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Abstract. The lead extraction procedures are for the patients who already have 
pacemaker implanted and leads need to be replaced. The procedure is a high-risk 
procedure and it could lead to major complications or even procedure-related 
death. Recently, an Electra Registry Outcome Score (EROS) was designed to 
create a risk assessment tool using the data about personal health records and an 
accuracy of 0.70 was achieved. In this paper, we hypothesized that a coil inside 
the superior vena cava (SVC) is a very important risk factor. By integrating it 
into the risk assessment model, the accuracy can be further improved. Therefore, 
an automatic detection method was developed to localize the positions of coils in 
the X-ray images. It was based on a U-Net convolutional network. To determine 
the coil position relative to the SVC position inside the chest X-ray image, the 
heart region was first detected by using a modified VGG16 model. Then, the 
bounding box of the SVC can be estimated based on the heart anatomy. Finally, 
a XGBoost classifier was trained on the data about personal health records and 
the risk factor about the coil position.  An accuracy of 0.85 was achieved. 
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1 Introduction 

The number of patients with implantable pacemaker has grown exponentially in recent 
decades. Transvenous lead extraction (TLE) is the primary treatment for complications 
related to the implanted pacemaker. The complications include lead fracture, device 
failure, lead erosion and infection [1]. Although the success rate of TLE procedure re-
main high, the procedure is sometimes complex and leads to severe complications and 
even procedure-related death. The studies in major European centers have reported a 
1.7% rate of major complications including deaths [2]. Therefore, it is essential to as-
sess the risk of the TLE procedure for individual patients to reduce the mortality rate. 
Sidhu et al [3] has proposed an Electra Registry Outcome Score (EROS) to create a risk 
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assessment tool using a number of variables about personal health data and an accuracy 
of 0.70 was achieved. Recently, machine learning (ML) based approaches have been 
proposed to improve the accuracy. Vishal et al [4] has trained ML models and tested 
them on a ELECTRa database [3] and achieved an accuracy of 0.74. The results are 
marginally improvement from EROS.  

We hypothesized that adding additional information extracted from a plain chest X-
ray image will further improve the accuracy. The coil inside the superior vena cava 
(SVC) is a very important risk factor as the common reason for the major complication 
inside the SVC is the fibrotic tissue around the lead or the coil. It does more likely 
happen to the coil which has a large surface area. The fibrotic tissue likely causes me-
chanical damages such as tear during the procedure [5]. To find out the coil position, 
the plain chest X-ray images were used and they are normally acquired before the pro-
cedure. Robust computer vision algorithms were designed, which are based on deep 
learning techniques for image segmentation. The computer vision algorithms were able 
to automatically compute the positions of the coils in the X-ray image and detect 
whether majority of the coil is inside the SVC or not. The main contribution of this 
manuscript is the methodology of the development of a deep learning framework using 
the combination of an additional feature from images and other clinical data to achieve 
higher accuracy to detect high-risk patients. The proposed approach is not limited to 
the TLE procedure using the chest X-ray image and it could apply to assess the risk of 
other cardiac interventional procedures using X-ray or CT images.    

2 The detection of coils in X-ray images 

In the chest X-ray images from patients undergoing the TLE procedure, there are often 
coils mixing with leads. The leads are thin metal wires. On the other hand, the coils 
have a large surface area of electrodes and they often conduct strong currents to depo-
larize the heart. They can be recognized on x-ray images as focal areas of wire thick-
ening. In order to robustly detect the position of all coils inside the X-ray image, a two-
step approach was proposed. Firstly, both leads and coils were segmented by using a 
U-Net convolutional network [6] and this acted as the coarse region segmentation. 
Then, the masked images created from the coarse region segmentation were feed to the 
second U-net model to extract the exact location of the coils.  

2.1 The detection of both leads and coils 

To segment both leads and coils from X-ray images, a U-Net convolutional network 
was trained and tested by using a database of 737 chest X-ray images from 737 patients.  

 
Creating manual segmentations of leads and coils. The manual segmentation of 

leads and coils in X-ray images is very time-consuming. To speed up, a vessel enhance-
ment filter [7] was used to extract all wire-like objects and the result image was auto-
matically binarized by an adaptive binarization method: Otsu’s method [8]. Then an 
experienced clinician manually removed the objects which are not leads or coils. In 
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addition, the pacemaker and nearby wire segments were also removed as they are not 
useful for finding the coils. Figure 1 presented the process of manual segmentation. 

 
(a)                                    (b)                                  (c) 

Fig. 1. Manual segmentation of leads. (a) The original image. (b) Image after applying the vessel 
enhancement filter. (c) The final result of manual segmentation. 

The U-Net was trained to behave like a selective wire-enhancement filter and it is 
able to extract high-contrast leads and coils and ignore other wire-like objects such as 
surface ECG leads, rib bone shadows, the border of the cardiac silhouette and pace-
maker. 

 
                                         (a)                                             (b) 

 
                                         (c)                                             (d) 

Coil Coil 
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Fig. 2. The results of detecting leads and coils. (a)(c) The original image. (b)(d) The segmentation 
results output by the U-Net. (a) The coils are clearly within the detected segmentations. 

Training and results. The ratio for train-test split is 70:30. The loss function for the 
U-Net model is the dice similarity coefficient (DSC) and it is defined as: 

𝐷𝑆𝐶 = !|#∩%|
|#|&|%|

                                        (1) 
The optimizer is Adam. The U-Net convolutional network was trained using 516 

images. Images with the resolution of 512 × 512 were directly input into the network 
without any down-sampling as the leads might not be visible in the low-resolution im-
ages. The U-Net model was implemented using TensorFlow API and training was car-
ried out using an apple MacBook pro (GPU: Radeon Pro 560 and CPU: 2.9GHz quad-
core Intel Core i7). The training process took about 8 hours and it was accelerated using 
GPU. The lengthy training process is because the high-resolution images (512x512) 
were used for training. The trained U-Net was tested on remaining 221 images. An 
accuracy of 0.69±0.10 was achieved for the segmentation of leads and coils and it was 
measured in DSC against the ground truth. Although the U-Net is not always able to 
detect the completed length of leads, it is sufficient for our next task: extracting coil 
position. The recall of coils is 1.0 and it means that all coils within X-ray images have 
been successfully detected as the coils are high-contrast objects and relatively easy to 
be detected. Two examples of segmentation results are presented in figure 2. 

2.2 The detection of coils 

To localize the exact location of the coils within the X-ray images, we use the results 
of detected leads and coils as the initial data input. Although the previous results already 
include the coils, the location of the coil relative to the location of SVC has to be deter-
mined as it is important to assess the risk of TLE procedures. [9] reported that the fi-
brotic tissue surrounding the coil is one of leading factors contributing to the mechani-
cal damages such as tear during the procedure. To detect only the coil, the similar U-
Net model is used but the input image is different. The input image is created by apply-
ing an image mask onto the original X-ray image and the mask is generated from the 
binary image after applying an image dilation operation with the kernel size of 10x10. 
The figure 3 illustrate the process of creating masked images.  
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Fig. 3. The workflow of creating masked images for detecting the positions of coils. 
 
In order to reduce the distraction from the thin lead wires, the input images were 

down-sampled to 256x256 and they are used as input data for the U-Net model. The U-
Net is the same as the previous one except the dimension of input and output data. As 
the low-resolution images reduced the computation cost of model training, we were 
able to apply the data augmentation technique to increase the number of training im-
ages. The contrast of the 516 images were reduced by a random factor between 0.6 to 
0.9 to create additional 1,032 training images. The reason for reducing contrast is to 
improve the performance of coil detection for low-contrast X-ray images. Therefore, 
the image masks were applied onto 1,548 training images and masked images were 
created. They are used as input images for the U-Net model. The training time is about 
3 hours using the same PC which trained the previous U-Net model. As shown in figure 
4, the accuracy of model training using data augmentation increases faster than the ac-
curacy of model training without it. 

Finally, the trained U-Net was tested on remaining 221 images. An accuracy of 
0.87±0.10 was achieved for the detection of coils and it was measured in DSC against 
the ground truth. To measure the performance of U-Net with or without data augmen-
tation, key metrics such as accuracy, precision, recall and F1-score were calculated and 
presented in table 1. A true positive detection is defined as at least 75% length of the 
target coil object was detected. A false positive detection is defined as the other wire 
object was detected as the target coil object. The examples of successful and unsuc-
cessfully detections are presented in figure 5. 

Table 1. Key metrics for model performance with or without data augmentation. 

Data augmentation Accuracy Precision Recall F1 score 
without 0.87 0.88 0.91 0.89 

with 0.98 0.98 0.99 0.98 



6 

 

Fig. 4. Accuracy by epochs of the U-Net training in terms of the DSC. 

  
(a)                                                               (b) 

 
(c) 

Fig. 4. Examples of coil detections. (a) (b) Successful detections. (c) A false negative 
detection which only part of coil (less than 75%) has been detected. 

3 The detection of the approximate location of SVC 

SVC is a major blood vessel inside the heart and it provides an important pathway for 
inserting the pacing leads into the right atrium and other heart chambers. The SVC is 
the most common location requiring surgical repair as the result of a major complica-
tion after the TLE procedure. It is not possible to detect the exact location of SVC in 
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the X-ray image as the SVC is not visible in the image unless a contrast agent is in-
jected. However, it is possible to estimate the location based on the heart anatomy. As 
show in figure 5a, the location of the SVC (green box) is the top left corner of the heart 
region (red box). The height of the green box is approximately half the height of the 
heart region. The width of the green box is approximately one third of the heart region. 
The method was verified by overlaying 3D anatomy models (extracted from pre-pro-
cedure CT scan) with the chest X-ray image (figure 5b). 
 
The detection of the heart region. To automatically located the SVC in the X-ray 
image, the heart region needs to be detected.  A transfer learning approach was used to 
detect the heart region via bounding box regression, which is based on a modified 
VGG16 model. As shown in figure 6, the last 3 pre-trained fully-connected layers of a 
standard VGG16 model have been removed and replaced with 4 full-connected layers. 
The last layer outputs the coordinates of two corners positions of the bounding box. 
The modified VGG16 model uses the pre-trained weights [10] and it was re-trained 
using the manual annotations of the heart region in X-ray images. 

       
(a)                                        (b) 

Fig. 5. (a) A medically accurate illustration of the anatomy of the heart. The red box is 
the region of the heart and the green box is the location of the SVC. (b) Overlaying 3D 
anatomy models with the X-ray image. The blue shadow is the 3D model of aorta, left 
ventricle and the SVC. The red box is the region of the heart and the green box is the 
location of the SVC. 

 

Fig. 6. The architecture of the modified VGG16 model. 

The accuracy of detection. The accuracy of heart region detection is measured by the 
Intersection Over Union (IOU). IOU in this application is defined as: 

1x1x128 1x1x64 1x1x4 
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         (2) 

where 𝐵+ is the predicted bounding box or the detected bounding box and 𝐵,- is the 
ground truth bounding box. A correct detection is that IOU is larger than or equal to the 
preset threshold. The preset threshold in this application is set to both 50% and 75%, as 
the detection of heart region has to be accurate to ensure that the location SVC is rela-
tively accurate. An example of IOU was presented in figure 7. The precisions and re-
calls of the detect method were given in table 2. 

Table 2. The precisions and recalls for assessing the accuracy of heart region detection. 

IOU Threshold 50% 75% 
Precision 1.0 0.818 

Recall 1.0 1.0 

(a)                                               (b) 

Fig. 7. (a) The results of IOU. The green box is the ground truth and the red box is the 
detected bounding box. (b) The coil position related to the SVC. The green box is the 
bounding box of the SVC and the red box is the bounding box of the heart region. The 
yellow lines are the centerlines of the detected coils. 

4 Machine-learning model for risk assessment 

Once the coil position was determined, it was compared with the bounding box of the 
SVC. If 50% of the coil length is within the SVC, the coil will be labelled as “inside”. 
Otherwise, the coil will be labelled as “outside”. The coil position label combined with 
personal health records were feed into a machine-learning model to predict the TLE 
procedure risk. The XGBoost classifier [11] was chosen to predict the risk of TLE pro-
cedures as it uses sequentially-built shallow decision trees to provide accurate results 
and a highly-scalable training method that avoids overfitting. Furthermore, the 
XGBoost classifier has been used to diagnose chronic kidney disease [12] and detect 
credit card fraud [13] because it works well with imbalanced datasets and binary clas-
sifications. There is a total 737 sets of data from 737 TLE clinical cases and the outcome 
from 18 cases (2.4%) are a major complication or procedure related death. To balance 
the data, Adaptive Synthetic (ADASYN) sampling techniques [14] were applied to the 
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data and generated additional 701 sets of data which was labelled as the cases of a major 
complication or procedure related death. The balanced data were split into two groups. 
70% of data were used for training and 30% of data were used for testing. The learning 
rate was set to 0.02 and the number of gradient boosted trees was set to 200. The max-
imum depth of a tree, the minimum child weight and the subsample ratio of columns 
for each tree were set to 5, 1 and 0.75, respectively. The balanced accuracy of 0.85 was 
achieved, which was tested on the balanced test dataset. 

5 Conclusions and future work 

This paper presents a novel deep-learning framework for predicting the risk of the TLE 
procedures. Robust computer vision algorithms were developed to extract the position 
of coils in the chest X-ray images. By comparing the coil positions with the estimated 
location of the SVC, a new risk-factor variable was created. By adding this risk-factor 
variable with the personal health data, we were able to achieve a higher classification 
accuracy for detecting high-risk cases in the TLE procedures. Our approach only use 
plain chest X-ray images as the additional data source and the chest X-ray images are 
routinely acquired before the TLE procedures. Therefore, our approach does not require 
additional data and will not change current clinical practices for the TLE procedures.  

Additional geometric features such as the number of overlapping leads inside the 
SVC, the angulation of a lead inside the right ventricle and the angulation of the lead 
near the entry point of the SVC could be important for further improvement of the risk 
modelling and achieve a higher classification accuracy.  
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