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ABSTRACT Ultra-dense heterogeneous networks (UDHN) based on small cells are a requisite part of the
future cellular networks as they are proposed as one of the enabling technologies to handle coverage and
capacity problems. But co-tier and cross-tier interferences in UDHN severely degrade the quality of service
due to K-tiered architecture. Machine learning based radio resource management either through independent
learning or cooperative learning is a proven efficient scheme for interferencemitigation and quality of service
provision in UDHN in a both distributive and cooperative manner. However, an optimal learning paradigm
selection, i.e., either independent or cooperative learning and optimal cooperative cluster size in cooperative
learning for efficient radio resource management in UDHN is still an open research problem. In this article,
a Q-learning based radio resource management scheme is proposed and evaluated for both distributive and
cooperative schemes using independent and cooperative learning. The proposed Q-learning solution follows
the ϵ−greedy policy for optimal convergence. The simulation results for the UDHN in an urban setup show
that in comparison to the independent learning paradigm, cooperative learning has no significant impact on
macro cell user capacity. However, there is a significant improvement in small cell user capacity and the sum
capacity of the cooperating small cells in the cluster. A significant increase of 48.57% and 37.9% is observed
in the small cell user capacity, and sum capacity of the cooperating small cells, respectively, using cooperative
learning as compared to independent learning which sets cooperative learning as an optimal learning strategy
in UDHN. The improvement in small cell user capacity is at cost of increased computational time which is
directly proportional to the number of cooperating small cells. To solve the issue of computational time in
cooperative learning, an optimal clustering algorithm is proposed. The proposed optimal clustering reduced
the computational time by four times in cooperative Q-learning.

INDEX TERMS Heterogeneous networks, radio resource management, Q-learning, 5G.

I. INTRODUCTION
Evolution of wireless communication technologies in the
last two decades results in an explosive increase in cellular
networks users and quality of service (QoS) requirements like
higher data rate, throughput, coverage, and capacity while
reducing the latency to negligible value (nearly zero). The
evolution of cellular networks from 1G to 5G results in
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improved QoS and Quality of Experience (QoE) key per-
formance indicators (KPIs). Due to the massive increase
in cellular network users, the concept of small cells based
k-tiered UDHN was proposed for improved coverage and
capacity [1], [2], [3], [4], [5]. Although the k-tiered UDHN
successfully met the requirements of improved coverage and
capacity, some related issues are effective radio resource
management (RRM) for efficient interference mitigation as
the UDHN deployment results in co-tier and cross-tier inter-
ferences which severely degrades the QoS for both macrocell
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users and small cell users. For effective utilization of k-tiered
UDHN in 5G, co-tier and cross-tier interferences have to be
mitigated through efficient RRM [5], [6], [7].

RRM is an essential aspect of wireless communication
systems, especially in k-tiered UDHNwhich consists of mul-
tiple types of cells with different frequencies, technologies,
and coverage areas. RRM includes but is not limited to load
balancing, carrier aggregation, interference mitigation, and
self-organizing networks (SON) implementation. Due to the
large number of applications of RRM in UDHN, RRM is a
widely researched topic in the context of 5G UDHN.

The RRM for effective interference mitigation in k-tiered
UDHN is not an easy task due to the dynamic nature of
UDHN. Many solutions, most of which were non-adaptive,
were proposed in the literature but these non-adaptive solu-
tions cannot handle the dynamic nature of UDHN where
the density of small cells continuously changes and there-
fore interference conditions [6], [8]. In comparison to the
non-adaptive RRM algorithms, recently some machine learn-
ing based RRM algorithms are proposed in literature which
performed significantly better than the non-adaptive algo-
rithms. Reinforcement learning which is a subdomain of
machine learning is utilized in devising adaptive RRM
through Q-learning in UDHN where the algorithm is uti-
lized to optimize the allocation of network resources such
as bandwidth, power, and spectrum to different nodes in the
network by continuously learning and interacting with the
environment [9].

Reinforcement learning based RRM in UDHN through
Q-learning has shown remarkable performance in recently
proposed solutions in literature [5], [6], [7]. Q-learning can be
applied distributively through independent learning or coop-
eratively through cooperative learning. However, the litera-
ture is silent about the optimal learning scheme in real-time
UDHN for 5G cellular networks. In this article, we explored
the optimal learning strategy for efficient RRM in terms of
various KPIs and the provision of QoS to both the macro cell
and small cell users simultaneously.

A. RELATED WORK
Small cells are low-powered wireless access points that are
used to provide coverage and capacity in densely populated
areas. UDHN are networks that consist of a combination
of small cells, macro cells, and other network elements to
provide seamless and efficient coverage and capacity [5],
[6], [7], [10]. Small cells in UDHN work by complementing
macro cells and offloading traffic from them and creating
a user balance among the tiers of the network. They are
deployed in areas where there is high demand for data, such as
shopping centers, airports, and sports stadiums. This helps to
reduce congestion and improve the overall QoS and capacity
for users through efficient user association [2], [4], [10],
[11]. The deployment of small cells in HetNets can also help
service providers to meet the increasing demand for high
speed data services and support the growth of the Internet
of Things (IoT). The combination of small cells and macro

cells in a UDHN allows service providers to create a flexible
and scalable network that can adapt to changing network con-
ditions and user demand [2]. Recently, many solutions have
also been proposed based on software-defined networking
(SDN) architecture for efficient deployment of UDHN in the
millimeter wave (mmW) spectrum [12], [13], [14].

Although the implementation of small cells has various
advantages, the initial cost, overall system reliability, and
interferences due to k-tiered architecture are unresolved prob-
lems [3]. Interference is one of the main challenges in small
cell UDHN. In co-channel deployment mode, small cells
operate in the same frequency bands as macro cells, and their
proximity to each other can result in interference between
small cells and between small cells and macro cells in the
same network which is co-tier interference (Ico) and cross-tier
interference (Icr ) respectively [15], [16]. In addition, a rela-
tively small coverage area leads to multiple small cells being
deployed close to each other resulting in a UDHN, further
exacerbating the interference problem [15], [16], [17]. There-
fore, this article focuses on interference mitigation in UDHN
through optimal resource allocation.

Recently, researchers presented a number of strategies
to improve the reliability, throughput, QoS, QoE, cover-
age, and capacity of small cells UDHN by mitigating Ico

and Icr through intelligent and adaptive schemes as the
non-adaptive solution for RRM are not considered useful due
to dynamic nature of k-tiered UDHN [15], [16], [17], [18].
Therefore, the concept of self-organizing networks (SON),
outlined in LTE 3GPP TS 36.300 [19], is utilized in RRM
techniques for adaptive solutions [20]. SON integration in
UDHN has been also proven profitable and cost-effective for
the network operators [21], [22]. However, the integration
of SON in UDHN requires some source of cognition or
intelligence which can be provided through reinforcement
learning (RL).

RL is a type of machine learning algorithm that is used to
optimize decision-making in dynamic environments. RL is
applied in communication systems using Q-learning (QL) for
optimization of network resource allocation, such as spec-
trum and power allocation, and traffic routing. QL algorithms
learn from network conditions, such as traffic patterns and
interference levels, and determine the best actions to take in
real-time to improve network performance. This results in
more efficient use of network resources, improved network
coverage and capacity, and reduced latency [17], [18]. Over-
all, QL has the potential to be a key enabler for the successful
deployment of 5G networks, providing the ability to optimize
network operations and improve network performance in
dynamic and complex environments [23].

QL can be implemented in many different ways. While
the basic QL algorithm follows a similar structure, the dif-
ferences between different QL schemes can be substan-
tial. One QL scheme is different from another in terms of
value function representation, exploration-exploitation trade-
off, reward function, learning rate, and discount factor [24],
[25], [26], [27], [28], [29], [30], [31], [32], [33], [34]. The
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novelty of different QL schemes lies in the development
of the optimization problem and constraining it with net-
work key performance indicators and the design of an effi-
cient reward function to solve the optimization problem.
The solutions proposed for adaptive power allocation to
small cells define optimization problems in different ways
and with different constraint and therefore a novel reward
function to solve it. Each QL scheme may have a dif-
ferent reward function design to address the underlying
optimization problem. Similarly, the discount factor and
learning rate determine the convergence of the proposed QL
scheme [23].

Despite several QL schemes based on distinct reward func-
tions, discount factors, and other QL parameters [24], [25],
[26], [27], [28], [29], [30], [31], [32], [33], [34], are proposed
in the literature to handle the Ico and Icr through adaptive
power control in small cells UDHN, a basic limitation is their
inability to guarantee QoS to both macrocell users (Mu) and
small cell users (Su) simultaneously.
QL has been widely applied to the UDHN either through

independent learning (iL) mode in a distributed manner or
cooperative learning (cL) mode in a cooperative manner.
Both of the learning paradigms have pros and cons. Inde-
pendent Q-Learning is generally simpler to implement and
more scalable, as it does not require communication between
the cells. On the other hand, Cooperative Q-Learning can
lead to more efficient decision-making and better network
performance, as the cells can learn from each other’s expe-
riences. The reward function, an integral and critical part
of QL is impacted by the learning paradigm. In iL, each
learning agent act according to individual reward optimiza-
tion whereas in cL, cooperating agents learn to form a joint
RF [35]. QL solutions for RRM have been proposed in both
iL and cL. Although some solutions have been proposed in
both iL and cL but optimal learning scheme for real-time
implementation has not been proposed [24], [25], [26], [27],
[28], [29], [30], [31], [32], [33], [34].

Literature review reveals multiple types of limitations of
state of the art QL based adaptive power control schemes for
UDHN like the value function representation and proposed
reward functions in these QL schemes are either biased to
Mu or Su as discussed in [15] and [16]. Some of the pro-
posed schemes could not set their superiority against the
state of the art solutions. Many solutions proposed in cL
performed better than iL but the performance was bottle-
necked by the communication overhead and computational
time [36], [37]. Therefore, there is still a need to investigate
an ideal or optimal learning paradigm that can be deployed
in real-time implementation to improve the performance
of UDHN.

In this article, we proposed a QL scheme to address the
above-mentioned limitations of the state of the art QL based
adaptive power allocation schemes and also devised an opti-
mal learning paradigm based on the performance of the pro-
posed QL scheme in independent and cooperative learning
paradigms.

B. CONTRIBUTIONS
In this article, we have investigated the performance of the
QL-based RRM for small cell UDHN to provide QoS to both
macrocell and small cell users by simultaneous mitigation
of co-tier and cross-tier interferences. The proposed solu-
tion based is evaluated in both independent and cooperative
learning paradigms to find an optimal learning paradigm for
real-time deployment scenarios. The following are the major
contributions of the paper:

• A QL-based adaptive power allocation scheme is pro-
posed to handle the co-tier and cross-tier interferences
simultaneously in the small cell UDHN which ensures
QoS for both macrocell and small cell users.

• The proposed QL scheme models the small cell UDHN
as a single or multi-agent Markov Decision Process
(MDP) where small cells play the role of QL agents in
the network and implement QL for RRM.

• The defined optimization problem which maximizes the
capacity of macrocell users, small cell users, and the
sum capacity of small cell users is constrained over the
minimum required QoS thresholds to guarantee QoS
for all users and is solved through the proposed reward
function for the QL algorithm.

• The optimal learning paradigm is proposed by evaluat-
ing the proposed QL based adaptive power allocation
scheme in both learning paradigms, i.e., independent and
cooperative learning.

• Simulation results in various combinations of co-tier
and cross tier interferences based on standard 3GPP
simulation setup prove the optimality of the cooperative
learning paradigm in terms of standard KPIs at the cost
of increased computational time.

• For efficient deployment of small cell UDHN, an opti-
mal clustering algorithm is also proposed and evalu-
ated. The simulation results show that optimal learning,
i.e. cooperative learning, is the efficient QL implemen-
tation scheme when deployed with optimal clustering
technique which significantly reduces its computational
time.

The paper is organized as follows: a system model for small
cell UDHN is presented in section II for a comparison of QL
implementation in iL and cL for RRM to QoS. In section III
optimization problem in the underlying study is presented.
QL algorithm in iL and cL paradigm to solve the optimization
problem is presented in section IV whereas the simulation
parameters and setup for evaluation of the proposed solution
are discussed in section V. The results of Monte-Carlo sim-
ulations to compare the performance of iL and cL in 3GPP
interference setups are presented in section VI whereas the
conclusion of the paper is presented in section X.

II. SYSTEM MODEL
A system model composed of the k-tiered sC UDHN is
presented in Fig.1 where small cells (sC) are deployed in the
co-channel mode under the over laid macrocell (mC). The
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FIGURE 1. k-tiered small cell UDHN system model based on single macro cell users and multiple small cell users.

TABLE 1. Symbols/notations.

system model, Fig.1, is a standard HetNet simulation model
based on Setup2b [38]. mC operates in the downlink over
orthogonal subbands, F sub, where F sub

= {1, 2, 3, . . . .F}.
A single macrocell base station, BSm, is assumed to be placed
in the center of mC whereas the Mu

i are placed randomly in
mC. from the set of Mu

i , I , where and I = {1, 2, 3, . . . , I}.
According to the Setup2b [38], a cluster of sC, N sc, is con-
sidered in the coverage area of mC. N sc is composed of N
sC such that N sc

= {1, 2, 3, . . . .N }. Similar to the mC,

each k th user of nth sC from N sc, Sun,k , where k ∈ K and
K = {1, 2, 3, . . .K} are also deployed indoor randomly in
the sC. The sC are operating in the co-channel deployment
mode. BSm and BSs equally divide the transmission power to
its their users [39]. It is assumed that QoS parameters sC are
provided by the network operator in the SON procedures like
self-configuration.

The presence of Sun,k in
mC due to the k-tiered sC UDHN

results in Icr toMu
i which affect its SINR. In the downlink, the

SINR at any Mu
i , ς

m
i , can be calculated as follows in presence

of Icr

ςmi =
pmi |h

m
m,i|

2∑
n∈N sc

psn|h
n
m,i|

2

︸ ︷︷ ︸
Icr

+No
(1)

where pmi and hmm,i transmitted power and channel gain by
BS

m
to all Mu

i operating in
mC. psn and h

n
m,i is the transmitted

power and the channel gain by nth BS
s
to allMu

i . which results
in Icr . In addition to Icr , AWGN also impacts the ςmi which
is represented by the variance, σ 2 in (1).
Unlike (1), the SINR at k th Su of nth sC, Sun,k , ς

s
n,k , in the

downlink operating on the subband f ∈ F sub, is impacted
by Icr from BS

m
, Ico from the neighboring BS

s
and thermal

noise. The ς sn,k is obtained as

ς sn,k =
psn,k |h

n
n,k |

2pm|hmn,k |2


︸ ︷︷ ︸
Icr

+

 ∑
j∈N ,j̸=n

psj |h
j
n,k |

2


︸ ︷︷ ︸

Ico

+No

(2)
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where pm, psj and p
s
n,k are the transmitted power by BSm, BSs

of jth and nth sC to Sun,k respectively. Similarly, hmn,k , h
n
n,k and

hjn,k and are the channel gains from the BS
m
and BS

s
of nth

and jth sC to the Sun,k respectively.
From the ςmi and ς sn,k in (1) and (2), respectively, normal-

ized capacities at the Mu
i and Sun,k are given below:

mCi = log2 (1+ ςmi ) (3)
sCn,k = log2 (1+ ς sn,k ), (4)

where mCi and sCn,k are the capacities of Mu
i and S

u
n,k respec-

tively.
The accumulated value of capacities of all Sun,k in the

system, sCsum is represented as follows:

sCsum =
s∑
Cn,k ∀ k in K & n ∈N sc (5)

III. PROBLEM FORMULATION
The problem of RRM in 5GUDHN addressed in this research
is one of the major research problems for many years in the
domain of ultra-dense HetNets as 5G enabling technology.
Recently, many solutions are proposed for QoS provision for
all users in k-tiered sC UDHN architecture through optimal
RRM and interference mitigation [15], [16], [27], [28], [29],
[31], [34]. However, the fundamental difference among the
recently proposed RRM techniques lies in an optimization
problem in terms of optimization function and conditions.

The optimization problem (OP) defined in the underlying
research strives to maximize the mCi, sCn,k , and sCsum while
keeping mCi and sCn,k above the QoS capacity thresholds
ξm and ξ c through interference mitigation. The adaptive sC
transmission power-based intelligent interference mitigation
scheme handles the Ico and Icr simultaneously and thus guar-
antees QoS to Mu

i and Sun,k by improving SINR. OP for
adaptive power allocation is defined as follows by assuming
that BS

s
of nth sC, operating over a subband, f ∈ F sub, can

select a transmit power, ps from the available set of powers,
P = {p1, p2, . . . pmax}.

max
P

mCi,s Cn,k ,s Csum (6a)

subject to p1 ≤ psn ≤ pmax , n ∈N sc (6b)
mCi ≥ ξm, i ∈ I, (6c)
sCn,k ≥ ξ s, n ∈N sc & k ∈ K (6d)

where p1 and pmax define the range of discrete values of
transmit powers which any BSs may select.
The objective function, (6a), maximize mCi, sCn,k , and

sCsum whereas the constraints of the OP, (6b)-(6d), describe
threshold/ values psn,

mCi and sCn,k . The OP constraints in
(6c) and (6d), ensure QoS provision to Su and Mu simultane-
ously in the sCUDHN.OP in (6a) - (6d) can be solved through
learning based adaptive solution by relating the psn to the

mCi
and sCn,k while constraining over QoS capacity thresholds.
The learning framework to solve (6a)–(6d) is discussed in the
following sections.

IV. OPTIMAL RESOURCE ALLOCATION IN sC UDHN
USING QL
The QL is an iterative algorithm to apply RL in a system
where the environment is dynamic or unknown. QL agents
interact with the environment and strive for a maximum
reward through a learned optimal policy, π∗. However, learn-
ing π∗ is a computationally extensive process that requires
improving the π in each iteration. π∗ can be found whether
prior information on the environment is available or not. sC
UDHN can be modeled as MDP to implement QL based
RRM for interference mitigation and QoS provision. The
detailed modeling of sC UDHN as MDP is provided in [15],
[32], [33], [34], and [16].

A. PROPOSED QL ALGORITHM
Based on the rationale of QL and sCUDHN asMDP, we have
proposed QL algorithm, 1 for optimal RRM in sC UDHN as
MDP. The proposed QL algorithm is based on the definitions
of sC UDHN as MDP where each BSs acts as the QL agent
and adaptively selects an action, atn, which is transmission
power based on learning of the QL agent. The actions of the
agents, an ∈ A, are a discrete set of transmission powers,
P, of BSs, as defined in section III. The step size between
elements of P is calculated through the following equation
[32], [33], [34].

step =
Pmax − Pmin
NPower

(7)

In the iterative process of learning and improvement, the QL
agent updates Q-Table (QT) which is based on the actions,
atn, and states, x

t
n, of QL agent [15]. At the time, t = 0, QT is

initialized with no entry in QT and a random state, x tn. During
the iterative process, an action, atn, can be selected based on
the exploration-exploitation policy (EEP) [15].

at =

 arg max
a∈A

Qt (x, b) exploitation(1− ϵ)

rand
a∈A

(a) exploration(ϵ)
(8)

After the selection of atn at time t , reinforcement, Rt+1 is
applied according to the (9) resulting in the new state, x t+1c
of the agent and QT is updated [16].

Qt+1(xt , at ) = (1− α)Qt (xt , at )+ α{Rt+1
+ ℸmax

a′
Qt (xt+1, a′)︸ ︷︷ ︸
Rt
f

} (9)

where theRt
f is the reward function (RF) of theQL algorithm.

For the proposed QL algorithm, Rt
f is defined as a function

of mCi,s Cn,k , 0m and 0s at any time t and is given below.

Rt
f = w {mC t

i }
zsC t

n,k︸ ︷︷ ︸
a

−w−2 {Bm + Bk}︸ ︷︷ ︸
b

(10)
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where

Bm = {mCi − 0m
}
2

Bk = {sCn,k − 0s
}
2

w =
DBSs−Mu

i

dth

The part a of the Rt
f in (10) encourages the system to

maximize the capacities of the Mu
i and Sun,k whereas the

part b guarantee to meet the minimum QoS requirements.
A value of z > 1 in (10) provides small preference to mCi
over the sCn,k as Mu

i is the primary user in the network. z
and dth are user defined parameters which selected in line
with the literature [15], [16], [32]. The systematic design and
development of effectiveRt

f is presented in [15].
The EEP in (9) involves the cL and iL learning paradigms.

In the iL, each QL agent in the system learn and act inde-
pendently regardless of learning of neighboring agents and
impact of its actions on the other agents or environment.
On the other hand, cL consider the learning of the other agents
and consider the impact of their related actions while learning
and therefore share the learning informationwith neighboring
agents. As compared to the learning process in iL, learning
agents cooperate with neighboring agents by sharing rows of
their updated QT. The details of iL and cL are discussed in
the following subsections.

B. INDEPENDENT LEARNING VS COOPERATIVE
LEARNING
In the sC UDHN as MDP, BSs are the learning agents of the
QL which repeatedly interact with the surrounding environ-
ment to learn π∗ from the π by improving in each iteration.
According to the EEP, learning of the agents can be either in
the iL and cLmode. Both learning modes are explained in the
following subsections.

1) INDEPENDENT LEARNING
In iL, the learning of each agent in the UDHN is independent
of the other agents in the environment. While learning in iL,
agents assume anything around it as the environment even
if there are other agent present and act selfishly somehow.
No agent cooperates with other agents by not accepting or
sharing any information. Therefore, no prior information is
available to the agents in this learning paradigm. In the iQL,
any agent does not cooperate to share any QL information
with other neighboring agents.

2) COOPERATIVE LEARNING
In iL paradigm, each agent of sC UDHN learns π∗ for RRM
individually and without any prior information, therefore,
learning the π∗ more time and resources. Furthermore, in iL
all agents learn an optimal policy, π∗, individually in a
somehow greedy manner regardless of the negative impacts
on the neighboring agents. Contrary to the iL, in cL sC
cooperates with the neighboring agents to exchange the QL-
related information. Unlike iL, prior information about agents

Algorithm 1 QL Algorithm for Optimal RRM in sC
UDHN for 5G CN iL and cL Paradigm
Define size and coverage area of QL Agents

NC where N sc
≤ NC

∗RC where RC ≤m C coverage area
For each agent n ∈N sc, Define

Agent states xtn ∈ X
Agent actions ac ∈ A
Initialize QT i.e. Qt (xtn, a

t
c)

At t = 0,
if n > 1 and cL then

Initialize QT as Q0(x0c , a
0
c )

Update QT with avaiable shared QT information
else

Initialize QT as Q0(x0n , a
0
n)

end
for All n ∈N sc (Parallel) do

for ni ≤ Nitrations do
current xtn = x

0
n

for ns ≤ Nstep Apply EEP do
if rand < ϵ i.e. then

Random atn ∈ A
else

if cL then
Share Qti (x

t
n, :) with cooperating

agents, j,
Collect Qtj (x

t
j , :) from cooperating

agents, j,
ati ← argmax

a

∑
n∈N sc

Qtk (x
t
n, a

t )

else
% Independent
ati ← argmax

a
Qtc(x

t
n, a

t )

end
end
current action atn
Perform Reinforcement Rt+1

Compute new state xt+1n
Update QT
Apply xtn← xt+1n
Apply t ← t + 1
if convergence condition given in (11) met
then

visit next state-action pair
else

continue iterations
end

end
end
if n > 1 and cL then

Share the updated QT with all agents in the system
else

Do not share the updated QT
end

end
∗ All QL Agents in radius of RC from QL Agent nearest to
mC

and the environment is available to the new agents entering
the system in cL. Therefore, learning π∗ is more robust and
effective in cQL as compared to iQL. The cooperation of
the agents also helps the neighboring agents in learning and
considering the environment in learning π∗ in such a way
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FIGURE 2. Apartment strips to create simulation setup based on single
macrocell and small cell user per macrocell and small cell
respectively [38].

that their impact on the performance of other agents is least.
Therefore, cQL can further reduce the Ico in sC UDHN and
convergence time for new agents entering the system.

Based on the above rationale, the cL is a step ahead of the
iLwhere useful information is shared with the cooperating sC
to optimally allocate RRM. In cL, sC cooperates by sharing
one of the following three different types of information; i)
episodic information, ii) instantaneous information, and iii)
individually learned π∗ [40].

Based on the above cooperating techniques, in the pro-
posed algorithm QL agent shares QT with agents to coop-
eratively learn an π∗ to adaptively allocate psn to handle Ico

and Icr and improve the capacity of the sC while considering
minimum required QoS parameters as proposed in [27], [28],
and [32].

C. COOPERATING CLUSTERING
The limiting factor in the performance of cQL is the num-
ber of cooperative sC, n, in the cooperating cluster. As n
increases, the size of QT also increases which results in
increased computational time and overhead. To handle the
issue of large cluster size, an optimal clustering algorithm is
proposed presented in Fig. 10. The optimal clustering algo-
rithm combines the neighboring sC into small overlapping
clusters. Each sC decides its cooperating agents based on
the distance threshold, dnt , of the neighboring sC discovered
earlier using automatic neighbor discovery (AND) in the self-
configuration phase. Although there is no limit on the number
of n in the cluster, the size of the cluster remains limited due
to dnt . According to the proposed algorithm, an sC can be
part of multiple clusters due to the random deployment of sC
in sC UDHN. All the clusters execute cQL in parallel which
results in fast convergence of cQL in less computational time
and with negligible computational overhead.

D. CONVERGENCE OF Q-LEARNING ALGORITHM
In Q-learning algorithm, an optimal policy (π∗) in MDP is
learned through an iterative process. The algorithm works by
updating estimates of the Q-values of the state-action pairs
based on the received rewards and the Q-values of the next
state-action pairs in each iteration. One of the key properties
of Q-learning is its ability to converge to the optimal Q∗-
values, given certain conditions. Specifically, Q-learning is

TABLE 2. Simulation parameters.

guaranteed to converge to the optimal Q∗-values based on the
following factors:
• An appropriate selection of learning rate parameter (α),
determines the degree to which new information over-
rides the old information. A high value of α may lead to
no convergence whereas a low value may result in slow
convergence.

• An appropriate selection of exploration rate in EEP (8).
The exploration rate (ϵ) in EEP determines the degree to
which the algorithm explores versus exploits the current
best estimate of theQ-values. If the exploration rate is set
too high, the algorithm may not converge, while if it is
set too low, the algorithm may converge to a suboptimal
policy.

• The state and action spaces must be finite.
• The MDP must satisfy the ‘‘Markov property,’’ which
means that the future state and reward depend only on
the current state and action, and not on any previous
states or actions.

Based on the above factors, the convergence of the QL can
be achieved through the ϵ−greedy policy in EEP. π∗ is an
ϵ−optimal policy for ϵ > 0 and δ ∈ (0, 1], if the following
condition is met [32], [41], [42].

Pr(||Q∗ − Qπ || < ϵ) ≥ 1− δ (11)

where Q∗ represents the learned optimal Q∗-value after QL
iterations and Qπ is the Q-value based on the current state-
action pair. The proposed QL algorithm follows ϵ−greedy
policy for optimal convergence as in [15], [32], and [16].

V. SIMULATION SETUP AND PARAMETERS
The proposedQL algorithm is evaluated throughMonte-Carlo
simulations in a standard 3GPP setup [38] in MATLAB
2020a on a Corei7,16 GB memory machine. The UDHN
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FIGURE 3. UDHN simulation setups based on Fig.2 (a) simulation setup 1: high Icr and Ico, (b) simulation setup 2: low Icr

and high Ico setup, and (c) simulation setup 3: intermediate Icr and high Ico setup.

simulation setups, Fig. 3 are created by variation in Setup
2b (sparse), Fig. 2a based on the urban dual strip model [38],
[43]. The UDHN simulation setups, Fig. 3, are developed to
cater to different combinations of Ico and Icr based on the
density of sC, and the number of Mu and Su and the location
of apartment strips in the mC. The simulation parameters
of mC and sC are according to the 3GPP TR 36.872 [38].
The simulation parameters are also in line with the recently
proposed RRM solutions through QL [27], [29], [31], [32],
[33], [34].

A summary of the simulation parameters is provided in
Table 2.

VI. RESULTS
The performance of the QL algorithm is evaluated in multiple
interference scenarios presented in Fig. 3 by increasing the
density of the sC in the system. The sC are added one by
one where each sC performs QL either through iL or cL.
According to the algorithm, all sC learn independently in
parallel, however, share learned information in form of QT
if operating in cL mode.
The simulation results of QL in iL or cL are measured

through various KPIs to find an optimal learning policy for

TABLE 3. Comparison of mCi (b/s/Hz) using i L and c L.

QL based RRM in sC UDHN for 5G CN. The performance
of the QL algorithm is compared in terms of the capacities
of macrocell and small cell users, the sum capacity of small
cells, computational time, and the sum power transmitted by
small cells in the network.

A. CAPACITY OF MACROCELL USERS
The capacity of macrocell users is computed using the QL in
both learning paradigms, iL and cL, in all simulation setups
of Fig. 3 and is presented in Fig. 4a. From Fig. 4a, it can
be observed that the QL algorithm performed closely in both
learning paradigms and provided the required capacity to the
macrocell users for QoS. Hence, QoS requirements can be
met through either of the learning schemes. The performance
comparison is also summarized in Table 3. iL performed
slightly better than the cL by providing 2.97% higher capacity
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FIGURE 4. Performance comparison of QL algorithm using i L and c L in all simulation setups in Fig. 3 (a) comparison of mCi , and (b) comparison
of sCn,k .

FIGURE 5. Performance comparison of QL algorithm using i L and c L in all simulation setups in Fig. 3 (a) comparison of sCsum, and
(b) comparison of Tc .

to macrocell users in high Ico and Icr setup, Fig. 3a. Whereas
in the other two setups Fig. 3a and 3b, cL performed better
than iL with 5.6% and 4.60% increase in macrocell user
capacity respectively. Although the performance difference is
negligible, cL provided higher macrocell user capacity. The
similar performance of both learning paradigms, iL and cL,
for capacity of macrocell users is due to almost negligible
impact of cooperation of sC in cL on Icr mitigation.

B. MINIMUM CAPACITY OF SMALL CELL USERS
Both iQL and cQL provided small cell user capacity above
the minimum required capacity threshold to ensure QoS for
small cell users in simulation setups 1-3, Fig. 3a-3c. How-
ever, cooperation among the neighboring small cells in the

TABLE 4. Comparison of sCn,k (b/s/Hz) using i L and c L.

clusters has shown a significant impact on the small cell
capacity. Fig. 4b presents the performance comparison for the
minimum capacity of small cells using cL and iL based QL
in simulation setups 1-3, Fig. 3a-3c. In all three simulation
setups, the cQL algorithm performed significantly better than
the iQL algorithm in the same setup as shown in Fig.4b. Using
cQL, aminimum improvement of 23.61% is observed in setup

41272 VOLUME 11, 2023



M. U. Iqbal et al.: Optimal Learning Paradigm and Clustering for Effective RRM in 5G HetNets

FIGURE 6. Comparison of Psum using i QL and c QL in setup 1-3.

TABLE 5. Comparison of sCsum (b/s/Hz) using i L and c L.

TABLE 6. Comparison of Tc using i L and c L.

3 whereas the maximum improvement is in setup 2 which
is 48.57%. The performance comparison of iQL and cQL is
summarized in Table 4 which establishes that cQL provides
a higher minimum capacity of small cells in UDHN as the
density of the small cells increases. The improvement in the
minimum capacity of small cell users using the cL paradigm
is due to significant reduction in Ico by efficient cooperation
among the sC.

C. SUM CAPACITY OF SMALL CELL USERS
Although the sum capacity of small cell users is not a QoS
parameter in UDHN but a higher value of sum capacity rep-
resents that the utilized RRM technique can provide a higher
minimum capacity to all small cells in the UDHN. As the sum
capacity is the sum of capacities of all small cell users in the
system, therefore an improvement in the minimum capacities
of an individual small cell user is reflected in sum capacity.
As the cL has improved the minimum capacity of small
cell users in all interference setups in Fig. 3a-3c, therefore
sum capacity provided by cL is also higher than the iL. The
comparison of sum capacity using iL and cL is presented in

FIGURE 7. Comparison of the number of iterations for convergence of
proposed algorithm using i QL and c QL in setup 1-3.

TABLE 7. Comparison of Psum (dBm) using i L and c L.

TABLE 8. Comparison of number of iterations using i L and c L for 16 sC .

Fig. 5a. The minimum improvement in sum capacity is for
setup 3 which is 6.287% and the maximum improvement
is in the highest interference setup 1 which is 37.90%. The
improvement in sum capacity using cL for all interference
setups is summarized in Table 5. From Table 5, it can be
inferred that cL provided higher sum capacity as compared to
iL and therefore can be opted as the optimal learning policy.

D. COMPUTATIONAL TIME
The significant improvements in minimum and sum capaci-
ties of small cells, and competitive performance for macrocell
user capacity using the cL based QL algorithm as compared
to the iL are at the cost of the increase in computational time,
and overhead. In the cL, all the cooperating agents transmit
and receive the entries of QT which result in communication
overhead. The communication overhead is directly propor-
tional to the density of small cells in the system. The increased
communication overhead in the cL paradigm also increases
the computational time as compared to the iL paradigm.
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FIGURE 8. Comparison of QoS for Mu
i as function of n in i L and c L paradigm in (a) simulation setup 1, Fig. 3a, (b) simulation setup 2, Fig. 3b, and

(c) simulation setup 3, Fig. 3c.

However, the increase in computational time is not signif-
icant as it is compensated by the decreased learning time
due to the availability of prior information to small cells in
form of QT rows shared by the neighboring small cells. The
computational time of the proposed cL based QL algorithm
is significantly less as compared to other CL algorithms
in literature but iL has slightly less computational time as
compared to cL which is evident in Fig. 5b. A similar trend
is observed for the computational time in all three simulation
setups 1-3, Fig. 3a-3c, using cL and iL. The analysis of the
increase in computational time using cQL as compared to iQL
is summarized in Table 6.

E. SUM POWER OF SMALL CELLS
Small cells transmitting at higher power levels result in strong
Ico and Icr and also reduce the EE of the system. iL reduced

the sum power of the small cells operating in the cluster
and also provided capacities above the minimum required
thresholds tomaintainminimumQoS for macrocell and small
cell users. However, the cooperation among the small cells
through cL further reduced the sum transmit power in all
three simulation setups 1-3, Fig. 5a. The decrease in sum
transmit power is indirectly related to improvements in the
capacities of the macrocell, and small cells. A lower value of
the sum transmit power in conjunction with improvements in
the capacities of the macrocell, and small cell indicates that
the proposed solution has the capability of mitigating Ico and
Icr simultaneously through adaptive power allocation to BSs

in UDHN. The decrease in sum transmit power using the cL
is summarized in Table 7 which shows a minimum decrease
in sum transmit power of 17.20% and a maximum decrease
of 29.71% in setups 2 and 1 respectively.
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FIGURE 9. Comparison of QoS for Su
n,k as function of n in i L and c L paradigm in (a) simulation setup 1, Fig. 3a, (b) simulation setup 2, Fig. 3b, and

(c) simulation setup 3, Fig. 3c.

F. CONVERGENCE ANALYSIS
For the convergence of the proposed algorithm in iL and
cL paradigm, the ϵ-greedy policy is utilized based on the
(8) and (11). To learn optimal policy (π∗) through conver-
gence of the Q-value to optimal Q∗-value, the QL parameters
affecting the convergence, like learning rate (alpha), explo-
ration probability (ϵ), finite state-action space, and MDP
satisfying ‘‘Markov Property’’, are selected in line with the
literature [32], [33], [34]. The simulation parameters are
summarized in Table 2. The QL algorithm is considered to be
converged if the regret magnitude in (11) is less than 0.001 for
consecutive 1000 iterations where the maximum number of
QL iterations is 75 × 103. The convergence of the regret to
the defined threshold is presented in Appendix for both iL
and cL in different simulation setups. It can be observed in
Fig. 12a-12c that regret magnitude converges to the required
threshold and then remains constant after a certain number of

QL iterations. The regret minimization to the threshold levels
is also shown in the magnified views in Fig. 12a-12c. The QL
iterations for convergence of iL and cL are presented in Fig. 7
for all three simulation setups. The statistical comparison of
the number of iterations for convergence is also presented in
Table 8. It can be observed that both iL and cL converge in less
number of iterations without reaching the maximum limit of
QL iterations. However, the overall pattern of the number of
iterations for convergence remains similar. A slight difference
between number of iterations using iL and cL is due to the
learning paradigmwhere cL converges slightly earlier than iL.

VII. QoS PROVISION USING IL AND CL
In UDHN, QoS provision to the macrocell and small cell
users simultaneously through an effective interference miti-
gation scheme is a difficult task and one of the fundamental
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FIGURE 10. Flow chart of clustering based c QL algorithm.

objectives of this research. In this section, we analyzed the
performance of the QL using iL and cL for the provision of
QoS to macrocell and small cell users simultaneously. The
performance of iL and cL is also comparedwith other recently
proposed solutions in literature Q-DPA [32], PA-DRL [33],
FAQ [34] and Greedy in iL and cL paradigm.

A. QoS FOR MACROCELL USERS
QoS provision for macrocell users by the iQL, cQL and other
recently proposed solutions in literature [32], [33], [34] is
presented in Fig. 8 for all three simulation setups, Fig. 3a-3c.
It can be observed from Fig. 8a-8c that proposed iQL and cQL
algorithms provided QoS to macrocell users in all simulation
setups in presence of a cluster of sixteen small cells whereas
the other recently proposed solutions in the literature [32],
[33], [34] failed to provide QoS in high interference setup,
i.e. simulation setup 1. Therefore, the proposed QL based
solution can effectively mitigate the Icr and can provide QoS
to macrocell users in highly dense urban UDHN. However,
there is no significant difference in the provision of QoS to
macrocell users in iL or cL paradigm which is also evident
from Fig. 4a.

B. QoS FOR SMALL CELL USERS
In UDHN, small cell users are victims of high Icr and Ico. The
QL based proposed in iL paradigm not only provided QoS to
all small cell users in the cluster of sixteen sC in all simulation
setups but also outperformed the recently proposed solu-
tion [32], [33], [34] by providing QoS to the higher number
of small cells in different interference setups. Similarly, cQL
also not only provided QoS to all small cell users but also
improved the minimum and sum capacities of small cell users
where the other recently proposed solution in literature [32],
[33], [34] could not provide QoS to all small cell users in cL
paradigm as well.

VIII. OPTIMAL LEARNING PARADIGM FOR QL BASED
RRM IN UDHN
From the performance comparison of various KPIs in section
VIVII, it can be observed that cL has a negligible effect on the
capacity of macrocell users as compared to iL in the case of
UDHN.However, a significantly higherminimum capacity of
small cell users and the sum capacity of the cooperating small
cells in the cluster can be observed using the cL as compared
to iL. This significant improvement is at the cost of increased
Tc which is directly related to the number of small cells in
the cluster. In this research, we simulated a cluster size of
16 small cells, which are 37.5% more small cells according
to 3GPP TR36.872 by adding small cells in the cluster one
by one. Simulation results show that the proposed cL based
QL algorithm not only outperformed other recently proposed
solutions in literature but it proved its significance over the
iL paradigm. Therefore, cL is an optimal learning strategy for
QL based RRM in UDHN.

IX. OPTIMAL CLUSTERING IN cL BASED QL
Although simulation results and their comparison have set the
superiority of cL over the iL, the issues of increased compu-
tational time and overhead can be handled through optimal
cooperative clustering in sC UDHN to further improve the
performance of cL basedQL.An optimal clustering algorithm
is proposed in Fig. 10 to handle computational time and over-
head. The optimal clustering technique finds an optimal size
of the cooperative cluster which always guarantees an optimal
size of the cluster to successfully handle the issue of increased
computational time in cooperative learning. The simulation
results of optimal clustering in terms of computation time and
overhead and the optimal size of the cluster are discussed in
the subsequent sections.

A. IMPACT OF CLUSTERING ON COMPUTATIONAL TIME
The simulation results for the proposed cL based QL algo-
rithm and optimal clustering algorithm to evaluate the impact
of reduced cluster size on computational time are presented
in Fig. 11b. To evaluate the proposed solution, the simulation
setup 1, Fig. 3a is utilized as it is the combination of the
highest Ico and Icr . The proposed optimal clustering algorithm
divided the cluster of total small cells, i.e. 16, into multiple
overlapping smaller clusters of 2, 3, and 4 small cells. The
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FIGURE 11. Comparison of QoS for Su
n,k as function of n in i L and c L paradigm in (a) simulation setup 1, Fig. 3a, (b) simulation setup 2, Fig. 3b, and

(c) simulation setup 3, Fig. 3c.

optimal clustering in simulation setup 1, Fig. 3a is presented
in Fig. 11a. Therefore, the largest cluster size in terms of small
cells is 4. However, there is no limit on the number of smaller
overlapping clusters. All the clusters executed the cQL in par-
allel and therefore the largest cluster computational time is the
maximum computational time. It is pertinent to mention that
all small cells are always independent and work in parallel
whether the learning scheme is independent or cooperative.
Therefore, there is no such case where the small cells are
not working in parallel. In the Monte-Carlo simulation, the
maximum size remained limited to four small cells, and the
computational time for this cluster is 24 sec as shown in
Fig. 4.10. The computational time for 16 sC in the system
is now reduced to approximately equal to 4 small cells in the
system. Therefore, the cQL algorithm with optimal clustering
is four times faster than a simple cL application in UDHN.
The comparison of cL based QL and optimal clustering based
cL QL is presented in Fig. 11b. The results for the optimal
clustering in simulation setup 2-3, Fig. 3a-3c can be obtained
similarly.

B. IMPACT OF CLUSTERING ON COMPUTATIONAL
OVERHEAD
In cQL, the computational overhead is due to the large size
of QT which is the combination of x tn and atc. The size
of the QT increases with the number of small cells in the
system as they share it with cooperating agents. When all
the small cells operate in a single cluster or unlimited size
of the cluster, the size of the QT is large and therefore
computational overhead while executing the QL algorithm.
The optimal clustering size reduces the number of small cells
in the system and thus the size of the QT which as result not
only reduces computational overhead but also computational
time. The optimal clustering algorithm, Fig. 10, divided the

total 16 small cells into small clusters. The largest cluster size
is composed of 04 small cells, therefore optimal clustering
reduced computational overhead by four times as compared
to using cL in a single cluster of 16 small cells in simulation
setup Fig. 11a. However, the reduction in communication
overhead can be varied due to the deployment scenario, the
total number of 16 small cells in the system, and the dynamic
behavior of the UDHN.

X. CONCLUSION
In this research article, the Q-Learning algorithm in the
independent and cooperative learning paradigm is explored
for RRM to handle the co-tier and cross-tier interferences
simultaneously in UDHN for quality of service provision to
both macro and small cell users. In the cooperative learn-
ing paradigm, learning agents share independently learned
information with the other neighboring agents in the cluster
and utilize their mutual experience to learn optimal policy
by meeting the convergence conditions to improve system
KPIs jointly. The Q-Learning algorithm successfully miti-
gated the co-tier and cross-tier interferences simultaneously
in both independent and cooperative learning paradigms and
provided QoS to all users in K-tiers in the cluster of 16 small
cells in various setups of standard 3GPP interference scenar-
ios where other recently proposed solutions in literature and
greedy power allocation fail to meet the QoS requirements
for both macro and small cell users at the same time. Cooper-
ative learning provides higher macrocell and small cell users
capacity and sum capacity of small cell users as compared to
independent learning at the cost of increased computational
time and sum power of small cells. Although the impact of
cooperative learning is not very large on the capacity ofmacro
cell users as compared to independent learning, significant
improvement can be observed in small cell capacity in the
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FIGURE 12. Converge of Q-Value using proposed algorithm in i L and c L paradigm (a) simulation setup 1, Fig. 3a, (b) simulation setup 2, Fig. 3b,
and (c) simulation setup 3, Fig. 3c.

case of UDHN. A significant improvement of 48.57% and
37.9% in the small cell capacity set that cL is the optimal
learning scheme of QL based RRM in UDHN for QoS provi-
sion. The performance improvement of cL results in increased
computational time and overhead which are directly pro-
portional to the size of the cluster. To handle the issue of
computational time and overhead, an optimal clustering algo-
rithm is proposed and evaluated. The optimal clustering in
combination with a superior learning scheme, cL, improved
the robustness and reduced computational complexity by a
factor of 4 in a cluster size of 16 small cells, 37.5% more
small cells according to 3GPP TR36.872. However, improve-
ment in robustness and decrease in computational overhead is
directly proportional to the number of small cells in UDHN.

APPENDIX
The convergence of regret to the required threshold using the
proposedQL algorithm based on the ϵ-greedy policy in iL and

cL paradigm for simulation scenarios, Fig. 3, is presented in
Fig. 12 for the convenience of the reader.
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