the market. Thus, the
changes in the margin level for WTI CL, HO, and RBOB/Unleaded Gasoline have a similar trend. As the most traded
products, the margin level of WTI CL changes more frequently than the other oil products.

When market uncertainty, particularly the level of extreme losses, is high, regulators can raise the margin levels to
calm down the market. In Figures 2 and 3, we plot the range of pre‐ and post‐adjusted 2.5% daily VaR and ES forecasts
calculated from 10 candidate models around the days when maintenance margins are increased for WTI CL, NG, HO,
and RBOB/Unleaded Gasoline.15 First, before CME Group raises the maintenance margins, the median of both
pre‐ and post‐adjusted 2.5% daily VaR forecasts falls significantly. This implies that CME Group steps into the market

FIGURE 2 The range of average pre‐ and post‐adjusted 2.5% VaR 7 days before and after the increase in margin requirements for CL,
HO, NG and XB. This boxplot represents the range of average VaR forecasts from 10 risk models around the days of margin requirements
increase. We first take the average of VaR forecasts from each risk model on (and specific days before and after) the event day. Then plot
the range of these average VaR forecasts across 10 different models. The black box is for pre‐adjusted 2.5% VaR, and the red box is for post‐
adjusted 2.5% VaR. The dot in the middle of each box is the median of the sample. The bottom and top of each box are the 25th and 75th
percentiles of the sample. On the x‐axis, zero indicates the day that margin requirements increase, and a negative (positive) number means
the number of days before (after) the day of that margin increase. [Color figure can be viewed at wileyonlinelibrary.com]

13CME Group usually sets the maintenance margin at first and then sets initial margins by adjusting the maintenance margin with a specific ratio,
which almost always remains the same for a contract.
14See https://www.cmegroup.com/clearing/risk-management/historical-margins.html for more details.
15We use 2.5% significant level since the Basel III regulations propose a shift from a 1% VaR framework to a 2.5% ES.
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with a margin increase policy only when it observes the tail risk measurements reaching an extremely high level. After
the increase in margin levels, the downward trend in both pre‐ and post‐adjusted VaR and ES has stopped; thus, a
margin increase policy is an effective way to reduce tail risk and calm down the market. Hence, the risk model
adjustment methodology could successfully capture the trend of tail risk movements. Second, the range of post‐
adjusted VaR (ES) forecasts around the time with a margin level increase is significantly narrower than that of the pre‐
adjusted VaR (ES) forecasts in general. This suggests that our adjustment methodology to the individual risk model is
effective at reducing tail risk disagreements between different models, even in super‐chaotic periods.

5.2 | VaR and ES backtesting

To justify the efficiency of adjustments made to risk estimates, it is necessary to investigate the forecasting ability of
adjusted VaR and ES forecasts. At first glance, Table 4 compares the actual VaR exceedance rates before (resp. after)
applying optimized adjustment multipliers to improve on the out‐of‐sample raw risk estimates at α = 1%, 2.5%, and 5%

with the expected VaR exceedance rates (i.e., three α levels), for various risk models and several energy futures. This
highlights that the improved VaR forecasts can achieve a desirable level of actual VaR exceedances, which generally
matches the expected level. Tables 5 and 6 compare the average FZ0 loss of pre‐ and post‐adjusted risk forecasts
estimated at 1%, 2.5%, and 5% for 10 candidate models and four energy futures over the full out‐of‐sample period and
during energy crisis periods, respectively. The lower the average loss, the better forecasting performance the pair of risk

FIGURE 3 The range of pre‐ and post‐adjusted 2.5% ES 7 days before and after the increase in margin requirements for CL, HO, NG, and XB.
This boxplot represents the range of average ES forecasts from 10 risk models. We first take the average of ES forecasts from each risk model on (and
specific days before and after) the event day. Then plot the range of these average ES forecasts across 10 different models. The black box is for pre‐
adjusted 2.5% ES, and the red box is for post‐adjusted 2.5% ES. The dot in the middle of each box is the median of the sample. The bottom and top of
each box are the 25th and 75th percentiles of the sample. On the x‐axis, zero indicates the day that margin requirements increase, and a negative
(positive) number means the number of days before (after) the day of that margin increase. [Color figure can be viewed at wileyonlinelibrary.com]
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forecasts have. The results show that our adjustment method indeed improves the forecasting ability of raw risk
estimates.

In the following, we adopt the formal statistical backtesting procedures including traditional tests and
comparative tests. The traditional backtesting methods are designed to test whether the forecasting model is
correctly specified and provides appropriate forecasts by comparing the realized returns, VaR and ES data,
whereas the comparative backtesting methods focus on making model comparisons. By examining the
backtesting performance of pre‐ and post‐adjusted risk forecasts via these two types of backtesting methodologies
in an exhaustive manner, we check whether the risk model performance is improved after applying the proposed
adjustment method.

Regarding the traditional backtesting, we organize well‐known and recently developed tests into two broad
categories: (1) VaR backtests and (2) ES backtests.16 We backtest VaR individually via the unconditional coverage (UC)
test of Kupiec (1995), the conditional coverage (CC) test of Christoffersen (1998), and the dynamic quantile (DQ) test of
Engle and Manganelli (2004). For the evaluation of the VaR forecasting accuracy, the UC test simply considers the
exceedance frequency and is deficient in detecting clustered exceedances, which is made up by CC and DQ tests. Both
CC and DQ tests are designed to jointly test for the frequency and independence of exceedances.

Compared with VaR backtesting, ES backtesting is not straightforward as it often needs more information (such as
VaR estimates at multiple levels required in Emmer et al., 2015) relative to the ES per se. To backtest ES, we employ the
exceedance residual (ER) test of McNeil and Frey (2000), the conditional calibration (CCA) test based on moment
conditions (Nolde & Ziegel, 2017), and several specifications of regression based expected shortfall (ESR) tests

FIGURE 4 Historical margin requirements from Chicago Mercantile Exchange (CME) Group for first front contracts of CL, HO, NG,
and XB between January 2, 2009, and December 31, 2021.

16For more details of VaR and ES backtesting methods, see Appendices A and B, respectively.
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including the strict ESR (ESR Strict) test, the auxiliary ESR (ESR AUX) test, and the intercept ESR (ESR INT) test,
introduced by Bayer and Dimitriadis (2022).

In the format of colormaps, Figures 5, C1, and C2 visually display the p‐values of backtests for VaR and ES forecasts
at the 1%, 2.5%, and 5% level, respectively, over the out‐of‐sample time period (27‐Mar‐2002 to 31‐Dec‐2021) and for
various models and four futures, before (shown in the left column) and after (shown in the right column) adjustments
are made based on our proposed methodology. For the sake of brevity and clarity, the backtests are labeled 1–11,
representing the following tests: UC, CC, DQ, two‐sided ER, one‐sided ER, two‐sided CCA, one‐sided CCA, ESR Strict,
ESR AUX, two‐sided ESR INT, and one‐sided ESR INT, accordingly; the risk models are numbered 1–10, denoting HS,
WHS, CF, G‐t, G‐skt, EVT‐POT, GAS‐1F, FHS, CAViaR‐SAV, and CARE‐SAV, respectively. If the p‐value is smaller
than 0.05, the cell is colored red; if the value falls between 0.05 and 0.1, the cell is in yellow; otherwise, it is in green.
The red and yellow colors suggest that the model fails the test at the 5% and 10% significance levels, respectively.
Regarding all the aforementioned backtests, the forecasting performance of risk models considered in this paper is
indeed improved after our adjustment methodology is applied to improve on raw risk forecasts. Notably, the UC test
(backtest 1) with respect to the frequency of VaR exceedances and the ER test focused on the magnitude of ES forecasts
(backtests 4–5) benefit most from adjustments made to VaR and ES forecasts. The UC backtesting results indicate that
the actual VaR exceedance rate becomes closer to the nominal α level after making the optimized adjustments. And the

TABLE 4 Actual VaR exceedance rates of pre‐ and post‐adjusted risk forecasts over full sample.

Panel A: CL Panel B: HO

1% 2.5% 5% 1% 2.5% 5%

Before After Before After Before After Before After Before After Before After

HS 1.53% 1.01% 2.90% 2.57% 5.45% 4.73% 1.41% 0.99% 2.90% 2.45% 5.39% 4.71%

WHS 1.35% 1.03% 2.72% 2.51% 5.11% 4.87% 1.25% 1.05% 2.57% 2.43% 5.13% 4.79%

CF 0.76% 1.01% 2.45% 2.49% 5.37% 4.63% 0.80% 0.87% 2.49% 2.41% 5.41% 4.87%

G‐t 0.42% 1.11% 1.33% 2.45% 2.88% 5.11% 0.34% 1.07% 1.23% 2.55% 3.00% 5.03%

G‐skt 1.17% 1.11% 2.82% 2.45% 6.18% 5.11% 1.17% 1.05% 3.00% 2.53% 6.04% 5.07%

EVT‐POT 1.41% 1.07% 2.92% 2.43% 6.22% 5.09% 1.81% 1.03% 3.70% 2.51% 6.38% 5.07%

GAS‐1F 2.13% 0.99% 4.77% 2.53% 6.08% 4.93% 2.03% 1.03% 3.42% 2.41% 6.64% 4.91%

FHS 1.13% 1.11% 2.39% 2.60% 4.89% 5.03% 1.05% 1.07% 2.55% 2.49% 5.19% 4.95%

CAViaR‐SAV 1.77% 1.17% 2.72% 2.55% 4.49% 5.31% 1.87% 0.99% 3.38% 2.45% 5.47% 5.21%

CARE‐SAV 0.64% 1.31% 1.97% 2.70% 4.33% 5.21% 1.23% 1.11% 2.35% 2.76% 4.63% 5.47%

Panel C: NG Panel D: XB

1% 2.5% 5% 1% 2.5% 5%

Before After Before After Before After Before After Before After Before After

HS 0.99% 1.11% 2.51% 2.55% 4.93% 4.95% 1.41% 0.91% 2.92% 2.37% 5.29% 4.95%

WHS 1.19% 1.07% 2.74% 2.66% 5.27% 5.11% 1.19% 1.03% 2.53% 2.49% 4.97% 4.93%

CF 0.70% 0.99% 2.45% 2.53% 5.19% 5.07% 0.80% 0.76% 2.72% 2.41% 5.15% 4.85%

G‐t 0.32% 0.99% 1.13% 2.37% 3.14% 4.97% 0.95% 1.15% 2.29% 2.68% 4.20% 5.19%

G‐skt 0.78% 0.97% 2.66% 2.39% 5.69% 4.97% 1.49% 1.15% 3.52% 2.68% 6.36% 5.19%

EVT‐POT 0.22% 0.97% 0.99% 2.39% 4.18% 4.97% 1.65% 1.15% 3.50% 2.68% 6.04% 5.13%

GAS‐1F 1.73% 0.99% 5.53% 2.29% 6.04% 5.15% 1.93% 1.09% 3.26% 2.70% 5.41% 5.09%

FHS 1.05% 0.99% 2.49% 2.43% 4.85% 4.87% 1.09% 1.03% 2.62% 2.43% 5.11% 5.13%

CAViaR‐SAV 0.78% 1.01% 1.69% 2.43% 4.73% 4.99% 1.75% 1.17% 3.36% 2.64% 5.59% 5.13%

CARE‐SAV 0.74% 0.93% 2.74% 2.21% 6.80% 4.77% 1.59% 1.11% 2.74% 2.68% 4.97% 5.19%

Note: This table presents the actual VaR exceedance rates of pre‐ and post‐adjusted risk forecasts based on the FZ0 loss function across four energy futures and
three significance levels. Results based on pre‐ and post‐adjusted VaR forecasts are labeled as column “before” and “after”, respectively.
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ER backtesting results show that the magnitude of ES forecasts becomes reasonable (i.e., neither overestimating nor
underestimating risks) and highlights that our proposed adjustment methodology can facilitate market risk measures
in capturing the appropriate size of tail losses. It is expected that, in terms of the CC and DQ tests (backtests 2–3) the
backtesting performance of risk models is slightly affected by our adjustment methodology, which is limited in
removing the endogenous issue of volatility clustering. Additionally, we find that G‐t, G‐skt, EVT‐POT, GAS‐1F,
CAViaR‐SAV, and CARE‐SAV are unable to produce adequate risk forecasts at different levels for various energy
futures considered, as shown by the high rejection rates of backtests. After making the refinements to these models
based on our methodology, the rejection rates sharply decline.

As seen from Figure 1, which shows the dynamics of daily returns of futures contracts, the market regimes are
clearly changed during crisis periods, except for NG futures in a consistently high‐volatility regime. To further test the
efficiency of our adjustment methodology, in similar fashion we present the backtesting results of risk models over
the global financial crisis period ranging from 01‐Dec‐2007 to 30‐Jun‐2009 in Figures 6, C3 and C4. As expected, the

TABLE 5 Average loss values of pre‐ and post‐adjusted risk forecasts over the full sample.

Panel A: CL Panel B: HO

1% 2.5% 5% 1% 2.5% 5%

Before After Before After Before After Before After Before After Before After

HS 2.29 2.28 1.99 1.99 1.75 1.75 2.05 2.03 1.78 1.77 1.58 1.57

WHS 2.03 2.03 1.79 1.79 1.61 1.61 1.85 1.85 1.63 1.63 1.45 1.45

CF 2.27 2.31 2.00 2.03 1.77 1.78 1.98 1.98 1.75 1.75 1.57 1.57

G‐s 2.02 1.97 1.79 1.75 1.59 1.55 1.88 1.80 1.65 1.60 1.47 1.43

G‐skt 1.97 1.97 1.75 1.75 1.56 1.55 1.80 1.81 1.60 1.60 1.44 1.43

EVT‐POT 2.01 1.97 1.77 1.75 1.57 1.55 1.88 1.80 1.64 1.60 1.45 1.43

GAS‐1F 2.03 1.97 1.78 1.73 1.55 1.55 1.88 1.82 1.62 1.62 1.44 1.43

FHS 1.96 1.97 1.74 1.74 1.55 1.55 1.81 1.81 1.58 1.59 1.42 1.42

CAViaR‐SAV 2.03 1.99 1.76 1.76 1.57 1.56 1.85 1.82 1.61 1.60 1.43 1.43

CREA‐SAV 2.33 2.30 1.95 1.94 1.61 1.61 2.15 2.16 1.99 1.96 1.61 1.61

# imp. 7 6 7 6 7 8

Panel C: NG Panel D: XB

1% 2.5% 5% 1% 2.5% 5%

Before After Before After Before After Before After Before After Before After

HS 2.22 2.23 2.03 2.03 1.85 1.86 2.23 2.20 1.96 1.94 1.73 1.72

WHS 2.24 2.24 2.00 2.00 1.82 1.82 2.01 2.01 1.78 1.79 1.61 1.61

CF 2.21 2.21 2.02 2.02 1.85 1.86 2.17 2.17 1.93 1.93 1.72 1.72

G‐s 2.14 2.06 1.94 1.90 1.78 1.75 1.93 1.94 1.73 1.73 1.56 1.56

G‐skt 2.06 2.07 1.89 1.90 1.75 1.75 1.96 1.94 1.76 1.73 1.57 1.56

EVT‐POT 2.21 2.07 1.94 1.90 1.75 1.75 1.99 1.94 1.77 1.73 1.58 1.56

GAS‐1F 2.25 2.19 2.09 1.97 1.82 1.82 2.08 2.02 1.79 1.77 1.61 1.60

FHS 2.05 2.06 1.88 1.89 1.74 1.74 1.93 1.93 1.73 1.74 1.55 1.56

CAViaR‐SAV 2.06 2.06 1.91 1.90 1.75 1.74 2.01 1.96 1.77 1.74 1.57 1.56

CREA‐SAV 2.16 2.16 1.88 1.88 1.75 1.74 2.30 2.21 1.99 1.96 1.73 1.71

# imp. 6 4 5 6 7 7

Note: Each panel presents average FZ0 loss values of 10 candidate models before and after optimized adjustments are made to VaR and ES estimated at 1%,
2.5%, and 5%, for a given asset. Results based on pre‐ and post‐adjusted VaR and ES forecasts are labeled as columns “before” and “after,” respectively. The
average loss values indicating the outperformance of post‐adjusted forecasts than pre‐adjusted forecasts are highlighted in bold. # imp. denotes the number of
models that experience improvements after adjustment.
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simple models, HS and CF, are less responsive to large market fluctuations and fail most of the backtests, whereas
the more complex models such as G‐t, G‐skt, CAViaR‐SAV, and CARE‐SAV perform better over the crisis period.
Generally, the risk models can generate better risk forecasts after the adjustment methodology is applied, as evidenced
by the better backtesting performance in Figures 6, C3 and C4.

This adjustment methodology not only can improve on ex ante risk forecasts but also can give an indication of time‐
varying over‐ or underestimation of risks. Figure 7 presents a series of quantiles of optimal adjustments obtained in
Equation (5), made to VaR (in the left column) and ES (in the right column) estimated at α = 2.5% for several energy
futures contracts and across various models, in which each line represents the quantile ranging from 5% to 95% with an
increment of 10%. The value of the optimal adjustment being equal to 1 indicates that no correction will be made to
VaR and ES forecasts. As shown in this figure, the underestimation or overestimation of risks is noticeable, thus calling
for appropriate adjustments. Specifically, if the value of adjustment is above (below) 1, the current risk forecast is
underestimated (overestimated), and the corresponding capital buffer should be increased (decreased). Among the

TABLE 6 Average loss values of pre‐ and post‐adjusted risk forecasts over crisis periods.

Panel A: CL Panel B: HO

1% 2.5% 5% 1% 2.5% 5%

Before After Before After Before After Before After Before After Before After

HS 3.39 3.11 2.86 2.71 2.49 2.39 2.85 2.61 2.40 2.28 2.10 2.04

WHS 2.65 2.59 2.27 2.26 2.06 2.06 2.31 2.27 2.00 2.00 1.80 1.81

CF 2.88 3.00 2.62 2.66 2.38 2.38 2.42 2.48 2.22 2.23 2.06 2.04

G‐s 2.33 2.28 2.08 2.06 1.89 1.87 2.12 2.11 1.90 1.89 1.71 1.70

G‐skt 2.30 2.28 2.07 2.06 1.88 1.87 2.09 2.11 1.89 1.89 1.71 1.70

EVT‐POT 2.36 2.28 2.10 2.06 1.90 1.87 2.23 2.11 1.95 1.89 1.74 1.70

GAS‐1F 2.43 2.35 2.15 2.06 1.88 1.87 2.19 2.10 1.89 1.86 1.70 1.68

FHS 2.32 2.32 2.08 2.08 1.88 1.88 2.20 2.21 1.90 1.90 1.71 1.71

CAViaR‐SAV 2.39 2.31 2.12 2.10 1.89 1.88 2.17 2.14 1.90 1.89 1.70 1.70

CREA‐SAV 2.61 2.55 2.26 2.24 1.92 1.91 2.57 2.55 2.32 2.27 1.89 1.88

# imp. 9 8 9 7 9 9

Panel C: NG Panel D: XB

1% 2.5% 5% 1% 2.5% 5%

Before After Before After Before After Before After Before After Before After

HS 2.16 2.18 2.03 2.04 1.88 1.90 3.19 2.93 2.70 2.57 2.38 2.31

WHS 2.19 2.19 2.02 2.02 1.86 1.86 2.57 2.54 2.26 2.26 2.05 2.06

CF 2.17 2.18 2.01 2.03 1.88 1.89 2.70 2.74 2.50 2.47 2.27 2.25

G‐s 2.21 2.13 2.02 2.00 1.88 1.86 2.24 2.28 2.04 2.06 1.86 1.87

G‐skt 2.13 2.13 2.01 2.00 1.87 1.86 2.34 2.28 2.11 2.06 1.90 1.87

EVT‐POT 2.27 2.13 2.02 2.00 1.86 1.86 2.38 2.27 2.13 2.06 1.91 1.87

GAS‐1F 2.24 2.18 2.16 1.99 1.86 1.85 2.46 2.30 2.14 2.08 1.95 1.92

FHS 2.10 2.10 1.96 1.96 1.84 1.84 2.31 2.33 2.09 2.09 1.89 1.90

CAViaR‐SAV 2.12 2.12 2.00 2.00 1.85 1.85 2.46 2.34 2.15 2.10 1.91 1.89

CREA‐SAV 2.12 2.12 1.95 1.96 1.85 1.82 2.88 2.72 2.40 2.36 2.07 2.05

# imp. 7 5 7 7 8 8

Note: Each panel presents average FZ0 loss values of 10 candidate models before and after optimized adjustments are made to VaR and ES estimated at 1%,
2.5% and 5%, for a given asset. Results based on pre‐ and post‐adjusted VaR and ES forecasts are labeled as column “before” and “after,” respectively. The
average loss values indicating the outperformance of post‐adjusted forecasts than preadjusted forecasts are highlighted in bold. # imp. denotes the number of
models that experiencing improvements after adjustment.
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FIGURE 5 1% VaR and ES backtesting results with respect to p‐values before and after adjustments, over the full period. A p‐value
smaller than 0.05 (between 0.05 and 0.1) is shaded with red (yellow); otherwise, it is green. Models 1–10 are HS, WHS, CF, G‐t, G‐skt,
EVT‐POT, GAS‐1F, FHS, CAViaR‐SAV, and CARE‐SAV, accordingly. Backtests 1–11 are UC, CC, DQ, two‐sided ER, one‐sided ER,
two‐sided CCA, one‐sided CCA, ESR Strict, ESR AUX, two‐sided ESR Int, and one‐sided ESR Int. [Color figure can be viewed at
wileyonlinelibrary.com]
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FIGURE 6 1% VaR and ES backtesting results with respect to p‐values before and after adjustments, over the crisis period. A p‐value
smaller than 0.05 (between 0.05 and 0.1) is shaded with red (yellow); otherwise, it is green. Models 1–10 are HS, WHS, CF, G‐t, G‐skt,
EVT‐POT, GAS‐1F, FHS, CAViaR‐SAV, and CARE‐SAV, accordingly. Backtests 1–11 are UC, CC, DQ, two‐sided ER, one‐sided ER,
two‐sided CCA, one‐sided CCA, ESR Strict, ESR AUX, two‐sided ESR Int, and one‐sided ESR Int. [Color figure can be viewed at
wileyonlinelibrary.com]
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model set considered, the G–t applied to various energy futures tends to overestimate risks, whereas the HS, WHS,
FHS, and GAS‐1F methods tend to underestimate risks.

Complementary to traditional backtesting for model performance, we add comparative tests based on the FZ0 losses,
namely, Diebold‐Mariano (DM) (Diebold & Mariano, 2002) and model confidence set (MCS) tests (Hansen et al., 2011), to
make model comparisons to check whether our adjustment methodology improves on existing risk forecasts.

In the DM test, a negative t‐statistic indicates that the row forecast outperforms the column forecast with a significant
loss difference. An absolute t‐statistic greater than 2.575 (1.96 or 1.64) indicates that the average loss difference is
significantly different from zero at the 1% (5% or 10%) significance level. Figures 8 and 9 present the results with the null
hypothesis that the row forecast and the column forecast have equal values based on the loss function for 1% VaR and ES
over the full sample and the crisis period, respectively. Blue blocks mean that the row forecast has a lower average loss
than the column forecast at different significance levels (the darkest color means that we reject the null hypothesis at the
1% significance level and so on). White blocks mean that there is no significant difference between the row forecast and the
column forecast. Red blocks mean that the row forecast has a higher average loss than the column forecast (the darkest
shade means that we reject the null hypothesis at the 1% significance level and so on). To evaluate the efficiency of the
adjusted forecasts compared with the original forecasts, we only focus on the blocks in the diagonal of the color maps.
Blocks in the diagonal that are shaded blue indicate that our methodology significantly improves the forecasts; otherwise,
there is no significant improvement after adjustment, or even worse. In Figures 8 and 9, it is obvious that most of the
blocks in the diagonals are shaded blue, and it is rare to see red blocks in the diagonals. Overall, the DM test indicates the
significant improvement of our methodology for 1% VaR and ES forecasts.17

FIGURE 7 Adjustments made to risk forecasts, based on daily data of energy futures contracts. CL, HO, NG, and XB are abbreviations
for WTI Crude Oil, Heating Oil, Natural Gas, and RBOB/Unleaded Gasoline, respectively. Each line represents the quantile, from 5% to 95%
with an increment of 10%, of adjustments made to 2.5% VaR (in the left column) and ES (in the right column) forecasts across various risk
models considered. [Color figure can be viewed at wileyonlinelibrary.com]

17The backtesting results for VaR and ES at other significance levels are presented in Figures C5, C6, C7, C8 in Appendix C. The results are
consistent.
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FIGURE 8 Color map based on the Diebold–Mariano (DM) test comparing the average losses using the FZ0 loss function for 1% VaR and ES
over the full sample. Forecasts marked with 1* to 10* are the adjusted risk measures forecasts based on the original forecasts marked with 1–10.
[Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 9 Color map based on the Diebold–Mariano (DM) test comparing the average losses using the FZ0 loss function for 1% VaR and ES
over the crisis sample. Forecasts marked with 1* to 10* are the adjusted risk measures forecasts based on the original forecasts marked with 1–10.
[Color figure can be viewed at wileyonlinelibrary.com]
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Alternatively, we exploit the MCS test to compare the forecasts based on the losses generated from the FZ0 loss
function. In this paper, we adopt two methods: (1) the R method using sums of absolute values for calculating the test
statistics for MCS and (2) the SQ method using the summed squares.18 Table 7 shows the backtesting results via the
MCS test, in which the block bootstrap is used with a block length of 12 and 10,000 replications over the financial crisis
period at 75% and 95% confidence levels, respectively. In general, the total number of the post‐adjustment models
included in the best model set is obviously larger than the one of preadjustment models, especially when we apply the
SQ method. Specifically, after adjustment, the EVT‐POT, GAS‐1F, and CAViaR‐SAV models are contained in the best
model set more often than before the adjustment.

6 | CONCLUSION

To facilitate efficient financial risk management, this paper develops a generic adjustment methodology to improve on
VaR and ES forecasts via the minimization of the average loss of the FZ loss function. This methodology is
advantageous in explicitly indicating the degree of under‐ and overestimation of tail risks, a topic of concern to
regulators and investors and applicable to any risk model that produces VaR and ES forecasts. Moreover, this
adjustment methodology is built on the objective of minimizing a loss function, and as a result, we expect the risk
disagreement among post‐adjusted risk forecasts to be lessened.

In the empirical analysis, we apply the proposed methodology to a battery of risk forecasting models for several
futures contracts in the energy commodity market in which tail risk management plays a significant role. After making
adjustments to VaR and ES forecasts built using the risk models considered for four energy futures, the risk ratios
decline over the full out‐of‐sample period and during seven energy crisis periods, indicating the abatement of risk
disagreement within the model set. In addition, with the margin level change date signaling high volatility faced by
market participants, around these dates, the shrinking range in values of post‐adjusted VaR and ES forecasts given by
various models shows the reduction in model disagreement. Taken together, this adjustment methodology helps
alleviate the model disagreement among diverse risk models. Further, the forecasting accuracy of VaR and ES estimates
is generally improved, as verified via various backtesting tests for VaR and ES. Notably, the UC test with respect to the
frequency of VaR exceedances and the ER test focused on the magnitude of ES forecasts benefit most from adjustments
made to VaR and ES forecasts.
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APPENDIX A: BACKTESTING METHODS FOR VaR
In the following, we provide an overview of the backtesting methods employed in this paper.

Unconditional coverage (UC) test for VaR
The most popular procedures evaluating the performance of VaR forecasts are mainly based on VaR failures; that is,

≤{ }I r VaR1= .t t t
α

The commonly used VaR backtesting method, known as the unconditional coverage (UC) test, is proposed by
Kupiec (1995) and uses the proportion of failures as its main tool. In this test, the hit percentage is defined as the
proportion of the returns below the estimated VaR. Then the difference between the hit percentage and its
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theoretical value of α is examined. This performance test assesses the accuracy of VaR forecasts based on the
following hypothesis:

≠H I α H I α: [ ] = against : [ ] .t t t t0 −1 1 −1 (A1)

A rejection of the null hypothesis implies that the risk model is not correctly specified.

Conditional coverage (CC) test for VaR
However, the UC test is statistically weak for a small sample size and is criticized by several studies (see Nieto and

Ruiz, 2016) because it ignores the clustering of failures. To address these drawbacks, the conditional coverage (CC) test
with respect to available information t−1 is considered, and its hypothesis is given as

  ≠ H I α H I α: [ ] = against : [ ] .t t t t t t0 −1 −1 1 −1 −1

The risk model fails the test if the null hypothesis is rejected, suggesting that the model is not correctly
specified.

We also employ the dynamic quantile (DQ) test proposed by Engle and Manganelli (2004) to implement the CC test.
The DQ test has power against the misspecification of ignoring conditionally correlated probabilities and can be
extended to examine other explanatory variables. The DQ test examines whether the hit variable defined as

≤Hit r VaR α= { } −v t t t, , follows an i.i.d. Bernoulli distribution with probability level α and whether it is independent
of the VaR estimator; the expected value of Hitv t, is 0. Furthermore, from the definition of the quantile function, the
conditional expectation of VaRt given any information known at t − 1 must also be 0, which means that the hit
function cannot be correlated with other lagged variables. Also, the Hitv t, must not be autocorrelated. If Hitv t, satisfies
the conditions stated above, then there will be no autocorrelation in the hits and no measurement error. We include
one lag of Hitv t, in the regression of the test. Consider the following DQ regression:

Hit a a Hit a VaR u= + + + ,v t v t t v t, 0 1 , −1 2 −1 , (A2)

where a a aa = [ , , ]0 1 2 is the set of parameters of the regression. Based on the null hypothesis, we test whether all
parameters in the set a are zero. Performing this DQ test gives a test statistic, which is distributed (3)2 asymptotically.

APPENDIX B: BACKTESTING METHODS FOR ES
Exceedance residual (ER) test for ES

The ER approach focuses on the magnitude of tail losses. Based on the ES‐specified residuals, whenever there is a
VaR exceedance, ≤ER r ES r VaR= ( − ) { }t t t t t , this tests whether the expected value of the exceedance residual ERt
conditioning on the information t−1, μ ER= [ ]t t−1 , is zero using a bootstrap method (Efron & Tibshirani, 1994)
without any assumption on the distribution of residuals. The two‐sided and one‐sided hypotheses are discussed in this
paper and given as

≠

≥

H μ H μ

H μ H μ

: = 0 against : 0, and

: 0 against : < 0.

s s

s s

0
2

1
2

0
1

1
1

(B1)

The rejection of null hypotheses indicates the model misspecification. If the one‐sided hypothesis is rejected, it
suggests that ES is underestimated.

Conditional calibration test for ES
The conditional calibration test, introduced by Nolde and Ziegel (2017), uses identification functions V to test the

model performance, in which V at time t is written as

≤

≤ ∕









V r VaR ES α

α r VaR

VaR ES r VaR VaR r α
( , , ; ) =

− { }

− − { }( − )
t t t

t t

t t t t t t
(B2)
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Based on the identification functions, this tests whether the pair of VaR ES( , )t t forecasts are the best possible
predictions conditioning on the information set  , with the two‐sided and one‐sided hypotheses shown as follows.
For all t ,

 

 

≠

≥

 

 

H V r VaR ES α H V r VaR ES α

and

H V r VaR ES α H V r VaR ES α

: [ ( , , ; ) ] = 0 against : [ ( , , ; ) ] 0,

: [ ( , , ; ) ] 0 against : [ ( , , ; ) ] < 0.

s
t t t t

s
t t t t

s
t t t t

s
t t t t

0
2

−1 1
2

−1

0
1

−1 1
1

−1

(B3)

The economic rationale behind the one‐sided null hypothesis is that the overestimation of risk may not be
problematic in practice, whereas the underestimation of risk matters. The rejection of null hypotheses indicates the
model misspecification. The rejection of the one‐sided hypothesis suggests that ES is
underestimated.
Regression‐based test for ES

Bayer and Dimitriadis (2022) estimate the parameter vectors ⊤ ⊤β γβ β γ γ( = [ , ] , = [ , ] )1 2 1 2 in the regression equations
(see below) to test for ES drawing on a joint loss function for VaR and ES from Fissler and Ziegel (2016). The forecasts
VaRt and ESt are generated using the information set t−1:

β

γ

Y V u

Y W u

= + , and

= + ,

t t t
VaR

t t t
ES

(B4)

whereVt andWt are two‐dimensional, t−1 measurable covariate vectors; and ( )VaR u = 0α t
VaR

t−1 and ( )ES u = 0α t
ES

t−1

almost surely. The three specifications of ESR tests are detailed as follows: (1) The strict ESR (ESR Strict) backtest using ES
only as the explanatory variable: this specifies that V W ES= = (1, )t t t in (B4) and tests the hypothesis that

≠H γ γ H γ γ: ( , ) = (0, 1) against : ( , ) (0, 1).0 1 2 1 1 2 (B5)

The rejection of the null hypothesis suggests that the model is not correctly specified. (2) The auxiliary ESR (ESR
AUX) backtest using VaR and ES as explanatory variables: this specifies that V VaR= (1, )t t andW ES= (1, )t t in (B4)
and tests the hypothesis that

≠H γ γ H γ γ: ( , ) = (0, 1) against : ( , ) (0, 1).0 1 2 1 1 2 (B6)

The rejection of the null hypothesis suggests that the model is not correctly specified. (3) the intercept ESR (ESR
INT) backtest allowing for the one‐sided test that can give a clear indication of overestimated or underestimated risk:
its specification is similar to the strict ESR test specification in (B5) but fixes the slope parameters (β2 and γ2) to one and
only estimates the intercept terms. This tests the following two‐sided and one‐sided hypotheses:

≠

≥

H γ H γ

H γ H γ

: = 0 against : 0, and

: 0 against : < 0.

s s

s s

0
2

1 1
2

1

0
1

1 1
2

1

(B7)

The rejection of null hypotheses indicates the model misspecification. If the one‐sided hypothesis is rejected, it suggests
that ES is underestimated.
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APPENDIX C: ADDITIONAL RESULTS
See Tables C1, C2 and Figures C1–C8.

TABLE C1 Risk ratio sensitivity over full sample—VaR.

Panel A: CL Panel B: HO

1% 2.5% 5% 1% 2.5% 5%

Before After Before After Before After Before After Before After Before After

None 3.06 2.54 2.37 2.18 1.77 1.71 2.28 2.12 2.12 2.00 1.92 1.83

HS1000 2.96 2.44 2.29 2.11 1.75 1.69 2.22 2.06 2.08 1.96 1.89 1.80

WHS 3.04 2.50 2.35 2.14 1.74 1.67 2.25 2.08 2.09 1.97 1.89 1.79

CF 2.52 2.14 2.10 1.92 1.74 1.68 2.18 2.07 2.08 1.96 1.89 1.80

G‐s 3.05 2.54 2.36 2.18 1.75 1.71 2.27 2.12 2.11 2.00 1.90 1.83

G‐skt 3.06 2.54 2.37 2.18 1.77 1.71 2.28 2.12 2.12 2.00 1.92 1.83

EVT‐POT 3.06 2.54 2.37 2.18 1.77 1.71 2.26 2.12 2.10 2.00 1.91 1.83

GAS‐1F 2.91 2.48 2.19 2.14 1.73 1.68 2.18 2.06 2.07 1.95 1.86 1.80

FHS 3.06 2.53 2.37 2.18 1.77 1.71 2.27 2.09 2.11 1.99 1.91 1.82

CAViaR‐SAV 3.00 2.53 2.36 2.17 1.77 1.71 2.26 2.11 2.11 1.99 1.92 1.83

CARE‐SAV 2.53 2.15 2.12 1.90 1.73 1.62 1.95 1.71 1.74 1.59 1.68 1.55

Panel C: NG Panel D: XB

1% 2.5% 5% 1% 2.5% 5%

Before After Before After Before After Before After Before After Before After

None 1.79 1.56 1.72 1.49 1.58 1.47 2.36 2.29 2.07 2.02 1.87 1.85

HS1000 1.78 1.54 1.71 1.47 1.57 1.46 2.31 2.23 2.01 1.96 1.84 1.82

WHS 1.77 1.51 1.70 1.44 1.57 1.46 2.34 2.24 2.03 1.97 1.82 1.79

CF 1.76 1.54 1.71 1.47 1.57 1.46 2.12 2.12 1.96 1.90 1.85 1.82

G‐s 1.79 1.56 1.72 1.49 1.54 1.47 2.36 2.29 2.07 2.02 1.86 1.85

G‐skt 1.78 1.56 1.69 1.49 1.55 1.47 2.36 2.29 2.07 2.02 1.86 1.85

EVT‐POT 1.70 1.56 1.71 1.49 1.58 1.47 2.36 2.29 2.07 2.02 1.87 1.85

GAS‐1F 1.72 1.53 1.57 1.47 1.56 1.45 2.14 2.05 1.99 1.94 1.81 1.78

FHS 1.77 1.55 1.72 1.48 1.58 1.47 2.36 2.28 2.07 2.01 1.87 1.84

CAViaR‐SAV 1.78 1.54 1.72 1.46 1.58 1.46 2.35 2.28 2.06 2.01 1.87 1.84

CARE‐SAV 1.79 1.55 1.72 1.49 1.56 1.47 2.18 2.07 1.81 1.74 1.67 1.63

Note: The mean of the ratio of the highest to the lowest daily pre‐ and post‐adjusted VaR forecasts (risk ratio) across four commodity futures and three
significance levels. Each panel presents average risk ratio of 10 candidate models before and after optimized adjustments are made to VaR estimated at 1%,
2.5% and 5%, for a given asset, including WTI Crude Oil (CL, Panel A), Heating Oil (HO, Panel B), Natural Gas (NG, Panel C), and Unleaded/RBOB gasoline
(XB, Panel D). Results based on pre‐ and post‐adjusted VaR forecasts are labeled as column “before” and “after,” respectively. The sample period is from March
27, 2002 to December 31, 2021. Risk ratios presented in the “None” row are calculated from daily VaR forecasts by using all 10 candidate models. The rest of
rows display risk ratios when one specific model is excluded to avoid the effect of outlying forecasts. The excluded model is indicated by the row name.
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TABLE C2 Risk ratio sensitivity over full sample—ES.

Panel A: CL Panel B: HO

1% 2.5% 5% 1% 2.5% 5%

Before After Before After Before After Before After Before After Before After

None 3.17 1.80 2.66 1.71 2.23 1.58 2.30 2.59 2.17 2.29 1.95 2.08

HS1000 3.10 1.80 2.59 1.70 2.18 1.57 2.26 2.56 2.12 2.25 1.92 2.05

WHS 3.14 1.80 2.65 1.70 2.22 1.57 2.28 2.59 2.16 2.28 1.93 2.07

CF 2.32 1.72 2.04 1.66 1.83 1.56 2.16 2.14 2.06 1.98 1.89 1.89

G‐s 3.16 1.80 2.65 1.66 2.20 1.53 2.29 2.59 2.16 2.28 1.93 2.07

G‐skt 3.17 1.79 2.66 1.69 2.23 1.57 2.30 2.59 2.17 2.29 1.95 2.08

EVT‐POT 2.94 1.79 2.53 1.71 2.13 1.58 2.14 2.55 2.07 2.26 1.89 2.06

GAS‐1F 3.14 1.69 2.64 1.59 2.22 1.55 2.24 2.39 2.15 2.21 1.94 2.00

FHS 3.16 1.77 2.66 1.70 2.23 1.57 2.29 2.59 2.16 2.28 1.94 2.08

CAViaR‐SAV 3.17 1.80 2.65 1.71 2.23 1.58 2.30 2.58 2.17 2.27 1.95 2.08

CARE‐SAV 2.86 1.80 2.48 1.71 2.21 1.57 2.09 2.40 1.87 2.06 1.77 1.90

Panel C: NG Panel D: XB

1% 2.5% 5% 1% 2.5% 5%

Before After Before After Before After Before After Before After Before After

None 1.80 1.60 1.71 1.51 1.58 1.48 2.59 2.44 2.29 2.18 2.08 2.00

HS1000 1.80 1.58 1.70 1.50 1.57 1.46 2.56 2.42 2.25 2.15 2.05 1.98

WHS 1.80 1.58 1.70 1.49 1.57 1.47 2.59 2.41 2.28 2.16 2.07 1.98

CF 1.72 1.56 1.66 1.48 1.56 1.45 2.14 2.18 1.98 1.97 1.89 1.86

G‐s 1.80 1.60 1.66 1.51 1.53 1.48 2.59 2.44 2.28 2.18 2.07 2.00

G‐skt 1.79 1.60 1.69 1.51 1.57 1.48 2.59 2.44 2.29 2.18 2.08 2.00

EVT‐POT 1.79 1.60 1.71 1.51 1.58 1.48 2.55 2.44 2.26 2.18 2.06 2.00

GAS‐1F 1.69 1.56 1.59 1.49 1.55 1.45 2.39 2.23 2.21 2.08 2.00 1.91

FHS 1.77 1.58 1.70 1.50 1.57 1.47 2.59 2.42 2.28 2.17 2.08 1.99

CAViaR‐SAV 1.80 1.58 1.71 1.49 1.58 1.46 2.58 2.43 2.27 2.17 2.08 1.99

CARE‐SAV 1.80 1.59 1.71 1.51 1.57 1.47 2.40 2.18 2.06 1.86 1.90 1.77

Note: The mean of the ratio of the highest to the lowest daily pre‐ and post‐adjusted ES forecasts (risk ratio) across four commodity futures and three
significance levels. Each panel presents average risk ratios of 10 candidate models before and after optimized adjustments are made to ES estimated at 1%, 2.5%,
and 5%, for a given asset, including WTI Crude Oil (CL, Panel A), Heating Oil (HO, Panel B), Natural Gas (NG, Panel C), and Unleaded/RBOB gasoline (XB,
Panel D). Results based on pre‐ and post‐adjusted ES forecasts are labeled as column “before” and “after,” respectively. The sample period is from March 27,
2002 to December 31, 2021. Risk ratios presented in the “None” row are calculated from daily VaR forecasts by using all 10 candidate models. The rest of rows
display risk ratios when one specific model is excluded to avoid the effect of outlying forecasts. The excluded model is indicated by the row name.
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FIGURE C1 2.5% VaR and ES backtesting results with respect to p‐values before and after adjustments, over the full period. A p‐value
smaller than 0.05 (between 0.05 and 0.1) is shaded with red (yellow); otherwise, it is green. CL, HO, NG, and XB are abbreviations for WTI
Crude Oil, Heating Oil, Natural Gas, and RBOB/Unleaded Gasoline, respectively. Models 1–10 are HS, WHS, CF, G‐t, G‐skt, EVT‐POT,
GAS‐1F, FHS, CAViaR‐SAV, and CARE‐SAV, accordingly. Backtests 1–11 are UC, CC, DQ, two‐sided ER, one‐sided ER, two‐sided CCA,
one‐sided CCA, ESR Strict, ESR AUX, two‐sided ESR Int, and one‐sided ESR Int. [Color figure can be viewed at wileyonlinelibrary.com]
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FIGURE C2 5% VaR and ES backtesting results with respect to p‐values before and after adjustments, over the full period. A p‐value
smaller than 0.05 (between 0.05 and 0.1) is shaded with red (yellow); otherwise, it is green. CL, HO, NG, and XB are abbreviations for WTI
Crude Oil, Heating Oil, Natural Gas, and RBOB/Unleaded Gasoline, respectively. Models 1–10 are HS, WHS, CF, G‐t, G‐skt, EVT‐POT,
GAS‐1F, FHS, CAViaR‐SAV, and CARE‐SAV, accordingly. Backtests 1–11 are UC, CC, DQ, two‐sided ER, one‐sided ER, two‐sided CCA,
one‐sided CCA, ESR Strict, ESR AUX, two‐sided ESR Int, and one‐sided ESR Int. [Color figure can be viewed at wileyonlinelibrary.com]
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FIGURE C3 2.5% VaR and ES backtesting results with respect to p‐values before and after adjustments, over the crisis period. A p‐value
smaller than 0.05 (between 0.05 and 0.1) is shaded with red (yellow); otherwise, it is green. CL, HO, NG, and XB are abbreviations for WTI
Crude Oil, Heating Oil, Natural Gas, and RBOB/Unleaded Gasoline, respectively. Models 1–10 are HS, WHS, CF, G‐t, G‐skt, EVT‐POT,
GAS‐1F, FHS, CAViaR‐SAV, and CARE‐SAV, accordingly. Backtests 1–11 are UC, CC, DQ, two‐sided ER, one‐sided ER, two‐sided CCA,
one‐sided CCA, ESR Strict, ESR AUX, two‐sided ESR Int, and one‐sided ESR Int. [Color figure can be viewed at wileyonlinelibrary.com]
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FIGURE C4 5% VaR and ES backtesting results with respect to p‐values before and after adjustments, over the crisis period. A p‐value
smaller than 0.05 (between 0.05 and 0.1) is shaded with red (yellow); otherwise, it is green. CL, HO, NG, and XB are abbreviations for WTI
Crude Oil, Heating Oil, Natural Gas, and RBOB/Unleaded Gasoline, respectively. Models 1–10 are HS, WHS, CF, G‐t, G‐skt, EVT‐POT,
GAS‐1F, FHS, CAViaR‐SAV, and CARE‐SAV, accordingly. Backtests 1–11 are UC, CC, DQ, two‐sided ER, one‐sided ER, two‐sided CCA,
one‐sided CCA, ESR Strict, ESR AUX, two‐sided ESR Int, and one‐sided ESR Int. [Color figure can be viewed at wileyonlinelibrary.com]
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FIGURE C5 Color map based on the Diebold–Mariano (DM) test comparing the average losses using the FZ0 loss function for 2.5%
VaR and ES over the full sample. Forecasts marked with 1* to 10* are the adjusted risk measures forecasts based on the original forecasts
marked with 1–10. Blue blocks mean that the row forecast has a lower average loss than the column forecast at different significance levels
(the darkest shade means that we reject the null hypothesis at the 1% significance level and so on). White blocks mean that there is no
significant difference between the row forecast and the column forecast. Red blocks mean that the row forecast has a higher average loss
than the column forecast (the darkest shade means that we reject the null hypothesis at the 1% significance level and so on). CL, HO, NG,
and XB are abbreviations for WTI Crude Oil, Heating Oil, Natural Gas, and RBOB/Unleaded Gasoline, respectively. Forecasts 1–10 are
generated from HS, WHS, CF, G‐t, G‐skt, EVT‐POT, GAS‐1F, FHS, CAViaR‐SAV, and CARE‐SAV, accordingly. [Color figure can be viewed
at wileyonlinelibrary.com]
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FIGURE C6 Color map based on the Diebold–Mariano (DM) test comparing the average losses using the FZ0 loss function for 2.5%
VaR and ES over the crisis period. Forecasts marked with 1* to 10* are the adjusted risk measures forecasts based on the original forecasts
marked with 1 to 10. Blue blocks mean that the row forecast has a lower average loss than the column forecast at different significance levels
(the darkest shade means that we reject the null hypothesis at the 1% significance level and so on). White blocks mean that there is no
significant difference between the row forecast and the column forecast. Red blocks mean that the row forecast has a higher average loss
than the column forecast (the darkest shade means that we reject the null hypothesis at the 1% significance level and so on). CL, HO, NG,
and XB are abbreviations for WTI Crude Oil, Heating Oil, Natural Gas, and RBOB/Unleaded Gasoline, respectively. Forecasts 1–10 are
generated from HS, WHS, CF, G‐t, G‐skt, EVT‐POT, GAS‐1F, FHS, CAViaR‐SAV, and CARE‐SAV, accordingly. [Color figure can be viewed
at wileyonlinelibrary.com]
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FIGURE C7 Color map based on the Diebold–Mariano (DM) test comparing the average losses using the FZ0 loss function for 5% VaR
and ES over the full sample. Forecasts marked with 1* to 10* are the adjusted risk measures forecasts based on the original forecasts marked
with 1–10. Blue blocks mean that the row forecast has a lower average loss than the column forecast at different significance levels (the
darkest shade means that we reject the null hypothesis at the 1% significance level and so on). White blocks mean that there is no significant
difference between the row forecast and the column forecast. Red blocks mean that the row forecast has a higher average loss than the
column forecast (the darkest shade means that we reject the null hypothesis at the 1% significance level and so on). CL, HO, NG, and XB are
abbreviations for WTI Crude Oil, Heating Oil, Natural Gas, and RBOB/Unleaded Gasoline, respectively. Forecasts 1‐10 are generated from
HS, WHS, CF, G‐t, G‐skt, EVT‐POT, GAS‐1F, FHS, CAViaR‐SAV, and CARE‐SAV, accordingly. [Color figure can be viewed at
wileyonlinelibrary.com]
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FIGURE C8 Color map based on the Diebold–Mariano (DM) test comparing the average losses using the FZ0 loss function for 5% VaR
and ES over the crisis period. Forecasts marked with 1* to 10* are the adjusted risk measures forecasts based on the original forecasts marked
with 1–10. Blue blocks mean that the row forecast has a lower average loss than the column forecast at different significance levels (the
darkest shade means that we reject the null hypothesis at the 1% significance level and so on). White blocks mean that there is no significant
difference between the row forecast and the column forecast. Red blocks mean that the row forecast has a higher average loss than the
column forecast (the darkest shade means that we reject the null hypothesis at the 1% significance level and so on). CL, HO, NG, and XB are
abbreviations for WTI Crude Oil, Heating Oil, Natural Gas, and RBOB/Unleaded Gasoline, respectively. Forecasts 1‐10 are generated from
HS, WHS, CF, G‐t, G‐skt, EVT‐POT, GAS‐1F, FHS, CAViaR‐SAV, and CARE‐SAV, accordingly. [Color figure can be viewed at
wileyonlinelibrary.com]
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