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Abstract 

This work investigates asymptotic homogenization method (AHM) for axially graded beams that are 

mapped from periodic ones. The unit cell problems, the homogenized constitutive and governing 

equations are first established theoretically. Then a novel FE formulation of unit cell problems and 

effective stiffness, distinct from that of the periodic beams, is derived and resolved for solid elements. 

Besides, to improve analysis efficiency, an updated concise formulation is acquired for shell elements 

with proper handle of in-plane rotational DOFs, and a MATLAB code is presented to show 

implementation details. At last, four numerical examples show the correctness of the proposed method.  
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1. Introduction 

Heterogeneous beam structures are ubiquitous in aerospace, transportation and other engineering fields 

due to their high specific stiffness/strength, high energy absorption, thermal/acoustic insulation and other 

good performances. With the increasing demand for multi-functionality and the rapid development of the 

additive manufacturing technique [1], the architectures of beam-like structures with fine configuration 

details are becoming more and more sophisticated [2,3]. This poses great challenge to their efficient 

structural analysis and design, as intensive numerical computations are usually inevitable for these 

structures to acquire satisfactory results through direct numerical analysis. To weigh between 

computational cost and analysis precision, homogenization approaches are proposed to turn the original 



one-scale analysis of heterogeneous structures into two-scale analysis of equivalent homogeneous 

counterparts with effective properties, which are acquired through analyzing the constituent 

materials/microstructures. 

One kind of frequently employed heterogeneous beam structures are functionally graded (FG) beams 

with multiphase constituent materials or graded beam sections, whose constituents can be adjusted to 

achieve specified or extremal performances. Significant efforts have been devoted to the analysis and 

design of these structures. Garg et al. [4] conducted bending and free vibration analysis of FG CNT 

reinforced beam, and the influence of CNT gradation and core thickness on mechanical performance is 

emphasized. Belarbi et al. [5] evaluated FG sandwich curved beams via refined shear deformation theory, 

and the effect of different factors on the mechanical performances is investigated. For vibration analysis, 

Cao et al. [6] studied axially FG beams using the asymptotic development method, where influence of 

gradient parameters and support conditions is discussed. Chen and Su [7] studied the analytical solution 

of FG sandwich beams using the refined zigzag theory, and Zhao et al. [8] analyzed nonlinear free 

vibration characteristics for auxetic metamaterial beams. For stability problems, Chen et al. [9] analyzed 

buckling performances of FG beams based on FE homogenization, and Zhao et al. [10] studied buckling 

and postbuckling resistance of FG graphene origami-enabled auxetic metamaterial beams. The novel 

Carrera Unified Formulation (CUF) [11] is another effective analysis framework for beam structures. In 

CUF, the expansion functions are adopted across the beam cross-section therein to enrich the kinematics, 

and accurate solutions can be obtained at a reduced computational cost. It has been successfully 

employed to solve physical [12] and geometrical [13] nonlinear problems. In addition to structural 

analysis, structural optimization has also been extensively investigated for FG beams. Tsiatas and 

Charalampakis [14] conducted design optimization of natural frequency by tailoring material distribution, 

and Andrianov et al.[15] studied maximum buckling load design of FG beams based on the 

homogenization method. Due to limited space, many other literatures regarding this aspect are not listed 

here, and interested readers may refer to [16] for modeling techniques and solution methods for FG 

sandwich beams based on classical and shear deformation theories, and [17] for mechanics of FG 

nanoscale and microscale structures.  



 

Figure 1. Sketch of the periodic structure and its spatially graded counterparts 

 

Another kind of commonly employed heterogeneous beam-like structures are constructed by repeating 

constituent microstructures, which are usually termed as unit cells or representative volume elements 

(RVE), along the axial direction. The shapes of these structures exhibit rapidly changing characteristics 

in the micro scale, while display slowly varying deformation patterns in the macro scale. Accordingly, 

the asymptotic homogenization approach [18], which is originally developed to handle PDEs with 

oscillating coefficients in mathematics, is an ideal tool in analyzing these structures. In the field of 

mechanics, the AH approach is first applied to repetitively arranged microstructures with periodicity in 

all spatial directions, depicted in Figure 1(a), and the heterogeneous structure is homogenized into elastic 

medium with effective property. It is then extended to heterogeneous plate/shell-like structures with in-

plane periodicity [19,20] and beam-like structures with axial periodicity [21-23], which are respectively 

homogenized into solid Kirchhoff plates/shells and Euler beams with effective stiffness. When 

computing effective property/stiffness in AH approach, the characteristic displacements, which display 

different periodic boundary conditions for different homogenized structural models, must be acquired by 

resolving unit cell problems, which are defined on a typical constituent microstructure. Hence, efficient 

and accurate solution to unit cell problems is vital for effective property/stiffness evaluation. For unit 

cells with simple shapes, closed-form solutions can be acquired [24,25], while, for complicated 

configurations, numerical methods, which are more versatile in handling complex geometries, should be 

adopted. Cartraud and Messager [26] developed the numerical computational scheme for periodic beam-

like structures based on homogenization, and applied it to the analysis of helical strands with solid and 

beam FE models [27]. Cheng et al. [28] proposed a novel numerical implementation approach of 

asymptotic homogenization (NIAH) for effective property evaluation of heterogeneous materials. Here, 

by replacing unit strains with equivalent displacements, the numerical formulation is simplified and the 

workload of FE coding is significantly relieved. This approach is later extended to periodic plate-like 

(c). the graded structure constructed 
through mapping functions 

(a). the periodic structure (b). the graded structure by 
varying cavity radius 



[29] and beam-like [30] structures, which substantially facilitates widespread application of AH method. 

Yan et al. [31] analyzed effective properties of helically wound structures based on NIAH, with emphasis 

on the transverse shear effect. Huo et al. [32] evaluated elastic properties of rhombic mesh structures 

based on computational homogenization, where numerical effective properties agree well with analytical 

ones and the struct-joint deformation can be captured by the beam-spring elements.  

Besides, the asymptotic expansion method (AEM) [33] is another effective tool in analyzing periodic 

beam structures by including higher-order terms, where the incompatibility between interior asymptotic 

expansions and real boundary conditions is emphasized. Treyssede and Cartraud [34] applied AEM to 

the analysis of helical beam-like structures under bending loads, where the special treatment exploiting 

helical symmetry is adopted to reduce the original 3D microstructural analysis to 2D cross-section 

analysis. Ferradi and Cespedes [35] developed a new efficient and locking free beam model from AEM, 

capable of representing full 3D stresses and the displacement filed, for curved beam models, which is an 

extension of straight beams [36]. Huang et al. [37] studied fourth-order asymptotic expansion for periodic 

composite Euler beams and revealed that higher-order perturbed displacements are necessary for accurate 

micro stress evaluation. It is noted that, in AEM, the higher-order terms can substantially improve 

analysis precision, yet the unit cell problems related to higher-order terms are quite complicated. Further 

endeavor needs to be conducted to promote its general numerical application to arbitrarily shaped 

microstructures. 

In addition to the AHM and AEM, where the governing equations are directly asymptotically expanded, 

the variational asymptotic method (VAM) [38,39] analyzes beam structures through variation of the 

strain energy that has been asymptotically expanded in terms of small parameters. Generalized from the 

VAM approach, Yu [40] proposed the mechanics of a structure genome (MSG), aiming at providing a 

unified framework for multiscale constitutive modeling. Based on MSG, Liu and Yu [41] studied smeared 

properties and stress evaluations of composite beams, and special software, such as Gmsh4SC and 

SwiftCompTM [42], is also developed to promote the practical numerical evaluation of constitutive 

models for beam structures. 

In the previous works, beam structures typically exhibit strictly periodic micro architectures. To improve 

structural performance, the axially varying microstructures, which enjoy more design freedom than 

periodic ones, offer a sound choice. One direct means of gradation design is to alter gradually 

microstructural parameters, such as radii and volume fractions, as depicted in Figure 1(b). Here the 



effective property can still be approximated through asymptotic analysis in spite of slight inconsistency 

against the periodic condition. Niknam and Akbarzadeh [43] studied in-plane and out-of-plane buckling 

of architected cellular plates, where the graded cell densities can help increase buckling loads. Similar 

advantage is also revealed for graded cellular beams in the thermo-mechanical bending analysis [44], 

where the bending stiffness can be significantly improved through gradient density design. Liu et al. [45] 

conducted design optimization of cellular structure with graded relative densities, where a post-process 

method is proposed to acquire smooth transition boundaries, and Savio et al. [46] studied variable 

thickness design approaches of triply periodic minimal surfaces (TPMS) in a CAD environment for 

additive manufacturing. 

Another approach of graded cellular design is to project periodic microstructures through mapping 

functions, as depicted in Figure 1(c). Here the microstructural configurations are no longer rectangular 

and the effective properties cannot be acquired through previous asymptotic methods. To tackle this 

problem, Zhu et al. [47] introduced mapping functions into asymptotic analysis of 2D graded 

microstructures, where the unit cell problems are reformulated incorporating Jacobian coefficients. This 

approach is then exploited in the design optimization of graded infill microstructures [48]. In a similar 

manner, Xu et al. [49] developed asymptotic homogenization method for spatially graded plate structures, 

where detailed numerical resolution of unit cell problems and effective stiffness is elaborated. However, 

for graded beam structures mapped from periodic ones, the effective properties based on asymptotic 

homogenization has not been fully exploited. Hence, in this work, the authors are devoted to the analysis 

of unit cell problems and effective stiffness for axially varying beam structures, where numerical 

implementation for different element types is investigated. 

The rest of the paper is structured as follows. In Section 2, the unit cell problems and effective stiffness 

formulation of spatially graded beams are derived based on AHM, and are reformulated in a more 

compact form in Section 3 to facilitate numerical implementation. The FE formulation of unit cell 

problems and effective stiffness is dealt with in Section 4, for both solid and shell elements. In Section 

5, four numerical examples are presented to show the effectiveness of the proposed method, and an 80-

line MATLAB code with implementation details is given in Appendix A. At last, conclusions and 

comments are drawn in Section 6. 

 

2. Asymptotic homogenization for spatially graded beam-like structures 



 

Figure 2. The spatially graded beam-like structure and its periodic counterpart  

 

First, we consider the graded beam-like structure in the Oξ1ξ2ξ3 coordinate in Figure 2(a). Here, the 

domain, the surface traction boundary and the displacement boundary of the graded beam are denoted 

by Ωε, Sε, and Su respectively, and the total length is 2a, varying from ξ3=-a to ξ3=a. The graded beam is 

mapped from the periodic beam-like structure in the Ox1x2x3 coordinate in Figure 2(b), and the mapping 

functions are ( )1 1 2 2 3 3 3, ,x x x x  = = = . The periodic beam structure is constructed by repeating the 

unit cell along the axial direction, i.e., the x3 axis, and ε denotes the characteristic dimension of the unit 

cell, which is much smaller than that of the whole periodic beam. The length, the domain, the non-

periodic boundary and the periodic boundary of the unit cell are denoted by l, Y, S and   respectively 

in the micro Oy1y2y3 coordinate, varying from y3=-l/2 to y3=l/2. The micro unit cell of the graded beam 

structure, which is axially varying along the ξ3 axis, is defined in the Oη1η2η3 coordinate. The relation 

between y and η is given by  

 1 1 2 2 3 3, ,y y y J  = = =   (1) 

where 3

3

x
J




=


. In AHM, the macroscopic design variables x and ξ are termed as slow variables and the 

microscopic design variables y and η are termed as fast variables. The relation between slow and fast 

variables is 
( )


=
x ξ

y  and the spatial gradient is given by 



 
3 3 3

1
,

J

y y     
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  (2) 

which is similar to that in [47]. Here the Greek subscripts vary from 1 to 2, the Latin subscripts vary from 

1 to 3, and the summation convention is adopted for repeated subscripts unless otherwise stated. 

The 3D equilibrium equation of the graded beam structure is expressed as 
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, σε denotes the oscillatory stress tensor, uε denotes the oscillatory 

displacement, εε denotes the oscillatory strain, c denotes the elastic tensor satisfying the periodic 

condition ( ) ( )1 2 3 1 2 3, , , ,x x x x x x Ml= +c c  with arbitrary integers M, N is the unit outward normal, and 

fε and gε are the prescribed body force in Ωε and tractions on S , which are written in the orders of ε as  
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The displacement field uε is expanded asymptotically as 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )0 1 22

3 3 3, ,     = + + +u ξ u u y u y   (5) 

where 
( )p

u  are periodic functions in y3 with periodicity unit cell length l. Then the stress tensor σε can 

be expanded as 
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where Jnl is the coefficients of the Jacobian matrix J, given by 
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Then following the procedure in [22], we introduce the trial function vε, which is the set of admissible 

displacements satisfying the displacement boundary condition 
uS

 =v 0  , to study the homogenized 

equilibrium equation. The weak form of Eq. is given by 
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Substituting

is expanded as
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Letting ( )3
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where 
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Integrating by parts and considering the arbitrariness of the displacement w, the homogenized 

equilibrium equations for 
( )p

ijN  are obtained as  
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On the other hand, letting ( )3y =v w  and substituting v into Eq.(8) Eq.(8) is transformed into 

the following equality by setting 0 →  
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where 
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3
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i iM y = . Extracting the terms related to ε1, ε2 and ε3, integrating by parts and consider

the arbitrariness of w, the homogenized equilibrium equations for 
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iM   are obtained as 
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Define the torsional moment M as 
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21 12 3 3 3M M M e M e y    = − = =  , where eαβ3 is the 

alternating symbol. Then the last equality in Eq. is expanded as 
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where we have used the relation 
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12 21N N= .  

Next, consider equilibrium equations in the micro scale. Substituting Eq.

collating the terms with the same powers of the small parameter ε, Eq. is expanded as 
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where n is the unit outward normal in the Oy1y2y3 coordinate. 

Using the method of separation of variables, assume that the solution of displacement 
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ku   can be 
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order of ε are given by 
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It is easy to deduce that, for m=α, 
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The governing equations corresponding to ε0 are written as 
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Analogously assume that 
( )2

ku  has the following form of solution 
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Then Eq. is expanded as
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For the sake of brevity, defining the terms 
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, the following governing equations can be acquired through Eq.( as 
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which are termed as unit cell problems in AHM. 

The 1-st order stress 
( )1

ij   is accordingly expressed as 
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...

Substituting 
( )1

ij   into the homogenized resultant forces 
( )1

33N  , 
( )1

3M    and M  , the homogenized 

constitutive relations are expressed as 
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  (21) 



Here 
( )1

33N  , 
( )1

3M    and M denote the resultant axial force, the bending moment and the torque 

respectively. 
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−


  and 

3








  represent the axial strain, the bending curvature and the 

torsional strain respectively. 

Besides, bearing in mind that 
( )0

0ijN =  , the homogenized governing equations are obtained from 

Eqs.
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Therefore, the unit cell problems , the homogenized constitutive equations and the 

homogenized governing equations are established for the spatially graded beam structures. 

3. Equivalent forms of effective stiffness formulation for spatially graded beam structures 

In this section, equivalent forms of effective stiffness formulation and unit cell problems

are presented in detail to facilitate further FE numerical implementation. First, to collate the 

unit cell problems in a unified form, the following strains 

( )1,2,3,4p

kl p =  are introduced as 
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Here δ is the Kronecker δ and Eq.( can be cast into matrix form as
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where ε1 denotes unit tensile strain, ε2 , ε3 denote two unit curvatures and 4
ε  denotes unit torsional strain. 

Furthermore, the displacements 
1 2 3 4, , ,U U U U   are introduced to replace 

03 11 12 3, , ,X X X X  

respectively, and 
1 2 3 4, , ,b b b b  to replace 

03 11 12 3, , ,b b b b  respectively in Eqs.
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, and the unit cell problems are

recast in a unified manner as 
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Here the periodic boundary conditions are obtained from the periodicity of displacements

( )1,2,3,4p p =U  and are presented in Eq.(25) for completeness sake. The effective stiffness in

constitutive equation (21) is rearranged as ( ), 1,2,3,4pq p q

ij ijD b p q= = . In addition, considering 

the periodicity of displacements Up (p=1,2,3,4), Dpq (p,q=1,2,3,4) can be alternatively cast in energy form 

as 
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  (26)

It is observed that the main difference between the unit cell problems and effective stiffness formulation 

of graded beam structures and those of the periodic beams is the Jacobian matrix J, which induces distinct 

numerical treatments subsequently. 

For periodic beam structures, where J reduces to the identity matrix, direct numerical resolution of unit 

cell problems involves element-wise application of the strain fields (24). In NIAH approach [30]

the application of strain fields is replaced with the application of equivalent displacement fields, which 

is more convenient to fulfill on FE model. For spatially graded beams, this approach can be carried out 

in an analogous manner and the following displacement fields, defined in the Oη1η2η3 coordinate, are 

given by 
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which satisfy the equality 
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..The effective stiffness coefficients in Eq. (26) then 
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 . Hence

the effective stiffness is in effect determined through the sum of displacements p
U and p

V , and we can 

alter the unit cell problems to directly seek for the solution of the summation displacements 

( )1,2,3,4p p p p= + =W U V . Substitute p p p= −U W V  into Eq.(25) , and the modified unit cell 

problems are stated as 
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Here we have used the relation 
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The stiffness coefficients are hence written as 
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It is noted that the displacement boundary condition of p
W  only involves the displacement value p

V  

on ω+ and ω- boundary, and the values of Vp inside the unit cell do not influence the displacement 

boundary condition. Besides, for the special case of periodic beam structures, the unit cell problems and 

effective stiffness formulation can be readily obtained by setting Jmn=δmn in Eqs.

4. Numerical implementation of unit cell problems and effective stiffness formulation 

文)

文)



In this section, the numerical formulation of the unit cell problems (28) and effective stiffness 

(30) are derived in detail for both solid and shell elements, where the numerical treatments in the 

derivation of rotational DOFs (Degrees of Freedom) are emphasized. 

4.1 Effective stiffness and unit cell problem formulation for solid elements 

To construct the FE formulation for the unknown displacements p
W  in Eq.(28) , the trial function 

v which fulfills the periodic boundary condition 
 + −

=v v , is introduced. The weak form of the unit 

cell problems becomes 
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Integrating by parts and letting v be the variation of the displacement p
W , Eq.(31) is expressed 

through the divergence theorem as 
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Here the repeated superscript p is not summed up and 
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, which is distinct 

from conventional strains and is distinguished with an overbar. Then following the standard FEM 

procedure, we discretize the unit cell into ne solid elements and the discrete form of Eq.(32 is given 

by 
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Here the right subscript e denotes e-th element, the left superscript n signifies discretized nodal values, 

n p

eW  denotes the displacement vector of e-th element, and ke denotes the stiffness matrix of e-th element, 

given by 
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e
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
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Here Ωe denotes the domain of e-th element, and the strain-displacement matrix ( )B y   is defined 

through the following equation 
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Here ( )B y   is also different from conventional strain-displacement matrix and is denoted with an 

overbar. 

In Eq.(34) , the element stiffness matrix k is formulated in the Oy1y2y3 coordinate, and can be

alternatively integrated in the Oη1η2η3 coordinate, given by 

 ( ) ( ) ( ) ( )
T T

e e
e ed J d J 

  
= = =       k B η cB η J η B η cB η η k   (36) 

where e
  is the domain of e-th element in the Oη1η2η3 coordinate, projected from Ωe in the Oy1y2y3 

coordinate, ( )B η  is the conventional strain-displacement matrix, and e


k  is the conventional stiffness 

matrix constructed in the Oη1η2η3 coordinate. Therefore, Eq.(36) is more convenient for element 

stiffness matrix formulation and structural analysis, as compared with Eq.(34) On the other hand, in

the field of structural optimization, as the Jacobian coefficient J is explicitly manifested in the matrix B  

in Eq.(34) analytical sensitivity analysis of stiffness k with respect to J is readily accessible In 

Eq.(36) however, the Jacobian coefficient J is implicitly reflected in the nodal coordinates and 

sensitivity analysis cannot be directly acquired. Hence, Eq.(34) is more favorable from optimization 

point of view. 
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Figure 3. Sketch of the unit cell FE model (Red dots denote element nodes and master nodes are 

obtained by subtracting nodes on ω+ boundary from full nodes in the unit cell.) 

 

Denote by the global displacement vector n n

1

en
p p

e
e=

= W W , where A is the assembly operator, and the 

independent DOFs are a subset of n p
W  as the periodic boundary condition in Eq. should be 

secured. In this work, the independent DOFs are defined on master nodes, which are obtained by 

subtracting nodes on ω+ boundary from all nodes of the FE model in Figure 3, and are denoted by 
n

m

p
W

with a right subscript m. The relation between n p
W  and 

n

m

p
W  can be characterized by 

 
n n n

m

p p p= + W T W V   (37

where T is the transformation matrix [30], which transforms DOFs on master nodes to full DOFs. I

practical applications, the matrix T is not explicitly assembled but fulfilled through row and column 

addition operation of matrices in the FE codes, as detailed in Appendix A. n p V  is the displacement 

vector constructed according to pV  in Eq.(28) , which has the length of full nodal degrees of 

freedom and has non-zeros values only on the ω+ boundary. Substitute Eq.(37 into Eq.(33) and 

the solution formulation for displacement vector 
p

W  is expressed as 
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Here k is the global stiffness matrix 
1

en

e
e=

= k k , and identical FE mesh on periodic boundaries   is

presumed for the applicability of transformation matrix T. To resolve Eq.(38) , rigid body 

displacements, i.e., three rigid-body translations along y1, y2, y3 axes and a rigid-body rotation around y

axis, should be excluded. In the FE codes in Appendix A, the rigid-body translations are suppressed by

constraining all translational displacement components of one node, and the rigid-body rotation is

suppressed by constraining a proper displacement component of a surrounding node. Therefore, the 

remaining DOFs, that are acquired through subtracting DOFs suppressing rigid-body displacements from 

those on master nodes, are resolved through Eq.(38) Once the displacements Vp ( =1, 2, 3, 4) are 

resolved, the effective stiffness can be calculated as 

 ( )
T

n n1pq p qD
Y

= W k W   (39) 



where p, q=1,2,3,4. 

4.2 Effective stiffness and unit cell problem formulation for shell elements 

For unit cells composed of structures with contrast member sizes, the adoption of solid elements for FE 

discretization should involve large numbers of elements to acquire satisfactory results. To save 

computational resource and time without losing accuracy, the adoption of structural element types, such 

as shell elements, becomes indispensable. In this subsection, the unit cell problems for shell elements are 

derived.  

 

Figure 4. Sketch of the shell model in the Oη1η2η3 coordinate and its mapped shell model in the Oy1y2y3 

coordinate (Blue dashed lines represent mid-surfaces.) 

 

First, consider a shell element of the unit cell in the Oη1η2η3 coordinate depicted in Figure 4, which is 

mapped into that of the unit cell in the Oy1y2y3 coordinate. The shell local coordinates 1 2 3O     and 

1 2 3Oy y y    can be characterized by the unit orthonormal bases e1, e2, e3 and 1
e , 2

e , 3
e  respectively. 

Here e1, e2 ( 1
e , 2

e ) lie within the mid-surface and e3 ( 3
e ) is vertical to the mid-surface. The thicknesses

are t and t  for shells in the Oη1η2η3 coordinate and those in the Oy1y2y3 coordinate respectively. For 

solid elements, the stiffness matrix k can be constructed either in the Oy1y2y3 coordinate through 

Eq.(34) or in the Oη1η2η3 coordinate through Eq.(36) depending on the problem encountered

For shell element, where the strain-displacement relation is different from that of elastic continuum, the 

derivation of unconventional strain-displacement matrix ( )B y   in Eq.(34) is much more 

complicated. To accommodate the unit cell problem formulation (38) to shell elements, the assembly 

of stiffness matrix ke through Eq.(36) in the Oη1η2η3 coordinate is more favorable as different well

developed shell elements can be utilized. In practical applications, if the unit cell model in the Oy1y2y

coordinate, i.e., the vectors 1
e  , 2

e  , 3
e   and the thickness t  , is prior known, the unit orthonormal 
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vectors e1, e2, e3 and the thickness t in Oη1η2η3 coordinate can be constructed through the following 

relation 
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Then the local element stiffness matrix local

ek  and the transformation matrix Te, which relates local and 

global coordinates, can be constructed for e-th element in the Oη1η2η3 coordinate. The global element 

stiffness matrix e


k  is hence given by 
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e e e e

 =k T k T   (41)

Alternatively, if the unit cell model in the Oη1η2η3 coordinate is acquired beforehand, then the stiffness 

matrix e


k   can be directly constructed through Eq. With e


k   in hand, the global stiffness 

matrix k is readily assembled through Eq. as 
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A
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=
=k k .  

To resolve the unit cell problem (38) for shell elements numerically, the displacement fields

p p p

 + −

 = −V V V  in the periodic boundary condition should be transformed to include rotational 

DOFs in three steps. Firstly, the displacements Vp in Eq. is transformed into the

local coordinate 1 2 3O     in Figure 4 as  

 , p p

i ij j i ij je V e V  = =   (42) 

where eij is the j-th component of vector ei, and pV  is the displacement in local coordinate. Secondly, 

the rotational angles are calculated as 
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  (43) 

Here the Allman-type drilling DOF 
3

p    is adopted [50,51]. Thirdly, the rotational angles are 

transformed back into the global coordinate Oη1η2η3, given by  

 
p p

i ji je  =   (44) 



Substituting Eq. into Eq.(42 ) and following the procedure in Eqs.(42

(44 , the analytical expressions for p
θ can be acquired. Therefore, the periodic boundary condition 

for shell elements that includes both translational and rotational DOFs is characterized as 
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  (45) 

It is worth mentioning that, with the introduction of the Allman-type drilling DOF in Eq.

pθ  formulation only involves global nodal coordinate in Eq.(45) and element-wise parameters eij

are all cancelled out. This significantly simplifies numerical implementation as elementwise rotational 

angle transformation is omitted. Another treatment is to simply let ( )3 0 1,2,3,4p p  = =  and associate 

a small positive quantity with the drilling DOF to avoid element stiffness matrix singularity. In this case, 

direction cosines eij in local shell coordinates cannot be cancelled out in pθ   and elementwise 

computation on periodic boundaries ω± is inevitable, which could be quite tedious for complicated 

microstructures. The detailed derivation of pθ  based on the above two treatments can be found in 

Appendix B. 

With the stiffness matrix and displacement periodic boundary condition obtained for shell elements, the 

numerical formulation for unit cell problems are analogously constructed and resolved, and the effective 

stiffness can be calculated through Eq.

 

5. Numerical examples 

In this section, four numerical examples, i.e., the zigzag beam, the sinus beam, the sandwich beam and 

the Schwartz-P beam, are presented to illustrate the correctness of the proposed method for both solid 

and shell elements. During the pre-processing stage, the geometrical models and FE meshes of the unit 

cells are created through the APDL code in ANSYS 17.1, the FE implementation of effective stiffness 

computation in Section 4 is conducted in MATLAB2018, and the FE analysis of the de-homogenized 

graded beams during the post-processing stage is again performed through the APDL code in ANSYS 

17.1.  



5.1 The zigzag beam example 

 

Figure 5. Sketch and FE mesh of the zigzag beam unit cell 

 

The first example is the zigzag-shaped beam in Figure 5(a), where the size parameters of the unit cell are 

defined in the Oy1y2y3 coordinate with l=40, b=10, h=20, δ=0.2. The sizes of the deformed unit cell in 

the Oη1η2η3 coordinate are accordingly calculated with L=l/J, θ=tan-1(h/L), t=2δcosθ in Figure 5(a). The 

material property is isotropic with Young’s modulus E=2e5 and Poisson’s ratio ν=0.0. 

The effective stiffness of the zigzag beam is first analyzed with solid elements, where the stiffness matrix 

is constructed through Eq. in the Oy1y2y3 coordinate. Here the unit cell model in the Oy1y2y3

coordinate is discretized with 45360 15-node tri-prism solid elements, depicted in Figure 5(b). The 

diagonal effective stiffness coefficients with different Jacobian coefficients J are listed in Table 1, where 

the off-diagonal terms are not listed as they are at least five orders of magnitude smaller. Homogenization 

of such corrugated beam structures has also been studied in [26], and the analytical results of 
11

analyticalD  

and 
33

analyticalD   for the zigzag beam can be accordingly obtained.. It is observed that the calculated 

analytical results, listed in Table 2, agree well with those in Table 1, and the largest relative error is 3.03% 

for J=2.0. 

(a). Sizes of the zigzag beam in the 

Oy1y2y3 and the Oη1η2η3 coordinates 
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The effective stiffness is also calculated with shell elements, where the shell model is constructed and 

discretized in the Oy1y2y3 coordinate in Figure 5(b). To formulate the stiffness matrix in the Oη1η2η3 

coordinate, the local orthonormal basis and shell thickness are acquired through Eq.

matrix is assembled with 4-node Mindlin shell elements, where the enhanced assumed strain method is 

adopted to prevent shear locking [52].  

The effective stiffness coefficients calculated with 2400 shell elements are listed in Table 3, where the 

relative errors compared to those obtained with solid elements are also listed in brackets. The results 

exhibit excellent agreement between solid and shell elements, showing the high precision of shell 

elements.  

The calculation of effective stiffness is implemented on a laptop with an Intel core i7 8750H processor, 

32GB memory and MATLAB 2018a. The computational time for shell and solid elements is around 0.6s 

and 15s respectively, showing the efficiency of shell elements. In addition, to propagate application of 

the proposed method, the implementation details for the zigzag beam composed of shell elements are 

presented in the 80-line MATLAB code in Appendix A.  

 

Table 1. Stiffness coefficients of the zigzag beam obtained with solid elements 

J D11 D22 D33 D44 

0.4 2.38e2 1.19e5 7.93e3 1.80e4 

0.6 1.74e2 4.73e4 5.77e3 1.53e4 

0.8 1.20e2 2.28e4 3.98e3 1.28e4 

1.0 8.09e1 1.23e4 2.68e3 1.05e4 

1.2 5.46e1 7.11e3 1.80e3 8.62e3 

1.4 3.73e1 4.37e3 1.22e3 7.11e3 

1.6 2.59e1 2.82e3 8.49e2 5.93e3 

1.8 1.83e1 1.89e3 5.99e2 4.99e3 

2.0 1.32e1 1.30e3 4.31e2 4.24e3 

Table 2. Analytical stiffness coefficients of the zigzag beam

  J 
11

analyticalD   
33

analyticalD  

0.4 2.38e2 (0.00%) 7.93e3 (0.00%) 

0.6 1.73e2 (-0.57%) 5.77e3 (0.00%) 

0.8 1.19e2 (-0.83%) 3.97e3 (-0.25%) 

1.0 8.00e1 (-1.11%) 2.67e3 (-0.37%) 

1.2 5.37e1 (-1.65%) 1.79e3 (-0.56%) 

1.4 3.65e1 (-2.14%) 1.22e3 (0.00%) 

1.6 2.52e1 (-2.70%) 8.42e2 (-0.82%) 
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1.8 1.78e1 (-2.73%) 5.93e2 (-1.00%) 

2.0 1.28e1 (-3.03%) 4.27e2 (-0.93%) 

Table 3. Stiffness coefficients of the zigzag beam obtained with shell elements 

J D11 D22 D33 D44 

0.4 2.38e2 (0.0%) 1.20e5 (0.84%) 7.93e3 (0.00%) 1.81e4 (0.56%) 

0.6 1.73e2 (-0.57%) 4.76e4 (0.63%) 5.77e3 (0.00%) 1.55e4 (1.31%) 

0.8 1.19e2 (-0.83%) 2.29e4 (0.44%) 3.97e3 (-0.25%) 1.28e4 (0.00%) 

1.0 8.00e1 (-1.11%) 1.23e4 (0.00%) 2.67e3 (-0.37%) 1.05e4 (0.00%) 

1.2 5.37e1 (-1.65%) 7.12e3 (0.14%) 1.79e3 (-0.56%) 8.65e3 (0.35%) 

1.4 3.65e1 (-2.14%) 4.36e3 (-0.23%) 1.22e3 (0.00%) 7.13e3 (0.28%) 

1.6 2.53e1 (-2.32%) 2.81e3 (-0.35%) 8.42e2 (-0.82%) 5.94e3 (0.17%) 

1.8 1.78e1 (-2.73%) 1.87e3 (-1.06%) 5.93e2 (-1.00%) 4.99e3 (0.00%) 

2.0 1.28e1 (-3.03%) 1.30e3 (0.00%) 4.27e2 (-0.93%) 4.23e3 (-0.24%) 

 

5.2 The sinus beam example 

The second example is the sinus beam in Figure 6. Different from the first example, the size parameters 

are defined in the Oη1η2η3 coordinate, where D=40, L=l/J, l=20, b=6, δ=0.4, and the unit cell is discretized 

with 15-node tri-prism solid elements. Hence, the stiffness matrix is directly assembled through 

Eq. in the Oη1η2η3 coordinate. The calculated effective stiffness coefficients with different 

Jacobian coefficients J are listed in Table 4, where the off-diagonal terms are not listed as they are at 

least five orders of magnitude smaller. On the other hand, the analytical results of effective stiffness 

11

analyticalD  and 
33

analyticalD  for the sinus beam can also be acquired following the method in [23].  

The calculated analytical results are listed in Table 5. It is observed that the results in Tables 4 and 5 are 

in excellent agreement and the relative errors are all well below 1%, signifying the accuracy and 

effectiveness of the proposed method. 
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Figure 6. Sketch of the sinus beam unit cell 

 

The shell model of the sinus beam is depicted in Figure 6(b), and the effective stiffness coefficients 

acquired with shell elements are listed in Table 6, where the relative errors compared to those obtained 

with solid elements are well below 1%, illustrating the high accuracy of shell elements. The 

computational time for the FE model composed of 37152 solid elements is around 10s and that of the FE 

model composed of 4000 shell elements is around 1.3s, which is much more efficient without losing 

accuracy.  

 

Table 4. Effective stiffness coefficients calculated with solid elements for the sinus beam 

J D11 D22 D33 D44 

0.4 1.09e2 2.27e4 4.85e3 1.57e4 

0.6 9.55e1 1.31e4 3.95e3 1.85e4 

0.8 8.31e1 9.25e3 3.28e3 2.14e4 

1.0 7.30e1 7.19e3 2.78e3 2.43e4 

1.2 6.46e1 5.91e3 2.40e3 2.72e4 

1.4 5.77e1 5.02e3 2.10e3 3.00e4 

1.6 5.20e1 4.37e3 1.87e3 3.27e4 

1.8 4.73e1 3.88e3 1.68e3 3.53e4 

2.0 4.32e1 3.48e3 1.53e3 3.78e4 

Table 5. Analytical effective stiffness coefficients of the sinus beam  

J 
11

analyticalD   
33

analyticalD   

0.4 1.09e2 (0.00%) 4.85e3 (0.00%) 

(a). Sizes of the sinus beam in Oη1η2η3 coordinate 
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0.6 9.55e1 (0.00%) 3.95e3 (0.00%) 

0.8 8.32e1 (0.12%) 3.28e3 (0.00%) 

1.0 7.31e1 (0.14%) 2.78e3 (0.00%) 

1.2 6.47e1 (0.15%) 2.40e3 (0.00%) 

1.4 5.79e1 (0.35%) 2.10e3 (0.00%) 

1.6 5.22e1 (0.38%) 1.87e3 (0.00%) 

1.8 4.75e1 (0.42%) 1.68e3 (0.00%) 

2.0 4.35e1 (0.69%) 1.53e3 (0.00%) 

Table 6. Effective stiffness coefficients calculated with shell elements for the sinus beam 

J D11 D22 D33 D44 

0.4 1.09e2 (0.00%) 2.27e4 (0.00%) 4.85e3 (0.00%) 1.57e4 (0.00%) 

0.6 9.55e1 (0.00%) 1.31e4 (0.00%) 3.95e3 (0.00%) 1.85e4 (0.00%) 

0.8 8.32e1 (0.12%) 9.28e3 (0.32%) 3.28e3 (0.00%) 2.14e4 (0.00%) 

1.0 7.30e1 (0.00%) 7.21e3 (0.28%) 2.78e3 (0.00%) 2.41e4 (-0.82%) 

1.2 6.47e1 (0.15%) 5.92e3 (0.17%) 2.40e3 (0.00%) 2.72e4 (0.00%) 

1.4 5.78e1 (0.17%) 5.03e3 (0.20%) 2.10e3 (0.00%) 2.99e4 (-0.33%) 

1.6 5.21e1 (0.19%) 4.38e3 (0.23%) 1.87e3 (0.00%) 3.26e4 (-0.31%) 

1.8 4.75e1 (0.42%) 3.89e3 (0.26%) 1.68e3 (0.00%) 3.52e4 (-0.28%) 

2.0 4.35e1 (0.69%) 3.49e3 (0.29%) 1.53e3 (0.00%) 3.76e4 (-0.53%) 

 

5.3 The sandwich beam example 

The third example is the sandwich beam whose unit cell in the Oη1η2η3 coordinate is depicted in Figure 

7(a). Here the size parameters are l=0.375, h=0.5, and the thicknesses of the core and the face sheets are 

tc=0.01 and tp=0.005 respectively. The material property is isotropic with E=1, v=0.3. The unit cell is 

modeled with 4-node shell elements depicted in Figure 7(b). The implementation approach in Section 4 

is conducted in MATLAB to acquire the effective stiffness coefficients, listed in Table 7, and the same 

implementation procedure is also carried out in ANSYS for comparison purpose. The relative errors are 

all within 2%, validating the correctness of the in-house MATLAB code. 



 

Figure 7. Sketch of the sandwich beam unit cell 

 

Table 7. Effective stiffness coefficients for the sandwich beam example 

J 
D11 D22 D33 D44 

MATLAB ANSYS MATLAB ANSYS MATLAB ANSYS MATLAB ANSYS 

1.0 5.39e-3 5.37e-3 3.23e-4 3.22e-4 1.08e-4 1.08e-4 5.84e-5 5.80e-5 

0.5 6.56e-3 6.48e-3 3.76e-4 3.74e-4 1.24e-4 1.24e-4 6.27e-5 6.18e-5 

2.0 5.11e-3 5.10e-3 3.15e-4 3.14e-4 1.05e-4 1.05e-4 4.64e-5 4.57e-5 

 

In addition, the stiffness coefficients in Table 7 can also verified by beam deflections. Consider a periodic 

beam structure constructed by repeating the unit cell along the axial direction n times in Figure 8. The 

left side is clamped and the nodes on the right side are rigidly coupled with the center node. Four load 

cases in Figure 8(a) are applied on the center node, and the corresponding displacements u30, u10, u20, θ0 

are respectively extracted from FE analysis. As n increases, the behavior of the beam gradually resembles 

the homogenized Euler-Bernoulli beam, and the effective stiffness can be estimated by the displacements 

at the tip end of the periodic beam. The analytical relations are expressed as follows  
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where ( )1,2,3,4iiD i =  are the predicted effective stiffness coefficients. 

Define the normalized stiffness as ( )1,2,3,4
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(a). Sizes of the sandwich beam unit cell (b). FE mesh of the sandwich beam unit cell 



gradually converges at n=45. The converged normalized stiffness coefficients all fall within the interval 

[1.00, 1.05], signifying small differences between iiD  and Dii (i=1,2,3,4). Therefore, the correctness 

of the stiffness coefficients in Table 7 is secured. 

 

Figure 8. Sketch of the periodic beam structure by repeating the unit cell n times 

 

 

Figure 9. Graph of normalized effective coefficients w.r.t. beam length for sandwich beam structures 

 

Furthermore, consider a graded beam mapped from periodic ones, and the mapping functions are given 

as follows 
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Here A=-0.02414, B=0.2667, C=0.5. The graph of the mapping function and the Jacobian coefficient J is 

depicted in Figure 10(a), and the graded beam is depicted in Figure 10(b). The left and right sides of the 

graded beam are clamped and a uniform pressure p=6.25×10-5 is applied on the top face sheet. Then the 

deflection contour is depicted in Figure 10(c). On the other hand, with the Jacobian coefficient J in Figure 

10(a), the homogenized beam with graded effective stiffness can be constructed and the deflection 

contour is accordingly illustrated in Figure 10(d). It is observed that the two agree well with each other 

and the relative error of maximum deflection is merely 3.4%, illustrating the correctness of the proposed 

homogenization approach. 

 

Figure 10. Sketch and deflection contours of the graded sandwich beam 

5.4 The Schwartz-P surface beam example 

ξ3 

ξ1 

(b). Sketch of the graded beam 

(c). Deflection contour of the graded beam 

(d). Deflection contour of the homogenized beam 

(a). Graph of ξ3(x3) and the Jacobian coefficient J 



 

Figure 11. Mesh of the Schwartz-P surface unit cell 

The last example is the beam whose unit cell is the Schwartz-P surface in the Oy1y2y3 coordinate, and 

therefore the surface in the Oη1η2η3 coordinate is defined as 1 2 3cos cos cos 0J  + + = , as depicted in 

Figure 11. The thickness is t=0.02, and the material property is isotropic with E=1, v=0.3. The effective 

stiffness coefficients obtained through the in-house MATLAB code and the commercial software ANSYS 

are obtained in Table 8, where the relative errors are all within 2%.  

Besides, the same procedure in subsection 5.3 is also carried out to verify the stiffness coefficients 

through beam deflections, the normalized stiffness coefficients w.r.t. beam length are depicted in Figure 

12. Here the converged normalized stiffness coefficients are all within the range [1.00, 1.03], again 

showing the correctness of the proposed method.  

Table 8. Effective stiffness coefficients for the Schwartz-P beam example 

J 
D11 D22 D33 D44 

MATLAB ANSYS MATLAB ANSYS MATLAB ANSYS MATLAB ANSYS 

1.0 1.52e-4 1.53e-4 5.84e-4 5.89e-4 5.84e-4 5.89e-4 1.01e-2 1.02e-4 

0.5 5.21e-4 5.24e-4 1.93e-3 1.96e-3 1.93e-3 1.96e-3 1.04e-2 1.05e-2 

2.0 6.11e-5 6.13e-5 2.45e-4 2.48e-4 2.45e-4 2.48e-4 1.44e-2 1.46e-2 
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Figure 12. Graph of normalized effective coefficients w.r.t. beam length for the Schwartz-P beam 

structure 

 

Next we consider a graded Schwartz-P beam structure in Figure 13(b), which is mapped through the 

mapping function in Eq.
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Here A=-8.1412e-5, B=1.5485e-2, C=0.5. The graph of the mapping function and the Jacobian coefficient 

J is depicted in Figure 13(a). The left side of the beam is clamped and a concentrated force f=1×10-10 

along x1 direction is applied on the right hand side. Then the deflection contour is depicted in Figure 

13(c), and that of the homogenized beam is illustrated in Figure 13(d). The relative error of maximum 

deflection is merely 1.7%, showing the effectiveness of the homogenization approach.  

(a). Graph of normalized stiffness coefficients for J=1 (b). Graph of normalized stiffness coefficients for J=0.5 

(c). Graph of normalized stiffness coefficients for J=2.0 
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Figure 13. Sketch and deflection contours of the graded Schwartz-P beam 

 

6. Conclusions and comments 

In this work, a novel numerical computational approach of effective stiffness is presented for spatially 

graded beam structures that are mapped from periodic ones. The numerical formulation for unit cell 

problems is first constructed and resolved for solid elements, where the introduction of Jacobian 

coefficients makes it different from conventional periodic beams. Then with the adoption of the Allman-

type drilling DOF, the rotational DOFs in the periodic boundary condition can be derived into a unified 

formulation, where only global nodal coordinates are involved and tedious element-wise transformation 

of rotational angles is avoided. Hence, the unit cell problems for shell-structured microstructures and the 

corresponding numerical formulation are established in a concise form. Four numerical examples show 

the correctness of the proposed method in terms of both effective stiffness coefficients and beam 

deflection contours. Besides, with the adoption of shell elements, the computational efficiency is 

significantly improved without losing accuracy, as compared with that of solid elements. The presented 

(c). Deflection contour of the graded beam 

(d). Deflection contour of the homogenized beam 

(b). Sketch of the graded beam 
ξ3 

ξ1 
(a). Graph of ξ3(x3) and the Jacobian coefficient J 



80-line MATLAB code illustrates the details of numerical implementation, and facilitates broadening 

application range of the proposed method. 

With the above computation scheme, sensitivity analysis of effective stiffness is readily available, which 

paves the way for design optimization of spatially graded beams. Structural optimization of graded beams 

will be conducted in our future work.  

 

Appendix A. An 80-line MATLAB code of effective stiffness calculation for the zigzag beam 

composed of shell elements 

In Appendix A, the 80-line MATLAB code of effective stiffness calculation, which is presented in the 

supplementary material, is explained in detail for the unit cell composed of shell elements in subsection 

5.1. This code serves as an introductory example for interested readers and as a basis for further 

improvements. It comprises two parts, i.e., the main routine and the subroutine. The main routine includes 

FE mesh information, global stiffness matrix assembly, displacement periodic boundary formulation and 

unit cell problem solution, and the subroutine is to construct element stiffness matrix. 

The main routine is defined in lines 01-42. The basic size and material parameters of the unit cell are 

defined in line 02. Here b, h, l and deth respectively correspond to the dimensions b, h, l, δ of the unit cell 

in the Oy1y2y3 coordinate in Figure 5(a). J0 is the gradient of the mapping function. theta and th 

respectively correspond to the dimensions θ and t of the unit cell in the Oη1η2η3 coordinate. E and v are 

the Young’s modulus and Possion’s ratio of the material respectively. The 3×3 matrix J and invJ denote 

the Jacobian matrix and its inverse. 



 

Figure 14. An illustrative coarse mesh of the zigzag beam unit cell 

 

The unit cell in the Oy1y2y3 coordinate is assumed to be meshed with rectangular shell elements, where 

the element and node information of a coarse mesh is sketched in Figure 14. The mesh information is 

defined in lines 04-21. n1 and n3 denote the number of elements along y1 and y3 axes respectively, and 

nnum and enum stores the number of nodes and elements in the FE model respectively. Each element 

consists of 4 nodes with 6 DOFs per node. Both nodes and elements are numbered column-wise from 

left to right. The DOFs numbered from 6n-5 to 6n correspond to three translational displacements and 

three rotational angles of node n. The enum×4 matrix enode and enum×24 matrix edof store the elemental 

node numbers and elemental DOF numbers respectively, where the i-th row contains the node numbers 

and DOF numbers of i-th element with i varying from 1 to enum. The nnum×3 matrix y contains the node 

coordinates in the Oy1y2y3 coordinate and the nnum×3 matrix yita contains those in the Oη1η2η3 coordinate. 

The (n1+1)×2 matrix np stores paired node numbers on periodic boundaries ω+ and ω-, where the first 

column stores node numbers on ω+ and second stores those on ω-. The 6(n1+1)×2 matrix npdof contains 

the DOFs of the nodes in np. In FE solution of unit cell problems, not only the displacement periodic 

boundary condition should be imposed, but also the rigid-body displacements should be suppressed. In 

this code, the three translational DOFs of node 1 and the translational DOF along y2 axis of node n3+2 is 

constrained to suppress rigid-body displacements. Therefore, the independent DOFs in unit cell problem 

y3 

y2 y1 
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formulation, which is stored in the vector mdof, should be the full DOFs excluding DOFs on ω+ boundary 

and DOFs for rigid body displacement suppression. 

The assembly of global stiffness matrix is defined in lines 23-31. The vectors e1, e2 and e3 denote unit 

orthonormal basis vectors in the elemental local coordinate 1 2 3O    . a and b are half the dimensions of 

the element along e1 and e2 respectively. The 24×24 matrix ke_local denotes the 4-node element stiffness 

matrix in local coordinates, the 24×24 matrix T denotes transformation matrix between local and global 

coordinates and the cell array ke is adopted to store all the element stiffness matrices in the global 

coordinate Oη1η2η3. The global stiffness matrix K is efficiently constructed by the sparse function, where 

the row and column index of the non-zero entries are stored in vectors iK and jK respectively.  

The formulation of pV  and pθ  in Eq.(45) is expressed by the 6nnum×24 matrix detW defined 

in lines 33-37, which only has non-zero entries on nodes on the ω+ boundary. The unit cell problem and 

effective stiffness are resolved in lines 39-42. The matrix Fs corresponds to the term

T 1 2 3 4 −  T F F F F   and the matrix Ks corresponds to the term T
T KT   in Eq.

numerical implementation, pre-multiplying TT is equivalent to row addition operation and post-

multiplying T is equivalent to column addition operation. Therefore the transformation matrix T in 

Eq. is not assembled in the presented code. The 6nnum×24 matrix W is the displacement solution 

of the unit cell problem with p-th column corresponding to the displacement Wp in Eq. The 4×4 

matrix DH is the effective stiffness matrix. 

The subroutine ke_matrix.m calculating element stiffness matrix of the 4-node rectangular Mindlin shell 

element is defined in lines 43-80. The input parameters include half the dimensions of the element a and 

b, the thickness of the element th and material properties E and v. The output is the element stiffness 

matrix Ke. Here the matrix Km and Kb denote the membrane and bending part of the stiffness matrix. To 

prevent shear locking, the enhanced assumed strain method is adopted and the matrix Ks denotes the 

shear part of the stiffness matrix. In addition, the penalty term relating the drilling DOF to prevent 

numerical instability is applied as the matrix Kt. At last, the element stiffness Ke is constructed by adding 

the above four matrices. 

The adopted mesh for effective stiffness calculation in Section 4.1 is n1=20, n3=120, and the mesh 

convergence analysis is conducted in Table 9 for J=1, where satisfactory results are acquired with n1=10, 

n3=60. Therefore the adopted mesh settings can acquire satisfactory results with high accuracy. 



 

Table 9. Mesh convergence analysis for effective stiffness 

n1 n3 D11 D22 D33 D44 

5 30 8.58e1 1.29e4 2.72e3 1.04e4 

10 60 8.01e1 1.23e4 2.67e3 1.06e4 

20 120 8.00e1 1.23e4 2.67e3 1.05e4 

40 240 8.00e1 1.22e4 2.67e3 1.05e4 

 

Appendix B. Derivation of rotational DOFs in the periodic boundary condition 

In appendix B, the derivation of ( )1,2,3,4p p =θ   are detailed. Firstly, the rotational DOFs θ

(p=1,2,3,4), which correspond to displacements Vp (p=1,2,3,4), can be acquired in matrix form according 

to Eqs
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 (49) 

Besides, as vectors e1, e2, e3 in local shell coordinate constitute unit orthogonal base vectors, the equalities

1 2 3 3 2
, 1 = =e e e e should hold. Cast in component form, they are rewritten as 

 
2 2 2

31 12 23 13 22 32 13 21 11 23 33 11 22 12 21 31 32 33, , , 1e e e e e e e e e e e e e e e e e e= − = − = − + + =   (50

Substitute Eq.(50 into Eq.(49 , we acquire
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In addition, as the shell structures are usually smoothly varying on the periodic boundaries, the surface 

normal also vary smoothly on periodic boundaries, which imply 
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Therefore, ( )1,2,3,4p p =θ  can be stated as 
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The rotational DOF periodic boundary condition in Eq.

On the other hand, if we simply let ( )3 0 1,2,3,4p p  = =  in Eq.

DOF in the global coordinate can be calculated as 
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Substituting Eq.
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Considering Eq. ( )1,2,3,4p p =θ  is derived as 
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Here the coefficients eij cannot be cancelled out in the periodic boundary condition and pointwise 

computation of surface normal on the periodic boundary is inevitable in Eq.
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