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2-adic slopes of Hilbert modular forms over Q(
√

5)

Christopher Birkbeck

Abstract

We show that for arithmetic weights with a fixed finite-order character, the slopes of Up for p = 2
(which is inert) acting on overconvergent Hilbert modular forms of level U0(4) are independent
of the (algebraic part of the) weight and can be obtained by a simple recipe from the classical
slopes in parallel weight 3.

1. Introduction

Modular forms and more generally overconvergent modular forms of level divisible by p (a prime
number) are acted upon by a Hecke operator denoted Up. This is a compact operator on the
spaces of overconvergent modular forms and therefore it makes sense to study its eigenvalues.
One of the aspects one can study is the p-adic valuation of the eigenvalues; these are known
as the slopes, since they can be computed from the Newton polygon of the characteristic
power series of Up. One of the aspects highlighted by the work of Gouvea-Mazur and Hida
(among others) was the degree to which the slopes depend on the weight of the space of
modular forms. For classical elliptic modular forms a weight is simply a positive integer, but
for overconvergent modular forms one can allow more general weights given by continuous
homomorphisms κ : Z×

p → C×
p . To these weights one can associate a rigid analytic space W

known as the weight space which one can check is simply a finite union of open discs. The
weight space can be divided into two regions as follows: let q = p if p is odd and q = 4 if p = 2
and let γ be a topological generator of 1 + qZp. For κ a weight we define w(κ) = κ(γ) − 1.
Then we say κ is in the centre of weight space if valp(ω(κ)) � 1 for p odd and � 3 for p = 2.
We say a weight is near the boundary if valp(ω(κ)) � 1

p−1 for p odd and valp(ω(κ)) < 3 for
p = 2.

Buzzard and Kilford [6] studied slopes of overconvergent (elliptic) modular forms in the
special case that the tame level is 1 and p = 2. In this case, they proved that, for weights near
the boundary of weight space, slopes have a great deal of structure, in particular they are in
arithmetic progression and scale to zero as the weight moves further towards the boundary
of weight space. From this one can deduce that, over the boundary annulus, the eigencurve
is a disjoint union of annuli. This example motivated further work in the area (see [11, 13])
and most notably Liu–Wan–Xiao in [10] showed that the slopes of quaternionic modular forms
(over Q) have structure analogous to what was observed by Buzzard–Kilford. Specifically, they
showed that the slopes (for weights near the boundary) are given as a union of arithmetic
progressions with common difference and they scale as the weight approaches the boundary.
From this they then deduce that, over the boundary annulus, the eigenvarieties are a disjoint
union of rigid spaces which are flat over this annulus. Then, via Chenevier’s overconvergent
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Jacquet–Langlands correspondence, one deduces similar results for a large class of spaces of
overconvergent modular forms. This in turn can be used to prove parity conjectures of Selmer
ranks for modular forms.

In the setting of Hilbert modular forms, much less is known. In this case, weights have
several components and therefore the boundary is more complicated as one can approach it via
each of the components separately. Computations in [3] suggest that, again for weights near
the boundary (see [3, Definition 2.1.8] for a precise definition), slopes behave in a highly
predictable way but in general are not a union of arithmetic progressions with common
difference. In this more general setting, one observes that the multiset of slopes appears to
be completely determined by a simple recipe starting with slopes of classical Hilbert modular
forms of some small weight. Similar behaviour is also present for elliptic modular forms, yet due
to their simpler nature, in this case, the above recipe coincidentally gives unions of arithmetic
progressions with common difference. This combined with the scaling behaviour of the slopes
gives the above statements about the geometry of the associated eigenvarieties.

In the Hilbert setting, one can also consider the effect of the splitting behaviour of p. If
p =

∏
i pi, then Up =

∏
i Upi

and by making certain restrictions on the weight space† one can
study the slopes of Upi

. If p is totally split, work of Newton–Johansson [9] shows that the
methods of [10] can be used to describe the slopes of Upi

, which for general p is not the case.‡

Moreover, they construct partial eigenvarieties and prove that over a boundary annulus these
partial eigenvarieties decompose as a union of components which are finite over weight space.
From this they prove the parity part of the Bloch–Kato conjecture for Galois representations
associated to Hilbert modular forms (still with p totally split).

In general, the structure of the slopes of Up in the Hilbert case is unknown. In this note,
we show that for an inert prime (p = 2) and for arithmetic weights with a fixed finite-order
character, the slopes of U2 acting on spaces of overconvergent Hilbert modular forms of level
U0(4) (over Q(

√
5)) are completely determined by the slopes of classical Hilbert modular forms

of parallel weight 3 with a suitable finite-order character. We also give computational evidence
that as weights approach the boundary of weight space, the slopes scale and tend to zero
(similar to what is seen for elliptic modular forms). Specifically, we prove the following result:

Theorem. The slopes of U2 acting in weight [n1, n2]χ on overconvergent Hilbert modular
forms of level U0(4) are independent of ni. Moreover, they are completely determined by the
slopes of U2 acting on the classical spaces of Hilbert modular forms of level U0(4), parallel
weight 3 with nebentypus χτn for a τ a certain character of order 6.

This theorem is in line with [3, Conjecture 4.7.9], appropriately generalized to this situation
where the level is not sufficiently small. The proof is essentially an extended exercise on p-adic
matrix analysis which we do not know how to generalize to many other situations. Specifically,
it relies on the fact that, for this example, knowledge of the p-adic valuations of the entries of
the matrix associated to Up completely determine the slopes of its eigenvalues, which is not
always the case.§ Yet we note that the methods used here are of a different nature than those
in [10], which rely on studying the associated Hodge polygons, which in this example give only
trivial bounds on the associated Newton polygon.

The above theorem together with the computational evidence suggest that, in this example,
the slopes tend to zero as one approaches the boundary¶ of weight space. In particular,
this would imply, via similar methods to those in [9], that over the boundary annulus the

†Specifically, fixing certain components of the weights.
‡This is due to the fact that the associated Newton and Hodge polygons in general only touch at the base

point (see 3.18).
§As one can check in the examples computed in [3].
¶In these computations, we approach the boundary in all components of the weight space at once.
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718 CHRISTOPHER BIRKBECK

corresponding eigenvariety is a disjoint union of rigid spaces which are finite flat over this
boundary annulus. Moreover, we expect that methods similar to those of [9] would also prove
the parity part of the Bloch–Kato conjecture for this specific example (if the scaling behaviour
of the slopes were proven).

2. Background

Let us begin with the relevant set-up. Throughout we will set p = 2. We want to study the
p-adic slopes of overconvergent Hilbert modular forms over F = Q(

√
5). We note that 2 is

inert in F and that F has narrow class number one which will simplify the computations.
As is usual, instead of working directly with the space of overconvergent Hilbert modular
forms, we will instead work with spaces of overconvergent quaternionic modular forms as the
geometry is simpler. Specifically, by [2, Theorem 1], if we let D be the unique quaternion
algebra over F ramifying only at the two infinite places of F , then the eigenvariety associated
to Hilbert modular forms (as defined by [1]) is isomorphic to the eigenvariety associated to
these quaternionic forms. Therefore, since we are only interested in slopes, there is no loss in
working with overconvergent quaternionic forms. We begin by recalling their definition.

Notation 2.1. Throughout, D will be the totally definite quaternion algebra, which we note
has class number one and we let OD denote a fixed maximal order. Specifically, we let OD be the
icosian ring, since any other maximal order is conjugate to this (see [7, Section 3]). Moreover,
we fix a splitting of D at p, let ÔD = OD ⊗ Ẑ and set U0(ps) := {γ ∈ Ô×

D : γ ≡ (∗ ∗
0 ∗) mod ps}.

Definition 2.2. Let n ∈ Z2 and v ∈ Z2 such that n + 2v = (r, r) for some r ∈ Z. Set
k = n + 2 and w = v + n + 1 (understood as the obvious component-wise sum). It follows from
the above that all the entries of k have the same parity and k = 2w − r. Moreover, note that
given k (with all entries paritious and greater than 2) and r we can recover n, v, w. We call the
5-tuple (k, r, n, v, w) a weight tuple and, in order to simplify notation, we denote it simply by
[n1, n2], where it is understood that k, r, v, w are implicit.

Definition 2.3. Let K denote the unramified extension of Qp of degree 2 and let OK denote
its ring of integers. Note that OK

∼= OF ⊗ Zp. For χ a finite character on OF we consider it as
a character on OK via weak approximation. Then for an algebraic weight [n1, n2] we define a
weight-character [n1, n2]χ as the map OK → Cp defined by α �→ αn1αn2χ(α), where for α ∈ OK

we let α denote the image of α under the action of the non-trivial element in Gal(K/Qp). Such
weight-characters are called arithmetic weights.

Definition 2.4. Let D×
f := D ⊗ AF,f . The space of overconvergent quaternionic modular

forms of weight κ = [n1, n2]χ, level U0(ps) (and radius of overconvergence 1), denoted by
SD,†
κ (U0(nps)), is defined as the vector space of functions

f : D×\D×
f −→ K〈X,Y 〉

such that f(dg) = f(g) for all d ∈ D× and f(gu−1) ·κψ
up = f(g) for all u ∈ U0(nps) and g ∈

D×
f . Here the action of γ = (a b

c d) ∈ U0(ps) on K〈X,Y 〉 is given by

X lY m ·κ γ = χ(d) det(γ)v1 det(γ)v2(cX + d)n1(cY + d)n2

(
aX + b

cX + d

)l(
aY + b

cY + d

)m

(2.1)

where (k, r, n, v, w) is the associated weight tuple. To ease notation we are ignoring the radius
of overconvergence since this will not affect our result.

Remark 2.5. In what follows the computations were done in MAGMA [5]. The specific
Magma code is available at [4].
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From [7, Section 3] we see that there is a bijection between D×\D×
f /U0(p2) and

O×
D\Ô×

D/U0(p2), which in turn is in bijection with O×
D\P1(OF /p

2). So it suffices to compute
the orbit of elements in P1(OF /p

2) under O×
D. Doing this one finds that there is a single

orbit which is represented by the element [1 : 0] ∈ P1(OF /p
2). We then lift this to an element

t ∈ Ô×
D which is trivial at all finite places different from p and at p is given by (0 −1

1 0 ). Therefore,

Ô×
D = O×

DtU0(p2) . Now, by evaluating at t we get an isomorphism

SD,†
κ (U0(p2)) ∼−→ K〈X,Y 〉Γt

where Γt = tD×t−1 ∩ U0(p2).

Notation 2.6. From now on we let ζ denote a fixed non-trivial cube root of unity in K.

Proposition 2.7. In the above set-up, Γt/Γt ∩ F× is cyclic of order 3. Furthermore, at p,

the matrix (ζ 0

0 ζ−1) is a generator of this group.

Proof. By [8, Lemma 7.1], this group (denoted Γ
t
(U0(p2)) in loc.cit.) is finite since D is

totally definite.
Now, using the bijection between D×\D×

f /U0(p2) and O×
D\P1(OF /p

2) from [7, Section 3]
one can identify this group with the stabilizer of t in O×

D,1/{±1} where O×
D,1 are the units of

norm one. This group is then easily computed as well as its image at p. �

Now, in level U0(ps), the action of Up is given by

(f |Up)(t) =
∑

α∈OK/p

f |uα
(t) (2.2)

=
∑

α∈OK/p

f(tu−1
α ) · (uα)p (2.3)

where uα = ( p 0
αps 1) and (−)p denotes the p-part. If we write tu−1

α = dtvα with d ∈ D×, vα ∈
U0(ps), then

(f |Up)(t) =
∑

α∈OK/p

f(t) · (vαuα)p =
∑

α∈OK/p

f(t) |vαuα
.

Therefore, via SD,†
κ (U0(p2)) ∼−→ K〈X,Y 〉Γt

the action of Up on K〈X,Y 〉Γt

is given by∑
α∈OK/p |vαuα

.

Proposition 2.8. For level U0(p2) over F , we have Up =
∑4

s=1 | gs where

g1 :=

(
2a1 0
0 d1

)
, g2 :=

(
2a2 b

22c d2

)
, g3 :=

(
2a2ζ b

22c d2ζ
2

)
, g4 :=

(
2a2ζ

2 b

22c d2ζ

)
(2.4)

with

• a2, d2 ∈ Zp;
• a2d2 = −bc = 1/3;
• a1 = (2ζ + 1)a2;
• d1 = −(2ζ + 1)d2.
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720 CHRISTOPHER BIRKBECK

(We have not given an explicit description of the ai, di, b, c since this is cumbersome and we
will only need the stated properties.)

Proof. This is a simple (computer) calculation. For the code, see [4]. �

3. Slopes

In order for the space of modular forms of weight [n1, n2]χ to be non-trivial, one requires
χ(x) = NF/Q(x)r for all x ∈ O×

F where (k, r, n, v, w) is the associated weight tuple. With this
in mind we note that, since p = 2, there are no non-trivial characters of OF with conductor 4
such that χ(x) = NF/Q(x)2 for all x ∈ O×

F and there is a unique character with χ(x) = NF/Q(x).
We now set-up some notations that will be used throughout.

Notation 3.1. • Our arithmetic weights will be of the form [n1, n2]χ where n1, n2 are both
odd and χ is the unique non-trivial of OF with conductor 4 on OF which sends the fundamental
unit to −1 and sends −1 to 1.
• Throughout we will have the notational issue that the matrix representing the Up operator

will be in terms of a basis of monomials XiY j as this is the natural basis of K〈X,Y 〉. Moreover,
our main technical results will be about understanding precisely the p-adic valuations of each
entry of the Up operator matrix, which will depend on the monomials to which the entry
corresponds. For this reason, we will speak of the (i, j)-th entry of a matrix, with i = (i1, i2),
where i corresponds to the basis element Xi1Y i2 and similarly for j.
• For i, j, we let δi,j = 1 if i1 = j1 and i2 = j2 and is 0 otherwise.
• Let

Δ0(ps) =

{
γ =

(
a b

c d

)
∈ M2(OK) : ps|c, p � d, p|a,det(γ) �= 0

}
.

• Finally, let

C(i, j, n, x) :=
i∑

r=0

(
n− j

r

)(
j

i− r

)
xr.

Proposition 3.2. Let

γ =

(
a b

ps+1c d

)
∈ Δ0(ps+1)

and let κ = [n1, n2]χ be an arithmetic weight with (k, r, n, v, w) the associated weight tuple.
Then the i, j entry of the matrix representing the |κ γ action on K〈X,Y 〉 is given by

det(γ)v1 det(γ)v2 · Ωn(γ, i, j),

where

Ωn(γ, i, j) := χ(d) · dn1d
n2
pi1+i2

ai1

dj1
ai2

d
j2
bj1−i1b

j2−i2
C(i1, j1, n1, α) · C(i2, j2, n2, α), (3.1)

and α := bcps

ad .

Proof. This is [3, Corollary 3.1.17]. �

Corollary 3.3. In weight [n1, n2]χ, a basis of K〈X,Y 〉Γt

is given by Xi1Y i2 with n2 − n1 ≡
i1 − i2 mod 3.
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Proof. This follows from Propositions 2.7 and 3.2. �

Now, we will normalize our Up operator (as in [8]) by removing the factors det(γ)v1 det(γ)v2

appearing in Corollary 3.2. We denote this operator by U0
p .

Corollary 3.4. The valuation of the (i, j)-th entry of U0
p is at least i1 + i2 + g(i1, j1, n1) +

g(i2, j2, n2) where g(x, y, n) = ∞ if x > n � y, otherwise

g(x, y, n) =

⎧⎪⎪⎨⎪⎪⎩
x if y = 0,

0 if y � x,

x− y if y < x.

(3.2)

Proof. This is [3, Corollary 3.1.18] �

Proposition 3.5. Let U0
2 (i, j, n1, n2) denote the (i, j)-th entry of U0

p acting in weight
[n1, n2]χ, then

U0
p (i, j, n1, n2) =

4∑
s=1

Ωn(gs, i, j)

which, under a suitable change of basis, simplifies to

U0
p (i, j, n1, n2) := E ·

(
C(i1, j1, n1,−2)C(i2, j2, n2,−2) + 3m1+m2εi,j

)
(3.3)

where:

• E = 2i1+i2dn1+n2−2i1−2i2
2 31−i1−i2 ;

• εi,j = (−1)m1+m2+i1+i2+1δi,j ;
• d2 is as in Proposition 2.8;
• ni = 2mi + 1 (which is true since we are only allowed weights whose algebraic part is odd).

Proof. Throughout the proof we are using the notation as in Proposition 2.8. The first part
is immediate from Corollary 3.2 and the fact that Up :=

∑4
s=1 |gs . We now need to prove the

claimed simplification.
We begin by noting that since g1 is diagonal, it will only contribute to U0

p (i, i, n1, n2) and it is
easy to see from 2.8 and 3.2 that Ωn(g1, i, i) := χ(d1)2i1+i2dn1+n2−2i1−2i2

2 (2ζ + 1)n1−2i2(2ζ2 +
1)n2−2i1 . Finally, one checks that χ(d1) = −1 and (2ζ + 1)2 = −3, which combines to give

Ωn(g1, i, j) = 2i1+i2dn1+n2−2i1−2i2
2 3m1+m2+1−i1−i2(−1)m1+m2+1+i1+i2δi,j .

We now move on to the other three terms. Again, using Proposition 2.8, one checks easily
that

∑4
s=2 Ωn(gs, i, j) reduces to

2i1+i2dn1+n2
2 C(i1, j1, n1,−2)C(i2, j2, n2,−2)bj1−i1b

j2−i23

(
ai1+i2
2

dj1+j2
2

)
,

which is the same as

2i1+i2dn1+n2−i1−i2−j1−j2
2 C(i1, j1, n1,−2)C(i2, j2, n2,−2)bj1−i1b

j2−i231−i1−i2 .

The result now follows by conjugating by the diagonal matrix whose (i, i)-entry is
(bd2)i1bd2

i2 . �
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722 CHRISTOPHER BIRKBECK

We now choose a specific ordering for our basis of U0
p acting in weight κ := [n1, n2]χ.

Obviously the choice will not alter the result, but some choices will make it easier to prove what
the slopes are. Specifically, we want to order the basis in such a way that the block diagonal
submatrix of U0

p with 2 × 2-blocks has the same Newton polygon as U0
p (as we will prove below).

We begin by first ordering the basis elements using the graded lexicographic order. Let Xa1Y b1

be the first basis element under this ordering. We then set B1(κ) := {Xa1Y b1 , Xa1+1Y b1+1}
and for n � 1, define

Bn+1(κ) := Bn(κ) ∪ {Xan+1Y bn+1 , Xan+1+1Y bn+1+1}, (3.4)

where Xan+1Y bn+1 the next basis element not already contained in Bn. Finally, we set
B∞(κ) =

⋃
n Bn(κ).

Notation 3.6. Let U be an infinite matrix with respect to the basis B∞(κ). Let D(U)
denote the block diagonal submatrix of U with blocks of size 2. Note that each matrix along
the diagonal will correspond to a pair of basis elements, say, {XaY b, Xa+1Y b+1}. So we will
denote these matrices by Da,b(U).

Remark 3.7. Note that due to how our basis is ordered, such a, b will either have different
parity or both be even.

Proposition 3.8. (1) If a �≡ b mod 2, then the slopes of Da,b(U0
p ) are a + b + 1 and

a + b + 3.
(2) If a ≡ b ≡ 0 mod 2, then the slopes of Da,b(U0

p ) are a + b + 2.

Proof. Write

Da,b(U0
p ) =

(
ta,b ra,b

sa,b ta+1,b+1

)
. (3.5)

Then it follows from Proposition 3.5 that

ta,b = 2a+bua,b

(
C(a, a, n1,−2)C(b, b, n2,−2) + (−3)m1+m2(−1)a+b+1

)
(3.6)

with ua,b a unit and ni = 2mi + 1.
Similarly, we have

ra,b = 2a+bua,bC(a, a + 1, n1,−2)C(b, b + 1, n2,−2) (3.7)

sa,b = 2a+b+2ua+1,b+1C(a + 1, a, n1,−2)C(b + 1, b, n2,−2) (3.8)

Now a simple calculation shows that

valp(ta,b) =

{
a + b + 1 if a �≡ b mod 2

a + b + 2 + e if a ≡ b mod 2
(3.9)

valp(ra,b) =

{
a + b + 2 + e if a �≡ b mod 2

a + b if a ≡ b ≡ 0 mod 2
(3.10)

valp(sa,b) =

{
a + b + 5 + e if a �≡ b mod 2

a + b + 4 if a ≡ b ≡ 0 mod 2
(3.11)

where e � 0 is an error term. From this, the result follows at once. �
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Remark 3.9. Note that if a, b are not both even, then the slopes of Da,b are deter-
mined by the diagonal entries and for a ≡ b ≡ 0 mod 2 the slopes are determined by the
anti-diagonal entries.

Let us now give an example which will motivate the proof of the main theorem.

Example 3.10. We begin by describing the basis in the case κ = [1, 1]χ (recall that this is
our notation for the weight which would usually be called parallel weight 3 with nebentypus
χ). From Corollary 3.3 we see that, for this weight, the basis for the space of overconvergent
forms is given by B := {XiY j : i ≡ j mod 3}. Now, with the grlex ordering the first basis
element is 1, then B1(κ) = {1, XY }. From this, we get B2(κ) = B1(κ) ∪ {X3, X4Y }, B3(κ) =
B2(κ) ∪ {Y 3, XY 4} and so on.†

Now, for a matrix A with basis B∞(κ), let A(N) denote the truncation of A to the top
N ×N left-hand corner of A and let D := D(U0

p ). A computation shows that the slopes of
U0
p (10) and D(10) are both [2,2],[4,2],[6,4],[8,2] where the first entry denotes the slope and the

second its multiplicity. To explain this, we consider the matrix Vp whose (i, j)-th entry is the
p-adic valuation of the (i, j)-th entry of U0

p . Using Proposition 3.5, we see that Vp(U0
p (10)) is

∗ 0 0 0 0 0 0 0 0 0
4 ∗ 3 3 3 3 6 2 7 2
∗ ∗ 4 6 ∗ ∗ 4 3 4 3
∗ ∗ 9 6 ∗ ∗ 9 8 6 5
∗ ∗ ∗ ∗ 4 6 4 3 ∗ ∗
∗ ∗ ∗ ∗ 9 6 9 8 ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ 8 4 ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ 8 11 ∗ ∗
∗ ∗ 10 9 ∗ ∗ 10 10 12 6
∗ ∗ 13 12 ∗ ∗ 15 12 10 11

where here ∗ denotes an entry with infinite p-adic valuation, that is, a zero entry of U0
p . The

above computation suggests that it is enough to understand the slopes of the matrices lying
on the block diagonal. Looking at the above matrix one sees that the slopes are completely
determined by the valuations of the entries. In fact, we will show that for U0

p the valuations of
the entries completely determine the slopes, which in general is not true.

This example motivates the following definition:

Definition 3.11. Let Mκ denote the set of infinite matrices with respect to the basis
B∞(κ), such that if A ∈ Mκ, then the entries of Da,b(A) have valuations as given in the proof
of Proposition 3.8 and if ai,j does not lie on D(A), then valp(ai,j) � i1 + i2 + g(i1, j1, n1) +
g(i2, j2, n2) (as in Corollary 3.4).

Remark 3.12. Note that if A ∈ Mκ, then D(A) ∈ Mκ.

The following is the key result from which our main theorem will follow:

Lemma 3.13. All matrices in Mκ have the same Newton polygon.

†From this, it is clear that B∞(κ) = B.

 14692120, 2020, 4, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/blm
s.12361 by U

niversity O
f E

ast A
nglia, W

iley O
nline L

ibrary on [10/05/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense
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We will defer the proof of this lemma to the next section and instead show how one can use
it to deduce the main result.

Corollary 3.14. The Newton polygons of U0
p and D(U0

p ) are the same.

Proof. By definition of Mκ we have U0
p ∈ Mκ from which the result follows. �

Let τ be the character O×
K → OK,tors after fixing an isomorphism O×

K
∼= OK,tors × Z2

p. Note
that OK,tors is cyclic of order 6. A simple computation gives the following table.

Remark 3.15. We note that in order for the space of Hilbert modular forms to be non-
trivial, we require χ(e)τn(e) = −1, where e is the fundamental unit in OF . From this one checks
that the only valid exponent of τ is n ≡ 0 mod 3 as τ(e) = ζ2 (recall ζ is our fixed cube root
on unity).

Notation 3.16. (1) Let S†([n1, n2]χ) denote the multiset of slopes of U0
p acting on

S†
κ(U0(p2)) with κ = [n1, n2]χ. Similarly, let S([n1, n2]χ) denote the set of classical slopes in

weight κ and level U0(p2).
(2) For r ∈ Z and S([n1, n2]χ) = {s1, s2, . . . }, let S([n1, n2]χ) + r = {s1 + r, s2 + r, . . . }.
(3) For a, b ∈ Z, let

χa,b :=

{
χ if a ≡ b ≡ 0 mod 2

χτ3 otherwise.

(4) For n � 1, we let Tn(κ) := Bn(κ)\Bn−1(κ), where B0(κ) := ∅ and note that

Tn(κ) := {Xan(κ)Y bn(κ), Xan(κ)+1Y bn(κ)+1}
for some an(κ), bn(κ) ∈ Z�0. Let Iκ := {(an(κ), bn(κ))}n.

Theorem 3.17. Let ni ∈ Z with ni odd and let κ = [n1, n2]χ. Then

S†([n1, n2]χ) =
⋃

(a,b)∈Iκ

S([1, 1]χa,b) + a + b.

Proof. This follows from Corollary 3.14 combined with Proposition 3.8 and Table 1. �

Table 1. Classical slopes in different components of weight space.

Weight [Slope, Multiplicity] at level U0(4)

[1, 1]χ [2,2]

[1, 1]χτ3 [1,1],[3,1]

Note that twisting our weight by τ has the effect of changing the component of weight space
that we are in. The above theorem then says that once we know a small set of classical slopes
in each component of weight space, then we can obtain all slopes in any component of weight
space.

Remark 3.18. (1) The condition that ni is odd is required in order for the relevant space
of overconvergent Hilbert modular forms to be non-trivial.
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(2) Note that this is a simple generalization of [3, Conjectures 4.7.1 and 4.7.8] to levels which
are not sufficiently small (meaning we have Γt/Γt ∩ F× is non-trivial). Having a level which
is not sufficiently small has the effect of making the set over which we index in Theorem 3.17
more complicated.

(3) Computations suggest that, in this case, the Newton and Hodge polygons associated to
Up never touch (after the first vertex where they touch for trivial reasons) and therefore the
methods of [10] cannot be used to describe the slopes. Specifically, if one computes the Newton
and Hodge polygons of Up(N) for N >> 0, then the polygons only touch at the endpoints
(which will always be the case by the definition of the Newton and Hodge polygon associated
to a finite matrix).

4. Proof of Lemma 3.13

As mentioned above, the proof relies on the coincidence that all matrices in Mκ have the same
slopes. The strategy of proof relies on showing that the entries on the block diagonal submatrix
D(U0

p ) determine the p-adic valuation of a coefficient of the characteristic power series. To show
this we will first write down an explicit formula for the coefficients of the characteristic power
series in terms of the principal minors and then use our knowledge of valuations of the entries
to determine when the valuation of the principal minor is minimized.

Notation 4.1. (1) Let I denote the indexing set for the elements of B∞(κ). We will continue
to denote these indexes by i. Furthermore, for n ∈ Z�1, let In denote the subsets of size n of
I.

(2) For J ⊂ I, let S(J) :=
∑

i∈J i1 + i2.
(3) If A is an infinite matrix with basis given by B∞(κ) and J ∈ In, we let [A]J denote the

principal minor defined by J .

One can compute the coefficients of the characteristic polynomial of U0
p using the following

result of Serre.

Proposition 4.2. Let U = (ui,j) be the matrix associated to a compact operator (after

choosing a basis). Then det(1 − TU) =
∑∞

n=0 cn(U)Tn, where

cn(U) = (−1)n
∑
J⊂In

∑
σ∈Sym(J)

sgn(σ)
∏
i∈J

uσ(i),i = (−1)n
∑
J⊂In

[U ]J , (4.1)

where I is the indexing set of the basis elements.

Proof. This is [12, Proposition 7]. �

Now, we want to use Proposition 3.8 to find the minors of D(U0
p ) which will have valuation

as small as possible. Since D(U0
p ) is a block diagonal matrix, its slopes are determined by the

slopes of the blocks.
If {λi} denotes the multiset of slopes appearing in D(U0

p ), with λi � λi+1, then the Newton
polygon of D(U0

p ) is formed by the points (n,
∑n

i=1 λi) and each λi will come from one of the
slopes appearing in Daλi

,bλi
(U0

p ) for some index (aλi
, bλi

) ∈ B∞(κ). Moreover, the breakpoints
of the Newton polygon occur when we have λn < λn+1.

By Proposition 3.8, we see that if aλi
, bλi

have different parity, then

λi ∈ {valp(taλi
,bλi

), valp(taλi
+1,bλi

+1)}.
Otherwise, Daλi

,bλi
(U0

p ) has the same slopes λi.
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Proposition 4.3. Let λi = λj with aλi
, bλi

having different parity and aλj
, bλj

having same
parity, then

valp(taλi
,bλi

) � valp(taλj
,bλj

).

Proof. First note that λi = valp(taλi
,bλi

) = aλi
+ bλi

+ 1 or λi = valp(taλi
+1,bλi

+1) = aλi
+

bλi
+ 3. Now by Proposition 3.8, valp(taλj

,bλj
) = λj + ε with ε � 0 from which the result

follows. �

Let us now reorder the multiset of {λi}, so that if λi = λj where aλi
, bλi

have different parity
and aλj

, bλj
have same parity, then we relabel the slopes so that i � j. Similarly, we relabel

the same slopes of Daλi
,bλi

(U0
p ) by λi and λi+1.

Lemma 4.4. For all J ∈ In we have valp([D(U0
p )]J ) �

∑n
i=1 λi. Moreover, if λn < λn+1, then

there exists a unique J such that valp([D(U0
p )]J ) =

∑n
i=1 λi.

Proof. Let D := D(U0
p ). Note that from the definition of a Newton polygon, we have

n∑
i=1

λi � valp(Cn(D)) = valp

(∑
J∈In

[D]J

)
.

Now, let Jn = {(aλi
, bλi

)}ni=1, then by Propositions 3.8 and 4.3, it follows that valp([D]Jn
) �

valp([D]J ) for all J ∈ In. In fact, if aλn
, bλn

have different parity, then valp([D(U0
p )]Jn

) =∑n
i=1 λi.
Now, note that if we have λn = λn+1 with aλn

, bλn
having different parity, then Jn−1 ∪

{aλn
, bλn

} and Jn−1 ∪ {aλn+1 , bλn+1} give rise to principal minors with the same p-adic
valuation. In general, one sees that the index set J such that [U ]J is minimal are constructed by
rearranging the λi, λj (and thus the corresponding indexes) with λi = λj . From this it is then
clear that if λn < λn+1, then Jn is the unique subset in In for which valp([D(U0

p )]Jn
) =

∑n
i=1 λi,

which finishes the proof. �

Corollary 4.5. For each n the minimal valuation of an n× n principal minor of D(U0
p )

lies on or above NP(D(U0
p )). Furthermore, if (m, valp(cm(D(U0

p ))) is a vertex, then there is a
unique minor [D(U0

p )]J with J ∈ Im such that

valp([D(U0
p )]J ) = valp(cm(D(U0

p )).

Notation 4.6. Let Jn denote the set of J ∈ In such that valp([D(U0
p )]J is minimal.

For J ∈ Jn we want to select σJ ∈ Sym(J) which will pick out the entries with smallest
valuation. From Proposition 3.8, it is clear that to do this we must take the diagonal entries
of any block Da,b(U0

p ) with a �≡ b mod 2 and the anti-diagonal entries if a ≡ b ≡ 0 mod 2. The
only issue is that if the last index, (a, b) say, in J is such that a ≡ b ≡ 0 mod 2, then we cannot
pick the anti-diagonal entries, in this case one must again take the diagonal entry.

With this in mind, we make the following definition:

Definition 4.7. For J ∈ Jn, we take σJ ∈ Sym(J) such that if i1 �≡ i2 mod 2, then σJ(i) =
i, σJ(j) = j and otherwise we take σJ(i) = j where j1 = i1 + 1, j2 = i2 + 1, except possibly for
the final index in J . Note that Proposition 3.8 and Lemma 4.4 ensure that σJ is chosen so as
to pick out the entries lying on D(U0

p ) with smallest valuation.

With this we can now prove the lemma.
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Proof of Lemma 3.13. By Proposition 3.8, it is clear that if A,B ∈ Mκ, then NP(D(A)) =
NP(D(B)). So it is enough to check that for any A = (ai,j) ∈ Mκ, we have NP(A) = NP(D(A)).

Now, by Propositions 4.2, we have

valp(cn(A)) � min
J⊂In

σ∈Sym(J)

⎧⎨⎩∑
i∈J

valp(aσ(i),i)

⎫⎬⎭ (4.2)

and, for fixed J, σ, we have

∑
i∈J

valp(aσ(i),i) = S(J) +

⎛⎝∑
i∈J

valp(a′σ(i),i)

⎞⎠ (4.3)

where a′i,j = 2−i1−i2ai,j which is in OK by Corollary 3.4.
Now, note that:

(1) since our basis is given by elements Xi1Y i2 with n2 − n1 ≡ i1 − i2 mod 3, it follows that,
if ai,j is an entry of A, then |i1 − j1| + |i2 − j2| � 2, with equality if and only if ai,j lies
in D(A) (this is due to how we have ordered our basis). Furthermore, by Corollary 3.4
it is easy to check that if |σ(i)1 − i1| + |σ(i)2 − i2| > 2, then

valp(a′σ(i),ia
′
i,σ(i)) > 2.

In other words, if the entries are ‘far’ from the block diagonal then their product has
large valuation;

(2) if i, j ∈ J with j1 = i1 + 1, j2 = i2 + 1, then by Proposition 3.8, there exists σ such that

valp(a′σ(i),ia
′
i,σ(i)) = 2.

Explicitly, we take σ such that a′σ(i),i, a
′
i,σ(i) are both on the diagonal or anti-diagonal

of Di1,i2(A) (depending on the parity of (i1, i2));
(3) if i ∈ J with i1 �≡ i2 mod 2, then valp(a′i,i) = 1 and otherwise valp(a′i,i) � 2.

From the above, it follows that the J ∈ In and σ ∈ Sym(J) for which∑
i∈J

valp(aσ(i),i)

is minimal are those with J ∈ Jn and σ = σJ . This also shows that the minimal p-adic valuation
of the n× n principal minors of A and D(A) coincide. Now note that there could be several
such J with valp([A]J ) being minimal, so we only know that (n, valp(cn(A))) lies on or above
NP(D(A)) (this follows from Corollary 4.5). To get the result, we note that by Corollary 4.5 if
n corresponds to a vertex, then there is a unique J such that the minor [D(A)]J has minimal
valuation and the above shows that the same is true for A, therefore (n, valp(cn(A))) is a vertex
of NP(A). �

5. Scaling of slopes

We now have the following computational evidence which shows that as our weights approach
the boundary of weight space, the slopes scale.

Let χ = χ2 denote our fixed finite character as in the previous section. Then for n � 3, let
χn be a character of conductor pn, such that χn(e) = −1 and χ(−1) = 1 for e the fundamental
unit in OF . Similarly, for n � 3 we let ψn denote characters where ψn(e) = 1 and ψ(−1) = 1.
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Weight level [Slope, Multiplicity]

[3, 3]χ2 U0(4) [2,2]
[3, 3]χ3 U0(8) [1, 2], [2, 2], [3, 2]
[3, 3]χ4 U0(16) [1/2, 2], [1, 2], [3/2, 4], [2, 6], [5/2, 4], [3, 2], [7/2, 2]
[3, 3]χ5 U0(32) [1/4, 2], [1/2, 2], [3/4, 4], [1, 6], [5/4, 6], [3/2, 8], [7/4, 10], [2, 10], [9/4, 10], [5/2, 8], [11/4, 6],

[3, 6], [13/4, 4], [7/2, 2], [15/4, 2]

[2, 2]ψ3 U0(8) [1, 2]
[2, 2]ψ4 U0(16) [1/2, 2], [1, 2], [3/2, 2]
[2, 2]ψ5 U0(32) [1/4, 2], [1/2, 2], [3/4, 4], [1, 6], [5/4, 4], [3/2, 2], [7/4, 2]

[3, 5]χ2 U0(4) [2, 1], [4, 1]
[3, 5]χ3 U0(8) [1, 1], [2, 3], [3, 2], [4, 3], [5, 1]
[3, 5]χ4 U0(16) [1/2, 1], [1, 3], [3/2, 4], [2, 5], [5/2, 5], [3, 6], [7/2, 5], [4, 5], [9/2, 4], [5, 3], [11/2, 1]
[3, 5]χ5 U0(32) [1/4, 1], [1/2, 3], [3/4, 4], [1, 5], [5/4, 7], [3/2, 8], [7/4, 9], [2, 11], [9/4, 10], [5/2, 11], [11/4, 11],

[3, 10], [13/4, 11], [7/2, 11], [15/4, 10], [4, 11], [17/4, 9], [9/2, 8], [19/4, 7], [5, 5], [21/4, 4],
[11/2, 3], [23/4, 1]

[2, 4]ψ3 U0(8) [1, 1], [2, 2], [3, 1]
[2, 4]ψ4 U0(16) [1/2, 1], [1, 3], [3/2, 3], [2, 2], [5/2, 3], [3, 3], [7/2, 1]
[2, 4]ψ5 U0(32) [1/4, 1], [1/2, 3], [3/4, 4], [1, 5], [5/4, 6], [3/2, 5], [7/4, 5], [2, 6], [9/4, 5], [5/2, 5], [11/4, 6], [3, 5],

[13/4, 4], [7/2, 3], [15/4, 1]

Unfortunately proving the scaling behaviour seems to be beyond our current methods, but
the above tables suggest that as one approaches the boundary of weight space the slopes scale
in a way analogous to what occurs for elliptic modular forms.
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