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Abstract. Pixel space augmentation has grown in popularity in many
Deep Learning areas, due to its effectiveness, simplicity, and low com-
putational cost. Data augmentation for videos, however, still remains an
under-explored research topic, as most works have been treating inputs
as stacks of static images rather than temporally linked series of data.
Recently, it has been shown that involving the time dimension when
designing augmentations can be superior to its spatial-only variants for
video action recognition [34]. In this paper, we propose several novel en-
hancements to these techniques to strengthen the relationship between
the spatial and temporal domains and achieve a deeper level of perturba-
tions. The video action recognition results of our techniques outperform
their respective variants in Top-1 and Top-5 settings on the UCF-101
[55] and the HMDB-51 [38] datasets.

Keywords: Data augmentation · Temporal domain · Action recogni-
tion.

1 INTRODUCTION

Deep convolution neural networks (CNNs) have become the standard approach
for a large number of computer vision tasks, by virtue of their unique ability
to learn the most useful features from the data in the unmanned manner. How-
ever, large amounts of diverse labeled training imagery are usually required to
guarantee models’ high accuracy, which are often unavailable. Acquiring and
annotating new data is generally expensive, time-consuming, and sometimes
even impossible, resulting in networks underfitting or overfitting, depending
on the training set variance. In recent years, several deep learning areas have
been explored to tackle the aforementioned problems, such as domain adapta-
tion [15, 18, 45, 51, 61], network regularization [37, 44, 50, 56], data generation
[1, 17, 21, 63], and data augmentation [9, 11, 47, 65, 66], all showing significant
performance gains over their respective baselines.
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Due to its ability of expanding and populating the training distribution
through synthetically created samples, pixel space augmentation was success-
fully used as the main driver in a number of semi-supervised [47, 54, 65, 66],
self-supervised [4, 25, 46], and domain adaptation [15, 45, 51] studies. The use
of feature space augmentation was also explored for both static and sequential
imagery [5, 10, 22, 42], yielding improvements in models’ accuracy. Data aug-
mentation for videos, however, still remains an under-explored research area,
as most works have been treating inputs as stacks of static images rather than
temporally linked series of data. A recent study has shown that the time domain
consideration while designing augmentations can be superior to its spatial-only
variants for video recognition [34].

In this paper, we expand on the previous work [34]. We argue that some of
the proposed techniques can be extended even further to fully utilise the time
domain and achieve a deeper level of temporal perturbations, which results in
more accurate and robust classifiers. The contributions of this paper can be
summarised as follows:

1. We expand the list of available augmentations in RandAugment-T [34] by
adding VideoReverse, FrameFadeIn, and VideoCutMix, augmentations that
are video-specific and are done within a single sample;

2. We increase the amount of magnitude checkpoints for all augmentation tech-
niques to allow for non-linear temporal perturbations;

3. We propose to linearly change the bounding pox positions for cut-and-paste
algorithms, such as CutOut [11], CutMix [65], and CutMixUp [64], and their
extensions, as well as the mixing ratio in MixUp [66] and CutMixUp [64]
extensions;

4. The recognition results of the aforementioned techniques on the UCF-101
[55] and the HMDB-51 [38] datasets either maintain competitive or exceed
performance achieved by the previous work [34].

2 RELATED WORK

2.1 Spatial augmentation

The earliest experiments that demonstrate the effectiveness of data augmenta-
tion are based on basic image modifications, such as axis flipping, rotations,
translations, random cropping, and colour space alterations [6, 7, 36, 52]. These
techniques are easy to implement, bear minimum computational overhead and
are very likely to preserve the label after transformation. However, combining
the aforementioned operations together can result in heavily inflated datasets
and high risk of label warp. Therefore, a number of studies has been done on
search algorithms that aim to find the optimal subset of augmentations for a
particular task [8, 10, 40, 60]. Finally, RandAugment [9] presents an efficient
framework that works out of the box for applying operations sequentially and
without a separate search phase.
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Image mixing is an approach that involves blending a pair of samples into
one, enforcing the classifier to behave linearly in-between training data points.
Performance gains can be observed even by averaging pixel values of two random
images and retaining only one out of the two labels [27]. This idea was further
extended to more sophisticated techniques which proposed mixing at different
ratios and working with soft labels [16, 65, 66], as well as their non-linear deriva-
tives [57].

Adding small amounts of noise to the input images during training encourages
CNNs to have smoother and stronger decision boundaries on the data manifold
and results in learning more robust features [49]. The concept was thoroughly
studied in the field of adversarial attacks, where the rival network’s objective
is to learn augmentations that result in misclassifications in the classification
model [20, 47, 48].

Creating synthetic data with the help of generative adversarial networks
(GANs) [19] is yet another way to augment a dataset. With recent advancements
in the field, GANs are now able to generate images that look real to human ob-
servers, in spite of illustrating entities that are not present in the training set
[2, 21, 30, 31]. The GAN framework also can be extended to improve the quality
of samples created by variational auto-encoders [12] or perform style transfer to
map existing imagery to the domain of interest [39, 59, 67].

2.2 Video recognition

A clear-cut approach to video classification using CNNs is to include the tem-
poral domain by extending the dimensionality of convolutional operations. 3D
filters achieved superior results when compared to 2D, proving that the time
domain has a lot of value [28]. The inclusion of the temporal axis opened up
a whole research area that is aimed at exploring its various fusion techniques.
The most popular ones are slow fusion to improve the time awareness of the
model [29], late fusion, where temporal features are blended at the last layer
[29], longer fusion, which explores the benefit of extending the temporal depth
[62], and ensembling networks with different temporal awareness [62]. Finally, a
combination of 2D an 1D kernels is proposed to substantially reduce the amount
of learnable parameters without any loss in performance [58].

Motivated by the fact that humans use different streams to process appear-
ance and motion data, multiple stream models were proposed [53]. The aim is
to have separate spatial and temporal tracks, hence making it easier to encode
relevant features in the respective streams. This is further enhanced by supply-
ing different inputs - whereas the spatial path takes RGB frames, which contain
appearance information, the temporal path receives optical flow frames that con-
tain motion data. Later work shows that earlier fusion of the streams allows to
retain the performance while halving the amount of learnable parameters [14].
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2.3 Temporal augmentation

Although a substantial amount of work has been done on spatial augmentation,
the field of temporal augmentation remains under-explored. Random Mean Scal-
ing [33] stochastically varies the low-frequency feature components to regularize
classifiers, whereas FreqAug [32] experiments with randomly removing them.
RandAugment-T [34] extends the spatial-only framework to the time dimen-
sion and presents a set of modifications on cut-and-paste and blend algorithms,
such as CutOut [11], CutMix [65], MixUp [66], and CutMixUp [64], to produce
temporally localisable features. Our work expands on the latter and proposes a
set of modifications that can be used to make video classifiers more robust and
accurate.

3 METHODS

3.1 Single video augmentation

RandAugment [9] is an automated data augmentation framework that randomly
selects a number of transformations for a given image. From a list of K oper-
ations, RandAugment takes N augmentations with the magnitude of M . Each
transformation has a probability of 1

K to be chosen. A total of K = 14 opera-
tions are presented: Identity, Rotate, Posterise, Equalise, Sharpness, Translate-
X, Translate-Y, Colour, AutoContrast, Solarise, Contrast, Brightness, Shear-X,
and Shear-Y.

RandAugment-T [34] introduces M1 and Mn, two magnitude points that
are placed at the start and the end of each video. This allows for smooth aug-
mentation transitions across the frames and brings the temporal component to
the equation, where possible. The work also extends the list of available trans-
formations by including ColourInvert, albeit it having static magnitude. All the
operations mentioned above are taken directly from image augmentation, and are
applied to a single video. Operations such as Identity, AutoContrast, Equalise,
and ColourInvert do not have varying M , and hence are applied evenly across
the sample.

Although previous work sticks to the aforementioned list of transformations
[8, 9, 26, 41], the purpose of this paper is to propose temporal augmentations,
rather than suggest a new augmentation policy. Therefore, we expand the list of
available operations by introducing VideoReverse, FrameFadeIn, and VideoCut-
Mix (Fig. 1) - transformations that are designed specifically for video samples.
VideoReverse turns the video backwards, creating a rewind effect, yet main-
taining the semantics and integrity of the sample. FrameFadeIn is inspired by
FadeMixUp [34], with the main difference being the use of a single sample and
a simpler mixing ratio calculation:

x̃t = (1− λt)xt + λtxn−t, (1)

where x̃, x, n, and λ indicate the mixed data, original data, total number of
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Fig. 1: Unaugmented video, VideoReverse, FrameFadeIn, and VideoCutMix in
the 1st, 2nd, 3rd, and 4th row, respectively.

frames, and mixing ratio, respectively. Unlike FadeMixUp, we do not sample
start and end points for λ interpolation. Instead, we gradually increase it from
0 to 0.5 until the middle of the video, then decrease it back to 0:

λt =

{
t
n , if t ≤ n

2 ,
n−t
n , otherwise.

(2)

This maintains a healthy trade-off between spatial and temporal perturbations
- when the distance between frames is large, the mixing ratio is small, and vice
versa. Although it is possible to use sampled magnitudes instead, it significantly
increases the risk of breaking temporal consistency. VideoCutMix is a temporal
extension of CutMix [34, 65] that can be applied to a single video:

x̃t = M � xt + (1−M)� x̂t, (3)

where M , x̂, and � denote the binary region mask indicating where to drop
out or fill in from two separate frames, video with randomly shuffled frames,
and element-wise multiplication, respectively. Although cut-and-pasting happens
within the same sample, the nondeterministic nature introduces a certain risk
of altering data to the point where semantics may be significantly damaged or
lost. To keep it at minimum, we set the region ratio to 0.2 of the original frame
size and keep the position of the bounding box static. As with all single sample
augmentations, labels remain unchanged in VideoReverse, FrameFadeIn, and
VideoCutMix.

3.2 MagAugment

RandAugment-T [34] implements augmentation transitions across frames by
putting two magnitude checkpoints, M1 and Mn, at the start and the end of
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Fig. 2: Visual comparison of magnitude manipulations proposed in
RandAugment-T [34] (left) and MagAugment (right), comprising of 100
randomly sampled M arrays. Blue lines - randomly highlighted samples. For
MagAugment, β was set to 8.

samples, and calculating the other Mt via linear interpolation. The introduced
change in magnitude leads to better video action recognition performances, when
compared to its static variant [34]. Our hypothesis is that having more magni-
tude checkpoints placed along the sample results in greater generalisation per-
formance, as they are more likely to mimic perturbations observed in real-life
conditions. Phenomena such as flashes, sudden camera shaking and/or move-
ment, loss of focus, and exposure adjustments tend to happen in much shorter
time periods than the length of the entire video. In this subsection, we pro-
pose MagAugment (Fig. 2) - a framework designed to increase the magnitude
diversity even further, without interrupting the temporal consistency.

We start with the linear signal connecting the two ends of the magnitude
array. To introduce short and sporadic magnitude swings, we sample a point
from the uniform distribution, Mp ∼ U(Mmin,Mmax), where the parameters
represent the minimum and maximum magnitude values for a given transforma-
tion. The duration of the perturbations in frames is set to j ∼ U(1, β), where β
is the MagAugment parameter. Finally, the location of the point is drawn from
p ∼ U(1+j, n−j), where n is the total amount of frames. The process can be re-
peated to model several fluctuations. To incorporate the magnitude swings into
the original signal, we linearly interpolate from Mp−j to Mp, then back to Mp+j .
As a result, the overall augmentation direction is maintained, while allowing for
occasional, more aggressive changes in pixel space that do not necessarily follow
the general trend.

3.3 Temporal deleting, cut-and-pasting, and blending

The temporal adaptations of CutOut [11] and CutMix [65] apply a bounding
box, B, to every frame of a given sample, without changing its position, r. In
CutMix, the frame sequences are also aligned with the video used for mixing.
The concept of static location is practiced in the algorithms’ extensions as well
- CubeCutOut, CubeCutMix, CutMixUp, and CubeCutMixUp [34]. The tem-
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(a) Top: CutOut [11, 34], Bottom: FloatCutOut

(b) Top: CubeCutOut [34], Bottom: FloatCubeCutOut

(c) Top: CutMix [34, 65], Bottom: FloatCutMix

(d) Top: CubeCutMix [34], Bottom: FloatCubeCutMix

(e) Top: CutMixUp [34], Bottom: FloatCutMixUp
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(f) Top: CubeCutMixUp [34], Bottom: FloatCubeCutMixUp

(g) Top: FrameCutMixUp [34], Bottom: FloatFrameCutMixUp

Fig. 3: Visual comparison of temporal deleting, cut-and-pasting, and blending
algorithms with static and dynamic r and λ.

poral version of MixUp [66] has a fixed mixing ratio, λ, and remains so in its
extensions too - CutMixUp, FrameCutMixUp, CubeCutMixUp [34, 64]. Such an
idea removes the stochastic behaviour that would be introduced if the aforemen-
tioned augmentations were applied to frames separately, without acknowledging
them as a part of data series. However, the regularisation techniques themselves
can be temporally varied too. By taking a deterministic approach, we are able to
enhance the level of spatiotemporal augmentations and involve more bounding
box positions and mixing ratios within a batch.

In this subsection, we propose dynamic r and λ, by linearly changing them
across the time dimension. The concept is similar to RandAugment-T, only this
time we generate r1/rn or λ1/λn instead of magnitude points for the start and
the end of a training sample. Therefore, for delete and cut-and-paste algorithms
r becomes:

r1x ∼ U(rw,W − rw), rnx ∼ U(rw,W − rw), rw = W
√

1− I,
r1y ∼ U(rh, H − rh), rny ∼ U(rh, H − rh), rh = H

√
1− I,

I ∼ Beta(α, α),

(4)

where W,H,U , and α are the frame width, frame height, uniform distribution,
and beta distribution parameter, respectively. Please note that unlike the pre-
vious implementations [11, 34, 64, 65], we ensure that the bounding box is fully
within the frame at all times, therefore guaranteeing label consistency across the
time dimension and omitting the label recalculation step. rw and rh are calcu-
lated once per video. When start and end points are found, the rest is computed
via linear interpolation between the two. Although the authors of FadeMixUp
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[34] introduced dynamic λ, CutMixUp, FrameCutMixUp, CubeCutMixUp still
used the static one. To make the three algorithms temporally varied when it
comes to blending, we substitute MixUp with FadeMixUp. All of the above re-
sults in seven new regularisation approaches: FloatCutOut, FloatCubeCutOut,
FloatCutMix, FloatCubeCutMix, FloatCutMixUp, FloatCubeCutMixUp, and
FloatFrameCutMixUp (Fig. 3).

4 EXPERIMENTS

We train and test the approaches mentioned in this paper on the UCF-101 [55]
and HMDB-51 [38] datasets to assess their effectiveness. The UCF-101 dataset
contains 13 320 videos split into 101 categories, whereas HMDB-51 consists of
6 766 videos split into 51 categories. To keep the comparison with the previous
work fair [34], we use the same training and testing splits, network architecture
[13], optimiser [35], training setup and hyperparameters, and additional tech-
niques, such as learning rate warm-up [23], cosine learning rate scheduling [43].
Please note that for methods proposed by Kim et al. [34], we report results
achieved by running the published code1 ourselves. For all tables, bold text
indicates the highest accuracy. For the UCF-101, the displayed numbers repre-
sent the results on the 1st VIPriors action recognition challenge split. For the
HMDB-51, we report the average results obtained from 3 different splits [38].

4.1 Single video augmentation

In this subsection, we evaluate VideoReverse, FrameFadeIn, VideoCutMix, and
MagAugment, the results can be found in Table 1. RandAugment indicates static
magnitude, applied evenly to all the frames of a given video. For RandAugment-
T+,M1 andMn are set toM−δ andM+δ, respectively, where δ = U(0, 0.5∗M),
and M comes from the values used by RandAugment. RandAugment-T++
stands for the extended version, which includes VideoReverse, FrameFadeIn and
VideoCutMix (abbreviated as VR, FFI, and VCM, respectively). We also in-
clude an ablation study by disabling each of the transformations. For MagAug-
ment, a grid search of β ∈ [2, 4, 8, 16] and the amount of magnitude checkpoints,
P ∈ [1, 2, 3, 4], was used to obtain the highest accuracy, with β = 8 and P = 2
demonstrating the best performance. We apply MagAugment to all transforma-
tions present in RandAugment-T++, apart from the ones that cannot facilitate
varying magnitude - Identity, Reverse, AutoContrast, Equalise, ColourInvert,
FrameFadeIn, and VideoCutMix.

The results show that including more single video augmentations provides
a benefit with no added computational overhead, thanks to the nature of Ran-
dAugment. However, since the improvements in performance are rather small,
it is unclear whether all the proposed augmentations are useful. By enabling
MagAugment, we obtain 2.36% and 1.46% accuracy increases over spatial-only

1 https://github.com/taeoh-kim/temporal_data_augmentation

https://github.com/taeoh-kim/temporal_data_augmentation
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RandAugment, compared to 0.65% and 0.24% achieved by RandAugment-T, in
UCF-101 Top1 and HMDB-51 Top1 settings, respectively.

Table 1: Video action recognition results on the UCF-101 and HMDB-51 datasets
for single video augmentation techniques.

Method UCF Top-1 UCF Top-5 HMDB Top-1 HMDB Top-5

Baseline [13] 54.93 77.43 39.12 69.89

RandAugment [9, 34] 69.82 88.57 49.24 79.94

RandAugment-T+ [34] 70.47 89.94 49.48 80.17

RandAugment-T++ 70.74 90.04 49.60 80.21

RandAugment-T++ - VR 70.52 89.94 49.50 80.10

RandAugment-T++ - FFI 70.58 89.98 49.58 80.06

RandAugment-T++ - VCM 70.76 90.12 49.54 80.17

MagAugment 72.18 93.78 50.70 81.12

4.2 Temporal deleting, cut-and-pasting, and blending

We present the results of Cutout [11], CutMix [65], and CutMixUp [64], and
their temporal extensions, which can be found in Table 2. We prefix our meth-
ods with F to save space and indicate floating bounding box positions and mixing
ratios. Single video augmentation is turned off in this experiment. Although the
CutOut variants struggle to beat the baseline and the CutMix spin-offs demon-
strate a rather small boost in accuracy, it is clear that having dynamic r and
λ helps the model to consistently achieve better performance - when compared
side by side, the floating extensions demonstrate an average gain of 2.45%, when
compared to their static variants in the Top-1 settings. FloatFrameCutMixUp
scores the highest accuracy, improving over the baseline by 8.11% and 6.86% in
UCF-101 Top-1 and HMDB-51 Top-1 settings, respectively. FloatCubeCutOut,
FloatCubeCutMix, and FloatFrameCutMixUp perform the best in their respec-
tive groups, suggesting that retaining some of the frames of a video unaffected
might yield additional benefits (Fig. 3b, Fig. 3d, Fig. 3g).

5 CONCLUSIONS

In this paper, we introduced several novel temporal data augmentation methods.
We showed that developing video-specific transformations and including more
aggressive magnitude transitions is beneficial for networks that aim to solve
video action recognition. We extended temporal versions of CutOut, CutMix,
and CutMixUp further by changing their nature from static to dynamic, and
observed an improvement performance. Future work includes combining single
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Table 2: Video action recognition results on the UCF-101 and HMDB-51 datasets
for temporal deleting, cut-and-pasting, and blending techniques.

Method UCF Top-1 UCF Top-5 HMDB Top-1 HMDB Top-5

Baseline [13] 54.93 77.43 39.12 69.89

CutOut [11, 34] 51.16 74.25 36.93 68.07

CubeCutOut [34] 51.82 76.73 37.50 68.53

FCutOut 54.24 76.23 39.02 69.89

FCubeCutOut 54.68 77.19 39.25 70.00

CutMix [34, 65] 53.03 76.78 34.69 65.67

CubeCutMix [34] 54.91 77.34 36.75 67.23

FCutMix 55.25 77.27 37.32 68.24

FCubeCutMix 55.66 78.00 39.42 69.98

CutMixUp [34, 64] 60.08 82.14 43.13 74.19

CubeCutMixUp [34] 60.16 82.14 43.15 74.24

FrameCutMixUp [34] 61.02 82.97 42.88 74.08

FCutMixUp 62.41 84.59 45.06 75.78

FCubeCutMixUp 62.38 84.70 45.12 75.85

FFrameCutMixUp 63.04 85.64 45.98 76.90

video augmentations with delete, cut-and-paste, and blend techniques to expand
the total amount of possible augmentation combinations, covering more baseline
models to analyse applicability and versatility of the proposed methods, and
testing the framework on larger datasets, such as Kinetics [3] and Something-
Something-v2 [24].

Acknowledgements The authors are grateful for the support from the Natural
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